WorldWideScience

Sample records for planetary quarantine volume

  1. Planetary protection policy overview and application to future missions

    Science.gov (United States)

    Rummel, John D.

    1989-01-01

    The current status of planetary protection (quarantine) policy within NASA is discussed, together with the issues of planetary protection and back-contamination as related to future missions. The policy adopted by COSPAR in 1984 (and recently reaffirmed by the NASA Administrator) for application to all unmanned missions to other solar system bodies and all manned and unmanned sample return missions is examined. Special attention is given to the implementation of the policy and to the specific quarantine-related constraints on spacecraft involved in solar system exploration that depend on the nature of the mission and the identity of the target body.

  2. Advances in planetary geology, volume 2

    International Nuclear Information System (INIS)

    1986-07-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons

  3. Biological quarantine on international waters: an initiative for onboard protocols

    Science.gov (United States)

    Takano, Yoshinori; Yano, Hajime; Funase, Ryu; Sekine, Yasuhito; Takai, Ken

    2012-07-01

    The research vessel Chikyu is expanding new frontiers in science, technology, and international collaboration through deep-sea expedition. The Chikyu (length: 210 m, gross tonnage: 56752 tons) has advanced and comprehensive scientific research facilities. One of the scientific purposes of the vessel is to investigate into unexplored biosphere (i.e., undescribed extremophiles) on the Earth. Therefore, "the onboard laboratory" provides us systematic microbiological protocols with a physical containment situation. In parallel, the onboard equipments provide sufficient space for fifty scientists and technical support staff. The helicopter deck also supports various logistics through transporting by a large scale helicopter (See, http://www.jamstec.go.jp/chikyu/eng/). Since the establishment of Panel on Planetary Protection (PPP) in Committee on Space Research (COSPAR), we have an international consensus about the development and promulgation of planetary protection knowledge, policy, and plans to prevent the harmful effects of biological contamination on the Earth (e.g., Rummel, 2002). However, the matter to select a candidate location of initial quarantine at BSL4 level is often problematic. To answer the key issue, we suggest that international waters can be a meaningful option with several advantages to conduct initial onboard-biological quarantine investigation. Hence, the research vessel Chikyu is promising for further PPP requirements (e.g., Enceladus sample return project: Tsou et al., 2012). Rummel, J., Seeking an international consensus in planetary protection: COSPAR's planetary protection panel. Advances in Space Research, 30, 1573-1575 (2002). Tsou, P. et al. LIFE: Life Investigation For Enceladus - A Sample Return Mission Concept in Search for Evidence of Life. Astrobiology, in press.

  4. An overview of quarantine for fruit flies

    International Nuclear Information System (INIS)

    Frampton, E.R.

    2000-01-01

    What is meant by 'quarantine for fruit flies'? The Collins dictionary describes 'quarantine' as a period of isolation or detention, especially of persons or animals arriving from abroad, to prevent the spread of disease. In providing an overview of quarantine for fruit flies, a broader definition needs to be applied, that is, the combination of activities required to maintain the fruit fly status of a particular geographical area - perhaps better referred to as a 'quarantine system'. Familiarity with New Zealand's quarantine system for fruit flies (Diptera: Tephritidae) provides a useful basis for subsequent comparison with other countries' systems where some fruit fly species may be present. But, why have 'quarantine for fruit flies'? The multivoltine life history of many species. combined with a relatively long-lived adult stage and highly fecund females, results in a high potential for rapid population increase (Bateman 1979, Fletcher 1987). These factors and the close association of fruit flies with harvested fruit or vegetables explain the high quarantine profile of these insects. However, there is no international requirement for a country to have a quarantine system and unless there are natural quarantine barriers (e.g., mountain range, oceans, deserts) that can be utilised, effective quarantine by an individual country may be an impossible task. The implementation of a successful quarantine system is very expensive and therefore, it would be expected that any benefits attained outweigh the costs (Ivess 1998). Ivess (1998) listed the following benefits from the implementation of an effective quarantine system: minimising production costs (including post harvest treatments), maintaining competitive advantages for market access due to the ongoing freedom from particular pests of quarantine significance, an environment free from many pests harmful to plant health, the maintenance of ecosystems

  5. 9 CFR 72.5 - Area quarantined in Texas.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Area quarantined in Texas. 72.5... AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.5 Area quarantined in Texas. The area quarantined in Texas is the quarantined area...

  6. 7 CFR 301.86-3 - Quarantined areas.

    Science.gov (United States)

    2010-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pale Cyst Nematode § 301.86-3 Quarantined... be infested with pale cyst nematode, each field that has been found to be associated with an infested... State as a quarantined area will prevent the interstate spread of the pale cyst nematode. (c) Criteria...

  7. Australian agricultural quarantine - imports and exports

    International Nuclear Information System (INIS)

    Turpin, J.W.; Read, B.J.; Pinson, R.S.; Higgs, G.M.

    1985-01-01

    Agricultural quarantine is administered by Government to protect all facets of agriculture and the environment from unwanted pests and diseases of animals and plants. Ionising energy would appear to have an excellent future as a quarantine treatment

  8. Food irradiation as a quarantine treatment

    International Nuclear Information System (INIS)

    Ignatowicz, S.

    1998-01-01

    Because of multiplicity of invertebrate pests of fresh and durable agricultural products which are treaded internationally there are frequent instances were products are unacceptable without an approved prior disinfestation treatment. The majority of these pests are regulated by quarantine inspections at the ports of exit and entry. Where there is risk of rejection of products if quarantine pests are found at inspection it is frequently prudent to apply a disinfestation treatment. Control of these pests in agriculture produce by fumigation is no longer desirable from the points of human health and global environment. Irradiation could be feasible and practical alternative with a broad applicability to commodities and pests. Quarantine disinfestation of most agricultural products seems to be achievable at the recommended generic dose of 300 Gy. Because irradiation applied at doses ranging about 300 Gy does not cause immediate mortality of all insects, mites or nematodes, live pests could be present after treatment of agricultural produce intended for international trade. In such case a marker of irradiation that is easily applied may be very useful in allaying concerns of some quarantine inspectors that inevitably occur when a living insect of quarantine importance is found in a shipment. (author)

  9. 9 CFR 93.312 - Manure from quarantined horses.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Manure from quarantined horses. 93.312... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Horses § 93.312 Manure from quarantined horses. No manure shall be removed from the quarantine premises until the release of the horses producing same. ...

  10. 9 CFR 93.311 - Milk from quarantined horses.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Milk from quarantined horses. 93.311... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Horses § 93.311 Milk from quarantined horses. Milk or cream from horses quarantined under the provisions of this part shall not be used by any person other...

  11. Restricted by Whom? A Historical Review of Strategies and Organization for Restricted Earth Return of Samples from NASA Planetary Missions

    Science.gov (United States)

    Pugel, Betsy

    2017-01-01

    This presentation is a review of the timeline for Apollo's approach to Planetary Protection, then known as Planetary Quarantine. Return of samples from Apollo 11, 12 and 14 represented NASA's first attempts into conducting what is now known as Restricted Earth Return, where return of samples is undertaken by the Agency with the utmost care for the impact that the samples may have on Earth's environment due to the potential presence of microbial or other life forms that originate from the parent body (in this case, Earth's Moon).

  12. Irradiation as a quarantine treatment

    International Nuclear Information System (INIS)

    Burditt, A.K. Jr.

    1991-01-01

    The use of irradiation as an alternative treatment for commodities subject to infestation by pests of quarantine importance is outlined in this article. A dose of 300 Gy or less has been found to prevent adult emergence when insect eggs or larvae are irradiated and research has shown that such doses will not affect the quality of most commodities. The use of gamma rays from cobalt-60 or caesium-137 sources, as well as electrons or X-rays from linear accelerators, has been approved for food irradiation. Irradiation facilities must meet regulations promulgated by nuclear, health and agricultural quarantine agencies with regard to location, facility design, sources, operation, personnel, dosimetry and other requirements. Education of industry operators and the general public is needed in order to gain acceptance of irradiation as a quarantine treatment. (author). 21 refs, 1 tab

  13. Lava flooding of ancient planetary crusts: geometry, thickness, and volumes of flooded lunar impact basins

    International Nuclear Information System (INIS)

    Head, J.W.

    1982-01-01

    Estimates of lava volumes on planetary surfaces provide important data on the lava flooding history and thermal evolution of a planet. Lack of information concerning the configuration of the topography prior to volcanic flooding requires the use of a variety of techniques to estimate lava thicknesses and volumes. A technique is described and developed which provides volume estimates by artificially flooding unflooded lunar topography characteristic of certain geological environments, and tracking the area covered, lava thicknesses, and lava volumes. Comparisons of map patterns of incompletely buried topography in these artificially flooded areas are then made to lava-flooded topography on the Moon in order to estimate the actual lava volumes. This technique is applied to two areas related to lunar impact basins; the relatively unflooded Orientale basin, and the Archimedes-Apennine Bench region of the Imbrium basin. (Auth.)

  14. Modelling the effects of treatment and quarantine on measles

    Science.gov (United States)

    Beay, Lazarus Kalvein

    2018-03-01

    Treatment and quarantine are efforts to cure as well as to overcome the spread of diseases including measles. The spread of measles can be expressed by mathematical modelling in the form of nonlinear dynamical systems. In this study was conducted on the spread of measles by considering the effect of treatment and quarantine on the infected individuals. By using the basic reproduction number of the model, can be analyzed the effects of treatment and quarantine to reduce the spread of measles. Basic reproduction number of models is monotonically descreasing as treatment and quarantine increasing. Numerical simulations conducted on the analysis of the results. The results showed that treatment and quarantine was given to infected individuals who were infectious has a major influence to eliminate measles from the system.

  15. 9 CFR 93.324 - Detention for quarantine.

    Science.gov (United States)

    2010-01-01

    ... CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN ANIMAL, BIRD, AND POULTRY PRODUCTS; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Horses Mexico 18 § 93.324 Detention for quarantine. Horses intended for importation from Mexico shall be quarantined until they qualify for release from such...

  16. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The

  17. 9 CFR 93.511 - Swine quarantine facilities.

    Science.gov (United States)

    2010-01-01

    ...) Privately operated quarantine facilities. The importer, or his or her agent, of swine subject to quarantine... of any import permit. The facilities occupied by swine should be kept clean and sanitary to the... described in paragraph (b) of this section. The importer, or his or her agent, shall request in writing such...

  18. 75 FR 54592 - Pale Cyst Nematode; Update of Quarantined Areas

    Science.gov (United States)

    2010-09-08

    ...] Pale Cyst Nematode; Update of Quarantined Areas AGENCY: Animal and Plant Health Inspection Service... made changes to the area in the State of Idaho that is quarantined to prevent the spread of pale cyst nematode. The description of the quarantined area was updated on April 26, 2010. As a result of these...

  19. Ionizing radiation quarantine treatments against tephritid fruit flies: a review

    Energy Technology Data Exchange (ETDEWEB)

    Hallman, G. J. [USDA-ARS, Weslaco, TX (United States)

    1999-06-15

    Fruit flies of the family Tephritidae are considered the most important insect pest risk carried by exported fruits worldwide. Fruits suspected of harboring fruit fly eggs and larvae must be treated to control virtually 100% of any tephritids present. Irradiation is unique among quarantine treatments in that it is the only treatment used which does not cause acute mortality; instead, insects are prevented from maturing or are sterilized. Tephritids have been the most studied group of quarantined pests as far as irradiation; minimum absorbed doses confirmed with large-scale testing to provide control to the probit 9 level (99.9968%) have ranged from 50 to 250 Gy. Considerable work has been done with the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), one of the most important quarantined pests worldwide, and doses suggested to provide quarantine security have varied widely. The fact that insects are still alive for some time after irradiation has been one of the major obstacles to its use. Irradiation may be the most widely applicable quarantine treatment from the standpoint of fruit quality. However, some important fruits shipped across quarantine barriers (mangoes, Mangifera indica L., and citrus) may suffer from doses as low as 150 Gy when applied on a commercial scale where much of the fruit load may receive 300 Gy. Fortunately, some of the important tephritids attacking these fruits, such as Anastrepha spp., can be controlled with lower doses. Mainland USA has begun to use irradiation as a quarantine treatment for some fruits imported from Hawaii since April 1995 and remains the only country using irradiation as a quarantine treatment, although on a very limited basis. Irradiation offers some additional risk abatement advantages over other quarantine treatments. © 1999 Published by Elsevier Science B.V. All rights reserved. (author)

  20. Ionizing radiation quarantine treatments against tephritid fruit flies: a review

    International Nuclear Information System (INIS)

    Hallman, G.J.

    1999-01-01

    Fruit flies of the family Tephritidae are considered the most important insect pest risk carried by exported fruits worldwide. Fruits suspected of harboring fruit fly eggs and larvae must be treated to control virtually 100% of any tephritids present. Irradiation is unique among quarantine treatments in that it is the only treatment used which does not cause acute mortality; instead, insects are prevented from maturing or are sterilized. Tephritids have been the most studied group of quarantined pests as far as irradiation; minimum absorbed doses confirmed with large-scale testing to provide control to the probit 9 level (99.9968%) have ranged from 50 to 250 Gy. Considerable work has been done with the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), one of the most important quarantined pests worldwide, and doses suggested to provide quarantine security have varied widely. The fact that insects are still alive for some time after irradiation has been one of the major obstacles to its use. Irradiation may be the most widely applicable quarantine treatment from the standpoint of fruit quality. However, some important fruits shipped across quarantine barriers (mangoes, Mangifera indica L., and citrus) may suffer from doses as low as 150 Gy when applied on a commercial scale where much of the fruit load may receive 300 Gy. Fortunately, some of the important tephritids attacking these fruits, such as Anastrepha spp., can be controlled with lower doses. Mainland USA has begun to use irradiation as a quarantine treatment for some fruits imported from Hawaii since April 1995 and remains the only country using irradiation as a quarantine treatment, although on a very limited basis. Irradiation offers some additional risk abatement advantages over other quarantine treatments. © 1999 Published by Elsevier Science B.V. All rights reserved. (author)

  1. The philosophy of quarantine treatment as related to low-dose radiation

    International Nuclear Information System (INIS)

    Ouye, M.T.; Gilmore, J.E.

    1985-01-01

    The purpose for quarantine treatment is to prevent establishment of exotic pest populations from quarantined areas to nonquarantined areas through movement of host commodities. Quarantine treatment schedules approved by the Animal Plant Health Inspection Service (APHIS), U.S. Dept. of Agriculture (USDA), appear in its ''Plant Protection and Quarantine Programs Treatment Manual.'' These treatment schedules were developed through research demonstrating that when followed to the letter, quarantine security or negligible pest risk would be achieved. Negligible pest risk is currently synonymous with probit 9, the level of security at which no more than 3.2 pests per 100,000 treated will survive. Probits are based on mortality; therefore, relatively high dosages will be required and in some instances could damage the commodity at the dosage necessary to kill the pest. If the purpose of quarantine treatment is to prevent perpetuation of the pest species into nonquarantined areas, the criterion should be based on the ability of the treated pests to reproduce. The criteria currently being discussed by APHIS and the Agricultural Research Service are presented. Two key criteria are a redefinition of negligible pest risk and the concept of a two-stage quarantine treatment schedule

  2. 7 CFR 319.56-1 - Notice of quarantine.

    Science.gov (United States)

    2010-01-01

    ... quarantine. (a) Under section 412(a) of the Plant Protection Act, the Secretary of Agriculture may prohibit... 7 Agriculture 5 2010-01-01 2010-01-01 false Notice of quarantine. 319.56-1 Section 319.56-1 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION...

  3. 9 CFR 78.12 - Cattle from quarantined areas.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cattle from quarantined areas. 78.12... Restrictions on Interstate Movement of Cattle Because of Brucellosis § 78.12 Cattle from quarantined areas. Not withstanding any provisions in the regulations to the contrary, cattle may be moved interstate from a...

  4. The potential for optical beam shaping of UV laser sources for mass scale quarantine disinfection applications

    Science.gov (United States)

    Lizotte, Todd

    2010-08-01

    Recent events concerning H1N1 "swine flu", have demonstrated to the world the significant potential of rapid increases in death and illness among all age groups and even among the healthy population [1] when a highly infectious influenza virus is introduced. In terms of mass casualties due to a pandemic, preparedness and response planning must be done. One course of action to prevent a pandemic outbreak or reduce the impact of a bioterrorist event is the use of isolation or quarantine facilities. The first level of isolation or quarantine is within the personal residence of the person exposed or infected. In the case where, the specific virus is extremely contagious and its onset of symptoms is rapid and severe, there will be a need for the deployment and setup of larger self contained quarantine facilities. Such facilities are used to house infectious individuals to minimize the exposure of susceptible individuals to contagious individuals, especially when specialized care or treatment is required and during the viral shedding period (5 to 7 days). These types of facilities require non-shared air conditioning, heating and ventilating systems where 100% of air is vented to the outside through a series of disinfection systems and staged filters. Although chemical disinfection is possible, there is a desire to incorporate intense UV radiation as a means to deactivate and disinfect airborne virus within hospital settings and isolated mass scale quarantine facilities. UV radiation is also being considered for disinfection of contaminated surfaces, such as table tops, walls and floors in hospitals and temporary quarantine facilities. In such applications the use of UV bulb technology can create many problems, for instance bulb technology requires numerous bulbs to treat a large volume of air, generates significant heat, uses significant power and does not produce large fluxes of UV light efficiently. This paper provides several methods of creating quarantine level

  5. Annual review of earth and planetary sciences. Volume 8

    International Nuclear Information System (INIS)

    Donath, F.A.; Stehli, F.G.; Wetherill, G.W.

    1980-01-01

    Papers are presented on the geochemistry of evaporitic lacustrine deposits, the deformation of mantle rocks, the dynamics of sudden stratospheric warmings, the equatorial undercurrent, geomorphological processes on planetary surfaces, and rare earth elements in petrogenetic studies of igneous systems. Consideration is also given to evolutionary patterns in early Cenozoic animals, the origin and evolution of planetary atmospheres, the moons of Mars, and refractory inclusions in the Allende meteorite

  6. LESSONS FROM A RETROSPECTIVE ANALYSIS OF A 5-YR PERIOD OF QUARANTINE AT SAN DIEGO ZOO: A RISK-BASED APPROACH TO QUARANTINE ISOLATION AND TESTING MAY BENEFIT ANIMAL WELFARE.

    Science.gov (United States)

    Wallace, Chelsea; Marinkovich, Matt; Morris, Pat J; Rideout, Bruce; Pye, Geoffrey W

    2016-03-01

    Quarantine is designed primarily to prevent the introduction of transmissible diseases to zoological collections. Improvements in preventive medicine, disease eradication, and comprehensive pathology programs call into question current industry quarantine standards. Disease risk analysis was used at the San Diego Zoo (SDZ) and the SDZ Safari Park to eliminate quarantine isolation and transmissible disease testing for animals transferred between the two institutions. To determine if a risk-based approach might be valid between other institutions and SDZ, we reviewed quarantine data for animals arriving at SDZ from 81 Association of Zoos and Aquariums (AZA)-accredited and 124 other sources (e.g., non-AZA-accredited institutions, private breeders, private dealers, governmental bodies) over a 5-yr period (2009-2013). No mammal or herptile failed quarantine due to transmissible diseases of concern. Approximately 2.5% of incoming birds failed quarantine due to transmissible disease; however, all 14 failed individuals were obtained from three nonaccredited sources (private breeders, confiscation). The results of our study suggest that a risk-based approach could be used to minimize or eliminate quarantine for the transfer of animals from institutions with comprehensive disease surveillance programs and/or preshipment testing practices. Quarantine isolation with testing remains an essential defense against introducing transmissible diseases of concern when there is a lack of health knowledge about the animals being received.

  7. The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model

    Science.gov (United States)

    Hughes, S.; Bernath, A.

    1995-01-01

    The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.

  8. Quarantine-generated phase transition in epidemic spreading

    Science.gov (United States)

    Lagorio, C.; Dickison, M.; Vazquez, F.; Braunstein, L. A.; Macri, P. A.; Migueles, M. V.; Havlin, S.; Stanley, H. E.

    2011-02-01

    We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (wspread out. We find that in our model the topology of the network strongly affects the size of the propagation and that wc increases with the mean degree and heterogeneity of the network. We also find that wc is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes.

  9. The use of radiation in quarantine on insects

    International Nuclear Information System (INIS)

    Al-Oraby, M. N. A.

    2012-01-01

    With world trade in agricultural commodities increasing, the introduction of exotic insects into new areas, where they become pests, will increase. The development and application of quarantine treatments or other mitigation approaches to prevent pest introduction in traded commodities raise many research and regulatory issues. The probit 9 standard for quarantine treatment efficacy has given way to risk based alternatives. Development of generic treatments to control broad groups of insects or insects in all commodities can expedite new trade in agricultural products. An innovative technique using radio-frequency (RF) and Microwave (MW) heating treatments was proposed as an alternative quarantine treatment in nuts. The practical future application in industry should be possible after solving their problems of high cost, non-uniform heating and quality damage. (author)

  10. The borderline of 'empire': Japanese maritime quarantine in Busan c.1876-1910.

    Science.gov (United States)

    Kim, Jeong-Ran

    2013-04-01

    This paper seeks to balance the regional and thematic focus of cholera historiography by examining maritime quarantine in Busan, as it was devised and implemented by Japanese officials and doctors during the pre-colonial period. It also places the relationship between Korea and Japan in the context of relations with China, Russia and Britain. This paper shows that quarantine measures in Busan and other Korean ports reflected the rise of Japanese imperial power and the increasing desire on the part of the Japanese to establish an effective borderline for their regional empire. From 1879 Japan began to impose maritime quarantine in Busan, where Japanese influence was very strong even before the colonial period, though at that time Japan was unable to perform quarantine in its own ports independently due to the objections of Western powers, particularly Britain. Victories in the Sino-Japanese and Russo-Japanese wars established Japan as a regional power on equal terms with the West, and as the dominant power in Korea and Eastern Asia. With the acquisition of the right to impose quarantine in its homeland, Japan strengthened and extended the range of quarantine from Japan to Korea, China and Russia. Now quarantine screened Japan from potentially harmful agents – pathogenic and political – and its functions diversified further as modernisation and imperial expansion gathered pace. The reliance which Japan placed upon quarantine in maintaining its empire explains why it was increasingly out of step with other powers regarding international sanitary precautions. The Japanese maritime quarantine in Busan during this period therefore shows many aspects of Japan’s ‘national empire’.

  11. Quarantine stations at ports of entry: protecting the public's health

    National Research Council Canada - National Science Library

    Sivitz, Laura; Stratton, Kathleen R; Benjamin, Georges

    ...) places small groups of staff at major U.S. airports. These staff, their offices, and their patient isolation rooms constitute quarantine stations, which are run by CDC's Division of Global Migration and Quarantine (DGMQ...

  12. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions Workshop Booklet - 2015

    Science.gov (United States)

    Fonda, Mark L.

    2015-01-01

    Although NASA's preparations for the Apollo lunar missions had only a limited time to consider issues associated with the protection of the Moon from biological contamination and the quarantine of the astronauts returning to Earth, they learned many valuable lessons (both positive and negative) in the process. As such, those efforts represent the baseline of planetary protection preparations for sending humans to Mars. Neither the post-Apollo experience or the Shuttle and other follow-on missions of either the US or Russian human spaceflight programs could add many additional insights to that baseline. Current mission designers have had the intervening four decades for their consideration, and in that time there has been much learned about human-associated microbes, about Mars, and about humans in space that has helped prepare us for a broad spectrum of considerations regarding potential biological contamination in human Mars missions and how to control it. This paper will review the approaches used in getting this far, and highlight some implications of this history for the future development of planetary protection provisions for human missions to Mars. The role of NASA and ESA's planetary protection offices, and the aegis of COSPAR have been particularly important in the ongoing process.

  13. 9 CFR 93.309 - Horse quarantine facilities; payment information.

    Science.gov (United States)

    2010-01-01

    ...; payment information. (a) Privately operated quarantine facilities. The importer, or his or her agent, of... and sanitary to the satisfaction of the inspector assigned to supervise the quarantine. If for any... accordance with the procedure described in paragraph (b) of this section. The importer, or his or her agent...

  14. Quarantine-generated phase transition in epidemic spreading.

    Science.gov (United States)

    Lagorio, C; Dickison, M; Vazquez, F; Braunstein, L A; Macri, P A; Migueles, M V; Havlin, S; Stanley, H E

    2011-02-01

    We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold w(c) separating a phase (wspread out. We find that in our model the topology of the network strongly affects the size of the propagation and that w(c) increases with the mean degree and heterogeneity of the network. We also find that w(c) is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes. ©2011 American Physical Society

  15. Quarantine generated phase transition in epidemic spreading

    Science.gov (United States)

    Dicksion, Mark; Lagorio, Cecilia; Vazquez, F.; Braunstein, L.; Macri, P. A.; Migueles, M. V.; Havlin, S.; Stanley, H. E.

    2011-03-01

    We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered (SIR) model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w, and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (w =wc) where the disease does not spread out. We find that in our model the topology of the network strongly affects the size of the propagation, and that wc increases with the mean degree and heterogeneity of the network. We also find that wc is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes.

  16. Formation of planetary systems

    International Nuclear Information System (INIS)

    Brahic, A.

    1982-01-01

    It seemed appropriate to devote the 1980 School to the origin of the solar system and more particularly to the formation of planetary systems (dynamic accretion processes, small bodies, planetary rings, etc...) and to the physics and chemistry of planetary interiors, surface and atmospheres (physical and chemical constraints associated with their formation). This Summer School enabled both young researchers and hard-nosed scientists, gathered together in idyllic surroundings, to hold numerous discussions, to lay the foundations for future cooperation, to acquire an excellent basic understanding, and to make many useful contacts. This volume reflects the lectures and presentations that were delivered in this Summer School setting. It is aimed at both advanced students and research workers wishing to specialize in planetology. Every effort has been made to give an overview of the basic knowledge required in order to gain a better understanding of the origin of the solar system. Each article has been revised by one or two referees whom I would like to thank for their assistance. Between the end of the School in August 1980 and the publication of this volume in 1982, the Voyager probes have returned a wealth of useful information. Some preliminary results have been included for completeness

  17. Evaluation of the quality and shelf life of gamma irradiated blueberries by quarantine purposes

    Science.gov (United States)

    Lires, Carla M. L.; Docters, Andrea; Horak, Celina I.

    2018-02-01

    Fresh blueberries (Vaccinium spp.) are considered one of the richest sources of phenolic compounds and are appreciated for their high antioxidant capacity. But they are hosts in Argentina of the quarantine pests Ceratitis capitata and Anastrepha fraterculus, and have to be treated to avoid its spreading. Irradiation is being introduced in the Agricultural World trade, increasing exponentially on the last years. In order to guarantee the success of this process, it is required previous to the rutinary treatment, to define the irradiation dose range to be applied. The minimum dose for these pests has been already approved in the IPPC standard 28. The maximum dose depends on the tolerance of the fruit cultivars, maturity, pre-harvest conditions, harvest time, storage conditions, and interactions among these factors. The postharvest quality of Argentina´s blueberry treated with irradiation doses of 150 (generic quarantine dose used for fruit flies) and 300 Gy (to evaluate tolerance) was evaluated. The studies included blueberries from different harvest seasons 2009-2012). Misty, O'Neal and Emeral varieties were chosen, because they represent the biggest volume of exported blueberry from Argentina. The results indicated that irradiation at 150 Gy and 300 Gy did not significantly affect the postharvest quality and slightly improved shelf life of the different blueberries varieties. Therefore, it is possible to use irradiation as an alternative quarantine treatment for Argentina´s blueberries, establishing a dose range appropriate to be applied on a commercial irradiation facility.

  18. Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants

    Directory of Open Access Journals (Sweden)

    Siwon Lee

    2015-12-01

    Full Text Available We developed a loop-mediated isothermal amplification (LAMP method to rapidly diagnose Wheat streak mosaic virus (WSMV during quarantine inspections of imported wheat, corn, oats, and millet. The LAMP method was developed as a plant quarantine inspection method for the first time, and its simplicity, quickness, specificity and sensitivity were verified compared to current reverse transcription-polymerase chain reaction (RT-PCR and nested PCR quarantine methods. We were able to quickly screen for WSMV at quarantine sites with many test samples; thus, this method is expected to contribute to plant quarantine inspections.

  19. 75 FR 11111 - Pale Cyst Nematode; Update of Quarantined Areas

    Science.gov (United States)

    2010-03-10

    ...] Pale Cyst Nematode; Update of Quarantined Areas AGENCY: Animal and Plant Health Inspection Service...: Background The pale cyst nematode (PCN, Globodera pallida) is a major pest of potato crops in cool... made changes to the area in the State of Idaho that is quarantined to prevent the spread of pale cyst...

  20. Dynamics of an epidemic model with quarantine on scale-free networks

    Science.gov (United States)

    Kang, Huiyan; Liu, Kaihui; Fu, Xinchu

    2017-12-01

    Quarantine strategies are frequently used to control or reduce the transmission risks of epidemic diseases such as SARS, tuberculosis and cholera. In this paper, we formulate a susceptible-exposed-infected-quarantined-recovered model on a scale-free network incorporating the births and deaths of individuals. Considering that the infectivity is related to the degrees of infectious nodes, we introduce quarantined rate as a function of degree into the model, and quantify the basic reproduction number, which is shown to be dependent on some parameters, such as quarantined rate, infectivity and network structures. A theoretical result further indicates the heterogeneity of networks and higher infectivity will raise the disease transmission risk while quarantine measure will contribute to the prevention of epidemic spreading. Meanwhile, the contact assumption between susceptibles and infectives may impact the disease transmission. Furthermore, we prove that the basic reproduction number serves as a threshold value for the global stability of the disease-free and endemic equilibria and the uniform persistence of the disease on the network by constructing appropriate Lyapunov functions. Finally, some numerical simulations are illustrated to perform and complement our analytical results.

  1. 7 CFR 301.75-10 - Interstate movement of regulated articles through a quarantined area.

    Science.gov (United States)

    2010-01-01

    ... articles being moved interstate, and the date the interstate movement began. (b) The regulated article is moved through the quarantined area without being unloaded, and no regulated article, except regulated... through a quarantined area. Any regulated article not produced in a quarantined area may be moved...

  2. The Development and Preliminary Application Ofplant Quarantine Remote Teaching System Inchina

    Science.gov (United States)

    Wu, Zhigang; Li, Zhihong; Yang, Ding; Zhang, Guozhen

    With the development of modern information technology, the traditional teaching mode becomes more deficient for the requirement of modern education. Plant Quarantine has been accepted as the common course for the universities of agriculture in China after the entry of WTO. But the teaching resources of this course are not enough especially for most universities with lack base. The characteristic of e-learning is regarded as one way to solve the problem of short teaching resource. PQRTS (Plant Quarantine Remote Teaching System) was designed and developed with JSP (Java Sever Pages), MySQL and Tomcat in this study. The system included many kinds of plant quarantine teaching resources, such as international glossary, regulations and standards, multimedia information of quarantine process and pests, ppt files of teaching, and training exercise. The system prototype implemented the functions of remote learning, querying, management, examination and remote discussion. It could be a tool for teaching, teaching assistance and learning online.

  3. 40 CFR 166.32 - Reporting and recordkeeping requirements for specific, quarantine, and public health exemptions.

    Science.gov (United States)

    2010-07-01

    ... requirements for specific, quarantine, and public health exemptions. 166.32 Section 166.32 Protection of... AGENCIES FOR USE OF PESTICIDES UNDER EMERGENCY CONDITIONS Specific, Quarantine, and Public Health Exemptions § 166.32 Reporting and recordkeeping requirements for specific, quarantine, and public health...

  4. Combined Treatments Reduce Chilling Injury and Maintain Fruit Quality in Avocado Fruit during Cold Quarantine.

    Science.gov (United States)

    Sivankalyani, Velu; Feygenberg, Oleg; Maorer, Dalia; Zaaroor, Merav; Fallik, Elazar; Alkan, Noam

    2015-01-01

    Quarantine treatment enables export of avocado fruit (Persea americana) to parts of the world that enforce quarantine against fruit fly. The recommended cold-based quarantine treatment (storage at 1.1°C for 14 days) was studied with two commercial avocado cultivars 'Hass' and 'Ettinger' for 2 years. Chilling injuries (CIs) are prevalent in the avocado fruit after cold-quarantine treatment. Hence, we examined the effect of integrating several treatments: modified atmosphere (MA; fruit covered with perforated polyethylene bags), methyl jasmonate (MJ; fruit dipped in 2.5 μM MJ for Hass or 10 μM MJ for Ettinger for 30 s), 1-methylcyclopropene (1-MCP; fruit treated with 300 ppb 1-MCP for 18 h) and low-temperature conditioning (LTC; a gradual decrease in temperature over 3 days) on CI reduction during cold quarantine. Avocado fruit stored at 1°C suffered from severe CI, lipid peroxidation, and increased expression of chilling-responsive genes of fruit peel. The combined therapeutic treatments alleviated CI in cold-quarantined fruit to the level in fruit stored at commercial temperature (5°C). A successful therapeutic treatment was developed to protect 'Hass' and 'Ettinger' avocado fruit during cold quarantine against fruit fly, while maintaining fruit quality. Subsequently, treated fruit stored at 1°C had a longer shelf life and less decay than the fruit stored at 5°C. This therapeutic treatment could potentially enable the export of avocado fruit to all quarantine-enforcing countries. Similar methods might be applicable to other types of fruit that require cold quarantine.

  5. Combined Treatments Reduce Chilling Injury and Maintain Fruit Quality in Avocado Fruit during Cold Quarantine

    Science.gov (United States)

    Maorer, Dalia; Zaaroor, Merav; Fallik, Elazar; Alkan, Noam

    2015-01-01

    Quarantine treatment enables export of avocado fruit (Persea americana) to parts of the world that enforce quarantine against fruit fly. The recommended cold-based quarantine treatment (storage at 1.1°C for 14 days) was studied with two commercial avocado cultivars ‘Hass’ and ‘Ettinger’ for 2 years. Chilling injuries (CIs) are prevalent in the avocado fruit after cold-quarantine treatment. Hence, we examined the effect of integrating several treatments: modified atmosphere (MA; fruit covered with perforated polyethylene bags), methyl jasmonate (MJ; fruit dipped in 2.5 μM MJ for Hass or 10 μM MJ for Ettinger for 30 s), 1-methylcyclopropene (1-MCP; fruit treated with 300 ppb 1-MCP for 18 h) and low-temperature conditioning (LTC; a gradual decrease in temperature over 3 days) on CI reduction during cold quarantine. Avocado fruit stored at 1°C suffered from severe CI, lipid peroxidation, and increased expression of chilling-responsive genes of fruit peel. The combined therapeutic treatments alleviated CI in cold-quarantined fruit to the level in fruit stored at commercial temperature (5°C). A successful therapeutic treatment was developed to protect ‘Hass’ and ‘Ettinger’ avocado fruit during cold quarantine against fruit fly, while maintaining fruit quality. Subsequently, treated fruit stored at 1°C had a longer shelf life and less decay than the fruit stored at 5°C. This therapeutic treatment could potentially enable the export of avocado fruit to all quarantine-enforcing countries. Similar methods might be applicable to other types of fruit that require cold quarantine. PMID:26501421

  6. 9 CFR 93.313 - Appearance of disease among horses in quarantine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Appearance of disease among horses in...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Horses § 93.313 Appearance of disease among horses in quarantine. If any contagious disease appears among horses during the quarantine period special...

  7. Precise Chemical Analyses of Planetary Surfaces

    Science.gov (United States)

    Kring, David; Schweitzer, Jeffrey; Meyer, Charles; Trombka, Jacob; Freund, Friedemann; Economou, Thanasis; Yen, Albert; Kim, Soon Sam; Treiman, Allan H.; Blake, David; hide

    1996-01-01

    We identify the chemical elements and element ratios that should be analyzed to address many of the issues identified by the Committee on Planetary and Lunar Exploration (COMPLEX). We determined that most of these issues require two sensitive instruments to analyze the necessary complement of elements. In addition, it is useful in many cases to use one instrument to analyze the outermost planetary surface (e.g. to determine weathering effects), while a second is used to analyze a subsurface volume of material (e.g., to determine the composition of unaltered planetary surface material). This dual approach to chemical analyses will also facilitate the calibration of orbital and/or Earth-based spectral observations of the planetary body. We determined that in many cases the scientific issues defined by COMPLEX can only be fully addressed with combined packages of instruments that would supplement the chemical data with mineralogic or visual information.

  8. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  9. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  10. The Quarantine Protection of Sub-Antarctic Australia: Two Islands, Two Regimes

    Directory of Open Access Journals (Sweden)

    Sandra Potter

    2007-11-01

    Full Text Available Sub-Antarctic Heard Island and Macquarie Island are among Australia’s offshore properties susceptible to colonization by species introduced by humans. While both islands share World Heritage status and are IUCN Category Ia Protected Areas (Strict Nature Reserves, different quarantine protection regimes are in operation. Macquarie Island’s biosecurity appears to be less catered for while the means and likelihood of introductions are greater. The administrative, political, practical and geographical contexts within which quarantine management planning takes place variously impact on the level of quarantine protection provided to both islands. These and other remote sites of high conservation value are unlikely to receive heightened protection until the issues associated with such management contexts receive greater attention.

  11. Costs and benefits of controlling quarantine diseases : a bio-economic modeling approach

    NARCIS (Netherlands)

    Breukers, M.L.H.; Mourits, M.C.M.; Werf, van der W.; Oude Lansink, A.G.J.M.

    2008-01-01

    This article describes a bio-economic model to quantify the costs and benefits of controlling plant quarantine diseases. The model integrates the epidemiology and economic consequences of a quarantine disease. It allows for ex ante evaluation of control scenarios for their cost-effectiveness, taking

  12. International Cooperation to Establish Standard Operating Procedure (SOP) for Quarantine Management of Irradiated Foods in International Trade

    International Nuclear Information System (INIS)

    Lee, J. W.; Byun, M. W.; Kim, J. H.; Choi, J. I.; Song, B. S.; Yoon, Y. H.; Kim, D. H.; Kim, W. G.; Kim, K. P.

    2010-02-01

    · Development of SOPs through various research activities such as building international cooperation, and analysing current status of food irradiation in domestic and international markets, export and import, international market size, and of R and D - Analysis of examples for quarantine management in agricultural product exporting countries and use of irradiation technology for agricultural product quarantine, and changes in international quarantine management - Analysis of SOPs for food irradiation quarantine in international organization (CODEX, IPPC, WHO). U.S, EU, China, India, and Australia. - Collaborative researches of India/Korea and China/Korea entered into an agreement for market trials · Publishment of irradiation quarantine management SOPs agreed to CODEX standards - Collaborative researches for quarantine management, avoiding Technical Barrier to Trade (TBT), and Sanitary Phytosanitary Measures were conducted, and advanced SOPs agreed with WTO/FTA system were published

  13. Quarantine disinfestation of tropical fruits: non-chemical options

    International Nuclear Information System (INIS)

    Heather, N.W.

    1994-01-01

    Residue-free methods of disinfestation of tropical fruits against pests of quarantine significance are reviewed. The most important of these pests in fruits to be exported are fruit flies, and the basic methods which are non-chemical and hence meet a residue-free criterion are physical treatments with heat, cold, and irradiation. Worldwide, there are more than 30 species of fruit flies of the family Tephritidae which are of major importance as quarantine pests. There are however a number of pests other than fruit flies which are also of major quarantine importance. Treatments must have very high levels of efficacy to be fully effective, typically in the range of 99.99 percent to 99.996 percent (Probit 8.7-9). At these levels they must not cause unacceptable damage to fruit. Fruits differ in their tolerance of treatments and there is thus scope to choose and manipulate treatments for the best outcomes in economic terms and product quality. Combinations of methods are possible or even a holistic, systems approach in which the contribution of all influences on pest survival in the growing and handling system are taken into account

  14. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS

    NARCIS (Netherlands)

    Kuai, Moshen; Cheng, Gang; Pang, Y.; Li, Yong

    2018-01-01

    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear

  15. Ionizing radiation quarantine treatments

    OpenAIRE

    Hallman, Guy J.

    1998-01-01

    Irradiation is a viable quarantine disinfestation treatment which has been studied for 40 years although it has received very little commercial use. Two principal obstacles to commercial application, 1) the fact that insects are not killed immediately, and 2) consumer opposition to irradiation, have been allayed to some extent, but the remaining impediment to large-scale commercial use is development of approved protocols by government regulatory agencies in importing countries. The United St...

  16. 7 CFR 301.55-4 - Conditions governing the interstate movement of regulated articles from quarantined areas.

    Science.gov (United States)

    2010-01-01

    ... from outside the quarantined area that are being moved in accordance with the protocols described in a... movement of regulated articles from quarantined areas. Any regulated article may be moved interstate from a quarantined area 3 only if moved under the following conditions: 3 Requirements under all other applicable...

  17. International Cooperation to Establish Standard Operating Procedure (SOP) for Quarantine Management of Irradiated Foods in International Trade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. W.; Byun, M. W.; Kim, J. H.; Choi, J. I.; Song, B. S.; Yoon, Y. H.; Kim, D. H.; Kim, W. G.; Kim, K. P.

    2010-02-15

    {center_dot} Development of SOPs through various research activities such as building international cooperation, and analysing current status of food irradiation in domestic and international markets, export and import, international market size, and of R and D - Analysis of examples for quarantine management in agricultural product exporting countries and use of irradiation technology for agricultural product quarantine, and changes in international quarantine management - Analysis of SOPs for food irradiation quarantine in international organization (CODEX, IPPC, WHO). U.S, EU, China, India, and Australia. - Collaborative researches of India/Korea and China/Korea entered into an agreement for market trials {center_dot} Publishment of irradiation quarantine management SOPs agreed to CODEX standards - Collaborative researches for quarantine management, avoiding Technical Barrier to Trade (TBT), and Sanitary Phytosanitary Measures were conducted, and advanced SOPs agreed with WTO/FTA system were published

  18. 9 CFR 93.412 - Ruminant quarantine facilities.

    Science.gov (United States)

    2010-01-01

    ... quarantined, as well as the expected size and frequency of shipments, and a contingency plan for the possible... provide a full view of the lot-holding areas. (H) Communication system. The medium security facility must...

  19. Data catalog series for space science and applications flight missions. Volume 1B: Descriptions of data sets from planetary and heliocentric spacecraft and investigations

    Science.gov (United States)

    Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)

    1987-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  20. 40 CFR 166.20 - Application for a specific, quarantine, or public health exemption.

    Science.gov (United States)

    2010-07-01

    ..., or public health exemption. 166.20 Section 166.20 Protection of Environment ENVIRONMENTAL PROTECTION... EMERGENCY CONDITIONS Specific, Quarantine, and Public Health Exemptions § 166.20 Application for a specific, quarantine, or public health exemption. (a) General information required in an application for a specific...

  1. Lessons from the history of quarantine, from plague to influenza A.

    Science.gov (United States)

    Tognotti, Eugenia

    2013-02-01

    In the new millennium, the centuries-old strategy of quarantine is becoming a powerful component of the public health response to emerging and reemerging infectious diseases. During the 2003 pandemic of severe acute respiratory syndrome, the use of quarantine, border controls, contact tracing, and surveillance proved effective in containing the global threat in just over 3 months. For centuries, these practices have been the cornerstone of organized responses to infectious disease outbreaks. However, the use of quarantine and other measures for controlling epidemic diseases has always been controversial because such strategies raise political, ethical, and socioeconomic issues and require a careful balance between public interest and individual rights. In a globalized world that is becoming ever more vulnerable to communicable diseases, a historical perspective can help clarify the use and implications of a still-valid public health strategy.

  2. Summary report on the use of irradiation as a quarantine treatment of agricultural commodities

    International Nuclear Information System (INIS)

    1985-01-01

    Considerable data are available to demonstrate that gamma irradiation is an effective quarantine treatment for papaya infested with fruit fly species found in Hawaii. These data are acceptable to the USDA-APHIS as a quarantine treatment for this commodity. However, its practical application can be realized only when FDA approves the use of irradiation, either for this purpose alone or as a process of food preservation. Additional data are needed to develop quarantine treatment schedules for irradiation of other commodities such as citrus, stone fruits, tropical fruits, etc., against these and other insect species. For this reason, a Consultant Meeting was convened at the East-West Center, University of Hawaii, Honolulu, Hawaii from 21 to 23 November, 1983, to evaluate existing data and to define future activities to establish the possible use of irradiation as an acceptable quarantine treatment

  3. 1984 Mauna Loa eruption and planetary geolgoy

    International Nuclear Information System (INIS)

    Moore, H.J.

    1987-01-01

    In planetary geology, lava flows on the Moon and Mars are commonly treated as relatively simple systems. Some of the complexities of actual lava flows are illustrated using the main flow system of the 1984 Mauna Loa eruption. The outline, brief narrative, and results given are based on a number of sources. The implications of the results to planetary geology are clear. Volume flow rates during an eruption depend, in part, on the volatile content of the lava. These differ from the volume flow rates calculated from post eruption flow dimensions and the duration of the eruption and from those using models that assume a constant density. Mass flow rates might be more appropriate because the masses of volatiles in lavas are usually small, but variable and sometimes unknown densities impose severe restrictions on mass estimates

  4. The irradiation as a quarantine method for the treatment of fresh fruits

    International Nuclear Information System (INIS)

    Kaupert, Norma L.

    1999-01-01

    The irradiation is proposed as an alternative to chemical or other physical methods for the quarantine of fresh fruit. The case of the products of the Southern part of Argentina is analysed and the economical and financial parameters for the installation and the operation of an irradiation plant are estimated. The costs are compared to those of a chemical quarantine system. (author)

  5. Two Quarantine Models on the Attack of Malicious Objects in Computer Network

    Directory of Open Access Journals (Sweden)

    Bimal Kumar Mishra

    2012-01-01

    Full Text Available SEIQR (Susceptible, Exposed, Infectious, Quarantined, and Recovered models for the transmission of malicious objects with simple mass action incidence and standard incidence rate in computer network are formulated. Threshold, equilibrium, and their stability are discussed for the simple mass action incidence and standard incidence rate. Global stability and asymptotic stability of endemic equilibrium for simple mass action incidence have been shown. With the help of Poincare Bendixson Property, asymptotic stability of endemic equilibrium for standard incidence rate has been shown. Numerical methods have been used to solve and simulate the system of differential equations. The effect of quarantine on recovered nodes is analyzed. We have also analyzed the behavior of the susceptible, exposed, infected, quarantine, and recovered nodes in the computer network.

  6. 9 CFR 93.308 - Quarantine requirements.

    Science.gov (United States)

    2010-01-01

    ... Arabia, the Yemen Arab Republic, and all the regions on the continent of Africa except Morocco. (3) To... arrange for a supply of water adequate to clean and disinfect the facility. (B) All feed and bedding must... quality control standards. Following completion of the quarantine period and the release of the horses...

  7. 7 CFR 301.81-4 - Interstate movement of regulated articles from quarantined areas.

    Science.gov (United States)

    2010-01-01

    ... regulated article is a soil sample being moved to a laboratory approved by the Administrator 3 to process... moving regulated articles, and to inspect the articles being moved and the means of conveyance. Articles... quarantined areas. (a) Any regulated article may be moved interstate from a quarantined area into or through...

  8. Nuclear science in disinfestations of agro-stored products and quarantine

    International Nuclear Information System (INIS)

    Seth, R.K.; Zubeda; Zarin, Mahtab; Mehta, V.K.

    2006-01-01

    The present review deals with recent advances showing a notable increase in research and application of nuclear science, with a special, rather renewed focus on use of different types of radiation for their lethal/sterilizing potential against pests of stored products and quarantine as there is an urgent need to reduce the negative impacts of chemical pest control methods on the treated commodities and environment. Various types of radiation have some limitations, but their pragmatic disinfestation potential at postharvest and quarantine level, with possible modifications are discussed. (author)

  9. Studies on the application of ionizing radiation for the advanced quarantine management of agricultural commodities for export and international trade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Lee, Kwang Youll; Choi, Yeong Jun [KAERI, Daejeon (Korea, Republic of)

    2011-12-15

    {Omicron} Quarantine waste of agricultural goods for export are 50 billion won per year in Korea. The major reason of quarantine waste were inspected of quarantine regulated pest or detected of pesticide residues during importation or exportation clearance. {Omicron} According to the Montreal protocol, reduce the using of chemical fumigant(Methyl Bromide) and required alternative quarantine treatment {Omicron} It is necessary for commercialization project that to practice evaluation and development of quarantine management system using irradiation as a phytosanitary measure for exportation agricultural commodities.

  10. 9 CFR 93.210 - Poultry quarantine facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Poultry quarantine facilities. 93.210... AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN ANIMAL, BIRD, AND POULTRY PRODUCTS; REQUIREMENTS...

  11. 77 FR 31720 - Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York

    Science.gov (United States)

    2012-05-30

    .... APHIS-2012-0003] Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York AGENCY...: We are amending the Asian longhorned beetle regulations to make changes to the list of quarantined... the artificial spread of Asian longhorned beetle to noninfested areas of the United States and to...

  12. Mother Nature versus human nature: public compliance with evacuation and quarantine.

    Science.gov (United States)

    Manuell, Mary-Elise; Cukor, Jeffrey

    2011-04-01

    Effectively controlling the spread of contagious illnesses has become a critical focus of disaster planning. It is likely that quarantine will be a key part of the overall public health strategy utilised during a pandemic, an act of bioterrorism or other emergencies involving contagious agents. While the United States lacks recent experience of large-scale quarantines, it has considerable accumulated experience of large-scale evacuations. Risk perception, life circumstance, work-related issues, and the opinions of influential family, friends and credible public spokespersons all play a role in determining compliance with an evacuation order. Although the comparison is not reported elsewhere to our knowledge, this review of the principal factors affecting compliance with evacuations demonstrates many similarities with those likely to occur during a quarantine. Accurate identification and understanding of barriers to compliance allows for improved planning to protect the public more effectively. © 2011 The Author(s). Disasters © Overseas Development Institute, 2011.

  13. Appropriateness of Probit-9 in development of quarantine treatments for timber and timber commodities

    Science.gov (United States)

    Marcus Schortemeyer; Ken Thomas; Robert A. Haack; Adnan Uzunovic; Kelli Hoover; Jack A. Simpson; Cheryl A. Grgurinovic

    2011-01-01

    Following the increasing international phasing out of methyl bromide for quarantine purposes, the development of alternative treatments for timber pests becomes imperative. The international accreditation of new quarantine treatments requires verification standards that give confidence in the effectiveness of a treatment. Probit-9 mortality is a standard for treatment...

  14. 7 CFR 318.47 - Notice of quarantine.

    Science.gov (United States)

    2010-01-01

    ..., 414, and 434 of the Plant Protection Act (7 U.S.C. 7711, 7712, 7714, and 7754), Hawaii, Puerto Rico... Plant Protection and Quarantine Programs shall find that existing conditions as to the pest risk... Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION...

  15. Workshop on Advanced Technologies for Planetary Instruments, part 1

    International Nuclear Information System (INIS)

    Appleby, J.F.

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DOD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments

  16. Stability analysis model of Bacillus antracis using SEIQR population compartment with quarantine in Indonesia

    Science.gov (United States)

    Saptaningtyas, F. Y.; Prihantini

    2018-03-01

    In Indonesia there are many breeders of cattle that are actually used as a livelihood so that Indonesia is prone to the spread of anthrax disease. This disease can be transmitted through indirect contacts such as deep impurities, saliva and the like. Anthrax disease is a type of disease caused by bacteria and there is a link between livestock and humans as the host. Anthrax disease with quarantine special factors can be modelled with SEIQR where existed from susceptible, exposed, symptomatic infected, quarantine and recovered compartment with research method used that is quantitative method, so different with disease models caused by bacteria in general.In this study we will determine the qualitative analysis of the anthrax disease distribution model with goal of research are to obtain model transmission Anthrax, to find equilibrium point of model and to find the basic reproduction number R 0, where R0 aims to determine the spread of disease or the absence of disease spread through endemic equilibrium stability analysis. The goal from this research is compare stability analysis between model with quarantine and model without quarantine use Routh-Hurwitz criteria to prove that E 1 and E 2 are asymptotic stability equilibrium so from this research conclude that quarantine population can speed up recovered population to be free disease condition from Anthrax.

  17. 76 FR 36896 - Notice of Establishment of a New Plant Protection and Quarantine Stakeholder Registry

    Science.gov (United States)

    2011-06-23

    ... Quarantine Stakeholder Registry AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice.... FOR FURTHER INFORMATION CONTACT: For information on the PPQ Stakeholder Registry, contact Ms. Donna L... Quarantine (PPQ) stakeholder registry is an email subscription service that allows individuals to receive...

  18. Diagnosis of contagious ecthyma in goats in a quarantine station in Panama

    Directory of Open Access Journals (Sweden)

    Angie Magaña Ch.

    2014-09-01

    Full Text Available We report an outbreak of contagious ecthyma (CE in a herd of goats at Paso Canoas quarantine station, Panama. The goats were adult intact females. Visible clinical signs became apparent from day 13 after the start of quarantine. We performed clinical examination. Serum biopsy and scabs were collected from crusted lesions in the epithelium of the lips, nose and eyelid corners. Samples were studied by histopathology,complement fixation test, transmission electron microscopy (TEM, DAS-ELISA, viral isolationand nucleic acid amplification tests. Histopathology revealed ortho and parakeratotic hyperkeratosis, epithelial hyperplasia, viral inclusion bodies, keratinocytes with balonoid degeneration, vesicles with neutrophils and degenerated cells, in superficial dermis there is marked neovascularization. Complement fixation test, DAS-ELISA and nucleic acid amplification tests resulted positive for contagious ecthyma. TEM showed viral particles, consistent with Parapoxvirus. Clinical and laboratory findings were consistent with poxvirus infection in the quarantine goat herd.

  19. Planetary ring systems properties, structures, and evolution

    CERN Document Server

    Murray, Carl D

    2018-01-01

    Planetary rings are among the most intriguing structures of our solar system and have fascinated generations of astronomers. Collating emerging knowledge in the field, this volume reviews our current understanding of ring systems with reference to the rings of Saturn, Uranus, Neptune, and more. Written by leading experts, the history of ring research and the basics of ring–particle orbits is followed by a review of the known planetary ring systems. All aspects of ring system science are described in detail, including specific dynamical processes, types of structures, thermal properties and their origins, and investigations using computer simulations and laboratory experiments. The concluding chapters discuss the prospects of future missions to planetary rings, the ways in which ring science informs and is informed by the study of other astrophysical disks, and a perspective on the field's future. Researchers of all levels will benefit from this thorough and engaging presentation.

  20. Quarantine, exports and animal disease in Australia 1901-2010.

    Science.gov (United States)

    Turner, Aj

    2011-09-01

    The Constitution forming the Australian Commonwealth Government on 1 January 1901 provided that animal and animal products imported into and exported from Australia would be under the authority of the national government. By mutual agreement, the Quarantine Act 1908 provided for the states to continue the delivery of services under contract until 1995 when the Commonwealth took back full responsibility for quarantine services. In the 1940s, 50s and 60s there were world pandemics of livestock diseases and Australia ceased the import of many species. By the 1970s, the livestock industries sought relaxation of import restrictions to gain access to diversified genetic stock. By the use of new technologies, many species can now be imported into Australia through tight importation protocols. With the advent of the World Trade Organization and implementation of the Sanitary Phytosanitary Agreement, Australia has developed a risk-based framework to support the development of import conditions for animals and animal products. Australia's 'Acceptable Level of Protection' has been set to provide a low likelihood of disease entry. Being an island continent, Australia can apply strong controls over imports and exports of all commodities and relatively few outbreaks of exotic animal diseases have occurred by breach of quarantine, but the outbreaks of rinderpest in 1923 and equine influenza in 2007 were notable exceptions. © 2011 The Author. Australian Veterinary Journal © 2011 Australian Veterinary Association.

  1. Regulation of use of radiation for quarantine purposes

    International Nuclear Information System (INIS)

    Itepan, Natanael Marcio; Costa, Neivaldo; Furlan, Gilberto Ribeiro; Walder, Julio Marcos Melges

    2011-01-01

    The main aspects of Instruction No. 9 are: a) the nuclear plant that use ionizing radiation as a phyto sanitary treatment for quarantine purposes, must be accredited by the agency of the Agriculture, Livestock and Supply Ministry (MAPA) and the licensing by the Nuclear Energy National Commission (CNEN) and other regulatory bodies, b) control of the applied dose will follow a standard operating procedure should be performed by independent organization, authorized by the Brazilian ONPF (Phyto sanitary Protection National Organization), c) the unit of radiation treatment should ensure traceability and must maintain records of phyto sanitary treatments, d) there should be bilateral work plan between the ONPF of Brazil and other countries for the established radiation treatment protocol. The ONPF of Brazil is the Sanitary Vegetarian Department. Ionizing radiation (cold pasteurization) is shown in an alternative technology to phyto sanitary control for quarantine purposes. (author)

  2. 9 CFR 93.212 - Manure from quarantined poultry.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Manure from quarantined poultry. 93... OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN ANIMAL, BIRD, AND POULTRY PRODUCTS...

  3. 9 CFR 381.73 - Quarantine of diseased poultry.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Quarantine of diseased poultry. 381.73... AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Ante Mortem Inspection § 381.73...

  4. 7 CFR 301.75-6 - Interstate movement of regulated nursery stock from a quarantined area.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Interstate movement of regulated nursery stock from a... Citrus Canker Notice of Quarantine and Regulations § 301.75-6 Interstate movement of regulated nursery stock from a quarantined area. (a) Regulated nursery stock may not be moved interstate from a...

  5. Reconstruction and visualization of planetary nebulae.

    Science.gov (United States)

    Magnor, Marcus; Kindlmann, Gordon; Hansen, Charles; Duric, Neb

    2005-01-01

    From our terrestrially confined viewpoint, the actual three-dimensional shape of distant astronomical objects is, in general, very challenging to determine. For one class of astronomical objects, however, spatial structure can be recovered from conventional 2D images alone. So-called planetary nebulae (PNe) exhibit pronounced symmetry characteristics that come about due to fundamental physical processes. Making use of this symmetry constraint, we present a technique to automatically recover the axisymmetric structure of many planetary nebulae from photographs. With GPU-based volume rendering driving a nonlinear optimization, we estimate the nebula's local emission density as a function of its radial and axial coordinates and we recover the orientation of the nebula relative to Earth. The optimization refines the nebula model and its orientation by minimizing the differences between the rendered image and the original astronomical image. The resulting model allows creating realistic 3D visualizations of these nebulae, for example, for planetarium shows and other educational purposes. In addition, the recovered spatial distribution of the emissive gas can help astrophysicists gain deeper insight into the formation processes of planetary nebulae.

  6. Efficiency of quarantine and self-protection processes in epidemic spreading control on scale-free networks

    Science.gov (United States)

    Esquivel-Gómez, Jose de Jesus; Barajas-Ramírez, Juan Gonzalo

    2018-01-01

    One of the most effective mechanisms to contain the spread of an infectious disease through a population is the implementation of quarantine policies. However, its efficiency is affected by different aspects, for example, the structure of the underlining social network where highly connected individuals are more likely to become infected; therefore, the speed of the transmission of the decease is directly determined by the degree distribution of the network. Another aspect that influences the effectiveness of the quarantine is the self-protection processes of the individuals in the population, that is, they try to avoid contact with potentially infected individuals. In this paper, we investigate the efficiency of quarantine and self-protection processes in preventing the spreading of infectious diseases over complex networks with a power-law degree distribution [ P ( k ) ˜ k - ν ] for different ν values. We propose two alternative scale-free models that result in power-law degree distributions above and below the exponent ν = 3 associated with the conventional Barabási-Albert model. Our results show that the exponent ν determines the effectiveness of these policies in controlling the spreading process. More precisely, we show that for the ν exponent below three, the quarantine mechanism loses effectiveness. However, the efficiency is improved if the quarantine is jointly implemented with a self-protection process driving the number of infected individuals significantly lower.

  7. Evaluation of predicted Medfly (Ceratitis capitata quarantine length in the United States utilizing degree-day and agent-based models [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Travis Collier

    2017-10-01

    Full Text Available Invasions by pest insects pose a significant threat to agriculture worldwide. In the case of Ceratitis capitata incursions on the US mainland, where it is not officially established, repeated detections are followed by quarantines and treatments to eliminate the invading population. However, it is difficult to accurately set quarantine duration because non-detection may not mean the pest is eliminated. Most programs extend quarantine lengths past the last fly detection by calculating the amount of time required for 3 generations to elapse under a thermal unit accumulation development model (“degree day”. A newer approach is to use an Agent-Based Simulation (ABS to explicitly simulate population demographics and elimination. Here, predicted quarantine lengths for 11 sites in the continental United States are evaluated using both approaches. Results indicate a strong seasonality in quarantine length, with longer predictions in the second half of the year compared with the first; this pattern is more extreme in degree day predictions compared with ABS. Geographically, quarantine lengths increased with latitude, though this was less pronounced under the ABS. Variation in quarantine lengths for particular times and places was dramatically larger for degree day than ABS, generally spiking in the middle of the year for degree day and peaking in second half of the year for ABS. Analysis of 34 C. capitata quarantines from 1975 to 2017 in California shows that, for all but two, quarantines were started in the second half of the year, when degree day quarantine lengths are longest and have the highest uncertainty. For a set of hypothetical outbreaks based on these historical quarantines, the ABS produced significantly shorter quarantines than degree day calculations. Overall, ABS quarantine lengths were more consistent than degree day predictions, avoided unrealistically long values, and captured effects of rare events such as cold snaps.

  8. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  9. special article the medico-legal prerequisite for initiating quarantine

    African Journals Online (AJOL)

    1Department of Biological, Environmental and Occupational Health Science, School of Public Health, Univer- ... and isolation in public health emergency management. ... The implementation of quarantine or isolation ... ety, technological systems within a given population ..... Ghana Civil Aviation Act, 2004 (Act 678).

  10. 75 FR 41073 - South American Cactus Moth Regulations; Quarantined Areas

    Science.gov (United States)

    2010-07-15

    ...) that is indigenous to Argentina, southern Brazil, Paraguay, and Uruguay. It is a serious quarantine... notice to the owner, person in possession, or person responsible for the management of the land to be...

  11. 19 CFR 147.23 - Compliance with Plant Quarantine Act and Federal Food, Drug, and Cosmetic Act.

    Science.gov (United States)

    2010-04-01

    ... Food, Drug, and Cosmetic Act. 147.23 Section 147.23 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... Laws § 147.23 Compliance with Plant Quarantine Act and Federal Food, Drug, and Cosmetic Act. (a) Plant... the plant quarantine regulations. (b) Federal Food, Drug, and Cosmetic Act. The entry of food products...

  12. Recommendations on successful quarantine of pure exotic sheep breed at Bangladesh Livestock Research Institute in Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Giasuddin

    2018-03-01

    Conclusion: Quarantine is mandatory for entering any new animal in a new area that gives the outline of different new diseases. It also acts as radar of exotic disease in a country. So, this quarantine technique serves the purpose for livestock owners effectively. [J Adv Vet Anim Res 2018; 5(1.000: 67-72

  13. Summary and abstracts of the Planetary Data Workshop, June 2012

    Science.gov (United States)

    Gaddis, Lisa R.; Hare, Trent; Beyer, Ross

    2014-01-01

    The recent boom in the volume of digital data returned by international planetary science missions continues to both delight and confound users of those data. In just the past decade, the Planetary Data System (PDS), NASA’s official archive of scientific results from U.S. planetary missions, has seen a nearly 50-fold increase in the amount of data and now serves nearly half a petabyte. In only a handful of years, this volume is expected to approach 1 petabyte (1,000 terabytes or 1 quadrillion bytes). Although data providers, archivists, users, and developers have done a creditable job of providing search functions, download capabilities, and analysis and visualization tools, the new wealth of data necessitates more frequent and extensive discussion among users and developers about their current capabilities and their needs for improved and new tools. A workshop to address these and other topics, “Planetary Data: A Workshop for Users and Planetary Software Developers,” was held June 25–29, 2012, at Northern Arizona University (NAU) in Flagstaff, Arizona. A goal of the workshop was to present a summary of currently available tools, along with hands-on training and how-to guides, for acquiring, processing and working with a variety of digital planetary data. The meeting emphasized presentations by data users and mission providers during days 1 and 2, and developers had the floor on days 4 and 5 using an “unconference” format for day 5. Day 3 featured keynote talks by Laurence Soderblom (U.S. Geological Survey, USGS) and Dan Crichton (Jet Propulsion Laboratory, JPL) followed by a panel discussion, and then research and technical discussions about tools and capabilities under recent or current development. Software and tool demonstrations were held in break-out sessions in parallel with the oral session. Nearly 150 data users and developers from across the globe attended, and 22 National Aeronautics and space Administration (NASA) and non-NASA data providers

  14. The Impact of Quarantine on Military Operations

    Science.gov (United States)

    2005-08-01

    their initial cases of SARS on March 14, 2003, following the admission of six patients to Tan Tock Seng Hospital with atypical pneumonia.66 Three...with severe, hospitalized patients who have a high viral load.25 This also explains why it was possible for an apparently healthy person to travel by...two subsequent hospitalizations , and 19 family members.27 Although specific quarantine orders varied by country, large numbers of healthy people

  15. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  16. Absolute Navigation Information Estimation for Micro Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-03-01

    Full Text Available This paper provides algorithms to estimate absolute navigation information, e.g., absolute attitude and position, by using low power, weight and volume Microelectromechanical Systems-type (MEMS sensors that are suitable for micro planetary rovers. Planetary rovers appear to be easily navigable robots due to their extreme slow speed and rotation but, unfortunately, the sensor suites available for terrestrial robots are not always available for planetary rover navigation. This makes them difficult to navigate in a completely unexplored, harsh and complex environment. Whereas the relative attitude and position can be tracked in a similar way as for ground robots, absolute navigation information, unlike in terrestrial applications, is difficult to obtain for a remote celestial body, such as Mars or the Moon. In this paper, an algorithm called the EASI algorithm (Estimation of Attitude using Sun sensor and Inclinometer is presented to estimate the absolute attitude using a MEMS-type sun sensor and inclinometer, only. Moreover, the output of the EASI algorithm is fused with MEMS gyros to produce more accurate and reliable attitude estimates. An absolute position estimation algorithm has also been presented based on these on-board sensors. Experimental results demonstrate the viability of the proposed algorithms and the sensor suite for low-cost and low-weight micro planetary rovers.

  17. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  18. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  19. Leave entitlements, time off work and the household financial impacts of quarantine compliance during an H1N1 outbreak.

    Science.gov (United States)

    Kavanagh, Anne M; Mason, Kate E; Bentley, Rebecca J; Studdert, David M; McVernon, Jodie; Fielding, James E; Petrony, Sylvia; Gurrin, Lyle; LaMontagne, Anthony D

    2012-11-20

    The Australian state of Victoria, with 5.2 million residents, enforced home quarantine during a H1N1 pandemic in 2009. The strategy was targeted at school children. The objective of this study was to investigate the extent to which parents' access to paid sick leave or paid carer's leave was associated with (a) time taken off work to care for quarantined children, (b) household finances, and (c) compliance with quarantine recommendations. We conducted an online and telephone survey of households recruited through 33 schools (85% of eligible schools), received 314 responses (27%), and analysed the subsample of 133 households in which all resident parents were employed. In 52% of households, parents took time off work to care for quarantined children. Households in which no resident parent had access to leave appeared to be less likely to take time off work (42% vs 58%, p=0.08) although this difference had only borderline significance. Among parents who did take time off work, those in households without access to leave were more likely to lose pay (73% vs 21%, pparent lost pay due to taking time off work, 42% experienced further financial consequences such as being unable to pay a bill. Access to leave did not predict compliance with quarantine recommendations. Future pandemic plans should consider the economic costs borne by households and options for compensating quarantined families for income losses.

  20. 7 CFR 301.75-9 - Interstate movement of regulated articles from a quarantined area for experimental or scientific...

    Science.gov (United States)

    2010-01-01

    ... Interstate movement of regulated articles from a quarantined area for experimental or scientific purposes. A... 7 Agriculture 5 2010-01-01 2010-01-01 false Interstate movement of regulated articles from a quarantined area for experimental or scientific purposes. 301.75-9 Section 301.75-9 Agriculture Regulations of...

  1. Evaluation of predicted Medfly (Ceratitis capitata quarantine length in the United States utilizing degree-day and agent-based models [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Travis Collier

    2018-03-01

    Full Text Available Invasions by pest insects pose a significant threat to agriculture worldwide. In the case of Ceratitis capitata incursions on the US mainland, where it is not officially established, repeated detections are followed by quarantines and treatments to eliminate the invading population. However, it is difficult to accurately set quarantine duration because non-detection may not mean the pest is eliminated. Most programs extend quarantine lengths past the last fly detection by calculating the amount of time required for 3 generations to elapse under a thermal unit accumulation development model (“degree day”. A newer approach is to use an Agent-Based Simulation (ABS to explicitly simulate population demographics and elimination. Here, predicted quarantine lengths for 11 sites in the continental United States are evaluated using both approaches. Results indicate a strong seasonality in quarantine length, with longer predictions in the second half of the year compared with the first; this pattern is more extreme in degree day predictions compared with ABS. Geographically, quarantine lengths increased with latitude, though this was less pronounced under the ABS. Variation in quarantine lengths for particular times and places was dramatically larger for degree day than ABS, generally spiking in the middle of the year for degree day and peaking in second half of the year for ABS. Analysis of 34 C. capitata quarantines from 1975 to 2017 in California shows that, for all but two, quarantines were started in the second half of the year, when degree day quarantine lengths are longest and have the highest uncertainty. For a set of hypothetical outbreaks based on these historical quarantines, the ABS produced significantly shorter quarantines than degree day calculations. Overall, ABS quarantine lengths were more consistent than degree day predictions, avoided unrealistically long values, and captured effects of rare events such as cold snaps.

  2. Quarantine treatment of agricultural products for export and import by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Joong Ho; Roh, M.J.; Chung, H.W.; Lee, J.E.; Park, N.Y.; Kwon, Y.J.; Seo, S.J. [Kyungbuk National University, Taegu (Korea)

    1999-04-01

    To pre-establish an alternative technique to the toxic fumigant, methyl bromide which is the current quarantine measure of agricultural products for export and import, some selected agricultural products, such as chestnut, acorn, red bean and mung bean, were subjected to a preliminary study to confirm the comparative effects of gamma irradiation and MBr fumigant on their disinfestation and quality, thereby preparing the basic data for the practical approach. Current quarantine activities were examined and the related limitations were investigated. Quarantine-related pests were investigated on their radiosensitivity and disinfestation effects by both treatments. The pests in chestnut and acorn, Curculio skkimensis Heller, Curculio dentipes Roelofs, and Dichocrocis punctiferalis Guenee showed an increased mortality when exposed to above 0.5 kGy irradiation, resulting in 100% of mortality three weeks later. Callosobruchus chinensis Linne from both red and mung beans revealed a apparent mortality at around 10 days after irradiation of 1 to 3 kGy. Current fumigation was perfect in its disinfesting capability, but it caused the detrimental effects on physical quality of agricultural produce. Whereas, irradiation doses suitable for controlling the pests did not induce any significant changes in the quality of the samples. (author). 53 refs., 74 figs., 138 tabs.

  3. 78 FR 27853 - Asian Longhorned Beetle; Quarantined Areas in Ohio

    Science.gov (United States)

    2013-05-13

    ...-0004] Asian Longhorned Beetle; Quarantined Areas in Ohio AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule and request for comments. SUMMARY: We are amending the Asian... to prevent the artificial spread of the Asian longhorned beetle to noninfested areas of the United...

  4. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  5. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  6. The efficacy and progress in using radiation as a quarantine treatment of tropical fruits—a case study in Hawaii

    Science.gov (United States)

    Moy, James H.; Wong, Lyle

    2002-03-01

    Most tropical fruits for export must be treated with an approved quarantine treatment. Three and a half decades of research have demonstrated the efficacy of irradiation as a quarantine treatment in terms of efficiency, effectiveness, and product quality retention. The USFDA and the USDA-APHIS approved irradiation to disinfest fresh foods/fresh papayas in 1986 and 1989, respectively. In early 1995, the Hawaii Department of Agriculture was granted a special permit from USDA-APHIS allowing untreated Hawaiian fruits to be irradiated on the US mainland. The objectives were to gain experience in commercial irradiation as a quarantine treatment and to gather data on shipping and handling procedures, and on product quality. In April 1995, the first shipment of Hawaiian fruit was irradiated at a minimum quarantine dose of 0.25 kGy in an Isomedix plant near Chicago, and then distributed to supermarkets in Illinois and Ohio. Continuous shipments, irradiation, and marketing of various tropical fruits in the US have shown commercial efficacy, quality retention, and excellent consumer acceptance. A commercial e-beam/converted X-ray facility was installed by Titan Corp. on the Island of Hawaii and was operational by late July 2000. Hawaii has become the first place in the world to use irradiation as a quarantine treatment of fruits.

  7. The efficacy and progress in using radiation as a quarantine treatment of tropical fruits - a case study in Hawaii

    International Nuclear Information System (INIS)

    Moy, James H.; Wong, Lyle

    2002-01-01

    Most tropical fruits for export must be treated with an approved quarantine treatment. Three and a half decades of research have demonstrated the efficacy of irradiation as a quarantine treatment in terms of efficiency, effectiveness, and product quality retention. The USFDA and the USDA-APHIS approved irradiation to disinfest fresh foods/fresh papayas in 1986 and 1989, respectively. In early 1995, the Hawaii Department of Agriculture was granted a special permit from USDA-APHIS allowing untreated Hawaiian fruits to be irradiated on the US mainland. The objectives were to gain experience in commercial irradiation as a quarantine treatment and to gather data on shipping and handling procedures, and on product quality. In April 1995, the first shipment of Hawaiian fruit was irradiated at a minimum quarantine dose of 0.25 kGy in an Isomedix plant near Chicago, and then distributed to supermarkets in Illinois and Ohio. Continuous shipments, irradiation, and marketing of various tropical fruits in the US have shown commercial efficacy, quality retention, and excellent consumer acceptance. A commercial e-beam/converted X-ray facility was installed by Titan Corp. on the Island of Hawaii and was operational by late July 2000. Hawaii has become the first place in the world to use irradiation as a quarantine treatment of fruits

  8. Development of Nested PCR-Based Specific Markers for Detection of Peach Rosette Mosaic Virus in Plant Quarantine.

    Science.gov (United States)

    Lee, S; Kim, C S; Shin, Y G; Kim, J H; Kim, Y S; Jheong, W H

    2016-03-01

    The Peach rosette mosaic virus (PRMV) is a plant pathogen of the genus Nepovirus, and has been designated as a controlled quarantine virus in Korea. In this study, a specific reverse transcription (RT)-PCR marker set, nested PCR marker set, and modified-plasmid positive control were developed to promptly and accurately diagnose PRMV at plant-quarantine sites. The final selected PRMV-specific RT-PCR marker was PRMV-N10/C70 (967 bp), and the nested PCR product of 419 bp was finally amplified. The modified-plasmid positive control, in which the SalI restriction-enzyme region (GTCGAC) was inserted, verified PRMV contamination in a comparison with the control, enabling a more accurate diagnosis. It is expected that the developed method will continuously contribute to the plant-quarantine process in Korea.

  9. Irradiation as a quarantine treatment of arthropod pests. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1999-05-01

    Fresh horticultural produce from tropical and sub-tropical areas often harbours insects and mites and are quarantined by importing countries. Such commodities cannot gain access to countries which have strict quarantine regulations such as Australia, Japan, New Zealand and the United States of America unless treated by an approved method/procedure to eliminate such pests. Current approved methods include fumigation by methyl bromide, hot water dip, vapour heat, dried heat and irradiation. Methyl bromide is being phased out globally under the Montreal Protocol in view of its strong ozone depleting properties. Countries such as the USA and those of the European Union are required to phase out the production of this chemical by the year 2005. Among other phytosanitary treatments, irradiation appears to have an edge as it is more versatile in controlling various pests and causes insignificant changes in quality of the treated products. The CRP on Irradiation as a Quarantine Treatment of Mites, Nematodes and Insects other than Fruit Flies, in operation between 1992 and 1997, attempted to fill the gap of information on the effectiveness of irradiation against other quarantine pests. Significant data were generated by this CRP to demonstrate that a minimum dose of between 200 and 400 Gy would render a number of non-fruit fly insects and mites sterile, thus meeting quarantine requirements. However, only a limited species of insects and mites were studied. Additional data are required to provide conclusive evidence that such a dose would render most, if not all, species of non-fruit fly insects and mites sterile. Plant parasitic nematodes appear to be resistant to irradiation as the dose required to render them sterile would cause damage to fresh horticultural commodities. Irradiation would be a useful quarantine treatment against this pest only for durable commodities such as pot soil, wood products, etc. This publication presents the research results of the CRP presented

  10. Irradiation as a quarantine treatment of arthropod pests. Proceedings of a final research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Fresh horticultural produce from tropical and sub-tropical areas often harbours insects and mites and are quarantined by importing countries. Such commodities cannot gain access to countries which have strict quarantine regulations such as Australia, Japan, New Zealand and the United States of America unless treated by an approved method/procedure to eliminate such pests. Current approved methods include fumigation by methyl bromide, hot water dip, vapour heat, dried heat and irradiation. Methyl bromide is being phased out globally under the Montreal Protocol in view of its strong ozone depleting properties. Countries such as the USA and those of the European Union are required to phase out the production of this chemical by the year 2005. Among other phytosanitary treatments, irradiation appears to have an edge as it is more versatile in controlling various pests and causes insignificant changes in quality of the treated products. The CRP on Irradiation as a Quarantine Treatment of Mites, Nematodes and Insects other than Fruit Flies, in operation between 1992 and 1997, attempted to fill the gap of information on the effectiveness of irradiation against other quarantine pests. Significant data were generated by this CRP to demonstrate that a minimum dose of between 200 and 400 Gy would render a number of non-fruit fly insects and mites sterile, thus meeting quarantine requirements. However, only a limited species of insects and mites were studied. Additional data are required to provide conclusive evidence that such a dose would render most, if not all, species of non-fruit fly insects and mites sterile. Plant parasitic nematodes appear to be resistant to irradiation as the dose required to render them sterile would cause damage to fresh horticultural commodities. Irradiation would be a useful quarantine treatment against this pest only for durable commodities such as pot soil, wood products, etc. This publication presents the research results of the CRP presented

  11. 76 FR 27219 - Plum Pox Virus; Update of Quarantined Areas

    Science.gov (United States)

    2011-05-11

    ...-0089] Plum Pox Virus; Update of Quarantined Areas AGENCY: Animal and Plant Health Inspection Service... that amended the plum pox virus (PPV) regulations by removing portions of Adams County, PA, from the...: Background The plum pox virus (PPV) is an extremely serious viral disease of plants that can affect many...

  12. 75 FR 81087 - Plum Pox Virus; Update of Quarantined Areas

    Science.gov (United States)

    2010-12-27

    ... for host material. Since the fruit itself is not a vector of the disease, the quarantine imposes no.... SUPPLEMENTARY INFORMATION: Background The plum pox virus (PPV) is an extremely serious viral disease of plants... fruit that is produced is often misshapen and blemished. PPV is transmitted under natural conditions by...

  13. Planetary magnetospheres

    International Nuclear Information System (INIS)

    Hill, T.W.; Michel, F.C.

    1975-01-01

    Recent planetary probes have resulted in the realization of the generality of magnetospheric interactions between the solar wind and the planets. The three categories of planetary magnetospheres are discussed: intrinsic slowly rotating magnetospheres, intrinsic rapidly rotating magnetospheres, and induced magnetospheres. (BJG)

  14. Taking Care of Your Behavioral Health: Tips for Social Distancing, Quarantine, and Isolation

    Science.gov (United States)

    · Taking Care of Your Behavioral Health: TIPS FOR SOCIAL DISTANCING, QUARANTINE, AND ISOLATION DURING AN INFECTIOUS DISEASE OUTBREAK What Is Social Distancing? Social distancing is a way to keep people ...

  15. Appearances can be deceptive: revealing a hidden viral infection with deep sequencing in a plant quarantine context.

    Science.gov (United States)

    Candresse, Thierry; Filloux, Denis; Muhire, Brejnev; Julian, Charlotte; Galzi, Serge; Fort, Guillaume; Bernardo, Pauline; Daugrois, Jean-Heindrich; Fernandez, Emmanuel; Martin, Darren P; Varsani, Arvind; Roumagnac, Philippe

    2014-01-01

    Comprehensive inventories of plant viral diversity are essential for effective quarantine and sanitation efforts. The safety of regulated plant material exchanges presently relies heavily on techniques such as PCR or nucleic acid hybridisation, which are only suited to the detection and characterisation of specific, well characterised pathogens. Here, we demonstrate the utility of sequence-independent next generation sequencing (NGS) of both virus-derived small interfering RNAs (siRNAs) and virion-associated nucleic acids (VANA) for the detailed identification and characterisation of viruses infecting two quarantined sugarcane plants. Both plants originated from Egypt and were known to be infected with Sugarcane streak Egypt Virus (SSEV; Genus Mastrevirus, Family Geminiviridae), but were revealed by the NGS approaches to also be infected by a second highly divergent mastrevirus, here named Sugarcane white streak Virus (SWSV). This novel virus had escaped detection by all routine quarantine detection assays and was found to also be present in sugarcane plants originating from Sudan. Complete SWSV genomes were cloned and sequenced from six plants and all were found to share >91% genome-wide identity. With the exception of two SWSV variants, which potentially express unusually large RepA proteins, the SWSV isolates display genome characteristics very typical to those of all other previously described mastreviruses. An analysis of virus-derived siRNAs for SWSV and SSEV showed them to be strongly influenced by secondary structures within both genomic single stranded DNA and mRNA transcripts. In addition, the distribution of siRNA size frequencies indicates that these mastreviruses are likely subject to both transcriptional and post-transcriptional gene silencing. Our study stresses the potential advantages of NGS-based virus metagenomic screening in a plant quarantine setting and indicates that such techniques could dramatically reduce the numbers of non

  16. Appearances can be deceptive: revealing a hidden viral infection with deep sequencing in a plant quarantine context.

    Directory of Open Access Journals (Sweden)

    Thierry Candresse

    Full Text Available Comprehensive inventories of plant viral diversity are essential for effective quarantine and sanitation efforts. The safety of regulated plant material exchanges presently relies heavily on techniques such as PCR or nucleic acid hybridisation, which are only suited to the detection and characterisation of specific, well characterised pathogens. Here, we demonstrate the utility of sequence-independent next generation sequencing (NGS of both virus-derived small interfering RNAs (siRNAs and virion-associated nucleic acids (VANA for the detailed identification and characterisation of viruses infecting two quarantined sugarcane plants. Both plants originated from Egypt and were known to be infected with Sugarcane streak Egypt Virus (SSEV; Genus Mastrevirus, Family Geminiviridae, but were revealed by the NGS approaches to also be infected by a second highly divergent mastrevirus, here named Sugarcane white streak Virus (SWSV. This novel virus had escaped detection by all routine quarantine detection assays and was found to also be present in sugarcane plants originating from Sudan. Complete SWSV genomes were cloned and sequenced from six plants and all were found to share >91% genome-wide identity. With the exception of two SWSV variants, which potentially express unusually large RepA proteins, the SWSV isolates display genome characteristics very typical to those of all other previously described mastreviruses. An analysis of virus-derived siRNAs for SWSV and SSEV showed them to be strongly influenced by secondary structures within both genomic single stranded DNA and mRNA transcripts. In addition, the distribution of siRNA size frequencies indicates that these mastreviruses are likely subject to both transcriptional and post-transcriptional gene silencing. Our study stresses the potential advantages of NGS-based virus metagenomic screening in a plant quarantine setting and indicates that such techniques could dramatically reduce the numbers of non

  17. 75 FR 81832 - Asian Longhorned Beetle; Quarantined Area and Regulated Articles

    Science.gov (United States)

    2010-12-29

    .... APHIS-2010-0004] Asian Longhorned Beetle; Quarantined Area and Regulated Articles AGENCY: Animal and... are adopting as a final rule, without change, an interim rule that amended the Asian longhorned beetle... prevent the artificial spread of Asian longhorned beetle to noninfested areas of the United States. As a...

  18. A list of methods to detect arthropod quarantine pests in Europe

    NARCIS (Netherlands)

    Augustin, S.; Kogel, de W.J.; Donner, P.; Faccoli, M.; Lees, D.C.; Marini, L.; Mori, N.; Toffolo, E.P.; Quilici, S.; Roques, A.; Yart, A.; Battisti, A.

    2012-01-01

    A total of 177 species of quarantine arthropods in Europe have been analysed for detection methods that are used in surveillance. This paper provides a link to a list where the methods most frequently used, either alone or in combination, are given for each species. Inspection remains the most

  19. Irradiation as a quarantine treatment for the solenopsis mealybug, Phenacoccus solenopsis

    International Nuclear Information System (INIS)

    Huang, Fang; Li, Weidi; Li, Xiuqiong; Bei, Yawei; Lin, Wencai; Lu, Yaobin; Wang, Bingkui

    2014-01-01

    Phenacoccus solenopsis is an aggressively invasive species that targets agricultural and ornamental plants, thereby threatening the world cotton industry and other crops. P. solenopsis has been listed as a quarantine insect in Europe and China. The utilization of phytosanitary irradiation as a potential treatment for disinfesting agricultural commodities in trade has expanded rapidly in recent years. A reasonable dose of radiation to eliminate P. solenopsis needs to be determined, taking into account the side effects of radiation on agricultural products and the species-specific tolerance of the insect to radiation. We applied radiation ranging from 50 to 200 Gy to P. solenopsis to determine the optimal dose. Both the radiation dose and the developmental stage of the insect were independent variables. Higher doses of radiation or lesser mature insect stages provided more effective treatment. In nymphs, a radiation dose of 100 Gy caused extinction of the irradiated population by disrupting ovary development, while 150 Gy caused 100% mortality. In adults, all tested doses of irradiation did not affect longevity, but we were able to prevent reproduction with high (150 and 200 Gy) doses. In P. solenopsis, a 100 Gy dose of radiation could eliminate the irradiated population in two generations. The mortality curve showed a steep slope beyond 150 Gy; thus, if killing all of the insects in a shorter amount of time is necessary, 200 Gy may be a reasonable dose for the quarantine treatment of the solenopsis mealybug. - Highlights: • Both ‘radiation dose’ and ‘irradiated insect stage’ are important factors. • 100-Gy irradiation could achieve population extinction in two generations. • 200 Gy should be a reasonable dose in the quarantine treatment

  20. Annual review of earth and planetary sciences. Volume 16

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Albee, A.L.; Stehli, F.G.

    1988-01-01

    Various papers on earth and planetary science topics are presented. The subjects addressed include: role and status of earth science field work; phase relations of prealuminous granitic rocks and their petrogenetic implications; chondritic meteorites and the solar nebula; volcanic winters; mass wasting on continental margins; earthquake ground motions; ore deposits as guides to geologic history of the earth; geology of high-level nuclear waste disposal; and tectonic evolution of the Caribbean. Also discussed are: the earth's rotation; the geophysics of a restless caldera (Long Valley, California); observations of cometary nuclei; geology of Venus; seismic stratigraphy; in situ-produced cosmogenic isotopes in terrestrial rocks; time variations of the earth's magnetic field; deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection; early proterozoic assembly and growth of Laurentia; concepts and methods of high-resolution event stratigraphy

  1. Luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies

    International Nuclear Information System (INIS)

    Jacoby, G.H.

    1980-01-01

    Identifications of 19 and 34 faint planetary nebulae have been made in the central regions of the SMC and LMC, respectively, using on-line/off-line filter photography at [O III] and Hα. The previously known brighter planetary nebulae in these fields, eight in both the SMC and the LMC, were also identified. On the basis of the ratio of the numbers of faint to bright planetary nebulae in these fields and the numbers of bright planetary nebulae in the surrounding fields, the total numbers of planetary nebulae in the SMC and LMC are estimated to be 285 +- 78 and 996 +- 253, respectively. Corrections have been applied to account for omissions due to crowding confusion in previous surveys, spatial and detectability incompleteness, and obscuration by dust.Equatorial coordinates and finding charts are presented for all the identified planetary nebulae. The coordinates have uncertainties smaller than 0.''6 relative to nearby bright stars, thereby allowing acquisition of the planetary nebulae by bling offsetting.Monochromatic fluxes are derived photographically and used to determine the luminosity function for Magellanic Cloud planetary nebulae as faint as 6 mag below the brightest. The luminosity function is used to estimate the total numbers of planetary nebulae in eight Local Group galaxies in which only bright planetary nebulae have been identified. The dervied luminosity specific number of planetary nebulae per unit luminosity is nearly constant for all eight galaxies, having a value of 6.1 x 10 -7 planetary nebulae L -1 /sub sun/. The mass specific number, based on the three galaxies with well-determined masses, is 2.1 x 10 -7 planetary nebulae M -1 /sub sun/. With estimates for the luminosity and mass of our Galaxy, its total number of planetary nebulae is calculated to be 10,000 +- 4000, in support of the Cudworth distance scale

  2. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    Science.gov (United States)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https

  3. Heliophysics 3 Volume Set

    Science.gov (United States)

    Schrijver, Carolus J.; Siscoe, George L.

    2010-11-01

    Volume 1: Preface; 1. Prologue Carolus J. Schrijver and George L. Siscoe; 2. Introduction to heliophysics Thomas J. Bogdan; 3. Creation and destruction of magnetic field Matthias Rempel; 4. Magnetic field topology Dana W. Longcope; 5. Magnetic reconnection Terry G. Forbes; 6. Structures of the magnetic field Mark B. Moldwin, George L. Siscoe and Carolus J. Schrijver; 7. Turbulence in space plasmas Charles W. Smith; 8. The solar atmosphere Viggo H. Hansteen; 9. Stellar winds and magnetic fields Viggo H. Hansteen; 10. Fundamentals of planetary magnetospheres Vytenis M. Vasyliūnas; 11. Solar-wind magnetosphere coupling: an MHD perspective Frank R. Toffoletto and George L. Siscoe; 12. On the ionosphere and chromosphere Tim Fuller-Rowell and Carolus J. Schrijver; 13. Comparative planetary environments Frances Bagenal; Bibliography; Index. Volume 2: Preface; 1. Perspective on heliophysics George L. Siscoe and Carolus J. Schrijver; 2. Introduction to space storms and radiation Sten Odenwald; 3. In-situ detection of energetic particles George Gloeckler; 4. Radiative signatures of energetic particles Tim Bastian; 5. Observations of solar and stellar eruptions, flares, and jets Hugh Hudson; 6. Models of coronal mass ejections and flares Terry Forbes; 7. Shocks in heliophysics Merav Opher; 8. Particle acceleration in shocks Dietmar Krauss-Varban; 9. Energetic particle transport Joe Giacalone; 10. Energy conversion in planetary magnetospheres Vytenis Vasyliūnas; 11. Energization of trapped particles Janet Green; 12. Flares, CMEs, and atmospheric responses Tim Fuller-Rowell and Stanley C. Solomon; 13. Energetic particles and manned spaceflight 358 Stephen Guetersloh and Neal Zapp; 14. Energetic particles and technology Alan Tribble; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index. Volume 3: Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun

  4. Community quarantine to interrupt Ebola virus transmission - Mawah Village, Bong County, Liberia, August-October, 2014.

    Science.gov (United States)

    Nyenswah, Tolbert; Blackley, David J; Freeman, Tabeh; Lindblade, Kim A; Arzoaquoi, Samson K; Mott, Joshua A; Williams, Justin N; Halldin, Cara N; Kollie, Francis; Laney, A Scott

    2015-02-27

    On September 30, 2014, the Bong County health officer notified the county Ebola task force of a growing outbreak of Ebola virus disease (Ebola) in Mawah, a village of approximately 800 residents. During September 9-16, household quarantine had been used by the community in response to a new Ebola infection. Because the infection led to a local outbreak that grew during September 17-20, county authorities suggested community quarantine be considered, and beginning on approximately September 20, the Fuamah District Ebola Task Force (Task Force) engaged Mawah leaders to provide education about Ebola and to secure cooperation for the proposed measures. On September 30, Bong County requested technical assistance to develop strategies to limit transmission in the village and to prevent spread to other areas. The county health team, with support from the Task Force and CDC, traveled to Mawah on October 1 and identified approximately two dozen residents reporting symptoms consistent with Ebola. Because of an ambulance shortage, 2 days were required, beginning October 1, to transport the patients to an Ebola treatment unit in Monrovia. Community quarantine measures, consisting of restrictions on entering or leaving Mawah, regulated river crossings, and market closures, were implemented on October 1. Local leaders raised concerns about availability of medical care and food. The local clinic was reopened on October 11, and food was distributed on October 12. The Task Force reported a total of 22 cases of Ebola in Mawah during September 9-October 2, of which 19 were fatal. During October 3-November 21, no new cases were reported in the village. Involving community members during planning and implementation helped support a safe and effective community quarantine in Mawah.

  5. Lessons from the History of Quarantine, from Plague to Influenza A

    Centers for Disease Control (CDC) Podcasts

    2013-05-08

    Reginald Tucker reads an abridged version of the Emerging Infectious Diseases’ Historical Review, Lessons from the History of Quarantine, from Plague to Influenza A.  Created: 5/8/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 5/15/2013.

  6. Factors associated with household transmission of pandemic (H1N1 2009 among self-quarantined patients in Beijing, China.

    Directory of Open Access Journals (Sweden)

    Daitao Zhang

    Full Text Available As the pandemic (H1N1 2009 progressed, the Ministry of Health of China advised cases with mild symptoms to remain home for isolation and observation, which may have increased the risk for infection among other household members. Describing the transmission characteristics of this novel virus is indispensable to effectively controlling the spread of disease; thus, the aim of this study was to assess risk factors associated with household transmission of pandemic H1N1 from self-quarantined patients in Beijing, the capital city of China. A 1:2 case-control study with 54 case households and 108 control households was conducted between August 1 and September 30, 2009 in Beijing. Cases were households with a self-quarantined index patient and a secondary case, while controls were households with a self-quarantined index patient and a close contact. Controls were also matched to cases for sex and age of index case-patient. A structured interview guide was used to collect the data. Conditional logistical models were employed to estimate Odds Ratios (OR with 95% confidence intervals (95% CI. Results indicated that higher education level (OR 0.42; 95% CI 0.22-0.83, sharing room with an index case-patient (OR 3.29; 95%CI 1.23-8.78, daily room ventilation (OR 0.28; 95%CI 0.08-0.93, and hand washing ≥ 3/d (OR 0.71; 95%CI 0.48-0.94 were related to the household transmission of pandemic H1N1 from self-quarantined patients. These results highlight that health education, as well as the quarantine of the index case-patient immediately after infection, frequent hand hygiene, and ventilation are critical to mitigating household spread of pandemic H1N1 virus and minimizing its impact. Household contacts should be educated to promote these in-home practices to contain transmission, particularly when household members are quarantined at home.

  7. 77 FR 22663 - Asian Longhorned Beetle; Additions to Quarantined Areas in Massachusetts

    Science.gov (United States)

    2012-04-17

    ...-0128] Asian Longhorned Beetle; Additions to Quarantined Areas in Massachusetts AGENCY: Animal and Plant... adopting as a final rule, without change, an interim rule that amended the Asian longhorned beetle (ALB... INFORMATION: Background The Asian longhorned beetle (ALB, Anoplophora glabripennis), an insect native to China...

  8. Apollo 11 Astronauts In Prayer Within Quarantine Facility

    Science.gov (United States)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via a Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was taken to safety aboard the USS Hornet, where they were quartered in a mobile quarantine facility. Shown here is the Apollo 11 crew inside the quarantine facility as prayer is offered by Lt. Commander John Pirrto, USS Hornet Chaplain accompanied by U.S. President Richard Nixon (front right). With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  9. Ionization with accelerated high energy electrons as quarantine treatment against Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) in citrus fruits

    International Nuclear Information System (INIS)

    Alonso, M.; Río, M.A. del; Jacas, J.

    2002-01-01

    Ceratitis capitata is a quarantine pest. Spanish citrus exports to countries such as the USA or Japan are subjected to a mandatory quarantine treatment consisting of exposure of fruits to a low temperatures. Some citrus (''Fino'' lemon, ''Fortune'' mandarin) are very sensitive to this kind of treatment and can not be treated this way. Therefore, alternative treatments are necessary. In this study, high energy electrons were investigated as an alternative quarantine treatment against C. capitata in citrus. Survival of the different instars (egg to old pupae) of C. capitata reared in an artificial medium was assessed when exposed to different doses between 0 and 1 kGy. Both pupariation and adult emergence were almost prevented at 0.25 kGy, and no viable adults were obtained at 0.50 kGy. When artificially infested fruits (in both ''Fino'' lemon and ''Fortune'' mandarin) were exposed to 1 kGy, 100% mortality was obtained. Finally, quality (texture, color index, maturity index, juice yield, ethanol and acetaldehyde contents, physiological alterations and organoleptic characteristics) of irradiated (1 kGy) and non irradiated fruit were compared. High energy electron irradiation resulted in unacceptable damage to ''Fortune'' mandarin, but quality of ''Fino'' lemon resulted unaltered even when evaluated one month after irradiation. Therefore high energy electrons could be a useful alternative to cold quarantine treatment for ''Fino'' lemons. (author) [es

  10. Gamma irradiation a potential quarantine treatment against mites on cut flowers

    International Nuclear Information System (INIS)

    Hamidah Sulaiman; Mohd Shamsudin Osman; Zainon Othman; Mohd Ridzuan Ismail

    2002-01-01

    Cut flower, an important export commodity of Malaysia in international trade, is often subjected to infestation by various pests such as mites, scales and thrips. The use of low ionizing radiation has been suggested as an alternative to methyl bromide fumigation, the current pest disinfestations treatment for cut flower but which is being phased out due to environmental concerns. The criterion for efficacy of radiation as a quarantine treatment will be inability of treated mites to reproduce at a new location rather than causing immediate mortality. A dose of 200 Gy prevented reproduction in female adult of Tetranychus piercie by inducing sterility while a much higher dose of 5 kGy is required to produce instant mortality. Based on the results obtained gamma irradiation of dose range 300-500 Gy may be applied as a quarantine treatment for Tetranycus piercie. However, this dose range is only suitable for chrysanthemum (in 4% sucrose solution) but not roses, carnations and orchids which showed phytotoxic symptoms at dose range of 100-400 Gy. (Author)

  11. Highly Specific Detection of Five Exotic Quarantine Plant Viruses using RT-PCR

    Directory of Open Access Journals (Sweden)

    Hoseong Choi

    2013-03-01

    Full Text Available To detect five plant viruses (Beet black scorch virus, Beet necrotic yellow vein virus, Eggplant mottled dwarf virus, Pelargonium zonate spot virus, and Rice yellow mottle virus for quarantine purposes, we designed 15 RT-PCR primer sets. Primer design was based on the nucleotide sequence of the coat protein gene, which is highly conserved within species. All but one primer set successfully amplified the targets, and gradient PCRs indicated that the optimal temperature for the 14 useful primer sets was 51.9°C. Some primer sets worked well regardless of annealing temperature while others required a very specific annealing temperature. A primer specificity test using plant total RNAs and cDNAs of other plant virus-infected samples demonstrated that the designed primer sets were highly specific and generated reproducible results. The newly developed RT-PCR primer sets would be useful for quarantine inspections aimed at preventing the entry of exotic plant viruses into Korea.

  12. Planetary Defense

    Science.gov (United States)

    2016-05-01

    4 Abstract Planetary defense against asteroids should be a major concern for every government in the world . Millions of asteroids and...helps make Planetary Defense viable because defending the Earth against asteroids benefits from all the above technologies. So if our planet security...information about their physical characteristics so we can employ the right strategies. It is a crucial difference if asteroids are made up of metal

  13. Solar planetary systems stardust to terrestrial and extraterrestrial planetary sciences

    CERN Document Server

    Bhattacharya, Asit B

    2017-01-01

    The authors have put forth great efforts in gathering present day knowledge about different objects within our solar system and universe. This book features the most current information on the subject with information acquired from noted scientists in this area. The main objective is to convey the importance of the subject and provide detailed information on the physical makeup of our planetary system and technologies used for research. Information on educational projects has also been included in the Radio Astronomy chapters.This information is a real plus for students and educators considering a career in Planetary Science or for increasing their knowledge about our planetary system

  14. Development of RT-PCR and Nested PCR for Detecting Four Quarantine Plant Viruses Belonging to Nepovirus

    Directory of Open Access Journals (Sweden)

    Siwon Lee

    2013-09-01

    Full Text Available For quarantine purpose, we developed the RT- and nested PCR module of Tomato black ring virus (TBRV, Arabis mosaic virus (ArMV, Cherry leafroll virus (CLRV and Grapevine fanleaf virus (GFLV. The PCR modules, developed in this study make diagnosis more convenient and speedy because of same PCR condition. And also, the methods are more accurate because it can check whether the result is contamination or not using the mutation-positive control. We discard or return the 27 cases of Nepovirus infection seed by employing the module past 3 years. This study provides a rapid and useful method for detection of four quarantine plant viruses.

  15. Irradiation as a quarantine treatment of 'Carabao' ('Manila Super') mangoes

    International Nuclear Information System (INIS)

    Manoto, E.C.; Resilva, S.S.; Del Rosario, Ma.S.; Casubha, L.C.

    1990-01-01

    Researches using gamma radiation for disinfestation of Oriental fruit fly in 'Carabao' ('Manila Super') mangoes were undertaken using the Probit 9 or 99.9968% mortality test. The results showed that the mature larvae of the fruit fly are the most tolerant stage of this insect to irradiation with the eggs as the most sensitive. On treating more than 100,000 mature larvae in mangoes, a minimum dose of 100 Gy was found to prevent emergence of adult fruit flies and maintain quarantine security or a complete elimination of the possibility of introducing this pest into the importing country. Therefore, the use of 100-Gy irradiation as a quarantine treatment against Oriental fruit fly in the mature green Philippine 'carabao' mango fruits is recommended

  16. A Comparison of the Dynamical Evolution of Planetary Systems Proceedings of the Sixth Alexander von Humboldt Colloquium on Celestial Mechanics Bad Hofgastein (Austria), 21–27 March 2004

    CERN Document Server

    Dvorak, Rudolf

    2005-01-01

    The papers in this volume cover a wide range of subjects covering the most recent developments in Celestial Mechanics from the theoretical point of nonlinear dynamical systems to the application to real problems. We emphasize the papers on the formation of planetary systems, their stability and also the problem of habitable zones in extrasolar planetary systems. A special topic is the stability of Trojans in our planetary system, where more and more realistic dynamical models are used to explain their complex motions: besides the important contribution from the theoretical point of view, the results of several numerical experiments unraveled the structure of the stable zone around the librations points. This volume will be of interest to astronomers and mathematicians interested in Hamiltonian mechanics and in the dynamics of planetary systems.

  17. Heliophysics 3 Volume Paperback Set

    Science.gov (United States)

    Schrijver, Carolus J.; Siscoe, George L.

    2013-03-01

    Volume 1: Preface; 1. Prologue Carolus J. Schrijver and George L. Siscoe; 2. Introduction to heliophysics Thomas J. Bogdan; 3. Creation and destruction of magnetic field Matthias Rempel; 4. Magnetic field topology Dana W. Longcope; 5. Magnetic reconnection Terry G. Forbes; 6. Structures of the magnetic field Mark B. Moldwin, George L. Siscoe and Carolus J. Schrijver; 7. Turbulence in space plasmas Charles W. Smith; 8. The solar atmosphere Viggo H. Hansteen; 9. Stellar winds and magnetic fields Viggo H. Hansteen; 10. Fundamentals of planetary magnetospheres Vytenis M. Vasyliunas; 11. Solar-wind magnetosphere coupling: an MHD perspective Frank R. Toffoletto and George L. Siscoe; 12. On the ionosphere and chromosphere Tim Fuller-Rowell and Carolus J. Schrijver; 13. Comparative planetary environments Frances Bagenal; Bibliography; Index. Volume 2: Preface; 1. Perspective on heliophysics George L. Siscoe and Carolus J. Schrijver; 2. Introduction to space storms and radiation Sten Odenwald; 3. In-situ detection of energetic particles George Gloeckler; 4. Radiative signatures of energetic particles Tim Bastian; 5. Observations of solar and stellar eruptions, flares, and jets Hugh Hudson; 6. Models of coronal mass ejections and flares Terry Forbes; 7. Shocks in heliophysics Merav Opher; 8. Particle acceleration in shocks Dietmar Krauss-Varban; 9. Energetic particle transport Joe Giacalone; 10. Energy conversion in planetary magnetospheres Vytenis Vasyliunas; 11. Energization of trapped particles Janet Green; 12. Flares, CMEs, and atmospheric responses Tim Fuller-Rowell and Stanley C. Solomon; 13. Energetic particles and manned spaceflight Stephen Guetersloh and Neal Zapp; 14. Energetic particles and technology Alan Tribble; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index. Volume 3: Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun

  18. "Word of Discovery": A Planetary Example from Volume I of the Astronomical Journal

    Science.gov (United States)

    Hockey, T.

    1998-09-01

    In 1850, William Lassell (1799-1880) discovered a series of bright white spots, in the south temperate latitudes of Jupiter, unlike any that that been seen before. Lassell's note on these STZ features is a useful example of how astronomical discoveries of the day were communicated among astronomers. Word of Lassell's Spots spread quickly by nineteenth-century standards. This was due, in part, to the recent appearance of journals devoted exclusively to astronomy. The transition from letters as a means of conveying scientific information to journals is reflected in the propagation of Lassell's announcement: a report of Lassell's description of the white spots to the Royal Astronomical Society appeared in the Monthly Notices of the Royal Astronomical Society along with a woodblock print of one of his drawings. This report reappeared shortly thereafter in German translation. It was part of a letter to the editor of the Astronomische Nachrichten, Heinrich Schumacher (1780-1850), from an English correspondent of his, the Reverend Richard Sheepshanks (1974-1855). (Sheepshanks was himself editor of the Monthly Notices of the Royal Astronomical Society.) It then made its way across the Atlantic as a letter from Schumacher to Benjamin Gould (1824-1896), who published it in the first volume of his upstart Astronomical Journal. There it appears in English, again, as Schumacher quoting Sheepshanks quoting Lassell! The observations by Lassell and William Dawes (1799-1868) of this phenomenon also were the first major planetary discovery made using a silvered-glass reflecting telescope. Lassell's Spots have remained in the "astronomical news" of the last 150 years: Most recently, they appeared worldwide in images showing the Comet Shoemaker-Levy 9 impact sites.

  19. 76 FR 1338 - Emerald Ash Borer; Quarantined Areas; Maryland, Michigan, Minnesota, Missouri, Pennsylvania...

    Science.gov (United States)

    2011-01-10

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 7 CFR Part 301 [Docket No. APHIS-2008-0072] Emerald Ash Borer; Quarantined Areas; Maryland, Michigan, Minnesota, Missouri..., Japan, Mongolia, the Russian Far East, Taiwan, and Canada, eventually kills healthy ash trees after it...

  20. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS

    Directory of Open Access Journals (Sweden)

    Moshen Kuai

    2018-03-01

    Full Text Available For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN Adaptive Neuro-fuzzy Inference System (ANFIS in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively.

  1. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS.

    Science.gov (United States)

    Kuai, Moshen; Cheng, Gang; Pang, Yusong; Li, Yong

    2018-03-05

    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively.

  2. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.

    1978-01-01

    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  3. Determination of quarantine period in African catfish (Clarias gariepinus) fed with pig (Sus sp.) offal to assure compliance with halal standards.

    Science.gov (United States)

    Wan Norhana, M N; Dykes, G A; Padilah, B; Ahmad Hazizi, A A; Masazurah, A R

    2012-12-01

    Pig (Sus sp.) and pig by-products are considered as najasa (impurities) in Islam and forbidden in Muslim consumer products. Animals fed on najasa are categorised as al-jallālah (contaminated animals) which are allowed to be consumed as long as they have been quarantined for a certain period of time. During this quarantine period the animals will have undergone a natural purification process or istihālah. African catfish (Clarias gariepinus) are commonly consumed in Malaysia and may be fed on najasa. This study was carried out to estimate the istihālah period for catfish after feeding with pig offal, based on the absence of pig DNA in catfish gut and to suggest the quarantine period in catfish fed with pig offal. The results indicated that the maximum istihālah period could reach 36h in the stomach, 6h in the midgut and less than 2h in the hindgut although in many cases shorter periods were observed. Based on these results it is estimated that the minimum quarantine period for catfish fed with pig offal is 1.5days. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  5. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8

    Science.gov (United States)

    Danehkar, A.

    2018-01-01

    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  6. 7 CFR 301.52 - Quarantine; restriction on interstate movement of specified regulated articles.

    Science.gov (United States)

    2010-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES... Texas. (b) Regulated articles. No common carrier or other person shall move interstate from any... articles: (1) Cotton and wild cotton, including all parts of these plants. (2) Seed cotton. (3) Cottonseed...

  7. Logistics management analysis on electronic accelerator for quarantine

    International Nuclear Information System (INIS)

    Ye Mingyang; Yang Bin; Jin Jianqiao; Yang Guoxiang; Xu Tao; Liu Zhao

    2014-01-01

    Irradiation quarantine was mainly used on food and fruit for sterilization to be qualified for import. Irradiation parameters were formulated based on the bacterial content and other factors. The goods usually have short shelf-life and with the time growing, the bacterial content is increasing. Therefore reducing the residence time of the goods in the factory and further reducing the difficulty of processing are significantly important. Because irradiation industry has special requirement for safety, how to guarantee the safety of the stuff, and irradiation dose precision are also need to pay attention to while optimizing logistics. (authors)

  8. 7 CFR 301.91 - Quarantine and regulations; restrictions on interstate movement of regulated articles. 1

    Science.gov (United States)

    2010-01-01

    ..., and 434 of the Plant Protection Act (7 U.S.C. 7714, 7731, and 7754). (a) Quarantines and regulations... Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC...

  9. Results of the FAO/IAEA program on 'Irradiation as a Quarantine Treatment of Mites, Nematodes and Insects other than Fruit Fly'

    International Nuclear Information System (INIS)

    Ignatowicz, S.

    1998-01-01

    The FAO/IAEA Program on 'Irradiation as a Quarantine Treatment of Mites, Nematodes and Insects other than Fruit Fly' has been implemented in 1992, and lasted up to the end of 1997. The Coordination Research Program put emphasis on the following aspects of research: (1) Determine criteria, e.g. inability to reproduce, for accepting irradiation as a quarantine treatment against quarantine pests; (2) Determine the effete of irradiation on the most resistant stage of these quarantine pests at the time of treatment; (3) Evaluate the quality of agricultural commodities irradiated at 2-3 times the dose(s) required to meet quarantine requirements; (4) Develop method(s) for identifying insects/other pests which were subjected to irradiation at a dose required for quarantine purposes. The followings are the most important achievements of the CRP: Generic dose for sterilization of both males and females of spider mites (Tetranychidae) was determined to be 320 Gy. With regard to insects other than fruit flies, it appears that a minimum dose of 300 Gy would cause either no adult emergence or sterility of most species of insects studied. Radiation doses required to cause complete mortality to various infective stages of plant parasitic nematodes is higher than 6 kGy. The minimum dose required to prevent gall development and reproduction of these nematodes is largely over 2 kGy, which is too high for most fresh plant materials. Thus, irradiation should be considered as an alternative to methyl bromide fumigation to control nematodes in non-perishable materials. While many fresh fruits and vegetables could tolerate radiation doses required for quarantine purposes, the response of various types of cut-flowers to irradiation varied widely. Some cut-flowers and ornamentals such as ferns, phoenix leaf, narcissus, tulips, carnation or red ginger were tolerant to radiation up to 700 Gy and more, others such as chrysanthemum, rose, lily, anthurium, dendrobium, gerbera did not tolerate

  10. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  11. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies

    Science.gov (United States)

    Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei

    2015-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus

  12. Quality of 'Brightwell' and 'Tifblue' blueberries after gamma irradiation for quarantine treatment

    International Nuclear Information System (INIS)

    Miller, W.R.; McDonald, R.E.

    1996-01-01

    Blueberries must be subjected to a quarantine treatment of methyl bromide fumigation when shipped to certain domestic or export markets. The principle insects that inhibit distribution of blueberries are the apple maggot [Rhagoletis pomonella (Walsh)], blueberry maggot (R. mendax Curran), and plum curculio [Conotrachelus nenuphar (Herbst)]. Methyl bromide fumigation is the only approved quarantine treatment for blueberries and it is scheduled to be phased out by the year 2001. Highbush blueberries’ tolerance to low-dose irradiation is cultivar-dependent (Eaton et al., 1970). Two main cultivars grown in Florida, ‘Climax’ and ‘Sharpblue’, will tolerate irradiation up to 0.75 kGy without loss of fruit market quality (Miller et al., 1994a, 1994b, 1995). A 1.0-kGy dose is the maximum allowed (U.S. Food and Drug Administration, 1986) for treatment of fresh fruit or vegetables, and reportedly (personal communications, J. Sharp and G. Hallman) »0.3 kGy is sufficient for control of blueberry insects requiring quarantine certification. Two or three times the minimum dose may, however, be required to assure that the minimum dose is absorbed by all berries during commercial application. Therefore, it is most important to determine the tolerance of berries to irradiation stress. The purpose of this research was to determine the effects of low-dose irradiation on the quality and condition of ‘Brightwell’ and ‘Tifblue’, two major rabbiteye cultivars grown in Georgia. The data were subjected to analysis of variance (P £ 0.05) on a split-block experimental design, with harvest dates for ‘Brightwell’, and randomized sample sets as replications for ‘Tifblue’ berries. The data were tested for the main effect of irradiation dosage on quality attributes

  13. Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop

    Science.gov (United States)

    Evans, N.

    1984-09-01

    Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.

  14. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  15. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    Science.gov (United States)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  16. Space telescope phase B definition study. Volume 2A: Science instruments, f48/96 planetary camera

    Science.gov (United States)

    Grosso, R. P.; Mccarthy, D. J.

    1976-01-01

    The analysis and preliminary design of the f48/96 planetary camera for the space telescope are discussed. The camera design is for application to the axial module position of the optical telescope assembly.

  17. Quarantine cold treatments for Ceratitis capitata and Anastrepha fraterculus (Diptera: Tephritidae) for citrus in Argentina: conclusions after 10 years of research

    International Nuclear Information System (INIS)

    Willink, Eduardo; Gastaminza, Gerardo; Salvatore, Analia; Gramajo, M. Cecilia; Acenolaza, Mariana; Avila, Rosana; Favre, Paola

    2006-01-01

    Argentina has quarantine restrictions in some markets due to the presence of two quarantine fruit fly pests: Ceratitis capitata and Anastrepha fraterculus. One alternative is the use of cold quarantine treatments during transport of the commodities. Since 1996, the Estacion Experimental Agroindustrial Obispo Colombres (EEAOC), Tucuman, Argentina, has developed different cold quarantine treatments for citrus. In the present work we present all the data the EEAOC generated in the last ten years in order to facilitate the development of such cold treatments. Fruit flies were obtained from the colonies reared at EEAOC. Four citrus species were analyzed: lemon, grapefruit, orange and tangerines. Different varieties were analyzed for each fruit species. Sensitivity trials aiming at determine the most tolerant stage as well as to asses if there is any influence of varieties on cold tolerance were performed. Finally we compared the tolerance to cold between the two species. Sensitivity trials showed that mature larvae (L3) are the most tolerant stage for both fruit fly species. There was no effect of the varieties and the two fruit fly species were equally sensible to cold. Our results provide strong evidence in favor of concluding that any cold treatment developed for C. capitata is effective for A. fraterculus. (author)

  18. Quarantine cold treatments for Ceratitis capitata and Anastrepha fraterculus (Diptera: Tephritidae) for citrus in Argentina: conclusions after 10 years of research

    Energy Technology Data Exchange (ETDEWEB)

    Willink, Eduardo; Gastaminza, Gerardo; Salvatore, Analia; Gramajo, M. Cecilia; Acenolaza, Mariana; Avila, Rosana; Favre, Paola, E-mail: ewillink@eeaoc.org.a [Estacion Experimental Agroindustrial Obispo Colombres (EEAOC), Tucuman (Argentina)

    2006-07-01

    Argentina has quarantine restrictions in some markets due to the presence of two quarantine fruit fly pests: Ceratitis capitata and Anastrepha fraterculus. One alternative is the use of cold quarantine treatments during transport of the commodities. Since 1996, the Estacion Experimental Agroindustrial Obispo Colombres (EEAOC), Tucuman, Argentina, has developed different cold quarantine treatments for citrus. In the present work we present all the data the EEAOC generated in the last ten years in order to facilitate the development of such cold treatments. Fruit flies were obtained from the colonies reared at EEAOC. Four citrus species were analyzed: lemon, grapefruit, orange and tangerines. Different varieties were analyzed for each fruit species. Sensitivity trials aiming at determine the most tolerant stage as well as to asses if there is any influence of varieties on cold tolerance were performed. Finally we compared the tolerance to cold between the two species. Sensitivity trials showed that mature larvae (L3) are the most tolerant stage for both fruit fly species. There was no effect of the varieties and the two fruit fly species were equally sensible to cold. Our results provide strong evidence in favor of concluding that any cold treatment developed for C. capitata is effective for A. fraterculus. (author)

  19. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  20. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  1. Postharvest quality of dragon fruit (Hylocereus spp.) after x-ray irradiation quarantine treatment

    Science.gov (United States)

    The quality of three dragon fruit clones (Hylocereus sp.) was determined following x-ray irradiation for disinfestation of quarantine pests. Fruit were treated with irradiation doses of 0, 200, 400, 600, or 800 Gy and stored for 12 days at 10 °C. Irradiation did not affect soluble solids content, ti...

  2. Sensitivity of the quarantine pest rough sweetpotato weevil, Blosyrus asellus to postharvest irradiation treatment

    Science.gov (United States)

    Rough sweetpotato weevil, Blosyrus asellus (Olivier), is a new quarantine pest of Hawaii sweetpotatoes. Currently, sweetpotatoes can be exported from Hawaii to the U.S. mainland using a postharvest irradiation treatment of 150 Gy to control three other regulated insect pests. Studies were conducted...

  3. Mango fruit aroma volatile production following quarantine hot water treatment and subsequent ripening

    Science.gov (United States)

    Mangos are an important tropical fruit crop worldwide that are appreciated for their attractive peel and flesh colors, juicy texture, sweetness, and unique aroma. Mangos exported to the U.S. receive quarantine hot water treatment (QHWT) at 46.1 °C for 65 to 110 min (depending on fruit shape and size...

  4. Export of tropical fruit from Thailand with special reference to quarantine restrictions imposed by certain importing countries

    International Nuclear Information System (INIS)

    Syamananda, R.

    1985-01-01

    The export markets for tropical fruit from Thailand are presently limited to Hong Kong, Singapore, Malaysia, Europe and the Middle East where plant quarantine regulations are not as rigorous as they are in other parts of the world. Attempts are being made to open up new market in Japan, Australia and the United States of America. However, in order to gain access to these markets the produce must be completely free of restricted quarantine pests such as oriental fruit fly (Dacus dorsalis) and melon fruit fly (D. Cucurbitae). Many importing countries to restrict use of chemicals in agricultural produce by fumigation, the use of irradiation technology for pest problems appears to be an acceptable alternative

  5. Combined postharvest X-ray and cold quarantine treatments against the Mediterranean fruit fly in ‘Clemenules’ mandarins

    International Nuclear Information System (INIS)

    Palou, L.; Río, M. A. del; Marcilla, A.; Alonso, M.; Jacas, J. A.

    2007-01-01

    In the present work, survival of the Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) on artificially infested 'Clemenules' clementine mandarins (Citrus reticulata Blanco) was assessed on fruit subjected to integrated quarantine treatments consisting of irradiation with X-rays at doses of 0 (control), 30, 54, and 164 Gy followed by exposure to 1 deg C for 0 (control), 3, 6, 9, or 12 days. Additionally, physico-chemical (rind color, firmness, and physiological disorders, soluble solids concentration, titratable acidity, maturity index, juice yield, and ethanol and acetaldehyde content) and sensory (sweetness, acidity, sensory maturity index, off-flavors, and mandarin-like flavor) fruit quality of 'Clemenules' clementines were assessed on X-irradiated fruit exposed to 1 deg C for 0 (control), 6, or 12 days. Complete insect mortality with no negative effects on fruit quality after 7 days at 20 deg C of shelf life was obtained on clementines firstly X-irradiated at 30 Gy and subsequently exposed to 1 deg C for 2 days. This combination of treatments considerably reduced quarantine time if compared to standard cold quarantine treatments (1.1-2.2 deg C for 14-18 days) and therefore showed promise as a potential commercial treatment for Spanish citrus exports [es

  6. The NASA Planetary Data System Roadmap Study for 2017 - 2026

    Science.gov (United States)

    McNutt, R. L., Jr.; Gaddis, L. R.; Law, E.; Beyer, R. A.; Crombie, M. K.; Ebel, D. S. S.; Ghosh, A.; Grayzeck, E.; Morgan, T. H.; Paganelli, F.; Raugh, A.; Stein, T.; Tiscareno, M. S.; Weber, R. C.; Banks, M.; Powell, K.

    2017-12-01

    NASA's Planetary Data System (PDS) is the formal archive of >1.2 petabytes of data from planetary exploration, science, and research. Initiated in 1989 to address an overall lack of attention to mission data documentation, access, and archiving, the PDS has evolved into an online collection of digital data managed and served by a federation of six science discipline nodes and two technical support nodes. Several ad hoc mission-oriented data nodes also provide complex data interfaces and access for the duration of their missions. The recent Planetary Data System Roadmap Study for 2017 to 2026 involved 15 planetary science community members who collectively prepared a report summarizing the results of an intensive examination of the current state of the PDS and its organization, management, practices, and data holdings (https://pds.jpl.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). The report summarizes the history of the PDS, its functions and characteristics, and how it has evolved to its present form; also included are extensive references and documentary appendices. The report recognizes that as a complex, evolving, archive system, the PDS must constantly respond to new pressures and opportunities. The report provides details on the challenges now facing the PDS, 19 detailed findings, suggested remediations, and a summary of what the future may hold for planetary data archiving. The findings cover topics such as user needs and expectations, data usability and discoverability (i.e., metadata, data access, documentation, and training), tools and file formats, use of current information technologies, and responses to increases in data volume, variety, complexity, and number of data providers. In addition, the study addresses the possibility of archiving software, laboratory data, and measurements of physical samples. Finally, the report discusses the current structure and governance of the PDS and its impact on how archive growth, technology, and new

  7. Collecting, Managing, and Visualizing Data during Planetary Surface Exploration

    Science.gov (United States)

    Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.

    2017-12-01

    While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.

  8. The irradiation as a quarantine method for the treatment of fresh fruits; La irradiacion como metodo cuarentenario eficaz para el tratamiento de frutas frescas

    Energy Technology Data Exchange (ETDEWEB)

    Kaupert, Norma L [Comision Nacional de Energia Atomica, Ezeiza (Argentina). Dept. de Aplicaciones Tecnologicas y Agropecuarias

    1999-07-01

    The irradiation is proposed as an alternative to chemical or other physical methods for the quarantine of fresh fruit. The case of the products of the Southern part of Argentina is analysed and the economical and financial parameters for the installation and the operation of an irradiation plant are estimated. The costs are compared to those of a chemical quarantine system. (author)

  9. Planetary Data Archiving Plan at JAXA

    Science.gov (United States)

    Shinohara, Iku; Kasaba, Yasumasa; Yamamoto, Yukio; Abe, Masanao; Okada, Tatsuaki; Imamura, Takeshi; Sobue, Shinichi; Takashima, Takeshi; Terazono, Jun-Ya

    After the successful rendezvous of Hayabusa with the small-body planet Itokawa, and the successful launch of Kaguya to the moon, Japanese planetary community has gotten their own and full-scale data. However, at this moment, these datasets are only available from the data sites managed by each mission team. The databases are individually constructed in the different formats, and the user interface of these data sites is not compatible with foreign databases. To improve the usability of the planetary archives at JAXA and to enable the international data exchange smooth, we are investigating to make a new planetary database. Within a coming decade, Japan will have fruitful datasets in the planetary science field, Venus (Planet-C), Mercury (BepiColombo), and several missions in planning phase (small-bodies). In order to strongly assist the international scientific collaboration using these mission archive data, the planned planetary data archive at JAXA should be managed in an unified manner and the database should be constructed in the international planetary database standard style. In this presentation, we will show the current status and future plans of the planetary data archiving at JAXA.

  10. 7 CFR 301.87 - Quarantine; restrictions on interstate movement of specified articles. 1,2

    Science.gov (United States)

    2010-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES... of plants, plant pests, or other articles in accordance with sections 414, 421, and 434 of the Plant Protection Act (7 U.S.C. 7714, 7731, and 7754). 2 Regulations concerning the movement of gummosis bacteria...

  11. The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community

    Science.gov (United States)

    Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.

    2014-11-01

    NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge

  12. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  13. Highlights of Task Force meeting on irradiation as a quarantine treatment, with particular emphasis on insect pests of fresh fruits and vegetables

    International Nuclear Information System (INIS)

    Feliu, E.; Borheg, I. de

    1991-01-01

    This report highlights the discussions and recommendations of the Meeting on Irradiation as a Quarantine Treatment of Fresh Fruits and Vegetables convened 7-11 January 1991 by the International Consultative Group on Food Irradiation. The topics covered had particular emphasis on the irradiation of insect pests of fresh fruits and vegetables. The meeting concluded that low-dose irradiation can be effective as a plant quarantine treatment against fruit flies, as well as against other insect species and mites

  14. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.

    1979-01-01

    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  15. Improving accessibility and discovery of ESA planetary data through the new planetary science archive

    Science.gov (United States)

    Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.

    2018-01-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at http://psa.esa.int. Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.

  16. Planetary Magnetism

    International Nuclear Information System (INIS)

    Russell, C.T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io

  17. 77 FR 58469 - Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York

    Science.gov (United States)

    2012-09-21

    ...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0.... APHIS-2012-0003] Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York AGENCY... its review under Executive Order 12866. List of Subjects in 7 CFR Part 301 Agricultural commodities...

  18. Planetary mass function and planetary systems

    Science.gov (United States)

    Dominik, M.

    2011-02-01

    With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows the derivation of all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their respective parent star. While planetary multiplicity in an observed system becomes obvious with the detection of several planets, its quantitative assessment however comes with the challenge to exclude the presence of further planets. Current exoplanet samples begin to give us first hints at the population statistics, whereas pictures of planet parameter space in its full complexity call for samples that are 2-4 orders of magnitude larger. In order to derive meaningful statistics, however, planet detection campaigns need to be designed in such a way that well-defined fully deterministic target selection, monitoring and detection criteria are applied. The probabilistic nature of gravitational microlensing makes this technique an illustrative example of all the encountered challenges and uncertainties.

  19. 76 FR 1337 - Asian Longhorned Beetle; Additions to Quarantined Areas in Massachusetts and New York

    Science.gov (United States)

    2011-01-10

    .... APHIS-2009-0014] Asian Longhorned Beetle; Additions to Quarantined Areas in Massachusetts and New York... rule. SUMMARY: We are adopting as a final rule, without change, an interim rule that amended the Asian..., MD 20737-1231; (301) 734-5705. SUPPLEMENTARY INFORMATION: Background The Asian longhorned beetle (ALB...

  20. Using Primary Literature for Teaching Undergraduate Planetary Sciences

    Science.gov (United States)

    Levine, J.

    2013-05-01

    Articles from the primary scientific literature can be a valuable teaching tool in undergraduate classrooms. At Colgate University, I emphasize selected research articles in an upper-level undergraduate course in planetary sciences. In addition to their value for conveying specific scientific content, I find that they also impart larger lessons which are especially apt in planetary sciences and allied fields. First, because of the interdisciplinary nature of planetary sciences, students discover that contributions to outstanding problems may arrive from unexpected directions, so they need to be aware of the multi-faceted nature of scientific problems. For instance, after millennia of astrometric attempts, the scale of the Solar System was determined with extraordinary precision with emerging radar technology in the 1960's. Second, students learn the importance of careful work, with due attention to detail. After all, the timescales of planetary formation are encoded in systematic isotopic variations of a few parts in 10,000; in students' own experiences with laboratory data they might well overlook such a small effect. Third, students identify the often-tortuous connections between measured and inferred quantities, which corrects a common student misconception that all quantities of interest (e.g., the age of a meteorite) can be measured directly. Fourth, research articles provide opportunities for students to practice the interpretation of graphical data, since figures often represent a large volume of data in succinct form. Fifth, and perhaps of greatest importance, by considering the uncertainties inherent in reported data, students come to recognize the limits of scientific understanding, the extent to which scientific conclusions are justified (or not), and the lengths to which working scientists go to mitigate their uncertainties. These larger lessons are best mediated by students' own encounters with the articles they read, but require instructors to make

  1. Chemical and sensory quality of fresh pomegranate fruits exposed to gamma radiation as quarantine treatment.

    Science.gov (United States)

    Shahbaz, Hafiz Muhammad; Ahn, Jae-Jun; Akram, Kashif; Kim, Hyo-Young; Park, Eun-Joo; Kwon, Joong-Ho

    2014-02-15

    The U.S. Department of Agriculture in February 2012 approved the import of fresh pomegranates subjected to irradiation as a quarantine procedure with a minimum absorbed dose of 0.4kGy against different pests. This study evaluated the application of different gamma-irradiation doses (0.4, 1, and 2kGy) in fresh pomegranate fruits and their effect on the chemical and sensory characteristics. The total soluble solids, titratable acidity, and pH values remained unaffected up to 1kGy treatment. Irradiation caused a significant decrease in the total anthocyanins and phenolic content. A strong positive correlation was observed among the antioxidant activities, total phenolics and anthocyanin contents. In general, a stronger preference was shown by sensory panelists for the juice from irradiated fruits. This study provides research-based information about the application of irradiation as a quarantine disinfestation treatment to enhance the marketing and consumer acceptance of pomegranates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Efficacy of irradiation vs thermal methods as quarantine treatments for tropical fruits

    International Nuclear Information System (INIS)

    Moy, J.H.

    1993-01-01

    Ionizing radiation can be effectively applied to fruits and vegetables for several purposes. The most feasible and potentially useful application is probably for disinfestation as a quarantine treatment. All stages of a fruit fly will become sterile upon being irradiated at a minimum dose of 0.15 kGy, the dose level approved by the USDA in January 1989 for treating Hawaiian papayas as a quarantine procedure. Research on irradiation of several tropical fruits such as papayas, mangoes, lychees showed that the chemical, sensory and nutrient qualities of these fruits were well retained at 1.0 kGy, and the fruits would ripen normally or slightly delayed. Irradiation studies have proved the efficacy of the process to disinfest tropical fruits of fruit flies. Market test of irradiated Hawaiian papayas in 1987 showed that consumers preferred irradiated papayas over hot water treated papayas by 11 to 1. Thus the only hurdle to overcome in using irradiation for tropical fruits is to convince the consumers that irradiated fruits are wholesome and safe for human consumption, which has been proven with scientific data obtained during the past three decades, and further proven with the marketing of irradiated fruits in the U.S.A. since early 1992. (author)

  3. Planetary Simulation Chambers bring Mars to laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E.

    2016-07-01

    Although space missions provide fundamental and unique knowledge for planetary exploration, they are always costly and extremely time-consuming. Due to the obvious technical and economical limitations of in-situ planetary exploration, laboratory simulations are among the most feasible research options for making advances in planetary exploration. Therefore, laboratory simulations of planetary environments are a necessary and complementary option to expensive space missions. Simulation chambers are economical, more versatile, and allow for a higher number of experiments than space missions. Laboratory-based facilities are able to mimic the conditions found in the atmospheres and on the surfaces of a majority of planetary objects. Number of relevant applications in Mars planetary exploration will be described in order to provide an understanding about the potential and flexibility of planetary simulation chambers systems: mainly, stability and presence of certain minerals on Mars surface; and microorganisms potential habitability under planetary environmental conditions would be studied. Therefore, simulation chambers will be a promising tools and necessary platform to design future planetary space mission and to validate in-situ measurements from orbital or rover observations. (Author)

  4. Regulation of use of radiation for quarantine purposes; Regulamentacao do uso da radiacao para fins quarentenarios

    Energy Technology Data Exchange (ETDEWEB)

    Itepan, Natanael Marcio, E-mail: natanael.itepan@unianhanguera.edu.b [Faculdade Anhanguera, Piracicaba, SP (Brazil); Costa, Neivaldo; Furlan, Gilberto Ribeiro; Walder, Julio Marcos Melges, E-mail: neivaldo@cena.usp.b, E-mail: gilfurlan@cena.usp.b, E-mail: jmwalder@cena.usp.b [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2011-07-01

    The main aspects of Instruction No. 9 are: a) the nuclear plant that use ionizing radiation as a phyto sanitary treatment for quarantine purposes, must be accredited by the agency of the Agriculture, Livestock and Supply Ministry (MAPA) and the licensing by the Nuclear Energy National Commission (CNEN) and other regulatory bodies, b) control of the applied dose will follow a standard operating procedure should be performed by independent organization, authorized by the Brazilian ONPF (Phyto sanitary Protection National Organization), c) the unit of radiation treatment should ensure traceability and must maintain records of phyto sanitary treatments, d) there should be bilateral work plan between the ONPF of Brazil and other countries for the established radiation treatment protocol. The ONPF of Brazil is the Sanitary Vegetarian Department. Ionizing radiation (cold pasteurization) is shown in an alternative technology to phyto sanitary control for quarantine purposes. (author)

  5. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  6. The Potassium-Argon Laser Experiment (KArLE): In Situ Geochronology for Planetary Robotic Missions

    Science.gov (United States)

    Cohen, Barbara

    2016-01-01

    The Potassium (K) - Argon (Ar) Laser Experiment (KArLE) will make in situ noble-gas geochronology measurements aboard planetary robotic landers and roverss. Laser-Induced Breakdown Spectroscopy (LIBS) is used to measure the K abun-dance in a sample and to release its noble gases; the evolved Ar is measured by mass spectrometry (MS); and rela-tive K content is related to absolute Ar abundance by sample mass, determined by optical measurement of the ablated volume. KArLE measures a whole-rock K-Ar age to 10% or better for rocks 2 Ga or older, sufficient to resolve the absolute age of many planetary samples. The LIBS-MS approach is attractive because the analytical components have been flight proven, do not require further technical development, and provide complementary measurements as well as in situ geochronology.

  7. Number of planetary nebulae in our galaxy

    International Nuclear Information System (INIS)

    Alloin, D.; Cruz-Gonzalez, C.; Peimbert, M.

    1976-01-01

    It is found that the contribution to the ionization of the interstellar medium due to planetary nebulae is from one or two orders of magnitude smaller than that due to O stars. The mass return to the interstellar medium due to planetary nebulae is investigated, and the birth rate of white dwarfs and planetary nebulae are compared. Several arguments are given against the possibility that the infrared sources detected by Becklin and Neugebauer in the direction of the galactic center are planetary nebulae

  8. Technology under Planetary Protection Research (PPR)

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary protection involves preventing biological contamination on both outbound and sample return missions to other planetary bodies. Numerous areas of research...

  9. Virtual reality and planetary exploration

    Science.gov (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  10. Virtual reality and planetary exploration

    Science.gov (United States)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  11. Spectral Feature Analysis of Minerals and Planetary Surfaces in an Introductory Planetary Science Course

    Science.gov (United States)

    Urban, Michael J.

    2013-01-01

    Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…

  12. Short term non-chemical approach to Tuta absoluta and thrips : CATT shows promise against quarantine pests

    NARCIS (Netherlands)

    Arkesteijn, M.; Qiu, Y.

    2015-01-01

    Pests such as insects, mites and nematodes don’t just cause damage, in the case of quarantine pests they can also limit exports. In cooperation with the sector, entomologist Yutong Qiu tested the possibility of using Controlled Atmosphere Temperature Treatment (CATT) in the post harvest phase to

  13. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    Science.gov (United States)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  14. X-ray observations of planetary nebulae

    International Nuclear Information System (INIS)

    Apparao, K.M.V.; Tarafdar, S.P.

    1990-01-01

    The Einstein satellite was used to observe 19 planetary nebulae and X-ray emission was detected from four planetary nebulae. The EXOSAT satellite observed 12 planetary nebulae and five new sources were detected. An Einstein HRI observation shows that NGC 246 is a point source, implying that the X-rays are from the central star. Most of the detected planetary nebulae are old and the X-rays are observed during the later stage of planetary nebulae/central star evolution, when the nebula has dispersed sufficiently and/or when the central star gets old and the heavy elements in the atmosphere settle down due to gravitation. However in two cases where the central star is sufficiently luminous X-rays were observed, even though they were young nebulae; the X-radiation ionizes the nebula to a degree, to allow negligible absorption in the nebula. Temperature T x is obtained using X-ray flux and optical magnitude and assuming the spectrum is blackbody. T x agrees with Zanstra temperature obtained from optical Helium lines. (author)

  15. The NASA Regional Planetary Image Facility (RPIF) Network: A Key Resource for Accessing and Using Planetary Spatial Data

    Science.gov (United States)

    Hagerty, J. J.

    2017-12-01

    The role of the NASA Regional Planetary Image Facility (RPIF) Network is evolving as new science-ready spatial data products continue to be created and as key historical planetary data sets are digitized. Specifically, the RPIF Network is poised to serve specialized knowledge and services in a user-friendly manner that removes most barriers to locating, accessing, and exploiting planetary spatial data, thus providing a critical data access role within a spatial data infrastructure. The goal of the Network is to provide support and training to a broad audience of planetary spatial data users. In an effort to meet the planetary science community's evolving needs, we are focusing on the following objectives: Maintain and improve the delivery of historical data accumulated over the past four decades so as not to lose critical, historical information. This is being achieved by systematically digitizing fragile materials, allowing increased access and preserving them at the same time. Help users locate, access, visualize, and exploit planetary science data. Many of the facilities have begun to establish Guest User Facilities that allow researchers to use and/or be trained on GIS equipment and other specialized tools like Socet Set/GXP photogrammetry workstations for generating digital elevation maps. Improve the connection between the Network nodes while also leveraging the unique resources of each node. To achieve this goal, each facility is developing and sharing searchable databases of their collections, including robust metadata in a standards compliant way. Communicate more effectively and regularly with the planetary science community in an effort to make potential users aware of resources and services provided by the Network, while also engaging community members in discussions about community needs. Provide a regional resource for the science community, colleges, universities, museums, media, and the public to access planetary data. Introduce new strategies for

  16. Classification of ISO SWS 01 spectra of proto-planetary nebulae: a search for precursors of planetary nebulae with [WR] central stars

    OpenAIRE

    Szczerba, R.; Stasi{ń}ska, G.; Siódmiak, N.; Górny, S. K.

    2002-01-01

    We have analyzed ISO SWS 01 observations for 61 proto-planetary nebulae candidates and classified their spectra according to their dominant chemistry. On the basis of our classification and the more general classification of SWS 01 spectra by Kraemer et al. (2002) we discuss the connection between proto-planetary nebulae candidates and planetary nebulae, with emphasis on possible precursors of planetary nebulae with [WR] central stars.

  17. An ecological compass for planetary engineering.

    Science.gov (United States)

    Haqq-Misra, Jacob

    2012-10-01

    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  18. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    International Nuclear Information System (INIS)

    Dinerstein, H.L.; Lester, D.F.

    1990-01-01

    Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon

  19. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  20. Equations of State: Gateway to Planetary Origin and Evolution (Invited)

    Science.gov (United States)

    Melosh, J.

    2013-12-01

    illustrated by the impact origin of our Moon. Computer simulations that do not take account of the liquid/vapor phase change are unable to retain any material in orbit around the Earth after a planetary impact. A purely gaseous disk around the Earth is wracked by gravitational instabilities and soon collapses back onto the Earth. Only if the silicate EoS also includes a liquid phase can a disk remain stable long enough to condense into a moon. The implications of this new-found ease of vaporization have yet to be fully explored, but it seems clear that current ideas must undergo extensive revision. More melt and vapor production in impacts implies much larger volume changes of the impacted materials and hence more energetic post-impact expansion. EoSs are thus of vital importance to our understanding of the evolution of planetary systems. Computer simulations can (and must!) substitute for experiments for many aspects of large planetary collisions, but so far experiments are leading theory in accurate determination of equations of state. Yet, the fidelity of the computer simulations to Nature can be only as good as the accuracy of the inputs, making further experimental study of EoS a central task in the exploration and elucidation of our solar system and of planetary systems in general.

  1. Planetary climates (princeton primers in climate)

    CERN Document Server

    Ingersoll, Andrew

    2013-01-01

    This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

  2. Planetary protection in the framework of the Aurora exploration program

    Science.gov (United States)

    Kminek, G.

    The Aurora Exploration Program will give ESA new responsibilities in the field of planetary protection. Until now, ESA had only limited exposure to planetary protection from its own missions. With the proposed ExoMars and MSR missions, however, ESA will enter the realm of the highest planetary protection categories. As a consequence, the Aurora Exploration Program has initiated a number of activities in the field of planetary protection. The first and most important step was to establish a Planetary Protection Working Group (PPWG) that is advising the Exploration Program Advisory Committee (EPAC) on all matters concerning planetary protection. The main task of the PPWG is to provide recommendations regarding: Planetary protection for robotic missions to Mars; Planetary protection for a potential human mission to Mars; Review/evaluate standards & procedures for planetary protection; Identify research needs in the field of planetary protection. As a result of the PPWG deliberations, a number of activities have been initiated: Evaluation of the Microbial Diversity in SC Facilities; Working paper on legal issues of planetary protection and astrobiology; Feasibility study on a Mars Sample Return Containment Facility; Research activities on sterilization procedures; Training course on planetary protection (May, 2004); Workshop on sterilization techniques (fall 2004). In parallel to the PPWG, the Aurora Exploration Program has established an Ethical Working Group (EWG). This working group will address ethical issues related to astrobiology, planetary protection, and manned interplanetary missions. The recommendations of the working groups and the results of the R&D activities form the basis for defining planetary protection specification for Aurora mission studies, and for proposing modification and new inputs to the COSPAR planetary protection policy. Close cooperation and free exchange of relevant information with the NASA planetary protection program is strongly

  3. An Ion-Propelled Cubesat for Planetary Defense and Planetary Science

    Science.gov (United States)

    Russell, Christopher T.; Wirz, Richard; Lai, Hairong; Li, Jian-Yang; Connors, Martin

    2017-04-01

    Small satellites can reduce the cost of launch by riding along with other payloads on a large rocket or being launched on a small rocket, but are perceived as having limited capabilities. This perception can be at least partially overcome by innovative design, including ample in-flight propulsion. This allows achieving multiple targets and adaptive exploration. Ion propulsion has been pioneered on Deep Space 1 and honed on the long-duration, multiple-planetary body mission Dawn. Most importantly, the operation of such a mission is now well- understood, including navigation, communication, and science operations for remote sensing. We examined different mission concepts that can be used for both planetary defense and planetary science near 1 AU. Such a spacecraft would travel in the region between Venus and Mars, allowing a complete inventory of material above, including objects down to about 10m diameter to be inventoried. The ion engines could be used to approach these bodies slowly and carefully and allow the spacecraft to map debris and follow its collisional evolution throughout its orbit around the Sun, if so desired. The heritage of Dawn operations experience enables the mission to be operated inexpensively, and the engineering heritage will allow it to be operated for many trips around the Sun.

  4. Non-planetary Science from Planetary Missions

    Science.gov (United States)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  5. Migration-induced architectures of planetary systems.

    Science.gov (United States)

    Szuszkiewicz, Ewa; Podlewska-Gaca, Edyta

    2012-06-01

    The recent increase in number of known multi-planet systems gives a unique opportunity to study the processes responsible for planetary formation and evolution. Special attention is given to the occurrence of mean-motion resonances, because they carry important information about the history of the planetary systems. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The convergent differential migration of two planets embedded in a gaseous disc may result in the capture into a mean-motion resonance. The orbital migration taking place during the early phases of the planetary system formation may play an important role in shaping stable planetary configurations. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability. The aim of this paper is to present the observational properties of these planetary systems which contain confirmed or suspected resonant configurations. A complete list of known systems with such configurations is given. This list will be kept by us updated from now on and it will be a valuable reference for studying the dynamics of extrasolar systems and testing theoretical predictions concerned with the origin and the evolution of planets, which are the most plausible places for existence and development of life.

  6. Lessons learned from planetary science archiving

    Science.gov (United States)

    Zender, J.; Grayzeck, E.

    2006-01-01

    The need for scientific archiving of past, current, and future planetary scientific missions, laboratory data, and modeling efforts is indisputable. To quote from a message by G. Santayama carved over the entrance of the US Archive in Washington DC “Those who can not remember the past are doomed to repeat it.” The design, implementation, maintenance, and validation of planetary science archives are however disputed by the involved parties. The inclusion of the archives into the scientific heritage is problematic. For example, there is the imbalance between space agency requirements and institutional and national interests. The disparity of long-term archive requirements and immediate data analysis requests are significant. The discrepancy between the space missions archive budget and the effort required to design and build the data archive is large. An imbalance exists between new instrument development and existing, well-proven archive standards. The authors present their view on the problems and risk areas in the archiving concepts based on their experience acquired within NASA’s Planetary Data System (PDS) and ESA’s Planetary Science Archive (PSA). Individual risks and potential problem areas are discussed based on a model derived from a system analysis done upfront. The major risk for a planetary mission science archive is seen in the combination of minimal involvement by Mission Scientists and inadequate funding. The authors outline how the risks can be reduced. The paper ends with the authors view on future planetary archive implementations including the archive interoperability aspect.

  7. 9 CFR 82.6 - Interstate movement of dead birds and dead poultry from a quarantined area.

    Science.gov (United States)

    2010-01-01

    ... provided in paragraph (b) of this section for dressed carcasses, dead birds and dead poultry, including any... poultry at the destination listed on the permit required by paragraph (a)(1) of this section. (b) Dressed... quarantined area only if: (1) The dressed carcasses are from birds or poultry that were slaughtered in a...

  8. The History of Planetary Exploration Using Mass Spectrometers

    Science.gov (United States)

    Mahaffy, Paul R.

    2012-01-01

    At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class.

  9. Detection method for irradiated oriental fruit fly (Dacus Dorsalis) for quarantine purposes

    International Nuclear Information System (INIS)

    Yulo-Nazarea, M.T.; Nato, A.Q.

    1994-01-01

    Radiation is one of the techniques used to effectively rid fresh produce of insect pests and efficacy of radiation dose on food is measured by a probit 9 (99.9968% mortality) quarantine security. Present of suitable biochemical markers for irreversible radiation injury in insect pests could be used as convincing proofs of the efficacy of radiation dose. A biochemical marker (designated Gs-protein) for radiation injury in Oriental fruit fly, Dacus dorsalis, was detected in the SDS-PAGE profile of two-day old pupae and adult insect stage. Gs-protein is not observed in larvae and eggs. An apparent molecular weight of 109 kDa was calculated. A tyrosinase enzyme activity was observed in the soluble fraction of pupal total homogenate and SDS-PAGE-isolated Gs-protein; however, no tyrosinase activity was measured in irradiated sample. The optical absorbance of the soluble fraction from unirradiated pupal total homogenate measured at 360 nm was found to increase with time. From the results of the studies, the apparent loss of Gs-protein in irradiated larvae is likely the result of loss of melanization capability in irradiated larvae which is linked to the absence of tyrosinase enzyme. The data presented seems to establish the role of Gs-protein as a biomarker for gamma-irradiation induced deactivation of pupal development and as a convenient indicator of the effectiveness of gamma radiation as a quarantine treatment. (author). 3 refs.; 3 figs

  10. Gamma irradiation as a quarantine treatment against mite (Tetranychidae) on cut flowers

    International Nuclear Information System (INIS)

    Zainon Othman; Mohd Ridzuan Ismail; Hamidah Sulaiman; Mohd Shamsudin Osman

    2000-01-01

    Cut flower, an important export commodity of Malaysia in international trade, is often subjected to infestation by various pests such as mites, scales and thrips. The use of low ionising radiation has been suggested as an alternative to methyl bromide fumigation, the current pest disinfestation treatment for cut flower but which is being phased out due to environmental concerns. The criterion for efficacy of radiation as a quarantine treatment will be the inability of treated mites to reproduce at a new location rather than causing immediate mortality. Irradiating red spider mite Tetranychus piercie at a dose of 300 and 400 Gy produced sterile female adults from irradiated protonymph and deutonymph respectively. A lower dose of 200 Gy induced sterility in female adults developed from the less immature stages of irradiated egg and larva. Deteriorating effects caused by irradiation treatment were reflected in immatures by their reduced emergence rate/mortality in subsequent developmental stages. A dose of 240 Gy prevented reproduction in female adult of T piercie by inducing sterility while a much higher dose of 5 kGy is required to produce instant mortality. Based on the results obtained gamma irradiation of dose range 300-400 Gy may be applied as a quarantine treatment against Tetranychus piercie. However, this dose range is only suitable for chrysanthemum (in 4% sucrose solution) but not roses, carnations and orchids which showed phytotoxic symptoms at dose range of 100-300 Gy

  11. PC 11: Symbiotic star or planetary nebulae?

    International Nuclear Information System (INIS)

    Gutierrez-Moreno, A.; Moreno, H.; Cortes, G.

    1987-01-01

    PC 11 is an object listed in Perek and Kohoutek (1967) Catalogue of Galactic Planetary Nebulae as PK 331 -5 0 1. Some authors suggest that it is not a planetary nebula, but that it has some characteristics (though not all) of symbiotic stars. We have made photographic, spectrophotometric and spectroscopic observations of PC 11. The analysis of the results suggests that it is a young planetary nebula. (Author)

  12. Visualizing NASA's Planetary Data with Google Earth

    Science.gov (United States)

    Beyer, R. A.; Hancher, M. D.; Broxton, M.; Weiss-Malik, M.; Gorelick, N.; Kolb, E.

    2008-12-01

    There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. As a 3D geospatial browser, the Google Earth client is one way to visualize planetary data. KML imagery super-overlays enable us to create a non-Earth planetary globe within Google Earth, and conversion of planetary meta-data allows display of the footprint locations of various higher-resolution data sets. Once our group, or any group, performs these data conversions the KML can be made available on the Web, where anyone can download it and begin using it in Google Earth (or any other geospatial browser), just like a Web page. Lucian Plesea at JPL offers several KML basemaps (MDIM, colorized MDIM, MOC composite, THEMIS day time infrared, and both grayscale and colorized MOLA). We have created TES Thermal Inertia maps, and a THEMIS night time infrared overlay, as well. Many data sets for Mars have already been converted to KML. We provide coverage polygons overlaid on the globe, whose icons can be clicked on and lead to the full PDS data URL. We have built coverage maps for the following data sets: MOC narrow angle, HRSC imagery and DTMs, SHARAD tracks, CTX, and HiRISE. The CRISM team is working on providing their coverage data via publicly-accessible KML. The MSL landing site process is also providing data for potential landing sites via KML. The Google Earth client and KML allow anyone to contribute data for everyone to see via the Web. The Earth sciences community is already utilizing KML and Google Earth in a variety of ways as a geospatial browser, and we hope that the planetary sciences community will do the same. Using this paradigm for sharing geospatial data will not only enable planetary scientists to more easily build and share data within the scientific community, but will also provide an easy platform for public outreach and education efforts, and will easily allow anyone to layer geospatial information on top of planetary data

  13. Ultraviolet spectroscopy of planetary nebulae in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Maran, S.P.; Aller, L.H.; Gull, T.R.; Stecher, T.P.

    1982-01-01

    Ultraviolet spectra of three high excitation planetary nebulae in the Magellanic Clouds (LMC P40, SMC N2, SMC N5) were obtained with the International Ultraviolet Explorer. The results are analyzed together with new visual wavelength spectrophotometry of LMC P40 and published data on SMC N2 and SMC N5 to investigate chemical composition and in particular to make the first reliable estimates of the carbon abundance in extragalactic planetary nebulae. Although carbon is at most only slightly less abundant in the LMC and SMC planetary nebulae than in galactic planetaries, it is almost 40 times more abundant in the SMC planetaries than in the SMC interstellar medium, and is about 6 times more abundant in the LMC planetary than in the LMC interstellar medium. According to our limited sample, the net result of carbon synthesis and convective dredgeup in the progenitors of planetary nebulae, as reflected in the nebular carbon abundance, is roughly the same in the Galaxy, the LMC, and the SMC

  14. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  15. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  16. Gamma irradiation as a quarantine treatment against eggs of Citrus black fly (Aleurocanthus woglumi Ashby)

    International Nuclear Information System (INIS)

    Villavicencio, Anna Lucia C.H.; Araujo, Michel M.; Fanaro, Gustavo B.; Costa, Helbert H.S.F.; Silva, Priscila P.V.; Arthur, Valter

    2009-01-01

    The citrus black fruit fly (Aleurocanthus woglumi Ashby) is an important pest of citrus originated in Southeast Asia and its first record in the new world was in Jamaica in 1913. In Brazil, it was detected in 2001 in the state of Para and more recently it was detected in Sao Paulo in 2008. This pest that attacks over 300 species of plants, but its main host are citrus. It is an A2 quarantine pest, because it is not spread throughout the country. The objective of this study was to test doses of 0 (control), 25, 50, 75, 100, 125, 150, 175 and 200 Gy of gamma irradiation for disinfection of eggs of the citrus black fruit fly in leaves of citrus plants. Treatment consisted of 5 replicates with 60 eggs each. Evaluations were performed in the following periods: 1, 3, 5, 7 and 10 days after irradiation. Under the conditions assayed, it could be concluded that a dose of 200 Gy caused 100% mortality of Aleurocanthus woglumi Ashby eggs and could be recommended as a successful quarantine processing against infested plants. (author)

  17. Planetary Geomorphology.

    Science.gov (United States)

    Baker, Victor R.

    1984-01-01

    Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…

  18. Electrostatic Phenomena on Planetary Surfaces

    Science.gov (United States)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  19. Significant achievements in the planetary geology program. Final report

    International Nuclear Information System (INIS)

    Head, J.W.

    1978-12-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include the following: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included

  20. 9 CFR 82.8 - Interstate movement of eggs, other than hatching eggs, from a quarantined area.

    Science.gov (United States)

    2010-01-01

    ... arrival of the eggs at the facility. (b) Any flats or cases intended for reuse after being used to move... part 71 of this chapter before being moved to a premises where birds or poultry are kept. [61 FR 56883... be moved interstate from a quarantined area only if: (1) The eggs are accompanied by a permit...

  1. Rocky Planetary Debris Around Young WDs

    Science.gov (United States)

    Gaensicke, B.

    2014-04-01

    The vast majority of all known planet host stars, including the Sun, will eventually evolve into red giants and finally end their lives as white dwarfs: extremely dense Earth-sized stellar embers. Only close-in planets will be devoured during the red-giant phase. In the solar system, Mars, the asteroid belt, and all the giant planets will escape evaporation, and the same is true for many of the known exo-planets. It is hence certain that a significant fraction of the known white dwarfs were once host stars to planets, and it is very likely that many of them still have remnants of planetary systems. The detection of metals in the atmospheres of white dwarfs is the unmistakable signpost of such evolved planetary systems. The strong surface gravity of white dwarfs causes metals to sink out of the atmosphere on time-scales much shorter than their cooling ages, leading unavoidably to pristine H/He atmospheres. Therefore any metals detected in the atmosphere of a white dwarf imply recent or ongoing accretion of planetary debris. In fact, planetary debris is also detected as circumstellar dust and gas around a number of white dwarfs. These debris disks are formed from the tidal disruption of asteroids or Kuiper belt-like objects, stirred up by left-over planets, and are subsequently accreted onto the white dwarf, imprinting their abundance pattern into its atmosphere. Determining the photospheric abundances of debris-polluted white dwarfs is hence entirely analogue to the use of meteorites, "rocks that fell from the sky", for measuring the abundances of planetary material in the solar system. I will briefly review this new field of exo-planet science, and then focus on the results of a large, unbiased COS snapshot survey of relatively young ( 20-100Myr) white dwarfs that we carried out in Cycle 18/19. * At least 30% of all white dwarfs in our sample are accreting planetary debris, and that fraction may be as high as 50%. * In most cases where debris pollution is detected

  2. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    Science.gov (United States)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  3. SMALL PLANETARY SATELLITE COLORS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include published colors of small planetary satellites published up through December 2003. Small planetary satellites are defined as all...

  4. The Formation of a Planetary Nebula.

    Science.gov (United States)

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  5. Modeling, Testing, and Characteristic Analysis of a Planetary Flywheel Inerter

    Directory of Open Access Journals (Sweden)

    Zheng Ge

    2018-01-01

    Full Text Available We propose the planetary flywheel inerter, which is a new type of ball screw inerter. A planetary flywheel consists of several planetary gears mounted on a flywheel bracket. When the flywheel bracket is driven by a screw and rotating, each planetary gear meshing with an outer ring gear generates a compound motion composed of revolution and rotation. Theoretical analysis shows that the output force of the planetary flywheel inerter is proportional to the relative acceleration of one terminal of the inerter to the other. Optimizing the gear ratio of the planetary gears to the ring gear allows the planetary flywheel to be lighter than its traditional counterpart, without any loss on the inertance. According to the structure of the planetary flywheel inerter, nonlinear factors of the inerter are analyzed, and a nonlinear dynamical model of the inerter is established. Then the parameters in the model are identified and the accuracy of the model is validated by experiment. Theoretical analysis and experimental data show that the dynamical characteristics of a planetary flywheel inerter and those of a traditional flywheel inerter are basically the same. It is concluded that a planetary flywheel can completely replace a traditional flywheel, making the inerter lighter.

  6. Planetary Habitability

    Science.gov (United States)

    Kasting, James F.

    1997-01-01

    This grant was entitled 'Planetary Habitability' and the work performed under it related to elucidating the conditions that lead to habitable, i.e. Earth-like, planets. Below are listed publications for the past two and a half years that came out of this work. The main thrusts of the research involved: (1) showing under what conditions atmospheric O2 and O3 can be considered as evidence for life on a planet's surface; (2) determining whether CH4 may have played a role in warming early Mars; (3) studying the effect of varying UV levels on Earth-like planets around different types of stars to see whether this would pose a threat to habitability; and (4) studying the effect of chaotic obliquity variations on planetary climates and determining whether planets that experienced such variations might still be habitable. Several of these topics involve ongoing research that has been carried out under a new grant number, but which continues to be funded by NASA's Exobiology program.

  7. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  8. From red giants to planetary nebulae: Asymmetries, dust, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1990-01-01

    In order to investigate the development of aspherical planetary nebulae, polarimetry was obtained for a group of planetary nebulae and for objects that will evolve into planetary nebulae, i.e., red giants, late asymptotic giant branch (AGB) objects, proto-planetary nebulae, and young planetary nebulae. To study the dust around the objects in our sample, we also used data from the Infrared Astronomy Satellite (IRAS) mission. The youngest objects in our survey, red giants, had the hottest dust temperatures while planetary nebulae had the coolest. Most of the objects were intrinsically polarized, including the red giants. This indicated that the circumstellar dust shells of these objects were aspherical. Both carbon- and oxygen-rich objects could be intrinsically polarized. The intrinsic polarizations of a sample of our objects were modeled using an ellipsoidal circumstellar dust shell. The findings of this study suggest that the asphericities that lead to an aspherical planetary nebula originate when a red giant begins to undergo mass loss. The polarization and thus the asphericity as the star evolves, with both reaching a maximum during the proto-planetary nebula stage. The circumstellar dust shell will dissipate after the proto-planetary nebulae stage since no new material is being added. The polarization of planetary nebulae will thus be low. In the most evolved planetary nebulae, the dust has either been destroyed or dissipated into the interstellar medium. In these objects no polarization was observed

  9. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  10. Blue Marble Matches: Using Earth for Planetary Comparisons

    Science.gov (United States)

    Graff, Paige Valderrama

    2009-01-01

    Goal: This activity is designed to introduce students to geologic processes on Earth and model how scientists use Earth to gain a better understanding of other planetary bodies in the solar system. Objectives: Students will: 1. Identify common descriptor characteristics used by scientists to describe geologic features in images. 2. Identify geologic features and how they form on Earth. 3. Create a list of defining/distinguishing characteristics of geologic features 4. Identify geologic features in images of other planetary bodies. 5. List observations and interpretations about planetary body comparisons. 6. Create summary statements about planetary body comparisons.

  11. Summary of the Third International Planetary Dunes Workshop: remote sensing and image analysis of planetary dunes

    Science.gov (United States)

    Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.

    2013-01-01

    The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12–15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.

  12. Mars Technology Program Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  13. Planetary optical and infrared imaging

    International Nuclear Information System (INIS)

    Terrile, R.J.

    1988-01-01

    The purpose of this investigation is to obtain and analyze high spatial resolution charge coupled device (CCD) coronagraphic images of extra-solar planetary material and solar system objects. These data will provide information on the distribution of planetary and proto-planetary material around nearby stars leading to a better understanding of the origin and evolution of the solar system. Imaging within our solar system will provide information on the current cloud configurations on the outer planets, search for new objects around the outer planets, and provide direct support for Voyager, Galileo, and CRAF by imaging material around asteroids and clouds on Neptune. Over the last year this program acquired multispectral and polarization images of the disk of material around the nearby star Beta Pictoris. This material is believed to be associated with the formation of planets and provides a first look at a planetary system much younger than our own. Preliminary color and polarization data suggest that the material is very low albedo and similar to dark outer solar system carbon rich material. A coronagraphic search for other systems is underway and has already examined over 100 nearby stars. Coronagraphic imaging provided the first clear look at the rings of Uranus and albedo limits for the ring arcs around Neptune

  14. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  15. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  16. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    Science.gov (United States)

    Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit

    2013-01-01

    On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.

  17. Gamma irradiation as a quarantine treatment for carambolas infested with Caribbean fruit flies

    International Nuclear Information System (INIS)

    Gould, W.P.; Windeguth, D.L. von

    1991-01-01

    Carambolas infested with the Caribbean fruit fly Anastrepha suspensa (Loew), eggs and larvae were exposed to ionizing gamma radiation. Probit 9 was estimated to be 22.95 Gy (95% fiducial limits 16.68 Gy - 49.73 Gy). Over 100,000 immature A. suspensa infesting carambolas were treated at 50 Gy with no adult survivors. This dose did not cause any observable damage to the fruit. The 50 Gy dose satisfies quarantine requirements for treatment of fruits exposed from fruit fly infested areas. (author) [es

  18. Microstructure formations in copper-silicon carbide composites during mechanical alloying in a planetary activator

    Energy Technology Data Exchange (ETDEWEB)

    Kudashov, D.V.; Aksenov, A.A.; Portnoy, V.K.; Zolotorevskii, V.S. [Moscow State Inst. of Steel and Alloys, Moscow (Russian Federation). Dept. of Physical Metallurgy of Non-ferrous Metals; Klemm, V.; Martin, U.; Oettel, H. [Technical Univ., Freiberg (Germany). Inst. of Physical Metallurgy

    2000-12-01

    In the present paper the structure formation process of the powder metallurgical produced copper composite materials was studied. The volume part of the reinforcing SiC particles was varied from 5 to 25 wt.-%. It was discovered that while milling in a planetary activator first of all a ''puff- pastry'' structure appeared. There are important differences between this structure formation process and other known processes of milling. The homogeneous distribution of SiC particles was obtained after 60-100 minutes of treatment in ''Gefest11-3'' planetary activator. Phase composition of the powder and composite samples at the interface SiC/Cu (particles/matrix) was analysed after consolidation of the powder mixture and after the high temperature annealing. It was still determined that not only pure copper powder can be as a starting material for Cu-composites production used, but also the wastes of copper mechanical treatment, for instance, copper shaving. (orig.)

  19. Effects of mass and metallicity upon planetary nebula formation

    International Nuclear Information System (INIS)

    Papp, K.A.; Purton, C.R.; Kwok, S.

    1983-01-01

    We construct a parameterized function which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. Our analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebula in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy

  20. An Overview of the Planetary Data System Roadmap Study for 2017 - 2026

    Science.gov (United States)

    Morgan, Thomas H.; McNutt, Ralph L.; Gaddis, Lisa; Law, Emily; Beyer, Ross A.; Crombie, Kate; Ebel, Denton; Ghosh, Amitahba; Grayzeck, Edwin J.; Paganelli, Flora; Raugh, Anne C.; Stein, Thomas; Tiscareno, Matthew S.; Weber, Renee; E Banks, Maria; Powell, Kathryn

    2017-10-01

    NASA’s Planetary Data System (PDS) is the formal archive of >1.2 petabytes of data from planetary exploration, science, and research. Initiated in 1989 to address an overall lack of attention to mission data documentation, access, and archiving, the PDS has since evolved into an online collection of digital data managed and served by a federation of 6 science discipline nodes and 2 technical support nodes. Several ad-hoc mission-oriented data nodes also provide complex data interfaces and access for the duration of their missions.The new PDS Roadmap Study for 2017-2026 involved 15 planetary science community members who collectively prepared a report summarizing the results of an intensive examination of the current state of the PDS and its organization, management, practices, and data holdings (https://pds.jpl.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). The report summarizes PDS history, its functions and characteristics, and its present form; also included are extensive references and documentary appendices. The report recognizes that as a complex evolving system, the PDS must respond to new pressures and opportunities. The report provides details on challenges now facing the PDS, 19 detailed findings and suggested remediations that could be used to respond to these findings, and a summary of the potential future of planetary data archiving. These findings cover topics such as user needs and expectations, data usability and discoverability (i.e., metadata, data access, documentation, and training), tools and file formats, use of current information technologies, and responses to increases in data volume, variety, complexity, and number of data providers. In addition, the study addresses the possibility of archiving software, laboratory data, and physical samples. Finally, the report discusses the current structure and governance of PDS and the impact of this on how archive growth, technology, and new developments are enabled and managed within

  1. Development of food preservation and processing techniques by radiation - Quarantine treatment of agricultural products for export and import by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Joong Ho; Kang, H. J.; Chung, H. W.; Roh, M. J. [Kyungbuk National University, Taegu (Korea)

    2000-04-01

    To pre-establish an alternative technique to the toxic fumigant, methyl bromide which is the current quarantine measure of agricultural products for export, some selected agricultural products, such as apple and pear, were subjected to a preliminary study to confirm the comparative effects of gamma irradiation and MeBr fumigant on their disinfestation and quality, thereby preparing the basic data for the practical approach. Current quarantine activities were examined and the related limitations were investigated. Quarantine-related pests were investigated on their radiosensitivity and disinfestation effects by both treatments. The pests in apple and pear, Tetranychus urticae Koch, Panonychus ulmis Koch revealed a 100% mortality at around 17 days after irradiation of 3 kGy but it was too high dose for apple and pear. Tetranychus urticae Koch, Panonychus ulmi Koch from both apple and pear showed an increased mortality when exposed to 1 {approx} 2 kGy irradiation, resulting in apparent mortality 1 month later. 1 {approx} 2 kGy irradiation could be recommended for apple and pear. Current fumigation was perfect in its disinfesting capability, but it caused the detrimental effects on physical quality of agricultural produce. Whereas, irradiation doses suitable for controlling the pests did not induce any significant changes in the quality of the samples. 40 refs., 64 figs., 160 tabs. (Author)

  2. Engaging Audiences in Planetary Science Through Visualizations

    Science.gov (United States)

    Shupla, C. B.; Mason, T.; Peticolas, L. M.; Hauck, K.

    2017-12-01

    One way to share compelling stories is through visuals. The Lunar and Planetary Institute (LPI), in collaboration with Laboratory for Atmospheric and Space Physics (LASP) and Space Science Laboratory at the University of California, Berkeley, has been working with planetary scientists to reach and engage audiences in their research through the use of visualizations. We will share how images and animations have been used in multiple mediums, including the planetarium, Science on a Sphere, the hyperwall, and within apps. Our objectives are to provide a tool that planetary scientists can use to tell their stories, as well as to increase audience awareness of and interest in planetary science. While scientists are involved in the selection of topics and the development of the visuals, LPI and partners seek to increase the planetary science community's awareness of these resources and their ability to incorporate them into their own public engagement efforts. This presentation will share our own resources and efforts, as well as the input received from scientists on how education and public engagement teams can best assist them in developing and using these resources, and disseminating them to both scientists and to informal science education venues.

  3. DESIGN FOR A BI-PLANETARY GEAR TRAIN

    Directory of Open Access Journals (Sweden)

    Józef DREWNIAK

    2016-06-01

    Full Text Available The article presents the design for a bi-planetary gear train. The project description is supplemented with calculations of kinematics, statics and meshing efficiency of the gear wheels included in the gear train. Excluded are calculations of strength and geometry of gears, shaft and rolling bearing, since they are similar to classical calculations for planetary gears. An assembly drawing in 2D and assembly drawings in 3D of the designed bi-planetary gear train are also shown. This gear train will form the main element of the research in hand.

  4. Robotic vehicles for planetary exploration

    Science.gov (United States)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  5. VARIATIONAL PRINCIPLE FOR PLANETARY INTERIORS

    International Nuclear Information System (INIS)

    Zeng, Li; Jacobsen, Stein B.

    2016-01-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  6. Remote Sensing Data Analytics for Planetary Science with PlanetServer/EarthServer

    Science.gov (United States)

    Rossi, Angelo Pio; Figuera, Ramiro Marco; Flahaut, Jessica; Martinot, Melissa; Misev, Dimitar; Baumann, Peter; Pham Huu, Bang; Besse, Sebastien

    2016-04-01

    Planetary Science datasets, beyond the change in the last two decades from physical volumes to internet-accessible archives, still face the problem of large-scale processing and analytics (e.g. Rossi et al., 2014, Gaddis and Hare, 2015). PlanetServer, the Planetary Science Data Service of the EC-funded EarthServer-2 project (#654367) tackles the planetary Big Data analytics problem with an array database approach (Baumann et al., 2014). It is developed to serve a large amount of calibrated, map-projected planetary data online, mainly through Open Geospatial Consortium (OGC) Web Coverage Processing Service (WCPS) (e.g. Rossi et al., 2014; Oosthoek et al., 2013; Cantini et al., 2014). The focus of the H2020 evolution of PlanetServer is still on complex multidimensional data, particularly hyperspectral imaging and topographic cubes and imagery. In addition to hyperspectral and topographic from Mars (Rossi et al., 2014), the use of WCPS is applied to diverse datasets on the Moon, as well as Mercury. Other Solar System Bodies are going to be progressively available. Derived parameters such as summary products and indices can be produced through WCPS queries, as well as derived imagery colour combination products, dynamically generated and accessed also through OGC Web Coverage Service (WCS). Scientific questions translated into queries can be posed to a large number of individual coverages (data products), locally, regionally or globally. The new PlanetServer system uses the the Open Source Nasa WorldWind (e.g. Hogan, 2011) virtual globe as visualisation engine, and the array database Rasdaman Community Edition as core server component. Analytical tools and client components of relevance for multiple communities and disciplines are shared across service such as the Earth Observation and Marine Data Services of EarthServer. The Planetary Science Data Service of EarthServer is accessible on http://planetserver.eu. All its code base is going to be available on GitHub, on

  7. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    Directory of Open Access Journals (Sweden)

    Jungang Wang

    2013-01-01

    Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.

  8. Life Support and Habitation and Planetary Protection Workshop

    Science.gov (United States)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)

    2006-01-01

    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  9. The Σ − D relation for planetary nebulae: Preliminary analysis

    Directory of Open Access Journals (Sweden)

    Urošević D.

    2007-01-01

    Full Text Available An analysis of the relation between radio surface brightness and diameter, so-called Σ − D relation, for planetary nebulae (PNe is presented: i the theoretical Σ − D relation for the evolution of bremsstrahlung surface brightness is derived; ii contrary to the results obtained earlier for the Galactic supernova remnant (SNR samples, our results show that the updated sample of Galactic PNe does not severely suffer from volume selection effect - Malmquist bias (same as for the extragalactic SNR samples and; iii we conclude that the empirical S − D relation for PNe derived in this paper is not useful for valid determination of distances for all observed PNe with unknown distances. .

  10. Managing outbreaks of invasive species - a new method to prioritize preemptive quarantine efforts across large geographic regions

    Science.gov (United States)

    J.R. Withrow; E.L. Smith; F.H. Koch; D. Yemshanov

    2015-01-01

    In pest risk assessment it is frequently necessary to make time-critical decisions regarding management of expanding pest populations. When an invasive pest outbreak is expanding rapidly, preemptive quarantine of areas that are under imminent threat of infestation is one of only a few available management tools that can be implemented quickly to help control the...

  11. Young planetary nebula with OH molecules - NGC 6302

    International Nuclear Information System (INIS)

    Payne, H.E.; Phillips, J.A.; Terzian, Y.

    1988-01-01

    The results of a sensitive survey of planetary nebulae in all four ground-state OH lines are reported. The results confirm that evolved planetary nebulas are not OH sources in general. However, one interesting object was not detected: an OH 1612 MHz maser in the young planetary nebula NGC 6302. This nebula may be in a brief evolutionary stage, similar to the young and compact planetary nebula Vy 2-2, where OH has already been detected. In addition, the results of further observations of NGC 6302 are reported, including VLA observations of the 1612 MHz line and continuum emission and detections of rotationally excited OH lines at 5-cm wavelength in absorption. 28 references

  12. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  13. An online planetary exploration tool: ;Country Movers;

    Science.gov (United States)

    Gede, Mátyás; Hargitai, Henrik

    2017-08-01

    Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.

  14. Mars Technology Program: Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  15. Optical observations of southern planetary nebula candidates

    NARCIS (Netherlands)

    VandeSteene, GC; Sahu, KC; Pottasch, [No Value

    1996-01-01

    We present H alpha+[NII] images and low resolution spectra of 16 IRAS-selected, southern planetary nebula candidates previously detected in the radio continuum. The H alpha+[NII] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images

  16. A Common Probe Design for Multiple Planetary Destinations

    Science.gov (United States)

    Hwang, H. H.; Allen, G. A., Jr.; Alunni, A. I.; Amato, M. J.; Atkinson, D. H.; Bienstock, B. J.; Cruz, J. R.; Dillman, R. A.; Cianciolo, A. D.; Elliott, J. O.; hide

    2018-01-01

    Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in situ measurements. They include the Pioneer Venus multi-probes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similar-shaped aeroshells and concept of operations, namely a 45-degree sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. Each concept designed its probe to meet specific mission requirements and to optimize mass, volume, and cost. At the 2017 International Planetary Probe Workshop (IPPW), NASA Headquarters postulated that a common aeroshell design could be used successfully for multiple destinations and missions. This "common probe"� design could even be assembled with multiple copies, properly stored, and made available for future NASA missions, potentially realizing savings in cost and schedule and reducing the risk of losing technologies and skills difficult to sustain over decades. Thus the NASA Planetary Science Division funded a study to investigate whether a common probe design could meet most, if not all, mission needs to the five planetary destinations with extreme entry environments. The Common Probe study involved four NASA Centers and addressed these issues, including constraints and inefficiencies that occur in specifying a common design. Study methodology: First, a notional payload of instruments for each destination was defined based on priority measurements from the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified for a bounding range of EFPA. Next, 3-degrees-of-freedom simulations for entry trajectories were run using the entry state

  17. The activities and prospect of planetary protection research in China

    Science.gov (United States)

    Li, Ming

    2016-07-01

    Planetary protection is an important activities and responsibilities for space exploration. In Chinese manned missions, micro-organism research and protection has been developed in Shenzhou-9, Shenzhou-10 and Tiangong-2 missions. In the experiment facility of Lunar Palace-1, the micro-organism pollution and protection/control technology has been studied. In the lunar sample recovery mission and China Mars mission, the planetary protection has become an important issue. This paper introduced the research about planetary protection in China. The planetary protection activities, strategy and procedures have been suggested for future space exploration program to meet the requirement for planetary protection, such as cabin pollution isolation, pollutant detection, and so on.

  18. The brazilian indigenous planetary-observatory

    Science.gov (United States)

    Afonso, G. B.

    2003-08-01

    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  19. Withholding differential risk information on legal consumer nicotine/tobacco products: The public health ethics of health information quarantines.

    Science.gov (United States)

    Kozlowski, Lynn T; Sweanor, David

    2016-06-01

    The United States provides an example of a country with (a) legal tobacco/nicotine products (e.g., snus, other smokeless tobacco, cigarettes) differing greatly in risks to health and (b) respected health information websites that continue to omit or provide incorrect differential risk information. Concern for the principles of individual rights, health literacy, and personal autonomy (making decisions for oneself), which are key principles of public health ethics, has been countered by utilitarian arguments for the use of misleading or limited information to protect public health overall. We argue that omitting key health relevant information for current or prospective consumers represents a kind of quarantine of health-relevant information. As with disease quarantines, the coercive effects of quarantining information on differential risks need to be justified, not merely by fears of net negative public health effects, but by convincing evidence that such measures are actually warranted, that public health overall is in imminent danger and that the danger is sufficient to override principles of individual autonomy. Omitting such health-relevant information for consumers of such products effectively blindfolds them and impairs their making informed personal choices. Moral psychological issues that treat all tobacco/nicotine products similarly may also be influencing the reluctance to inform on differential risks. In countries where tobacco/nicotine products are legally sold and also differ greatly in disease risks compared to cigarettes (e.g., smokeless tobacco and vape), science-based, comprehensible, and actionable health information (consistent with health literacy principles) on differential risks should be available and only reconsidered if it is established that this information is causing losses to population health overall. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in

  1. To See the Unseen: A History of Planetary Radar Astronomy

    Science.gov (United States)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  2. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  3. DEFINITION OF THE GEAR’S GEOMETRY IN THE PLANETARY CYCLOIDAL TRANSMISSION

    Directory of Open Access Journals (Sweden)

    Sławomir BEDNARCZYK

    2014-03-01

    Full Text Available In the paper, the design and operation of the planetary cycloidal transmission have been discussed. The transmission is a synthesis of the planetary and the straight-line mechanism. The planetary mechanism is made of a planetary gear set with rollers, which is critical for the proper work of the transmission. Its basic and most important element is the planetary cycloidal gear. Influence of the parameters determining the cycloidal profile of the gear on the gear’s geometry and the forces has been presented. The straight-line mechanism carrying the motion from the driving onto the driven unit of the transmission is made of the pins and bushes located in the holes of the planetary gears. The influence of the number and geometry of the elements on the forces and occuring in the holes of the planetary gears has been presented. Therefore, the properly defined geometry of the gear and of the material of which the gear is made is crucial for the safe operation of the planetary cycloidal transmission.

  4. Evaluation of ionizing radiation applied to quarantine control of the false grape mite

    International Nuclear Information System (INIS)

    Jadue D, Yael; Vargas O, Claudio Andres.

    1994-01-01

    The objectives of this study were to evaluate effect of three dosages of ionizing radiation in combination with cold storage (0-2 0 C), and the effect of cold storage without irradiation, establishing time curves for eclosion of eggs and mortality of juvenile and adult stages, and adult oviposture. An experimental Cs-137 Brookhaven Portable Cesium Development Irradiator (BPCDI N. 3) at the Chilean Nuclear Energy Commission, located in the La Reina Commune of Santiago, Chile, was used at dosages of 0.500, 1.000, and 1,500 Gy (with a dosage rate of 28.95 Gy/min), combined with pretreatment cold (0-2 0 C) during 24 h, and 15 days of cold storage postirradiation, to simulate the duration of a grape shipment to the U.S., onto 1-4 and 1-4 and ≥ 4 day-old eggs, juveniles and adult stages. The initial stages of development were more susceptible to radiation when combined with cold storage. The mortality of both egg development stages, juveniles and adults, with dosages from 500-1.500; 1.000-1.500; and 1500 Gy, respectively, satisfied the probity 9 (99.9968%) quarantine security level requirement. The few survivors from treated juveniles and adults were unable to continue their cycle, and did not present quarantine risk. All dosages used produced 100% mortality. Apparently, cold storage has a synergic effect when used in combination with radiation. Cold storage of stages not irradiated somewhat the population dynamics. (author). 58 refs, 24 figs, 12 tabs

  5. The effects of mass and metallicity upon planetary nebula formation

    Science.gov (United States)

    Papp, K. A.; Purton, C. R.; Kwok, S.

    1983-05-01

    A parameterized function is constructed which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. This analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebulae in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy.

  6. More evidence for a planetary wave link with midlatitude E region coherent backscatter and sporadic E layers

    Directory of Open Access Journals (Sweden)

    K. Schlegel

    Full Text Available Measurements of midlatitude E region coherent backscatter obtained during four summers with SESCAT, a 50 MHz Doppler system operating in Crete, Greece, and concurrent ionosonde recordings from the same ionospheric volume obtained with a CADI for one of these summers, are used to analyse the long-term variability in echo and Es occurrence. Echo and Es layer occurrences, computed in percent of time over a 12-h nighttime interval, take the form of time sequences. Linear power spectrum analysis shows that there are dominant spectral peaks in the range of 2–9 days, the most commonly observed periods appearing in two preferential bands, of 2–3 days and 4–7 days. No connection with geomagnetic activity was found. The characteristics of these periodicities compare well with similar properties of planetary waves, which suggests the possibility that planetary waves are responsible for the observed long-term periodicities. These findings indicate also a likely close relation between planetary wave (PW activity and the well known but not well understood seasonal Es dependence. To test the PW postulation, we used simultaneous neutral wind data from the mesopause region around 95 km, measured from Collm, Germany. Direct comparison of the long-term periodicities in echo and Es layer occurrence with those in the neutral wind show some reasonable agreement. This new evidence, although not fully conclusive, is the first direct indication in favour of a planetary wave role on the unstable midlatitude E region ionosphere. Our results suggest that planetary waves observation is a viable option and a new element into the physics of midlatitude Es layers that needs to be considered and investigated.Key words: Ionosphere (ionosphere irregularities; mid-latitude ionosphere – Meteorology and atmospheric dynamics (waves and tides

  7. Lay and Expert Perceptions of Planetary Protection

    Science.gov (United States)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  8. Standards-Based Open-Source Planetary Map Server: Lunaserv

    Science.gov (United States)

    Estes, N. M.; Silva, V. H.; Bowley, K. S.; Lanjewar, K. K.; Robinson, M. S.

    2018-04-01

    Lunaserv is a planetary capable Web Map Service developed by the LROC SOC. It enables researchers to serve their own planetary data to a wide variety of GIS clients without any additional processing or download steps.

  9. Study on Cracking Mechanism of Hardened Planetary frame

    Science.gov (United States)

    Li, Xinghui

    2017-09-01

    Planetary carrier made by 45 steel appear quenching crack, which is analyzed in chemical composition, hardness test and metallographic microscopic structure. The reasons of quenching crack of planetary gear include the unreasonable structure of the planetary carrier, thinner annular wall on the base of the upper part, and in dangerous area of the 45 steel in the process of quenching. The faster cooling rate of quenching results in a centripetal stress with the thick-wall part, which is greater than the ultimate bearing capacity of the material.

  10. Planetary Cartography - Activities and Current Challenges

    Science.gov (United States)

    Nass, Andrea; Di, Kaichang; Elgner, Stephan; van Gasselt, Stephan; Hare, Trent; Hargitai, Henrik; Karachevtseva, Irina; Kereszturi, Akos; Kersten, Elke; Kokhanov, Alexander; Manaud, Nicolas; Roatsch, Thomas; Rossi, Angelo Pio; Skinner, James, Jr.; Wählisch, Marita

    2018-05-01

    Maps are one of the most important tools for communicating geospatial information between producers and receivers. Geospatial data, tools, contributions in geospatial sciences, and the communication of information and transmission of knowledge are matter of ongoing cartographic research. This applies to all topics and objects located on Earth or on any other body in our Solar System. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to introduce the community to the field of planetary cartography and its historic foundation, to highlight some of the organizations involved and to emphasize challenges that Planetary Cartography has to face today and in the near future.

  11. Quarantine after an international biological weapons attack: medical and public health requirements for containment.

    Science.gov (United States)

    Oren, Meir

    2004-11-01

    The world now faces the dreadful possibility of biological weapons attacks by terrorists. Healthcare systems would have to cope with such emergencies should all preemptive measures fail. Information gained from the Global Mercury exercise and the SARS outbreak has shown that containing an outbreak at the start is more effective than reacting to it once it has spread and that containment should be treated both nationally and internationally. On the national level this entails developing rapid and effective methods to detect and identify infected cases, and implementing isolation and control measures to lower the risk of further transmission of the disease while assuring the safety of medical teams and laboratory workers. Strategic contingency plans should incorporate well-defined procedures for hospitalization and isolation of patients, providing regional backup of medical personnel and equipment and maintaining close cooperation between the various bodies in the healthcare system. Quarantine is an effective containment measure, especially if voluntarily imposed. Modern communication systems can help by sending professional teams timely instructions and providing the public with information to reduce panic and stress during quarantine procedures. Informing the public poses a dilemma: finding a balance between giving advance warning of an imminent epidemic outbreak and ascertaining the likelihood of its occurrence. Containment of international bioterrorist attacks depends entirely on close international cooperation to implement national and international strategic contingency plans with free exchange of information and recognition of procedures.

  12. Planetary Data Systems (PDS) Imaging Node Atlas II

    Science.gov (United States)

    Stanboli, Alice; McAuley, James M.

    2013-01-01

    The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.

  13. Interoperability in planetary research for geospatial data analysis

    Science.gov (United States)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  14. Visualization of Kepler's Laws of Planetary Motion

    Science.gov (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-01-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  15. Tools and Technologies Needed for Conducting Planetary Field Geology While On EVA: Insights from the 2010 Desert RATS Geologist Crewmembers

    Science.gov (United States)

    Young, Kelsey; Hurtado, Jose M., Jr.; Bleacher, Jacob E.; Garry, W. Brent; Bleisath, Scott; Buffington, Jesse; Rice, James W., Jr.

    2011-01-01

    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic fieldwork, the Desert RATS (Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crewmembers who participated in the 2010 field test. We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies related to duplication of samples and observations; logistical constraints on the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to "flexibly execute" their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

  16. Abundance determinations in HII regions and planetary nebulae

    OpenAIRE

    Stasinska, Grazyna

    2002-01-01

    The methods of abundance determinations in HII regions and planetary nebulae are described, with emphasis on the underlying assumptions and inherent problems. Recent results on abundances in Galactic HII regions and in Galactic and extragalactic Planetary Nebulae are reviewed.

  17. The signatures of the parental cluster on field planetary systems

    Science.gov (United States)

    Cai, Maxwell Xu; Portegies Zwart, Simon; van Elteren, Arjen

    2018-03-01

    Due to the high stellar densities in young clusters, planetary systems formed in these environments are likely to have experienced perturbations from encounters with other stars. We carry out direct N-body simulations of multiplanet systems in star clusters to study the combined effects of stellar encounters and internal planetary dynamics. These planetary systems eventually become part of the Galactic field population as the parental cluster dissolves, which is where most presently known exoplanets are observed. We show that perturbations induced by stellar encounters lead to distinct signatures in the field planetary systems, most prominently, the excited orbital inclinations and eccentricities. Planetary systems that form within the cluster's half-mass radius are more prone to such perturbations. The orbital elements are most strongly excited in the outermost orbit, but the effect propagates to the entire planetary system through secular evolution. Planet ejections may occur long after a stellar encounter. The surviving planets in these reduced systems tend to have, on average, higher inclinations and larger eccentricities compared to systems that were perturbed less strongly. As soon as the parental star cluster dissolves, external perturbations stop affecting the escaped planetary systems, and further evolution proceeds on a relaxation time-scale. The outer regions of these ejected planetary systems tend to relax so slowly that their state carries the memory of their last strong encounter in the star cluster. Regardless of the stellar density, we observe a robust anticorrelation between multiplicity and mean inclination/eccentricity. We speculate that the `Kepler dichotomy' observed in field planetary systems is a natural consequence of their early evolution in the parental cluster.

  18. Planetary Society

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  19. The New Planetary Science Archive (PSA): Exploration and Discovery of Scientific Datasets from ESA's Planetary Missions

    Science.gov (United States)

    Heather, David; Besse, Sebastien; Vallat, Claire; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Coia, Daniela; Costa, Marc; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; MacFarlane, Alan; Martinez, Santa; Rios, Carlos; Vallejo, Fran; Saiz, Jaime

    2017-04-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. As of the end of 2016, the PSA is hosting data from all of ESA's planetary missions. This includes ESA's first planetary mission Giotto that encountered comet 1P/Halley in 1986 with a flyby at 800km. Science data from Venus Express, Mars Express, Huygens and the SMART-1 mission are also all available at the PSA. The PSA also contains all science data from Rosetta, which explored comet 67P/Churyumov-Gerasimenko and asteroids Steins and Lutetia. The year 2016 has seen the arrival of the ExoMars 2016 data in the archive. In the upcoming years, at least three new projects are foreseen to be fully archived at the PSA. The BepiColombo mission is scheduled for launch in 2018. Following that, the ExoMars Rover Surface Platform (RSP) in 2020, and then the JUpiter ICy moon Explorer (JUICE). All of these will archive their data in the PSA. In addition, a few ground-based support programmes are also available, especially for the Venus Express and Rosetta missions. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more customized views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will also be up

  20. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    Science.gov (United States)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  1. Constraining the Origin of Phobos with the Elpasolite Planetary Ice and Composition Spectrometer (EPICS) - Simulated Performance

    Science.gov (United States)

    Nowicki, S. F.; Mesick, K.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Stonehill, L. C.; Hardgrove, C.; Dibb, S.; Gabriel, T. S. J.; West, S.

    2017-12-01

    Elpasolites are a promising new family of inorganic scintillators that can detect both gamma rays and neutrons within a single detector volume, reducing the instrument size, weight, and power (SWaP), all of which are critical for planetary science missions. The ability to distinguish between neutron and gamma events is done through pulse shape discrimination (PSD). The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) utilizes elpasolites in a next-generation, highly capable, low-SWaP gamma-ray and neutron spectrometer. We present simulated capabilities of EPICS sensitivities to neutron and gamma-rays, and demonstrate how EPICS can constrain the origin of Phobos between the following three main hypotheses: 1) accretion after a giant impact with Mars, 2) co-accretion with Mars, and 3) capture of an external body. The MCNP6 code was used to calculate the neutron and gamma-ray flux that escape the surface of Phobos, and GEANT4 to model the response of the EPICS instrument on orbit around Phobos.

  2. Interoperability in the Planetary Science Archive (PSA)

    Science.gov (United States)

    Rios Diaz, C.

    2017-09-01

    The protocols and standards currently being supported by the recently released new version of the Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet- Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. We explore these protocols in more detail providing scientifically useful examples of their usage within the PSA.

  3. The diversity of planetary system architectures: contrasting theory with observations

    Science.gov (United States)

    Miguel, Y.; Guilera, O. M.; Brunini, A.

    2011-10-01

    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the

  4. The final fate of planetary systems

    Science.gov (United States)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  5. A new planetary nebula in the outer reaches of the Galaxy

    DEFF Research Database (Denmark)

    Viironen, K.; Mampaso, A.; L. M. Corradi, R.

    2011-01-01

    of a new planetary nebula towards the Anticentre direction, IPHASX J052531.19+281945.1 (PNG 178.1-04.0), is presented. The planetary nebula was discovered from the IPHAS survey. Long-slit follow-up spectroscopy was carried out to confirm its planetary nebula nature and to calculate its physical...... and chemical characteristics. The newly discovered planetary nebula turned out to be located at a very large galactocentric distance (D_GC=20.8+-3.8 kpc), larger than any previously known planetary nebula with measured abundances. Its relatively high oxygen abundance (12+log(O/H) = 8.36+-0.03) supports...

  6. Reviews in Modern Astronomy: Vol. 17: The Sun and Planetary Systems - Paradigms for the Universe

    Science.gov (United States)

    Schielicke, Reinhard E.

    2004-09-01

    Volume 17 continues the Reviews of Modern Astronomy with fourteen invited reviews and Highlight Contributions which were presented during the International Scientific Conference of the Society on "The Sun and Planetary Systems", held at Freiburg, Germany, September 15 to 20, 2003. The Karl Schwarzschild medal 2003 was awarded to Professor Erika Boehm-Vitense, Seattle, USA. Her lecture with the title "What Hyades F Stars tell us about Heating Mechanisms in Stellar Transition Layers and Coronae" opened the meeting. The talk presented by the Ludwig Biermann-Prize winner 2003, Dr Luis R. Bellot Rubio, Freiburg i. Br., Germany, dealt with the topic "The Structure of Sunspots as Inferred from Spectropolarimetric Measurements". Other contributions to the meeting published in this volume discuss, among other subjects, solar physics, formation of planets and interferometric imaging in astronomy.

  7. Influence of stellar duplicity on the form of planetary nebulae

    International Nuclear Information System (INIS)

    Kolesnik, I.G.; Pilyugin, L.S.

    1986-01-01

    Formation of planetary nebulae's spatial structures is considered. Simple expression for angular distribution of density in planetary nebulae is obtained. Bipolar structures are formed effectively in binary systems in which the velocity of the expanding shell around the main star is smaller than the orbital velocity of the satellite. Masses of satellites lie in the range 0.1-0.4Msub(sun). Theoretical isophotal contour map for the model of the planetary nebula NGC 3587 is consistent with observational data. It is shown that central stars of planetary nebulae are usually binary systems

  8. Post-main-sequence planetary system evolution

    Science.gov (United States)

    Veras, Dimitri

    2016-01-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  9. Gazetteer of Planetary Nomenclature

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be...

  10. Vibration Based Diagnosis for Planetary Gearboxes Using an Analytical Model

    Directory of Open Access Journals (Sweden)

    Liu Hong

    2016-01-01

    Full Text Available The application of conventional vibration based diagnostic techniques to planetary gearboxes is a challenge because of the complexity of frequency components in the measured spectrum, which is the result of relative motions between the rotary planets and the fixed accelerometer. In practice, since the fault signatures are usually contaminated by noises and vibrations from other mechanical components of gearboxes, the diagnostic efficacy may further deteriorate. Thus, it is essential to develop a novel vibration based scheme to diagnose gear failures for planetary gearboxes. Following a brief literature review, the paper begins with the introduction of an analytical model of planetary gear-sets developed by the authors in previous works, which can predict the distinct behaviors of fault introduced sidebands. This analytical model is easy to implement because the only prerequisite information is the basic geometry of the planetary gear-set. Afterwards, an automated diagnostic scheme is proposed to cope with the challenges associated with the characteristic configuration of planetary gearboxes. The proposed vibration based scheme integrates the analytical model, a denoising algorithm, and frequency domain indicators into one synergistic system for the detection and identification of damaged gear teeth in planetary gearboxes. Its performance is validated with the dynamic simulations and the experimental data from a planetary gearbox test rig.

  11. Ideas for Testing of Planetary Gear Sets of Automotive Transmissions

    Directory of Open Access Journals (Sweden)

    Achtenová Gabriela

    2017-06-01

    Full Text Available The article describes the concept of modular stand, where is possible to provide tests of gear pairs with fixed axes from mechanical automotive gearboxes, as well as tests of separate planetary sets from automatic gearboxes. Special attention in the article will be paid to the variant dedicated for testing of planetary gear sets. This variant is particularly interesting because: 1 it is rarely described in the literature, and 2 this topology allows big simplification with respect to testing of standard gearwheels. In the planetary closed-loop stand it is possible to directly link two identical planetary sets. Without any bracing flange or other connecting clutches, shafts or gear sets, just two planetary sets face-to-face will be assembled and connected to the electric motor.

  12. Influence of Planetary Protection Guidelines on Waste Management Operations

    Science.gov (United States)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  13. Efficacy of gamma irradiation as a quarantine treatment against Queensland fruit fly

    International Nuclear Information System (INIS)

    Rigney, C.J.; Wills, P.A.

    1985-01-01

    Treatment of Queensland fruit fly, Dacus tryoni, eggs, and larvae with a dose of 75 Gy of radiation prevents the emergence of adult flies, although many insects develop to the pupal stage. This has been demonstrated with large numbers of insects present in oranges and avocados, two entirely different fruit types. The aim of such a commodity treatment should be to prevent the establishment of an insect pest in a new environment. This low-dose treatment should, therefore find acceptance with quarantine authorities, since the nonemergence of adult files effectively breaks the life cycle of the insect. This paper provides details of the experimental approach and the results of these efficacy studies

  14. Gamma irradiation as a quarantine treatment of apples infested with diapausing eggs of the European red spider mite, Panonychus ulmi (Koch) (Acarina: Tetranychidae)

    International Nuclear Information System (INIS)

    Ignatowicz, S.

    1997-01-01

    Viable eggs of the European red mite, Panonychus ulmi (Koch), on apples have been the concern of several importing countries and exports require preshipment, phytosanitary treatment to reduce or eliminate live eggs. Because fumigation is often detrimental to the commodity appearance and shelf-life, resulting in a loss of commercial value, there is a need for alternatives for chemical pest control as a quarantine treatment, and irradiation could be a new strategy method. The data obtained indicate that a dose of gamma radiation equal to or higher than 0.15 kGy seems to be adequate to prevent post-diapause hatching of wintering eggs of the European red mite. Thus, this dose is suggested for quarantine treatment of apples infested with wintering eggs of the European red mite. (author)

  15. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    Science.gov (United States)

    Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.

    2017-12-01

    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.

  16. Reconfigurable Autonomy for Future Planetary Rovers

    Science.gov (United States)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  17. SPEX: the Spectropolarimeter for Planetary Exploration

    Science.gov (United States)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.

    2017-11-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  18. New Indivisible Planetary Science Paradigm: Consequence of Questioning Popular Paradigms

    Science.gov (United States)

    Marvin Herndon, J.

    2014-05-01

    removed, pressure began to build in the compressed rocky kernel of Earth and eventually the rigid crust began to crack. The major energy source for planetary decompression and for heat emplacement at the base of the crust is the stored energy of protoplanetary compression. In response to decompression-driven volume increases, cracks form to increase surface area and fold-mountain ranges form to accommodate changes in curvature. One of the most profound mysteries of modern planetary science is this: As the terrestrial planets are more-or-less of common chondritic composition, how does one account for the marked differences in their surface dynamics? Differences among the inner planets are principally due to the degree of compression experienced. Planetocentric georeactor nuclear fission, responsible for magnetic field generation and concomitant heat production, is applicable to compressed and non-compressed planets and large moons. The internal composition of Mercury is calculated based upon an analogy with the deep-Earth mass ratio relationships. The origin and implication of Mercurian hydrogen geysers is described. Besides Earth, only Venus appears to have sustained protoplanetary compression; the degree of which might eventually be estimated from understanding Venetian surface geology. A basis is provided for understanding that Mars essentially lacks a 'geothermal gradient' which implies potentially greater subsurface water reservoir capacity than previously expected. Resources at NuclearPlanet.com .

  19. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1985-01-01

    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented

  20. Design Tools for Cost-Effective Implementation of Planetary Protection Requirements

    Science.gov (United States)

    Hamlin, Louise; Belz, Andrea; Evans, Michael; Kastner, Jason; Satter, Celeste; Spry, Andy

    2006-01-01

    Since the Viking missions to Mars in the 1970s, accounting for the costs associated with planetary protection implementation has not been done systematically during early project formulation phases, leading to unanticipated costs during subsequent implementation phases of flight projects. The simultaneous development of more stringent planetary protection requirements, resulting from new knowledge about the limits of life on Earth, together with current plans to conduct life-detection experiments on a number of different solar system target bodies motivates a systematic approach to integrating planetary protection requirements and mission design. A current development effort at NASA's Jet Propulsion Laboratory is aimed at integrating planetary protection requirements more fully into the early phases of mission architecture formulation and at developing tools to more rigorously predict associated cost and schedule impacts of architecture options chosen to meet planetary protection requirements.

  1. Potential use of ionizing radiation as quarantine treatment for fresh fruits, vegetables and flowers in Ecuador

    International Nuclear Information System (INIS)

    Munoz, Ricardo

    1990-01-01

    It is presented a brief description of the investigations Technology. Considering the potentiality of the country, to export non traditional and exotic fresh fruits, fresh vegetables, and ornamental fresh cut flowers, studies ares initiated to use ionizing radiation as quarantine treatments. This paper reports the initial data obtained with two species of fruit fly of high incidence in the fruit producer zones of Ecuador, whose stable and permanent microclimates allow to produce a sort of fruits along all year

  2. Planetary Nomenclature: An Overview and Update for 2017

    Science.gov (United States)

    Gaither, Tenielle; Hayward, Rose; IAU Working GroupPlanetary System Nomenclature

    2017-10-01

    The task of naming planetary surface features, rings, and natural satellites is managed by the International Astronomical Union’s (IAU) Working Group for Planetary System Nomenclature (WGPSN). There are currently 15,361 IAU-approved surface feature names on 41 planetary bodies, including moons and asteroids. The members of the WGPSN and its task groups have worked since the early 1970s to provide a clear, unambiguous system of planetary nomenclature that represents cultures and countries from all regions of Earth. WGPSN members include Rita Schulz (Chair) and 9 other members representing countries around the globe. The participation of knowledgeable scientists and experts in this process is vital to its success of the IAU WGPSN . Planetary nomenclature is a tool used to uniquely identify features on the surfaces of planets or satellites so they can be located, described, and discussed in publications, including peer-review journals, maps and conference presentations. Approved names are listed in the Transactions of the IAU and on the Gazetteer of Planetary Nomenclature website. Any names currently in use that are not listed the Gazetteer are not official. Planetary names must adhere to rules and conventions established by the IAU WGPSN (see http://planetarynames.wr.usgs.gov/Page/Rules for the complete list). The gazetteer includes an online Name Request Form (http://planetarynames.wr.usgs.gov/FeatureNameRequest) that can be used by members of the professional science community. Name requests are first reviewed by one of six task groups (Mercury, Venus, Moon, Mars, Outer Solar System, and Small Bodies). After a task group has reviewed a proposal, it is submitted to the WGPSN. Allow four to six weeks for the review and approval process. Upon WGPSN approval, names are considered formally approved and it is then appropriate to use them in publications. Approved names are immediately entered into the database and shown on the website. Questions about the nomenclature

  3. Investigation of the effects of irradiation for quarantine treatment purposes on food quality and hygiene in citrus fruits

    International Nuclear Information System (INIS)

    2010-01-01

    Mediterranean fruit fly (Ceratitis capitata) is a major problem in citrus production sector in Turkey. In order to overcome this problem, required irradiation doses were investigated for the quarantine treatment for 'Yafa' orange (Citrus sinensis (L) Osb.), 'Star ruby' grapefruit (Citrus paradisi Macf.); 'Satsuma' tangerine (Citrus reticulata Blanco) in this project. Chemical, physical and microbiological properties of unirradiated and irradiated (0.5, 1.0 and 1.5 kGy) fruits were determined in terms of weight loss, water soluble dry matter, pH, titratable acidity, alcohol insoluble pectin, apparent color of fruits, reducing sugar, total carotenoid, flavonoid, vitamin C contents, sensory properties of fruits, total aerob mesophilic bacteria and total yeast and mould counts of fruits. Results showed that, 0.1 kGy gamma irradiation dose is sufficient for effective quarantine treatment against the Mediterranean fruit fly in citrus fruits, low dose irradiation (≤1.0 kGy) applications had no detrimental effects on citrus fruits' quality except tangerines, microbial load of fruits were seriously affected by irradiation at 1.0 kGy. In addition, under this work we noticed that, irradiated citrus fruits could be detected by using DNA comet analysis method.

  4. Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability

    Science.gov (United States)

    Lazio, T. Joseph

    2018-06-01

    Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. Relation between radius and expansion velocity in planetary nebulae

    International Nuclear Information System (INIS)

    Chu, Y.H.; Kwitter, K.B.; Kaler, J.B.

    1984-01-01

    The expansion velocity-radius (R-V) relation for planetary nebulae is examined using the existing measurements of expansion velocities and recent calculations of radii. It is found that some of the previously alleged R-V relations for PN are not convincingly established. The scatter in the R-V plots may be due largely to stratification of ions in individual nebulae and to heterogeneity in the planetary nebula population. In addition, from new echelle/CCD observations of planetary nebulae, it is found that spatial information is essential in deriving the internal kinematic properties. Future investigations of R-V relations should be pursued separately for groups of planetaries with similar physical properties, and they should employ observations of appropriate low excitation lines in order to measure the expansion velocity at the surface of the nebula. 26 references

  6. Time-dependent simulations of disk-embedded planetary atmospheres

    Science.gov (United States)

    Stökl, A.; Dorfi, E. A.

    2014-03-01

    At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.

  7. Planetary Sciences Literature - Access and Discovery

    Science.gov (United States)

    Henneken, Edwin A.; ADS Team

    2017-10-01

    The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (https://ui.adsabs.harvard.edu), it may very well answer questions you didn't know you had! While the classic ADS (http://ads.harvard.edu) focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA

  8. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina

    1998-01-01

    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  9. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    Science.gov (United States)

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  10. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    DEFF Research Database (Denmark)

    Richardson, Katherine; Rockström, Johan; Steffen, Will

    2009-01-01

    boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance...... and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure...

  11. UNSTABLE PLANETARY SYSTEMS EMERGING OUT OF GAS DISKS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Thommes, Edward W.; Chatterjee, Sourav; Rasio, Frederic A.

    2010-01-01

    The discovery of over 400 extrasolar planets allows us to statistically test our understanding of the formation and dynamics of planetary systems via numerical simulations. Traditional N-body simulations of multiple-planet systems without gas disks have successfully reproduced the eccentricity (e) distribution of the observed systems by assuming that the planetary systems are relatively closely packed when the gas disk dissipates, so that they become dynamically unstable within the stellar lifetime. However, such studies cannot explain the small semimajor axes a of extrasolar planetary systems, if planets are formed, as the standard planet formation theory suggests, beyond the ice line. In this paper, we numerically study the evolution of three-planet systems in dissipating gas disks, and constrain the initial conditions that reproduce the observed a and e distributions simultaneously. We adopt initial conditions that are motivated by the standard planet formation theory, and self-consistently simulate the disk evolution and planet migration, by using a hybrid N-body and one-dimensional gas disk code. We also take into account eccentricity damping, and investigate the effect of saturation of corotation resonances on the evolution of planetary systems. We find that the a distribution is largely determined in a gas disk, while the e distribution is determined after the disk dissipation. We also find that there may be an optimum disk mass which leads to the observed a-e distribution. Our simulations generate a larger fraction of planetary systems trapped in mean-motion resonances (MMRs) than the observations, indicating that the disk's perturbation to the planetary orbits may be important to explain the observed rate of MMRs. We also find a much lower occurrence of planets on retrograde orbits than the current observations of close-in planets suggest.

  12. Miniaturisation of imaging spectrometer for planetary exploration

    Science.gov (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel

    2017-11-01

    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  13. The chemical composition of three planetary nebulae in the Magellanic clouds

    International Nuclear Information System (INIS)

    Dufour, R.J.; Killen, R.M.

    1977-01-01

    Emission-line intensities in the planetary nebulae Henize 67 in the Small Magellanic Cloud (SMC) and Henize 97 and 153 in the LMC along with the small SMC H II regions Henize 9, 61, and 81 were measured from photographic image-tube spectra taken with the 1.5 m telescope at Cerro Tololo. The relative abundances of H, He, N, O, Ne, S, and Ar in the nebulae were estimated and compared with the compositions of galactic planetary nebulae and previously studied H II regions in the Clouds. The results show that (1) the N/O ratios in the planetary nebulae are substantially higher than found in the H II regions of each Cloud; (2) He/H approx. = 0.18 in the SMC planetary nebula, but seems normal (approx.0.10) in the two LMC planetaries; and (3) the compositions of the three small SMC H II regions are similar to that of larger SMC H II regions studied previously. It is concluded that the N/H values in the shells of planetary nebulae may not depend on the metal content of the progenitor star as much as recent theoretical models suggest and that the N content of the gas in the Magellanic Clouds arises primarily from sources other than planetary nebulae

  14. LBT observations of the HR8799 planetary system

    Science.gov (United States)

    Mesa, D.; Arcidiacono, C.; Claudi, R. U.; Desidera, S.; Esposito, S.; Gratton, R.; Masciadri, E.

    2013-09-01

    We present here observations of the HR8799 planetary system performed in H and Ks band exploiting the AO system at the Large Binocular Telescope and the PISCES camera. Thanks to the excellent performence of the instrument we were able to detect for the first time the inner known planet of the system (HR8799) in the H band. Precise photometric and astrometric measures have been taken for all the four planets. Further, exploiting ours and previous astrometric results, we were able to put some limits on the planetary orbits of the four planets. The analysis of the dinamical stability of the system seems to show lower planetary masses than the ones adopted until now.

  15. Advances in Planetary Protection at the Deep Space Gateway

    Science.gov (United States)

    Spry, J. A.; Siegel, B.; Race, M.; Rummel, J. D.; Pugel, D. E.; Groen, F. J.; Kminek, G.; Conley, C. A.; Carosso, N. J.

    2018-02-01

    Planetary protection knowledge gaps that can be addressed by science performed at the Deep Space Gateway in the areas of human health and performance, space biology, and planetary sciences that enable future exploration in deep space, at Mars, and other targets.

  16. The Kinematics of the Permitted C ii λ 6578 Line in a Large Sample of Planetary Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Richer, Michael G.; Suárez, Genaro; López, José Alberto; García Díaz, María Teresa, E-mail: richer@astrosen.unam.mx, E-mail: gsuarez@astro.unam.mx, E-mail: jal@astrosen.unam.mx, E-mail: tere@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California (Mexico)

    2017-03-01

    We present spectroscopic observations of the C ii λ 6578 permitted line for 83 lines of sight in 76 planetary nebulae at high spectral resolution, most of them obtained with the Manchester Echelle Spectrograph on the 2.1 m telescope at the Observatorio Astronómico Nacional on the Sierra San Pedro Mártir. We study the kinematics of the C ii λ 6578 permitted line with respect to other permitted and collisionally excited lines. Statistically, we find that the kinematics of the C ii λ 6578 line are not those expected if this line arises from the recombination of C{sup 2+} ions or the fluorescence of C{sup +} ions in ionization equilibrium in a chemically homogeneous nebular plasma, but instead its kinematics are those appropriate for a volume more internal than expected. The planetary nebulae in this sample have well-defined morphology and are restricted to a limited range in H α line widths (no large values) compared to their counterparts in the Milky Way bulge; both these features could be interpreted as the result of young nebular shells, an inference that is also supported by nebular modeling. Concerning the long-standing discrepancy between chemical abundances inferred from permitted and collisionally excited emission lines in photoionized nebulae, our results imply that multiple plasma components occur commonly in planetary nebulae.

  17. The Africa Initiative for Planetary and Space Sciences

    Science.gov (United States)

    Baratoux, D.; Chennaoui-Aoudjehane, H.; Gibson, R.; Lamali, A.; Reimold, W. U.; Selorm Sepah, M.; Chabou, M. C.; Habarulema, J. B.; Jessell, M.; Mogessie, A.; Benkhaldoun, Z.; Nkhonjera, E.; Mukosi, N. C.; Kaire, M.; Rochette, P.; Sickafoose, A.; Martínez-Frías, J.; Hofmann, A.; Folco, L.; Rossi, A. P.; Faye, G.; Kolenberg, K.; Tekle, K.; Belhai, D.; Elyajouri, M.; Koeberl, C.; Abdeem, M.

    2017-12-01

    Research groups in Planetary and Space Sciences (PSS) are now emerging in Africa, but remain few, scattered and underfunded. It is our conviction that the exclusion of 20% of the world's population from taking part in the fascinating discoveries about our solar system impoverishes global science. The benefits of a coordinated PSS program for Africa's youth have motivated a call for international support and investment [1] into an Africa Initiative for Planetary and Space Sciences. At the time of writing, the call has been endorsed by 230 scientists and 19 institutions or international organizations (follow the map of endorsements on https://africapss.org). More than 70 African Planetary scientists have already joined the initiative and about 150 researchers in non-African countries are ready to participate in research and in capacitity building of PSS programs in Africa. We will briefly review in this presentation the status of PSS in Africa [2] and illustrate some of the major achievements of African Planetary and Space scientists, including the search for meteorites or impact craters, the observations of exoplanets, and space weather investigations. We will then discuss a road map for its expansion, with an emphasis on the role that planetary and space scientists can play to support scientific and economic development in Africa. The initiative is conceived as a network of projects with Principal Investigators based in Africa. A Steering Committee is being constituted to coordinate these efforts and contribute to fund-raising and identification of potential private and public sponsors. The scientific strategy of each group within the network will be developed in cooperation with international experts, taking into account the local expertise, available equipment and facilities, and the priority needs to achieve well-identified scientific goals. Several founding events will be organized in 2018 in several African research centers and higher-education institutions to

  18. HESS Opinions: A planetary boundary on freshwater use is misleading

    Science.gov (United States)

    Heistermann, Maik

    2017-07-01

    In 2009, a group of prominent Earth scientists introduced the planetary boundaries (PB) framework: they suggested nine global control variables, and defined corresponding thresholds which, if crossed, could generate unacceptable environmental change. The concept builds on systems theory, and views Earth as a complex adaptive system in which anthropogenic disturbances may trigger non-linear, abrupt, and irreversible changes at the global scale, and push the Earth system outside the stable environmental state of the Holocene. While the idea has been remarkably successful in both science and policy circles, it has also raised fundamental concerns, as the majority of suggested processes and their corresponding planetary boundaries do not operate at the global scale, and thus apparently lack the potential to trigger abrupt planetary changes. This paper picks up the debate with specific regard to the planetary boundary on global freshwater use. While the bio-physical impacts of excessive water consumption are typically confined to the river basin scale, the PB proponents argue that water-induced environmental disasters could build up to planetary-scale feedbacks and system failures. So far, however, no evidence has been presented to corroborate that hypothesis. Furthermore, no coherent approach has been presented to what extent a planetary threshold value could reflect the risk of regional environmental disaster. To be sure, the PB framework was revised in 2015, extending the planetary freshwater boundary with a set of basin-level boundaries inferred from environmental water flow assumptions. Yet, no new evidence was presented, either with respect to the ability of those basin-level boundaries to reflect the risk of regional regime shifts or with respect to a potential mechanism linking river basins to the planetary scale. So while the idea of a planetary boundary on freshwater use appears intriguing, the line of arguments presented so far remains speculative and

  19. Present status of research on efficacy of quarantine treatment for horticultural crops in the USA with special reference to the use of irradiation as a potential quarantine treatment

    International Nuclear Information System (INIS)

    Burditt, A.K. Jr.

    1985-01-01

    Research on efficacy of quarantine treatments for horticultural crops has been conducted in the United States of America by scientists of the U.S. Department of Agriculture, Agricultural Research Service (ARS), and by scientists in various state research organizations for many years. ARS scientists have been investigating effectiveness of fumigation using volatile chemicals such as ethylene dibromide, methyl bromide, phosphine and others; physical methods including cold, heat, modified atmosphere and gamma irradiation; and biological methods such as host susceptibility and host inspection as treatments for commodities infested by fruit flies and other pests. ARS and state scientists are studying possible adverse effects of such treatments on the commodities. This research also involves cooperation with the U.S. Department of Energy and its contractors, Sandia Laboratories, CH 2 M Hill, and Battelle Pacific Northwest Laboratories. (author)

  20. Planetary protection issues related to human missions to Mars

    Science.gov (United States)

    Debus, A.; Arnould, J.

    2008-09-01

    In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of

  1. 75 FR 19661 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Science.gov (United States)

    2010-04-15

    ... includes the following topics: --Review European Space Agency-NASA Coordination on Planetary Protection... Committee; Planetary Protection Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... (NASA) announces a meeting of the Planetary Protection Subcommittee of the NASA Advisory Council (NAC...

  2. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  3. Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    Grande, Manuel; Andre, Nicolas

    2016-07-01

    Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools

  4. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes

    Science.gov (United States)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.

    2010-08-01

    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  5. Automation and Robotics for space operation and planetary exploration

    Science.gov (United States)

    Montemerlo, Melvin D.

    1990-01-01

    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  6. Vibration condition monitoring of planetary gearbox under varying external load

    Energy Technology Data Exchange (ETDEWEB)

    Bartelmus, W.; Zimroz, R. [Wroclaw University of Technology, Wroclaw (Poland)

    2009-01-15

    The paper shows that for condition monitoring of planetary gearboxes it is important to identify the external varying load condition. In the paper, systematic consideration has been taken of the influence of many factors on the vibration signals generated by a system in which a planetary gearbox is included. These considerations give the basis for vibration signal interpretation, development of the means of condition monitoring, and for the scenario of the degradation of the planetary gearbox. Real measured vibration signals obtained in the industrial environment are processed. The signals are recorded during normal operation of the diagnosed objects, namely planetary gearboxes, which are a part of the driving system used in a bucket wheel excavator, used in lignite mines. It has been found that the most important factor of the proper planetary gearbox condition is connected with perturbation of arm rotation, where an arm rotation gives rise to a specific vibration signal whose properties are depicted by a short-time Fourier transform (STFT) and Wigner-Ville distribution presented as a time-frequency map. The paper gives evidence that there are two dominant low-frequency causes that influence vibration signal modulation, i.e. the varying load, which comes from the nature of the bucket wheel digging process, and the arm/carrier rotation. These two causes determine the condition of the planetary gearboxes considered.

  7. The effect of carbon monoxide on planetary haze formation

    Energy Technology Data Exchange (ETDEWEB)

    Hörst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO (United States)

    2014-01-20

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N{sub 2}/CH{sub 4} to a variety of energy sources. However, many N{sub 2}/CH{sub 4} atmospheres in both our solar system and extrasolar planetary systems also contain carbon monoxide (CO). We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on the formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  8. Tips and Tools for Teaching Planetary Science

    Science.gov (United States)

    Schneider, N. M.

    2011-10-01

    The poster will describe handson exercises with demonstrations, clicker questions and discussion to demonstrate how to help students understand planets on a deeper conceptual level. We'll also discuss ways to take the latest discoveries beyond "wow" and turn them into teachable moments. The goal is to give modern strategies for teaching planetary science, emphasizing physical concepts and comparative principles. All will be given digital copies of video clips, demonstration descriptions, clicker questions, web links and powerpoint slidesets on recent planetary science discoveries.

  9. Calcium signals in planetary embryos

    Science.gov (United States)

    Morbidelli, Alessandro

    2018-03-01

    The calcium-isotope composition of planetary bodies in the inner Solar System correlates with the masses of such objects. This finding could have implications for our understanding of how the Solar System formed.

  10. Equation of state experiments and theory relevant to planetary modelling

    International Nuclear Information System (INIS)

    Ross, M.; Graboske, H.C. Jr.; Nellis, W.J.

    1981-01-01

    In recent years there have been a number of static and shockwave experiments on the properties of planetary materials. The highest pressure measurements, and the ones most relevant to planetary modelling, have been obtained by shock compression. Of particular interest to the Jovian group are results for H 2 , H 2 O, CH 4 and NH 3 . Although the properties of metallic hydrogen have not been measured, they have been the subject of extensive calculations. In addition recent shock wave experiments on iron report to have detected melting under Earth core conditions. From this data theoretical models have been developed for computing the equations of state of materials used in planetary studies. A compelling feature that has followed from the use of improved material properties is a simplification in the planetary models. (author)

  11. Russian Planetary Exploration History, Development, Legacy, Prospects

    CERN Document Server

    Harvey, Brian

    2007-01-01

    Russia’s accomplishments in planetary space exploration were not achieved easily. Formerly, the USSR experienced frustration in trying to tame unreliable Molniya and Proton upper stages and in tracking spacecraft over long distances. This book will assess the scientific haul of data from the Venus and Mars missions and look at the engineering approaches. The USSR developed several generations of planetary probes: from MV and Zond to the Phobos type. The engineering techniques used and the science packages are examined, as well as the nature of the difficulties encountered which ruined several missions. The programme’s scientific and engineering legacy is also addressed, as well as its role within the Soviet space programme as a whole. Brian Harvey concludes by looking forward to future Russian planetary exploration (e.g Phobos Grunt sample return mission). Several plans have been considered and may, with a restoration of funding, come to fruition. Soviet studies of deep space and Mars missions (e.g. TMK, ...

  12. Techniques for Engaging the Public in Planetary Science

    Science.gov (United States)

    Shupla, Christine; Shaner, Andrew; Smith Hackler, Amanda

    2017-10-01

    Public audiences are often curious about planetary science. Scientists and education and public engagement specialists can leverage this interest to build scientific literacy. This poster will highlight research-based techniques the authors have tested with a variety of audiences, and are disseminating to planetary scientists through trainings.Techniques include:Make it personal. Audiences are interested in personal stories, which can capture the excitement, joy, and challenges that planetary scientists experience in their research. Audiences can learn more about the nature of science by meeting planetary scientists and hearing personal stories about their motivations, interests, and how they conduct research.Share relevant connections. Most audiences have very limited understanding of the solar system and the features and compositions of planetary bodies, but they enjoy learning about those objects they can see at night and factors that connect to their culture or local community.Demonstrate concepts. Some concepts can be clarified with analogies, but others can be demonstrated or modeled with materials. Demonstrations that are messy, loud, or that yield surprising results are particularly good at capturing an audience’s attention, but if they don’t directly relate to the key concept, they can serve as a distraction.Give them a role. Audience participation is an important engagement technique. In a presentation, scientists can invite the audience to respond to questions, pause to share their thoughts with a neighbor, or vote on an answer. Audiences can respond physically to prompts, raising hands, pointing, or clapping, or even moving to different locations in the room.Enable the audience to conduct an activity. People learn best by doing and by teaching others; simple hands-on activities in which the audience is discovering something themselves can be extremely effective at engaging audiences.This poster will cite examples of each technique, resources that

  13. 3He Abundances in Planetary Nebulae

    Science.gov (United States)

    Guzman-Ramirez, Lizette

    2017-10-01

    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  14. Natural Frequencies and Vibrating Modes for a Magnetic Planetary Gear Drive

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2012-01-01

    Full Text Available In this paper, a dynamic model for a magnetic planetary gear drive is proposed. Based on the model, the dynamic equations for the magnetic planetary gear drive are given. From the magnetic meshing forces and torques between the elements for the drive system, the tangent and radial magnetic meshing stiffness is obtained. Using these equations, the natural frequencies and the modes of the magnetic planetary gear drive are investigated. The sensitivity of the natural frequencies to the system parameters is discussed. Results show that the pole pair number and the air gap have obvious effects on the natural frequencies. For the planetary gear number larger than two, the vibrations of the drive system include the torsion mode of the center elements, the translation mode of the center elements, and the planet modes. For the planetary gear number equal to two, the planet mode does not occur, the crown mode and the sun gear mode occur.

  15. The Lunar and Planetary Institute Summer Intern Program in Planetary Science

    Science.gov (United States)

    Kramer, G. Y.

    2017-12-01

    Since 1977, the Lunar and Planetary Institute (LPI) Summer Intern Program brings undergraduate students from across the world to Houston for 10 weeks of their summer where they work one-on-one with a scientist at either LPI or Johnson Space Center on a cutting-edge research project in the planetary sciences. The program is geared for students finishing their sophomore and junior years, although graduating seniors may also apply. It is open to international undergraduates as well as students from the United States. Applicants must have at least 50 semester hours of credit (or equivalent sophomore status) and an interest in pursuing a career in the sciences. The application process is somewhat rigorous, requiring three letters of recommendation, official college transcripts, and a letter describing their background, interests, and career goals. The deadline for applications is in early January of that year of the internship. More information about the program and how to apply can be found on the LPI website: http://www.lpi.usra.edu/lpiintern/. Each advisor reads through the applications, looking for academically excellent students and those with scientific interest and backgrounds compatible with the advisor's specific project. Interns are selected fairly from the applicant pool - there are no pre-arranged agreements or selections based on who knows whom. The projects are different every year as new advisors come into the program, and existing ones change their research interest and directions. The LPI Summer Intern Program gives students the opportunity to participate in peer-reviewed research, learn from top-notch planetary scientists, and preview various careers in science. For many interns, this program was a defining moment in their careers - when they decided whether or not to follow an academic path, which direction they would take, and how. While past interns can be found all over the world and in a wide variety of occupations, all share the common bond of

  16. Novel Space Exploration Technique for Analysing Planetary Atmospheres

    OpenAIRE

    Dekoulis, George

    2010-01-01

    The chapter presents a new reconfigurable wide-beam radio interferometer system for analysing planetary atmospheres. The system operates at frequencies, where the ionisation of the planetary plasma regions induces strong attenuation. For Earth, the attenuation is undistinguishable from the CMB at frequencies over 50 MHz. The system introduces a set of advanced specifications to this field of science, previously unseen in similar suborbital experiments. The reprogrammable dynamic range of the ...

  17. The origins of the pavilion lazaretto. Quarantine architecture between the 18th and 19th centuries

    Directory of Open Access Journals (Sweden)

    Bonastra, Quim

    2008-06-01

    Full Text Available The model of pavilion lazaretto was built above the scientific basis established during the hospital reform process held in France on the lasts decades of Eighteenth Century. The morphological solutions adopted for the new quarantine taxonomy has not been given by the example borrowed by the new typology of hospital as resulted in this discussion, but by existing quarantine and detention facilities in general. In this paper we will analyse all factors that have influenced in the configuration of this model of lazarettos.

    El modelo de lazareto pabellonario se configuró a partir de las bases científicas establecidas durante el proceso de reforma hospitalaria acaecido en Francia en el último tercio del setecientos. La adopción de soluciones que dieran forma a la nueva tipología cuarentenaria no vino dada precisamente por el ejemplo prestado por los nuevos tipos de hospital resultantes de este debate sino por el de otras instalaciones de cuarentena y, en general, de encierro, ya existentes. En este artículo se analizarán todos los factores que influyeron en la configuración de este modelo de lazaretos.

  18. Soft x-ray Planetary Imager

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is to prototype a soft X-ray Imager for planetary applications that has the sensitivity to observe solar system sources of soft  X-ray emission. A strong...

  19. Polarimetry of stars and planetary systems

    National Research Council Canada - National Science Library

    Kolokolova, Ludmilla; Hough, James; Levasseur-Regourd, Anny-Chantal

    2015-01-01

    ... fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets and the search for extraterrestrial life -- unique results produced...

  20. Intelligence for Human-Assistant Planetary Surface Robots

    Science.gov (United States)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  1. A radio search for planetary nebulae near the galactic center

    International Nuclear Information System (INIS)

    Isaacman, R.B.

    1980-01-01

    Because of galactic center is a hostile environment, and because planetaries are weak radio emitters, it is not clear a priori that one expects to detect any planetary nebulae at all in the nuclear region of the Galaxy. Therefore the expected lifetime and flux density distribution of galactic center nebulae is considered. The principal observational results from the Westerbork data, and the results of some pilot observations with the Very Large Array, which were intended to distinguish planetaries from other radio sources on an individual basis are given. (Auth.)

  2. Residual signal feature extraction for gearbox planetary stage fault detection

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Ursin, Thomas; Sweeney, Christian Walsted

    2017-01-01

    Faults in planetary gears and related bearings, e.g. planet bearings and planet carrier bearings, pose inherent difficulties on their accurate and consistent detection associated mainly to the low energy in slow rotating stages and the operating complexity of planetary gearboxes. In this work......, identification of the expected spectral signature for proper residual signal calculation and filtering of any frequency component not related to the planetary stage. Two field cases of planet carrier bearing defect and planet wheel spalling are presented and discussed, showing the efficiency of the followed...

  3. The Energetic Demands and Planetary Footprint of Alternative Human Diets

    Science.gov (United States)

    Eshel, G.; Martin, P. A.

    2005-12-01

    Agriculture is one of the major vehicles of human alteration of the planetary environment. Yet different diets vary vastly in terms of both their energetic demands and overall planetary footprint. We present a quantitative argument that demonstrates that plant-based diets exert vastly smaller planetary environmental cost than animal-based ones. We demonstrate that under a reasonable and readily defensible set of assumptions, a plant-based diet differs from the average American diet by as much energy as the difference between driving a compact and efficient sedan and a Sport Utility Vehicle.

  4. The Strength Analysis of Differential Planetary Gears of Gearbox for Concrete Mixer Truck

    Science.gov (United States)

    Bae, M. H.; Bae, T. Y.; Kim, D. J.

    2018-03-01

    The power train of mixer gearbox for concrete mixer truck includes differential planetary gears to get large reduction ratio for operating mixer a drum and simple structure. The planetary gears are very important part of a mixer gearbox where strength problems namely gear bending stress, gear compressive stress and scoring failure are the main concern. In the present study, calculating specifications of the differential planetary gears and analyzing the gear bending and compressive stresses as well as scoring factor of the differential planetary gears gearbox for an optimal design of the mixer gearbox in respect to cost and reliability are investigated. The analyses of actual gear bending and compressive stresses of the differential planetary gears using Lewes & Hertz equation and verifications of the calculated specifications of the differential planetary gears evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears. In addition, we also analyze actual gear scoring factor as well as evaluate the possibility of scoring failure of the differential planetary gear.

  5. The complex planetary synchronization structure of the solar system

    Science.gov (United States)

    Scafetta, N.

    2014-01-01

    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772), which successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~ 11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research has further confirmed that (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g., within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~ 178.38 yr; and (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennial timescales. This short review concludes with an emphasis on the contribution of the author's research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that also synchronizes the Sun's activity and the Earth's climate. The special issue Pattern in solar variability, their planetary origin and terrestrial impacts (Mörner et al., 2013) further develops the ideas about the planetary-solar-terrestrial interaction with the personal contribution of 10

  6. Vibration behavior optimization of planetary gear sets

    Directory of Open Access Journals (Sweden)

    Farshad Shakeri Aski

    2014-12-01

    Full Text Available This paper presents a global optimization method focused on planetary gear vibration reduction by means of tip relief profile modifications. A nonlinear dynamic model is used to study the vibration behavior. In order to investigate the optimal radius and amplitude, Brute Force method optimization is used. One approach in optimization is straightforward and requires considerable computation power: brute force methods try to calculate all possible solutions and decide afterwards which one is the best. Results show the influence of optimal profile on planetary gear vibrations.

  7. Planetary nebulae and the interstellar magnetic field

    International Nuclear Information System (INIS)

    Heiligman, G.M.

    1980-01-01

    Previous workers have found a statistical correlation between the projected directions of the interstellar magnetic field and the major axes of planetary nebulae. This result has been examined theoretically using a numerical hydromagnetic model of a cold plasma nebula expanding into a uniform vacuum magnetic field, with nebular gas accreting on the surface. It is found that magnetic pressure alone is probably not sufficient to shape most planetary nebulae to the observed degree. Phenomena are discussed which could amplify simple magnetic pressure, alter nebular morphology and account for the observed correlation. (author)

  8. Quarantine treatment to Ceratitis capitata (Wied., 1824) (Diptera: Tephritidae) in orange fruits (Citrus sinensis)

    International Nuclear Information System (INIS)

    Albergaria, Nuno Miguel Mendes Soares de

    2005-01-01

    This work was carried out to evaluate the effect of thermal treatments (vapour heat and hot water) and irradiation on Ceratitis capitata eggs and larvae (first, second and third instars), in 'Valencia' oranges; the relation between temperature and exposition time to vapour heat and hot water on fruit fly immature; the relation among the different doses of radiation on fruit fly immature and evaluate the effect of the treatments (thermal treatments and irradiation) on the chemical composition of the fruits. It was evaluated the heat absorption and loose of heat by the fruit. For thermal treatments it was used temperatures of 44 and 46 deg C for 15,30,60, 90 and 120 minutes and a control. For irradiation were used the doses: 10,20, 30, 40, 50, 100, 150 and 200 Gy. By the results obtained it is possible to conclude that: to the control of eggs and larvae (first, second and third instars) the treatment with vapour heat was less efficient than the hot water treatment; the thermal treatments of C. capitata eggs and larvae (first and second and third instars) can be recommended with vapor heat at 46 deg C at 152.2 minutes or with hot water at 46 deg C at 84.8 minutes, achieving the quarantine request; third instar larvae are more tolerant to the thermal and irradiation treatments; the treatment with irradiation can be recommended for quarantine treatment of ali immature stages evaluated with the dose of 72.88 Gy; the dose of 50 Gy causes sterility to the adults emerged from ali immature stages irradiated; treatments do not cause any change in the chemical proprieties in the orange fruits var. 'Valencia'. (author)

  9. An assessment of the benefits of yellow Sigatoka (Mycosphaerella musicola control in the Queensland Northern Banana Pest Quarantine Area

    Directory of Open Access Journals (Sweden)

    David Cook

    2013-09-01

    Full Text Available The banana leaf spotting disease yellow Sigatoka is established and actively controlled in Australia through intensive chemical treatments and diseased leaf removal. In the State of Queensland, the State government imposes standards for de-leafing to minimise the risk of the disease spreading in 6 banana pest quarantine areas. Of these, the Northern Banana Pest Quarantine Area is the most significant in terms of banana production. Previous regulations imposed obligations on owners of banana plants within this area to remove leaves from plants with visible spotting on more than 15 per cent of any leaf during the wet season. Recently, this leaf disease threshold has been lowered to 5 per cent. In this paper we examine the likely impact this more-costly regulation will have on the spread of the disease. We estimate that the average net benefit of reducing the diseased leaf threshold is only likely to be $1.4million per year over the next 30 years, expressed as the annualised present value of tightened regulation. This result varies substantially when the timeframe of the analysis is changed, with shorter time frames indicating poorer net returns from the change in protocols. Overall, the benefit of the regulation change is likely to be minor.

  10. Planetary boundaries: exploring the safe operating space for humanity

    Science.gov (United States)

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan Foley

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  11. Laser Mass Spectrometry in Planetary Science

    International Nuclear Information System (INIS)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-01-01

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  12. Use of gamma irradiation as a quarantine control method for Frankliniella australis (Morgan) (Thysanoptera: Thripidae)

    International Nuclear Information System (INIS)

    Araya, J.E.; Curkovic, T.; Cayo, A.

    2007-01-01

    The black flower thrips, Frankliniella australis (Morgan), a Chilean species, causes quarantine rejections of fresh fruits for export. Today, fumigation with CH3Br is efficient to avoid these rejections, but is questioned because it affects the ozone layer, irradiation of foods being an alternative. The effect of gamma irradiation was studied in the laboratory on F. australis adults, at dosages of 250, 500, 750, and 1000 Gy, followed by storage at 0-5 deg C to simulate shipping conditions. Mortality immediately after irradiation was low (1.5 to 22.3% at 250 and 1000 Gy, respectively), but increased an hour later (15.8, 33.4, 44.5, and 51.7% with 250, 500, 750, and 1000 Gy, respectively). In this evaluation, mortality with the greatest dosage was significantly larger than with 500 and 250 Gy, while results with 750 and 500 Gy were not different between them but different with the smallest dosage. At 24 hours, mortality with all dosages surpassed 91%, although only that at 1000 Gy was significantly greater than at 250 Gy. At day 4th (96 hours) there was at least 98.8% mortality for the irradiation treatments, with significant differences with the control, which then presented only 12.8% mortality. Using logit regression with results up to day 4, a probit 9 (LD99.9968) for adults was estimated at 188 Gy. This dosage is slightly less to those indicated in the literature for control of other thrips, which may be explained because of the combined use of cold storage, although more studies are necessary of this technology under commercial conditions to verify its applicability for quarantine control of F. australis. (author) [es

  13. Europlanet/IDIS: Combining Diverse Planetary Observations and Models

    Science.gov (United States)

    Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gerard

    2013-04-01

    Planetary research involves a diversity of research fields from astrophysics and plasma physics to atmospheric physics, climatology, spectroscopy and surface imaging. Data from all these disciplines are collected from various space-borne platforms or telescopes, supported by modelling teams and laboratory work. In order to interpret one set of data often supporting data from different disciplines and other missions are needed while the scientist does not always have the detailed expertise to access and utilize these observations. The Integrated and Distributed Information System (IDIS) [1], developed in the framework of the Europlanet-RI project, implements a Virtual Observatory approach ([2] and [3]), where different data sets, stored in archives around the world and in different formats, are accessed, re-formatted and combined to meet the user's requirements without the need of familiarizing oneself with the different technical details. While observational astrophysical data from different observatories could already earlier be accessed via Virtual Observatories, this concept is now extended to diverse planetary data and related model data sets, spectral data bases etc. A dedicated XML-based Europlanet Data Model (EPN-DM) [4] was developed based on data models from the planetary science community and the Virtual Observatory approach. A dedicated editor simplifies the registration of new resources. As the EPN-DM is a super-set of existing data models existing archives as well as new spectroscopic or chemical data bases for the interpretation of atmospheric or surface observations, or even modeling facilities at research institutes in Europe or Russia can be easily integrated and accessed via a Table Access Protocol (EPN-TAP) [5] adapted from the corresponding protocol of the International Virtual Observatory Alliance [6] (IVOA-TAP). EPN-TAP allows to search catalogues, retrieve data and make them available through standard IVOA tools if the access to the archive

  14. Teaching Planetary Science as Part of the Search for Extraterrestrial Intelligence (SETI)

    Science.gov (United States)

    Margot, Jean-Luc; Greenberg, Adam H.

    2017-10-01

    In Spring 2016 and 2017, UCLA offered a course titled "EPSS C179/279 - Search for Extraterrestrial Intelligence: Theory and Applications". The course is designed for advanced undergraduate students and graduate students in the science, technical, engineering, and mathematical fields. Each year, students designed an observing sequence for the Green Bank telescope, observed known planetary systems remotely, wrote a sophisticated and modular data processing pipeline, analyzed the data, and presented their results. In 2016, 15 students participated in the course (9U, 5G; 11M, 3F) and observed 14 planetary systems in the Kepler field. In 2017, 17 students participated (15U, 2G; 10M, 7F) and observed 10 planetary systems in the Kepler field, TRAPPIST-1, and LHS 1140. In order to select suitable targets, students learned about planetary systems, planetary habitability, and planetary dynamics. In addition to planetary science fundamentals, students learned radio astronomy fundamentals, collaborative software development, signal processing techniques, and statistics. Evaluations indicate that the course is challenging but that students are eager to learn because of the engrossing nature of SETI. Students particularly value the teamwork approach, the observing experience, and working with their own data. The next offering of the course will be in Spring 2018. Additional information about our SETI work is available at seti.ucla.edu.

  15. Structure of planetary nebulae

    International Nuclear Information System (INIS)

    Goad, L.E.

    1975-01-01

    Image-tube photographs of planetary nebulae taken through narrow-band interference filters are used to map the surface brightness of these nebulae in their most prominent emission lines. These observations are best understood in terms of a two-component model consisting of a tenuous diffuse nebular medium and a network of dense knots and filaments with neutral cores. The observations of the diffuse component indicate that the inner regions of these nebulae are hollow shells. This suggests that steady stellar winds are the dominant factor in determining the structure of the central regions of planetary nebulae. The observations of the filamentary components of NGC 40 and NGC 6720 show that the observed nebular features can result from the illumination of the inner edges of dense fragmentary neutral filaments by the central stars of these nebulae. From the analysis of the observations of the low-excitation lines in NGC 2392, it is concluded that the rate constant for the N + --H charge transfer reaction is less than 10 -12 cm 3 sec -1

  16. The Planetary Nebula Spectrograph : The green light for galaxy kinematics

    NARCIS (Netherlands)

    Douglas, NG; Arnaboldi, M; Freeman, KC; Kuijken, K; Merrifield, MR; Romanowsky, AJ; Taylor, K; Capaccioli, M; Axelrod, T; Gilmozzi, R; Hart, J; Bloxham, G; Jones, D

    2002-01-01

    Planetary nebulae (PNe) are now well established as probes of galaxy dynamics and as standard candles in distance determinations. Motivated by the need to improve the efficiency of planetary nebulae searches and the speed with which their radial velocities are determined, a dedicated instrument-the

  17. China's roadmap for planetary exploration

    Science.gov (United States)

    Wei, Yong; Yao, Zhonghua; Wan, Weixing

    2018-05-01

    China has approved or planned a string of several space exploration missions to be launched over the next decade. A new generation of planetary scientists in China is playing an important role in determining the scientific goals of future missions.

  18. Using Sandia's Z Machine and Density Functional Theory Simulations to Understand Planetary Materials

    Science.gov (United States)

    Root, Seth

    2017-06-01

    The use of Z, NIF, and Omega have produced many breakthrough results in high pressure physics. One area that has greatly benefited from these facilities is the planetary sciences. The high pressure behavior of planetary materials has implications for numerous geophysical and planetary processes. The continuing discovery of exosolar super-Earths demonstrates the need for accurate equation of state data to better inform our models of their interior structures. Planetary collision processes, such as the moon-forming giant impact, require understanding planetary materials over a wide-range of pressures and temperatures. Using Z, we examined the shock compression response of some common planetary materials: MgO, Mg2SiO4, and Fe2O3 (hematite). We compare the experimental shock compression measurements with density functional theory (DFT) based quantum molecular dynamics (QMD) simulations. The combination of experiment and theory provides clearer understanding of planetary materials properties at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. A drilling tool design and in situ identification of planetary regolith mechanical parameters

    Science.gov (United States)

    Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei

    2018-05-01

    The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.

  20. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  1. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  2. Photogrammetric Processing of Planetary Linear Pushbroom Images Based on Approximate Orthophotos

    Science.gov (United States)

    Geng, X.; Xu, Q.; Xing, S.; Hou, Y. F.; Lan, C. Z.; Zhang, J. J.

    2018-04-01

    It is still a great challenging task to efficiently produce planetary mapping products from orbital remote sensing images. There are many disadvantages in photogrammetric processing of planetary stereo images, such as lacking ground control information and informative features. Among which, image matching is the most difficult job in planetary photogrammetry. This paper designs a photogrammetric processing framework for planetary remote sensing images based on approximate orthophotos. Both tie points extraction for bundle adjustment and dense image matching for generating digital terrain model (DTM) are performed on approximate orthophotos. Since most of planetary remote sensing images are acquired by linear scanner cameras, we mainly deal with linear pushbroom images. In order to improve the computational efficiency of orthophotos generation and coordinates transformation, a fast back-projection algorithm of linear pushbroom images is introduced. Moreover, an iteratively refined DTM and orthophotos scheme was adopted in the DTM generation process, which is helpful to reduce search space of image matching and improve matching accuracy of conjugate points. With the advantages of approximate orthophotos, the matching results of planetary remote sensing images can be greatly improved. We tested the proposed approach with Mars Express (MEX) High Resolution Stereo Camera (HRSC) and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. The preliminary experimental results demonstrate the feasibility of the proposed approach.

  3. Galactic planetary nebulae and evolution of their nuclei

    International Nuclear Information System (INIS)

    Khromov, G.S.

    1980-01-01

    The galactic system of planetary nebulae is investigated using previously constructed distance scale and kinematics data. A strong effect of observational selection is established, which has the consequence that with increasing distance, ever brighter and younger objects are observed. More accurate determinations of the spatial and surface densities of the planetary nebulae system are obtained as well as a new estimate of their total number in the Galaxy, which is approximately 200,000. New estimates are also made of the masses of the nebulae, the absolute magnitudes of the nebulae and their nuclei, and other physical parameters of these objects. The spatial and kinematic characteristics of the planetary nebulae indicate that they are objects of the old type I population. It is possible that their remote ancestors are main sequence stars of the type B8-A5-F or as yet unidentified objects of the same galactic subsystem

  4. Alien skies planetary atmospheres from earth to exoplanets

    CERN Document Server

    Pont, Frédéric J

    2014-01-01

    Planetary atmospheres are complex and evolving entities, as mankind is rapidly coming to realise whilst attempting to understand, forecast and mitigate human-induced climate change. In the Solar System, our neighbours Venus and Mars provide striking examples of two endpoints of planetary evolution, runaway greenhouse and loss of atmosphere to space. The variety of extra-solar planets brings a wider angle to the issue: from scorching "hot jupiters'' to ocean worlds, exo-atmospheres explore many configurations unknown in the Solar System, such as iron clouds, silicate rains, extreme plate tectonics, and steam volcanoes. Exoplanetary atmospheres have recently become accessible to observations. This book puts our own climate in the wider context of the trials and tribulations of planetary atmospheres. Based on cutting-edge research, it uses a grand tour of the atmospheres of other planets to shine a new light on our own atmosphere, and its relation with life.

  5. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    Science.gov (United States)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  6. NASA's Lunar and Planetary Mapping and Modeling Program

    Science.gov (United States)

    Law, E.; Day, B. H.; Kim, R. M.; Bui, B.; Malhotra, S.; Chang, G.; Sadaqathullah, S.; Arevalo, E.; Vu, Q. A.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Program produces a suite of online visualization and analysis tools. Originally designed for mission planning and science, these portals offer great benefits for education and public outreach (EPO), providing access to data from a wide range of instruments aboard a variety of past and current missions. As a component of NASA's Science EPO Infrastructure, they are available as resources for NASA STEM EPO programs, and to the greater EPO community. As new missions are planned to a variety of planetary bodies, these tools are facilitating the public's understanding of the missions and engaging the public in the process of identifying and selecting where these missions will land. There are currently three web portals in the program: the Lunar Mapping and Modeling Portal or LMMP (http://lmmp.nasa.gov), Vesta Trek (http://vestatrek.jpl.nasa.gov), and Mars Trek (http://marstrek.jpl.nasa.gov). Portals for additional planetary bodies are planned. As web-based toolsets, the portals do not require users to purchase or install any software beyond current web browsers. The portals provide analysis tools for measurement and study of planetary terrain. They allow data to be layered and adjusted to optimize visualization. Visualizations are easily stored and shared. The portals provide 3D visualization and give users the ability to mark terrain for generation of STL files that can be directed to 3D printers. Such 3D prints are valuable tools in museums, public exhibits, and classrooms - especially for the visually impaired. Along with the web portals, the program supports additional clients, web services, and APIs that facilitate dissemination of planetary data to a range of external applications and venues. NASA challenges and hackathons are also providing members of the software development community opportunities to participate in tool development and leverage data from the portals.

  7. Statistical and physical study of one-sided planetary nebulae.

    Science.gov (United States)

    Ali, A.; El-Nawawy, M. S.; Pfleiderer, J.

    The authors have investigated the spatial orientation of one-sided planetary nebulae. Most of them if not all are interacting with the interstellar medium. Seventy percent of the nebulae in the sample have inclination angles larger than 45° to the Galactic plane and 30% of the inclination angles are less than 45°. Most of the selected objects are old, evolved planetary nebulae with large dimensions, and not far away from the Galactic plane. Seventy-five percent of the objects are within 160 pc from the Galactic plane. The enhanced concavity arc can be explained physically as a result of the 'planetary nebulae-interstellar matter' interaction. The authors discuss the possible effect of the interstellar magnetic field in the concavity regions.

  8. A comparison of Hipparcos parallaxes with planetary nebulae spectroscopic distances

    NARCIS (Netherlands)

    Pottasch, [No Value; Acker, A

    1998-01-01

    The Hipparcos satellite has measured the parallax of a small sample of planetary nebulae. In this paper we consider the results for 3 planetary nebulae (PN) for which spectroscopic distances have also been determined from stellar gravities. These gravities in turn have been derived from profile

  9. Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans

    Science.gov (United States)

    Ikoma, M.; Elkins-Tanton, L.; Hamano, K.; Suckale, J.

    2018-06-01

    The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.

  10. A bibliography of planetary geology principal investigators and their associates, 1982 - 1983

    Science.gov (United States)

    Plescia, J. B.

    1984-01-01

    This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.

  11. The Vibration Sensors Optimum Mounting Analysis at Planetary Reduction Gearmotor Vibration Diagnostics

    OpenAIRE

    Ļitvinovs, D

    2008-01-01

    Due to the specific mechanical peculiarities, planetary reduction gearmotors were and remain the most progressive types of reduction gearboxes for industry application. Compactness, small specific gravity and, simultaneously, possibility to pass the increased loadings – here what planetary reduction gearmotors are attractive for developers and customers. Because of planetary reduction gearmotors increased amount applying in industry, increases the requirements in their diagnostics. For this p...

  12. Spreading the passion for scientifically useful planetary observations

    Science.gov (United States)

    Kardasis, E.; Vourliotis, E.; Bellias, I.; Maravelias, G.; Vakalopoulos, E.; Papadeas, P.; Marouda, K.; Voutyras, O.

    2015-10-01

    Τhe "March 2015 - Planetary Observation Project (POP)" was a series of talks and hands-on workshops focused on planetary observation organized in March 2015 by the planetary section of the Hellenic Amateur Astronomy Association. Building on our previous experience (Voutyras et al. 2013), which also includes more than 500 attendants in our 2013-2014 series of lectures in Astronomy, we identified that there is a lack of more focused lectures/workshops on observing techniques. In particular, POP's structure included two talks and two workshops aiming to inspire and educate astronomy enthusiasts. The talks tried to stimulate the participants about the importance of ground-based observations by presenting the most current scientific news and puzzling problems that we are facing in the observation of planets. During the hands-on workshops the beauty of planetary observation was used to inspire participants. However, we trained participants on observing techniques and image processing to enable them to produce scientifically useful results. All POP's events were open to the public and free, meaning both out-of-charge and freely available material provided to the participants (through our website). The project offered attendants unique experiences that may have a significant impact with potential lifelong benefits. In this work we present an overview of the project structure that may work as a prototype for similar outreach programs.

  13. Small reactor power systems for manned planetary surface bases

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  14. Small reactor power systems for manned planetary surface bases

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options

  15. Robots and Humans in Planetary Exploration: Working Together?

    Science.gov (United States)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

  16. Fluvial geomorphology on Earth-like planetary surfaces: A review.

    Science.gov (United States)

    Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P

    2015-09-15

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.

  17. Vision and Voyages: Lessons Learned from the Planetary Decadal Survey

    Science.gov (United States)

    Squyres, S. W.

    2015-12-01

    The most recent planetary decadal survey, entitled Vision and Voyages for Planetary Science in the Decade 2013-2022, provided a detailed set of priorities for solar system exploration. Those priorities drew on broad input from the U.S. and international planetary science community. Using white papers, town hall meetings, and open meetings of the decadal committees, community views were solicited and a consensus began to emerge. The final report summarized that consensus. Like many past decadal reports, the centerpiece of Vision and Voyages was a set of priorities for future space flight projects. Two things distinguished this report from some previous decadals. First, conservative and independent cost estimates were obtained for all of the projects that were considered. These independent cost estimates, rather than estimates generated by project advocates, were used to judge each project's expected science return per dollar. Second, rather than simply accepting NASA's ten-year projection of expected funding for planetary exploration, decision rules were provided to guide program adjustments if actual funding did not follow projections. To date, NASA has closely followed decadal recommendations. In particular, the two highest priority "flagship" missions, a Mars rover to collect samples for return to Earth and a mission to investigate a possible ocean on Europa, are both underway. The talk will describe the planetary decadal process in detail, and provide a more comprehensive assessment of NASA's response to it.

  18. The Planetary Terrestrial Analogues Library (PTAL)

    Science.gov (United States)

    Werner, S. C.; Dypvik, H.; Poulet, F.; Rull Perez, F.; Bibring, J.-P.; Bultel, B.; Casanova Roque, C.; Carter, J.; Cousin, A.; Guzman, A.; Hamm, V.; Hellevang, H.; Lantz, C.; Lopez-Reyes, G.; Manrique, J. A.; Maurice, S.; Medina Garcia, J.; Navarro, R.; Negro, J. I.; Neumann, E. R.; Pilorget, C.; Riu, L.; Sætre, C.; Sansano Caramazana, A.; Sanz Arranz, A.; Sobron Grañón, F.; Veneranda, M.; Viennet, J.-C.; PTAL Team

    2018-04-01

    The Planetary Terrestrial Analogues Library project aims to build and exploit a spectral data base for the characterisation of the mineralogical and geological evolution of terrestrial planets and small solar system bodies.

  19. On the evolution of central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Yahel, R.Z.

    1977-01-01

    The evolution of nuclei of planetary nebulae has been calculated from the end of the ejection stage that produces the nebulae to the white dwarf stage. The structure of the central star is in agreement with the general picture of Finzi (1973) about the mass ejection from the progenitors of planetary nebulae. It has been found that in order to obtain evolutionary track consistent with the Harman-Seaton track (O'Dell, 1968) one has to assume that the masses of the nuclei stars are less than approximately 0.7 solar masses. The calculated evolutionary time scale of the central stars of planetary nebulae is approximately 2 x 10 4 yr. This time scale is negatively correlated with the stellar mass: the heavier the stellar mass, the shorter the evolutionary time scale. (Auth.)

  20. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    Science.gov (United States)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential

  1. Gamma irradiation followed by cold storage as a quarantine treatment for Florida grapefruit infested with Caribbean fruit fly

    International Nuclear Information System (INIS)

    Von Windeguth, D.L.; Gould, W.P.

    1990-01-01

    'Marsh' white grapefruit, Citrus paradisi (Macf.). infested with eggs and larvae of Caribbean fruit fly, Anastrepha suspensa (Loew) were subjected to ionizing radiation at several low doses followed by cold (1.1°C) storage for 0 to 8 days. Data analyses indicated that an irradiation dose of 50 Gray followed by 5 days of cold storage will give in excess of probit 9 level of quarantine security. A test involving more than 100,000 insects infesting grapefruit confirmed the efficacy of this treatment

  2. Irradiation of fruits for quarantine insect disinfestation. Development in the world and in France

    International Nuclear Information System (INIS)

    Buscarlet, L.A.

    1990-01-01

    In many countries strict phytosanitary controls have been established to prevent the entry of foreign insect species. The recent interdiction of ethylene dibromide fumigation in USA led to the search of new methods of quarantine control among which irradiation was considered as the more convenient. In different countries such as USA, Australia, New Zeland, studies were conducted to determine the dose of irradiation efficient for controlling different insect species and to verify that irradiation had no noxious effect on the fruits. At the present time the papaya harvested in Hawaii and irradiated against fruit flies are allowed to enter in the continent of USA. In France the irradiation of apples against Leucoptera malifoliella is under study to promote the exportation of apples to America [fr

  3. Lunar and planetary surface conditions advances in space science and technology

    CERN Document Server

    Weil, Nicholas A

    1965-01-01

    Lunar and Planetary Surface Conditions considers the inferential knowledge concerning the surfaces of the Moon and the planetary companions in the Solar System. The information presented in this four-chapter book is based on remote observations and measurements from the vantage point of Earth and on the results obtained from accelerated space program of the United States and U.S.S.R. Chapter 1 presents the prevalent hypotheses on the origin and age of the Solar System, followed by a brief description of the methods and feasibility of information acquisition concerning lunar and planetary data,

  4. Past and future of radio occultation studies of planetary atmospheres

    Science.gov (United States)

    Eshleman, Von R.; Hinson, David P.; Tyler, G. Leonard; Lindal, Gunnar F.

    1987-01-01

    Measurements of radio waves that have propagated through planetary atmospheres have provided exploratory results on atmospheric constituents, structure, dynamics, and ionization for Venus, Mars, Titan, Jupiter, Saturn, and Uranus. Highlights of past results are reviewed in order to define and illustrate the potential of occultation and related radio studies in future planetary missions.

  5. Robo-AO Kepler Survey. IV. The Effect of Nearby Stars on 3857 Planetary Candidate Systems

    Science.gov (United States)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Riddle, Reed; Duev, Dmitry A.; Howard, Ward; Jensen-Clem, Rebecca; Kulkarni, S. R.; Morton, Tim; Salama, Maïssa

    2018-04-01

    We present the overall statistical results from the Robo-AO Kepler planetary candidate survey, comprising of 3857 high-angular resolution observations of planetary candidate systems with Robo-AO, an automated laser adaptive optics system. These observations reveal previously unknown nearby stars blended with the planetary candidate host stars that alter the derived planetary radii or may be the source of an astrophysical false positive transit signal. In the first three papers in the survey, we detected 440 nearby stars around 3313 planetary candidate host stars. In this paper, we present observations of 532 planetary candidate host stars, detecting 94 companions around 88 stars; 84 of these companions have not previously been observed in high resolution. We also report 50 more-widely separated companions near 715 targets previously observed by Robo-AO. We derive corrected planetary radius estimates for the 814 planetary candidates in systems with a detected nearby star. If planetary candidates are equally likely to orbit the primary or secondary star, the radius estimates for planetary candidates in systems with likely bound nearby stars increase by a factor of 1.54, on average. We find that 35 previously believed rocky planet candidates are likely not rocky due to the presence of nearby stars. From the combined data sets from the complete Robo-AO KOI survey, we find that 14.5 ± 0.5% of planetary candidate hosts have a nearby star with 4″, while 1.2% have two nearby stars, and 0.08% have three. We find that 16% of Earth-sized, 13% of Neptune-sized, 14% of Saturn-sized, and 19% of Jupiter-sized planet candidates have detected nearby stars.

  6. Integrating polarized light over a planetary disk applied to starlight reflected by extrasolar planets

    NARCIS (Netherlands)

    Stam, D.M.; de Rooij, W.A.; Cornet, G.; Hovenier, J.W.

    2006-01-01

    We present an efficient numerical method for integrating planetary radiation over a planetary disk, which is especially interesting for simulating signals of extrasolar planets. Our integration method is applicable to calculating the full flux vector of the disk-integrated planetary radiation, i.e.

  7. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  8. MPLNET V3 Cloud and Planetary Boundary Layer Detection

    Science.gov (United States)

    Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.

    2016-01-01

    The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.

  9. Mission Implementation Constraints on Planetary Muon Radiography

    Science.gov (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  10. Developing the Planetary Science Virtual Observatory

    Science.gov (United States)

    Erard, Stéphane; Cecconi, Baptiste; Le Sidaner, Pierre; Henry, Florence; Chauvin, Cyril; Berthier, Jérôme; André, Nicolas; Génot, Vincent; Schmitt, Bernard; Capria, Teresa; Chanteur, Gérard

    2015-08-01

    In the frame of the Europlanet-RI program, a prototype Virtual Observatory dedicated to Planetary Science has been set up. Most of the activity was dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), and space archive services (IPDA).The current architecture connects existing data services with IVOA or IPDA protocols whenever relevant. However, a more general standard has been devised to handle the specific complexity of Planetary Science, e.g. in terms of measurement types and coordinate frames. This protocol, named EPN-TAP, is based on TAP and includes precise requirements to describe the contents of a data service (Erard et al Astron & Comp 2014). A light framework (DaCHS/GAVO) and a procedure have been identified to install small data services, and several hands-on sessions have been organized already. The data services are declared in standard IVOA registries. Support to new data services in Europe will be provided during the proposed Europlanet H2020 program, with a focus on planetary mission support (Rosetta, Cassini…).A specific client (VESPA) has been developed at VO-Paris (http://vespa.obspm.fr). It is able to use all the mandatory parameters in EPN-TAP, plus extra parameters from individual services. A resolver for target names is also available. Selected data can be sent to VO visualization tools such as TOPCAT or Aladin though the SAMP protocol.Future steps will include the development of a connection between the VO world and GIS tools, and integration of heliophysics, planetary plasma and reference spectroscopic data.The EuroPlaNet-RI project was funded by the European

  11. PLANETARY NEBULAE IN FACE-ON SPIRAL GALAXIES. II. PLANETARY NEBULA SPECTROSCOPY

    International Nuclear Information System (INIS)

    Herrmann, Kimberly A.; Ciardullo, Robin

    2009-01-01

    As the second step in our investigation of the mass-to-light ratio of spiral disks, we present the results of a spectroscopic survey of planetary nebulae (PNe) in five nearby, low-inclination galaxies: IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), and M101 (NGC 5457). Using 50 setups of the WIYN/Hydra and Blanco/Hydra spectrographs, and 25 observations with the Hobby-Eberly Telescope's Medium Resolution Spectrograph, we determine the radial velocities of 99, 102, 162, 127, and 48 PNe, respectively, to a precision better than 15 km s -1 . Although the main purpose of this data set is to facilitate dynamical mass measurements throughout the inner and outer disks of large spiral galaxies, our spectroscopy has other uses as well. Here, we co-add these spectra to show that, to first order, the [O III] and Balmer line ratios of PNe vary little over the top ∼1.5 mag of the PN luminosity function. The only obvious spectral change occurs with [N II], which increases in strength as one proceeds down the luminosity function. We also show that typical [O III]-bright planetaries have E(B - V) ∼ 0.2 of circumstellar extinction, and that this value is virtually independent of [O III] luminosity. We discuss the implications this has for understanding the population of PN progenitors.

  12. Measuring planetary neutron albedo fluxes by remote gamma-ray sensing

    International Nuclear Information System (INIS)

    Haines, E.L.; Metzger, A.E.

    1984-01-01

    A remote-sensing γ-ray spectrometer (GRS) is capable of measuring planetary surface composition through the detection of characteristic gamma rays. In addition, the planetary neutron leakage flux may be detected by means of a thin neutron absorber surrounding the γ-ray detector which converts the neutron flux into a γ-ray flux having a unique energy signature. The γ rays representing the neutron flux are observed against interference consisting of cosmic γ rays, planetary continuum and line emission, and a variety of gamma rays arising from cosmic-ray particle interactions with the γ-ray spectrometer and spacecraft (SC). In this paper the amplitudes of planetary and non-planetary neutron fluxes are assessed and their impact on the sensitivity of measurement is calculated for a lunar orbiter mission and a comet nucleus rendezvous mission. For a 100 h observation period from an altitude of 100 km, a GRS on a lunar orbiter can detect a thermal neutron albedo flux as low as 0.002 cm -2 s -1 and measure the expected flux of approx.=0.6 cm -2 s -1 with an uncertainty of 0.001 cm -2 s -1 . A GRS rendezvousing with a comet at a distance equal to the radius of the comet's nucleus, again for a 100 h observation time, should detect a thermal neutron albedo flux at a level of 0.006 cm -2 s -1 and measure the expected flux of approx.=0.4 cm -2 s -1 with an uncertainty of 0.004 cm -2 s -1 . Mapping the planetary neutron flux jointly with the direct detection of H will not only provide a more accurate model for translating observed γ-ray fluxes into concentrations but will also extend the effective sampling depth and should provide a capability for simple stratigraphic modeling of hydrogen. (orig.)

  13. Interoperability In The New Planetary Science Archive (PSA)

    Science.gov (United States)

    Rios, C.; Barbarisi, I.; Docasal, R.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; Grotheer, E.; Besse, S.; Martinez, S.; Heather, D.; De Marchi, G.; Lim, T.; Fraga, D.; Barthelemy, M.

    2015-12-01

    As the world becomes increasingly interconnected, there is a greater need to provide interoperability with software and applications that are commonly being used globally. For this purpose, the development of the new Planetary Science Archive (PSA), by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is focused on building a modern science archive that takes into account internationally recognised standards in order to provide access to the archive through tools from third parties, for example by the NASA Planetary Data System (PDS), the VESPA project from the Virtual Observatory of Paris as well as other international institutions. The protocols and standards currently being supported by the new Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet-Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. The architecture of the PSA consists of a Geoserver (an open-source map server), the goal of which is to support use cases such as the distribution of search results, sharing and processing data through a OGC Web Feature Service (WFS) and a Web Map Service (WMS). This server also allows the retrieval of requested information in several standard output formats like Keyhole Markup Language (KML), Geography Markup Language (GML), shapefile, JavaScript Object Notation (JSON) and Comma Separated Values (CSV), among others. The provision of these various output formats enables end-users to be able to transfer retrieved data into popular applications such as Google Mars and NASA World Wind.

  14. Emission lines of Mg2 and Ca2 in planetary nebulae

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1979-01-01

    Conditions of exciting resonance lines in the emission of ionized magnesium (lambda lambda 2796+2803 Mg2) and calcium (lambda lambda 3934+3968 Ca2) in planetary nebulae have been analyzed. It is shown that the allowed lines are excited with the same mechanism, as the forbidden lines, i.e. inelastic electron collisions, but not with common fluorescence. The emission line lambda 2800 Mg2 of enough force can be observed only in the spectra of planetary nebulae with mean excitation (IC 2149) as well as in the spectra of diffuse nebulae. The line must not be observed in high-excited planetary nebulae (NGC 7026, 7662). The absence of emission lines H and K Ca2 in planetary nebulae spectra results from the fact, that their expected intensity is by 3-4 orders less than the intensity of the line lambda 2800 Mg2 or Hsub(β) hydrogen

  15. Preharvest quarantine treatments of Chlorantraniliprole,Clothianidin, & Imidacloprid-based insecticides for control of Japanese beetle Coleoptera:Scarabaeidae)& other scarab larvae in the root zone of field-grown nurserytrees

    Science.gov (United States)

    Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeidae), is an important quarantine pest of nurseries. Nursery plant movement from P. japonica-infested regions is regulated by the U.S. Domestic Japanese Beetle Harmonization Plan (DJHP), which classifies states by risk categories. Treatm...

  16. A New Model of the Fractional Order Dynamics of the Planetary Gears

    Directory of Open Access Journals (Sweden)

    Vera Nikolic-Stanojevic

    2013-01-01

    Full Text Available A theoretical model of planetary gears dynamics is presented. Planetary gears are parametrically excited by the time-varying mesh stiffness that fluctuates as the number of gear tooth pairs in contact changes during gear rotation. In the paper, it has been indicated that even the small disturbance in design realizations of this gear cause nonlinear properties of dynamics which are the source of vibrations and noise in the gear transmission. Dynamic model of the planetary gears with four degrees of freedom is used. Applying the basic principles of analytical mechanics and taking the initial and boundary conditions into consideration, it is possible to obtain the system of equations representing physical meshing process between the two or more gears. This investigation was focused to a new model of the fractional order dynamics of the planetary gear. For this model analytical expressions for the corresponding fractional order modes like one frequency eigen vibrational modes are obtained. For one planetary gear, eigen fractional modes are obtained, and a visualization is presented. By using MathCAD the solution is obtained.

  17. Planetary submillimeter spectroscopy

    Science.gov (United States)

    Klein, M. J.

    1988-01-01

    The aim is to develop a comprehensive observational and analytical program to study solar system physics and meterology by measuring molecular lines in the millimeter and submillimeter spectra of planets and comets. A primary objective is to conduct observations with new JPL and Caltech submillimeter receivers at the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. A secondary objective is to continue to monitor the time variable planetary phenomena (e.g., Jupiter and Uranus) at centimeter wavelength using the NASA antennas of the Deep Space Network (DSN).

  18. Smart Rotorcraft Field Assistants for Terrestrial and Planetary Science

    Science.gov (United States)

    Young, Larry A.; Aiken, Edwin W.; Briggs, Geoffrey A.

    2004-01-01

    Field science in extreme terrestrial environments is often difficult and sometimes dangerous. Field seasons are also often short in duration. Robotic field assistants, particularly small highly mobile rotary-wing platforms, have the potential to significantly augment a field season's scientific return on investment for geology and astrobiology researchers by providing an entirely new suite of sophisticated field tools. Robotic rotorcraft and other vertical lift planetary aerial vehicle also hold promise for supporting planetary science missions.

  19. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    Science.gov (United States)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  20. Planetary mapping—The datamodel's perspective and GIS framework

    Science.gov (United States)

    van Gasselt, S.; Nass, A.

    2011-09-01

    Demands for a broad range of integrated geospatial data-analysis tools and methods for planetary data organization have been growing considerably since the late 1990s when a plethora of missions equipped with new instruments entered planetary orbits or landed on the surface. They sent back terabytes of new data which soon became accessible for the scientific community and public and which needed to be organized. On the terrestrial side, issues of data access, organization and utilization for scientific and economic analyses are handled by using a range of well-established geographic information systems (GIS) that also found their way into the field of planetary sciences in the late 1990s. We here address key issues concerning the field of planetary mapping by making use of established GIS environments and discuss methods of addressing data organization and mapping requirements by using an easily integrable datamodel that is - for the time being - designed as file-geodatabase (FileGDB) environment in ESRI's ArcGIS. A major design-driving requirement for this datamodel is its extensibility and scalability for growing scientific as well as technical needs, e.g., the utilization of such a datamodel for surface mapping of different planetary objects as defined by their respective reference system and by using different instrument data. Furthermore, it is a major goal to construct a generic model which allows to perform combined geologic as well as geomorphologic mapping tasks making use of international standards without loss of information and by maintaining topologic integrity. An integration of such a datamodel within a geospatial DBMS context can practically be performed by individuals as well as groups without having to deal with the details of administrative tasks and data ingestion issues. Besides the actual mapping, key components of such a mapping datamodel deal with the organization and search for image-sensor data and previous mapping efforts, as well as the

  1. Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection

    Science.gov (United States)

    Xue, Song; Howard, Ian

    2018-02-01

    This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.

  2. The four hundred years of planetary science since Galileo and Kepler.

    Science.gov (United States)

    Burns, Joseph A

    2010-07-29

    For 350 years after Galileo's discoveries, ground-based telescopes and theoretical modelling furnished everything we knew about the Sun's planetary retinue. Over the past five decades, however, spacecraft visits to many targets transformed these early notions, revealing the diversity of Solar System bodies and displaying active planetary processes at work. Violent events have punctuated the histories of many planets and satellites, changing them substantially since their birth. Contemporary knowledge has finally allowed testable models of the Solar System's origin to be developed and potential abodes for extraterrestrial life to be explored. Future planetary research should involve focused studies of selected targets, including exoplanets.

  3. Lunar and Planetary Science XXXII

    Science.gov (United States)

    2001-01-01

    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 32nd Lunar and Planetary Science Conference held at Houston, TX, March 12-16, 2001. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  4. The Solar Connections Observatory for Planetary Environments

    Science.gov (United States)

    Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the

  5. The study about planetary gearbox virtual prototyping with nonlinear gear contact characteristics

    International Nuclear Information System (INIS)

    Yin Huabing; Zhou Guangming

    2010-01-01

    The virtual prototypes of gear transmission system built in most multi-body dynamic software have difficulties in describing the gear mesh characteristics. The gear mesh contact is modelled as rigid contact and this is not accurate for the gear mesh contact, which is elastic or flexible. The gear contact formula used in the multi-body dynamic software does not reveal the gear contact nonlinear stiffness characteristic. The model built with gear meshing contact is difficult to solve because of its time-consuming algorithm. In the paper a new method is put forward to build the virtual prototype of planetary gearbox system according to the nonlinear mesh stiffness and mesh phase obtained through FEM models. This new FEM method of gear mesh stiffness calculation is much more accurate than the common formulas. The gear mesh nonlinear stiffness of sun gear- pinion and pinion-ring gear of all the planetary gear sets in gearbox are obtained through MATALB code, which is used to read and plot the analyzing result data. The gear mesh phase differences between different pinions with suns or rings of different planetary gear set can be also obtained. With all these data modelled in simulink (or other software) and integrated with the multi-body dynamic planetary gearbox model and the gear meshing contact problem in multi-body gear models is solved easily and accurately. The interfaces for gear mesh stiffness and mesh phases are designed for multi-body dynamic model and simulink. The nonlinear planetary gear set prototyping models are integrated to become the whole planetary gear box model and the whole vehicle system model built in multi-body dynamic software can be integrated to simulate different duty conditions. At last high speed input is put into the nonlinear planetary transmission model and the different duty cases are simulated. The dynamic characteristics of different parts are obtained. The dynamic characteristic comparison between nonlinear and linear models is made

  6. A Methodology of Designing the Teeth Conjugation in a Planetary Roller Screw

    Directory of Open Access Journals (Sweden)

    Lisowski Filip

    2016-12-01

    Full Text Available The paper presents the methodology for designing the teeth conjunction of planetary gears in the planetary roller screw mechanism. A function of the planetary gears is to synchronize an operation of rollers in order to avoid axial displacements. A condition of the correct operation is no axial movement of rollers in relation to the nut. The planetary gears are integral parts of rollers and therefore an operation of the gear transmissions has a direct impact on cooperation of the screw, rollers and the nut. The proper design of gear engagements is essential for reducing slippage on surfaces of the cooperating threaded elements. For this purpose, in a designing method, both the limitations of operation and kinematic conditions of rollers’ operation have to be taken into account.

  7. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  8. Planets around pulsars - Implications for planetary formation

    Science.gov (United States)

    Bodenheimer, Peter

    1993-01-01

    Data on planets around pulsars are summarized, and different models intended to explain the formation mechanism are described. Both theoretical and observational evidence suggest that very special circumstances are required for the formation of planetary systems around pulsars, namely, the prior presence of a millisecond pulsar with a close binary companion, probably a low mass main-sequence star. It is concluded that the discovery of two planets around PSR 1257+12 is important for better understanding the problems of dynamics and stellar evolution. The process of planetary formation should be learned through intensive studies of the properties of disks near young objects and application of techniques for detection of planets around main-sequence solar-type stars.

  9. Investments by NASA to build planetary protection capability

    Science.gov (United States)

    Buxbaum, Karen; Conley, Catharine; Lin, Ying; Hayati, Samad

    NASA continues to invest in capabilities that will enable or enhance planetary protection planning and implementation for future missions. These investments are critical to the Mars Exploration Program and will be increasingly important as missions are planned for exploration of the outer planets and their icy moons. Since the last COSPAR Congress, there has been an opportunity to respond to the advice of NRC-PREVCOM and the analysis of the MEPAG Special Regions Science Analysis Group. This stimulated research into such things as expanded bioburden reduction options, modern molecular assays and genetic inventory capability, and approaches to understand or avoid recontamination of spacecraft parts and samples. Within NASA, a portfolio of PP research efforts has been supported through the NASA Office of Planetary Protection, the Mars Technology Program, and the Mars Program Office. The investment strategy focuses on technology investments designed to enable future missions and reduce their costs. In this presentation we will provide an update on research and development supported by NASA to enhance planetary protection capability. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

  10. Planetary Taxonomy: Label Round Bodies "Worlds"

    Science.gov (United States)

    Margot, Jean-Luc; Levison, H. F.

    2009-05-01

    The classification of planetary bodies is as important to Astronomy as taxonomy is to other sciences. The etymological, historical, and IAU definitions of planet rely on a dynamical criterion, but some authors prefer a geophysical criterion based on "roundness". Although the former criterion is superior when it comes to classifying newly discovered objects, the conflict need not exist if we agree to identify the subset of "round" planetary objects as "worlds". This addition to the taxonomy would conveniently recognize that "round" objects such as Earth, Europa, Titan, Triton, and Pluto share some common planetary-type processes regardless of their distance from the host star. Some of these worlds are planets, others are not. Defining how round is round and handling the inevitable transition objects are non-trivial tasks. Because images at sufficient resolution are not available for the overwhelming majority of newly discovered objects, the degree of roundness is not a directly observable property and is inherently problematic as a basis for classification. We can tolerate some uncertainty in establishing the "world" status of a newly discovered object, and still establish its planet or satellite status with existing dynamical criteria. Because orbital parameters are directly observable, and because mass can often be measured either from orbital perturbations or from the presence of companions, the dynamics provide a robust and practical planet classification scheme. It may also be possible to determine which bodies are dynamically dominant from observations of the population magnitude/size distribution.

  11. 3D Visualization for Planetary Missions

    Science.gov (United States)

    DeWolfe, A. W.; Larsen, K.; Brain, D.

    2018-04-01

    We have developed visualization tools for viewing planetary orbiters and science data in 3D for both Earth and Mars, using the Cesium Javascript library, allowing viewers to visualize the position and orientation of spacecraft and science data.

  12. Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors

    Science.gov (United States)

    Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.

    2017-01-01

    Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.

  13. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  14. Cost estimation model for advanced planetary programs, fourth edition

    Science.gov (United States)

    Spadoni, D. J.

    1983-01-01

    The development of the planetary program cost model is discussed. The Model was updated to incorporate cost data from the most recent US planetary flight projects and extensively revised to more accurately capture the information in the historical cost data base. This data base is comprised of the historical cost data for 13 unmanned lunar and planetary flight programs. The revision was made with a two fold objective: to increase the flexibility of the model in its ability to deal with the broad scope of scenarios under consideration for future missions, and to maintain and possibly improve upon the confidence in the model's capabilities with an expected accuracy of 20%. The Model development included a labor/cost proxy analysis, selection of the functional forms of the estimating relationships, and test statistics. An analysis of the Model is discussed and two sample applications of the cost model are presented.

  15. Data Preservation and Curation for the Planetary Science Community

    Science.gov (United States)

    Hughes, J. S.; Crichton, D. J.; Joyner, R.; Hardman, S.; Rye, E.

    2013-12-01

    The Planetary Data System (PDS) has just released PDS4 Version 1.0, its next generation data standards for the planetary science archive. These data standards are the result of a multi-year effort to develop an information model based on accepted standards for data preservation, data curation, metadata management, and model development. The resulting information model is subsequently used to drive information system development from the generation of data standards documentation to the configuration of federated registries and search engines. This paper will provide an overview of the development of the PDS4 Information Model and focus on the application of the Open Archive Information System (OAIS) Reference Model - ISO 14721:2003, the Metadata Registry (MDR) Standard - ISO/IEC 11179, and the E-Business XML Standard to help ensure the long-term preservation and curation of planetary science data. Copyright 2013 California Institute of Technology Government sponsorship acknowledged

  16. Simulation of the planetary interior differentiation processes in the laboratory.

    Science.gov (United States)

    Fei, Yingwei

    2013-11-15

    A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process.

  17. HM Sagittae as a young planetary nebula

    International Nuclear Information System (INIS)

    Kwok, S.; Purton, C.R.

    1979-01-01

    HM Sagittae is suggested to be a very young planetary nebula recently transformed from a red-giant star through continuous mass loss. The observational data for HM Sge have been analyzed in terms of the interacting stellar wind model of planetary nebula formation. The model is in accord with virtually all the spectral data available--radio, optical, and infrared--as well as with the remarkable brightening of HM Sge observed in 1975. In particular, all three gaseous components predicted by the model are observed in the optical spectrum. The density in the newly formed shell is found to be at least 5 x 10 7 cm -3 , a value considerably higher than that found by the conventional analysis, which assumes a single-component homogeneous nebula. The radio spectrum is dominated by free-free emission from the remnant red-giant wind. The infrared spectrum suggests the presence of two dust components, one consisting of silicate grains left over from the red-giant stage and the other of grains newly formed after the 1975 brightening. The low observed shell mass is consistent with the interacting stellar wind model but is not consistent with the conventional sudden-ejection model of planetary nebula formation

  18. Degassing of reduced carbon from planetary basalts.

    Science.gov (United States)

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential.

  19. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability

    Science.gov (United States)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan

    2015-01-01

    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen

  20. Enabling Higher Data Rates for Planetary Science Missions

    Science.gov (United States)

    Deutsch, L. J.; Townes, S. A.; Lazio, J.; Bell, D. J.; Chahat, N. E.; Kovalik, J. M.; Kuperman, I.; Sauder, J.; Liebrecht, P. E.

    2017-12-01

    The data rate from deep space spacecraft has increased by more than 10 orders of magnitude since the first lunar missions in the 1960s. The demand for increased data rates has stemmed from the increasing sophistication of the science questions being addressed and the concomitant increase in the complexity of the missions themselves (from fly-by to orbit to land and rove). Projections for the next few decades suggest the demand for data rates for deep space missions will continue to increase by approximately one order of magnitude every decade, driven by these same factors. Achieving higher data rates requires a partnership between the spacecraft and the ground system. We describe a series of technology developments for flight telecommunications systems, both at radio frequency (RF) and optical, to enable spacecraft to transmit and receive larger data volumes. These technology developments include deployable high gain antennas for small spacecraft, re-programmable software-defined radios, and optical communication packages designed for CubeSat form factors. The intent is that these developments would provide enhancements in capability for both spacecraft-Earth and spacecraft-spacecraft telecommunications. We also describe the future planning for NASA's Deep Space Network (DSN), which remains the prime conduit for data from all planetary science missions. Through a combination of new antennas and backends being installed over the next five years and incorporation of optical communications, the DSN aims to ensure that the historical improvements in data rates and volumes will continue for many decades. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  1. Planetary Science Exploration Through 2050: Strategic Gaps in Commercial and International Partnerships

    Science.gov (United States)

    Ghosh, A.

    2017-02-01

    Planetary science will see greater participation from the commercial sector and international space agencies. It is critical to understand how these entities can partner with NASA through 2050 and help realize NASA's goals in planetary science.

  2. Agriculture production as a major driver of the Earth system exceeding planetary boundaries

    Directory of Open Access Journals (Sweden)

    Bruce M. Campbell

    2017-12-01

    Full Text Available We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or "safe limits": land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone depletion, atmospheric aerosol loading, and introduction of novel entities. Two planetary boundaries have been fully transgressed, i.e., are at high risk, biosphere integrity and biogeochemical flows, and agriculture has been the major driver of the transgression. Three are in a zone of uncertainty i.e., at increasing risk, with agriculture the major driver of two of those, land-system change and freshwater use, and a significant contributor to the third, climate change. Agriculture is also a significant or major contributor to change for many of those planetary boundaries still in the safe zone. To reduce the role of agriculture in transgressing planetary boundaries, many interventions will be needed, including those in broader food systems.

  3. Sealed Planetary Return Canister (SPRC), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  4. A Method Based on Multi-Sensor Data Fusion for Fault Detection of Planetary Gearboxes

    Directory of Open Access Journals (Sweden)

    Detong Kong

    2012-02-01

    Full Text Available Studies on fault detection and diagnosis of planetary gearboxes are quite limited compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary gearboxes, multiple sensors mounted on different locations provide complementary information on the health condition of the systems. On this basis, a fault detection method based on multi-sensor data fusion is introduced in this paper. In this method, two features developed for planetary gearboxes are used to characterize the gear health conditions, and an adaptive neuro-fuzzy inference system (ANFIS is utilized to fuse all features from different sensors. In order to demonstrate the effectiveness of the proposed method, experiments are carried out on a planetary gearbox test rig, on which multiple accelerometers are mounted for data collection. The comparisons between the proposed method and the methods based on individual sensors show that the former achieves much higher accuracies in detecting planetary gearbox faults.

  5. Health condition identification of multi-stage planetary gearboxes using a mRVM-based method

    Science.gov (United States)

    Lei, Yaguo; Liu, Zongyao; Wu, Xionghui; Li, Naipeng; Chen, Wu; Lin, Jing

    2015-08-01

    Multi-stage planetary gearboxes are widely applied in aerospace, automotive and heavy industries. Their key components, such as gears and bearings, can easily suffer from damage due to tough working environment. Health condition identification of planetary gearboxes aims to prevent accidents and save costs. This paper proposes a method based on multiclass relevance vector machine (mRVM) to identify health condition of multi-stage planetary gearboxes. In this method, a mRVM algorithm is adopted as a classifier, and two features, i.e. accumulative amplitudes of carrier orders (AACO) and energy ratio based on difference spectra (ERDS), are used as the input of the classifier to classify different health conditions of multi-stage planetary gearboxes. To test the proposed method, seven health conditions of a two-stage planetary gearbox are considered and vibration data is acquired from the planetary gearbox under different motor speeds and loading conditions. The results of three tests based on different data show that the proposed method obtains an improved identification performance and robustness compared with the existing method.

  6. Planetary Sciences, Geodynamics, Impacts, Mass Extinctions, and Evolution: Developments and Interconnections

    Directory of Open Access Journals (Sweden)

    Jaime Urrutia-Fucugauchi

    2016-01-01

    Full Text Available Research frontiers in geophysics are being expanded, with development of new fields resulting from technological advances such as the Earth observation satellite network, global positioning system, high pressure-temperature physics, tomographic methods, and big data computing. Planetary missions and enhanced exoplanets detection capabilities, with discovery of a wide range of exoplanets and multiple systems, have renewed attention to models of planetary system formation and planet’s characteristics, Earth’s interior, and geodynamics, highlighting the need to better understand the Earth system, processes, and spatio-temporal scales. Here we review the emerging interconnections resulting from advances in planetary sciences, geodynamics, high pressure-temperature physics, meteorite impacts, and mass extinctions.

  7. The International Planetary Data Alliance (IPDA)

    Science.gov (United States)

    Stein, Thomas; Gopala Krishna, Barla; Crichton, Daniel J.

    2016-07-01

    The International Planetary Data Alliance (IPDA) is a close association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA is focused on developing an international standard that allows discovery, query, access, and usage of such data across international planetary data archive systems. While trends in other areas of space science are concentrating on the sharing of science data from diverse standards and collection methods, the IPDA concentrates on promoting governing data standards that drive common methods for collecting and describing planetary science data across the international community. This approach better supports the long term goal of easing data sharing across system and agency boundaries. An initial starting point for developing such a standard will be internationalization of NASA's Planetary Data System's (PDS) PDS4 standard. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. It has grown to a dozen member agencies represented by a number of different groups through the IPDA Steering Committee. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of

  8. Teaching, learning, and planetary exploration

    Science.gov (United States)

    Brown, Robert A.

    1992-01-01

    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers

  9. Subsurface Prospecting by Planetary Drones, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program innovates subsurface prospecting by planetary drones to seek a solution to the difficulty of robotic prospecting, sample acquisition, and sample...

  10. Get Involved in Planetary Discoveries through New Worlds, New Discoveries

    Science.gov (United States)

    Shupla, Christine; Shipp, S. S.; Halligan, E.; Dalton, H.; Boonstra, D.; Buxner, S.; SMD Planetary Forum, NASA

    2013-01-01

    "New Worlds, New Discoveries" is a synthesis of NASA’s 50-year exploration history which provides an integrated picture of our new understanding of our solar system. As NASA spacecraft head to and arrive at key locations in our solar system, "New Worlds, New Discoveries" provides an integrated picture of our new understanding of the solar system to educators and the general public! The site combines the amazing discoveries of past NASA planetary missions with the most recent findings of ongoing missions, and connects them to the related planetary science topics. "New Worlds, New Discoveries," which includes the "Year of the Solar System" and the ongoing celebration of the "50 Years of Exploration," includes 20 topics that share thematic solar system educational resources and activities, tied to the national science standards. This online site and ongoing event offers numerous opportunities for the science community - including researchers and education and public outreach professionals - to raise awareness, build excitement, and make connections with educators, students, and the public about planetary science. Visitors to the site will find valuable hands-on science activities, resources and educational materials, as well as the latest news, to engage audiences in planetary science topics and their related mission discoveries. The topics are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved? How did life begin and evolve on Earth, and has it evolved elsewhere in our solar system? Scientists and educators are encouraged to get involved either directly or by sharing "New Worlds, New Discoveries" and its resources with educators, by conducting presentations and events, sharing their resources and events to add to the site, and adding their own public events to the site’s event calendar! Visit to find quality resources and ideas. Connect with educators, students and the public to

  11. Hayes Receives 2012 Ronald Greeley Early Career Award in Planetary Science: Citation

    Science.gov (United States)

    Leshin, Laurie A.

    2013-10-01

    Alexander G. Hayes Jr. received the 2012 Ronald Greeley Early Career Award in Planetary Science at the 2012 AGU Fall Meeting, held 3-7 December in San Francisco, Calif. The award recognizes significant early-career contributions to planetary science.

  12. Planets and planetarians. A history of theories of the origin of planetary systems

    Energy Technology Data Exchange (ETDEWEB)

    Jaki, S L

    1978-01-01

    A critical review is presented of theories of the origin of planetary systems. The book deals chronologically with the subject from Greek times to the present. The last of the eight chapters covers the post-war period. Particular attention is paid to theories of the origin of our own planetary system and to the degree of frequency of planetary systems (in particular, the frequency of planets carrying life in some form) in the universe.

  13. Planetary Surface-Atmosphere Interactions

    Science.gov (United States)

    Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.

    2013-09-01

    Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.

  14. Evolution of space drones for planetary exploration: A review

    Science.gov (United States)

    Hassanalian, M.; Rice, D.; Abdelkefi, A.

    2018-02-01

    In the past decade, there has been a tendency to design and fabricate drones which can perform planetary exploration. Generally, there are various ways to study space objects, such as the application of telescopes and satellites, launching robots and rovers, and sending astronauts to the targeted solar bodies. However, due to the advantages of drones compared to other approaches in planetary exploration, ample research has been carried out by different space agencies in the world, including NASA to apply drones in other solar bodies. In this review paper, several studies which have been performed on space drones for planetary exploration are consolidated and discussed. Design and fabrication challenges of space drones, existing methods for their flight tests, different methods for deployment and planet entry, and various navigation and control approaches are reviewed and discussed elaborately. Limitations of applying space drones, proposed solutions for future space drones, and recommendations are also presented and discussed.

  15. Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure

    Science.gov (United States)

    André, N.; Grande, M.; Achilleos, N.; Barthélémy, M.; Bouchemit, M.; Benson, K.; Blelly, P.-L.; Budnik, E.; Caussarieu, S.; Cecconi, B.; Cook, T.; Génot, V.; Guio, P.; Goutenoir, A.; Grison, B.; Hueso, R.; Indurain, M.; Jones, G. H.; Lilensten, J.; Marchaudon, A.; Matthiä, D.; Opitz, A.; Rouillard, A.; Stanislawska, I.; Soucek, J.; Tao, C.; Tomasik, L.; Vaubaillon, J.

    2018-01-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will make twelve new services accessible to the research community, space agencies, and industrial partners planning for space missions. These services will in particular be dedicated to the following key planetary environments: Mars (in support of the NASA MAVEN and European Space Agency (ESA) Mars Express and ExoMars missions), comets (building on the outstanding success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUpiter ICy moon Explorer mission), and one of these services will aim at predicting and detecting planetary events like meteor showers and impacts in the Solar System. This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather as well as to space situational awareness in the tools and models available within the partner institutes. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. PSWS will provide the additional research and tailoring required to apply them for these purposes. PSWS will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end

  16. A phase angle based diagnostic scheme to planetary gear faults diagnostics under non-stationary operational conditions

    Science.gov (United States)

    Feng, Ke; Wang, Kesheng; Ni, Qing; Zuo, Ming J.; Wei, Dongdong

    2017-11-01

    Planetary gearbox is a critical component for rotating machinery. It is widely used in wind turbines, aerospace and transmission systems in heavy industry. Thus, it is important to monitor planetary gearboxes, especially for fault diagnostics, during its operational conditions. However, in practice, operational conditions of planetary gearbox are often characterized by variations of rotational speeds and loads, which may bring difficulties for fault diagnosis through the measured vibrations. In this paper, phase angle data extracted from measured planetary gearbox vibrations is used for fault detection under non-stationary operational conditions. Together with sample entropy, fault diagnosis on planetary gearbox is implemented. The proposed scheme is explained and demonstrated in both simulation and experimental studies. The scheme proves to be effective and features advantages on fault diagnosis of planetary gearboxes under non-stationary operational conditions.

  17. Generic and scientific constraints involving geoethics and geoeducation in planetary geosciences

    Science.gov (United States)

    Martínez-Frías, Jesús

    2013-04-01

    Geoscience education is a key factor in the academic, scientific and professional progress of any modern society. Geoethics is an interdisciplinary field, which involves Earth and Planetary Sciences as well as applied ethics, regarding the study of the abiotic world. These coss-cutting interactions linking scientific, societal and cultural aspects, consider our planet, in its modern approach, as a system and as a model. This new perspective is extremely important in the context of geoducation in planetary geosciences. In addition, Earth, our home planet, is the only planet in our solar system known to harbor life. This also makes it crucial to develop any scientific strategy and methodological technique (e.g. Raman spectroscopy) of searching for extraterrestrial life. In this context, it has been recently proposed [1-3] that the incorporation of the geoethical and geodiversity issues in planetary geology and astrobiology studies would enrich their methodological and conceptual character (mainly but not only in relation to planetary protection). Modern geoscience education must take into account that, in order to understand the origin and evolution of our planet, we need to be aware that the Earth is open to space, and that the study of meteorites, asteroids, the Moon and Mars is also essential for this purpose (Earth analogs are also unique sites to define planetary guidelines). Generic and scientific constraints involving geoethics and geoeducation should be incorporated into the teaching of all fundamental knowledge and skills for students and teachers. References: [1] Martinez-Frias, J. et al. (2009) 9th European Workshop on Astrobiology, EANA 09, 12-14 October 2009, Brussels, Belgiam. [2] Martinez-Frias, J., et al. (2010) 38th COSPAR Scientific Assembly. Protecting the Lunar and Martian Environments for Scientific Research, Bremen, Germany, 18-25 July. [3] Walsh et al. (2012) 43rd Lunar and Planetary Science Conference, 1910.pdf

  18. Planets and planetarians. A history of theories of the origin of planetary systems

    International Nuclear Information System (INIS)

    Jaki, S.L.

    1978-01-01

    A critical review is presented of theories of the origin of planetary systems. The book deals chronologically with the subject from Greek times to the present. The last of the eight chapters covers the post-war period. Particular attention is paid to theories of the origin of our own planetary system and to the degree of frequency of planetary systems (in particular, the frequency of planets carrying life in some form) in the universe. (U.K.)

  19. 78 FR 64253 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Science.gov (United States)

    2013-10-28

    ...; Issues and Status --Planetary Protection for Cached Mars Samples --Planetary Science Update --Mars... later than the close of business November 5, 2013. Foreign Nationals must provide following information: full name, gender, date/place of birth, citizenship, home address, visa information (number, type...

  20. Automated Planning and Scheduling for Planetary Rover Distributed Operations

    Science.gov (United States)

    Backes, Paul G.; Rabideau, Gregg; Tso, Kam S.; Chien, Steve

    1999-01-01

    Automated planning and Scheduling, including automated path planning, has been integrated with an Internet-based distributed operations system for planetary rover operations. The resulting prototype system enables faster generation of valid rover command sequences by a distributed planetary rover operations team. The Web Interface for Telescience (WITS) provides Internet-based distributed collaboration, the Automated Scheduling and Planning Environment (ASPEN) provides automated planning and scheduling, and an automated path planner provided path planning. The system was demonstrated on the Rocky 7 research rover at JPL.

  1. Bringing Terramechanics to bear on Planetary Rover Design

    Science.gov (United States)

    Richter, L.

    2007-08-01

    Thus far, planetary rovers have been successfully operated on the Earth's moon and on Mars. In particular, the two NASA Mars Exploration Rovers (MERs) ,Spirit' and ,Opportunity' are still in sustained daily operations at two sites on Mars more than 3 years after landing there. Currently, several new planetary rover missions are in development targeting Mars (the US Mars Science Lab vehicle for launch in 2009 and ESA's ExoMars rover for launch in 2013), with lunar rover missions under study by China and Japan for launches around 2012. Moreover, the US Constellation program is preparing pre-development of lunar rovers for initially unmanned and, subsequently, human missions to the Moon with a corresponding team dedicated to mobility system development having been set up at the NASA Glenn Research Center. Given this dynamic environment, it was found timely to establish an expert group on off-the-road mobility as relevant for robotic vehicles that would involve individuals representing the various on-going efforts on the different continents. This was realized through the International Society of Terrain-Vehicle Systems (ISTVS), a research organisation devoted to terramechanics and to the ,science' of off-the-road vehicle development which as a result is just now establishing a Technical Group on Terrestrial and Planetary Rovers. Members represent space-related as well as military research institutes and universities from the US, Germany, Italy, and Japan. The group's charter for 2007 is to define its objectives, functions, organizational structure and recommended research objectives to support planetary rover design and development. Expected areas of activity of the ISTVS-sponsored group include: the problem of terrain specification for planetary rovers; identification of limitations in modelling of rover mobility; a survey of existing rover mobility testbeds; the consolidation of mobility predictive models and their state of validation; sensing and real

  2. PSUP: A Planetary SUrface Portal

    Science.gov (United States)

    Poulet, F.; Quantin-Nataf, C.; Ballans, H.; Dassas, K.; Audouard, J.; Carter, J.; Gondet, B.; Lozac'h, L.; Malapert, J.-C.; Marmo, C.; Riu, L.; Séjourné, A.

    2018-01-01

    The large size and complexity of planetary data acquired by spacecraft during the last two decades create a demand within the planetary community for access to the archives of raw and high level data and for the tools necessary to analyze these data. Among the different targets of the Solar System, Mars is unique as the combined datasets from the Viking, Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions provide a tremendous wealth of information that can be used to study the surface of Mars. The number and the size of the datasets require an information system to process, manage and distribute data. The Observatories of Paris Sud (OSUPS) and Lyon (OSUL) have developed a portal, called PSUP (Planetary SUrface Portal), for providing users with efficient and easy access to data products dedicated to the Martian surface. The objectives of the portal are: 1) to allow processing and downloading of data via a specific application called MarsSI (Martian surface data processing Information System); 2) to provide the visualization and merging of high level (image, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu), and 3) to distribute some of these specific high level data with an emphasis on products issued by the science teams of OSUPS and OSUL. As the MarsSI service is extensively described in a companion paper (Quantin-Nataf et al., companion paper, submitted to this special issue), the present paper focus on the general architecture and the functionalities of the web-based user interface MarsVisu. This service provides access to many data products for Mars: albedo, mineral and thermal inertia global maps from spectrometers; mosaics from imagers; image footprints and rasters from the MarsSI tool; high level specific products (defined as catalogs or vectors). MarsVisu can be used to quickly assess the visualized processed data and maps as well as identify areas that have not been mapped yet

  3. High pressure studies of planetary matter

    International Nuclear Information System (INIS)

    Ross, M.

    1989-06-01

    Those materials which are of greatest interest to the physics of the deep planetary interiors are Fe, H 2 , He and the Ices. These are sufficiently diverse and intensively studied to offer an overview of present day high pressure research. 13 refs., 1 fig

  4. Shelf life extension of litchi (Litchi chinensis) and overcoming quarantine barriers to international trade using radiation technology

    International Nuclear Information System (INIS)

    Gautam, Satyendra; Saxena, Sudhanshu; Kumar, Sanjeev; Hajare, Sachin N.; Wadhawan, Surbhi; Mishra, B.B.; More, Varsha S.; Sharma, Arun

    2010-01-01

    Litchi (Litchi chinensis) has a very short shelf life of 2-3 days at ambient temperature limiting its marketability. Gamma radiation processing in combination with low temperature storage was explored as a method to achieve shelf life extension and fulfill quarantine requirement for export during storage physics, biochemical, microbiological, organoleptic, antioxidant and radioprotective properties of two major commercially grown Indian cultivars of litchi, 'Shahi' and 'China', were analysed. Radiation treatment reduced microbial load in a dose dependent manner. Radiation (0.5kGy) treated and low temperature stored fruits retained the 'good' organoleptic rating till 28 days of storage while maintaining other quality attributes. (author)

  5. Planetary nebulae and Wolf-Rayet stars in the galactic-centre field

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1979-06-01

    A UK Schmidt objective-prism plate of the Galactic-centre field has been examined. Of the 74 objects in the field which have been catalogued as planetary nebulae, only half appear correctly classified; the others include Be stars, symbiotic stars, and stars without emission lines. A further 19 planetary nebulae and two Wolf-Rayet stars have been discovered.

  6. Implementation of cartographic symbols for planetary mapping in geographic information systems

    Science.gov (United States)

    Nass, A.; van Gasselt, S.; Jaumann, R.; Asche, H.

    2011-09-01

    The steadily growing international interest in the exploration of planets in our Solar System and many advances in the development of space-sensor technology have led to the launch of a multitude of planetary missions to Mercury, Venus, the Earth's moon, Mars and various Outer-Solar System objects, such as the Jovian and Saturnian satellites. Camera instruments carried along on these missions image surfaces in different wavelength ranges and under different viewing angles, permitting additional data to be derived, such as spectral data or digital terrain models. Such data enable researchers to explore and investigate the development of planetary surfaces by analyzing and interpreting the inventory of surface units and structures. Results of such work are commonly abstracted and represented in thematic, mostly geological and geomorphological, maps. In order to facilitate efficient collaboration among different planetary research disciplines, mapping results need to be prepared, described, managed, archived, and visualized in a uniform way. These tasks have been increasingly carried out by means of computer-based geographic information systems (GIS or GI systems) which have come to be widely employed in the field of planetary research since the last two decades. In this paper we focus on the simplification of mapping processes, putting specific emphasis on a cartographically correct visualization of planetary mapping data using GIS-based environments. We present and discuss the implementation of a set of standardized cartographic symbols for planetary mapping based on the Digital Cartographic Standard for Geologic Map Symbolization as prepared by the United States Geological Survey (USGS) for the Federal Geographic Data Committee (FGDC). Furthermore, we discuss various options to integrate this symbol catalog into generic GI systems, and more specifically into the Environmental Systems Research Institute's (ESRI) ArcGIS environment, and focus on requirements for

  7. The European standard on planetary protection requirements.

    Science.gov (United States)

    Debus, André

    2006-01-01

    Since the beginning of solar system exploration, numerous spacecrafts have been sent towards others worlds, and one of the main goals of such missions is the search for extraterrestrial forms of life. It is known that, under certain conditions, some terrestrial entities are able to survive during cruises in space and that they may contaminate other planets (forward contamination). At another level, possible extraterrestrial life forms are unknown and their ability to contaminate the Earth's biosphere (back contamination) in the frame of sample return missions cannot be excluded. Article IX of the Outer Space Treaty (London/Washington, January 27, 1967) requires the preservation of planets and the Earth from contamination. All nations taking part in this Treaty must prevent forward and back contamination during missions exploring our solar system. Consequently, the United Nations (UN-COPUOS) has delegated COSPAR (Committee of Space Research) to take charge of planetary protection and, at present, all space-faring nations must comply with COSPAR policy and consequently with COSPAR planetary protection recommendations. Starting from these recommendations and the "CNES Planetary Protection Standard" document, a working group has been set up in the framework of the "European Cooperation for Space Standardization" (ECSS) to establish the main specifications for preventing cross-contamination between target bodies within the solar system and the Earth-moon system.

  8. A Planetary Park system for the Moon and beyond

    Science.gov (United States)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  9. Onboard Data Processors for Planetary Ice-Penetrating Sounding Radars

    Science.gov (United States)

    Tan, I. L.; Friesenhahn, R.; Gim, Y.; Wu, X.; Jordan, R.; Wang, C.; Clark, D.; Le, M.; Hand, K. P.; Plaut, J. J.

    2011-12-01

    Among the many concerns faced by outer planetary missions, science data storage and transmission hold special significance. Such missions must contend with limited onboard storage, brief data downlink windows, and low downlink bandwidths. A potential solution to these issues lies in employing onboard data processors (OBPs) to convert raw data into products that are smaller and closely capture relevant scientific phenomena. In this paper, we present the implementation of two OBP architectures for ice-penetrating sounding radars tasked with exploring Europa and Ganymede. Our first architecture utilizes an unfocused processing algorithm extended from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS, Jordan et. al. 2009). Compared to downlinking raw data, we are able to reduce data volume by approximately 100 times through OBP usage. To ensure the viability of our approach, we have implemented, simulated, and synthesized this architecture using both VHDL and Matlab models (with fixed-point and floating-point arithmetic) in conjunction with Modelsim. Creation of a VHDL model of our processor is the principle step in transitioning to actual digital hardware, whether in a FPGA (field-programmable gate array) or an ASIC (application-specific integrated circuit), and successful simulation and synthesis strongly indicate feasibility. In addition, we examined the tradeoffs faced in the OBP between fixed-point accuracy, resource consumption, and data product fidelity. Our second architecture is based upon a focused fast back projection (FBP) algorithm that requires a modest amount of computing power and on-board memory while yielding high along-track resolution and improved slope detection capability. We present an overview of the algorithm and details of our implementation, also in VHDL. With the appropriate tradeoffs, the use of OBPs can significantly reduce data downlink requirements without sacrificing data product fidelity. Through the development

  10. Women in Planetary Science: Career Resources and e-Mentoring on Blogs, Twitter, Facebook, Google+, and Pinterest

    Science.gov (United States)

    Niebur, S. M.; Singer, K.; Gardner-Vandy, K.

    2012-08-01

    Fifty-one interviews with women in planetary science are now available as an e-mentoring and teaching resource on WomeninPlanetaryScience.com. Each scientist was nominated and interviewed by a fellow member of the planetary science community, and each gladly shared her advice for advancement in the field. Women in Planetary Science was founded in 2008 to connect communities of current and prospective scientists, to promote proposal and award opportunities, and to stimulate discussion in the planetary science community at large. Regular articles, or posts, by nearly a dozen collaborators highlight a range of current issues for women in this field. These articles are promoted by collaborators on Twitter, Facebook, and Google+ and shared again by the collaborators' contacts, reaching a significantly wider audience. The group's latest project, on Pinterest, is a crowd-sourced photo gallery of more than 350 inspiring women in planetary science; each photo links to the scientist's CV. The interviews, the essays, and the photo gallery are available online as resources for prospective scientists, planetary scientists, parents, and educators.

  11. The effect of roll with passive segment on the planetary rolling process

    Directory of Open Access Journals (Sweden)

    Qing-Ling Zeng

    2015-03-01

    Full Text Available In three-roll planetary rolling process, there is secondary torsion phenomenon that may lead to rolling instability. This article proposed a new idea to alleviate the secondary torsion phenomenon by dividing the secondary torsion segment out of the roll as an independent and passive one. To study the performance of the roll with passive segment, the three-dimensional finite element models of planetary rolling process using actual roll or new roll with passive segment involving elastic–plastic and thermal–mechanical coupling were established by the software ABAQUS/Explicit, and a series of analysis had been done successfully. The rolling temperature and rolling force of planetary mill were in good agreement with the measured results, which indicated that the finite element method would supply important reference merit for three-dimensional thermo-mechanical simulation of the three-roll planetary rolling process. Comparing the simulation results of the two models, the results indicated that the change in the roll structure had just a little influence on the metal deformation, temperature, and rolling force, but it lessened the secondary torsion deformation effectively and improved the outside roundness of the rolled tube slightly. The research provided a new idea for the roll design of three-roll planetary mill (PSW.

  12. NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  13. Planetary tides during the Maunder sunspot minimum

    International Nuclear Information System (INIS)

    Smythe, C.M.; Eddy, J.A.

    1977-01-01

    Sun-centered planetary conjunctions and tidal potentials are here constructed for the AD1645 to 1715 period of sunspot absence, referred to as the 'Maunder Minimum'. These are found to be effectively indistinguishable from patterns of conjunctions and power spectra of tidal potential in the present era of a well established 11 year sunspot cycle. This places a new and difficult restraint on any tidal theory of sunspot formation. Problems arise in any direct gravitational theory due to the apparently insufficient forces and tidal heights involved. Proponents of the tidal hypothesis usually revert to trigger mechanisms, which are difficult to criticise or test by observation. Any tidal theory rests on the evidence of continued sunspot periodicity and the substantiation of a prolonged period of solar anomaly in the historical past. The 'Maunder Minimum' was the most drastic change in the behaviour of solar activity in the last 300 years; sunspots virtually disappeared for a 70 year period and the 11 year cycle was probably absent. During that time, however, the nine planets were all in their orbits, and planetary conjunctions and tidal potentials were indistinguishable from those of the present era, in which the 11 year cycle is well established. This provides good evidence against the tidal theory. The pattern of planetary tidal forces during the Maunder Minimum was reconstructed to investigate the possibility that the multiple planet forces somehow fortuitously cancelled at the time, that is that the positions of the slower moving planets in the 17th and early 18th centuries were such that conjunctions and tidal potentials were at the time reduced in number and force. There was no striking dissimilarity between the time of the Maunder Minimum and any period investigated. The failure of planetary conjunction patterns to reflect the drastic drop in sunspots during the Maunder Minimum casts doubt on the tidal theory of solar activity, but a more quantitative test

  14. Numerical models of planetary dynamos

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.; Roberts, P.H.

    1992-01-01

    We describe a nonlinear, axisymmetric, spherical-shell model of planetary dynamos. This intermediate-type dynamo model requires a prescribed helicity field (the alpha effect) and a prescribed buoyancy force or thermal wind (the omega effect) and solves for the axisymmetric time-dependent magnetic and velocity fields. Three very different time dependent solutions are obtained from different prescribed sets of alpha and omega fields

  15. Using Vulcan to Recreate Planetary Cores

    CERN Document Server

    Collins, G W; Benedetti, L R; Benuzzi-Mounaix, A; Cauble, R; Celliers, P M; Danson, C; Da Silva, L B; Gessner, H; Henry, E; Hicks, D G; Huser, G; Jeanloz, R; Koening, M; Lee, K M; Mackinnon, A J; Moon, S J; Neely, D; Notley, M; Pasley, J; Willi, O

    2001-01-01

    An accurate equation of state (EOS) for planetary constituents at extreme conditions is the key to any credible model of planets or low mass stars. However, experimental validation has been carried out on at high pressure (>few Mbar), and then only on the principal Hugoniot. For planetary and stellar interiors, compression occurs from gravitational force so that material states follow a line of isentropic compression (ignoring phase separation) to ultra-high densities. An example of the predicted states for water along the isentrope for Neptune is shown in a figure. The cutaway figure on the left is from Hubbard, and the phase diagram on the right is from Cavazzoni et al. Clearly these states lie at quite a bit lower temperature and higher density than single shock Hugoniot states but they are at higher temperature than can be achieved with accurate diamond anvil experiments. At extreme densities, material states are predicted to have quite unearthly properties such as high temperature superconductivity and l...

  16. Lunar and Planetary Webcam User's Guide

    CERN Document Server

    Mobberley, Martin

    2006-01-01

    Inexpensive webcams are revolutionizing imaging in amateur astronomy by providing an affordable alternative to cooled-chip astronomical CCD cameras, for photographing the brighter astronomical objects. Webcams – costing only a few tens of dollars – are capable of more advanced high resolution work than "normal" digital cameras because their rapid image download speed can freeze fine planetary details, even through the Earth's turbulent atmosphere. Also, their simple construction makes it easy to remove the lens, allowing them to be used at high power at the projected focus of an astronomical telescope. Webcams also connect direct to a PC, so that software can be used to "stack" multiple images, providing a stunning increase in image quality. In the Lunar and Planetary Webcam User’s Guide Martin Mobberley de-mystifies the jargon of webcams and computer processing, and provides detailed hints and tips for imaging the Sun, Moon and planets with a webcam. He looks at each observing target separately, descri...

  17. Planetary Landscape Geography

    Science.gov (United States)

    Hargitai, H.

    INTRODUCTION Landscape is one of the most often used category in physical ge- ography. The term "landshap" was introduced by Dutch painters in the 15-16th cen- tury. [1] The elements that build up a landscape (or environment) on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements. The same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. Landscapes build up a hierarchic system and cover the whole surface. On Earth, landscapes can be classified and qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered. Using the data from landers and data from orbiters we can now classify planetary landscapes (these can be used as geologic mapping units as well). By looking at a unknown landscape, we can determine the processes that created it and its development history. This was the case in the Pathfinder/Sojourner panoramas. [2]. DISCUSSION Planetary landscape evolution. We can draw a raw landscape develop- ment history by adding the different landscape building elements to each other. This has a strong connection with the planet's thermal evolution (age of the planet or the present surface materials) and with orbital parameters (distance from the central star, orbit excentricity etc). This way we can build a complex system in which we use differ- ent evolutional stages of lithologic, atmospheric, hydrologic and biogenic conditions which determine the given - Solar System or exoplanetary - landscape. Landscape elements. "Simple" landscapes can be found on asteroids: no linear horizon is present (not differentiated body, only impact structures), no atmosphere (therefore no atmospheric scattering - black sky as part of the landscape) and no

  18. The Making of a Pre-Planetary Nebula

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The gas expelled by dying stars gets twisted into intricate shapes and patterns as nebulae form. Now a team of researchers might have some answers about how this happens.Whats a Pre-Planetary Nebula?This H-R diagram for the globular cluster M5 shows where AGB stars lie: they are represented by blue markers here. The AGB is one of the final stages in a low- to intermediate-mass stars lifetime. [Lithopsian]When a low- to intermediate-mass star approaches the end of its lifetime, it moves onto the Asymptotic Giant Branch (AGB) in the Herzsprung-Russell diagram. As the star exhausts its fuel here, it shrugs off its outer layers. These layers of gas then encase the stars core, which is not yet hot enough to ionize the gas and cause it to glow.Instead, during this time the gas is relatively cool and dark, faintly reflecting light from the star and emitting only very dim infrared emission of its own. At this stage, the gas represents a pre-planetary nebula. Only later when the stellar core contracts enough to heat up and emit ionizing radiation does the nebula begin to properly glow, at which point it qualifies as a full planetary nebula.Images of OH231 in optical light (top) and 12CO (bottom) taken from the literature. [See Balick et al. 2017 for full credit]Unexpected ShapesPre-planetary nebulae are a very short-lived evolutionary stage, so weve observed only a few hundred of them which has left many unanswered questions about these objects.One particular mystery is that of their shapes: if these nebulae are formed by stars expelling their outer layers, we would naively expect them to be simple spherical shells and yet we observe pre-planetary nebulae to have intricate shapes and patterns. How does the star create these asymmetric shapes? A team of scientists led by Bruce Balick (University of Washington, Seattle) has now used simulations to address this question.Injecting MassBalick and collaborators use 3D hydrodynamic simulations to model one particular pre-planetary

  19. Humanitarian quarantine in practice: medicine, religion and leprosy in New Caledonia.

    Science.gov (United States)

    Sykes, Ingrid J

    2017-12-01

    Medicine and religion worked in close synchronisation during the leprosy outbreak of New Caledonia (1890-1950). Once isolation of leprosy-affected people became mandatory doctors and missionaries came together to promote a particular form of medical practice that tied charitable zeal with cutting-edge medical research, developing a sophisticated set of medical practices that catered for the soul as well as the body. Such practices went hand-in-hand with ideas developed by doctors in the earlier stages of the epidemic about the way in which the disease had entered the Kanak (local Melanesian) population. Doctors and missionaries admitted that immoral colonial channels had upset the delicate balance of local social and biological rhythms. Yet they also believed that the highly contagious nature of the outbreak was linked to the inferior state of Kanak. This paper aims to highlight the way in which the leprosaria system in New Caledonia represented a double-edged moral high-ground within the French medical colonial narrative. It tracks the complex way in which emotionally charged arguments about contagion, science and spirituality constructed an ideology of humanitarian quarantine which was used to justify a highly aggressive form of medical biocontrol.

  20. Multiscale regime shifts and planetary boundaries

    NARCIS (Netherlands)

    Hughes, T.P.; Carpenter, S.; Rockstrom, J.; Scheffer, M.; Walker, B.

    2013-01-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a

  1. Planning for planetary protection : challenges beyond Mars

    Science.gov (United States)

    Belz, Andrea P.; Cutts, James A.

    2006-01-01

    This document summarizes the technical challenges to planetary protection for these targets of interest and outlines some of the considerations, particularly at the system level, in designing an appropriate technology investment strategy for targets beyond Mars.

  2. Distribution of mass in the planetary system and solar nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Weidenschilling, S J [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1977-09-01

    A model 'solar nebula' is constructed by adding the solar complement of light elements to each planet, using recent models of planetary compositions. Uncertainties in this approach are estimated. The computed surface density varies approximately as rsup(-3/2). Mercury, Mars and the asteroid belt are anomalously low in mass, but processes exist which would preferentially remove matter from these regions. Planetary masses and compositions are generally consistent with a monotonic density distribution in the primordial solar nebula.

  3. Planetary interchange of bioactive material: probability factors and implications.

    Science.gov (United States)

    Clark, B C

    2001-01-01

    It is now well-accepted that both lunar and martian materials are represented in the meteorite collections. Early suggestions that viable organisms might survive natural transport between planets have not yet been thoroughly examined. The concept of Planetary Interchange of Bioactive Material (PIBM) is potentially relevant to the conditions under which life originated. PIBM has been also invoked to infer that the potential danger to Earth from martian materials is non-existent, an inference with, however, many pitfalls. Numerous impediments to efficient transfer of viable organisms exist. In this work, the lethality of space radiation during long transients and the biasing of launched objects toward materials unlikely to host abundant organisms are examined and shown to reduce the likelihood of successful transfer by orders of magnitude. It is also shown that martian meteorites studied to date assuredly have been subjected to sterilizing levels of ionizing radiation in space. PIBM considerations apply to both the solar system locale(s) of the origin of life and to the applicability of planetary protection protocols to preserve the biospheres of planetary bodies, including our own.

  4. Gamma irradiation as a quarantine treatment for Neoleucinodes elegantalis in tomato fruit

    International Nuclear Information System (INIS)

    Costa, Helbert S.F.; Fanaro, Gustavo B.; Araujo, Michel M.; Santillo, Amanda G.; Villavicencio, Anna Lucia C.H.; Faria, Jose Tadeu de; Arthur, Valter

    2009-01-01

    In Brazil the tomato-fruit-borer is responsible up to 45% for the loss of the production. The objective of the present report is evaluate the effects of gamma radiation ( 60 Co) on life cycle (eggs and larvae) of Neoleucinodes elegantalis in tomato fruits. The insects were irradiated at doses of 0 (control), 50, 100, 150, 200, 250, 300 and 400 Gy, in a Gammacell 220 source at dose rate of 1.4 kGy/h. Each treatment consists of four repetitions containing 10 insects, totaling 50 insects. After irradiation, the insects were maintained under controlled conditions of 25±3 deg C and relative humidity from 65 to 75%. The evaluations were done daily, counted the number of died insects, eggs and emerged larvae. With the obtained results, we could determine the lethal and sterilizing doses for all phases of cycle life in N. elegantalis for a possible quarantine treatment to export tomato fruits. These results permit conclude that the dose capable to avoid further development of stage of eggs and larvae were doses of 100 and 200 Gy. (author)

  5. Postharvest Irradiation Treatment for Quarantine Control of Western Flower Thrips (Thysanoptera: Thripidae).

    Science.gov (United States)

    Nicholas, Adrian H; Follett, Peter A

    2018-04-05

    The western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is an important pest of fresh horticultural produce and as such is considered a biosecurity risk in many countries from which it is absent. Information is needed on the radiation tolerance of important surface pests of quarantine importance such as F. occidentalis so that phytosanitary irradiation treatments for exported fresh commodities can be lowered to below the 400 Gy generic treatment currently approved for most insects in the United States and Australia. Lowering the dose will help minimize any product quality problems, reduce costs, and shorten treatment time. In large-scale confirmatory trials conducted in two independent laboratories in Hawaii and Australia, a dose of 250 Gy (measured doses 222-279 Gy) applied to adult F. occidentalis on green beans resulted in no reproduction in 5,050 treated individuals. At 250 Gy, the effective dose is significantly below the 400 Gy generic dose, demonstrating that irradiation at this lowered level is an effective method for the disinfestation of F. occidentalis from fresh horticultural produce.

  6. From red giant to planetary nebula - Dust, asymmetry, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.; Jones, T.J.

    1991-01-01

    The polarization characteristics of stars in the stages of evolution from red giant to planetary nebula are investigated. Polarization is found to be a characteristic of the majority of these stars. The maximum observed polarization increases with age as the star evolves up the asymptotic giant branch (AGB) to the protoplanetary nebula phase, where the polarization reaches a maximum. The polarization then decreases as the star further evolves into a planetary nebula. These results indicate that aspherical mass loss is likely to be a continual feature of the late stages of stellar evolution, maintaining a clear continuity throughout the life of a star from the moment it first develops a measurable dust shell. The aspherical morphology seen in planetary nebulae has its origin in an intrinsic property of the star that is present at least as early as its arrival at the base of the AGB. 77 refs

  7. G25.5 + 0.2: a very young supernova remnant or a galactic planetary nebula?

    International Nuclear Information System (INIS)

    White, R.L.; Becker, R.H.

    1990-01-01

    G25.5 + 0.2, a radio source suggested by previous authors to be a very young galactic supernova remnant, is more likely to be a planetary nebula. Its IRAS colours and fluxes and its radio spectrum and morphology are all consistent with the properties of planetary nebulae; its radio flux and distance imply a large mass of ionized gas, which is expected from a Type I planetary nebula lying in the galactic plane. We suggest some definitive observations which should be able to determine whether this interesting object is a planetary nebula or a supernova remnant. (author)

  8. The mysterious age invariance of the planetary nebula luminosity function bright cut-off

    Science.gov (United States)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2018-05-01

    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

  9. Robotic Tool Changer for Planetary Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions will require compact, lightweight robotic manipulators for handling a variety of tools & instruments without increasing the...

  10. Semiotics Of Shape Of Block Notation As Icon Of Planetary Orbit

    Directory of Open Access Journals (Sweden)

    Ketut Sumerjana

    2017-05-01

    Full Text Available Block notation has a specific shape; however, its existence and the function of its shape are not recognized and are made to be intangible by its function as a symbol of tapping sound. In general, the basic shape of the block notation looks like an ellipse and is similar to the planetary orbit. Therefore, this present study focuses on the ellipse-shaped block notation as the icon of the planetary orbit. The phenomenological qualitative method was employed to interpret the meaning of the basic shape of the block notation as the icon of planetary orbit. The data were collected through guided interview and library research. The data were analyzed using the semiotic process, meaning that in the first phase the text was analyzed based on the shape structure and in the second phase the text was heuristically analyzed. The result of the study shows that the ellipse-shaped block notation is the planetary orbit whose function changes from the manifest function into the latent one, resulting from the function as the tapping sound value. Keywords: form, notation, icon, orbit, planet

  11. Special issue on enabling open and interoperable access to Planetary Science and Heliophysics databases and tools

    Science.gov (United States)

    2018-01-01

    The large amount of data generated by modern space missions calls for a change of organization of data distribution and access procedures. Although long term archives exist for telescopic and space-borne observations, high-level functions need to be developed on top of these repositories to make Planetary Science and Heliophysics data more accessible and to favor interoperability. Results of simulations and reference laboratory data also need to be integrated to support and interpret the observations. Interoperable software and interfaces have recently been developed in many scientific domains. The Virtual Observatory (VO) interoperable standards developed for Astronomy by the International Virtual Observatory Alliance (IVOA) can be adapted to Planetary Sciences, as demonstrated by the VESPA (Virtual European Solar and Planetary Access) team within the Europlanet-H2020-RI project. Other communities have developed their own standards: GIS (Geographic Information System) for Earth and planetary surfaces tools, SPASE (Space Physics Archive Search and Extract) for space plasma, PDS4 (NASA Planetary Data System, version 4) and IPDA (International Planetary Data Alliance) for planetary mission archives, etc, and an effort to make them interoperable altogether is starting, including automated workflows to process related data from different sources.

  12. Secretome Analysis Identifies Potential Pathogenicity/Virulence Factors of Tilletia indica, a Quarantined Fungal Pathogen Inciting Karnal Bunt Disease in Wheat.

    Science.gov (United States)

    Pandey, Vishakha; Singh, Manoj; Pandey, Dinesh; Marla, Soma; Kumar, Anil

    2018-04-01

    Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity/virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI-TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host-derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity/virulence factors homologs that were further subjected to sequence- and structure-based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity/virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. An ultrasonic corer for planetary rock sample retrieval

    International Nuclear Information System (INIS)

    Harkness, P; Cardoni, A; Lucas, M

    2009-01-01

    Several recent and planned space projects have been focussed on surface rovers for planetary missions, such as the U.S. Mars Exploration Rovers and the European ExoMars. The main functions of similar extraterrestrial vehicles in the future will be moving across planetary surfaces and retrieving rock samples. This paper presents a novel ultrasonic rock sampling tool tuned in a longitudinal-torsional mode along with the conceptual design of a full coring apparatus for preload delivery and core removal. Drilling and coring bits have been designed so that a portion of the longitudinal motion supplied by the ultrasonic transducer is converted into torsional motion. Results of drilling/coring trials are also presented.

  14. Planetary Produced Axionlike Particles and Gamma-Ray Flashes

    International Nuclear Information System (INIS)

    Liolios, Anastasios

    2008-01-01

    Axion-like particles could be created in nuclear disintegrations and deexitations of natural radionuclides present in the interior of the planets. For the Earth and the other planets with a surrounding magnetosphere, axion production could result to gamma and X-ray emission, originating from axion to photon conversion in the planetary magnetic fields. The estimated planetary axion fluxes as well as the related gamma ray fluxes from Earth and the giant planets of our solar system are given along with the axion coupling to ordinary matter. A possible connection with the enigmatic Terrestrial Gamma-ray Flashes (TGFs) discovered in 1994 by CGRO/BATSE and also detected with the RHESSI satellite, is also discussed.

  15. Agriculture production as a major driver of the earth system exceeding planetary boundaries

    DEFF Research Database (Denmark)

    Campbell, Bruce Morgan; Beare, Douglas J.; Bennett, Elena M.

    2017-01-01

    We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or “safe limits”: land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone...

  16. Planetary protection issues linked to human missions to Mars

    Science.gov (United States)

    Debus, A.

    According to United Nations Treaties and handled presently by the Committee of Space Research COSPAR the exploration of the Solar System has to comply with planetary protection requirements The goal of planetary protection is to protect celestial bodies from terrestrial contamination and also to protect the Earth environment from an eventual biocontamination carried by return samples or by space systems returning to the Earth Mars is presently one of the main target at exobiology point of view and a lot of missions are operating on travel or scheduled for its exploration Some of them include payload dedicated to the search of life or traces of life and one of the goals of these missions is also to prepare sample return missions with the ultimate objective to walk on Mars Robotic missions to Mars have to comply with planetary protection specifications well known presently and planetary protection programs are implemented with a very good reliability taking into account an experience of 40 years now For sample return missions a set of stringent requirements have been approved by the COSPAR and technical challenges have now to be won in order to preserve Earth biosphere from an eventual contamination risk Sending astronauts on Mars will gather all these constraints added with the human dimension of the mission The fact that the astronauts are huge contamination sources for Mars and that they are also potential carrier of a contamination risk back to Earth add also ethical considerations to be considered For the preparation of a such

  17. Chemical kinetics and modeling of planetary atmospheres

    Science.gov (United States)

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  18. Avenues for Scientist Involvement in Planetary Science Education and Public Outreach

    Science.gov (United States)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Dalton, H.; Bleacher, L.; Scalice, D.

    2012-12-01

    The Planetary Science Education and Public Outreach (E/PO) Forum is charged by NASA's Science Mission Directorate (SMD) with engaging, extending, and supporting the community of E/PO professionals and scientists involved in planetary science education activities in order to help them more effectively and efficiently share NASA science with all learners. A number of resources and opportunities for involvement are available for planetary scientists involved in - or interested in being involved in - E/PO. The Forum provides opportunities for community members to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested planetary scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend annual E/PO community meetings and meetings of opportunity at science and education conferences. The Forum also provides professional development opportunities on a myriad of topics, from common pre-conceptions in planetary science to program evaluation, to delivering effective workshops. Thematic approaches, such as the Year of the Solar System (http://solarsystem.nasa.gov/yss), are coordinated by the Forum; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - currently is being researched by SMD's Audience-Based Working Groups. Their findings and recommendations will be made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also in production is a "one-stop-shop" of SMD E/PO products and resources that can be used in conjunction with E/PO activities. Further supporting higher-education efforts, the Forum coordinates a network of planetary science

  19. Analysis of dynamic meshing characteristic of planetary gear transmission in wind power increasing gearbox

    Directory of Open Access Journals (Sweden)

    Wang Jungang

    2017-01-01

    Full Text Available Dynamic behavior of planetary gear’s tooth contact surface in the different location can better conform operation condition comparing to the general gear pair. Nonlinear finite element algorithm was derived according to the basic control equation of contact dynamics. A finite element model of planetary gear transmission in wind power increasing gearbox was proposed considering different meshing locations based on nonlinear finite element solution. The characteristics of stress distribution at different meshing positions were analyzed. A simulation of the meshing process was conducted using finite element analysis. It was shown that node stresses of external meshing planetary gear varied significantly at different position. The analysis provides some useful insights into the performance of planetary gear’s tooth contact surface.

  20. Global Analysis of a Planetary Gear Train

    Directory of Open Access Journals (Sweden)

    Tongjie Li

    2014-01-01

    Full Text Available By using the Poincaré-like cell-to-cell mapping method and shooting method, the global characteristics of a planetary gear train are studied based on the torsional vibration model with errors of transmission, time-varying meshing stiffness, and multiple gear backlashes. The study results reveal that the planetary with a certain set of parameters has four coexisting periodic orbits, which are P-1, P-2, P-4, and P-8, respectively. P-1 and P-2 motions are not of long-term stability, P-8 motion is of local stability, and P-4 motion is of global stability. Shooting method does not have the capacity of searching coexisting periodic orbits in a global scope, and it is easy to omit some periodic orbits which are far away from the main gropes of periodic orbits.

  1. Exploring the planetary boundary for chemical pollution

    DEFF Research Database (Denmark)

    Diamond, Miriam L.; de Wit, Cynthia A.; Molander, Sverker

    2015-01-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience...... of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales......, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient...

  2. Morphology of bipolar planetary nebulae. I. Two-dimensional spectrophotometry

    International Nuclear Information System (INIS)

    Pascoli, G.

    1990-01-01

    Two-dimensional spectrophotometric observations of bipolar planetary nebulae were performed by using a CCD detector mounted at the Cassegrain focus of either 1.54 m Danish Telescope or 2.2 m German Telescope at La Silla (ESO) in Chile. Emission lines have been selected with the help of narrow band-pass interference filters (Δλ∼ 10 - 20 A). Isophotal maps in various lines Hα, [NII] λ 6584, [OIII] λ 5007 and [SII] λλ 6717-6731 are presented. Particular attention has been given to scrutinize the symmetries inside a few bipolar planetary nebulae, in order to subsequently investigate their space structure

  3. Pythagoras' celestial spheres in the context of a simple model for quantization of planetary orbits

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Neto, Marcal de [Instituto de Quimica, Universidade de Brasilia, Campus Universitario, Asa Norte, 70904-970 Brasilia, DF (Brazil)]. E-mail: marcal@unb.br

    2006-10-15

    In the present article we attempt to search for a correlation between Pythagoras and Kepler's ideas on harmony of the celestial spheres through simple quantization procedure to describe planetary orbits in our solar system. It is reasoned that starting from a Bohr-like atomic model, planetary mean radii and periods of revolution can be obtained from a set of small integers and just one input parameter given by the mean planetary radius of Mercury. It is also shown that the mean planetary distances can be calculated with the help of a Schroedinger-type equation considering the flatness of the solar system. An attempt to obtain planetary radii using both gravitational and electrostatic approaches linked by Newton's dimensionless constant of gravity is presented.

  4. Topics in planetary plasmaspheres

    International Nuclear Information System (INIS)

    Chen, C.K.

    1977-01-01

    Contributions to the understanding of two distinct kinds of planetary plasmaspheres: namely the earth-type characterized by an ionospheric source and a convection limited radial extent, and the Jupiter-type characterized by a satellite source and a radial extent determined by flux tube interchange motions. In both cases the central question is the geometry of the plasma distribution in the magnetosphere as it is determined by the appropriate production and loss mechanisms. The contributions contained herein concern the explication and clarification of these production and loss mechanisms

  5. Considering the Ethical Implications of Space Exploration and Potential Impacts on Planetary Environments and Possible Indigenous Life

    Science.gov (United States)

    Race, Margaret

    Since the early days of the Outer Space Treaty, a primary concern of planetary protection policy has been to avoid contamination of planetary environments by terrestrial microbes that could compromise current or subsequent scientific investigations, particularly those searching for indigenous life. Over the past decade robotic missions and astrobiological research have greatly increased our understanding of diverse planetary landscapes and altered our views about the survivability of terrestrial organisms in extreme environments. They have also expanded notions about the prospect for finding evidence of extraterrestrial life. Recently a number of different groups, including the COSPAR Planetary Protection Workshop in Montreal (January 2008), have questioned whether it is advisable to re-examine current biological planetary protection policy in light of the ethical implications and responsibilities to preserve planetary environments and possible indigenous life. This paper discusses the issues and concerns that have led to recent recommendations for convening an international workshop specifically to discuss planetary protection policy and practices within a broader ethical and practical framework, and to consider whether revisions to policy and practices should be made. In addition to including various international scientific and legal organizations and experts in such a workshop, it will be important to find ways to involve the public in these discussions about ethical aspects of planetary exploration.

  6. Vaccination, quarantine, and hygiene: Korean sex slaves and No. 606 injections during the Pacific War of World War II.

    Science.gov (United States)

    Hwahng, Sel J

    2009-01-01

    During the Pacific War (World War II), Japan maintained an elaborate system of sexual slavery by implementing certain practices based on institutionalized policies of hygiene, efficiency, and the use of mostly Korean girls and women. Two hygienic techniques were established--vaccination and quarantine. No. 606 injections were given at mandatory regularly scheduled medical examinations to prevent and treat venereal disease, and to also deter pregnancy, induce abortions, and ultimately sterilize sex slaves. Secondary textual analysis of data collected from 1995-2000, N = 67 interview transcripts, and participant observation in 2003 and 2006. Geographic area: East Asia and the Pacific Islands.

  7. NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3

    Energy Technology Data Exchange (ETDEWEB)

    Prša, Andrej [Villanova University, Department of Astrophysics and Planetary Science, 800 Lancaster Ave., Villanova, PA 19085 (United States); Harmanec, Petr [Astronomical Institute of the Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, CZ-180 00 Praha 8 (Czech Republic); Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Mamajek, Eric [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Asplund, Martin [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Capitaine, Nicole [SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC, LNE, 61 avenue de lObservatoire, F-75014 Paris (France); Christensen-Dalsgaard, Jørgen [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Depagne, Éric [South African Astronomical Observatory, P.O. Box 9 Observatory, Cape Town (South Africa); Haberreiter, Margit [Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center, Dorfstrasse 33, Davos (Switzerland); Hekker, Saskia [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Hilton, James [US Naval Observatory, 3450 Massachusetts Ave. NW, Washington, DC 20392-5420 (United States); Kopp, Greg [Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, CO 80303-7814 (United States); and others

    2016-08-01

    In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.

  8. NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3

    International Nuclear Information System (INIS)

    Prša, Andrej; Harmanec, Petr; Torres, Guillermo; Mamajek, Eric; Asplund, Martin; Capitaine, Nicole; Christensen-Dalsgaard, Jørgen; Depagne, Éric; Haberreiter, Margit; Hekker, Saskia; Hilton, James; Kopp, Greg

    2016-01-01

    In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.

  9. Space and Planetary Resources

    Science.gov (United States)

    Abbud-Madrid, Angel

    2018-02-01

    The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward

  10. Planetary Data Archiving Activities of ISRO

    Science.gov (United States)

    Gopala Krishna, Barla; D, Rao J.; Thakkar, Navita; Prashar, Ajay; Manthira Moorthi, S.

    ISRO has launched its first planetary mission to moon viz., Chandrayaan-1 on October 22, 2008. This mission carried eleven instruments; a wealth of science data has been collected during its mission life (November 2008 to August 2009), which is archived at Indian Space Science Data Centre (ISSDC). The data centre ISSDC is responsible for the Ingest, storage, processing, Archive, and dissemination of the payload and related ancillary data in addition to real-time spacecraft operations support. ISSDC is designed to provide high computation power, large storage and hosting a variety of applications necessary to support all the planetary and space science missions of ISRO. State-of-the-art architecture of ISSDC provides the facility to ingest the raw payload data of all the science payloads of the science satellites in automatic manner, processes raw data and generates payload specific processed outputs, generate higher level products and disseminates the data sets to principal investigators, guest observers, payload operations centres (POC) and to general public. The data archive makes use of the well-proven archive standards of the Planetary Data System (PDS). The long term Archive for five payloads of Chandrayaan-1 data viz., TMC, HySI, SARA, M3 and MiniSAR is released from ISSDC on19th April 2013 (http://www.issdc.gov.in) to the users. Additionally DEMs generated from possible passes of Chandrayaan-1 TMC stereo data and sample map sheets of Lunar Atlas are also archived and released from ISSDC along with the LTA. Mars Orbiter Mission (MOM) is the recent planetary mission launched on October 22, 2013; currently enroute to MARS, carrying five instruments (http://www.isro.org) viz., Mars Color Camera (MCC) to map various morphological features on Mars with varying resolution and scales using the unique elliptical orbit, Methane Sensor for Mars (MSM) to measure total column of methane in the Martian atmosphere, Thermal Infrared Imaging Spectrometer (TIS) to map surface

  11. Planetary-Whigs: Optical MEMS-Based Seismometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — During this Phase I, Michigan Aerospace Corporation will adapt the design of an optical MEMS seismometer for lunar and other planetary science instrumentation. The...

  12. Sensor Array Analyzer for Planetary Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions such as those planned by NASA and other space agencies over the next few decades require advanced chemical and biological...

  13. On planetary nebulae and Wolf-Rayet stars in the galactic-centre field

    International Nuclear Information System (INIS)

    Allen, D.A.

    1979-01-01

    A UK Schmidt objective-prism plate of the Galactic-centre field has been examined. Of the 74 objects in the field which have been catalogued as planetary nebulae, only half appear correctly classified; the others include Be stars, symbiotic stars, and stars without emission lines. A further 19 planetary nebulae and two Wolf-Rayet stars have been discovered. (author)

  14. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions: Workshop Report

    Science.gov (United States)

    Race, Margaret S. (Editor); Johnson, James E. (Editor); Spry, James A. (Editor); Siegel, Bette; Conley, Catharine A.

    2015-01-01

    This report on Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions summarizes the presentations, deliberations and findings of a workshop at NASA Ames Research Center, March 24-26, 2015, which was attended by more than 100 participants representing a diverse mix of science, engineering, technology, and policy areas. The main objective of the three-day workshop was to identify specific knowledge gaps that need to be addressed to make incremental progress towards the development of NASA Procedural Requirements (NPRs) for Planetary Protection during human missions to Mars.

  15. Planetary Dynamos: Investigations of Saturn and Ancient Mars

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Sabine [University of Toronto

    2012-04-18

    Magnetic field observations by spacecraft missions have provided vital information on planetary dynamos. The four giant planets as well as Earth, Mercury and Ganymede have observable magnetic fields generated by active dynamos. In contrast, Moon and Mars only have remanent crustal fields from dynamo action in their early histories. A variety of magnetic field morphologies and intensities can be found in the solar system. We have found that some of the differences between planetary magnetic fields can be explained as the result of the presence of boundary thermal variations or stably-stratified layers. In this talk, I will discuss how dynamos are affected by these complications and discuss the implications for Mars’ magnetic dichotomy and Saturn’s extremely axisymmetric magnetic field.

  16. Radial Velocity Detection of Extra-Solar Planetary Systems

    Science.gov (United States)

    Cochran, William D.

    2004-01-01

    This NASA Origins Program grant supported four closely related research programs at The University of Texas at Austin: 1) The McDonald Observatory Planetary Search (MOPS) Program, using the McDonald Observatory 2.7m Harlan Smith telescope and its 2dcoude spectrometer, 2) A high-precision radial-velocity survey of Hyades dwarfs, using the Keck telescope and its HIRES spectrograph, 3) A program at McDonald Observatory to obtain spectra of the parent stars of planetary systems at R = 210,000, and 4) the start of high precision radial velocity surveys using the Hobby-Eberly Telescope. The most important results from NASA support of these research programs are described. A list of all papers published under support of this grant is included at the end.

  17. Design of Mobility System for Ground Model of Planetary Exploration Rover

    Directory of Open Access Journals (Sweden)

    Younkyu Kim

    2012-12-01

    Full Text Available In recent years, a number of missions have been planned and conducted worldwide on the planets such as Mars, which involves the unmanned robotic exploration with the use of rover. The rover is an important system for unmanned planetary exploration, performing the locomotion and sample collection and analysis at the exploration target of the planetary surface designated by the operator. This study investigates the development of mobility system for the rover ground model necessary to the planetary surface exploration for the benefit of future planetary exploration mission in Korea. First, the requirements for the rover mobility system are summarized and a new mechanism is proposed for a stable performance on rough terrain which consists of the passive suspension system with 8 wheeled double 4-bar linkage (DFBL, followed by the performance evaluation for the mechanism of the mobility system based on the shape design and simulation. The proposed mobility system DFBL was compared with the Rocker-Bogie suspension system of US space agency National Aeronautics and Space Administration and 8 wheeled mobility system CRAB8 developed in Switzerland, using the simulation to demonstrate the superiority with respect to the stability of locomotion. On the basis of the simulation results, a general system configuration was proposed and designed for the rover manufacture.

  18. Chemical composition of planetary nebulae : Including ISO results

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Feibelman, WA; Henney, WJ; Franco, J; Martos, M; Pena, M

    2002-01-01

    The method of determining abundances using Infrared Space Observatory spectra is discussed. The results for seven planetary nebula are given. Using these data, a preliminary discussion of their evolution is given.

  19. Ultra-Compact Raman Spectrometer for Planetary Explorations

    Science.gov (United States)

    Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul

    2016-01-01

    To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.

  20. Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds

    Science.gov (United States)

    Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.

    2014-12-01

    Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.