Sample records for planetary institute lpi

  1. The Lunar and Planetary Institute Summer Intern Program in Planetary Science (United States)

    Kramer, G. Y.


    Since 1977, the Lunar and Planetary Institute (LPI) Summer Intern Program brings undergraduate students from across the world to Houston for 10 weeks of their summer where they work one-on-one with a scientist at either LPI or Johnson Space Center on a cutting-edge research project in the planetary sciences. The program is geared for students finishing their sophomore and junior years, although graduating seniors may also apply. It is open to international undergraduates as well as students from the United States. Applicants must have at least 50 semester hours of credit (or equivalent sophomore status) and an interest in pursuing a career in the sciences. The application process is somewhat rigorous, requiring three letters of recommendation, official college transcripts, and a letter describing their background, interests, and career goals. The deadline for applications is in early January of that year of the internship. More information about the program and how to apply can be found on the LPI website: Each advisor reads through the applications, looking for academically excellent students and those with scientific interest and backgrounds compatible with the advisor's specific project. Interns are selected fairly from the applicant pool - there are no pre-arranged agreements or selections based on who knows whom. The projects are different every year as new advisors come into the program, and existing ones change their research interest and directions. The LPI Summer Intern Program gives students the opportunity to participate in peer-reviewed research, learn from top-notch planetary scientists, and preview various careers in science. For many interns, this program was a defining moment in their careers - when they decided whether or not to follow an academic path, which direction they would take, and how. While past interns can be found all over the world and in a wide variety of occupations, all share the common bond of

  2. Public Engagement with the Lunar and Planetary Institute (United States)

    Shaner, Andrew; Shupla, Christine; Smith Hackler, Amanda; Buxner, Sanlyn; Wenger, Matthew; Joseph, Emily C. S.


    The Lunar and Planetary Institute's (LPI) public engagement programs target audiences of all ages and backgrounds; in 2016 LPI has expanded its programs to reach wider, more diverse audiences. The status, resources, and findings of these programs, including evaluation results, will be discussed in this poster. LPI's Cosmic Explorations Speaker Series (CESS) is an annual public speaker series to engage the public in space science and exploration. Each thematic series includes four to five presentations held between September and May. Past series' titles have included "Science" on the Silver Screen, The Universe is Out to Get Us and What We Can (or Can't) Do About It, and A User's Guide to the Universe: You Live Here. Here's What You Need to Know. While the presentations are available online after the event, they are now being livestreamed to be accessible to a broader national, and international, audience. Sky Fest events, held four to five times a year, have science content themes and include several activities for children and their parents, night sky viewing through telescopes, and scientist presentations. Themes include both planetary and astronomy topics as well as planetary exploration topics (e.g., celebrating the launch or landing of a spacecraft). Elements of the Sky Fest program are being conducted in public libraries serving audiences underrepresented in STEM near LPI. These programs take place as part of existing hour-long programs in the library. During this hour, young people, typically 6-12 years old, move through three stations where they participate in hands-on activities. Like Sky Fest, these programs are thematic, centered on one over-arching topic such as the Moon or Mars. Beginning in Fall 2016, LPI will present programs at a revitalized park in downtown Houston. Facilities at this park will enable LPI to bring both the Sky Fest and CESS programs into the heart of Houston, which is one of the most diverse cities in the US and the world.

  3. Preparing Planetary Scientists to Engage Audiences (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.


    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  4. Partnering to Enhance Planetary Science Education and Public Outreach Programs (United States)

    Dalton, H.; Shipp, S. S.; Shupla, C. B.; Shaner, A. J.; LaConte, K.


    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions. To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center's Astromaterials Research and Exploration Science group, who provide Apollo samples for the event. Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance. Additional information about LPI's E/PO programs can be found at View a list of LPI E/PO's partners here:

  5. Partnering to Enhance Planetary Science Education and Public Outreach Program (United States)

    Dalton, Heather; Shipp, Stephanie; Shupla, Christine; Shaner, Andrew; LaConte, Keliann


    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions.To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center’s Astromaterials Research and Exploration Science group, who provide Apollo samples for the event.Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance.Additional information about LPI’s E/PO programs can be found at View a list of LPI E/PO’s partners here:

  6. Engaging Audiences in Planetary Science Through Visualizations (United States)

    Shupla, C. B.; Mason, T.; Peticolas, L. M.; Hauck, K.


    One way to share compelling stories is through visuals. The Lunar and Planetary Institute (LPI), in collaboration with Laboratory for Atmospheric and Space Physics (LASP) and Space Science Laboratory at the University of California, Berkeley, has been working with planetary scientists to reach and engage audiences in their research through the use of visualizations. We will share how images and animations have been used in multiple mediums, including the planetarium, Science on a Sphere, the hyperwall, and within apps. Our objectives are to provide a tool that planetary scientists can use to tell their stories, as well as to increase audience awareness of and interest in planetary science. While scientists are involved in the selection of topics and the development of the visuals, LPI and partners seek to increase the planetary science community's awareness of these resources and their ability to incorporate them into their own public engagement efforts. This presentation will share our own resources and efforts, as well as the input received from scientists on how education and public engagement teams can best assist them in developing and using these resources, and disseminating them to both scientists and to informal science education venues.

  7. LPI Linux Certification in a Nutshell

    CERN Document Server

    Haeder, Adam; Pessanha, Bruno; Stanger, James


    Linux deployment continues to increase, and so does the demand for qualified and certified Linux system administrators. If you're seeking a job-based certification from the Linux Professional Institute (LPI), this updated guide will help you prepare for the technically challenging LPIC Level 1 Exams 101 and 102. The third edition of this book is a meticulously researched reference to these exams, written by trainers who work closely with LPI. You'll find an overview of each exam, a summary of the core skills you need, review questions and exercises, as well as a study guide, a practice test,

  8. LPI goes out on a high note

    CERN Document Server


    The LEP Pre-Injector's career came to a close with a new success : the PARRNe experiment. From left to right: Michel Decourtieux, Hervé Lefort, Jacques Obert and Geneviève Le Scornet, members of the PARRNe team, from the Institut de Physique Nucléaire at Orsay, France, behind their target installed at the LPI. After 16 years of service, the LEP Pre-Injector (LPI) was finally closed down at Easter. The LPI was not only one of the essential building blocks of LEP, but it also supplied beams to a whole host of experiments. Here is a look back over some of the highlights of this success story. On 12 April 2001, the curtain was finally brought down on the brilliant career of the LEP Pre-Injector (LPI), which had been supplying electrons and positrons to LEP for eleven years until last November - with 98% reliability! This little gem of an accelerator comprised two entities, the LEP Injector Linac (LIL), which produced electrons and positrons to be accumulated in the Electron Posit...

  9. Interception of LPI radar signals (United States)

    Lee, Jim P.


    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  10. Preparing Graduate Students for Solar System Science and Exploration Careers: Internships and Field Training Courses led by the Lunar and Planetary Institute (United States)

    Shaner, A. J.; Kring, D. A.


    To be competitive in 21st century science and exploration careers, graduate students in planetary science and related disciplines need mentorship and need to develop skills not always available at their home university, including fieldwork, mission planning, and communicating with others in the scientific and engineering communities in the U.S. and internationally. Programs offered by the Lunar and Planetary Institute (LPI) address these needs through summer internships and field training programs. From 2008-2012, LPI hosted the Lunar Exploration Summer Intern Program. This special summer intern program evaluated possible landing sites for robotic and human exploration missions to the lunar surface. By the end of the 2012 program, a series of scientifically-rich landing sites emerged, some of which had never been considered before. Beginning in 2015 and building on the success of the lunar exploration program, a new Exploration Science Summer Intern Program is being implemented with a broader scope that includes both the Moon and near-Earth asteroids. Like its predecessor, the Exploration Science Summer Intern Program offers graduate students a unique opportunity to integrate scientific input with exploration activities in a way that mission architects and spacecraft engineers can use. The program's activities may involve assessments and traverse plans for a particular destination or a more general assessment of a class of possible exploration targets. Details of the results of these programs will be discussed. Since 2010 graduate students have participated in field training and research programs at Barringer (Meteor) Crater and the Sudbury Impact Structure. Skills developed during these programs prepare students for their own thesis studies in impact-cratered terrains, whether they are on the Earth, the Moon, Mars, or other solar system planetary surface. Future field excursions will take place at these sites as well as the Zuni-Bandera Volcanic Field. Skills

  11. Mutual information-based LPI optimisation for radar network (United States)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun


    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  12. Coordinated Analysis 101: A Joint Training Session Sponsored by LPI and ARES/JSC (United States)

    Draper, D. S.; Treiman, A. H.


    The Lunar and Planetary Institute (LPI) and the Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate at NASA Johnson Space Center (JSC), co-sponsored a training session in November 2016 for four early-career scientists in the techniques of coordinated analysis. Coordinated analysis refers to the approach of systematically performing high-resolution and -precision analytical studies on astromaterials, particularly the very small particles typical of recent and near-future sample return missions such as Stardust, Hayabusa, Hayabusa2, and OSIRIS-REx. A series of successive analytical steps is chosen to be performed on the same particle, as opposed to separate subsections of a sample, in such a way that the initial steps do not compromise the results from later steps in the sequence. The data from the entire series can then be integrated for these individual specimens, revealing important in-sights obtainable no other way. ARES/JSC scientists have played a leading role in the development and application of this approach for many years. Because the coming years will bring new sample collections from these and other planned NASA and international exploration missions, it is timely to begin disseminating specialized techniques for the study of small and precious astromaterial samples. As part of the Cooperative Agreement between NASA and the LPI, this training workshop was intended as the first in a series of similar training exercises that the two organizations will jointly sponsor in the coming years. These workshops will span the range of analytical capabilities and sample types available at ARES/JSC in the Astromaterials Research and Astro-materials Acquisition and Curation Offices. Here we summarize the activities and participants in this initial training.

  13. Netted LPI RADARs (United States)


    CHALLENGES ............................66 1. Radar Processing Gain ........................66 2. High Sensitivity Requirement .................68 B...Relationship Between Network Space and Challenges .....................................127 Figure 42. Maneuverability................................129...virtually any kind of terrain. It has five modes: Normal, Weather, ECCM, LPI, and Very Low Clearance ( VLC ). Pictures of the LANTIRN pod aboard and F-16

  14. Institute of Geophysics, Planetary Physics, and Signatures (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  15. Índices Lipídicos Tetravalente (LTI e Pentavalente (LPI em indivíduos saudáveis Lipid Tetrad Index (LTI and Lipid Pentad Index (LPI in healthy subjects

    Directory of Open Access Journals (Sweden)

    Charles Augusto dos Santos Morais


    Full Text Available FUNDAMENTO: A prevalência das doenças cardiovasculares (DCV tem aumentado nos últimos anos. A literatura revela que cerca de 35% dos eventos ateroscleróticos ocorrem na ausência dos fatores de risco clássicos, requerendo uma avaliação individual minuciosa para melhor caracterizar o risco. Os índices lipídicos tetravalente (LTI e pentavalente (LPI constituem uma nova e eficiente forma de avaliação do perfil lipídico e do risco para DCV. OBJETIVO: O presente estudo avaliou o LTI e o LPI em estudantes de graduação, estabelecendo estes índices em indivíduos saudáveis e correlacionando-os com o perfil lipídico tradicional. MÉTODOS: Participaram do estudo 110 estudantes, 48 (44% do sexo masculino e 62 (56% do sexo feminino, com média de idade de 20,9 ± 1,7 anos. Apolipoproteína-AI, apolipoproteína B, colesterol total, lipoproteína (a, triglicérides, HDL e LDL foram analisados usando-se métodos diagnósticos específicos. LTI e LPI foram calculados por meio das equações LTI = [colesterol total x triglicérides x lipoproteína (a / HDL] e LPI = [colesterol total x triglicérides x lipoproteína (a x apolipoproteína B / apolipoproteína A-I], respectivamente. RESULTADOS: Os valores de LTI e de LPI foram significativamente maiores nas mulheres quando comparados aos dos homens. Para os outros parâmetros, houve diferenças significativas entre os gêneros apenas para colesterol total, HDL e apolipoproteína A-I. Houve correlações positivas e significativas entre LDL e LTI e entre LDL e LPI. CONCLUSÃO: Os achados indicam que LTI e LPI estavam associados com LDL, um parâmetro não utilizado para calcular os índices lipídicos e amplamente usado na prática clínica para investigação do risco cardiovascular.BACKGROUND: The prevalence of cardiovascular disease (CVD has increased steadily in recent years. Literature data show that about 35% of atherosclerotic events occur in the absence of classic risk factors, requiring a

  16. Long Scalelength Plasmas for LPI Studies at the Nike Laser (United States)

    Weaver, J. L.; Oh, J.; Bates, J. W.; Schmitt, A. J.; Kehne, D. M.; Wolford, M. F.; Obenschain, S. P.; Serlin, V.; Lehmberg, R. H.; Follett, R. K.; Shaw, J. G.; Myatt, J. F.; McKenty, P. W.; Wei, M. S.; Reynolds, H.; Williams, J.; Tsung, F.


    Studies of laser plasma instabilities (LPI) at the Nike laser have mainly used short pulses, small focal spots, and solid plastic (CH) targets that have yielded maximum gradient scalelengths below 200 microns. The current experimental effort aims to produce larger volume plasmas with 5-10x reduction in the density and velocity gradients as a platform for SBS, SRS, and TPD studies. The next campaign will concentrate on the effects of wavelength shifting and bandwidth changes on CBET in low density (5-10 mg/cm3) CH foam targets. This poster will discuss the development of this new LPI target platform based on modelling with the LPSE code developed at LLE. The presentation will also discuss alternative target schemes (e.g. exploding foils) and improvements to the LPI diagnostic suite and laser operations; for example, a new set of etalons will be available for the next campaign that should double the range of available wavelength shifting. Upgrades to the scattered light spectrometers in general use for LPI studies will also be presented. Work supported by DoE/NNSA.

  17. The effects of scattering on the relative LPI performance of optical and mm-wave systems (United States)

    Oetting, John; Hampton, Jerry


    Previous results comparing the LPI performance of optical and millimeter-wave satellite systems is extended to include the effects of scattering on optical LPI performance. The LPI figure of merit used to compare the two media is the circular equivalent vulnerability radius (CEVR). The CEVR is calculated for typical optical and spread spectrum millimeter-wave systems, and the LPI performance tradeoffs available with each medium are compared. Attention is given to the possibility that light will be scattered into the interceptor's FOV and thereby enable detection in geometries in which interception of the main beam is impossible. The effects of daytime vs. nighttime operation of the optical LPI system are also considered. Some illustrative results for the case of a ground-to-space uplink to a low earth orbit satellite are presented, along with some conclusions and unresolved issues for further study.

  18. Short-Term Prognostic Index for Breast Cancer: NPI or Lpi

    Directory of Open Access Journals (Sweden)

    V. Van Belle


    Full Text Available Axillary lymph node involvement is an important prognostic factor for breast cancer survival but is confounded by the number of nodes examined. We compare the performance of the log odds prognostic index (Lpi, using a ratio of the positive versus negative lymph nodes, with the Nottingham Prognostic Index (NPI for short-term breast cancer specific disease free survival. A total of 1818 operable breast cancer patients treated in the University Hospital of Leuven between 2000 and 2005 were included. The performance of the NPI and Lpi were compared on two levels: calibration and discrimination. The latter was evaluated using the concordance index (cindex, the number of patients in the extreme groups, and difference in event rates between these. The NPI had a significant higher cindex, but a significant lower percentage of patients in the extreme risk groups. After updating both indices, no significant differences between NPI and Lpi were noted.

  19. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative (United States)

    Arvidson, R. E.; Gaddis, L. R.


    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https

  20. LPI Optimization Framework for Target Tracking in Radar Network Architectures Using Information-Theoretic Criteria

    Directory of Open Access Journals (Sweden)

    Chenguang Shi


    Full Text Available Widely distributed radar network architectures can provide significant performance improvement for target detection and localization. For a fixed radar network, the achievable target detection performance may go beyond a predetermined threshold with full transmitted power allocation, which is extremely vulnerable in modern electronic warfare. In this paper, we study the problem of low probability of intercept (LPI design for radar network and propose two novel LPI optimization schemes based on information-theoretic criteria. For a predefined threshold of target detection, Schleher intercept factor is minimized by optimizing transmission power allocation among netted radars in the network. Due to the lack of analytical closed-form expression for receiver operation characteristics (ROC, we employ two information-theoretic criteria, namely, Bhattacharyya distance and J-divergence as the metrics for target detection performance. The resulting nonconvex and nonlinear LPI optimization problems associated with different information-theoretic criteria are cast under a unified framework, and the nonlinear programming based genetic algorithm (NPGA is used to tackle the optimization problems in the framework. Numerical simulations demonstrate that our proposed LPI strategies are effective in enhancing the LPI performance for radar network.

  1. Laser Plasma Instability (LPI) Driven Light Scattering Measurements with Nike KrF Laser (United States)

    Oh, J.; Weaver, J. L.; Kehne, D. M.; Obenschain, S. P.; McLean, E. A.; Lehmberg, R. H.


    With the short wavelength (248 nm), large bandwidth (1˜2 THz), and ISI beam smoothing, Nike KrF laser is expected to have higher LPI thresholds than observed at other laser facilities. Previous measurements using the Nike laser [J. L. Weaver et al, Phys. Plasmas 14, 056316 (2007)] showed no LPI evidence from CH targets up to I˜2x10^15 W/cm^2. For further experiments to detect LPI excitation, Nike capabilities have been extended to achieve higher laser intensities by tighter beam focusing and higher power pulses. This talk will present results of a recent LPI experiment with the extended Nike capabilities focusing on light emission data in spectral ranges relevant to the Raman (SRS) and Two-Plasmon Decay (TPD) instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. The measurements were conducted at laser intensities of 10^15˜10^16 W/cm^2 on planar targets of CH solids and RF foams.

  2. Autonomous Non-Linear Classification of LPI Radar Signal Modulations

    National Research Council Canada - National Science Library

    Gulum, Taylan O


    ...) radar modulations is investigated. A software engineering architecture that allows a full investigation of various preprocessing algorithms and classification techniques is applied to a database of important LPI radar waveform...

  3. A Planetary Geophysicist Does EPO: Lessons Learned Along the Way (United States)

    Kiefer, W. S.


    My "day job" is numerical modeling of the interiors of the terrestrial planets, but I have also done EPO projects for the last 17 years while at the Lunar and Planetary Institute. These range from single, hour long talks in classrooms or astronomy clubs, to week-long summer workshops for teachers and librarians, and even semester-long programs, along with a number of curriculum development projects. EPO projects are a great way to help develop both the next generation of scientists and, more importantly, of scientifically literate citizens and taxpayers. Here are a few lessons learned along the way in the school of hard knocks. (1) An engaging delivery style is even more important in EPO presentations than it is in college lectures or conference presentations. Emphasize a few key concepts rather than numerous facts, and keep the jargon out. Good analogies can go a long way towards explaining a concept to any age group. I teach the role of size in planetary cooling by first asking students how long it takes to cook food of various sizes (a hamburger, roast beef, turkey). (2) If you will be working with a group of students for more than one class period, classroom friendly activities strengthen the learning process. Such activities do not need to be elaborate - when teaching about the Moon, I sometimes assign students to take their parents outside at night and show them how to find lava flows on the Moon. Teachers usually need to have classroom activities that are aligned to state or national teaching standards. Fortunately, many effective, standards-aligned activities already exist, so you don't need to reinvent the wheel. For a useful listing of planetary science and astronomy activities, see the LPI website (3) Although EPO work can be personally rewarding, it is not always well rewarded in a professional context, and it can be difficult to find the time and financial resources to sustain major projects. We sometimes use a

  4. LPI Experiments at the Nike Laser* (United States)

    Weaver, J.; Oh, J.; Afeyan, B.; Phillips, L.; Seely, J.; Brown, C.; Karasik, M.; Serlin, V.; Obenschain, S.; Chan, L.-Y.; Kehne, D.; Brown, D.; Schmitt, A.; Velikovich, A.; Feldman, U.; Holland, G.; Aglitskiy, Y.


    Advanced implosion designs under development at NRL for direct drive inertial confinement fusion incorporate high intensity pulses from a krypton-fluoride (KrF) laser to achieve significant gain with lower total laser energy (Etot˜500 kJ). These designs will be affected by the thresholds and magnitudes of laser plasma instabilities (LPI). The Nike laser can create short, high intensity pulses (t 10^15 W/cm^2) to explore how LPI will be influenced by the deep UV (248 nm), broad bandwidth (2-3 THz), and induced spatial incoherence beam smoothing of the NRL KrF laser systems. Previous results demonstrated no visible/VUV signatures of two-plasmon decay (2φp) for overlapped intensities ˜2x10^15 W/cm^2. We have increased the laser intensity and expanded the range of targets and diagnostics. Single and double pulse experiments are being planned with solid, foam, and cryogenic targets. In addition to spectrometers to study SRS, 2φp, SBS, and the parametric decay instability, hard x-ray spectrometers (hν>2 keV) and a scintillator/photomultiplier array (hν>10 keV) have been deployed to examine hot electron generation. *Work supported by U. S. DoE.

  5. Institute of Geophyics and Planetary Physics. Annual report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, F.J. [ed.


    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, Riverside, and Irvine and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the six branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, high-pressure sciences, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and is structured around three research centers. The Center for Geosciences, headed by George Zandt and Frederick Ryerson, focuses on research in geophysics and geochemistry. The Center for High-Pressure Sciences, headed by William Nellis, sponsors research on the properties of planetary materials and on the synthesis and preparation of new materials using high-pressure processing.

  6. Updated LPI Thresholds for the Nike Laser* (United States)

    Weaver, J. L.; Oh, J.; Afeyan, B.; Phillips, L.; Seely, J.; Kehne, D.; Brown, C.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Holland, G.; Manka, C.; Lehmberg, R. H.; McLean, E.


    Advanced implosion designs for direct drive inertial confinement fusion use high laser intensities (10^15-10^16 W/cm^2) to achieve gain (g>100) with a reduction in total laser energy (ENike laser at NRL are an attractive choice due to their combination of short wavelength (248 nm), large bandwidth (1-2 THz), and beam smoothing by induced spatial incoherence but the potential threat from laser-plasma instabilities (LPI) needs to be assessed. The 2008 LPI campaign at Nike yielded threshold intensities above 10^15 W/cm^2 for the two-plasmon instability, a value higher than reported for 351 nm glass lasers. The experiments used a planar geometry, solid polystyrene targets, and a subset of beams (E<200 J) with a reduced focal spot (d<125 μm). The 2009 campaign extended the shot parameters to higher laser energies (E<1 kJ) and larger spot sizes (d<300 μm). Spectrally-resolved and time-resolved measurements of x-rays and emission near ^1/2φo and ^3/2φo harmonics of the laser wavelength show threshold intensities consistent with the 2008 results. *Work supported by DoE/NNSA

  7. LPI studies with grazing incidence irradiation at the Nike laser (United States)

    Weaver, J.; Kehne, D.; Schmitt, A.; Obenschain, S.; Serlin, V.; Oh, J.; Lehmberg, R.; Seely, J.


    Studies of laser plasma instabilities (LPI) at the Nike laser facility at NRL have previously concentrated on planar targets irradiated with their surface normal aligned to the central axis of the laser. Shots with planar targets rotated up 60° to the laser have shown changes in thresholds for the two-plasmon decay instability and stimulated Raman scattering near the quarter critical region. In the case of rotated low-Z targets, spectra were observed to shift to lower wavelength and were substantially stronger in the visible and ultraviolet spectral ranges. The low-Z target data show growth at an incident intensity slightly below (~30%) the threshold values observed at normal incidence. A rapid rise in signal level over the same laser intensities was also observed in the hard x-ray data which serve as an overall indicator of LPI activity. Shots with rotated planar high-Z targets showed that the visible and ultraviolet emissions dropped significantly when compared to low-Z targets in the same geometry. This presentation will include results from upcoming experiments to determine the LPI signal for low-Z, high-Z, and high-Z coated targets at lower laser intensities for several angles of target rotation. Shots with widely separated laser beams are also planned to explore cross beam energy transport at Nike. Work supported by DoE/NNSA.

  8. Índices Lipídicos Tetravalente (LTI e Pentavalente (LPI em indivíduos saudáveis

    Directory of Open Access Journals (Sweden)

    Charles Augusto dos Santos Morais


    Full Text Available FUNDAMENTO: A prevalência das doenças cardiovasculares (DCV tem aumentado nos últimos anos. A literatura revela que cerca de 35% dos eventos ateroscleróticos ocorrem na ausência dos fatores de risco clássicos, requerendo uma avaliação individual minuciosa para melhor caracterizar o risco. Os índices lipídicos tetravalente (LTI e pentavalente (LPI constituem uma nova e eficiente forma de avaliação do perfil lipídico e do risco para DCV. OBJETIVO: O presente estudo avaliou o LTI e o LPI em estudantes de graduação, estabelecendo estes índices em indivíduos saudáveis e correlacionando-os com o perfil lipídico tradicional. MÉTODOS: Participaram do estudo 110 estudantes, 48 (44% do sexo masculino e 62 (56% do sexo feminino, com média de idade de 20,9 ± 1,7 anos. Apolipoproteína-AI, apolipoproteína B, colesterol total, lipoproteína (a, triglicérides, HDL e LDL foram analisados usando-se métodos diagnósticos específicos. LTI e LPI foram calculados por meio das equações LTI = [colesterol total x triglicérides x lipoproteína (a / HDL] e LPI = [colesterol total x triglicérides x lipoproteína (a x apolipoproteína B / apolipoproteína A-I], respectivamente. RESULTADOS: Os valores de LTI e de LPI foram significativamente maiores nas mulheres quando comparados aos dos homens. Para os outros parâmetros, houve diferenças significativas entre os gêneros apenas para colesterol total, HDL e apolipoproteína A-I. Houve correlações positivas e significativas entre LDL e LTI e entre LDL e LPI. CONCLUSÃO: Os achados indicam que LTI e LPI estavam associados com LDL, um parâmetro não utilizado para calcular os índices lipídicos e amplamente usado na prática clínica para investigação do risco cardiovascular.

  9. Measurements of Laser Plasma Instability (LPI) and Electron Density/Temperature Profiles in Plasmas Produced by the Nike KrF Laser (United States)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.


    We will present results of simultaneous measurements of LPI-driven light scattering and density/temperature profiles in CH plasmas produced by the Nike krypton fluoride laser (λ = 248 nm). The primary diagnostics for the LPI measurement are time-resolved spectrometers with absolute intensity calibration in spectral ranges relevant to the optical detection of stimulated Raman scattering or two plasmon decay. The spectrometers are capable of monitoring signal intensity relative to thermal background radiation from plasma providing a useful way to analyze LPI initiation. For further understanding of LPI processes, the recently implemented grid image refractometer (Nike-GIR)a is used to measure the coronal plasma profiles. In this experiment, Nike-GIR is equipped with a 5th harmonic probe laser (λ = 213 nm) in attempt to probe into a high density region over the previous peak density with λ = 263 nm probe light ( 4 ×1021 cm-3). The LPI behaviors will be discussed with the measured data sets. Work supported by DoE/NNSA.

  10. Lysinuric protein intolerance (LPI): a multi organ disease by far more complex than a classic urea cycle disorder. (United States)

    Ogier de Baulny, Hélène; Schiff, Manuel; Dionisi-Vici, Carlo


    Lysinuric protein intolerance (LPI) is an inherited defect of cationic amino acid (lysine, arginine and ornithine) transport at the basolateral membrane of intestinal and renal tubular cells caused by mutations in SLC7A7 encoding the y(+)LAT1 protein. LPI has long been considered a relatively benign urea cycle disease, when appropriately treated with low-protein diet and l-citrulline supplementation. However, the severe clinical course of this disorder suggests that LPI should be regarded as a severe multisystem disease with uncertain outcome. Specifically, immune dysfunction potentially attributable to nitric oxide (NO) overproduction secondary to arginine intracellular trapping (due to defective efflux from the cell) might be a crucial pathophysiological route explaining many of LPI complications. The latter comprise severe lung disease with pulmonary alveolar proteinosis, renal disease, hemophagocytic lymphohistiocytosis with subsequent activation of macrophages, various auto-immune disorders and an incompletely characterized immune deficiency. These results have several therapeutic implications, among which lowering the l-citrulline dosage may be crucial, as excessive citrulline may worsen intracellular arginine accumulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Spacecraft Doppler tracking with possible violations of LLI and LPI: a theoretical modeling

    International Nuclear Information System (INIS)

    Deng Xue-Mei; Xie Yi


    Currently two-way and three-way spacecraft Doppler tracking techniques are widely used and play important roles in control and navigation of deep space missions. Starting from a one-way Doppler model, we extend the theory to two-way and three-way Doppler models by making them include possible violations of the local Lorentz invariance (LLI) and the local position invariance (LPI) in order to test the Einstein equivalence principle, which is the cornerstone of general relativity and all other metric theories of gravity. After taking the finite speed of light into account, which is the so-called light time solution (LTS), we make these models depend on the time of reception of the signal only for practical convenience. We find that possible violations of LLI and LPI cannot affect two-way Doppler tracking under a linear approximation of LTS, although this approximation is sufficiently good for most cases in the solar system. We also show that, in three-way Doppler tracking, possible violations of LLI and LPI are only associated with two stations, which suggests that it is better to set the stations at places with significant differences in velocities and gravitational potentials to obtain a high level of sensitivity for the tests

  12. Scientists: Get Involved in Planetary Science Education and Public Outreach! Here’s How! (United States)

    Buxner, Sanlyn; Dalton, H.; Shipp, S.; CoBabe-Ammann, E.; Scalice, D.; Bleacher, L.; Wessen, A.


    The Planetary Science Education and Public Outreach (E/PO) Forum is a team of educators, scientists, and outreach professionals funded by NASA’s Science Mission Directorate (SMD) that supports SMD scientists currently involved in E/PO - or interested in becoming involved in E/PO efforts - to find ways to do so through a variety of avenues. There are many current and future opportunities and resources for scientists to become engaged in E/PO. The Forum provides tools for responding to NASA SMD E/PO funding opportunities (webinars and online proposal guides), a one-page Tips and Tricks guide for scientists to engage in education and public outreach, and a sampler of activities organized by thematic topic and NASA’s Big Questions in planetary science. Scientists can also locate resources for interacting with diverse audiences through a number of online clearinghouses, including: NASA Wavelength, a digital collection of peer-reviewed Earth and space science resources for educators of all levels (; the Year of the Solar System website (, a presentation of thematic resources that includes background information, missions, the latest in planetary science news, and educational products, for use in the classroom and out, for teaching about the solar system organized by topic - volcanism, ice, astrobiology, etc.; and EarthSpace (, a community website where faculty can find and share resources and information about teaching Earth and space sciences in the undergraduate classroom, including class materials, news, funding opportunities, and the latest education research. Also recently developed, the NASA SMD Scientist Speaker’s Bureau ( offers an online portal to connect scientists interested in getting involved in E/PO projects - giving public talks, classroom visits, and virtual connections - with audiences. Learn more about the

  13. LPIC-1 Linux Professional Institute certification study guide exam 101-400 and exam 102-400

    CERN Document Server

    Bresnahan, Christine


    Thorough LPIC-1 exam prep, with complete coverage and bonus study tools LPIC-1Study Guide is your comprehensive source for the popular Linux Professional Institute Certification Level 1 exam, fully updated to reflect the changes to the latest version of the exam. With 100% coverage of objectives for both LPI 101 and LPI 102, this book provides clear and concise information on all Linux administration topics and practical examples drawn from real-world experience. Authoritative coverage of key exam topics includes GNU and UNIX commands, devices, file systems, file system hierarchy, user interf

  14. Laser Plasma Instability (LPI) Driven Light Scattering Measurements with 44 beam-lines of Nike KrF Laser^* (United States)

    Oh, J.; Weaver, J. L.; Kehne, D. M.; Phillips, L. S.; Obenschain, S. P.; Serlin, V.; McLean, E. A.; Lehmberg, R. H.; Manka, C. K.


    With short wavelength (248 nm), large bandwidth (˜1 THz), and ISI beam smoothing, Nike KrF laser provides unique opportunities of LPI research for direct-drive inertial confinement fusion. Previous experiments at intensities (10^15˜10^16 W/cm^2) exceeded two-plasmon decay (TPD) instability threshold using 12 beam-lines of Nike laser.^a,b For further experiments to study LPI excitation in bigger plasma volumes, 44 Nike main beams have been used to produce plasmas with total laser energies up to 1 kJ of ˜350 psec FWHM pulses. This talk will present results of the recent LPI experiment focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. Blackbody temperature and expansion speed measurements of the plasmas were also made. The experiment was conducted at laser intensities of (1˜4)x10^15 W/cm^2 on solid planar CH targets. ^a J. L. Weaver, et al, NO4.14, APS DPP (2008) ^b J. Oh, et al, NO4.15, APS DPP (2008) * Work supported by DoE/NNSA and performed at Naval Research Laboratory.

  15. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

    Directory of Open Access Journals (Sweden)

    Ji She


    Full Text Available Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance.

  16. The Alsep Data Recovery Focus Group of NASA's Solar System Exploration Research Virtual Institute (United States)

    Nagihara, S.; Lewis, L. R.; Nakamura, Y.; Williams, D. R.; Taylor, P. T.; Hills, H. K.; Kiefer, W. S.; Neal, C. R.; Schmidt, G. K.


    Astronauts on Apollo 12, 14, 15, 16, and 17 deployed instruments on the Moon for 14 geophysical experiments (passive & active seismic, heat flow, magnetics, etc.) from 1969 to 1972. These instruments were called Apollo Lunar Surface Experiments Packages (ALSEPs). ALSEPs kept transmitting data to the Earth until September 1977. When the observation program ended in 1977, a large portion of these data were not delivered to the National Space Science Data Center for permanent archive. In 2010, for the purpose of searching, recovering, preserving, and analyzing the data that were not previously archived, NASA's then Lunar Science Institute formed the ALSEP Data Recovery Focus Group. The group consists of current lunar researchers and those involved in the ALSEP design and data analysis in the 1960s and 1970s. Among the data not previously archived were the 5000+ 7-track open-reel tapes that recorded raw data from all the ALSEP instruments from April 1973 to February 1976 ('ARCSAV tapes'). These tapes went missing in the decades after Apollo. One of the major achievements of the group so far is that we have found 450 ARCSAV tapes from April to June 1975 and that we are extracting data from them. There are 3 other major achievements by the group. First, we have established a web portal at the Lunar and Planetary Institute, where ~700 ALSEP-related documents, totaling ~40,000 pages, have been digitally scanned and cataloged. Researchers can search and download these documents at lunar/ALSEP/. Second, we have been retrieving notes and reports left behind by the now deceased/retired ALSEP investigators at their home institutions. Third, we have been re-analyzing the ALSEP data using the information from the recently recovered metadata (instrument calibration data, operation logs, etc.). Efforts are ongoing to get these data permanently archived in the Planetary Data System (PDS).

  17. Life in the Universe - Astronomy and Planetary Science Research Experience for Undergraduates at the SETI Institute (United States)

    Chiar, J.; Phillips, C. B.; Rudolph, A.; Bonaccorsi, R.; Tarter, J.; Harp, G.; Caldwell, D. A.; DeVore, E. K.


    The SETI Institute hosts an Astrobiology Research Experience for Undergraduates (REU) program. Beginning in 2013, we partnered with the Physics and Astronomy Dept. at Cal Poly Pomona, a Hispanic-serving university, to recruit underserved students. Over 11 years, we have served 155 students. We focus on Astrobiology since the Institute's mission is to explore, understand and explain the origin, nature and prevalence of life in the universe. Our REU students work with mentors at the Institute - a non-profit organization located in California's Silicon Valley-and at the nearby NASA Ames Research Center. Projects span research on survival of microbes under extreme conditions, planetary geology, astronomy, the Search for Extraterrestrial Intelligence (SETI), extrasolar planets and more. The REU program begins with an introductory lectures by Institute scientists covering the diverse astrobiology subfields. A week-long field trip to the SETI Institute's Allen Telescope Array (Hat Creek Radio Astronomy Observatory in Northern California) and field experiences at hydrothermal systems at nearby Lassen Volcanic National Park immerses students in radio astronomy and SETI, and extremophile environments that are research sites for astrobiologists. Field trips expose students to diverse environments and allow them to investigate planetary analogs as our scientists do. Students also participate in local trips to the California Academy of Sciences and other nearby locations of scientific interest, and attend the weekly scientific colloquium hosted by the SETI Institute at Microsoft, other seminars and lectures at SETI Institute and NASA Ames. The students meet and present at a weekly journal club where they hone their presentation skills, as well as share their research progress. At the end of the summer, the REU interns present their research projects at a session of the Institute's colloquium. As a final project, students prepare a 2-page formal abstract and 15-minute

  18. Observation of LPI Thresholds for the Nike Laser (United States)

    Weaver, J. L.; Oh, J.; Afeyan, B.; Charbonneau-Lefort, M.; Phillips, L.; Seely, J.; Kehne, D.; Brown, C.; Obenschain, S.; Schmitt, A. J.; Feldman, U.; Holland, G.; Lehmberg, R. H.; McLean, E.; Manka, C.


    The Nike laser is being used to study thresholds for laser plasma instabilities (LPI) at intensities (10^15-10^16 W/cm^2) relevant to advanced implosion designs for direct drive inertial confinement fusion. The combination of short wavelength (248 nm), large bandwidth (1-2 THz), and beam smoothing by induced spatial incoherence available with this krypton-fluoride laser make these experiments unique among current facilities. This talk will present an overview of results with an emphasis on the two-plasmon decay instability (2φp). Measurements of x-rays and emission near ^1/2φo and ^3/2 φo harmonics of the laser wavelength have been collected over a wide range of intensities for both solid and foam targets. Data indicate collective multiple-angle driven excitation compatible with previous observations using solid planar targets.

  19. Measurements of Electron Temperature and Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research (United States)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.


    ExperimentsfootnotetextJ. Oh, et al, GO5.4, APS DPP (2010).^,footnotetextJ. L. Weaver, et al, GO5.3, APS DPP (2010). using Nike KrF laser observed LPI signatures from CH plasmas at the laser intensities above ˜1x10^15 W/cm^2. Knowing spatial profiles of temperature (Te) and density (ne) in the underdense coronal region (0 Nike LPI experiment, a side-on grid imaging refractometer (GIR)footnotetextR. S. Craxton, et al, Phys. Fluids B 5, 4419 (1993). is being deployed for measuring the underdense plasma profiles. The GIR will resolve Te and ne in space taking a 2D snapshot of probe laser (λ= 263 nm, δt = 10 psec) beamlets (50μm spacing) refracted by the plasma at a selected time during the laser illumination. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera will simultaneously monitor light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay (TDP) instabilities. The experimental study of effects of the plasma profiles on the LPI initiation will be presented.

  20. The Pushchino Radio Astronomy Observatory of the P N Lebedev Physical Institute Astro Space Center: yesterday, today, and tomorrow

    International Nuclear Information System (INIS)

    Dagkesamanskii, Rustam D


    The development of Russian (formerly Soviet) radio astronomy is indissolubly linked with the P N Lebedev Physical Institute (LPI), Russian Academy of Sciences. From the late 1940s, the institute conducted most of its radio astronomy research in the Crimea, at stations or on field trips; in the late 1950s, the center of gravity of research moved to the southern Moscow region, where one of the largest radio astronomy observatories in the country and in the world was developed within less than twenty years. The observatory unique instrumentation system is briefly reviewed in a historical perspective. Key research areas and some major achievements are outlined, and the prospects of the observatory as (currently) part of the LPI Astro Space Center are examined. (conferences and symposia)

  1. The Pushchino Radio Astronomy Observatory of the P N Lebedev Physical Institute Astro Space Center: yesterday, today, and tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Dagkesamanskii, Rustam D [Pushchino Radio Astronomy Observatory, Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation)


    The development of Russian (formerly Soviet) radio astronomy is indissolubly linked with the P N Lebedev Physical Institute (LPI), Russian Academy of Sciences. From the late 1940s, the institute conducted most of its radio astronomy research in the Crimea, at stations or on field trips; in the late 1950s, the center of gravity of research moved to the southern Moscow region, where one of the largest radio astronomy observatories in the country and in the world was developed within less than twenty years. The observatory unique instrumentation system is briefly reviewed in a historical perspective. Key research areas and some major achievements are outlined, and the prospects of the observatory as (currently) part of the LPI Astro Space Center are examined. (conferences and symposia)

  2. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos


    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  3. RASC-AL (Revolutionary Aerospace Systems Concepts-Academic Linkage): 2002 Advanced Concept Design Presentation (United States)


    The Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) is a program of the Lunar and Planetary Institute (LPI) in collaboration with the Universities Space Research Association's (USRA) ICASE institute through the NASA Langley Research Center. The RASC-AL key objectives are to develop relationships between universities and NASA that lead to opportunities for future NASA research and programs, and to develop aerospace systems concepts and technology requirements to enable future NASA missions. The program seeks to look decades into the future to explore new mission capabilities and discover what's possible. NASA seeks concepts and technologies that can make it possible to go anywhere, at anytime, safely, reliably, and affordably to accomplish strategic goals for science, exploration, and commercialization. University teams were invited to submit research topics from the following themes: Human and Robotic Space Exploration, Orbital Aggregation & Space Infrastructure Systems (OASIS), Zero-Emissions Aircraft, and Remote Sensing. RASC-AL is an outgrowth of the HEDS-UP (University Partners) Program sponsored by the LPI. HEDS-UP was a program of the Lunar and Planetary Institute designed to link universities with NASA's Human Exploration and Development of Space (HEDS) enterprise. The first RASC-AL Forum was held November 5-8, 2002, at the Hilton Cocoa Beach Oceanfront Hotel in Cocoa Beach, Florida. Representatives from 10 university teams presented student research design projects at this year's Forum. Each team contributed a written report and these reports are presented.

  4. Microwave Photonic Architecture for Direction Finding of LPI Emitters: Post-Processing for Angle of Arrival Estimation (United States)


    APPENDIX. MATLAB CODE FOR SYSTEM SIMULATION .................................65  LIST OF easily detectable. The transmission of LPI signals with sophisticated modulation and high processing gain enable a good detection range and low...and data collection process . The software simulation of the system, which supports the hypothesis that the physical system is capable of detecting

  5. The LPI as an Indicator of the Competitiveness and Potential of Ukraine’s Logistical Support in Relation to the European Union Countries

    Directory of Open Access Journals (Sweden)

    Yudenko Alina V.


    Full Text Available The article is aimed at studying the analysis of competitiveness and potential of logistical support of Ukraine in relation to the European Union countries, the method of calculating the efficiency of function of the logistics environment in the European countries, and considering the process of compiling the Logistics Performance Index (LPI. The analysis of competitiveness of logistical support of Ukraine was carried out with the help of the Logistics Performance Index (LPI in the context of European countries; the indicators necessary to assess the logistics performance were analyzed. A comparison of the Logistics Performance Index of Ukraine with the European countries was carried out. The specific factors that inhibit or on the contrary accelerate development of the system of logistical support of Ukraine have been allocated. The factors of both positive and negative influence on the process of logistical support have been allocated. It has been concluded that, taking into consideration the bright positive dynamics, Ukraine intends to significantly improve its logistics position and in the future, according to the LPI of the World Bank, enter the list of the top 50 countries of the world, for which it has all the possibilities.

  6. Avenues for Scientist Involvement in Planetary Science Education and Public Outreach (United States)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Dalton, H.; Bleacher, L.; Scalice, D.


    faculty, bringing them together at science conferences to share resources and experiences and to discuss pertinent education research. An online higher education clearinghouse, (EarthSpace -, has been developed to provide faculty with news and funding information, the latest education research and resources for teaching undergraduates, and undergraduate course materials, including lectures, labs, and homework. The presentation will explore the Planetary Science E/PO Forum pathways and tools available to support scientists involved in - or interested in being involved in - E/PO.

  7. After 16 years of service, the LEP Pre-Injector (LPI) was finally closed down at Easter. The LPI was not only one of the essential building blocks of LEP, but it also supplied beams to a whole host of experiments.

    CERN Document Server


    In the coming months it will undergo extensive work to be converted into a test facility for CLIC, one of the possible options for a future accelerator. So in the autumn of 2001, the LPI zone will be re-baptised CTF3 (CLIC Test Facility 3).

  8. Institute of Geophysics and Planetary Physics at Lawrence Livermore National Laboratory: 1986 annual report

    International Nuclear Information System (INIS)

    Max, C.E.


    The purpose of the Institute of Geophysics and Planetary Physics (IGPP) at LLNL is to enrich the opportunities of University of California campus researchers by making available to them some of the Laboratory's unique facilities and expertise, and to broaden the scientific horizon of LLNL researchers by encouraging collaborative or interdisciplinary work with other UC scientists. The IGPP continues to emphasize three fields of research - geoscience, astrophysics, and high-pressure physics - each administered by a corresponding IGPP Research Center. Each Research Center coordinates the mini-grant work in its field, and also works with the appropriate LLNL programs and departments, which frequently can provide supplementary funding and facilities for IGPP projects. 62 refs., 18 figs., 2 tabs

  9. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Tweed, J.


    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  10. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies (United States)

    Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei


    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus

  11. Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability (United States)

    Lazio, T. Joseph


    Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  12. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.


    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at

  13. Measurements of Electron Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research (United States)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.


    Knowing spatial profiles of electron density (ne) in the underdense coronal region (n Nike LPI experiment, a side-on grid imaging refractometer (GIR) was deployed for measuring the underdense plasma profiles. Plasmas were produced from flat CH targets illuminated by Nike KrF laser with total energies up to 1 kJ of 0.5 ~ 1 nsec FWHM pulses. The GIR resolved ne up to 3 ×1021 /cm3 in space taking 2D snapshot images of probe laser (λ = 263 nm, Δt = 10 ps) beamlets (50 μm spacing) refracted by the plasma at a selected time during the laser illumination. The individual beamlet transmittances were also measured for Te estimation. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera simultaneously detected light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay instabilities. The measured spatial profiles are compared with simulation results from the FAST3D radiation hydrocode and their effects on the LPI observations are investigated. Work supported by DoE/NNSA and performed at Naval Research Laboratory.

  14. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure (United States)

    André, Nicolas; Grande, Manuel


    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in

  15. Characterization of Electron Temperature and Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research (United States)

    Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Chan, L.-Y.; Serlin, V.


    Previous experiments with Nike KrF laser (λ = 248 nm , Δν ~ 1 THz) observed LPI signatures near quarter critical density (nc / 4) in CH plasmas, however, detailed measurement of the temperature (Te) and density (ne) profiles was missing. The current Nike LPI campaign will perform experimental determination of the plasma profiles. A side-on grid imaging refractometer (GIR) is the main diagnostic to resolve Te and ne in space taking 2D snapshots of probe laser (λ = 266 nm , Δt = 8 psec) beamlets (50 μm spacing) refracted by the plasma at laser peak time. Ray tracing of the beamlets through hydrodynamically simulated (FASTRAD3D) plasma profiles estimates the refractometer may access densities up to ~ 0 . 2nc . With the measured Te and ne profiles in the plasma corona, we will discuss analysis of light data radiated from the plasmas in spectral ranges relevant to two plasmon decay and convective Raman instabilities. Validity of the (Te ,ne) data will also be discussed for the thermal transport study. Work supported by DoE/NNSA and ONR and performed at NRL.

  16. Chemical weathering on Mars. Collection of papers. LPI-MSATT Workshop on Chemical Weathering on Mars, Cocoa Beach, FL (USA), 10 - 12 Sep 1992. (United States)

    Burns, R. G.; Banin, A.


    The Workshop on Chemical Weathering on Mars consisted of thirty papers, extended abstracts of which were published in the LPI Technical Report, No. 92-04. The collection of seven papers in this issue report new data and interpretations about the chemical evolution of the Martian surface.

  17. Lessons learned from planetary science archiving (United States)

    Zender, J.; Grayzeck, E.


    The need for scientific archiving of past, current, and future planetary scientific missions, laboratory data, and modeling efforts is indisputable. To quote from a message by G. Santayama carved over the entrance of the US Archive in Washington DC “Those who can not remember the past are doomed to repeat it.” The design, implementation, maintenance, and validation of planetary science archives are however disputed by the involved parties. The inclusion of the archives into the scientific heritage is problematic. For example, there is the imbalance between space agency requirements and institutional and national interests. The disparity of long-term archive requirements and immediate data analysis requests are significant. The discrepancy between the space missions archive budget and the effort required to design and build the data archive is large. An imbalance exists between new instrument development and existing, well-proven archive standards. The authors present their view on the problems and risk areas in the archiving concepts based on their experience acquired within NASA’s Planetary Data System (PDS) and ESA’s Planetary Science Archive (PSA). Individual risks and potential problem areas are discussed based on a model derived from a system analysis done upfront. The major risk for a planetary mission science archive is seen in the combination of minimal involvement by Mission Scientists and inadequate funding. The authors outline how the risks can be reduced. The paper ends with the authors view on future planetary archive implementations including the archive interoperability aspect.

  18. The LPi and LPi/2 Propositional and Predicate Logics

    Czech Academy of Sciences Publication Activity Database

    Cintula, Petr


    Roč. 124, č. 3 (2001), s. 289-302 ISSN 0165-0114 Institutional research plan: AV0Z1030915 Keywords : fuzzy logic * product logic * Lukasiewicz logic Subject RIV: BA - General Mathematics Impact factor: 0.470, year: 2001

  19. Advances in the LPi and LPi1/2 Logics

    Czech Academy of Sciences Publication Activity Database

    Cintula, Petr


    Roč. 42, č. 5 (2003), s. 449-468 ISSN 0933-5846 R&D Projects: GA AV ČR IAA1030004 Institutional research plan: AV0Z1030915 Keywords : fuzzy logic * Lukasiewicz logic * product logic Subject RIV: BA - General Mathematics Impact factor: 0.523, year: 2003

  20. Landing Site Selection and Surface Traverse Planning using the Lunar Mapping & Modeling Portal (United States)

    Law, E.; Chang, G.; Bui, B.; Sadaqathullah, S.; Kim, R.; Dodge, K.; Malhotra, S.


    Introduction: The Lunar Mapping and Modeling Portal (LMMP), is a web-based Portal and a suite of interactive visualization and analysis tools for users to access mapped lunar data products (including image mosaics, digital elevation models, etc.) from past and current lunar missions (e.g., Lunar Reconnaissance Orbiter, Apollo, etc.), and to perform in-depth analyses to support lunar surface mission planning and system design for future lunar exploration and science missions. It has been widely used by many scientists mission planners, as well as educators and public outreach (e.g., Google Lunar XPRICE teams, RESOLVE project, museums etc.) This year, LMMP was used by the Lunar and Planetary Institute (LPI)'s Lunar Exploration internship program to perform lighting analysis and local hazard assessments, such as, slope, surface roughness and crater/boulder distribution to research landing sites and surface pathfinding and traversal. Our talk will include an overview of LMMP, a demonstration of the tools as well as a summary of the LPI Lunar Exploration summer interns' experience in using those tools.

  1. Measuring and interpreting X-ray fluorescence from planetary surfaces. (United States)

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard


    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  2. The Africa Initiative for Planetary and Space Sciences (United States)

    Baratoux, D.; Chennaoui-Aoudjehane, H.; Gibson, R.; Lamali, A.; Reimold, W. U.; Selorm Sepah, M.; Chabou, M. C.; Habarulema, J. B.; Jessell, M.; Mogessie, A.; Benkhaldoun, Z.; Nkhonjera, E.; Mukosi, N. C.; Kaire, M.; Rochette, P.; Sickafoose, A.; Martínez-Frías, J.; Hofmann, A.; Folco, L.; Rossi, A. P.; Faye, G.; Kolenberg, K.; Tekle, K.; Belhai, D.; Elyajouri, M.; Koeberl, C.; Abdeem, M.


    Research groups in Planetary and Space Sciences (PSS) are now emerging in Africa, but remain few, scattered and underfunded. It is our conviction that the exclusion of 20% of the world's population from taking part in the fascinating discoveries about our solar system impoverishes global science. The benefits of a coordinated PSS program for Africa's youth have motivated a call for international support and investment [1] into an Africa Initiative for Planetary and Space Sciences. At the time of writing, the call has been endorsed by 230 scientists and 19 institutions or international organizations (follow the map of endorsements on More than 70 African Planetary scientists have already joined the initiative and about 150 researchers in non-African countries are ready to participate in research and in capacitity building of PSS programs in Africa. We will briefly review in this presentation the status of PSS in Africa [2] and illustrate some of the major achievements of African Planetary and Space scientists, including the search for meteorites or impact craters, the observations of exoplanets, and space weather investigations. We will then discuss a road map for its expansion, with an emphasis on the role that planetary and space scientists can play to support scientific and economic development in Africa. The initiative is conceived as a network of projects with Principal Investigators based in Africa. A Steering Committee is being constituted to coordinate these efforts and contribute to fund-raising and identification of potential private and public sponsors. The scientific strategy of each group within the network will be developed in cooperation with international experts, taking into account the local expertise, available equipment and facilities, and the priority needs to achieve well-identified scientific goals. Several founding events will be organized in 2018 in several African research centers and higher-education institutions to

  3. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research (United States)

    Draper, D. S.


    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  4. Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure (United States)

    Grande, Manuel; Andre, Nicolas


    Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools

  5. LPI Radar Waveform Recognition Based on Time-Frequency Distribution

    Directory of Open Access Journals (Sweden)

    Ming Zhang


    Full Text Available In this paper, an automatic radar waveform recognition system in a high noise environment is proposed. Signal waveform recognition techniques are widely applied in the field of cognitive radio, spectrum management and radar applications, etc. We devise a system to classify the modulating signals widely used in low probability of intercept (LPI radar detection systems. The radar signals are divided into eight types of classifications, including linear frequency modulation (LFM, BPSK (Barker code modulation, Costas codes and polyphase codes (comprising Frank, P1, P2, P3 and P4. The classifier is Elman neural network (ENN, and it is a supervised classification based on features extracted from the system. Through the techniques of image filtering, image opening operation, skeleton extraction, principal component analysis (PCA, image binarization algorithm and Pseudo–Zernike moments, etc., the features are extracted from the Choi–Williams time-frequency distribution (CWD image of the received data. In order to reduce the redundant features and simplify calculation, the features selection algorithm based on mutual information between classes and features vectors are applied. The superiority of the proposed classification system is demonstrated by the simulations and analysis. Simulation results show that the overall ratio of successful recognition (RSR is 94.7% at signal-to-noise ratio (SNR of −2 dB.

  6. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.


    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  7. Nonlinear time heteronymous damping in nonlinear parametric planetary systems

    Czech Academy of Sciences Publication Activity Database

    Hortel, Milan; Škuderová, Alena


    Roč. 225, č. 7 (2014), s. 2059-2073 ISSN 0001-5970 Institutional support: RVO:61388998 Keywords : nonlinear dynamics * planetary systems * heteronymous damping Subject RIV: JT - Propulsion, Motors ; Fuels Impact factor: 1.465, year: 2014

  8. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes (United States)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.


    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  9. Interoperability in planetary research for geospatial data analysis (United States)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara


    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  10. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability (United States)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan


    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen

  11. Science Meets Literacy and Art at the Library (United States)

    LaConte, K. M.; Shipp, S. S.; Halligan, E.


    The Lunar and Planetary Institute's Explore! program is designed to engage and inspire children in Earth and space science in the library and other informal learning environments. Eight online thematic Explore! modules make up-to-date science accessible to rural communities - often where the library is the closest center of public learning - and other underserved audiences. The program prepares librarians to engage their communities in science through experiences with the modules, interactions with scientists, exploration of the resources available within the library learning environment, and development of local partnerships. Through hands-on science activities, art, and reading, Explore! reaches library patrons between the ages of 8 and 13 through librarian-led, locally facilitated programs across the nation. For example, NASA Lunar Science Institute research into lunar formation, evolution, and orbital dynamics are woven into a comic book that serves as a journal and art piece for participants in Marvel Moon programs ( In another example, children compare cloud types and atmospheric structure on Earth and Jupiter, and then they consider artwork of Jupiter's clouds and the future discoveries of NASA's upcoming Juno mission as they write "Jovian Poetry" ( Explore! program facilitators are provided resources for making use of children's science books and local professional scientists and engineers.

  12. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.


    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  13. 3He Abundances in Planetary Nebulae (United States)

    Guzman-Ramirez, Lizette


    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  14. Planetary Radar (United States)

    Neish, Catherine D.; Carter, Lynn M.


    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  15. To See the Unseen: A History of Planetary Radar Astronomy (United States)

    Butrica, Andrew J.


    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  16. Data Preservation and Curation for the Planetary Science Community (United States)

    Hughes, J. S.; Crichton, D. J.; Joyner, R.; Hardman, S.; Rye, E.


    The Planetary Data System (PDS) has just released PDS4 Version 1.0, its next generation data standards for the planetary science archive. These data standards are the result of a multi-year effort to develop an information model based on accepted standards for data preservation, data curation, metadata management, and model development. The resulting information model is subsequently used to drive information system development from the generation of data standards documentation to the configuration of federated registries and search engines. This paper will provide an overview of the development of the PDS4 Information Model and focus on the application of the Open Archive Information System (OAIS) Reference Model - ISO 14721:2003, the Metadata Registry (MDR) Standard - ISO/IEC 11179, and the E-Business XML Standard to help ensure the long-term preservation and curation of planetary science data. Copyright 2013 California Institute of Technology Government sponsorship acknowledged

  17. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.


    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  18. Planetary Magnetism (United States)

    Connerney, J. E. P.


    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  19. Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds (United States)

    Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.


    Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  20. Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure (United States)

    André, N.; Grande, M.; Achilleos, N.; Barthélémy, M.; Bouchemit, M.; Benson, K.; Blelly, P.-L.; Budnik, E.; Caussarieu, S.; Cecconi, B.; Cook, T.; Génot, V.; Guio, P.; Goutenoir, A.; Grison, B.; Hueso, R.; Indurain, M.; Jones, G. H.; Lilensten, J.; Marchaudon, A.; Matthiä, D.; Opitz, A.; Rouillard, A.; Stanislawska, I.; Soucek, J.; Tao, C.; Tomasik, L.; Vaubaillon, J.


    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will make twelve new services accessible to the research community, space agencies, and industrial partners planning for space missions. These services will in particular be dedicated to the following key planetary environments: Mars (in support of the NASA MAVEN and European Space Agency (ESA) Mars Express and ExoMars missions), comets (building on the outstanding success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUpiter ICy moon Explorer mission), and one of these services will aim at predicting and detecting planetary events like meteor showers and impacts in the Solar System. This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather as well as to space situational awareness in the tools and models available within the partner institutes. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. PSWS will provide the additional research and tailoring required to apply them for these purposes. PSWS will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end

  1. Investments by NASA to build planetary protection capability (United States)

    Buxbaum, Karen; Conley, Catharine; Lin, Ying; Hayati, Samad

    NASA continues to invest in capabilities that will enable or enhance planetary protection planning and implementation for future missions. These investments are critical to the Mars Exploration Program and will be increasingly important as missions are planned for exploration of the outer planets and their icy moons. Since the last COSPAR Congress, there has been an opportunity to respond to the advice of NRC-PREVCOM and the analysis of the MEPAG Special Regions Science Analysis Group. This stimulated research into such things as expanded bioburden reduction options, modern molecular assays and genetic inventory capability, and approaches to understand or avoid recontamination of spacecraft parts and samples. Within NASA, a portfolio of PP research efforts has been supported through the NASA Office of Planetary Protection, the Mars Technology Program, and the Mars Program Office. The investment strategy focuses on technology investments designed to enable future missions and reduce their costs. In this presentation we will provide an update on research and development supported by NASA to enhance planetary protection capability. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

  2. Mitchell Receives 2013 Ronald Greeley Early Career Award in Planetary Science: Citation (United States)

    McKinnon, William B.


    The Greeley Early Career Award is named for pioneering planetary scientist Ronald Greeley. Ron was involved in nearly every major planetary mission from the 1970s until his death and was extraordinarily active in service to the planetary science community. Ron's greatest legacies, however, are those he mentored through the decades, and it is young scientists whose work and promise we seek to recognize. This year's Greeley award winner is Jonathan L. Mitchell, an assistant professor at the University of California, Los Angeles (UCLA). Jonathan received his Ph.D. from the University of Chicago, and after a postdoc at the Institute for Advanced Studies in Princeton, he joined the UCLA faculty, where he holds a joint appointment in Earth and space sciences and in atmospheric sciences.

  3. Planetary science education in a multidisciplinar environment: an alternative approach for ISU (United States)

    Calzada, A.


    The aim of the International Space University (ISU) located in Strasbourg, France, is to provide to the participants of its programs an overview of all the aspects of the space field. This also includes a basic background on Planetary Sciences. During the Master 2012 an individual project about impact processes was done. During this project some issues regarding planetary science awareness arise and it brought to the table the need to increase its presence in the ISU programs. The conclusions may be extrapolated to other academic institutions.

  4. Planetary magnetospheres

    International Nuclear Information System (INIS)

    Hill, T.W.; Michel, F.C.


    Recent planetary probes have resulted in the realization of the generality of magnetospheric interactions between the solar wind and the planets. The three categories of planetary magnetospheres are discussed: intrinsic slowly rotating magnetospheres, intrinsic rapidly rotating magnetospheres, and induced magnetospheres. (BJG)

  5. LPI Thresholds in Longer Scale Length Plasmas Driven by the Nike Laser* (United States)

    Weaver, J.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Holland, G.; Lehmberg, R. H.; McLean, E.; Manka, C.


    The Krypton-Fluoride (KrF) laser is an attractive driver for inertial confinement fusion due to its short wavelength (248nm), large bandwidth (1-3 THz), and beam smoothing by induced spatial incoherence. Experiments with the Nike KrF laser have demonstrated intensity thresholds for laser plasma instabilities (LPI) higher than reported for other high power lasers operating at longer wavelengths (>=351 nm). The previous Nike experiments used short pulses (350 ps FWHM) and small spots (<260 μm FWHM) that created short density scale length plasmas (Ln˜50-70 μm) from planar CH targets and demonstrated the onset of two-plasmon decay (2φp) at laser intensities ˜2x10^15 W/cm^2. This talk will present an overview of the current campaign that uses longer pulses (0.5-4.0 ns) to achieve greater density scale lengths (Ln˜100-200 μm). X-rays, emission near ^1/2φo and ^3/2φo harmonics, and reflected laser light have been monitored for onset of 2φp. The longer density scale lengths will allow better comparison to results from other laser facilities. *Work supported by DoE/NNSA and ONR.

  6. Luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies

    International Nuclear Information System (INIS)

    Jacoby, G.H.


    Identifications of 19 and 34 faint planetary nebulae have been made in the central regions of the SMC and LMC, respectively, using on-line/off-line filter photography at [O III] and Hα. The previously known brighter planetary nebulae in these fields, eight in both the SMC and the LMC, were also identified. On the basis of the ratio of the numbers of faint to bright planetary nebulae in these fields and the numbers of bright planetary nebulae in the surrounding fields, the total numbers of planetary nebulae in the SMC and LMC are estimated to be 285 +- 78 and 996 +- 253, respectively. Corrections have been applied to account for omissions due to crowding confusion in previous surveys, spatial and detectability incompleteness, and obscuration by dust.Equatorial coordinates and finding charts are presented for all the identified planetary nebulae. The coordinates have uncertainties smaller than 0.''6 relative to nearby bright stars, thereby allowing acquisition of the planetary nebulae by bling offsetting.Monochromatic fluxes are derived photographically and used to determine the luminosity function for Magellanic Cloud planetary nebulae as faint as 6 mag below the brightest. The luminosity function is used to estimate the total numbers of planetary nebulae in eight Local Group galaxies in which only bright planetary nebulae have been identified. The dervied luminosity specific number of planetary nebulae per unit luminosity is nearly constant for all eight galaxies, having a value of 6.1 x 10 -7 planetary nebulae L -1 /sub sun/. The mass specific number, based on the three galaxies with well-determined masses, is 2.1 x 10 -7 planetary nebulae M -1 /sub sun/. With estimates for the luminosity and mass of our Galaxy, its total number of planetary nebulae is calculated to be 10,000 +- 4000, in support of the Cudworth distance scale

  7. Interoperability In The New Planetary Science Archive (PSA) (United States)

    Rios, C.; Barbarisi, I.; Docasal, R.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; Grotheer, E.; Besse, S.; Martinez, S.; Heather, D.; De Marchi, G.; Lim, T.; Fraga, D.; Barthelemy, M.


    As the world becomes increasingly interconnected, there is a greater need to provide interoperability with software and applications that are commonly being used globally. For this purpose, the development of the new Planetary Science Archive (PSA), by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is focused on building a modern science archive that takes into account internationally recognised standards in order to provide access to the archive through tools from third parties, for example by the NASA Planetary Data System (PDS), the VESPA project from the Virtual Observatory of Paris as well as other international institutions. The protocols and standards currently being supported by the new Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet-Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. The architecture of the PSA consists of a Geoserver (an open-source map server), the goal of which is to support use cases such as the distribution of search results, sharing and processing data through a OGC Web Feature Service (WFS) and a Web Map Service (WMS). This server also allows the retrieval of requested information in several standard output formats like Keyhole Markup Language (KML), Geography Markup Language (GML), shapefile, JavaScript Object Notation (JSON) and Comma Separated Values (CSV), among others. The provision of these various output formats enables end-users to be able to transfer retrieved data into popular applications such as Google Mars and NASA World Wind.

  8. Planetary Defense (United States)


    4 Abstract Planetary defense against asteroids should be a major concern for every government in the world . Millions of asteroids and...helps make Planetary Defense viable because defending the Earth against asteroids benefits from all the above technologies. So if our planet security...information about their physical characteristics so we can employ the right strategies. It is a crucial difference if asteroids are made up of metal

  9. Solar planetary systems stardust to terrestrial and extraterrestrial planetary sciences

    CERN Document Server

    Bhattacharya, Asit B


    The authors have put forth great efforts in gathering present day knowledge about different objects within our solar system and universe. This book features the most current information on the subject with information acquired from noted scientists in this area. The main objective is to convey the importance of the subject and provide detailed information on the physical makeup of our planetary system and technologies used for research. Information on educational projects has also been included in the Radio Astronomy chapters.This information is a real plus for students and educators considering a career in Planetary Science or for increasing their knowledge about our planetary system

  10. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.


    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  11. Planetary Rings (United States)

    Nicholson, P. D.


    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  12. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.


    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  13. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.


    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  14. Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop (United States)

    Evans, N.


    Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.

  15. Planetary Data System (PDS) (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  16. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration (United States)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.


    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  17. Planetary Geologic Mapping Handbook - 2009 (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.


    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  18. Noise and LPI radar as part of counter-drone mitigation system measures (United States)

    Zhang, Yan (Rockee); Huang, Yih-Ru; Thumann, Charles


    With the rapid proliferation of small unmanned aerial systems (UAS) in the national airspace, small operational drones are being sometimes considered as a security threat for critical infrastructures, such as sports stadiums, military facilities, and airports. There have been many civilian counter-drone solutions and products reported, including radar and electromagnetic counter measures. For the current electromagnetic solutions, they are usually limited to particular type of detection and counter-measure scheme, which is usually effective for the specific type of drones. Also, control and communication link technologies used in even RC drones nowadays are more sophisticated, making them more difficult to detect, decode and counter. Facing these challenges, our team proposes a "software-defined" solution based on noise and LPI radar. For the detection, wideband-noise radar has the resolution performance to discriminate possible micro-Doppler features of the drone versus biological scatterers. It also has the benefit of more adaptive to different types of drones, and covertly detecting for security application. For counter-measures, random noise can be combined with "random sweeping" jamming scheme, to achieve the optimal balance between peak power allowed and the effective jamming probabilities. Some theoretical analysis of the proposed solution is provided in this study, a design case study is developed, and initial laboratory experiments, as well as outdoor tests are conducted to validate the basic concepts and theories. The study demonstrates the basic feasibilities of the Drone Detection and Mitigation Radar (DDMR) concept, while there are still much work needs to be done for a complete and field-worthy technology development.

  19. Early-career experts essential for planetary sustainability (United States)

    Lim, Michelle; Lynch, Abigail J.; Fernández-Llamazares, Alvaro; Balint, Lenke; Basher, Zeenatul; Chan, Ivis; Jaureguiberry, Pedro; Mohamed, A.A.A.; Mwampamba, Tuyeni H.; Palomo, Ignacio; Pliscoff, Patricio; Salimov, R.A.; Samakov, Aibek; Selomane, Odirilwe; Shrestha, Uttam B.; Sidorovich, Anna A.


    Early-career experts can play a fundamental role in achieving planetary sustainability by bridging generational divides and developing novel solutions to complex problems. We argue that intergenerational partnerships and interdisciplinary collaboration among early-career experts will enable emerging sustainability leaders to contribute fully to a sustainable future. We review 16 international, interdisciplinary, and sustainability-focused early-career capacity building programs. We conclude that such programs are vital to developing sustainability leaders of the future and that decision-making for sustainability is likely to be best served by strong institutional cultures that promote intergenerational learning and involvement.

  20. Small Spacecraft for Planetary Science (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew


    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  1. Characterization of long-scale-length plasmas produced from plastic foam targets for laser plasma instability (LPI) research (United States)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.


    We report on an experimental effort to produce plasmas with long scale lengths for the study of parametric instabilities, such as two plasmon decay (TPD) and stimulated Raman scattering (SRS), under conditions relevant to fusion plasma. In the current experiment, plasmas are formed from low density (10-100 mg/cc) CH foam targets irradiated by Nike krypton fluoride laser pulses (λ = 248 nm, 1 nsec FWHM) with energies up to 1 kJ. This experiment is conducted with two primary diagnostics: the grid image refractometer (Nike-GIR) to measure electron density and temperature profiles of the coronas, and time-resolved spectrometers with absolute intensity calibration to examine scattered light features of TPD or SRS. Nike-GIR was recently upgraded with a 5th harmonic probe laser (λ = 213 nm) to access plasma regions near quarter critical density of 248 nm light (4.5 ×1021 cm-3). The results will be discussed with data obtained from 120 μm scale-length plasmas created on solid CH targets in previous LPI experiments at Nike. Work supported by DoE/NNSA.

  2. Planetary Data Archiving Plan at JAXA (United States)

    Shinohara, Iku; Kasaba, Yasumasa; Yamamoto, Yukio; Abe, Masanao; Okada, Tatsuaki; Imamura, Takeshi; Sobue, Shinichi; Takashima, Takeshi; Terazono, Jun-Ya

    After the successful rendezvous of Hayabusa with the small-body planet Itokawa, and the successful launch of Kaguya to the moon, Japanese planetary community has gotten their own and full-scale data. However, at this moment, these datasets are only available from the data sites managed by each mission team. The databases are individually constructed in the different formats, and the user interface of these data sites is not compatible with foreign databases. To improve the usability of the planetary archives at JAXA and to enable the international data exchange smooth, we are investigating to make a new planetary database. Within a coming decade, Japan will have fruitful datasets in the planetary science field, Venus (Planet-C), Mercury (BepiColombo), and several missions in planning phase (small-bodies). In order to strongly assist the international scientific collaboration using these mission archive data, the planned planetary data archive at JAXA should be managed in an unified manner and the database should be constructed in the international planetary database standard style. In this presentation, we will show the current status and future plans of the planetary data archiving at JAXA.

  3. Bringing Terramechanics to bear on Planetary Rover Design (United States)

    Richter, L.


    Thus far, planetary rovers have been successfully operated on the Earth's moon and on Mars. In particular, the two NASA Mars Exploration Rovers (MERs) ,Spirit' and ,Opportunity' are still in sustained daily operations at two sites on Mars more than 3 years after landing there. Currently, several new planetary rover missions are in development targeting Mars (the US Mars Science Lab vehicle for launch in 2009 and ESA's ExoMars rover for launch in 2013), with lunar rover missions under study by China and Japan for launches around 2012. Moreover, the US Constellation program is preparing pre-development of lunar rovers for initially unmanned and, subsequently, human missions to the Moon with a corresponding team dedicated to mobility system development having been set up at the NASA Glenn Research Center. Given this dynamic environment, it was found timely to establish an expert group on off-the-road mobility as relevant for robotic vehicles that would involve individuals representing the various on-going efforts on the different continents. This was realized through the International Society of Terrain-Vehicle Systems (ISTVS), a research organisation devoted to terramechanics and to the ,science' of off-the-road vehicle development which as a result is just now establishing a Technical Group on Terrestrial and Planetary Rovers. Members represent space-related as well as military research institutes and universities from the US, Germany, Italy, and Japan. The group's charter for 2007 is to define its objectives, functions, organizational structure and recommended research objectives to support planetary rover design and development. Expected areas of activity of the ISTVS-sponsored group include: the problem of terrain specification for planetary rovers; identification of limitations in modelling of rover mobility; a survey of existing rover mobility testbeds; the consolidation of mobility predictive models and their state of validation; sensing and real

  4. The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community (United States)

    Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.


    NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge

  5. Planetary Geologic Mapping Handbook - 2010. Appendix (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.


    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  6. Implementation of cartographic symbols for planetary mapping in geographic information systems (United States)

    Nass, A.; van Gasselt, S.; Jaumann, R.; Asche, H.


    The steadily growing international interest in the exploration of planets in our Solar System and many advances in the development of space-sensor technology have led to the launch of a multitude of planetary missions to Mercury, Venus, the Earth's moon, Mars and various Outer-Solar System objects, such as the Jovian and Saturnian satellites. Camera instruments carried along on these missions image surfaces in different wavelength ranges and under different viewing angles, permitting additional data to be derived, such as spectral data or digital terrain models. Such data enable researchers to explore and investigate the development of planetary surfaces by analyzing and interpreting the inventory of surface units and structures. Results of such work are commonly abstracted and represented in thematic, mostly geological and geomorphological, maps. In order to facilitate efficient collaboration among different planetary research disciplines, mapping results need to be prepared, described, managed, archived, and visualized in a uniform way. These tasks have been increasingly carried out by means of computer-based geographic information systems (GIS or GI systems) which have come to be widely employed in the field of planetary research since the last two decades. In this paper we focus on the simplification of mapping processes, putting specific emphasis on a cartographically correct visualization of planetary mapping data using GIS-based environments. We present and discuss the implementation of a set of standardized cartographic symbols for planetary mapping based on the Digital Cartographic Standard for Geologic Map Symbolization as prepared by the United States Geological Survey (USGS) for the Federal Geographic Data Committee (FGDC). Furthermore, we discuss various options to integrate this symbol catalog into generic GI systems, and more specifically into the Environmental Systems Research Institute's (ESRI) ArcGIS environment, and focus on requirements for

  7. ARES Education and Public Outreach (United States)

    Allen, Jaclyn; Galindo, Charles; Graff, Paige; Willis, Kim


    The ARES Directorate education team is charged with translating the work of ARES scientists into content that can be used in formal and informal K-12 education settings and assisting with public outreach. This is accomplished through local efforts and national partnerships. Local efforts include partnerships with universities, school districts, museums, and the Lunar and Planetary Institute (LPI) to share the content and excitement of space science research. Sharing astromaterials and exploration science with the public is an essential part of the Directorate's work. As a small enclave of physical scientists at a NASA Center that otherwise emphasizes human space operations and engineering, the ARES staff is frequently called upon by the JSC Public Affairs and Education offices to provide presentations and interviews. Scientists and staff actively volunteer with the JSC Speaker's Bureau, Digital Learning Network, and National Engineers Week programs as well as at Space Center Houston activities and events. The education team also participates in many JSC educator and student workshops, including the Pre-Service Teacher Institute and the Texas Aerospace Scholars program, with workshop presentations, speakers, and printed materials.

  8. The International Planetary Data Alliance (United States)

    Stein, T.; Arviset, C.; Crichton, D. J.


    The International Planetary Data Alliance (IPDA) is an association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of projects and coordinates international collaboration. The IPDA conducts a number of focused projects to enable interoperability, construction of compatible archives, and the operation of the IPDA as a whole. These projects have helped to establish the IPDA and to move the collaboration forward. A key project that is currently underway is the implementation of the PDS4 data standard. Given the international focus, it has been critical that the PDS and the IPDA collaborate on its development. Also, other projects have been conducted successfully, including developing the IPDA architecture and corresponding requirements, developing shared registries for data and tools across international boundaries, and common templates for supporting agreements for archiving and sharing data for international missions. Several projects demonstrating interoperability across

  9. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.


    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  10. Improving accessibility and discovery of ESA planetary data through the new planetary science archive (United States)

    Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.


    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.

  11. Europlanet/IDIS: Combining Diverse Planetary Observations and Models (United States)

    Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gerard


    Planetary research involves a diversity of research fields from astrophysics and plasma physics to atmospheric physics, climatology, spectroscopy and surface imaging. Data from all these disciplines are collected from various space-borne platforms or telescopes, supported by modelling teams and laboratory work. In order to interpret one set of data often supporting data from different disciplines and other missions are needed while the scientist does not always have the detailed expertise to access and utilize these observations. The Integrated and Distributed Information System (IDIS) [1], developed in the framework of the Europlanet-RI project, implements a Virtual Observatory approach ([2] and [3]), where different data sets, stored in archives around the world and in different formats, are accessed, re-formatted and combined to meet the user's requirements without the need of familiarizing oneself with the different technical details. While observational astrophysical data from different observatories could already earlier be accessed via Virtual Observatories, this concept is now extended to diverse planetary data and related model data sets, spectral data bases etc. A dedicated XML-based Europlanet Data Model (EPN-DM) [4] was developed based on data models from the planetary science community and the Virtual Observatory approach. A dedicated editor simplifies the registration of new resources. As the EPN-DM is a super-set of existing data models existing archives as well as new spectroscopic or chemical data bases for the interpretation of atmospheric or surface observations, or even modeling facilities at research institutes in Europe or Russia can be easily integrated and accessed via a Table Access Protocol (EPN-TAP) [5] adapted from the corresponding protocol of the International Virtual Observatory Alliance [6] (IVOA-TAP). EPN-TAP allows to search catalogues, retrieve data and make them available through standard IVOA tools if the access to the archive

  12. Planetary Magnetism

    International Nuclear Information System (INIS)

    Russell, C.T.


    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io

  13. Collecting, Managing, and Visualizing Data during Planetary Surface Exploration (United States)

    Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.


    While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.

  14. Planetary mass function and planetary systems (United States)

    Dominik, M.


    With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows the derivation of all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their respective parent star. While planetary multiplicity in an observed system becomes obvious with the detection of several planets, its quantitative assessment however comes with the challenge to exclude the presence of further planets. Current exoplanet samples begin to give us first hints at the population statistics, whereas pictures of planet parameter space in its full complexity call for samples that are 2-4 orders of magnitude larger. In order to derive meaningful statistics, however, planet detection campaigns need to be designed in such a way that well-defined fully deterministic target selection, monitoring and detection criteria are applied. The probabilistic nature of gravitational microlensing makes this technique an illustrative example of all the encountered challenges and uncertainties.

  15. Planetary Simulation Chambers bring Mars to laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E.


    Although space missions provide fundamental and unique knowledge for planetary exploration, they are always costly and extremely time-consuming. Due to the obvious technical and economical limitations of in-situ planetary exploration, laboratory simulations are among the most feasible research options for making advances in planetary exploration. Therefore, laboratory simulations of planetary environments are a necessary and complementary option to expensive space missions. Simulation chambers are economical, more versatile, and allow for a higher number of experiments than space missions. Laboratory-based facilities are able to mimic the conditions found in the atmospheres and on the surfaces of a majority of planetary objects. Number of relevant applications in Mars planetary exploration will be described in order to provide an understanding about the potential and flexibility of planetary simulation chambers systems: mainly, stability and presence of certain minerals on Mars surface; and microorganisms potential habitability under planetary environmental conditions would be studied. Therefore, simulation chambers will be a promising tools and necessary platform to design future planetary space mission and to validate in-situ measurements from orbital or rover observations. (Author)

  16. Planetary and Space Simulation Facilities PSI at DLR for Astrobiology (United States)

    Rabbow, E.; Rettberg, P.; Panitz, C.; Reitz, G.


    Ground based experiments, conducted in the controlled planetary and space environment simulation facilities PSI at DLR, are used to investigate astrobiological questions and to complement the corresponding experiments in LEO, for example on free flying satellites or on space exposure platforms on the ISS. In-orbit exposure facilities can only accommodate a limited number of experiments for exposure to space parameters like high vacuum, intense radiation of galactic and solar origin and microgravity, sometimes also technically adapted to simulate extraterrestrial planetary conditions like those on Mars. Ground based experiments in carefully equipped and monitored simulation facilities allow the investigation of the effects of simulated single environmental parameters and selected combinations on a much wider variety of samples. In PSI at DLR, international science consortia performed astrobiological investigations and space experiment preparations, exposing organic compounds and a wide range of microorganisms, reaching from bacterial spores to complex microbial communities, lichens and even animals like tardigrades to simulated planetary or space environment parameters in pursuit of exobiological questions on the resistance to extreme environments and the origin and distribution of life. The Planetary and Space Simulation Facilities PSI of the Institute of Aerospace Medicine at DLR in Köln, Germany, providing high vacuum of controlled residual composition, ionizing radiation of a X-ray tube, polychromatic UV radiation in the range of 170-400 nm, VIS and IR or individual monochromatic UV wavelengths, and temperature regulation from -20°C to +80°C at the sample size individually or in selected combinations in 9 modular facilities of varying sizes are presented with selected experiments performed within.

  17. PSUP: A Planetary SUrface Portal (United States)

    Poulet, F.; Quantin-Nataf, C.; Ballans, H.; Dassas, K.; Audouard, J.; Carter, J.; Gondet, B.; Lozac'h, L.; Malapert, J.-C.; Marmo, C.; Riu, L.; Séjourné, A.


    . It also allows overlapping of these data products on a virtual Martian globe, which can be difficult to use collectively. The architecture of PSUP data management layer and visualization is based on SITools2 (Malapert and Marseille, 2012) and MIZAR (Module for Interactive visualiZation from Astronomical Repositories) respectively, two CNES generic tools developed by a joint effort between the French space agency (CNES) and French scientific laboratories. Future developments include the addition of high level products of Mars (regional geological maps, new global compositional maps…) and tools (spectra extraction from hyperspectral cubes). Ultimately, PSUP will be adapted to other planetary surfaces and space missions in which the French research institutes are involved.

  18. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions (United States)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.


    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  19. Number of planetary nebulae in our galaxy

    International Nuclear Information System (INIS)

    Alloin, D.; Cruz-Gonzalez, C.; Peimbert, M.


    It is found that the contribution to the ionization of the interstellar medium due to planetary nebulae is from one or two orders of magnitude smaller than that due to O stars. The mass return to the interstellar medium due to planetary nebulae is investigated, and the birth rate of white dwarfs and planetary nebulae are compared. Several arguments are given against the possibility that the infrared sources detected by Becklin and Neugebauer in the direction of the galactic center are planetary nebulae

  20. Technology under Planetary Protection Research (PPR) (United States)

    National Aeronautics and Space Administration — Planetary protection involves preventing biological contamination on both outbound and sample return missions to other planetary bodies. Numerous areas of research...

  1. Automated system for processing nuclear emulsion data on nuclear-nuclear interactions for EMU-15 CERN experiment

    International Nuclear Information System (INIS)

    Aleksandrov, A.B.; Azarenkova, I.Yu.; Feinberg, E.L.; Goneharova, L.A.; Martynov, A.G.; Polukhina, N.G.; Starkov, N.I.


    The EMU-15 experiment has been performed at CERN by the LPI group with the aim of studying characteristics of high-density and high-temperature nuclear matter, in particular, for searching for manifestation of quark-gluon plasma. The main problem inherent in these investigations is a large amount of track measurements in nuclear emulsions. A very efficient Completely Automated Measuring Complex (Russian abbreviation sounds as P AVICOM ) for track-detector data processing in nuclear and high-energy particle physics is operating at the Lebedev Physical Institute. The PAVICOM provides essential improving the efficiency of experimental studies performed not only by the LPI group, but also by many Russian Institutes

  2. Max-Planck-Institute for Nuclear Physics, Heidelberg. Annual report 1991

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Kiko, J.


    The Institute's activities cover basic research work in nuclear physics and particle physics and in cosmophysics. The nuclear physics department reports experimental and theoretical investigations of the structure of atomic nuclei and hadrons, including technical developments on accelerators and storage rings and work on highly charged ions, particle detectors, ion implantations, ionometry and proton-induced X-ray spectroscopy. The cosmophysics department reports studies into the formation of the planetary system, of the comets, the interstellar medium, the cosmic radiation, the extraterrestrial matter, solar neutrions, planetary atmosphere, the chemistry of the stratosphere, and archeometry. (DG) [de

  3. Virtual reality and planetary exploration (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  4. Virtual reality and planetary exploration (United States)

    Mcgreevy, Michael W.


    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  5. Spectral Feature Analysis of Minerals and Planetary Surfaces in an Introductory Planetary Science Course (United States)

    Urban, Michael J.


    Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…

  6. Planetary and tidal wave-type oscillations in the ionospheric sporadic E layers over Tehran region (United States)

    Karami, K.; Ghader, S.; Bidokhti, A. A.; Joghataei, M.; Neyestani, A.; Mohammadabadi, A.


    It is believed that in the lower ionosphere, particularly in the ionospheric sporadic E (Es) layers (90-130 km), the planetary and tidal wave-type oscillations in the ionized component indicate the planetary and tidal waves in the neutral atmosphere. In the present work, the presence of wave-type oscillations, including planetary and tidal waves in the ionospheric sporadic E layers over Tehran region is examined. Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran, from July 2006 to June 2007 are used to investigate seasonal variations of planetary and tidal waves activities. For the purpose of accurate comparison between different seasons, wavelet transform is applied to time series of foEs and h‧Es, namely, the critical frequency and virtual height of Es layers, respectively. The results show that the sporadic E layers over Tehran region are strongly under the influence of upward propagation of waves from below. More specifically, among diverse range of periodicities in the sporadic E layers, we found that diurnal (24 hours) and semidiurnal (12 hours) oscillations in all seasons for both parameters. Moreover, terdiurnal (8 hours) tide-like variation is observed during spring and summer for foEs parameter and summer and winter for h‧Es. Furthermore, the results show that diurnal tidal waves obtain their maximum activities during autumn and winter seasons, and their activities decrease during the late spring and summer. In addition, periods of about 2, 4, 6, 10, 14, and 16 days in our observation verifies the hypothesis of upward propagation of planetary waves from lower atmosphere to the ionosphere. Moreover, planetary waves have their maximum activities during equinox.

  7. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders (United States)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team


    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  8. X-ray observations of planetary nebulae

    International Nuclear Information System (INIS)

    Apparao, K.M.V.; Tarafdar, S.P.


    The Einstein satellite was used to observe 19 planetary nebulae and X-ray emission was detected from four planetary nebulae. The EXOSAT satellite observed 12 planetary nebulae and five new sources were detected. An Einstein HRI observation shows that NGC 246 is a point source, implying that the X-rays are from the central star. Most of the detected planetary nebulae are old and the X-rays are observed during the later stage of planetary nebulae/central star evolution, when the nebula has dispersed sufficiently and/or when the central star gets old and the heavy elements in the atmosphere settle down due to gravitation. However in two cases where the central star is sufficiently luminous X-rays were observed, even though they were young nebulae; the X-radiation ionizes the nebula to a degree, to allow negligible absorption in the nebula. Temperature T x is obtained using X-ray flux and optical magnitude and assuming the spectrum is blackbody. T x agrees with Zanstra temperature obtained from optical Helium lines. (author)

  9. The International Planetary Data Alliance (IPDA) (United States)

    Stein, Thomas; Gopala Krishna, Barla; Crichton, Daniel J.


    The International Planetary Data Alliance (IPDA) is a close association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA is focused on developing an international standard that allows discovery, query, access, and usage of such data across international planetary data archive systems. While trends in other areas of space science are concentrating on the sharing of science data from diverse standards and collection methods, the IPDA concentrates on promoting governing data standards that drive common methods for collecting and describing planetary science data across the international community. This approach better supports the long term goal of easing data sharing across system and agency boundaries. An initial starting point for developing such a standard will be internationalization of NASA's Planetary Data System's (PDS) PDS4 standard. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. It has grown to a dozen member agencies represented by a number of different groups through the IPDA Steering Committee. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of

  10. The NASA Regional Planetary Image Facility (RPIF) Network: A Key Resource for Accessing and Using Planetary Spatial Data (United States)

    Hagerty, J. J.


    The role of the NASA Regional Planetary Image Facility (RPIF) Network is evolving as new science-ready spatial data products continue to be created and as key historical planetary data sets are digitized. Specifically, the RPIF Network is poised to serve specialized knowledge and services in a user-friendly manner that removes most barriers to locating, accessing, and exploiting planetary spatial data, thus providing a critical data access role within a spatial data infrastructure. The goal of the Network is to provide support and training to a broad audience of planetary spatial data users. In an effort to meet the planetary science community's evolving needs, we are focusing on the following objectives: Maintain and improve the delivery of historical data accumulated over the past four decades so as not to lose critical, historical information. This is being achieved by systematically digitizing fragile materials, allowing increased access and preserving them at the same time. Help users locate, access, visualize, and exploit planetary science data. Many of the facilities have begun to establish Guest User Facilities that allow researchers to use and/or be trained on GIS equipment and other specialized tools like Socet Set/GXP photogrammetry workstations for generating digital elevation maps. Improve the connection between the Network nodes while also leveraging the unique resources of each node. To achieve this goal, each facility is developing and sharing searchable databases of their collections, including robust metadata in a standards compliant way. Communicate more effectively and regularly with the planetary science community in an effort to make potential users aware of resources and services provided by the Network, while also engaging community members in discussions about community needs. Provide a regional resource for the science community, colleges, universities, museums, media, and the public to access planetary data. Introduce new strategies for

  11. Classification of ISO SWS 01 spectra of proto-planetary nebulae: a search for precursors of planetary nebulae with [WR] central stars


    Szczerba, R.; Stasi{ń}ska, G.; Siódmiak, N.; Górny, S. K.


    We have analyzed ISO SWS 01 observations for 61 proto-planetary nebulae candidates and classified their spectra according to their dominant chemistry. On the basis of our classification and the more general classification of SWS 01 spectra by Kraemer et al. (2002) we discuss the connection between proto-planetary nebulae candidates and planetary nebulae, with emphasis on possible precursors of planetary nebulae with [WR] central stars.

  12. An ecological compass for planetary engineering. (United States)

    Haqq-Misra, Jacob


    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  13. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    International Nuclear Information System (INIS)

    Dinerstein, H.L.; Lester, D.F.


    Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon

  14. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex


    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  15. Planetary climates (princeton primers in climate)

    CERN Document Server

    Ingersoll, Andrew


    This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

  16. Planetary protection in the framework of the Aurora exploration program (United States)

    Kminek, G.

    The Aurora Exploration Program will give ESA new responsibilities in the field of planetary protection. Until now, ESA had only limited exposure to planetary protection from its own missions. With the proposed ExoMars and MSR missions, however, ESA will enter the realm of the highest planetary protection categories. As a consequence, the Aurora Exploration Program has initiated a number of activities in the field of planetary protection. The first and most important step was to establish a Planetary Protection Working Group (PPWG) that is advising the Exploration Program Advisory Committee (EPAC) on all matters concerning planetary protection. The main task of the PPWG is to provide recommendations regarding: Planetary protection for robotic missions to Mars; Planetary protection for a potential human mission to Mars; Review/evaluate standards & procedures for planetary protection; Identify research needs in the field of planetary protection. As a result of the PPWG deliberations, a number of activities have been initiated: Evaluation of the Microbial Diversity in SC Facilities; Working paper on legal issues of planetary protection and astrobiology; Feasibility study on a Mars Sample Return Containment Facility; Research activities on sterilization procedures; Training course on planetary protection (May, 2004); Workshop on sterilization techniques (fall 2004). In parallel to the PPWG, the Aurora Exploration Program has established an Ethical Working Group (EWG). This working group will address ethical issues related to astrobiology, planetary protection, and manned interplanetary missions. The recommendations of the working groups and the results of the R&D activities form the basis for defining planetary protection specification for Aurora mission studies, and for proposing modification and new inputs to the COSPAR planetary protection policy. Close cooperation and free exchange of relevant information with the NASA planetary protection program is strongly

  17. An Ion-Propelled Cubesat for Planetary Defense and Planetary Science (United States)

    Russell, Christopher T.; Wirz, Richard; Lai, Hairong; Li, Jian-Yang; Connors, Martin


    Small satellites can reduce the cost of launch by riding along with other payloads on a large rocket or being launched on a small rocket, but are perceived as having limited capabilities. This perception can be at least partially overcome by innovative design, including ample in-flight propulsion. This allows achieving multiple targets and adaptive exploration. Ion propulsion has been pioneered on Deep Space 1 and honed on the long-duration, multiple-planetary body mission Dawn. Most importantly, the operation of such a mission is now well- understood, including navigation, communication, and science operations for remote sensing. We examined different mission concepts that can be used for both planetary defense and planetary science near 1 AU. Such a spacecraft would travel in the region between Venus and Mars, allowing a complete inventory of material above, including objects down to about 10m diameter to be inventoried. The ion engines could be used to approach these bodies slowly and carefully and allow the spacecraft to map debris and follow its collisional evolution throughout its orbit around the Sun, if so desired. The heritage of Dawn operations experience enables the mission to be operated inexpensively, and the engineering heritage will allow it to be operated for many trips around the Sun.

  18. Non-planetary Science from Planetary Missions (United States)

    Elvis, M.; Rabe, K.; Daniels, K.


    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  19. Migration-induced architectures of planetary systems. (United States)

    Szuszkiewicz, Ewa; Podlewska-Gaca, Edyta


    The recent increase in number of known multi-planet systems gives a unique opportunity to study the processes responsible for planetary formation and evolution. Special attention is given to the occurrence of mean-motion resonances, because they carry important information about the history of the planetary systems. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The convergent differential migration of two planets embedded in a gaseous disc may result in the capture into a mean-motion resonance. The orbital migration taking place during the early phases of the planetary system formation may play an important role in shaping stable planetary configurations. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability. The aim of this paper is to present the observational properties of these planetary systems which contain confirmed or suspected resonant configurations. A complete list of known systems with such configurations is given. This list will be kept by us updated from now on and it will be a valuable reference for studying the dynamics of extrasolar systems and testing theoretical predictions concerned with the origin and the evolution of planets, which are the most plausible places for existence and development of life.

  20. New developments at Hunveyor and Husar space probe model constructions in Hungarian Universities and Colleges: status report of 2008 (United States)

    Hegzi, S.; Bérczi, Sz.; Hudoba, Gy.; Magyar, I.; Lang, A.; Istenes, Z.; Weidinger, T.; Tepliczky, I.; Varga, T.; Hargitai, H.


    Society developed the last Hunveyor system. It was a meteorological station with 14 measurements. It represents a halfway Hunveyor, because of the building together of the instruments can be studied in this system. It was transported by the Crew 71 to the MDRS and two weeks of measurements were carried out in Utah, during 2008 April (with Husar-2d field work, too). Summary Several new developments of the Hunveyor-Husar university robot system were shown to mark the intensity of interest of students to the preparations to the field work research in planetary geology by building robotics and use them in field works. References: [1] Hargitai, H. (2004): 35th LPSC, #1078. LPI, Houston; [2] Bérczi, Sz.; Fabriczy, A.; Hargitai, H.; Hegyi, S.; Illés, E.; Kabai, S.; Kovács, Zs.; Kereszturi, A.; Opitz, A.; Sik, A.; 34th LPSC, #1305. LPI, Houston; [3] Bérczi Sz. Hargitai H., Kereszturi Á., Sik A. (2001, 2005): [4] Roskó, F.; Diósy, T.; Bérczi, Sz.; Fabriczy, A.; Cech, V.; Hegyi, S. (2000): 31st LPSC, #1572. LPI, Houston; [5] Bérczi Sz., Hegyi S., Kovács Zs., Fabriczy A., Földi T., Keresztesi M., Cech V., Drommer B., Gránicz K., Hevesi L., Borbola T., Tóth Sz., Németh I., Horváth Cs., Diósy T., Kovács B., Bordás F., Köllõ Z., Roskó F., Balogh Zs., Koris A., Imrek Gy. (2001, 2002): [6] Bérczi, Sz.; Diósy, T.; Tóth, Sz.; Hegyi, S.; Imrek, Gy.; Kovács, Zs.; Cech, V.; Müller-Bodó, E.; Roskó, F.; Szentpétery, L.; Hudoba, Gy. (2002): 33rd LPSC, #1496. LPI, Houston; [7] Hudoba, Gy.; Kovács, Zs. I.; Pintér, A.; Földi, T.; Hegyi, S.; Tóth, Sz.; Roskó, F.; Bérczi, Sz. (2004): 35th LPSC, #1572. LPI, Houston; [8] Gimesi, L.; Béres, Cs. Z.; Bérczi, Sz.; Hegyi, S.; Cech, V. (2004): 35th LPSC, #1140; [9] Hegyi, S.; Drommer, B.; Hegyi, A.; Biró, T.; Kókány, A.; Hudoba, Gy.; Bérczi, Sz. (2006): 37th LPSC, #1136. LPI, Houston; [10] Bérczi, Sz.; Gál-Sólymos, K.; Gucsik, A.; Hargitai, H.; Józsa, S.; Szakmány, Gy.; Kubovics, I.; Puskás, Z. (2006): 37th LPSC

  1. The History of Planetary Exploration Using Mass Spectrometers (United States)

    Mahaffy, Paul R.


    At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class.

  2. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.


    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The

  3. PC 11: Symbiotic star or planetary nebulae?

    International Nuclear Information System (INIS)

    Gutierrez-Moreno, A.; Moreno, H.; Cortes, G.


    PC 11 is an object listed in Perek and Kohoutek (1967) Catalogue of Galactic Planetary Nebulae as PK 331 -5 0 1. Some authors suggest that it is not a planetary nebula, but that it has some characteristics (though not all) of symbiotic stars. We have made photographic, spectrophotometric and spectroscopic observations of PC 11. The analysis of the results suggests that it is a young planetary nebula. (Author)

  4. Precise Chemical Analyses of Planetary Surfaces (United States)

    Kring, David; Schweitzer, Jeffrey; Meyer, Charles; Trombka, Jacob; Freund, Friedemann; Economou, Thanasis; Yen, Albert; Kim, Soon Sam; Treiman, Allan H.; Blake, David; hide


    We identify the chemical elements and element ratios that should be analyzed to address many of the issues identified by the Committee on Planetary and Lunar Exploration (COMPLEX). We determined that most of these issues require two sensitive instruments to analyze the necessary complement of elements. In addition, it is useful in many cases to use one instrument to analyze the outermost planetary surface (e.g. to determine weathering effects), while a second is used to analyze a subsurface volume of material (e.g., to determine the composition of unaltered planetary surface material). This dual approach to chemical analyses will also facilitate the calibration of orbital and/or Earth-based spectral observations of the planetary body. We determined that in many cases the scientific issues defined by COMPLEX can only be fully addressed with combined packages of instruments that would supplement the chemical data with mineralogic or visual information.

  5. Visualizing NASA's Planetary Data with Google Earth (United States)

    Beyer, R. A.; Hancher, M. D.; Broxton, M.; Weiss-Malik, M.; Gorelick, N.; Kolb, E.


    There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. As a 3D geospatial browser, the Google Earth client is one way to visualize planetary data. KML imagery super-overlays enable us to create a non-Earth planetary globe within Google Earth, and conversion of planetary meta-data allows display of the footprint locations of various higher-resolution data sets. Once our group, or any group, performs these data conversions the KML can be made available on the Web, where anyone can download it and begin using it in Google Earth (or any other geospatial browser), just like a Web page. Lucian Plesea at JPL offers several KML basemaps (MDIM, colorized MDIM, MOC composite, THEMIS day time infrared, and both grayscale and colorized MOLA). We have created TES Thermal Inertia maps, and a THEMIS night time infrared overlay, as well. Many data sets for Mars have already been converted to KML. We provide coverage polygons overlaid on the globe, whose icons can be clicked on and lead to the full PDS data URL. We have built coverage maps for the following data sets: MOC narrow angle, HRSC imagery and DTMs, SHARAD tracks, CTX, and HiRISE. The CRISM team is working on providing their coverage data via publicly-accessible KML. The MSL landing site process is also providing data for potential landing sites via KML. The Google Earth client and KML allow anyone to contribute data for everyone to see via the Web. The Earth sciences community is already utilizing KML and Google Earth in a variety of ways as a geospatial browser, and we hope that the planetary sciences community will do the same. Using this paradigm for sharing geospatial data will not only enable planetary scientists to more easily build and share data within the scientific community, but will also provide an easy platform for public outreach and education efforts, and will easily allow anyone to layer geospatial information on top of planetary data

  6. Ultraviolet spectroscopy of planetary nebulae in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Maran, S.P.; Aller, L.H.; Gull, T.R.; Stecher, T.P.


    Ultraviolet spectra of three high excitation planetary nebulae in the Magellanic Clouds (LMC P40, SMC N2, SMC N5) were obtained with the International Ultraviolet Explorer. The results are analyzed together with new visual wavelength spectrophotometry of LMC P40 and published data on SMC N2 and SMC N5 to investigate chemical composition and in particular to make the first reliable estimates of the carbon abundance in extragalactic planetary nebulae. Although carbon is at most only slightly less abundant in the LMC and SMC planetary nebulae than in galactic planetaries, it is almost 40 times more abundant in the SMC planetaries than in the SMC interstellar medium, and is about 6 times more abundant in the LMC planetary than in the LMC interstellar medium. According to our limited sample, the net result of carbon synthesis and convective dredgeup in the progenitors of planetary nebulae, as reflected in the nebular carbon abundance, is roughly the same in the Galaxy, the LMC, and the SMC

  7. Planetary engineering (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  8. Planetary engineering (United States)

    Pollack, James B.; Sagan, Carl


    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  9. Planetary Geomorphology. (United States)

    Baker, Victor R.


    Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…

  10. Electrostatic Phenomena on Planetary Surfaces (United States)

    Calle, Carlos I.


    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  11. Significant achievements in the planetary geology program. Final report

    International Nuclear Information System (INIS)

    Head, J.W.


    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include the following: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included

  12. Rocky Planetary Debris Around Young WDs (United States)

    Gaensicke, B.


    The vast majority of all known planet host stars, including the Sun, will eventually evolve into red giants and finally end their lives as white dwarfs: extremely dense Earth-sized stellar embers. Only close-in planets will be devoured during the red-giant phase. In the solar system, Mars, the asteroid belt, and all the giant planets will escape evaporation, and the same is true for many of the known exo-planets. It is hence certain that a significant fraction of the known white dwarfs were once host stars to planets, and it is very likely that many of them still have remnants of planetary systems. The detection of metals in the atmospheres of white dwarfs is the unmistakable signpost of such evolved planetary systems. The strong surface gravity of white dwarfs causes metals to sink out of the atmosphere on time-scales much shorter than their cooling ages, leading unavoidably to pristine H/He atmospheres. Therefore any metals detected in the atmosphere of a white dwarf imply recent or ongoing accretion of planetary debris. In fact, planetary debris is also detected as circumstellar dust and gas around a number of white dwarfs. These debris disks are formed from the tidal disruption of asteroids or Kuiper belt-like objects, stirred up by left-over planets, and are subsequently accreted onto the white dwarf, imprinting their abundance pattern into its atmosphere. Determining the photospheric abundances of debris-polluted white dwarfs is hence entirely analogue to the use of meteorites, "rocks that fell from the sky", for measuring the abundances of planetary material in the solar system. I will briefly review this new field of exo-planet science, and then focus on the results of a large, unbiased COS snapshot survey of relatively young ( 20-100Myr) white dwarfs that we carried out in Cycle 18/19. * At least 30% of all white dwarfs in our sample are accreting planetary debris, and that fraction may be as high as 50%. * In most cases where debris pollution is detected

  13. Lunar and Planetary Science XXXV: Origin of Planetary Systems (United States)


    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.


    National Aeronautics and Space Administration — This data set is intended to include published colors of small planetary satellites published up through December 2003. Small planetary satellites are defined as all...

  15. The Formation of a Planetary Nebula. (United States)

    Harpaz, Amos


    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  16. Modeling, Testing, and Characteristic Analysis of a Planetary Flywheel Inerter

    Directory of Open Access Journals (Sweden)

    Zheng Ge


    Full Text Available We propose the planetary flywheel inerter, which is a new type of ball screw inerter. A planetary flywheel consists of several planetary gears mounted on a flywheel bracket. When the flywheel bracket is driven by a screw and rotating, each planetary gear meshing with an outer ring gear generates a compound motion composed of revolution and rotation. Theoretical analysis shows that the output force of the planetary flywheel inerter is proportional to the relative acceleration of one terminal of the inerter to the other. Optimizing the gear ratio of the planetary gears to the ring gear allows the planetary flywheel to be lighter than its traditional counterpart, without any loss on the inertance. According to the structure of the planetary flywheel inerter, nonlinear factors of the inerter are analyzed, and a nonlinear dynamical model of the inerter is established. Then the parameters in the model are identified and the accuracy of the model is validated by experiment. Theoretical analysis and experimental data show that the dynamical characteristics of a planetary flywheel inerter and those of a traditional flywheel inerter are basically the same. It is concluded that a planetary flywheel can completely replace a traditional flywheel, making the inerter lighter.

  17. Planetary Habitability (United States)

    Kasting, James F.


    This grant was entitled 'Planetary Habitability' and the work performed under it related to elucidating the conditions that lead to habitable, i.e. Earth-like, planets. Below are listed publications for the past two and a half years that came out of this work. The main thrusts of the research involved: (1) showing under what conditions atmospheric O2 and O3 can be considered as evidence for life on a planet's surface; (2) determining whether CH4 may have played a role in warming early Mars; (3) studying the effect of varying UV levels on Earth-like planets around different types of stars to see whether this would pose a threat to habitability; and (4) studying the effect of chaotic obliquity variations on planetary climates and determining whether planets that experienced such variations might still be habitable. Several of these topics involve ongoing research that has been carried out under a new grant number, but which continues to be funded by NASA's Exobiology program.

  18. Planetary geology

    CERN Document Server

    Gasselt, Stephan


    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  19. From red giants to planetary nebulae: Asymmetries, dust, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.


    In order to investigate the development of aspherical planetary nebulae, polarimetry was obtained for a group of planetary nebulae and for objects that will evolve into planetary nebulae, i.e., red giants, late asymptotic giant branch (AGB) objects, proto-planetary nebulae, and young planetary nebulae. To study the dust around the objects in our sample, we also used data from the Infrared Astronomy Satellite (IRAS) mission. The youngest objects in our survey, red giants, had the hottest dust temperatures while planetary nebulae had the coolest. Most of the objects were intrinsically polarized, including the red giants. This indicated that the circumstellar dust shells of these objects were aspherical. Both carbon- and oxygen-rich objects could be intrinsically polarized. The intrinsic polarizations of a sample of our objects were modeled using an ellipsoidal circumstellar dust shell. The findings of this study suggest that the asphericities that lead to an aspherical planetary nebula originate when a red giant begins to undergo mass loss. The polarization and thus the asphericity as the star evolves, with both reaching a maximum during the proto-planetary nebula stage. The circumstellar dust shell will dissipate after the proto-planetary nebulae stage since no new material is being added. The polarization of planetary nebulae will thus be low. In the most evolved planetary nebulae, the dust has either been destroyed or dissipated into the interstellar medium. In these objects no polarization was observed

  20. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.


    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  1. Blue Marble Matches: Using Earth for Planetary Comparisons (United States)

    Graff, Paige Valderrama


    Goal: This activity is designed to introduce students to geologic processes on Earth and model how scientists use Earth to gain a better understanding of other planetary bodies in the solar system. Objectives: Students will: 1. Identify common descriptor characteristics used by scientists to describe geologic features in images. 2. Identify geologic features and how they form on Earth. 3. Create a list of defining/distinguishing characteristics of geologic features 4. Identify geologic features in images of other planetary bodies. 5. List observations and interpretations about planetary body comparisons. 6. Create summary statements about planetary body comparisons.

  2. Summary of the Third International Planetary Dunes Workshop: remote sensing and image analysis of planetary dunes (United States)

    Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.


    The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12–15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.

  3. Mars Technology Program Planetary Protection Technology Development (United States)

    Lin, Ying


    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  4. Planetary optical and infrared imaging

    International Nuclear Information System (INIS)

    Terrile, R.J.


    The purpose of this investigation is to obtain and analyze high spatial resolution charge coupled device (CCD) coronagraphic images of extra-solar planetary material and solar system objects. These data will provide information on the distribution of planetary and proto-planetary material around nearby stars leading to a better understanding of the origin and evolution of the solar system. Imaging within our solar system will provide information on the current cloud configurations on the outer planets, search for new objects around the outer planets, and provide direct support for Voyager, Galileo, and CRAF by imaging material around asteroids and clouds on Neptune. Over the last year this program acquired multispectral and polarization images of the disk of material around the nearby star Beta Pictoris. This material is believed to be associated with the formation of planets and provides a first look at a planetary system much younger than our own. Preliminary color and polarization data suggest that the material is very low albedo and similar to dark outer solar system carbon rich material. A coronagraphic search for other systems is underway and has already examined over 100 nearby stars. Coronagraphic imaging provided the first clear look at the rings of Uranus and albedo limits for the ring arcs around Neptune

  5. Europlanet Research Infrastructure: Planetary Simulation Facilities (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.


    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  6. NASA's Planetary Science Missions and Participations (United States)

    Daou, Doris; Green, James L.


    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  7. The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model (United States)

    Hughes, S.; Bernath, A.


    The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.

  8. Origins of the Lunar and Planetary Laboratory, University of Arizona (United States)

    Cruikshank, Dale P.; Hartmann, William K.


    The roots of the Lunar and Planetary Laboratory (LPL) extend deep into the rich fabric of G. P. Kuiper’s view of the Earth as a planet and planetary systems as expected companions to most stars, as well as the post-war emergent technology of infrared detectors suitable for astronomy. These concepts and events began with Kuiper’s theoretical work at Yerkes Observatory on the origin of the Solar System, his discovery of two planetary satellites and observational work with his near-infrared spectrometer on the then-new McDonald 82-inch telescope in the mid- to late-1940s. A grant for the production of a photographic atlas of the Moon in the mid-1950s enabled him to assemble the best existing images of the Moon and acquire new photographs. This brought E. A. Whitaker and D. W. G. Arthur to Yerkes. Others who joined in the lunar work were geologist Carl S. Huzzen and grad student E. P. Moore, as well as undergrad summer students A. B. Binder and D. P. Cruikshank (both in 1958). The Atlas was published in 1959, and work began on an orthographic lunar atlas. Kuiper’s view of planetary science as an interdisciplinary enterprise encompassing astronomy, geology, and atmospheric physics inspired his vision of a research institution and an academic curriculum tuned to the combination of all the scientific disciplines embraced in a comprehensive study of the planets. Arrangements were made with the University of Arizona (UA) to establish LPL in affiliation with the widely recognized Inst. of Atmospheric Physics. Kuiper moved to the UA in late 1960, taking the lunar experts, graduate student T. C. Owen (planetary atmospheres), and associate B. M. Middlehurst along. G. van Biesbroeck also joined the migration to Tucson; Binder and Cruikshank followed along as new grad students. Astronomy grad student W. K. Hartmann came into the academic program at UA and the research group at LPL in 1961. Senior faculty affiliating with LPL in the earliest years were T. Gehrels, A. B

  9. L-Py: an L-System simulation framework for modeling plant development based on a dynamic language

    Directory of Open Access Journals (Sweden)

    Frederic eBoudon


    Full Text Available The study of plant development requires increasingly powerful modeling tools to help understand and simulate the growth and functioning of plants. In the last decade, the formalism of L-systems has emerged as a major paradigm for modeling plant development. Previous implementations of this formalism were made based on static languages, i.e. languages that require explicit definition of variable types before using them. These languages are often efficient but involve quite a lot of syntactic overhead, thus restricting the flexibility of use for modelers. In this work, we present an adaptation of L-systems to the Python language, a popular and powerful open-license dynamic language. We show that the use of dynamic language properties makes it possible to enhance the development of plant growth models: i by keeping a simple syntax while allowing for high-level programming constructs, ii by making code execution easy and avoiding compilation overhead iii allowing a high level of model reusability and the building of complex modular models iv and by providing powerful solutions to integrate MTG data-structures (that are a common way to represent plants at several scales into L-systems and thus enabling to use a wide spectrum of computer tools based on MTGs developed for plant architecture. We then illustrate the use of L-Py in real applications to build complex models or to teach plant modeling in the classroom.

  10. Effects of mass and metallicity upon planetary nebula formation

    International Nuclear Information System (INIS)

    Papp, K.A.; Purton, C.R.; Kwok, S.


    We construct a parameterized function which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. Our analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebula in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy


    Directory of Open Access Journals (Sweden)

    Józef DREWNIAK


    Full Text Available The article presents the design for a bi-planetary gear train. The project description is supplemented with calculations of kinematics, statics and meshing efficiency of the gear wheels included in the gear train. Excluded are calculations of strength and geometry of gears, shaft and rolling bearing, since they are similar to classical calculations for planetary gears. An assembly drawing in 2D and assembly drawings in 3D of the designed bi-planetary gear train are also shown. This gear train will form the main element of the research in hand.

  12. Robotic vehicles for planetary exploration (United States)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry


    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.


    International Nuclear Information System (INIS)

    Zeng, Li; Jacobsen, Stein B.


    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  14. Free and Open Source Software for Geospatial in the field of planetary science (United States)

    Frigeri, A.


    Information technology applied to geospatial analyses has spread quickly in the last ten years. The availability of OpenData and data from collaborative mapping projects increased the interest on tools, procedures and methods to handle spatially-related information. Free Open Source Software projects devoted to geospatial data handling are gaining a good success as the use of interoperable formats and protocols allow the user to choose what pipeline of tools and libraries is needed to solve a particular task, adapting the software scene to his specific problem. In particular, the Free Open Source model of development mimics the scientific method very well, and researchers should be naturally encouraged to take part to the development process of these software projects, as this represent a very agile way to interact among several institutions. When it comes to planetary sciences, geospatial Free Open Source Software is gaining a key role in projects that commonly involve different subjects in an international scenario. Very popular software suites for processing scientific mission data (for example, ISIS) and for navigation/planning (SPICE) are being distributed along with the source code and the interaction between user and developer is often very strict, creating a continuum between these two figures. A very widely spread library for handling geospatial data (GDAL) has started to support planetary data from the Planetary Data System, and recent contributions enabled the support to other popular data formats used in planetary science, as the Vicar one. The use of Geographic Information System in planetary science is now diffused, and Free Open Source GIS, open GIS formats and network protocols allow to extend existing tools and methods developed to solve Earth based problems, also to the case of the study of solar system bodies. A day in the working life of a researcher using Free Open Source Software for geospatial will be presented, as well as benefits and

  15. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    Directory of Open Access Journals (Sweden)

    Jungang Wang


    Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.

  16. Life Support and Habitation and Planetary Protection Workshop (United States)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)


    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  17. Young planetary nebula with OH molecules - NGC 6302

    International Nuclear Information System (INIS)

    Payne, H.E.; Phillips, J.A.; Terzian, Y.


    The results of a sensitive survey of planetary nebulae in all four ground-state OH lines are reported. The results confirm that evolved planetary nebulas are not OH sources in general. However, one interesting object was not detected: an OH 1612 MHz maser in the young planetary nebula NGC 6302. This nebula may be in a brief evolutionary stage, similar to the young and compact planetary nebula Vy 2-2, where OH has already been detected. In addition, the results of further observations of NGC 6302 are reported, including VLA observations of the 1612 MHz line and continuum emission and detections of rotationally excited OH lines at 5-cm wavelength in absorption. 28 references

  18. Effects of gravity and planetary waves on the lower ionosphere as obtained from radio wave absorption measurements

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan


    Roč. 26, 6, Part C (2001), s. 381-386 ISSN 1464-1917 R&D Projects: GA AV ČR IBS3012007; GA AV ČR IAA3042102; GA MŠk OC 271.10 Institutional research plan: CEZ:AV0Z3042911 Keywords : planetary wave * gravity wave * lower ionosphere Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.399, year: 2001

  19. Energy Balance Models and Planetary Dynamics (United States)

    Domagal-Goldman, Shawn


    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  20. An online planetary exploration tool: ;Country Movers; (United States)

    Gede, Mátyás; Hargitai, Henrik


    Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.

  1. Mars Technology Program: Planetary Protection Technology Development (United States)

    Lin, Ying


    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  2. Optical observations of southern planetary nebula candidates

    NARCIS (Netherlands)

    VandeSteene, GC; Sahu, KC; Pottasch, [No Value


    We present H alpha+[NII] images and low resolution spectra of 16 IRAS-selected, southern planetary nebula candidates previously detected in the radio continuum. The H alpha+[NII] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images

  3. The activities and prospect of planetary protection research in China (United States)

    Li, Ming


    Planetary protection is an important activities and responsibilities for space exploration. In Chinese manned missions, micro-organism research and protection has been developed in Shenzhou-9, Shenzhou-10 and Tiangong-2 missions. In the experiment facility of Lunar Palace-1, the micro-organism pollution and protection/control technology has been studied. In the lunar sample recovery mission and China Mars mission, the planetary protection has become an important issue. This paper introduced the research about planetary protection in China. The planetary protection activities, strategy and procedures have been suggested for future space exploration program to meet the requirement for planetary protection, such as cabin pollution isolation, pollutant detection, and so on.

  4. The brazilian indigenous planetary-observatory (United States)

    Afonso, G. B.


    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  5. An enhanced Planetary Radar Operating Centre (PROC) (United States)

    Catallo, C.


    Planetary exploration by means of radar systems, mainly using GPRs is an important role of Italy and numerous scientific international space programs are carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three experiments under Italian leadership ( designed and manufactured by the Italian industry) provided by ASI within a NASA/ESA/ASI joint venture framework are successfully operating: MARSIS on-board MEX, SHARAD on-board MRO and CASSINI Radar on-board Cassini spacecraft: the missions have been further extended . Three dedicated operational centers, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD are operating from the missions beginning to support all the scientific communities, institutional customers and experiment teams operation Each center is dedicated to a single instrument management and control, data processing and distribution and even if they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). In order to harmonize operations either from logistics point of view and from HW/SW capabilities point of view PROC is designed and developed for offering improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. PROC is, therefore, conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs, such as Europa-Jupiter System Mission (EJSM) The paper describes how the new PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation aiding scientists to increase their knowledge in the field of surface

  6. Formation of planetary systems

    International Nuclear Information System (INIS)

    Brahic, A.


    It seemed appropriate to devote the 1980 School to the origin of the solar system and more particularly to the formation of planetary systems (dynamic accretion processes, small bodies, planetary rings, etc...) and to the physics and chemistry of planetary interiors, surface and atmospheres (physical and chemical constraints associated with their formation). This Summer School enabled both young researchers and hard-nosed scientists, gathered together in idyllic surroundings, to hold numerous discussions, to lay the foundations for future cooperation, to acquire an excellent basic understanding, and to make many useful contacts. This volume reflects the lectures and presentations that were delivered in this Summer School setting. It is aimed at both advanced students and research workers wishing to specialize in planetology. Every effort has been made to give an overview of the basic knowledge required in order to gain a better understanding of the origin of the solar system. Each article has been revised by one or two referees whom I would like to thank for their assistance. Between the end of the School in August 1980 and the publication of this volume in 1982, the Voyager probes have returned a wealth of useful information. Some preliminary results have been included for completeness

  7. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience (United States)

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.


    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn

  8. Collisional stripping of planetary crusts (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.


    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to


    Directory of Open Access Journals (Sweden)

    Sławomir BEDNARCZYK


    Full Text Available In the paper, the design and operation of the planetary cycloidal transmission have been discussed. The transmission is a synthesis of the planetary and the straight-line mechanism. The planetary mechanism is made of a planetary gear set with rollers, which is critical for the proper work of the transmission. Its basic and most important element is the planetary cycloidal gear. Influence of the parameters determining the cycloidal profile of the gear on the gear’s geometry and the forces has been presented. The straight-line mechanism carrying the motion from the driving onto the driven unit of the transmission is made of the pins and bushes located in the holes of the planetary gears. The influence of the number and geometry of the elements on the forces and occuring in the holes of the planetary gears has been presented. Therefore, the properly defined geometry of the gear and of the material of which the gear is made is crucial for the safe operation of the planetary cycloidal transmission.

  10. Planetary Science Educational Materials for Out-of-School Time Educators (United States)

    Barlow, Nadine G.; Clark, Joelle G.


    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices

  11. The effects of mass and metallicity upon planetary nebula formation (United States)

    Papp, K. A.; Purton, C. R.; Kwok, S.


    A parameterized function is constructed which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. This analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebulae in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy.

  12. L-py: an L-system simulation framework for modeling plant architecture development based on a dynamic language. (United States)

    Boudon, Frédéric; Pradal, Christophe; Cokelaer, Thomas; Prusinkiewicz, Przemyslaw; Godin, Christophe


    The study of plant development requires increasingly powerful modeling tools to help understand and simulate the growth and functioning of plants. In the last decade, the formalism of L-systems has emerged as a major paradigm for modeling plant development. Previous implementations of this formalism were made based on static languages, i.e., languages that require explicit definition of variable types before using them. These languages are often efficient but involve quite a lot of syntactic overhead, thus restricting the flexibility of use for modelers. In this work, we present an adaptation of L-systems to the Python language, a popular and powerful open-license dynamic language. We show that the use of dynamic language properties makes it possible to enhance the development of plant growth models: (i) by keeping a simple syntax while allowing for high-level programming constructs, (ii) by making code execution easy and avoiding compilation overhead, (iii) by allowing a high-level of model reusability and the building of complex modular models, and (iv) by providing powerful solutions to integrate MTG data-structures (that are a common way to represent plants at several scales) into L-systems and thus enabling to use a wide spectrum of computer tools based on MTGs developed for plant architecture. We then illustrate the use of L-Py in real applications to build complex models or to teach plant modeling in the classroom.

  13. Lay and Expert Perceptions of Planetary Protection (United States)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul


    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  14. Standards-Based Open-Source Planetary Map Server: Lunaserv (United States)

    Estes, N. M.; Silva, V. H.; Bowley, K. S.; Lanjewar, K. K.; Robinson, M. S.


    Lunaserv is a planetary capable Web Map Service developed by the LROC SOC. It enables researchers to serve their own planetary data to a wide variety of GIS clients without any additional processing or download steps.

  15. Study on Cracking Mechanism of Hardened Planetary frame (United States)

    Li, Xinghui


    Planetary carrier made by 45 steel appear quenching crack, which is analyzed in chemical composition, hardness test and metallographic microscopic structure. The reasons of quenching crack of planetary gear include the unreasonable structure of the planetary carrier, thinner annular wall on the base of the upper part, and in dangerous area of the 45 steel in the process of quenching. The faster cooling rate of quenching results in a centripetal stress with the thick-wall part, which is greater than the ultimate bearing capacity of the material.

  16. Planetary Cartography - Activities and Current Challenges (United States)

    Nass, Andrea; Di, Kaichang; Elgner, Stephan; van Gasselt, Stephan; Hare, Trent; Hargitai, Henrik; Karachevtseva, Irina; Kereszturi, Akos; Kersten, Elke; Kokhanov, Alexander; Manaud, Nicolas; Roatsch, Thomas; Rossi, Angelo Pio; Skinner, James, Jr.; Wählisch, Marita


    Maps are one of the most important tools for communicating geospatial information between producers and receivers. Geospatial data, tools, contributions in geospatial sciences, and the communication of information and transmission of knowledge are matter of ongoing cartographic research. This applies to all topics and objects located on Earth or on any other body in our Solar System. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to introduce the community to the field of planetary cartography and its historic foundation, to highlight some of the organizations involved and to emphasize challenges that Planetary Cartography has to face today and in the near future.

  17. Planetary Data Systems (PDS) Imaging Node Atlas II (United States)

    Stanboli, Alice; McAuley, James M.


    The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.

  18. Visualization of Kepler's Laws of Planetary Motion (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong


    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  19. Abundance determinations in HII regions and planetary nebulae


    Stasinska, Grazyna


    The methods of abundance determinations in HII regions and planetary nebulae are described, with emphasis on the underlying assumptions and inherent problems. Recent results on abundances in Galactic HII regions and in Galactic and extragalactic Planetary Nebulae are reviewed.

  20. The signatures of the parental cluster on field planetary systems (United States)

    Cai, Maxwell Xu; Portegies Zwart, Simon; van Elteren, Arjen


    Due to the high stellar densities in young clusters, planetary systems formed in these environments are likely to have experienced perturbations from encounters with other stars. We carry out direct N-body simulations of multiplanet systems in star clusters to study the combined effects of stellar encounters and internal planetary dynamics. These planetary systems eventually become part of the Galactic field population as the parental cluster dissolves, which is where most presently known exoplanets are observed. We show that perturbations induced by stellar encounters lead to distinct signatures in the field planetary systems, most prominently, the excited orbital inclinations and eccentricities. Planetary systems that form within the cluster's half-mass radius are more prone to such perturbations. The orbital elements are most strongly excited in the outermost orbit, but the effect propagates to the entire planetary system through secular evolution. Planet ejections may occur long after a stellar encounter. The surviving planets in these reduced systems tend to have, on average, higher inclinations and larger eccentricities compared to systems that were perturbed less strongly. As soon as the parental star cluster dissolves, external perturbations stop affecting the escaped planetary systems, and further evolution proceeds on a relaxation time-scale. The outer regions of these ejected planetary systems tend to relax so slowly that their state carries the memory of their last strong encounter in the star cluster. Regardless of the stellar density, we observe a robust anticorrelation between multiplicity and mean inclination/eccentricity. We speculate that the `Kepler dichotomy' observed in field planetary systems is a natural consequence of their early evolution in the parental cluster.

  1. Planetary Society (United States)

    Murdin, P.


    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  2. The New Planetary Science Archive (PSA): Exploration and Discovery of Scientific Datasets from ESA's Planetary Missions (United States)

    Heather, David; Besse, Sebastien; Vallat, Claire; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Coia, Daniela; Costa, Marc; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; MacFarlane, Alan; Martinez, Santa; Rios, Carlos; Vallejo, Fran; Saiz, Jaime


    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. As of the end of 2016, the PSA is hosting data from all of ESA's planetary missions. This includes ESA's first planetary mission Giotto that encountered comet 1P/Halley in 1986 with a flyby at 800km. Science data from Venus Express, Mars Express, Huygens and the SMART-1 mission are also all available at the PSA. The PSA also contains all science data from Rosetta, which explored comet 67P/Churyumov-Gerasimenko and asteroids Steins and Lutetia. The year 2016 has seen the arrival of the ExoMars 2016 data in the archive. In the upcoming years, at least three new projects are foreseen to be fully archived at the PSA. The BepiColombo mission is scheduled for launch in 2018. Following that, the ExoMars Rover Surface Platform (RSP) in 2020, and then the JUpiter ICy moon Explorer (JUICE). All of these will archive their data in the PSA. In addition, a few ground-based support programmes are also available, especially for the Venus Express and Rosetta missions. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more customized views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will also be up

  3. Interoperability in the Planetary Science Archive (PSA) (United States)

    Rios Diaz, C.


    The protocols and standards currently being supported by the recently released new version of the Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet- Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. We explore these protocols in more detail providing scientifically useful examples of their usage within the PSA.

  4. The diversity of planetary system architectures: contrasting theory with observations (United States)

    Miguel, Y.; Guilera, O. M.; Brunini, A.


    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the

  5. The final fate of planetary systems (United States)

    Gaensicke, Boris


    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  6. A new planetary nebula in the outer reaches of the Galaxy

    DEFF Research Database (Denmark)

    Viironen, K.; Mampaso, A.; L. M. Corradi, R.


    of a new planetary nebula towards the Anticentre direction, IPHASX J052531.19+281945.1 (PNG 178.1-04.0), is presented. The planetary nebula was discovered from the IPHAS survey. Long-slit follow-up spectroscopy was carried out to confirm its planetary nebula nature and to calculate its physical...... and chemical characteristics. The newly discovered planetary nebula turned out to be located at a very large galactocentric distance (D_GC=20.8+-3.8 kpc), larger than any previously known planetary nebula with measured abundances. Its relatively high oxygen abundance (12+log(O/H) = 8.36+-0.03) supports...

  7. Influence of stellar duplicity on the form of planetary nebulae

    International Nuclear Information System (INIS)

    Kolesnik, I.G.; Pilyugin, L.S.


    Formation of planetary nebulae's spatial structures is considered. Simple expression for angular distribution of density in planetary nebulae is obtained. Bipolar structures are formed effectively in binary systems in which the velocity of the expanding shell around the main star is smaller than the orbital velocity of the satellite. Masses of satellites lie in the range 0.1-0.4Msub(sun). Theoretical isophotal contour map for the model of the planetary nebula NGC 3587 is consistent with observational data. It is shown that central stars of planetary nebulae are usually binary systems

  8. Post-main-sequence planetary system evolution (United States)

    Veras, Dimitri


    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  9. Gazetteer of Planetary Nomenclature (United States)

    National Aeronautics and Space Administration — Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be...

  10. Geosciences: An Open Access Journal on Earth and Planetary Sciences and Their Interdisciplinary Approaches

    Directory of Open Access Journals (Sweden)

    Jesus Martinez-Frias


    Full Text Available On behalf of the Editorial Board and the editorial management staff of MDPI, it is my great pleasure to introduce this new journal Geosciences. Geosciences is an international, peer-reviewed open access journal, which publishes original papers, rapid communications, technical notes and review articles, and discussions about all interdisciplinary aspects of the earth and planetary sciences. Geosciences may also include papers presented at scientific conferences (proceedings or articles on a well defined topic assembled by individual editors or organizations/institutions (special publications.

  11. Vibration Based Diagnosis for Planetary Gearboxes Using an Analytical Model

    Directory of Open Access Journals (Sweden)

    Liu Hong


    Full Text Available The application of conventional vibration based diagnostic techniques to planetary gearboxes is a challenge because of the complexity of frequency components in the measured spectrum, which is the result of relative motions between the rotary planets and the fixed accelerometer. In practice, since the fault signatures are usually contaminated by noises and vibrations from other mechanical components of gearboxes, the diagnostic efficacy may further deteriorate. Thus, it is essential to develop a novel vibration based scheme to diagnose gear failures for planetary gearboxes. Following a brief literature review, the paper begins with the introduction of an analytical model of planetary gear-sets developed by the authors in previous works, which can predict the distinct behaviors of fault introduced sidebands. This analytical model is easy to implement because the only prerequisite information is the basic geometry of the planetary gear-set. Afterwards, an automated diagnostic scheme is proposed to cope with the challenges associated with the characteristic configuration of planetary gearboxes. The proposed vibration based scheme integrates the analytical model, a denoising algorithm, and frequency domain indicators into one synergistic system for the detection and identification of damaged gear teeth in planetary gearboxes. Its performance is validated with the dynamic simulations and the experimental data from a planetary gearbox test rig.

  12. The Europlanet Prize for Public Engagement with Planetary Science: three years of honouring outstanding achievements (United States)

    Fouchet, T.; Chatzichristou, E.; Heward, A.


    Europlanet launched an annual Prize for Public Engagement with Planetary Sciences at the European Planetary Science Congress (EPSC) in 2009. At EPSC 2012, the prize will be presented for the third time. To date, the prize has been awarded to: • 2010 - Dr Jean Lilensten of the Laboratoire de Planétologie de Grenoble for his development and dissemination of his 'planeterrella' experiment; • 2011 - The Austrian Space Forum for their coordinated programme of outreach activities, which range from simple classroom presentations to space exhibitions reaching 15 000 visitors; • 2012 - Yaël Nazé, for the diverse outreach programme she has individually initiated over the years, carefully tailored to audiences across the spectrum of society, including children, artists and elderly people. These three prizes cover a spectrum of different approaches to outreach and provide inspiration for anyone wishing to become engaged in public engagement, whether at an individual and institutional level.

  13. Ideas for Testing of Planetary Gear Sets of Automotive Transmissions

    Directory of Open Access Journals (Sweden)

    Achtenová Gabriela


    Full Text Available The article describes the concept of modular stand, where is possible to provide tests of gear pairs with fixed axes from mechanical automotive gearboxes, as well as tests of separate planetary sets from automatic gearboxes. Special attention in the article will be paid to the variant dedicated for testing of planetary gear sets. This variant is particularly interesting because: 1 it is rarely described in the literature, and 2 this topology allows big simplification with respect to testing of standard gearwheels. In the planetary closed-loop stand it is possible to directly link two identical planetary sets. Without any bracing flange or other connecting clutches, shafts or gear sets, just two planetary sets face-to-face will be assembled and connected to the electric motor.

  14. Influence of Planetary Protection Guidelines on Waste Management Operations (United States)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.


    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  15. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science (United States)

    Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.


    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.

  16. Reconfigurable Autonomy for Future Planetary Rovers (United States)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  17. SPEX: the Spectropolarimeter for Planetary Exploration (United States)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.


    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  18. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.


    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented

  19. Longitudinal charge nurse leadership development and evaluation. (United States)

    Krugman, Mary; Heggem, Laura; Kinney, Lisa Judd; Frueh, Margaret


    The study's aim was to examine longitudinal outcomes of a leadership program for permanent and relief charge nurse from 1996 to 2012 using action research and Kouzes and Posner's The Leadership Challenge conceptual frameworks. Charge nurses hold significant oversight of patient safety, quality, and team functioning. This study contributes knowledge regarding charge nurse leadership and organization outcomes associated with these essential roles over time. Data were collected over 6 time periods using Kouzes and Posner's The Leadership Practices Inventory (LPI) and internally developed action research tools. Surveys were aligned with leadership and work environment changes to examine outcomes. Charge nurse leadership LPI mean ratings improved. Relief charge nurses reached similar LPI outcomes by 2012, with no statistical differences in mean or domain scores. Action research methods facilitated executive decision making during change processes. Demographics shifted with younger charge nurses with less practice experience serving as charge nurses in the most recent years. Charge nurse leadership reported significant gains despite institutional changes and uneven delivery of educational interventions.

  20. Design Tools for Cost-Effective Implementation of Planetary Protection Requirements (United States)

    Hamlin, Louise; Belz, Andrea; Evans, Michael; Kastner, Jason; Satter, Celeste; Spry, Andy


    Since the Viking missions to Mars in the 1970s, accounting for the costs associated with planetary protection implementation has not been done systematically during early project formulation phases, leading to unanticipated costs during subsequent implementation phases of flight projects. The simultaneous development of more stringent planetary protection requirements, resulting from new knowledge about the limits of life on Earth, together with current plans to conduct life-detection experiments on a number of different solar system target bodies motivates a systematic approach to integrating planetary protection requirements and mission design. A current development effort at NASA's Jet Propulsion Laboratory is aimed at integrating planetary protection requirements more fully into the early phases of mission architecture formulation and at developing tools to more rigorously predict associated cost and schedule impacts of architecture options chosen to meet planetary protection requirements.

  1. Lunar and planetary cartography in Russia

    CERN Document Server

    Shevchenko, Vladislav; Michael, Gregory


    This book is the first to document in depth the history of lunar and planetary cartography in Russia. The first map of the far side of the Moon was made with the participation of Lomonosov Moscow University (Sternberg Astronomical Institute, MSU) in 1960. The developed mapping technologies were then used in preparing the “Complete Map of the Moon” in 1967 as well as other maps and globes. Over the years, various maps of Mars have emerged from the special course “Mapping of extraterrestrial objects” in the MSU Geography Department, including the hypsometric map of Mars at a scale of 1:26,000,000, compiled by J.A. Ilyukhina and published in 2004 in an edition of 5,000 copies. A more detailed version of this map has since been produced with a new hypsometric scale. In addition, maps of the northern and southern hemispheres of Mars have been compiled for the hypsometric globe of Mars.  Relief maps of Venus were made in 2008, 2010, and 2011, and hypsometric maps of Phobos and Deimos at a scale of 1:60,000...

  2. Planetary Nomenclature: An Overview and Update for 2017 (United States)

    Gaither, Tenielle; Hayward, Rose; IAU Working GroupPlanetary System Nomenclature


    The task of naming planetary surface features, rings, and natural satellites is managed by the International Astronomical Union’s (IAU) Working Group for Planetary System Nomenclature (WGPSN). There are currently 15,361 IAU-approved surface feature names on 41 planetary bodies, including moons and asteroids. The members of the WGPSN and its task groups have worked since the early 1970s to provide a clear, unambiguous system of planetary nomenclature that represents cultures and countries from all regions of Earth. WGPSN members include Rita Schulz (Chair) and 9 other members representing countries around the globe. The participation of knowledgeable scientists and experts in this process is vital to its success of the IAU WGPSN . Planetary nomenclature is a tool used to uniquely identify features on the surfaces of planets or satellites so they can be located, described, and discussed in publications, including peer-review journals, maps and conference presentations. Approved names are listed in the Transactions of the IAU and on the Gazetteer of Planetary Nomenclature website. Any names currently in use that are not listed the Gazetteer are not official. Planetary names must adhere to rules and conventions established by the IAU WGPSN (see for the complete list). The gazetteer includes an online Name Request Form ( that can be used by members of the professional science community. Name requests are first reviewed by one of six task groups (Mercury, Venus, Moon, Mars, Outer Solar System, and Small Bodies). After a task group has reviewed a proposal, it is submitted to the WGPSN. Allow four to six weeks for the review and approval process. Upon WGPSN approval, names are considered formally approved and it is then appropriate to use them in publications. Approved names are immediately entered into the database and shown on the website. Questions about the nomenclature

  3. Accelerator-Detector Complex for Photonuclear Detection of Hidden Explosives Final Report CRADA No. TC2065.0

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, W. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brothers, L. J. [Valley Forge Composite Technologies, Inc., Covington, KY (United States)


    This was a collaborative effort by Lawrence Livermore National Security (formerly the University of California)/Lawrence Livermore National Laboratory (LLNL), Valley Forge Composite Technologies, Inc., and the following Russian Institutes: P. N. Lebedev Physical Institute (LPI), Innovative Technologies Center.(AUO CIT), Central Design Bureau-Almas (CDB Almaz), Moscow Instrument Automation Research Institute, and Institute for High Energy Physics (IBEP) to develop equipment and procedures for detecting explosive materials concealed in airline checked baggage and cargo.

  4. Relation between radius and expansion velocity in planetary nebulae

    International Nuclear Information System (INIS)

    Chu, Y.H.; Kwitter, K.B.; Kaler, J.B.


    The expansion velocity-radius (R-V) relation for planetary nebulae is examined using the existing measurements of expansion velocities and recent calculations of radii. It is found that some of the previously alleged R-V relations for PN are not convincingly established. The scatter in the R-V plots may be due largely to stratification of ions in individual nebulae and to heterogeneity in the planetary nebula population. In addition, from new echelle/CCD observations of planetary nebulae, it is found that spatial information is essential in deriving the internal kinematic properties. Future investigations of R-V relations should be pursued separately for groups of planetaries with similar physical properties, and they should employ observations of appropriate low excitation lines in order to measure the expansion velocity at the surface of the nebula. 26 references

  5. Time-dependent simulations of disk-embedded planetary atmospheres (United States)

    Stökl, A.; Dorfi, E. A.


    At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.

  6. Integrating Information Networks for Collective Planetary Stewardship (United States)

    Tiwari, A.


    Responsible behaviour resulting from climate literacy in global environmental movement is limited to policy and planning institutions in the Global South, while remaining absent for ends-user. Thus, planetary stewardship exists only at earth system boundaries where pressures sink to the local scale while ethics remains afloat. Existing citizen participation is restricted within policy spheres, appearing synonymous to enforcements in social psychology. Much, accounted reason is that existing information mechanisms operate mostly through linear exchanges between institutions and users, therefore reinforcing only hierarchical relationships. This study discloses such relationships that contribute to broad networking gaps through information demand assessment of stakeholders in a dozen development projects based in South Asia. Two parameters widely used for this purpose are: a. Feedback: Ends-user feedback to improve consumption literacy of climate sensitive resources (through consumption displays, billing, advisory services ecolabelling, sensors) and, b. Institutional Policy: Rewarding punishing to enforce desired behaviour (subsidies, taxation). Research answered: 1. Who gets the information (Equity in Information Distribution)? As existing information publishing mechanisms are designed by and for analysts, 2. How information translates to climate action Transparency of Execution)? Findings suggested that climate goals manifested in economic policy, than environmental policy, have potential clear short-term benefits and costs, and coincide with people's economic goals Also grassroots roles for responsible behaviour are empowered with presence of end user information. Barier free climate communication process and decision making is ensured among multiplicity of stakeholders with often conflicting perspectives. Research finds significance where collaboration among information networks can better translate regional policies into local action for climate adaptation and

  7. Planetary Sciences Literature - Access and Discovery (United States)

    Henneken, Edwin A.; ADS Team


    The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (, it may very well answer questions you didn't know you had! While the classic ADS ( focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA

  8. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina


    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  9. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    DEFF Research Database (Denmark)

    Richardson, Katherine; Rockström, Johan; Steffen, Will


    boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance...... and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure...


    International Nuclear Information System (INIS)

    Matsumura, Soko; Thommes, Edward W.; Chatterjee, Sourav; Rasio, Frederic A.


    The discovery of over 400 extrasolar planets allows us to statistically test our understanding of the formation and dynamics of planetary systems via numerical simulations. Traditional N-body simulations of multiple-planet systems without gas disks have successfully reproduced the eccentricity (e) distribution of the observed systems by assuming that the planetary systems are relatively closely packed when the gas disk dissipates, so that they become dynamically unstable within the stellar lifetime. However, such studies cannot explain the small semimajor axes a of extrasolar planetary systems, if planets are formed, as the standard planet formation theory suggests, beyond the ice line. In this paper, we numerically study the evolution of three-planet systems in dissipating gas disks, and constrain the initial conditions that reproduce the observed a and e distributions simultaneously. We adopt initial conditions that are motivated by the standard planet formation theory, and self-consistently simulate the disk evolution and planet migration, by using a hybrid N-body and one-dimensional gas disk code. We also take into account eccentricity damping, and investigate the effect of saturation of corotation resonances on the evolution of planetary systems. We find that the a distribution is largely determined in a gas disk, while the e distribution is determined after the disk dissipation. We also find that there may be an optimum disk mass which leads to the observed a-e distribution. Our simulations generate a larger fraction of planetary systems trapped in mean-motion resonances (MMRs) than the observations, indicating that the disk's perturbation to the planetary orbits may be important to explain the observed rate of MMRs. We also find a much lower occurrence of planets on retrograde orbits than the current observations of close-in planets suggest.

  11. Miniaturisation of imaging spectrometer for planetary exploration (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel


    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  12. The chemical composition of three planetary nebulae in the Magellanic clouds

    International Nuclear Information System (INIS)

    Dufour, R.J.; Killen, R.M.


    Emission-line intensities in the planetary nebulae Henize 67 in the Small Magellanic Cloud (SMC) and Henize 97 and 153 in the LMC along with the small SMC H II regions Henize 9, 61, and 81 were measured from photographic image-tube spectra taken with the 1.5 m telescope at Cerro Tololo. The relative abundances of H, He, N, O, Ne, S, and Ar in the nebulae were estimated and compared with the compositions of galactic planetary nebulae and previously studied H II regions in the Clouds. The results show that (1) the N/O ratios in the planetary nebulae are substantially higher than found in the H II regions of each Cloud; (2) He/H approx. = 0.18 in the SMC planetary nebula, but seems normal (approx.0.10) in the two LMC planetaries; and (3) the compositions of the three small SMC H II regions are similar to that of larger SMC H II regions studied previously. It is concluded that the N/H values in the shells of planetary nebulae may not depend on the metal content of the progenitor star as much as recent theoretical models suggest and that the N content of the gas in the Magellanic Clouds arises primarily from sources other than planetary nebulae

  13. LBT observations of the HR8799 planetary system (United States)

    Mesa, D.; Arcidiacono, C.; Claudi, R. U.; Desidera, S.; Esposito, S.; Gratton, R.; Masciadri, E.


    We present here observations of the HR8799 planetary system performed in H and Ks band exploiting the AO system at the Large Binocular Telescope and the PISCES camera. Thanks to the excellent performence of the instrument we were able to detect for the first time the inner known planet of the system (HR8799) in the H band. Precise photometric and astrometric measures have been taken for all the four planets. Further, exploiting ours and previous astrometric results, we were able to put some limits on the planetary orbits of the four planets. The analysis of the dinamical stability of the system seems to show lower planetary masses than the ones adopted until now.

  14. Advances in Planetary Protection at the Deep Space Gateway (United States)

    Spry, J. A.; Siegel, B.; Race, M.; Rummel, J. D.; Pugel, D. E.; Groen, F. J.; Kminek, G.; Conley, C. A.; Carosso, N. J.


    Planetary protection knowledge gaps that can be addressed by science performed at the Deep Space Gateway in the areas of human health and performance, space biology, and planetary sciences that enable future exploration in deep space, at Mars, and other targets.

  15. Reconstruction and visualization of planetary nebulae. (United States)

    Magnor, Marcus; Kindlmann, Gordon; Hansen, Charles; Duric, Neb


    From our terrestrially confined viewpoint, the actual three-dimensional shape of distant astronomical objects is, in general, very challenging to determine. For one class of astronomical objects, however, spatial structure can be recovered from conventional 2D images alone. So-called planetary nebulae (PNe) exhibit pronounced symmetry characteristics that come about due to fundamental physical processes. Making use of this symmetry constraint, we present a technique to automatically recover the axisymmetric structure of many planetary nebulae from photographs. With GPU-based volume rendering driving a nonlinear optimization, we estimate the nebula's local emission density as a function of its radial and axial coordinates and we recover the orientation of the nebula relative to Earth. The optimization refines the nebula model and its orientation by minimizing the differences between the rendered image and the original astronomical image. The resulting model allows creating realistic 3D visualizations of these nebulae, for example, for planetarium shows and other educational purposes. In addition, the recovered spatial distribution of the emissive gas can help astrophysicists gain deeper insight into the formation processes of planetary nebulae.

  16. HESS Opinions: A planetary boundary on freshwater use is misleading (United States)

    Heistermann, Maik


    In 2009, a group of prominent Earth scientists introduced the planetary boundaries (PB) framework: they suggested nine global control variables, and defined corresponding thresholds which, if crossed, could generate unacceptable environmental change. The concept builds on systems theory, and views Earth as a complex adaptive system in which anthropogenic disturbances may trigger non-linear, abrupt, and irreversible changes at the global scale, and push the Earth system outside the stable environmental state of the Holocene. While the idea has been remarkably successful in both science and policy circles, it has also raised fundamental concerns, as the majority of suggested processes and their corresponding planetary boundaries do not operate at the global scale, and thus apparently lack the potential to trigger abrupt planetary changes. This paper picks up the debate with specific regard to the planetary boundary on global freshwater use. While the bio-physical impacts of excessive water consumption are typically confined to the river basin scale, the PB proponents argue that water-induced environmental disasters could build up to planetary-scale feedbacks and system failures. So far, however, no evidence has been presented to corroborate that hypothesis. Furthermore, no coherent approach has been presented to what extent a planetary threshold value could reflect the risk of regional environmental disaster. To be sure, the PB framework was revised in 2015, extending the planetary freshwater boundary with a set of basin-level boundaries inferred from environmental water flow assumptions. Yet, no new evidence was presented, either with respect to the ability of those basin-level boundaries to reflect the risk of regional regime shifts or with respect to a potential mechanism linking river basins to the planetary scale. So while the idea of a planetary boundary on freshwater use appears intriguing, the line of arguments presented so far remains speculative and

  17. Planetary protection issues related to human missions to Mars (United States)

    Debus, A.; Arnould, J.


    In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005,], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005,], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of

  18. 75 FR 19661 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting (United States)


    ... includes the following topics: --Review European Space Agency-NASA Coordination on Planetary Protection... Committee; Planetary Protection Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... (NASA) announces a meeting of the Planetary Protection Subcommittee of the NASA Advisory Council (NAC...

  19. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.


    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  20. Planetary ring systems properties, structures, and evolution

    CERN Document Server

    Murray, Carl D


    Planetary rings are among the most intriguing structures of our solar system and have fascinated generations of astronomers. Collating emerging knowledge in the field, this volume reviews our current understanding of ring systems with reference to the rings of Saturn, Uranus, Neptune, and more. Written by leading experts, the history of ring research and the basics of ring–particle orbits is followed by a review of the known planetary ring systems. All aspects of ring system science are described in detail, including specific dynamical processes, types of structures, thermal properties and their origins, and investigations using computer simulations and laboratory experiments. The concluding chapters discuss the prospects of future missions to planetary rings, the ways in which ring science informs and is informed by the study of other astrophysical disks, and a perspective on the field's future. Researchers of all levels will benefit from this thorough and engaging presentation.

  1. SSERVI Opportunities for the Next Generation of Planetary Researchers (United States)

    Bailey, B. E.; Day, B. H.; Minafra, J.; Baer, J.


    NASA's Solar System Exploration Research Virtual Institute (SSERVI) was founded as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD). SSERVI consists of a diverse set of domestic teams and (currently) nine international teams, ultimately represented by greater than 75 distinct research institutions and more than 450 individual researchers and EPO specialists. The decline in funding opportunities after the termination of the Apollo missions to the Moon in the early 1970's produced a large gap in both the scientific knowledge and experience of the original lunar Apollo researchers and the resurgent group of young lunar/NEA researchers that have emerged within the last 15 years. One of SSERVI's many goals is to bridge this gap through the many networking and scientific connections made between young researchers and established planetary principle investigators. To this end, SSERVI has supported the establishment of NextGen Lunar Scientists and Engineers group (NGLSE), a group of students and early-career professionals designed to build experience and provide networking opportunities to its members. SSERVI has also created the LunarGradCon, a scientific conference dedicated solely to graduate and undergraduate students working in the lunar field. Additionally, SSERVI produces monthly seminars and bi-yearly virtual workshops that introduce students to the wide variety of exploration science being performed in today's research labs. SSERVI also brokers opportunities for domestic and international student exchange between collaborating laboratories as well as internships at our member institutions. SSERVI provides a bridge that is essential to the continued international success of scientific, as well as human and robotic, exploration.

  2. Automation and Robotics for space operation and planetary exploration (United States)

    Montemerlo, Melvin D.


    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  3. Vibration condition monitoring of planetary gearbox under varying external load

    Energy Technology Data Exchange (ETDEWEB)

    Bartelmus, W.; Zimroz, R. [Wroclaw University of Technology, Wroclaw (Poland)


    The paper shows that for condition monitoring of planetary gearboxes it is important to identify the external varying load condition. In the paper, systematic consideration has been taken of the influence of many factors on the vibration signals generated by a system in which a planetary gearbox is included. These considerations give the basis for vibration signal interpretation, development of the means of condition monitoring, and for the scenario of the degradation of the planetary gearbox. Real measured vibration signals obtained in the industrial environment are processed. The signals are recorded during normal operation of the diagnosed objects, namely planetary gearboxes, which are a part of the driving system used in a bucket wheel excavator, used in lignite mines. It has been found that the most important factor of the proper planetary gearbox condition is connected with perturbation of arm rotation, where an arm rotation gives rise to a specific vibration signal whose properties are depicted by a short-time Fourier transform (STFT) and Wigner-Ville distribution presented as a time-frequency map. The paper gives evidence that there are two dominant low-frequency causes that influence vibration signal modulation, i.e. the varying load, which comes from the nature of the bucket wheel digging process, and the arm/carrier rotation. These two causes determine the condition of the planetary gearboxes considered.

  4. Sky Fest: A Model of Successful Scientist Participation in E/PO (United States)

    Dalton, H.; Shipp, S. S.; Shaner, A. J.; LaConte, K.; Shupla, C. B.


    Participation in outreach events is an easy way for scientists to get involved with E/PO and reach many people with minimal time commitment. At the Lunar and Planetary Institute (LPI) in Houston, Texas, the E/PO team holds Sky Fest outreach events several times a year. These events each have a science content theme and include several activities for children and their parents, night sky viewing through telescopes, and scientist presentations. LPI scientists have the opportunity to participate in Sky Fest events either by helping lead an activity or by giving the scientist presentation (a short lecture and/or demonstration). Scientists are involved in at least one preparation meeting before the event. This allows them to ask questions, understand what activity they will be leading, and learn the key points that they should be sharing with the public, as well as techniques for effectively teaching members of the public about the event topic. During the event, each activity is run by one E/PO specialist and one scientist, enabling the scientist to learn about effective E/PO practices from the E/PO specialist and the E/PO specialist to get more science information about the event topic. E/PO specialists working together with scientists at stations provides a more complete, richer experience for event participants. Surveys of event participants have shown that interacting one-on-one with scientists is often one of their favorite parts of the events. Interviews with scientists indicated that they enjoyed Sky Fest because there was very little time involved on their parts outside of the actual event; the activities were created and/or chosen by the E/PO professionals, and setup for the events was completed before they arrived. They also enjoyed presenting their topic to people without a background in science, and who would not have otherwise sought out the information that was presented.

  5. Tools You Can Use! E/PO Resources for Scientists and Faculty to Use and Contribute To: EarthSpace and the NASA SMD Scientist Speaker’s Bureau (United States)

    Buxner, Sanlyn; Shupla, C.; CoBabe-Ammann, E.; Dalton, H.; Shipp, S.


    The Planetary Science Education and Public Outreach (E/PO) Forum has helped to create two tools that are designed to help scientists and higher-education science faculty make stronger connections with their audiences: EarthSpace, an education clearinghouse for the undergraduate classroom; and NASA SMD Scientist Speaker’s Bureau, an online portal to help bring science - and scientists - to the public. Are you looking for Earth and space science higher education resources and materials? Come explore EarthSpace, a searchable database of undergraduate classroom materials for faculty teaching Earth and space sciences at both the introductory and upper division levels! In addition to classroom materials, EarthSpace provides news and information about educational research, best practices, and funding opportunities. All materials submitted to EarthSpace are peer reviewed, ensuring that the quality of the EarthSpace materials is high and also providing important feedback to authors. Your submission is a reviewed publication! Learn more, search for resources, join the listserv, sign up to review materials, and submit your own at Join the new NASA SMD Scientist Speaker’s Bureau, an online portal to connect scientists interested in getting involved in E/PO projects (e.g., giving public talks, classroom visits, and virtual connections) with audiences! The Scientist Speaker’s Bureau helps educators and institutions connect with NASA scientists who are interested in giving presentations, based upon the topic, logistics, and audience. The information input into the database will be used to help match scientists (you!) with the requests being placed by educators. All Earth and space scientists funded by NASA - and/or engaged in active research using NASA’s science - are invited to become part of the Scientist Speaker’s Bureau. Submit your information into the short form at

  6. The effect of carbon monoxide on planetary haze formation

    Energy Technology Data Exchange (ETDEWEB)

    Hörst, S. M.; Tolbert, M. A, E-mail: [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO (United States)


    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N{sub 2}/CH{sub 4} to a variety of energy sources. However, many N{sub 2}/CH{sub 4} atmospheres in both our solar system and extrasolar planetary systems also contain carbon monoxide (CO). We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on the formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  7. Tips and Tools for Teaching Planetary Science (United States)

    Schneider, N. M.


    The poster will describe handson exercises with demonstrations, clicker questions and discussion to demonstrate how to help students understand planets on a deeper conceptual level. We'll also discuss ways to take the latest discoveries beyond "wow" and turn them into teachable moments. The goal is to give modern strategies for teaching planetary science, emphasizing physical concepts and comparative principles. All will be given digital copies of video clips, demonstration descriptions, clicker questions, web links and powerpoint slidesets on recent planetary science discoveries.

  8. Calcium signals in planetary embryos (United States)

    Morbidelli, Alessandro


    The calcium-isotope composition of planetary bodies in the inner Solar System correlates with the masses of such objects. This finding could have implications for our understanding of how the Solar System formed.

  9. Equation of state experiments and theory relevant to planetary modelling

    International Nuclear Information System (INIS)

    Ross, M.; Graboske, H.C. Jr.; Nellis, W.J.


    In recent years there have been a number of static and shockwave experiments on the properties of planetary materials. The highest pressure measurements, and the ones most relevant to planetary modelling, have been obtained by shock compression. Of particular interest to the Jovian group are results for H 2 , H 2 O, CH 4 and NH 3 . Although the properties of metallic hydrogen have not been measured, they have been the subject of extensive calculations. In addition recent shock wave experiments on iron report to have detected melting under Earth core conditions. From this data theoretical models have been developed for computing the equations of state of materials used in planetary studies. A compelling feature that has followed from the use of improved material properties is a simplification in the planetary models. (author)

  10. Russian Planetary Exploration History, Development, Legacy, Prospects

    CERN Document Server

    Harvey, Brian


    Russia’s accomplishments in planetary space exploration were not achieved easily. Formerly, the USSR experienced frustration in trying to tame unreliable Molniya and Proton upper stages and in tracking spacecraft over long distances. This book will assess the scientific haul of data from the Venus and Mars missions and look at the engineering approaches. The USSR developed several generations of planetary probes: from MV and Zond to the Phobos type. The engineering techniques used and the science packages are examined, as well as the nature of the difficulties encountered which ruined several missions. The programme’s scientific and engineering legacy is also addressed, as well as its role within the Soviet space programme as a whole. Brian Harvey concludes by looking forward to future Russian planetary exploration (e.g Phobos Grunt sample return mission). Several plans have been considered and may, with a restoration of funding, come to fruition. Soviet studies of deep space and Mars missions (e.g. TMK, ...

  11. Techniques for Engaging the Public in Planetary Science (United States)

    Shupla, Christine; Shaner, Andrew; Smith Hackler, Amanda


    Public audiences are often curious about planetary science. Scientists and education and public engagement specialists can leverage this interest to build scientific literacy. This poster will highlight research-based techniques the authors have tested with a variety of audiences, and are disseminating to planetary scientists through trainings.Techniques include:Make it personal. Audiences are interested in personal stories, which can capture the excitement, joy, and challenges that planetary scientists experience in their research. Audiences can learn more about the nature of science by meeting planetary scientists and hearing personal stories about their motivations, interests, and how they conduct research.Share relevant connections. Most audiences have very limited understanding of the solar system and the features and compositions of planetary bodies, but they enjoy learning about those objects they can see at night and factors that connect to their culture or local community.Demonstrate concepts. Some concepts can be clarified with analogies, but others can be demonstrated or modeled with materials. Demonstrations that are messy, loud, or that yield surprising results are particularly good at capturing an audience’s attention, but if they don’t directly relate to the key concept, they can serve as a distraction.Give them a role. Audience participation is an important engagement technique. In a presentation, scientists can invite the audience to respond to questions, pause to share their thoughts with a neighbor, or vote on an answer. Audiences can respond physically to prompts, raising hands, pointing, or clapping, or even moving to different locations in the room.Enable the audience to conduct an activity. People learn best by doing and by teaching others; simple hands-on activities in which the audience is discovering something themselves can be extremely effective at engaging audiences.This poster will cite examples of each technique, resources that

  12. Natural Frequencies and Vibrating Modes for a Magnetic Planetary Gear Drive

    Directory of Open Access Journals (Sweden)

    Lizhong Xu


    Full Text Available In this paper, a dynamic model for a magnetic planetary gear drive is proposed. Based on the model, the dynamic equations for the magnetic planetary gear drive are given. From the magnetic meshing forces and torques between the elements for the drive system, the tangent and radial magnetic meshing stiffness is obtained. Using these equations, the natural frequencies and the modes of the magnetic planetary gear drive are investigated. The sensitivity of the natural frequencies to the system parameters is discussed. Results show that the pole pair number and the air gap have obvious effects on the natural frequencies. For the planetary gear number larger than two, the vibrations of the drive system include the torsion mode of the center elements, the translation mode of the center elements, and the planet modes. For the planetary gear number equal to two, the planet mode does not occur, the crown mode and the sun gear mode occur.

  13. Bistatic GPR Measurements in the Egyptian Western Desert - Measured and Simulated data (United States)

    Ciarletti, V.; Le Gall, A.; Berthelier, J.; Ney, R.; Corbel, C.; Dolon, F.


    The TAPIR (Terrestrial And Planetary Investigation Radar) instrument has been designed at CETP (Centre d'etude des Environnements Terrestre et Planetaires) to explore the deep Martian subsurface (down to a few kilometers) and to detect liquid water reservoirs. TAPIR is an impulse ground penetrating radar operating at central frequencies ranging from 2 to 4 MHz operating from the surface. In November 2005, an updated version of the instrument working either in monostatic or in bi-static mode was tested in the Egyptian Western Desert. The work presented here focuses on the bi-static measurements performed on the Abou Saied plateau which shows a horizontally layered sub-surface. The electromagnetic signal was transmitted using one of the two orthogonal 70 m loaded electrical dipole antennas of the transmitting GPR. A second GPR, 50 or 100 meters apart, was dedicated to the signal reception. The received waves were characterized by a set of 5 measurements performed on the receiving GPR : the two horizontal components of the electric field and the three composants of the magnetic field. They were used to compute the direction of arrival of the incoming waves and to retrieve more accurately their propagation path and especially to discriminate between waves due to some sub-surface reflecting structure and those due to interaction with the surface clutter. A very efficient synchronization between the two radars enabled us to perform coherent additions up to 2^{31} which improves dramatically the obtained signal to noise ratio. Complementary electromagnetic measurements were conducted on the same site by the LPI (Lunar and Planetary Institute) and the SwRI (Southwest Research Institute). They provided independent information which helped the interpretation of the TAPIR data. Accurate simulations obtained by FDTD taking into account the information available are presented and used for both the interpretation of the measured data and the validation of the instrument.

  14. Novel Space Exploration Technique for Analysing Planetary Atmospheres


    Dekoulis, George


    The chapter presents a new reconfigurable wide-beam radio interferometer system for analysing planetary atmospheres. The system operates at frequencies, where the ionisation of the planetary plasma regions induces strong attenuation. For Earth, the attenuation is undistinguishable from the CMB at frequencies over 50 MHz. The system introduces a set of advanced specifications to this field of science, previously unseen in similar suborbital experiments. The reprogrammable dynamic range of the ...

  15. Cryogenic Hydrogen Fuel for Controlled Inertial Confinement Fusion (Cryogenic Target Factory Concept Based on FST-Layering Method) (United States)

    Aleksandrova, I. V.; Koresheva, E. R.; Koshelev, I. E.; Krokhin, O. N.; Nikitenko, A. I.; Osipov, I. E.


    A central element of a power plant based on inertial confinement fusion (ICF) is a target with cryogenic hydrogen fuel that should be delivered to the center of a reactor chamber with a high accuracy and repetition rate. Therefore, a cryogenic target factory (CTF) is an integral part of any ICF reactor. A promising way to solve this problem consists in the FST layering method developed at the Lebedev Physical Institute (LPI). This method (rapid fuel layering inside moving free-standing targets) is unique, having no analogs in the world. The further development of FST-layering technologies is implemented in the scope of the LPI program for the creation of a modular CTF and commercialization of the obtained results. In this report, we discuss our concept of CTF (CTF-LPI) that exhibits the following distinctive features: using a FST-layering technology for the elaboration of an in-line production of cryogenic targets, using an effect of quantum levitation of high-temperature superconductors (HTSCs) in magnetic field for noncontacting manipulation, transport, and positioning of the free-standing cryogenic targets, as well as in using a Fourier holography technique for an on-line characterization and tracking of the targets flying into the reactor chamber. The results of original experimental and theoretical investigations performed at LPI indicate that the existing and developing target fabrication capabilities and technologies can be applied to ICF target production. The unique scientific, engineering, and technological base developed in Russia at LPI allows one to make a CTFLPI prototype for mass production of targets and delivery thereof at the required velocity into the ICF reactor chamber.

  16. Soft x-ray Planetary Imager (United States)

    National Aeronautics and Space Administration — The project is to prototype a soft X-ray Imager for planetary applications that has the sensitivity to observe solar system sources of soft  X-ray emission. A strong...

  17. Polarimetry of stars and planetary systems

    National Research Council Canada - National Science Library

    Kolokolova, Ludmilla; Hough, James; Levasseur-Regourd, Anny-Chantal


    ... fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets and the search for extraterrestrial life -- unique results produced...

  18. Intelligence for Human-Assistant Planetary Surface Robots (United States)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.


    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  19. A radio search for planetary nebulae near the galactic center

    International Nuclear Information System (INIS)

    Isaacman, R.B.


    Because of galactic center is a hostile environment, and because planetaries are weak radio emitters, it is not clear a priori that one expects to detect any planetary nebulae at all in the nuclear region of the Galaxy. Therefore the expected lifetime and flux density distribution of galactic center nebulae is considered. The principal observational results from the Westerbork data, and the results of some pilot observations with the Very Large Array, which were intended to distinguish planetaries from other radio sources on an individual basis are given. (Auth.)

  20. Residual signal feature extraction for gearbox planetary stage fault detection

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Ursin, Thomas; Sweeney, Christian Walsted


    Faults in planetary gears and related bearings, e.g. planet bearings and planet carrier bearings, pose inherent difficulties on their accurate and consistent detection associated mainly to the low energy in slow rotating stages and the operating complexity of planetary gearboxes. In this work......, identification of the expected spectral signature for proper residual signal calculation and filtering of any frequency component not related to the planetary stage. Two field cases of planet carrier bearing defect and planet wheel spalling are presented and discussed, showing the efficiency of the followed...

  1. The Energetic Demands and Planetary Footprint of Alternative Human Diets (United States)

    Eshel, G.; Martin, P. A.


    Agriculture is one of the major vehicles of human alteration of the planetary environment. Yet different diets vary vastly in terms of both their energetic demands and overall planetary footprint. We present a quantitative argument that demonstrates that plant-based diets exert vastly smaller planetary environmental cost than animal-based ones. We demonstrate that under a reasonable and readily defensible set of assumptions, a plant-based diet differs from the average American diet by as much energy as the difference between driving a compact and efficient sedan and a Sport Utility Vehicle.

  2. The Strength Analysis of Differential Planetary Gears of Gearbox for Concrete Mixer Truck (United States)

    Bae, M. H.; Bae, T. Y.; Kim, D. J.


    The power train of mixer gearbox for concrete mixer truck includes differential planetary gears to get large reduction ratio for operating mixer a drum and simple structure. The planetary gears are very important part of a mixer gearbox where strength problems namely gear bending stress, gear compressive stress and scoring failure are the main concern. In the present study, calculating specifications of the differential planetary gears and analyzing the gear bending and compressive stresses as well as scoring factor of the differential planetary gears gearbox for an optimal design of the mixer gearbox in respect to cost and reliability are investigated. The analyses of actual gear bending and compressive stresses of the differential planetary gears using Lewes & Hertz equation and verifications of the calculated specifications of the differential planetary gears evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears. In addition, we also analyze actual gear scoring factor as well as evaluate the possibility of scoring failure of the differential planetary gear.

  3. The complex planetary synchronization structure of the solar system (United States)

    Scafetta, N.


    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772), which successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~ 11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research has further confirmed that (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g., within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~ 178.38 yr; and (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennial timescales. This short review concludes with an emphasis on the contribution of the author's research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that also synchronizes the Sun's activity and the Earth's climate. The special issue Pattern in solar variability, their planetary origin and terrestrial impacts (Mörner et al., 2013) further develops the ideas about the planetary-solar-terrestrial interaction with the personal contribution of 10

  4. Vibration behavior optimization of planetary gear sets

    Directory of Open Access Journals (Sweden)

    Farshad Shakeri Aski


    Full Text Available This paper presents a global optimization method focused on planetary gear vibration reduction by means of tip relief profile modifications. A nonlinear dynamic model is used to study the vibration behavior. In order to investigate the optimal radius and amplitude, Brute Force method optimization is used. One approach in optimization is straightforward and requires considerable computation power: brute force methods try to calculate all possible solutions and decide afterwards which one is the best. Results show the influence of optimal profile on planetary gear vibrations.

  5. Planetary nebulae and the interstellar magnetic field

    International Nuclear Information System (INIS)

    Heiligman, G.M.


    Previous workers have found a statistical correlation between the projected directions of the interstellar magnetic field and the major axes of planetary nebulae. This result has been examined theoretically using a numerical hydromagnetic model of a cold plasma nebula expanding into a uniform vacuum magnetic field, with nebular gas accreting on the surface. It is found that magnetic pressure alone is probably not sufficient to shape most planetary nebulae to the observed degree. Phenomena are discussed which could amplify simple magnetic pressure, alter nebular morphology and account for the observed correlation. (author)

  6. Absolute Navigation Information Estimation for Micro Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas


    Full Text Available This paper provides algorithms to estimate absolute navigation information, e.g., absolute attitude and position, by using low power, weight and volume Microelectromechanical Systems-type (MEMS sensors that are suitable for micro planetary rovers. Planetary rovers appear to be easily navigable robots due to their extreme slow speed and rotation but, unfortunately, the sensor suites available for terrestrial robots are not always available for planetary rover navigation. This makes them difficult to navigate in a completely unexplored, harsh and complex environment. Whereas the relative attitude and position can be tracked in a similar way as for ground robots, absolute navigation information, unlike in terrestrial applications, is difficult to obtain for a remote celestial body, such as Mars or the Moon. In this paper, an algorithm called the EASI algorithm (Estimation of Attitude using Sun sensor and Inclinometer is presented to estimate the absolute attitude using a MEMS-type sun sensor and inclinometer, only. Moreover, the output of the EASI algorithm is fused with MEMS gyros to produce more accurate and reliable attitude estimates. An absolute position estimation algorithm has also been presented based on these on-board sensors. Experimental results demonstrate the viability of the proposed algorithms and the sensor suite for low-cost and low-weight micro planetary rovers.

  7. Workshop on Advanced Technologies for Planetary Instruments, part 1

    International Nuclear Information System (INIS)

    Appleby, J.F.


    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DOD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments

  8. Biological life support systems for a Mars mission planetary base: Problems and prospects (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Kovaleva, N. P.; Lamaze, B.; Lobo, M.; Lasseur, Ch.

    The study develops approaches to designing biological life support systems for the Mars mission - for the flight conditions and for a planetary base - using experience of the Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences (IBP SB RAS) with the Bios-3 system and ESA's experience with the MELISSA program. Variants of a BLSS based on using Chlorella and/or Spirulina and higher plants for the flight period of the Mars mission are analyzed. It is proposed constructing a BLSS with a closed-loop material cycle for gas and water and for part of human waste. A higher-plant-based BLSS with the mass exchange loop closed to various degrees is proposed for a Mars planetary base. Various versions of BLSS configuration and degree of closure of mass exchange are considered, depending on the duration of the Mars mission, the diet of the crew, and some other conditions. Special consideration is given to problems of reliability and sustainability of material cycling in BLSS, which are related to production of additional oxygen inside the system. Technologies of constructing BLSS of various configurations are proposed and substantiated. Reasons are given for using physicochemical methods in BLSS as secondary tools both during the flight and the stay on Mars.

  9. Planetary boundaries: exploring the safe operating space for humanity (United States)

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan Foley


    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  10. Laser Mass Spectrometry in Planetary Science

    International Nuclear Information System (INIS)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.


    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  11. Teaching Planetary Science as Part of the Search for Extraterrestrial Intelligence (SETI) (United States)

    Margot, Jean-Luc; Greenberg, Adam H.


    In Spring 2016 and 2017, UCLA offered a course titled "EPSS C179/279 - Search for Extraterrestrial Intelligence: Theory and Applications". The course is designed for advanced undergraduate students and graduate students in the science, technical, engineering, and mathematical fields. Each year, students designed an observing sequence for the Green Bank telescope, observed known planetary systems remotely, wrote a sophisticated and modular data processing pipeline, analyzed the data, and presented their results. In 2016, 15 students participated in the course (9U, 5G; 11M, 3F) and observed 14 planetary systems in the Kepler field. In 2017, 17 students participated (15U, 2G; 10M, 7F) and observed 10 planetary systems in the Kepler field, TRAPPIST-1, and LHS 1140. In order to select suitable targets, students learned about planetary systems, planetary habitability, and planetary dynamics. In addition to planetary science fundamentals, students learned radio astronomy fundamentals, collaborative software development, signal processing techniques, and statistics. Evaluations indicate that the course is challenging but that students are eager to learn because of the engrossing nature of SETI. Students particularly value the teamwork approach, the observing experience, and working with their own data. The next offering of the course will be in Spring 2018. Additional information about our SETI work is available at

  12. Structure of planetary nebulae

    International Nuclear Information System (INIS)

    Goad, L.E.


    Image-tube photographs of planetary nebulae taken through narrow-band interference filters are used to map the surface brightness of these nebulae in their most prominent emission lines. These observations are best understood in terms of a two-component model consisting of a tenuous diffuse nebular medium and a network of dense knots and filaments with neutral cores. The observations of the diffuse component indicate that the inner regions of these nebulae are hollow shells. This suggests that steady stellar winds are the dominant factor in determining the structure of the central regions of planetary nebulae. The observations of the filamentary components of NGC 40 and NGC 6720 show that the observed nebular features can result from the illumination of the inner edges of dense fragmentary neutral filaments by the central stars of these nebulae. From the analysis of the observations of the low-excitation lines in NGC 2392, it is concluded that the rate constant for the N + --H charge transfer reaction is less than 10 -12 cm 3 sec -1

  13. Spectroscopic Investigations of High-Power Laser Sparks in Gas Mixtures Containing Methane: A Laboratory Model of Energetic Events in Strongly Reduced Planetary Atmospheres

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Civiš, Martin; Rašín, R.; Kamas, Michal; Dryahina, Kseniya; Španěl, Patrik; Juha, Libor; Ferus, Martin


    Roč. 39, 3-4 (2009), s. 217-217 ISSN 0169-6149 R&D Projects: GA MŠk LC510; GA MŠk(CZ) LC528; GA ČR GA203/06/1278 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100523 Keywords : planetary atmosphere * lasers * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.053, year: 2009

  14. The Planetary Nebula Spectrograph : The green light for galaxy kinematics

    NARCIS (Netherlands)

    Douglas, NG; Arnaboldi, M; Freeman, KC; Kuijken, K; Merrifield, MR; Romanowsky, AJ; Taylor, K; Capaccioli, M; Axelrod, T; Gilmozzi, R; Hart, J; Bloxham, G; Jones, D


    Planetary nebulae (PNe) are now well established as probes of galaxy dynamics and as standard candles in distance determinations. Motivated by the need to improve the efficiency of planetary nebulae searches and the speed with which their radial velocities are determined, a dedicated instrument-the

  15. China's roadmap for planetary exploration (United States)

    Wei, Yong; Yao, Zhonghua; Wan, Weixing


    China has approved or planned a string of several space exploration missions to be launched over the next decade. A new generation of planetary scientists in China is playing an important role in determining the scientific goals of future missions.

  16. Using Sandia's Z Machine and Density Functional Theory Simulations to Understand Planetary Materials (United States)

    Root, Seth


    The use of Z, NIF, and Omega have produced many breakthrough results in high pressure physics. One area that has greatly benefited from these facilities is the planetary sciences. The high pressure behavior of planetary materials has implications for numerous geophysical and planetary processes. The continuing discovery of exosolar super-Earths demonstrates the need for accurate equation of state data to better inform our models of their interior structures. Planetary collision processes, such as the moon-forming giant impact, require understanding planetary materials over a wide-range of pressures and temperatures. Using Z, we examined the shock compression response of some common planetary materials: MgO, Mg2SiO4, and Fe2O3 (hematite). We compare the experimental shock compression measurements with density functional theory (DFT) based quantum molecular dynamics (QMD) simulations. The combination of experiment and theory provides clearer understanding of planetary materials properties at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. A drilling tool design and in situ identification of planetary regolith mechanical parameters (United States)

    Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei


    The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.

  18. Planetary protection implementation on future Mars lander missions (United States)

    Howell, Robert; Devincenzi, Donald L.


    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  19. Planetary protection implementation on future Mars lander missions (United States)

    Howell, Robert; Devincenzi, Donald L.


    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  20. Photogrammetric Processing of Planetary Linear Pushbroom Images Based on Approximate Orthophotos (United States)

    Geng, X.; Xu, Q.; Xing, S.; Hou, Y. F.; Lan, C. Z.; Zhang, J. J.


    It is still a great challenging task to efficiently produce planetary mapping products from orbital remote sensing images. There are many disadvantages in photogrammetric processing of planetary stereo images, such as lacking ground control information and informative features. Among which, image matching is the most difficult job in planetary photogrammetry. This paper designs a photogrammetric processing framework for planetary remote sensing images based on approximate orthophotos. Both tie points extraction for bundle adjustment and dense image matching for generating digital terrain model (DTM) are performed on approximate orthophotos. Since most of planetary remote sensing images are acquired by linear scanner cameras, we mainly deal with linear pushbroom images. In order to improve the computational efficiency of orthophotos generation and coordinates transformation, a fast back-projection algorithm of linear pushbroom images is introduced. Moreover, an iteratively refined DTM and orthophotos scheme was adopted in the DTM generation process, which is helpful to reduce search space of image matching and improve matching accuracy of conjugate points. With the advantages of approximate orthophotos, the matching results of planetary remote sensing images can be greatly improved. We tested the proposed approach with Mars Express (MEX) High Resolution Stereo Camera (HRSC) and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. The preliminary experimental results demonstrate the feasibility of the proposed approach.

  1. Lunar planetary exploration of Japan; Nippon no tsuki wakusei tansa

    Energy Technology Data Exchange (ETDEWEB)

    Haruyama, J. [Research Development Corporation of Japan, Tokyo (Japan)


    This paper describes lunar planetary exploration of Japan as a result of success in launching the H-II rocket. Under the cooperation between the Space Chemistry Research Institute (ISAS) of the Ministry of Education and the National Aerospace Development Association (NASDA), discussions have begun on launching an orbital satellite for lunar planetary exploration early in the 2000`s. The objective includes a study on origin and evolution of the moon, feasibility study on moon utilization, and learning the moon surface soft landing technology. Explorations on objects other than moon may be conceived by using such a large rocket as H-II. Exploration on living organisms on Mars may be one of them. Light emitting monitors that operate on the living organism dying identification method could be used on places where living organisms are likely to exist on Mars. Then, samples may be brought back, and it might be possible to pursue the mystery of life origin. A comet has no internal melting by heat as in planets, and keeps composing substances as they have been generated. In other words, it could be said a fossil in the solar system that retains initial substances in the solar system. Samples, if they can be brought back, could be keys to solve the mystery of the solar system formation. The Halley comet is said covered with organic substances. There is a theory that life originating substances on the earth were made on a comet, which were supplied to the earth as a result of collision.

  2. Oral Histories in Meteoritics and Planetary Science - XX: Dale Cruikshank (United States)

    Sears, Derek W. G.


    In this interview, Dale Cruikshank (Fig. 1) explains how as an undergraduate at Iowa State University he was a summer student at Yerkes Observatory where he assisted Gerard Kuiper in work on his Photographic Lunar Atlas. Upon completing his degree, Dale went to graduate school at the University of Arizona with Kuiper where he worked on the IR spectroscopy of the lunar surface. After an eventful 1968 trip to Moscow via Prague, during which the Soviets invaded Czechoslovakia, Dale assumed a postdoc position with Vasili Moroz at the Sternberg Astronomical Institute and more observational IR astronomy. Upon returning to the United States and after a year at Arizona, Dale assumed a position at the University of Hawai'i that he held for 17 years. During this period Dale worked with others on thermal infrared determinations of the albedos of small bodies beyond the asteroid Main Belt, leading to the recognition that low-albedo material is prevalent in the outer solar system that made the first report of complex organic solids on a planetary body (Saturn's satellite Iapetus). After moving to Ames Research Center, where he works currently, he continued this work and became involved in many outer solar system missions. Dale has served the community through his involvement in developing national policies for science-driven planetary exploration, being chair of the DPS 1990-1991 and secretary/treasurer for 1982-1985. He served as president of Commission 16 (Physics of Planets) of the IAU (2001-2003). He received the Kuiper prize in 2006.

  3. Galactic planetary nebulae and evolution of their nuclei

    International Nuclear Information System (INIS)

    Khromov, G.S.


    The galactic system of planetary nebulae is investigated using previously constructed distance scale and kinematics data. A strong effect of observational selection is established, which has the consequence that with increasing distance, ever brighter and younger objects are observed. More accurate determinations of the spatial and surface densities of the planetary nebulae system are obtained as well as a new estimate of their total number in the Galaxy, which is approximately 200,000. New estimates are also made of the masses of the nebulae, the absolute magnitudes of the nebulae and their nuclei, and other physical parameters of these objects. The spatial and kinematic characteristics of the planetary nebulae indicate that they are objects of the old type I population. It is possible that their remote ancestors are main sequence stars of the type B8-A5-F or as yet unidentified objects of the same galactic subsystem

  4. Alien skies planetary atmospheres from earth to exoplanets

    CERN Document Server

    Pont, Frédéric J


    Planetary atmospheres are complex and evolving entities, as mankind is rapidly coming to realise whilst attempting to understand, forecast and mitigate human-induced climate change. In the Solar System, our neighbours Venus and Mars provide striking examples of two endpoints of planetary evolution, runaway greenhouse and loss of atmosphere to space. The variety of extra-solar planets brings a wider angle to the issue: from scorching "hot jupiters'' to ocean worlds, exo-atmospheres explore many configurations unknown in the Solar System, such as iron clouds, silicate rains, extreme plate tectonics, and steam volcanoes. Exoplanetary atmospheres have recently become accessible to observations. This book puts our own climate in the wider context of the trials and tribulations of planetary atmospheres. Based on cutting-edge research, it uses a grand tour of the atmospheres of other planets to shine a new light on our own atmosphere, and its relation with life.

  5. Planetary Gearbox Fault Detection Using Vibration Separation Techniques (United States)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason


    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  6. NASA's Lunar and Planetary Mapping and Modeling Program (United States)

    Law, E.; Day, B. H.; Kim, R. M.; Bui, B.; Malhotra, S.; Chang, G.; Sadaqathullah, S.; Arevalo, E.; Vu, Q. A.


    NASA's Lunar and Planetary Mapping and Modeling Program produces a suite of online visualization and analysis tools. Originally designed for mission planning and science, these portals offer great benefits for education and public outreach (EPO), providing access to data from a wide range of instruments aboard a variety of past and current missions. As a component of NASA's Science EPO Infrastructure, they are available as resources for NASA STEM EPO programs, and to the greater EPO community. As new missions are planned to a variety of planetary bodies, these tools are facilitating the public's understanding of the missions and engaging the public in the process of identifying and selecting where these missions will land. There are currently three web portals in the program: the Lunar Mapping and Modeling Portal or LMMP (, Vesta Trek (, and Mars Trek ( Portals for additional planetary bodies are planned. As web-based toolsets, the portals do not require users to purchase or install any software beyond current web browsers. The portals provide analysis tools for measurement and study of planetary terrain. They allow data to be layered and adjusted to optimize visualization. Visualizations are easily stored and shared. The portals provide 3D visualization and give users the ability to mark terrain for generation of STL files that can be directed to 3D printers. Such 3D prints are valuable tools in museums, public exhibits, and classrooms - especially for the visually impaired. Along with the web portals, the program supports additional clients, web services, and APIs that facilitate dissemination of planetary data to a range of external applications and venues. NASA challenges and hackathons are also providing members of the software development community opportunities to participate in tool development and leverage data from the portals.

  7. Statistical and physical study of one-sided planetary nebulae. (United States)

    Ali, A.; El-Nawawy, M. S.; Pfleiderer, J.

    The authors have investigated the spatial orientation of one-sided planetary nebulae. Most of them if not all are interacting with the interstellar medium. Seventy percent of the nebulae in the sample have inclination angles larger than 45° to the Galactic plane and 30% of the inclination angles are less than 45°. Most of the selected objects are old, evolved planetary nebulae with large dimensions, and not far away from the Galactic plane. Seventy-five percent of the objects are within 160 pc from the Galactic plane. The enhanced concavity arc can be explained physically as a result of the 'planetary nebulae-interstellar matter' interaction. The authors discuss the possible effect of the interstellar magnetic field in the concavity regions.

  8. A comparison of Hipparcos parallaxes with planetary nebulae spectroscopic distances

    NARCIS (Netherlands)

    Pottasch, [No Value; Acker, A


    The Hipparcos satellite has measured the parallax of a small sample of planetary nebulae. In this paper we consider the results for 3 planetary nebulae (PN) for which spectroscopic distances have also been determined from stellar gravities. These gravities in turn have been derived from profile

  9. Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans (United States)

    Ikoma, M.; Elkins-Tanton, L.; Hamano, K.; Suckale, J.


    The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.

  10. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F


    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  11. A bibliography of planetary geology principal investigators and their associates, 1982 - 1983 (United States)

    Plescia, J. B.


    This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.

  12. The Vibration Sensors Optimum Mounting Analysis at Planetary Reduction Gearmotor Vibration Diagnostics


    Ļitvinovs, D


    Due to the specific mechanical peculiarities, planetary reduction gearmotors were and remain the most progressive types of reduction gearboxes for industry application. Compactness, small specific gravity and, simultaneously, possibility to pass the increased loadings – here what planetary reduction gearmotors are attractive for developers and customers. Because of planetary reduction gearmotors increased amount applying in industry, increases the requirements in their diagnostics. For this p...

  13. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M


    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  14. Spreading the passion for scientifically useful planetary observations (United States)

    Kardasis, E.; Vourliotis, E.; Bellias, I.; Maravelias, G.; Vakalopoulos, E.; Papadeas, P.; Marouda, K.; Voutyras, O.


    Τhe "March 2015 - Planetary Observation Project (POP)" was a series of talks and hands-on workshops focused on planetary observation organized in March 2015 by the planetary section of the Hellenic Amateur Astronomy Association. Building on our previous experience (Voutyras et al. 2013), which also includes more than 500 attendants in our 2013-2014 series of lectures in Astronomy, we identified that there is a lack of more focused lectures/workshops on observing techniques. In particular, POP's structure included two talks and two workshops aiming to inspire and educate astronomy enthusiasts. The talks tried to stimulate the participants about the importance of ground-based observations by presenting the most current scientific news and puzzling problems that we are facing in the observation of planets. During the hands-on workshops the beauty of planetary observation was used to inspire participants. However, we trained participants on observing techniques and image processing to enable them to produce scientifically useful results. All POP's events were open to the public and free, meaning both out-of-charge and freely available material provided to the participants (through our website). The project offered attendants unique experiences that may have a significant impact with potential lifelong benefits. In this work we present an overview of the project structure that may work as a prototype for similar outreach programs.

  15. Visit to the Russian Production and Assembly Sites in March 2000 (photos obtained from MPI)

    CERN Multimedia


    Photo1 - EST electrode production at LPI. Photo2 - EST electrode production at LPI. Photo3 - EST electrode production at LPI. Photo4 - Cold test of EST electrodes at LPI. Photo5 - Cold test of EST electrodes at LPI. Photo6 - The device for cleaning honeycomb mats at JINR. Photo7 - Module assembly at IHEP. Photo8 - Module assembly at IHEP. Photo9 - Module assembly at IHEP. Photo10 - Transport cases for "Molniya" modules (former bomb cases)

  16. Small reactor power systems for manned planetary surface bases

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, H.S.


    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  17. Small reactor power systems for manned planetary surface bases

    International Nuclear Information System (INIS)

    Bloomfield, H.S.


    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options

  18. Robots and Humans in Planetary Exploration: Working Together? (United States)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)


    Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

  19. Fluvial geomorphology on Earth-like planetary surfaces: A review. (United States)

    Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P


    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.

  20. Planetary and gravity wave signatures in the F region ionosphere with impact on radio propagation predictions and variability

    Czech Academy of Sciences Publication Activity Database

    Altadill, D.; Apostolov, E. M.; Boška, Josef; Laštovička, Jan; Šauli, Petra


    Roč. 47, 2/3 (2004), s. 1109-1119 ISSN 1593-5213. [Final Meeting COST271 Action. Effects of the upper atmosphere on terrestrial and Earth-space communications (EACOS). Abingdon, 26.08.2004-27.08.2004] R&D Projects: GA MŠk OC 271.10; GA ČR GA205/01/1071; GA ČR GP205/02/P077 Institutional research plan: CEZ:AV0Z3042911 Keywords : ionosphere * planetary waves * gravity waves Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.413, year: 2004

  1. Vision and Voyages: Lessons Learned from the Planetary Decadal Survey (United States)

    Squyres, S. W.


    The most recent planetary decadal survey, entitled Vision and Voyages for Planetary Science in the Decade 2013-2022, provided a detailed set of priorities for solar system exploration. Those priorities drew on broad input from the U.S. and international planetary science community. Using white papers, town hall meetings, and open meetings of the decadal committees, community views were solicited and a consensus began to emerge. The final report summarized that consensus. Like many past decadal reports, the centerpiece of Vision and Voyages was a set of priorities for future space flight projects. Two things distinguished this report from some previous decadals. First, conservative and independent cost estimates were obtained for all of the projects that were considered. These independent cost estimates, rather than estimates generated by project advocates, were used to judge each project's expected science return per dollar. Second, rather than simply accepting NASA's ten-year projection of expected funding for planetary exploration, decision rules were provided to guide program adjustments if actual funding did not follow projections. To date, NASA has closely followed decadal recommendations. In particular, the two highest priority "flagship" missions, a Mars rover to collect samples for return to Earth and a mission to investigate a possible ocean on Europa, are both underway. The talk will describe the planetary decadal process in detail, and provide a more comprehensive assessment of NASA's response to it.

  2. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Philip E


    This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar.

  3. The Planetary Terrestrial Analogues Library (PTAL) (United States)

    Werner, S. C.; Dypvik, H.; Poulet, F.; Rull Perez, F.; Bibring, J.-P.; Bultel, B.; Casanova Roque, C.; Carter, J.; Cousin, A.; Guzman, A.; Hamm, V.; Hellevang, H.; Lantz, C.; Lopez-Reyes, G.; Manrique, J. A.; Maurice, S.; Medina Garcia, J.; Navarro, R.; Negro, J. I.; Neumann, E. R.; Pilorget, C.; Riu, L.; Sætre, C.; Sansano Caramazana, A.; Sanz Arranz, A.; Sobron Grañón, F.; Veneranda, M.; Viennet, J.-C.; PTAL Team


    The Planetary Terrestrial Analogues Library project aims to build and exploit a spectral data base for the characterisation of the mineralogical and geological evolution of terrestrial planets and small solar system bodies.

  4. On the evolution of central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Yahel, R.Z.


    The evolution of nuclei of planetary nebulae has been calculated from the end of the ejection stage that produces the nebulae to the white dwarf stage. The structure of the central star is in agreement with the general picture of Finzi (1973) about the mass ejection from the progenitors of planetary nebulae. It has been found that in order to obtain evolutionary track consistent with the Harman-Seaton track (O'Dell, 1968) one has to assume that the masses of the nuclei stars are less than approximately 0.7 solar masses. The calculated evolutionary time scale of the central stars of planetary nebulae is approximately 2 x 10 4 yr. This time scale is negatively correlated with the stellar mass: the heavier the stellar mass, the shorter the evolutionary time scale. (Auth.)

  5. Planetary Balloon-Based Science Platform Evaluation and Program Implementation (United States)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob


    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential

  6. Lunar and planetary surface conditions advances in space science and technology

    CERN Document Server

    Weil, Nicholas A


    Lunar and Planetary Surface Conditions considers the inferential knowledge concerning the surfaces of the Moon and the planetary companions in the Solar System. The information presented in this four-chapter book is based on remote observations and measurements from the vantage point of Earth and on the results obtained from accelerated space program of the United States and U.S.S.R. Chapter 1 presents the prevalent hypotheses on the origin and age of the Solar System, followed by a brief description of the methods and feasibility of information acquisition concerning lunar and planetary data,

  7. Past and future of radio occultation studies of planetary atmospheres (United States)

    Eshleman, Von R.; Hinson, David P.; Tyler, G. Leonard; Lindal, Gunnar F.


    Measurements of radio waves that have propagated through planetary atmospheres have provided exploratory results on atmospheric constituents, structure, dynamics, and ionization for Venus, Mars, Titan, Jupiter, Saturn, and Uranus. Highlights of past results are reviewed in order to define and illustrate the potential of occultation and related radio studies in future planetary missions.

  8. Robo-AO Kepler Survey. IV. The Effect of Nearby Stars on 3857 Planetary Candidate Systems (United States)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Riddle, Reed; Duev, Dmitry A.; Howard, Ward; Jensen-Clem, Rebecca; Kulkarni, S. R.; Morton, Tim; Salama, Maïssa


    We present the overall statistical results from the Robo-AO Kepler planetary candidate survey, comprising of 3857 high-angular resolution observations of planetary candidate systems with Robo-AO, an automated laser adaptive optics system. These observations reveal previously unknown nearby stars blended with the planetary candidate host stars that alter the derived planetary radii or may be the source of an astrophysical false positive transit signal. In the first three papers in the survey, we detected 440 nearby stars around 3313 planetary candidate host stars. In this paper, we present observations of 532 planetary candidate host stars, detecting 94 companions around 88 stars; 84 of these companions have not previously been observed in high resolution. We also report 50 more-widely separated companions near 715 targets previously observed by Robo-AO. We derive corrected planetary radius estimates for the 814 planetary candidates in systems with a detected nearby star. If planetary candidates are equally likely to orbit the primary or secondary star, the radius estimates for planetary candidates in systems with likely bound nearby stars increase by a factor of 1.54, on average. We find that 35 previously believed rocky planet candidates are likely not rocky due to the presence of nearby stars. From the combined data sets from the complete Robo-AO KOI survey, we find that 14.5 ± 0.5% of planetary candidate hosts have a nearby star with 4″, while 1.2% have two nearby stars, and 0.08% have three. We find that 16% of Earth-sized, 13% of Neptune-sized, 14% of Saturn-sized, and 19% of Jupiter-sized planet candidates have detected nearby stars.

  9. Integrating polarized light over a planetary disk applied to starlight reflected by extrasolar planets

    NARCIS (Netherlands)

    Stam, D.M.; de Rooij, W.A.; Cornet, G.; Hovenier, J.W.


    We present an efficient numerical method for integrating planetary radiation over a planetary disk, which is especially interesting for simulating signals of extrasolar planets. Our integration method is applicable to calculating the full flux vector of the disk-integrated planetary radiation, i.e.

  10. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G


    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  11. Annual review of earth and planetary sciences. Volume 8

    International Nuclear Information System (INIS)

    Donath, F.A.; Stehli, F.G.; Wetherill, G.W.


    Papers are presented on the geochemistry of evaporitic lacustrine deposits, the deformation of mantle rocks, the dynamics of sudden stratospheric warmings, the equatorial undercurrent, geomorphological processes on planetary surfaces, and rare earth elements in petrogenetic studies of igneous systems. Consideration is also given to evolutionary patterns in early Cenozoic animals, the origin and evolution of planetary atmospheres, the moons of Mars, and refractory inclusions in the Allende meteorite

  12. MPLNET V3 Cloud and Planetary Boundary Layer Detection (United States)

    Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.


    The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.

  13. Mission Implementation Constraints on Planetary Muon Radiography (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank


    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  14. Developing the Planetary Science Virtual Observatory (United States)

    Erard, Stéphane; Cecconi, Baptiste; Le Sidaner, Pierre; Henry, Florence; Chauvin, Cyril; Berthier, Jérôme; André, Nicolas; Génot, Vincent; Schmitt, Bernard; Capria, Teresa; Chanteur, Gérard


    In the frame of the Europlanet-RI program, a prototype Virtual Observatory dedicated to Planetary Science has been set up. Most of the activity was dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), and space archive services (IPDA).The current architecture connects existing data services with IVOA or IPDA protocols whenever relevant. However, a more general standard has been devised to handle the specific complexity of Planetary Science, e.g. in terms of measurement types and coordinate frames. This protocol, named EPN-TAP, is based on TAP and includes precise requirements to describe the contents of a data service (Erard et al Astron & Comp 2014). A light framework (DaCHS/GAVO) and a procedure have been identified to install small data services, and several hands-on sessions have been organized already. The data services are declared in standard IVOA registries. Support to new data services in Europe will be provided during the proposed Europlanet H2020 program, with a focus on planetary mission support (Rosetta, Cassini…).A specific client (VESPA) has been developed at VO-Paris ( It is able to use all the mandatory parameters in EPN-TAP, plus extra parameters from individual services. A resolver for target names is also available. Selected data can be sent to VO visualization tools such as TOPCAT or Aladin though the SAMP protocol.Future steps will include the development of a connection between the VO world and GIS tools, and integration of heliophysics, planetary plasma and reference spectroscopic data.The EuroPlaNet-RI project was funded by the European


    International Nuclear Information System (INIS)

    Herrmann, Kimberly A.; Ciardullo, Robin


    As the second step in our investigation of the mass-to-light ratio of spiral disks, we present the results of a spectroscopic survey of planetary nebulae (PNe) in five nearby, low-inclination galaxies: IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), and M101 (NGC 5457). Using 50 setups of the WIYN/Hydra and Blanco/Hydra spectrographs, and 25 observations with the Hobby-Eberly Telescope's Medium Resolution Spectrograph, we determine the radial velocities of 99, 102, 162, 127, and 48 PNe, respectively, to a precision better than 15 km s -1 . Although the main purpose of this data set is to facilitate dynamical mass measurements throughout the inner and outer disks of large spiral galaxies, our spectroscopy has other uses as well. Here, we co-add these spectra to show that, to first order, the [O III] and Balmer line ratios of PNe vary little over the top ∼1.5 mag of the PN luminosity function. The only obvious spectral change occurs with [N II], which increases in strength as one proceeds down the luminosity function. We also show that typical [O III]-bright planetaries have E(B - V) ∼ 0.2 of circumstellar extinction, and that this value is virtually independent of [O III] luminosity. We discuss the implications this has for understanding the population of PN progenitors.

  16. Measuring planetary neutron albedo fluxes by remote gamma-ray sensing

    International Nuclear Information System (INIS)

    Haines, E.L.; Metzger, A.E.


    A remote-sensing γ-ray spectrometer (GRS) is capable of measuring planetary surface composition through the detection of characteristic gamma rays. In addition, the planetary neutron leakage flux may be detected by means of a thin neutron absorber surrounding the γ-ray detector which converts the neutron flux into a γ-ray flux having a unique energy signature. The γ rays representing the neutron flux are observed against interference consisting of cosmic γ rays, planetary continuum and line emission, and a variety of gamma rays arising from cosmic-ray particle interactions with the γ-ray spectrometer and spacecraft (SC). In this paper the amplitudes of planetary and non-planetary neutron fluxes are assessed and their impact on the sensitivity of measurement is calculated for a lunar orbiter mission and a comet nucleus rendezvous mission. For a 100 h observation period from an altitude of 100 km, a GRS on a lunar orbiter can detect a thermal neutron albedo flux as low as 0.002 cm -2 s -1 and measure the expected flux of approx.=0.6 cm -2 s -1 with an uncertainty of 0.001 cm -2 s -1 . A GRS rendezvousing with a comet at a distance equal to the radius of the comet's nucleus, again for a 100 h observation time, should detect a thermal neutron albedo flux at a level of 0.006 cm -2 s -1 and measure the expected flux of approx.=0.4 cm -2 s -1 with an uncertainty of 0.004 cm -2 s -1 . Mapping the planetary neutron flux jointly with the direct detection of H will not only provide a more accurate model for translating observed γ-ray fluxes into concentrations but will also extend the effective sampling depth and should provide a capability for simple stratigraphic modeling of hydrogen. (orig.)

  17. Emission lines of Mg2 and Ca2 in planetary nebulae

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.


    Conditions of exciting resonance lines in the emission of ionized magnesium (lambda lambda 2796+2803 Mg2) and calcium (lambda lambda 3934+3968 Ca2) in planetary nebulae have been analyzed. It is shown that the allowed lines are excited with the same mechanism, as the forbidden lines, i.e. inelastic electron collisions, but not with common fluorescence. The emission line lambda 2800 Mg2 of enough force can be observed only in the spectra of planetary nebulae with mean excitation (IC 2149) as well as in the spectra of diffuse nebulae. The line must not be observed in high-excited planetary nebulae (NGC 7026, 7662). The absence of emission lines H and K Ca2 in planetary nebulae spectra results from the fact, that their expected intensity is by 3-4 orders less than the intensity of the line lambda 2800 Mg2 or Hsub(β) hydrogen

  18. Summary and abstracts of the Planetary Data Workshop, June 2012 (United States)

    Gaddis, Lisa R.; Hare, Trent; Beyer, Ross


    The recent boom in the volume of digital data returned by international planetary science missions continues to both delight and confound users of those data. In just the past decade, the Planetary Data System (PDS), NASA’s official archive of scientific results from U.S. planetary missions, has seen a nearly 50-fold increase in the amount of data and now serves nearly half a petabyte. In only a handful of years, this volume is expected to approach 1 petabyte (1,000 terabytes or 1 quadrillion bytes). Although data providers, archivists, users, and developers have done a creditable job of providing search functions, download capabilities, and analysis and visualization tools, the new wealth of data necessitates more frequent and extensive discussion among users and developers about their current capabilities and their needs for improved and new tools. A workshop to address these and other topics, “Planetary Data: A Workshop for Users and Planetary Software Developers,” was held June 25–29, 2012, at Northern Arizona University (NAU) in Flagstaff, Arizona. A goal of the workshop was to present a summary of currently available tools, along with hands-on training and how-to guides, for acquiring, processing and working with a variety of digital planetary data. The meeting emphasized presentations by data users and mission providers during days 1 and 2, and developers had the floor on days 4 and 5 using an “unconference” format for day 5. Day 3 featured keynote talks by Laurence Soderblom (U.S. Geological Survey, USGS) and Dan Crichton (Jet Propulsion Laboratory, JPL) followed by a panel discussion, and then research and technical discussions about tools and capabilities under recent or current development. Software and tool demonstrations were held in break-out sessions in parallel with the oral session. Nearly 150 data users and developers from across the globe attended, and 22 National Aeronautics and space Administration (NASA) and non-NASA data providers

  19. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS

    NARCIS (Netherlands)

    Kuai, Moshen; Cheng, Gang; Pang, Y.; Li, Yong


    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear

  20. A New Model of the Fractional Order Dynamics of the Planetary Gears

    Directory of Open Access Journals (Sweden)

    Vera Nikolic-Stanojevic


    Full Text Available A theoretical model of planetary gears dynamics is presented. Planetary gears are parametrically excited by the time-varying mesh stiffness that fluctuates as the number of gear tooth pairs in contact changes during gear rotation. In the paper, it has been indicated that even the small disturbance in design realizations of this gear cause nonlinear properties of dynamics which are the source of vibrations and noise in the gear transmission. Dynamic model of the planetary gears with four degrees of freedom is used. Applying the basic principles of analytical mechanics and taking the initial and boundary conditions into consideration, it is possible to obtain the system of equations representing physical meshing process between the two or more gears. This investigation was focused to a new model of the fractional order dynamics of the planetary gear. For this model analytical expressions for the corresponding fractional order modes like one frequency eigen vibrational modes are obtained. For one planetary gear, eigen fractional modes are obtained, and a visualization is presented. By using MathCAD the solution is obtained.

  1. Planetary submillimeter spectroscopy (United States)

    Klein, M. J.


    The aim is to develop a comprehensive observational and analytical program to study solar system physics and meterology by measuring molecular lines in the millimeter and submillimeter spectra of planets and comets. A primary objective is to conduct observations with new JPL and Caltech submillimeter receivers at the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. A secondary objective is to continue to monitor the time variable planetary phenomena (e.g., Jupiter and Uranus) at centimeter wavelength using the NASA antennas of the Deep Space Network (DSN).

  2. Smart Rotorcraft Field Assistants for Terrestrial and Planetary Science (United States)

    Young, Larry A.; Aiken, Edwin W.; Briggs, Geoffrey A.


    Field science in extreme terrestrial environments is often difficult and sometimes dangerous. Field seasons are also often short in duration. Robotic field assistants, particularly small highly mobile rotary-wing platforms, have the potential to significantly augment a field season's scientific return on investment for geology and astrobiology researchers by providing an entirely new suite of sophisticated field tools. Robotic rotorcraft and other vertical lift planetary aerial vehicle also hold promise for supporting planetary science missions.

  3. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection (United States)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin


    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  4. Planetary mapping—The datamodel's perspective and GIS framework (United States)

    van Gasselt, S.; Nass, A.


    Demands for a broad range of integrated geospatial data-analysis tools and methods for planetary data organization have been growing considerably since the late 1990s when a plethora of missions equipped with new instruments entered planetary orbits or landed on the surface. They sent back terabytes of new data which soon became accessible for the scientific community and public and which needed to be organized. On the terrestrial side, issues of data access, organization and utilization for scientific and economic analyses are handled by using a range of well-established geographic information systems (GIS) that also found their way into the field of planetary sciences in the late 1990s. We here address key issues concerning the field of planetary mapping by making use of established GIS environments and discuss methods of addressing data organization and mapping requirements by using an easily integrable datamodel that is - for the time being - designed as file-geodatabase (FileGDB) environment in ESRI's ArcGIS. A major design-driving requirement for this datamodel is its extensibility and scalability for growing scientific as well as technical needs, e.g., the utilization of such a datamodel for surface mapping of different planetary objects as defined by their respective reference system and by using different instrument data. Furthermore, it is a major goal to construct a generic model which allows to perform combined geologic as well as geomorphologic mapping tasks making use of international standards without loss of information and by maintaining topologic integrity. An integration of such a datamodel within a geospatial DBMS context can practically be performed by individuals as well as groups without having to deal with the details of administrative tasks and data ingestion issues. Besides the actual mapping, key components of such a mapping datamodel deal with the organization and search for image-sensor data and previous mapping efforts, as well as the

  5. Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection (United States)

    Xue, Song; Howard, Ian


    This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.

  6. The four hundred years of planetary science since Galileo and Kepler. (United States)

    Burns, Joseph A


    For 350 years after Galileo's discoveries, ground-based telescopes and theoretical modelling furnished everything we knew about the Sun's planetary retinue. Over the past five decades, however, spacecraft visits to many targets transformed these early notions, revealing the diversity of Solar System bodies and displaying active planetary processes at work. Violent events have punctuated the histories of many planets and satellites, changing them substantially since their birth. Contemporary knowledge has finally allowed testable models of the Solar System's origin to be developed and potential abodes for extraterrestrial life to be explored. Future planetary research should involve focused studies of selected targets, including exoplanets.

  7. Lunar and Planetary Science XXXII (United States)


    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 32nd Lunar and Planetary Science Conference held at Houston, TX, March 12-16, 2001. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  8. Infrared and Raman spectroscopy on synthetic glasses as analogues of planetary surfaces. (United States)

    Weber, Iris; Morlok, Andreas; Klemme, Stephan; Dittmer, Isabelle; Stojic, Aleksandra N.; Hiesinger, Harald; Sohn, Martin; Helbert, Jörn


    One of the fundamental aims of space mission is to understand the physical, chemical, and geologic processes and conditions of planetary formation and evolution. For this purpose, it is important to investigate analog material to correctly interpret the returned spacecraft data, including the spectral information from remote planetary surfaces. For example, mid-infrared spectroscopy provides detailed information on the mineralogical compositions of planetary surfaces via remote sensing. Data is affected by numerous factors such as grain size, illumination geometry, space weathering, and temperature. These features need to be systematically investigated on analog material in terrestrial laboratories in order to understand the mineralogy/composition of a planetary surface. In addition, Raman spectroscopy allows non-destructive analyses of planetary surfaces in the case of a landing mission. Our work at the IRIS (Infrared spectroscopy for Interplanetary Studies) laboratory at the Institut für Planetologie produces spectra for a database of the ESA/JAXA BepiColombo mission to Mercury. Onboard is a mid-infrared spectrometer (MERTIS-Mercury Radiometer and Thermal Infrared Spectrometer). This unique instrument allows us to map spectral features in the 7-14 µm range, with a spatial resolution of ~500 m [1-5]. Comparably, using our Raman spectrometer, we are continuously contributing to the Raman database for upcoming mission, e.g., the Raman Laser Spectrometer (RLS) onboard of ExoMars [6]. Material on the surface of Mercury and the other terrestrial bodies was exposed to heavy impact cratering [4]. Depending on the P/T conditions during the impact, minerals on planetary surfaces can react with the formation of glassy material. Thus, understanding the effects of impact shock and heat on the mineral structure and the resulting corresponding change in the spectral properties is of high interest for the MERTIS project. Here, we present spectral information on the first glass

  9. The Solar Connections Observatory for Planetary Environments (United States)

    Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)


    The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the

  10. The study about planetary gearbox virtual prototyping with nonlinear gear contact characteristics

    International Nuclear Information System (INIS)

    Yin Huabing; Zhou Guangming


    The virtual prototypes of gear transmission system built in most multi-body dynamic software have difficulties in describing the gear mesh characteristics. The gear mesh contact is modelled as rigid contact and this is not accurate for the gear mesh contact, which is elastic or flexible. The gear contact formula used in the multi-body dynamic software does not reveal the gear contact nonlinear stiffness characteristic. The model built with gear meshing contact is difficult to solve because of its time-consuming algorithm. In the paper a new method is put forward to build the virtual prototype of planetary gearbox system according to the nonlinear mesh stiffness and mesh phase obtained through FEM models. This new FEM method of gear mesh stiffness calculation is much more accurate than the common formulas. The gear mesh nonlinear stiffness of sun gear- pinion and pinion-ring gear of all the planetary gear sets in gearbox are obtained through MATALB code, which is used to read and plot the analyzing result data. The gear mesh phase differences between different pinions with suns or rings of different planetary gear set can be also obtained. With all these data modelled in simulink (or other software) and integrated with the multi-body dynamic planetary gearbox model and the gear meshing contact problem in multi-body gear models is solved easily and accurately. The interfaces for gear mesh stiffness and mesh phases are designed for multi-body dynamic model and simulink. The nonlinear planetary gear set prototyping models are integrated to become the whole planetary gear box model and the whole vehicle system model built in multi-body dynamic software can be integrated to simulate different duty conditions. At last high speed input is put into the nonlinear planetary transmission model and the different duty cases are simulated. The dynamic characteristics of different parts are obtained. The dynamic characteristic comparison between nonlinear and linear models is made

  11. A Methodology of Designing the Teeth Conjugation in a Planetary Roller Screw

    Directory of Open Access Journals (Sweden)

    Lisowski Filip


    Full Text Available The paper presents the methodology for designing the teeth conjunction of planetary gears in the planetary roller screw mechanism. A function of the planetary gears is to synchronize an operation of rollers in order to avoid axial displacements. A condition of the correct operation is no axial movement of rollers in relation to the nut. The planetary gears are integral parts of rollers and therefore an operation of the gear transmissions has a direct impact on cooperation of the screw, rollers and the nut. The proper design of gear engagements is essential for reducing slippage on surfaces of the cooperating threaded elements. For this purpose, in a designing method, both the limitations of operation and kinematic conditions of rollers’ operation have to be taken into account.

  12. Planets around pulsars - Implications for planetary formation (United States)

    Bodenheimer, Peter


    Data on planets around pulsars are summarized, and different models intended to explain the formation mechanism are described. Both theoretical and observational evidence suggest that very special circumstances are required for the formation of planetary systems around pulsars, namely, the prior presence of a millisecond pulsar with a close binary companion, probably a low mass main-sequence star. It is concluded that the discovery of two planets around PSR 1257+12 is important for better understanding the problems of dynamics and stellar evolution. The process of planetary formation should be learned through intensive studies of the properties of disks near young objects and application of techniques for detection of planets around main-sequence solar-type stars.

  13. Planetary Taxonomy: Label Round Bodies "Worlds" (United States)

    Margot, Jean-Luc; Levison, H. F.


    The classification of planetary bodies is as important to Astronomy as taxonomy is to other sciences. The etymological, historical, and IAU definitions of planet rely on a dynamical criterion, but some authors prefer a geophysical criterion based on "roundness". Although the former criterion is superior when it comes to classifying newly discovered objects, the conflict need not exist if we agree to identify the subset of "round" planetary objects as "worlds". This addition to the taxonomy would conveniently recognize that "round" objects such as Earth, Europa, Titan, Triton, and Pluto share some common planetary-type processes regardless of their distance from the host star. Some of these worlds are planets, others are not. Defining how round is round and handling the inevitable transition objects are non-trivial tasks. Because images at sufficient resolution are not available for the overwhelming majority of newly discovered objects, the degree of roundness is not a directly observable property and is inherently problematic as a basis for classification. We can tolerate some uncertainty in establishing the "world" status of a newly discovered object, and still establish its planet or satellite status with existing dynamical criteria. Because orbital parameters are directly observable, and because mass can often be measured either from orbital perturbations or from the presence of companions, the dynamics provide a robust and practical planet classification scheme. It may also be possible to determine which bodies are dynamically dominant from observations of the population magnitude/size distribution.

  14. 3D Visualization for Planetary Missions (United States)

    DeWolfe, A. W.; Larsen, K.; Brain, D.


    We have developed visualization tools for viewing planetary orbiters and science data in 3D for both Earth and Mars, using the Cesium Javascript library, allowing viewers to visualize the position and orientation of spacecraft and science data.

  15. Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors (United States)

    Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.


    Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.

  16. Cost estimation model for advanced planetary programs, fourth edition (United States)

    Spadoni, D. J.


    The development of the planetary program cost model is discussed. The Model was updated to incorporate cost data from the most recent US planetary flight projects and extensively revised to more accurately capture the information in the historical cost data base. This data base is comprised of the historical cost data for 13 unmanned lunar and planetary flight programs. The revision was made with a two fold objective: to increase the flexibility of the model in its ability to deal with the broad scope of scenarios under consideration for future missions, and to maintain and possibly improve upon the confidence in the model's capabilities with an expected accuracy of 20%. The Model development included a labor/cost proxy analysis, selection of the functional forms of the estimating relationships, and test statistics. An analysis of the Model is discussed and two sample applications of the cost model are presented.

  17. HM Sagittae as a young planetary nebula

    International Nuclear Information System (INIS)

    Kwok, S.; Purton, C.R.


    HM Sagittae is suggested to be a very young planetary nebula recently transformed from a red-giant star through continuous mass loss. The observational data for HM Sge have been analyzed in terms of the interacting stellar wind model of planetary nebula formation. The model is in accord with virtually all the spectral data available--radio, optical, and infrared--as well as with the remarkable brightening of HM Sge observed in 1975. In particular, all three gaseous components predicted by the model are observed in the optical spectrum. The density in the newly formed shell is found to be at least 5 x 10 7 cm -3 , a value considerably higher than that found by the conventional analysis, which assumes a single-component homogeneous nebula. The radio spectrum is dominated by free-free emission from the remnant red-giant wind. The infrared spectrum suggests the presence of two dust components, one consisting of silicate grains left over from the red-giant stage and the other of grains newly formed after the 1975 brightening. The low observed shell mass is consistent with the interacting stellar wind model but is not consistent with the conventional sudden-ejection model of planetary nebula formation

  18. Degassing of reduced carbon from planetary basalts. (United States)

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E


    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential.

  19. Planetary Science Exploration Through 2050: Strategic Gaps in Commercial and International Partnerships (United States)

    Ghosh, A.


    Planetary science will see greater participation from the commercial sector and international space agencies. It is critical to understand how these entities can partner with NASA through 2050 and help realize NASA's goals in planetary science.

  20. Agriculture production as a major driver of the Earth system exceeding planetary boundaries

    Directory of Open Access Journals (Sweden)

    Bruce M. Campbell


    Full Text Available We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or "safe limits": land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone depletion, atmospheric aerosol loading, and introduction of novel entities. Two planetary boundaries have been fully transgressed, i.e., are at high risk, biosphere integrity and biogeochemical flows, and agriculture has been the major driver of the transgression. Three are in a zone of uncertainty i.e., at increasing risk, with agriculture the major driver of two of those, land-system change and freshwater use, and a significant contributor to the third, climate change. Agriculture is also a significant or major contributor to change for many of those planetary boundaries still in the safe zone. To reduce the role of agriculture in transgressing planetary boundaries, many interventions will be needed, including those in broader food systems.

  1. Abstracts of the annual Planetary Geologic Mappers Meeting, June 18-19, 2001, Albuquerque, New Mexico (United States)

    Parker, Timothy J.; Tanaka, Kenneth L.; Senske, David A.


    lander (outcrop) scales. Trips to the top of the rift-flanking mountains (Sandia Peak, 10,600 ft) and the Valles Caldera, as well as various active spring deposits highlighted the day. After welcoming remarks from the host, Larry Crumpler, opening remarks by Tim Parker and Dave Senske and a report on mapping program status by Ken Tanaka, the mappers’ oral presentations began the morning of June 18, with a session on Venus Geologic Mapping. The afternoon continued with an exciting USGS Planetary GIS on the Web (PIGWAD) demonstration and ended with an open discussion of issues in planetary mapping. Posted maps of Venus quadrangles were viewed during the morning break. Tuesday’s Mars Geologic Mapping session began with a pep talk from Tim Parker encouraging mapping community input to the MER landing site selection committee and continued with Steve Saunders describing the potential contribution of Odyssey Mission data to the geologic mapping of Mars. A Mars map poster session was held during the morning break, and the meeting was adjourned mid-afternoon. After the mappers meeting on Tuesday, attendants were treated to a "Field trip to Mars." The Institute of Meteoritics at the University of New Mexico houses an outstanding collection of meteorites, including those that have been identified as originating from Mars. The Institute tour featured examples of most of the different lithologies exhibited by martian meteorites identified to date, as well as some of the analytical tests (scanning electron microscope) they are conducting on specimens from ALH84001. Wednesday, June 20, featured an optional post-meeting field trip to see a travertine quarry and nearby sites of travertine deposition, the Very Large Array near Socorro, and other volcanic features within the Rio Grande Rift.

  2. A Protein Isolate from Moringa oleifera Leaves Has Hypoglycemic and Antioxidant Effects in Alloxan-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Paulo C. Paula


    Full Text Available Moringa oleifera has been used in traditional medicine to treat diabetes. However, few studies have been conducted to relate its antidiabetic properties to proteins. In this study, a leaf protein isolate was obtained from M. oleifera leaves, named Mo-LPI, and the hypoglycemic and antioxidant effects on alloxan-induced diabetic mice were assessed. Mo-LPI was obtained by aqueous extraction, ammonium sulphate precipitation and dialysis. The electrophoresis profile and proteolytic hydrolysis confirmed its protein nature. Mo-LPI showed hemagglutinating activity, cross-reaction with anti-insulin antibodies and precipitation after zinc addition. Single-dose intraperitoneal (i.p. administration of Mo-LPI (500 mg/kg·bw reduced the blood glucose level (reductions of 34.3%, 60.9% and 66.4% after 1, 3 and 5 h, respectively. The effect of Mo-LPI was also evidenced in the repeated dose test with a 56.2% reduction in the blood glucose level on the 7th day after i.p. administration. Mo-LPI did not stimulate insulin secretion in diabetic mice. Mo-LPI was also effective in reducing the oxidative stress in diabetic mice by a decrease in malondialdehyde level and increase in catalase activity. Mo-LPI (2500 mg/kg·bw did not cause acute toxicity to mice. Mo-LPI is a promising alternative or complementary agent to treat diabetes.

  3. Sealed Planetary Return Canister (SPRC), Phase II (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  4. A Method Based on Multi-Sensor Data Fusion for Fault Detection of Planetary Gearboxes

    Directory of Open Access Journals (Sweden)

    Detong Kong


    Full Text Available Studies on fault detection and diagnosis of planetary gearboxes are quite limited compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary gearboxes, multiple sensors mounted on different locations provide complementary information on the health condition of the systems. On this basis, a fault detection method based on multi-sensor data fusion is introduced in this paper. In this method, two features developed for planetary gearboxes are used to characterize the gear health conditions, and an adaptive neuro-fuzzy inference system (ANFIS is utilized to fuse all features from different sensors. In order to demonstrate the effectiveness of the proposed method, experiments are carried out on a planetary gearbox test rig, on which multiple accelerometers are mounted for data collection. The comparisons between the proposed method and the methods based on individual sensors show that the former achieves much higher accuracies in detecting planetary gearbox faults.

  5. Health condition identification of multi-stage planetary gearboxes using a mRVM-based method (United States)

    Lei, Yaguo; Liu, Zongyao; Wu, Xionghui; Li, Naipeng; Chen, Wu; Lin, Jing


    Multi-stage planetary gearboxes are widely applied in aerospace, automotive and heavy industries. Their key components, such as gears and bearings, can easily suffer from damage due to tough working environment. Health condition identification of planetary gearboxes aims to prevent accidents and save costs. This paper proposes a method based on multiclass relevance vector machine (mRVM) to identify health condition of multi-stage planetary gearboxes. In this method, a mRVM algorithm is adopted as a classifier, and two features, i.e. accumulative amplitudes of carrier orders (AACO) and energy ratio based on difference spectra (ERDS), are used as the input of the classifier to classify different health conditions of multi-stage planetary gearboxes. To test the proposed method, seven health conditions of a two-stage planetary gearbox are considered and vibration data is acquired from the planetary gearbox under different motor speeds and loading conditions. The results of three tests based on different data show that the proposed method obtains an improved identification performance and robustness compared with the existing method.

  6. Planetary Sciences, Geodynamics, Impacts, Mass Extinctions, and Evolution: Developments and Interconnections

    Directory of Open Access Journals (Sweden)

    Jaime Urrutia-Fucugauchi


    Full Text Available Research frontiers in geophysics are being expanded, with development of new fields resulting from technological advances such as the Earth observation satellite network, global positioning system, high pressure-temperature physics, tomographic methods, and big data computing. Planetary missions and enhanced exoplanets detection capabilities, with discovery of a wide range of exoplanets and multiple systems, have renewed attention to models of planetary system formation and planet’s characteristics, Earth’s interior, and geodynamics, highlighting the need to better understand the Earth system, processes, and spatio-temporal scales. Here we review the emerging interconnections resulting from advances in planetary sciences, geodynamics, high pressure-temperature physics, meteorite impacts, and mass extinctions.

  7. Teaching, learning, and planetary exploration (United States)

    Brown, Robert A.


    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers

  8. Subsurface Prospecting by Planetary Drones, Phase I (United States)

    National Aeronautics and Space Administration — The proposed program innovates subsurface prospecting by planetary drones to seek a solution to the difficulty of robotic prospecting, sample acquisition, and sample...

  9. Investigating the Reliability and Validity of the Leadership Practices Inventory®

    Directory of Open Access Journals (Sweden)

    Barry Z. Posner


    Full Text Available This review explains the origins of the Leadership Practices Inventory (LPI as an empirical instrument to measure The Five Practices of Exemplary Leadership framework, a major transformational leadership model. The essential psychometric properties of the LPI are investigated using both the LPI normative database, with nearly 2.8 million respondents, as well as reviewing pertinent findings of several hundred studies conducted worldwide by scholars utilizing the LPI in their research. Issues of both reliability and validity are considered, with the conclusion that the LPI is quite robust and applicable across a variety of settings and populations.

  10. Get Involved in Planetary Discoveries through New Worlds, New Discoveries (United States)

    Shupla, Christine; Shipp, S. S.; Halligan, E.; Dalton, H.; Boonstra, D.; Buxner, S.; SMD Planetary Forum, NASA


    "New Worlds, New Discoveries" is a synthesis of NASA’s 50-year exploration history which provides an integrated picture of our new understanding of our solar system. As NASA spacecraft head to and arrive at key locations in our solar system, "New Worlds, New Discoveries" provides an integrated picture of our new understanding of the solar system to educators and the general public! The site combines the amazing discoveries of past NASA planetary missions with the most recent findings of ongoing missions, and connects them to the related planetary science topics. "New Worlds, New Discoveries," which includes the "Year of the Solar System" and the ongoing celebration of the "50 Years of Exploration," includes 20 topics that share thematic solar system educational resources and activities, tied to the national science standards. This online site and ongoing event offers numerous opportunities for the science community - including researchers and education and public outreach professionals - to raise awareness, build excitement, and make connections with educators, students, and the public about planetary science. Visitors to the site will find valuable hands-on science activities, resources and educational materials, as well as the latest news, to engage audiences in planetary science topics and their related mission discoveries. The topics are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved? How did life begin and evolve on Earth, and has it evolved elsewhere in our solar system? Scientists and educators are encouraged to get involved either directly or by sharing "New Worlds, New Discoveries" and its resources with educators, by conducting presentations and events, sharing their resources and events to add to the site, and adding their own public events to the site’s event calendar! Visit to find quality resources and ideas. Connect with educators, students and the public to

  11. Hayes Receives 2012 Ronald Greeley Early Career Award in Planetary Science: Citation (United States)

    Leshin, Laurie A.


    Alexander G. Hayes Jr. received the 2012 Ronald Greeley Early Career Award in Planetary Science at the 2012 AGU Fall Meeting, held 3-7 December in San Francisco, Calif. The award recognizes significant early-career contributions to planetary science.

  12. Planets and planetarians. A history of theories of the origin of planetary systems

    Energy Technology Data Exchange (ETDEWEB)

    Jaki, S L


    A critical review is presented of theories of the origin of planetary systems. The book deals chronologically with the subject from Greek times to the present. The last of the eight chapters covers the post-war period. Particular attention is paid to theories of the origin of our own planetary system and to the degree of frequency of planetary systems (in particular, the frequency of planets carrying life in some form) in the universe.

  13. Non-pupillary block angle-closure mechanisms: a comprehensive analysis of their prevalence and treatment outcomes

    Directory of Open Access Journals (Sweden)

    Daniela L. M. Junqueira


    Full Text Available Purpose: To assess the prevalence and treatment outcomes of angle-closure mechanisms other than pupillary block in a population of Brazilian patients. Methods: A retrospective chart review was conducted to evaluate patients who had undergone laser peripheral iridotomy (LPI due to occludable angles at a single institution between July 2009 and April 2012. An occludable angle was defined as an eye in which the posterior trabecular meshwork was not visible for ≥180° on dark-room gonioscopy. Key exclusion criteria were any form of secondary glaucoma and the presence of >90° of peripheral anterior synechiae. Collected data were age, race, gender, angle-closure mechanism (based on indentation goniocopy and ultrasound biomicroscopy, intraocular pressure (IOP, number of antiglaucoma medications and subsequent management during follow-up. If both eyes were eligible, the right eye was arbitrarily selected for analysis. Results: A total of 196 eyes of 196 consecutive patients (mean age 58.3 ± 11.6 years who underwent LPI were included. In most of the patients [86% (169 patients; 133 women and 36 men], LPI sucessfully opened the angle. Mean IOP was reduced from 18.3 ± 6.4 mmHg to 15.4 ± 4.5 mmHg after LPI (p<0.01. Among the 27 patients with persistent occludable angles, the most common underlying mechanisms were plateau iris (56% and lens-induced component (34%. Most of these patients (85% were treated with argon laser peripheral iridoplasty (ALPI; approximately 90% showed non-occludable angles following the laser procedure (mean IOP reduction of 18.9%, with no significant differences between patients with plateau iris and lens-induced components (p=0.34; mean follow-up of 11.4 ± 3.6 months. Conclusion: Our findings suggest that, in this population of Brazilian patients, several eyes with angle closure were not completely treated with LPI. In the present large case series involving middle-age patients, plateau iris was the leading cause of

  14. Planetary Surface-Atmosphere Interactions (United States)

    Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.


    Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.

  15. Evolution of space drones for planetary exploration: A review (United States)

    Hassanalian, M.; Rice, D.; Abdelkefi, A.


    In the past decade, there has been a tendency to design and fabricate drones which can perform planetary exploration. Generally, there are various ways to study space objects, such as the application of telescopes and satellites, launching robots and rovers, and sending astronauts to the targeted solar bodies. However, due to the advantages of drones compared to other approaches in planetary exploration, ample research has been carried out by different space agencies in the world, including NASA to apply drones in other solar bodies. In this review paper, several studies which have been performed on space drones for planetary exploration are consolidated and discussed. Design and fabrication challenges of space drones, existing methods for their flight tests, different methods for deployment and planet entry, and various navigation and control approaches are reviewed and discussed elaborately. Limitations of applying space drones, proposed solutions for future space drones, and recommendations are also presented and discussed.

  16. A phase angle based diagnostic scheme to planetary gear faults diagnostics under non-stationary operational conditions (United States)

    Feng, Ke; Wang, Kesheng; Ni, Qing; Zuo, Ming J.; Wei, Dongdong


    Planetary gearbox is a critical component for rotating machinery. It is widely used in wind turbines, aerospace and transmission systems in heavy industry. Thus, it is important to monitor planetary gearboxes, especially for fault diagnostics, during its operational conditions. However, in practice, operational conditions of planetary gearbox are often characterized by variations of rotational speeds and loads, which may bring difficulties for fault diagnosis through the measured vibrations. In this paper, phase angle data extracted from measured planetary gearbox vibrations is used for fault detection under non-stationary operational conditions. Together with sample entropy, fault diagnosis on planetary gearbox is implemented. The proposed scheme is explained and demonstrated in both simulation and experimental studies. The scheme proves to be effective and features advantages on fault diagnosis of planetary gearboxes under non-stationary operational conditions.

  17. Generic and scientific constraints involving geoethics and geoeducation in planetary geosciences (United States)

    Martínez-Frías, Jesús


    Geoscience education is a key factor in the academic, scientific and professional progress of any modern society. Geoethics is an interdisciplinary field, which involves Earth and Planetary Sciences as well as applied ethics, regarding the study of the abiotic world. These coss-cutting interactions linking scientific, societal and cultural aspects, consider our planet, in its modern approach, as a system and as a model. This new perspective is extremely important in the context of geoducation in planetary geosciences. In addition, Earth, our home planet, is the only planet in our solar system known to harbor life. This also makes it crucial to develop any scientific strategy and methodological technique (e.g. Raman spectroscopy) of searching for extraterrestrial life. In this context, it has been recently proposed [1-3] that the incorporation of the geoethical and geodiversity issues in planetary geology and astrobiology studies would enrich their methodological and conceptual character (mainly but not only in relation to planetary protection). Modern geoscience education must take into account that, in order to understand the origin and evolution of our planet, we need to be aware that the Earth is open to space, and that the study of meteorites, asteroids, the Moon and Mars is also essential for this purpose (Earth analogs are also unique sites to define planetary guidelines). Generic and scientific constraints involving geoethics and geoeducation should be incorporated into the teaching of all fundamental knowledge and skills for students and teachers. References: [1] Martinez-Frias, J. et al. (2009) 9th European Workshop on Astrobiology, EANA 09, 12-14 October 2009, Brussels, Belgiam. [2] Martinez-Frias, J., et al. (2010) 38th COSPAR Scientific Assembly. Protecting the Lunar and Martian Environments for Scientific Research, Bremen, Germany, 18-25 July. [3] Walsh et al. (2012) 43rd Lunar and Planetary Science Conference, 1910.pdf

  18. Planets and planetarians. A history of theories of the origin of planetary systems

    International Nuclear Information System (INIS)

    Jaki, S.L.


    A critical review is presented of theories of the origin of planetary systems. The book deals chronologically with the subject from Greek times to the present. The last of the eight chapters covers the post-war period. Particular attention is paid to theories of the origin of our own planetary system and to the degree of frequency of planetary systems (in particular, the frequency of planets carrying life in some form) in the universe. (U.K.)

  19. 78 FR 64253 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting (United States)


    ...; Issues and Status --Planetary Protection for Cached Mars Samples --Planetary Science Update --Mars... later than the close of business November 5, 2013. Foreign Nationals must provide following information: full name, gender, date/place of birth, citizenship, home address, visa information (number, type...

  20. Automated Planning and Scheduling for Planetary Rover Distributed Operations (United States)

    Backes, Paul G.; Rabideau, Gregg; Tso, Kam S.; Chien, Steve


    Automated planning and Scheduling, including automated path planning, has been integrated with an Internet-based distributed operations system for planetary rover operations. The resulting prototype system enables faster generation of valid rover command sequences by a distributed planetary rover operations team. The Web Interface for Telescience (WITS) provides Internet-based distributed collaboration, the Automated Scheduling and Planning Environment (ASPEN) provides automated planning and scheduling, and an automated path planner provided path planning. The system was demonstrated on the Rocky 7 research rover at JPL.

  1. High pressure studies of planetary matter

    International Nuclear Information System (INIS)

    Ross, M.


    Those materials which are of greatest interest to the physics of the deep planetary interiors are Fe, H 2 , He and the Ices. These are sufficiently diverse and intensively studied to offer an overview of present day high pressure research. 13 refs., 1 fig

  2. Planetary nebulae and Wolf-Rayet stars in the galactic-centre field

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)


    A UK Schmidt objective-prism plate of the Galactic-centre field has been examined. Of the 74 objects in the field which have been catalogued as planetary nebulae, only half appear correctly classified; the others include Be stars, symbiotic stars, and stars without emission lines. A further 19 planetary nebulae and two Wolf-Rayet stars have been discovered.

  3. The European standard on planetary protection requirements. (United States)

    Debus, André


    Since the beginning of solar system exploration, numerous spacecrafts have been sent towards others worlds, and one of the main goals of such missions is the search for extraterrestrial forms of life. It is known that, under certain conditions, some terrestrial entities are able to survive during cruises in space and that they may contaminate other planets (forward contamination). At another level, possible extraterrestrial life forms are unknown and their ability to contaminate the Earth's biosphere (back contamination) in the frame of sample return missions cannot be excluded. Article IX of the Outer Space Treaty (London/Washington, January 27, 1967) requires the preservation of planets and the Earth from contamination. All nations taking part in this Treaty must prevent forward and back contamination during missions exploring our solar system. Consequently, the United Nations (UN-COPUOS) has delegated COSPAR (Committee of Space Research) to take charge of planetary protection and, at present, all space-faring nations must comply with COSPAR policy and consequently with COSPAR planetary protection recommendations. Starting from these recommendations and the "CNES Planetary Protection Standard" document, a working group has been set up in the framework of the "European Cooperation for Space Standardization" (ECSS) to establish the main specifications for preventing cross-contamination between target bodies within the solar system and the Earth-moon system.

  4. A Planetary Park system for the Moon and beyond (United States)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  5. Women in Planetary Science: Career Resources and e-Mentoring on Blogs, Twitter, Facebook, Google+, and Pinterest (United States)

    Niebur, S. M.; Singer, K.; Gardner-Vandy, K.


    Fifty-one interviews with women in planetary science are now available as an e-mentoring and teaching resource on Each scientist was nominated and interviewed by a fellow member of the planetary science community, and each gladly shared her advice for advancement in the field. Women in Planetary Science was founded in 2008 to connect communities of current and prospective scientists, to promote proposal and award opportunities, and to stimulate discussion in the planetary science community at large. Regular articles, or posts, by nearly a dozen collaborators highlight a range of current issues for women in this field. These articles are promoted by collaborators on Twitter, Facebook, and Google+ and shared again by the collaborators' contacts, reaching a significantly wider audience. The group's latest project, on Pinterest, is a crowd-sourced photo gallery of more than 350 inspiring women in planetary science; each photo links to the scientist's CV. The interviews, the essays, and the photo gallery are available online as resources for prospective scientists, planetary scientists, parents, and educators.

  6. The effect of roll with passive segment on the planetary rolling process

    Directory of Open Access Journals (Sweden)

    Qing-Ling Zeng


    Full Text Available In three-roll planetary rolling process, there is secondary torsion phenomenon that may lead to rolling instability. This article proposed a new idea to alleviate the secondary torsion phenomenon by dividing the secondary torsion segment out of the roll as an independent and passive one. To study the performance of the roll with passive segment, the three-dimensional finite element models of planetary rolling process using actual roll or new roll with passive segment involving elastic–plastic and thermal–mechanical coupling were established by the software ABAQUS/Explicit, and a series of analysis had been done successfully. The rolling temperature and rolling force of planetary mill were in good agreement with the measured results, which indicated that the finite element method would supply important reference merit for three-dimensional thermo-mechanical simulation of the three-roll planetary rolling process. Comparing the simulation results of the two models, the results indicated that the change in the roll structure had just a little influence on the metal deformation, temperature, and rolling force, but it lessened the secondary torsion deformation effectively and improved the outside roundness of the rolled tube slightly. The research provided a new idea for the roll design of three-roll planetary mill (PSW.

  7. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration (United States)

    Pendleton, Yvonne J.


    Established in 2013, through joint funding from the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD), NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on science at the intersection of these two enterprises. Addressing questions of value to the human exploration program that also represent important research relevant to planetary science, SSERVI creates a bridge between HEOMD and SMD. The virtual institute model reduces travel costs, but its primary virtue is the ability to join together colleagues who bring the right expertise, techniques and tools, regardless of their physical location, to address multi-faceted problems, at a deeper level than could be achieved through the typical period of smaller research grants. In addition, collaboration across team lines and international borders fosters the creation of new knowledge, especially at the intersections of disciplines that might not otherwise overlap.SSERVI teams investigate the Moon, Near-Earth Asteroids, and the moons of Mars, addressing questions fundamental to these target bodies and their near space environments. The institute is currently composed of nine U.S. teams of 30-50 members each, distributed geographically across the United States, ten international partners, and a Central Office located at NASA Ames Research Center in Silicon Valley, CA. U.S. teams are competitively selected through peer-reviewed proposals submitted to NASA every 2-3 years, in response to a Cooperative Agreement Notice (CAN). The current teams were selected under CAN-1, with funding for five years (2014-2019). A smaller, overlapping set of teams are expected to be added in 2017 in response to CAN-2, thereby providing continuity and a firm foundation for any directional changes NASA requires as the CAN-1 teams end their term. This poster describes the research areas and composition of the institute to introduce SSERVI to the broader planetary

  8. NASA Lunar and Planetary Mapping and Modeling (United States)

    Day, B. H.; Law, E.


    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  9. Planetary tides during the Maunder sunspot minimum

    International Nuclear Information System (INIS)

    Smythe, C.M.; Eddy, J.A.


    Sun-centered planetary conjunctions and tidal potentials are here constructed for the AD1645 to 1715 period of sunspot absence, referred to as the 'Maunder Minimum'. These are found to be effectively indistinguishable from patterns of conjunctions and power spectra of tidal potential in the present era of a well established 11 year sunspot cycle. This places a new and difficult restraint on any tidal theory of sunspot formation. Problems arise in any direct gravitational theory due to the apparently insufficient forces and tidal heights involved. Proponents of the tidal hypothesis usually revert to trigger mechanisms, which are difficult to criticise or test by observation. Any tidal theory rests on the evidence of continued sunspot periodicity and the substantiation of a prolonged period of solar anomaly in the historical past. The 'Maunder Minimum' was the most drastic change in the behaviour of solar activity in the last 300 years; sunspots virtually disappeared for a 70 year period and the 11 year cycle was probably absent. During that time, however, the nine planets were all in their orbits, and planetary conjunctions and tidal potentials were indistinguishable from those of the present era, in which the 11 year cycle is well established. This provides good evidence against the tidal theory. The pattern of planetary tidal forces during the Maunder Minimum was reconstructed to investigate the possibility that the multiple planet forces somehow fortuitously cancelled at the time, that is that the positions of the slower moving planets in the 17th and early 18th centuries were such that conjunctions and tidal potentials were at the time reduced in number and force. There was no striking dissimilarity between the time of the Maunder Minimum and any period investigated. The failure of planetary conjunction patterns to reflect the drastic drop in sunspots during the Maunder Minimum casts doubt on the tidal theory of solar activity, but a more quantitative test

  10. Numerical models of planetary dynamos

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.; Roberts, P.H.


    We describe a nonlinear, axisymmetric, spherical-shell model of planetary dynamos. This intermediate-type dynamo model requires a prescribed helicity field (the alpha effect) and a prescribed buoyancy force or thermal wind (the omega effect) and solves for the axisymmetric time-dependent magnetic and velocity fields. Three very different time dependent solutions are obtained from different prescribed sets of alpha and omega fields

  11. Using Vulcan to Recreate Planetary Cores

    CERN Document Server

    Collins, G W; Benedetti, L R; Benuzzi-Mounaix, A; Cauble, R; Celliers, P M; Danson, C; Da Silva, L B; Gessner, H; Henry, E; Hicks, D G; Huser, G; Jeanloz, R; Koening, M; Lee, K M; Mackinnon, A J; Moon, S J; Neely, D; Notley, M; Pasley, J; Willi, O


    An accurate equation of state (EOS) for planetary constituents at extreme conditions is the key to any credible model of planets or low mass stars. However, experimental validation has been carried out on at high pressure (>few Mbar), and then only on the principal Hugoniot. For planetary and stellar interiors, compression occurs from gravitational force so that material states follow a line of isentropic compression (ignoring phase separation) to ultra-high densities. An example of the predicted states for water along the isentrope for Neptune is shown in a figure. The cutaway figure on the left is from Hubbard, and the phase diagram on the right is from Cavazzoni et al. Clearly these states lie at quite a bit lower temperature and higher density than single shock Hugoniot states but they are at higher temperature than can be achieved with accurate diamond anvil experiments. At extreme densities, material states are predicted to have quite unearthly properties such as high temperature superconductivity and l...

  12. Lunar and Planetary Webcam User's Guide

    CERN Document Server

    Mobberley, Martin


    Inexpensive webcams are revolutionizing imaging in amateur astronomy by providing an affordable alternative to cooled-chip astronomical CCD cameras, for photographing the brighter astronomical objects. Webcams – costing only a few tens of dollars – are capable of more advanced high resolution work than "normal" digital cameras because their rapid image download speed can freeze fine planetary details, even through the Earth's turbulent atmosphere. Also, their simple construction makes it easy to remove the lens, allowing them to be used at high power at the projected focus of an astronomical telescope. Webcams also connect direct to a PC, so that software can be used to "stack" multiple images, providing a stunning increase in image quality. In the Lunar and Planetary Webcam User’s Guide Martin Mobberley de-mystifies the jargon of webcams and computer processing, and provides detailed hints and tips for imaging the Sun, Moon and planets with a webcam. He looks at each observing target separately, descri...

  13. Equations of State: Gateway to Planetary Origin and Evolution (Invited) (United States)

    Melosh, J.


    Research over the past decades has shown that collisions between solid bodies govern many crucial phases of planetary origin and evolution. The accretion of the terrestrial planets was punctuated by planetary-scale impacts that generated deep magma oceans, ejected primary atmospheres and probably created the moons of Earth and Pluto. Several extrasolar planetary systems are filled with silicate vapor and condensed 'tektites', probably attesting to recent giant collisions. Even now, long after the solar system settled down from its violent birth, a large asteroid impact wiped out the dinosaurs, while other impacts may have played a role in the origin of life on Earth and perhaps Mars, while maintaining a steady exchange of small meteorites between the terrestrial planets and our moon. Most of these events are beyond the scale at which experiments are possible, so that our main research tool is computer simulation, constrained by the laws of physics and the behavior of materials during high-speed impact. Typical solar system impact velocities range from a few km/s in the outer solar system to 10s of km/s in the inner system. Extrasolar planetary systems expand that range to 100s of km/sec typical of the tightly clustered planetary systems now observed. Although computer codes themselves are currently reaching a high degree of sophistication, we still rely on experimental studies to determine the Equations of State (EoS) of materials critical for the correct simulation of impact processes. The recent expansion of the range of pressures available for study, from a few 100 GPa accessible with light gas guns up to a few TPa from current high energy accelerators now opens experimental access to the full velocity range of interest in our solar system. The results are a surprise: several groups in both the USA and Japan have found that silicates and even iron melt and vaporize much more easily in an impact than previously anticipated. The importance of these findings is

  14. Towards realistic laboratory simulation of high-energy-density events in planetary atmospheres: Using large laser sparks created by a single pulse of high-power lasers

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Juha, Libor; Jehlička, J.


    Roč. 7, č. 3 (2007), s. 503-503 ISSN 1531-1074. [Bioastronomy 2007. 16.07.2007-20.07.2007, San Juach] R&D Projects: GA ČR GA203/06/1278; GA MŠk LC510; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : planetary atmospheres * high-power lasers Subject RIV: CF - Physical ; Theoretical Chemistry

  15. Planetary Landscape Geography (United States)

    Hargitai, H.

    INTRODUCTION Landscape is one of the most often used category in physical ge- ography. The term "landshap" was introduced by Dutch painters in the 15-16th cen- tury. [1] The elements that build up a landscape (or environment) on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements. The same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. Landscapes build up a hierarchic system and cover the whole surface. On Earth, landscapes can be classified and qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered. Using the data from landers and data from orbiters we can now classify planetary landscapes (these can be used as geologic mapping units as well). By looking at a unknown landscape, we can determine the processes that created it and its development history. This was the case in the Pathfinder/Sojourner panoramas. [2]. DISCUSSION Planetary landscape evolution. We can draw a raw landscape develop- ment history by adding the different landscape building elements to each other. This has a strong connection with the planet's thermal evolution (age of the planet or the present surface materials) and with orbital parameters (distance from the central star, orbit excentricity etc). This way we can build a complex system in which we use differ- ent evolutional stages of lithologic, atmospheric, hydrologic and biogenic conditions which determine the given - Solar System or exoplanetary - landscape. Landscape elements. "Simple" landscapes can be found on asteroids: no linear horizon is present (not differentiated body, only impact structures), no atmosphere (therefore no atmospheric scattering - black sky as part of the landscape) and no

  16. The Making of a Pre-Planetary Nebula (United States)

    Kohler, Susanna


    The gas expelled by dying stars gets twisted into intricate shapes and patterns as nebulae form. Now a team of researchers might have some answers about how this happens.Whats a Pre-Planetary Nebula?This H-R diagram for the globular cluster M5 shows where AGB stars lie: they are represented by blue markers here. The AGB is one of the final stages in a low- to intermediate-mass stars lifetime. [Lithopsian]When a low- to intermediate-mass star approaches the end of its lifetime, it moves onto the Asymptotic Giant Branch (AGB) in the Herzsprung-Russell diagram. As the star exhausts its fuel here, it shrugs off its outer layers. These layers of gas then encase the stars core, which is not yet hot enough to ionize the gas and cause it to glow.Instead, during this time the gas is relatively cool and dark, faintly reflecting light from the star and emitting only very dim infrared emission of its own. At this stage, the gas represents a pre-planetary nebula. Only later when the stellar core contracts enough to heat up and emit ionizing radiation does the nebula begin to properly glow, at which point it qualifies as a full planetary nebula.Images of OH231 in optical light (top) and 12CO (bottom) taken from the literature. [See Balick et al. 2017 for full credit]Unexpected ShapesPre-planetary nebulae are a very short-lived evolutionary stage, so weve observed only a few hundred of them which has left many unanswered questions about these objects.One particular mystery is that of their shapes: if these nebulae are formed by stars expelling their outer layers, we would naively expect them to be simple spherical shells and yet we observe pre-planetary nebulae to have intricate shapes and patterns. How does the star create these asymmetric shapes? A team of scientists led by Bruce Balick (University of Washington, Seattle) has now used simulations to address this question.Injecting MassBalick and collaborators use 3D hydrodynamic simulations to model one particular pre-planetary

  17. The NASA Planetary Data System Roadmap Study for 2017 - 2026 (United States)

    McNutt, R. L., Jr.; Gaddis, L. R.; Law, E.; Beyer, R. A.; Crombie, M. K.; Ebel, D. S. S.; Ghosh, A.; Grayzeck, E.; Morgan, T. H.; Paganelli, F.; Raugh, A.; Stein, T.; Tiscareno, M. S.; Weber, R. C.; Banks, M.; Powell, K.


    NASA's Planetary Data System (PDS) is the formal archive of >1.2 petabytes of data from planetary exploration, science, and research. Initiated in 1989 to address an overall lack of attention to mission data documentation, access, and archiving, the PDS has evolved into an online collection of digital data managed and served by a federation of six science discipline nodes and two technical support nodes. Several ad hoc mission-oriented data nodes also provide complex data interfaces and access for the duration of their missions. The recent Planetary Data System Roadmap Study for 2017 to 2026 involved 15 planetary science community members who collectively prepared a report summarizing the results of an intensive examination of the current state of the PDS and its organization, management, practices, and data holdings ( The report summarizes the history of the PDS, its functions and characteristics, and how it has evolved to its present form; also included are extensive references and documentary appendices. The report recognizes that as a complex, evolving, archive system, the PDS must constantly respond to new pressures and opportunities. The report provides details on the challenges now facing the PDS, 19 detailed findings, suggested remediations, and a summary of what the future may hold for planetary data archiving. The findings cover topics such as user needs and expectations, data usability and discoverability (i.e., metadata, data access, documentation, and training), tools and file formats, use of current information technologies, and responses to increases in data volume, variety, complexity, and number of data providers. In addition, the study addresses the possibility of archiving software, laboratory data, and measurements of physical samples. Finally, the report discusses the current structure and governance of the PDS and its impact on how archive growth, technology, and new

  18. Multiscale regime shifts and planetary boundaries

    NARCIS (Netherlands)

    Hughes, T.P.; Carpenter, S.; Rockstrom, J.; Scheffer, M.; Walker, B.


    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a

  19. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8 (United States)

    Danehkar, A.


    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  20. Planning for planetary protection : challenges beyond Mars (United States)

    Belz, Andrea P.; Cutts, James A.


    This document summarizes the technical challenges to planetary protection for these targets of interest and outlines some of the considerations, particularly at the system level, in designing an appropriate technology investment strategy for targets beyond Mars.

  1. Distribution of mass in the planetary system and solar nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Weidenschilling, S J [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism


    A model 'solar nebula' is constructed by adding the solar complement of light elements to each planet, using recent models of planetary compositions. Uncertainties in this approach are estimated. The computed surface density varies approximately as rsup(-3/2). Mercury, Mars and the asteroid belt are anomalously low in mass, but processes exist which would preferentially remove matter from these regions. Planetary masses and compositions are generally consistent with a monotonic density distribution in the primordial solar nebula.

  2. Planetary interchange of bioactive material: probability factors and implications. (United States)

    Clark, B C


    It is now well-accepted that both lunar and martian materials are represented in the meteorite collections. Early suggestions that viable organisms might survive natural transport between planets have not yet been thoroughly examined. The concept of Planetary Interchange of Bioactive Material (PIBM) is potentially relevant to the conditions under which life originated. PIBM has been also invoked to infer that the potential danger to Earth from martian materials is non-existent, an inference with, however, many pitfalls. Numerous impediments to efficient transfer of viable organisms exist. In this work, the lethality of space radiation during long transients and the biasing of launched objects toward materials unlikely to host abundant organisms are examined and shown to reduce the likelihood of successful transfer by orders of magnitude. It is also shown that martian meteorites studied to date assuredly have been subjected to sterilizing levels of ionizing radiation in space. PIBM considerations apply to both the solar system locale(s) of the origin of life and to the applicability of planetary protection protocols to preserve the biospheres of planetary bodies, including our own.

  3. From red giant to planetary nebula - Dust, asymmetry, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.; Jones, T.J.


    The polarization characteristics of stars in the stages of evolution from red giant to planetary nebula are investigated. Polarization is found to be a characteristic of the majority of these stars. The maximum observed polarization increases with age as the star evolves up the asymptotic giant branch (AGB) to the protoplanetary nebula phase, where the polarization reaches a maximum. The polarization then decreases as the star further evolves into a planetary nebula. These results indicate that aspherical mass loss is likely to be a continual feature of the late stages of stellar evolution, maintaining a clear continuity throughout the life of a star from the moment it first develops a measurable dust shell. The aspherical morphology seen in planetary nebulae has its origin in an intrinsic property of the star that is present at least as early as its arrival at the base of the AGB. 77 refs

  4. G25.5 + 0.2: a very young supernova remnant or a galactic planetary nebula?

    International Nuclear Information System (INIS)

    White, R.L.; Becker, R.H.


    G25.5 + 0.2, a radio source suggested by previous authors to be a very young galactic supernova remnant, is more likely to be a planetary nebula. Its IRAS colours and fluxes and its radio spectrum and morphology are all consistent with the properties of planetary nebulae; its radio flux and distance imply a large mass of ionized gas, which is expected from a Type I planetary nebula lying in the galactic plane. We suggest some definitive observations which should be able to determine whether this interesting object is a planetary nebula or a supernova remnant. (author)

  5. The mysterious age invariance of the planetary nebula luminosity function bright cut-off (United States)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.


    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

  6. Robotic Tool Changer for Planetary Exploration, Phase I (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions will require compact, lightweight robotic manipulators for handling a variety of tools & instruments without increasing the...

  7. Semiotics Of Shape Of Block Notation As Icon Of Planetary Orbit

    Directory of Open Access Journals (Sweden)

    Ketut Sumerjana


    Full Text Available Block notation has a specific shape; however, its existence and the function of its shape are not recognized and are made to be intangible by its function as a symbol of tapping sound. In general, the basic shape of the block notation looks like an ellipse and is similar to the planetary orbit. Therefore, this present study focuses on the ellipse-shaped block notation as the icon of the planetary orbit. The phenomenological qualitative method was employed to interpret the meaning of the basic shape of the block notation as the icon of planetary orbit. The data were collected through guided interview and library research. The data were analyzed using the semiotic process, meaning that in the first phase the text was analyzed based on the shape structure and in the second phase the text was heuristically analyzed. The result of the study shows that the ellipse-shaped block notation is the planetary orbit whose function changes from the manifest function into the latent one, resulting from the function as the tapping sound value. Keywords: form, notation, icon, orbit, planet

  8. Special issue on enabling open and interoperable access to Planetary Science and Heliophysics databases and tools (United States)


    The large amount of data generated by modern space missions calls for a change of organization of data distribution and access procedures. Although long term archives exist for telescopic and space-borne observations, high-level functions need to be developed on top of these repositories to make Planetary Science and Heliophysics data more accessible and to favor interoperability. Results of simulations and reference laboratory data also need to be integrated to support and interpret the observations. Interoperable software and interfaces have recently been developed in many scientific domains. The Virtual Observatory (VO) interoperable standards developed for Astronomy by the International Virtual Observatory Alliance (IVOA) can be adapted to Planetary Sciences, as demonstrated by the VESPA (Virtual European Solar and Planetary Access) team within the Europlanet-H2020-RI project. Other communities have developed their own standards: GIS (Geographic Information System) for Earth and planetary surfaces tools, SPASE (Space Physics Archive Search and Extract) for space plasma, PDS4 (NASA Planetary Data System, version 4) and IPDA (International Planetary Data Alliance) for planetary mission archives, etc, and an effort to make them interoperable altogether is starting, including automated workflows to process related data from different sources.

  9. An ultrasonic corer for planetary rock sample retrieval

    International Nuclear Information System (INIS)

    Harkness, P; Cardoni, A; Lucas, M


    Several recent and planned space projects have been focussed on surface rovers for planetary missions, such as the U.S. Mars Exploration Rovers and the European ExoMars. The main functions of similar extraterrestrial vehicles in the future will be moving across planetary surfaces and retrieving rock samples. This paper presents a novel ultrasonic rock sampling tool tuned in a longitudinal-torsional mode along with the conceptual design of a full coring apparatus for preload delivery and core removal. Drilling and coring bits have been designed so that a portion of the longitudinal motion supplied by the ultrasonic transducer is converted into torsional motion. Results of drilling/coring trials are also presented.

  10. Planetary Produced Axionlike Particles and Gamma-Ray Flashes

    International Nuclear Information System (INIS)

    Liolios, Anastasios


    Axion-like particles could be created in nuclear disintegrations and deexitations of natural radionuclides present in the interior of the planets. For the Earth and the other planets with a surrounding magnetosphere, axion production could result to gamma and X-ray emission, originating from axion to photon conversion in the planetary magnetic fields. The estimated planetary axion fluxes as well as the related gamma ray fluxes from Earth and the giant planets of our solar system are given along with the axion coupling to ordinary matter. A possible connection with the enigmatic Terrestrial Gamma-ray Flashes (TGFs) discovered in 1994 by CGRO/BATSE and also detected with the RHESSI satellite, is also discussed.

  11. Demonstration of angle widening using EyeCam after laser peripheral iridotomy in eyes with angle closure. (United States)

    Perera, Shamira A; Quek, Desmond T; Baskaran, Mani; Tun, Tin A; Kumar, Rajesh S; Friedman, David S; Aung, Tin


    To evaluate EyeCam in detecting changes in angle configuration after laser peripheral iridotomy (LPI) in comparison to gonioscopy, the reference standard. Prospective comparative study. Twenty-four subjects (24 eyes) with primary angle-closure glaucoma (PACG) were recruited. Gonioscopy and EyeCam (Clarity Medical Systems) imaging of all 4 angle quadrants were performed, before and 2 weeks after LPI. Images were graded according to angle structures visible by an observer masked to clinical data or the status of LPI, and were performed in a random order. Angle closure in a quadrant was defined as the inability to visualize the posterior trabecular meshwork. We determined the number of quadrants with closed angles and the mean number of clock hours of angle closure before and after LPI in comparison to gonioscopy. Using EyeCam, all 24 eyes showed at least 1 quadrant of angle widening after LPI. The mean number of clock hours of angle closure decreased significantly, from 8.15 +/- 3.47 clock hours before LPI to 1.75 +/- 2.27 clock hours after LPI (P gonioscopy showed 1.0 +/- 1.41 (95% CI, 0.43-1.57) quadrants opening from closed to open after LPI compared to 2.0 +/- 1.28 (95% CI, 1.49-2.51, P = .009) quadrants with EyeCam. Intra-observer reproducibility of grading the extent of angle closure in clock hours in EyeCam images was moderate to good (intraclass correlation coefficient 0.831). EyeCam may be used to document changes in angle configuration after LPI in eyes with PACG. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Agriculture production as a major driver of the earth system exceeding planetary boundaries

    DEFF Research Database (Denmark)

    Campbell, Bruce Morgan; Beare, Douglas J.; Bennett, Elena M.


    We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or “safe limits”: land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone...

  13. Planetary protection issues linked to human missions to Mars (United States)

    Debus, A.

    According to United Nations Treaties and handled presently by the Committee of Space Research COSPAR the exploration of the Solar System has to comply with planetary protection requirements The goal of planetary protection is to protect celestial bodies from terrestrial contamination and also to protect the Earth environment from an eventual biocontamination carried by return samples or by space systems returning to the Earth Mars is presently one of the main target at exobiology point of view and a lot of missions are operating on travel or scheduled for its exploration Some of them include payload dedicated to the search of life or traces of life and one of the goals of these missions is also to prepare sample return missions with the ultimate objective to walk on Mars Robotic missions to Mars have to comply with planetary protection specifications well known presently and planetary protection programs are implemented with a very good reliability taking into account an experience of 40 years now For sample return missions a set of stringent requirements have been approved by the COSPAR and technical challenges have now to be won in order to preserve Earth biosphere from an eventual contamination risk Sending astronauts on Mars will gather all these constraints added with the human dimension of the mission The fact that the astronauts are huge contamination sources for Mars and that they are also potential carrier of a contamination risk back to Earth add also ethical considerations to be considered For the preparation of a such

  14. Chemical kinetics and modeling of planetary atmospheres (United States)

    Yung, Yuk L.


    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  15. Analysis of dynamic meshing characteristic of planetary gear transmission in wind power increasing gearbox

    Directory of Open Access Journals (Sweden)

    Wang Jungang


    Full Text Available Dynamic behavior of planetary gear’s tooth contact surface in the different location can better conform operation condition comparing to the general gear pair. Nonlinear finite element algorithm was derived according to the basic control equation of contact dynamics. A finite element model of planetary gear transmission in wind power increasing gearbox was proposed considering different meshing locations based on nonlinear finite element solution. The characteristics of stress distribution at different meshing positions were analyzed. A simulation of the meshing process was conducted using finite element analysis. It was shown that node stresses of external meshing planetary gear varied significantly at different position. The analysis provides some useful insights into the performance of planetary gear’s tooth contact surface.

  16. Global Analysis of a Planetary Gear Train

    Directory of Open Access Journals (Sweden)

    Tongjie Li


    Full Text Available By using the Poincaré-like cell-to-cell mapping method and shooting method, the global characteristics of a planetary gear train are studied based on the torsional vibration model with errors of transmission, time-varying meshing stiffness, and multiple gear backlashes. The study results reveal that the planetary with a certain set of parameters has four coexisting periodic orbits, which are P-1, P-2, P-4, and P-8, respectively. P-1 and P-2 motions are not of long-term stability, P-8 motion is of local stability, and P-4 motion is of global stability. Shooting method does not have the capacity of searching coexisting periodic orbits in a global scope, and it is easy to omit some periodic orbits which are far away from the main gropes of periodic orbits.

  17. Exploring the planetary boundary for chemical pollution

    DEFF Research Database (Denmark)

    Diamond, Miriam L.; de Wit, Cynthia A.; Molander, Sverker


    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience...... of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales......, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient...

  18. 1984 Mauna Loa eruption and planetary geolgoy

    International Nuclear Information System (INIS)

    Moore, H.J.


    In planetary geology, lava flows on the Moon and Mars are commonly treated as relatively simple systems. Some of the complexities of actual lava flows are illustrated using the main flow system of the 1984 Mauna Loa eruption. The outline, brief narrative, and results given are based on a number of sources. The implications of the results to planetary geology are clear. Volume flow rates during an eruption depend, in part, on the volatile content of the lava. These differ from the volume flow rates calculated from post eruption flow dimensions and the duration of the eruption and from those using models that assume a constant density. Mass flow rates might be more appropriate because the masses of volatiles in lavas are usually small, but variable and sometimes unknown densities impose severe restrictions on mass estimates

  19. Morphology of bipolar planetary nebulae. I. Two-dimensional spectrophotometry

    International Nuclear Information System (INIS)

    Pascoli, G.


    Two-dimensional spectrophotometric observations of bipolar planetary nebulae were performed by using a CCD detector mounted at the Cassegrain focus of either 1.54 m Danish Telescope or 2.2 m German Telescope at La Silla (ESO) in Chile. Emission lines have been selected with the help of narrow band-pass interference filters (Δλ∼ 10 - 20 A). Isophotal maps in various lines Hα, [NII] λ 6584, [OIII] λ 5007 and [SII] λλ 6717-6731 are presented. Particular attention has been given to scrutinize the symmetries inside a few bipolar planetary nebulae, in order to subsequently investigate their space structure

  20. Planetary protection policy overview and application to future missions (United States)

    Rummel, John D.


    The current status of planetary protection (quarantine) policy within NASA is discussed, together with the issues of planetary protection and back-contamination as related to future missions. The policy adopted by COSPAR in 1984 (and recently reaffirmed by the NASA Administrator) for application to all unmanned missions to other solar system bodies and all manned and unmanned sample return missions is examined. Special attention is given to the implementation of the policy and to the specific quarantine-related constraints on spacecraft involved in solar system exploration that depend on the nature of the mission and the identity of the target body.

  1. Pythagoras' celestial spheres in the context of a simple model for quantization of planetary orbits

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Neto, Marcal de [Instituto de Quimica, Universidade de Brasilia, Campus Universitario, Asa Norte, 70904-970 Brasilia, DF (Brazil)]. E-mail:


    In the present article we attempt to search for a correlation between Pythagoras and Kepler's ideas on harmony of the celestial spheres through simple quantization procedure to describe planetary orbits in our solar system. It is reasoned that starting from a Bohr-like atomic model, planetary mean radii and periods of revolution can be obtained from a set of small integers and just one input parameter given by the mean planetary radius of Mercury. It is also shown that the mean planetary distances can be calculated with the help of a Schroedinger-type equation considering the flatness of the solar system. An attempt to obtain planetary radii using both gravitational and electrostatic approaches linked by Newton's dimensionless constant of gravity is presented.

  2. Optical Emission Spectroscopy of High-Power Laser-Induced Dielectric Breakdown in Molecular Gases and Their Mixtures: Investigating Early Stages of Plasma Chemical Action in Planetary Atmospheres

    Czech Academy of Sciences Publication Activity Database

    Cihelka, Jaroslav; Matulková, Irena; Sovová, Kristýna; Kamas, Michal; Kubelík, Petr; Ferus, Martin; Juha, Libor; Civiš, Svatopluk


    Roč. 39, 3-4 (2009), s. 227-227 ISSN 0169-6149 R&D Projects: GA MŠk LC510; GA MŠk(CZ) LC528; GA ČR GA203/06/1278; GA MŠk LA08024 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100523 Keywords : planetary atmosphere * lasers * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.053, year: 2009

  3. Using Primary Literature for Teaching Undergraduate Planetary Sciences (United States)

    Levine, J.


    Articles from the primary scientific literature can be a valuable teaching tool in undergraduate classrooms. At Colgate University, I emphasize selected research articles in an upper-level undergraduate course in planetary sciences. In addition to their value for conveying specific scientific content, I find that they also impart larger lessons which are especially apt in planetary sciences and allied fields. First, because of the interdisciplinary nature of planetary sciences, students discover that contributions to outstanding problems may arrive from unexpected directions, so they need to be aware of the multi-faceted nature of scientific problems. For instance, after millennia of astrometric attempts, the scale of the Solar System was determined with extraordinary precision with emerging radar technology in the 1960's. Second, students learn the importance of careful work, with due attention to detail. After all, the timescales of planetary formation are encoded in systematic isotopic variations of a few parts in 10,000; in students' own experiences with laboratory data they might well overlook such a small effect. Third, students identify the often-tortuous connections between measured and inferred quantities, which corrects a common student misconception that all quantities of interest (e.g., the age of a meteorite) can be measured directly. Fourth, research articles provide opportunities for students to practice the interpretation of graphical data, since figures often represent a large volume of data in succinct form. Fifth, and perhaps of greatest importance, by considering the uncertainties inherent in reported data, students come to recognize the limits of scientific understanding, the extent to which scientific conclusions are justified (or not), and the lengths to which working scientists go to mitigate their uncertainties. These larger lessons are best mediated by students' own encounters with the articles they read, but require instructors to make

  4. Max-Planck-Institute for Nuclear Physics. Annual report 1987

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.


    This annual report contains short communications and extended abstracts about the work performed at the named institute together with a list of publications and talks. The work concerns technical developments on accelerators and ion sources, developments of detectors and experimental setups, electronics, data processing, target developments, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics, medium- and high-energy physics, statistical models of nuclei and nuclear reactions, nuclear reactions at high energies, many-particle theory, quantum chromodynamics, meteorites, comets, interstellar dust, planetary atmospheres, cosmic radiation, molecular collisions in the earth atmosphere, nuclear geology and geochemistry, as well as archaeology. See hints under the relevant topics. (HSI)

  5. Topics in planetary plasmaspheres

    International Nuclear Information System (INIS)

    Chen, C.K.


    Contributions to the understanding of two distinct kinds of planetary plasmaspheres: namely the earth-type characterized by an ionospheric source and a convection limited radial extent, and the Jupiter-type characterized by a satellite source and a radial extent determined by flux tube interchange motions. In both cases the central question is the geometry of the plasma distribution in the magnetosphere as it is determined by the appropriate production and loss mechanisms. The contributions contained herein concern the explication and clarification of these production and loss mechanisms

  6. Considering the Ethical Implications of Space Exploration and Potential Impacts on Planetary Environments and Possible Indigenous Life (United States)

    Race, Margaret

    Since the early days of the Outer Space Treaty, a primary concern of planetary protection policy has been to avoid contamination of planetary environments by terrestrial microbes that could compromise current or subsequent scientific investigations, particularly those searching for indigenous life. Over the past decade robotic missions and astrobiological research have greatly increased our understanding of diverse planetary landscapes and altered our views about the survivability of terrestrial organisms in extreme environments. They have also expanded notions about the prospect for finding evidence of extraterrestrial life. Recently a number of different groups, including the COSPAR Planetary Protection Workshop in Montreal (January 2008), have questioned whether it is advisable to re-examine current biological planetary protection policy in light of the ethical implications and responsibilities to preserve planetary environments and possible indigenous life. This paper discusses the issues and concerns that have led to recent recommendations for convening an international workshop specifically to discuss planetary protection policy and practices within a broader ethical and practical framework, and to consider whether revisions to policy and practices should be made. In addition to including various international scientific and legal organizations and experts in such a workshop, it will be important to find ways to involve the public in these discussions about ethical aspects of planetary exploration.

  7. LPIC-2 Linux Professional Institute Certification Study Guide Exams 201 and 202

    CERN Document Server

    Smith, Roderick W


    The first book to cover the LPIC-2 certification Linux allows developers to update source code freely, making it an excellent, low-cost, secure alternative to alternate, more expensive operating systems. It is for this reason that the demand for IT professionals to have an LPI certification is so strong. This study guide provides unparalleled coverage of the LPIC-2 objectives for exams 201 and 202. Clear and concise coverage examines all Linux administration topics while practical, real-world examples enhance your learning process. On the CD, you'll find the Sybex Test Engine, electronic flash


    Energy Technology Data Exchange (ETDEWEB)

    Prša, Andrej [Villanova University, Department of Astrophysics and Planetary Science, 800 Lancaster Ave., Villanova, PA 19085 (United States); Harmanec, Petr [Astronomical Institute of the Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, CZ-180 00 Praha 8 (Czech Republic); Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Mamajek, Eric [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Asplund, Martin [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Capitaine, Nicole [SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC, LNE, 61 avenue de lObservatoire, F-75014 Paris (France); Christensen-Dalsgaard, Jørgen [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Depagne, Éric [South African Astronomical Observatory, P.O. Box 9 Observatory, Cape Town (South Africa); Haberreiter, Margit [Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center, Dorfstrasse 33, Davos (Switzerland); Hekker, Saskia [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Hilton, James [US Naval Observatory, 3450 Massachusetts Ave. NW, Washington, DC 20392-5420 (United States); Kopp, Greg [Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, CO 80303-7814 (United States); and others


    In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.


    International Nuclear Information System (INIS)

    Prša, Andrej; Harmanec, Petr; Torres, Guillermo; Mamajek, Eric; Asplund, Martin; Capitaine, Nicole; Christensen-Dalsgaard, Jørgen; Depagne, Éric; Haberreiter, Margit; Hekker, Saskia; Hilton, James; Kopp, Greg


    In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.

  10. Space and Planetary Resources (United States)

    Abbud-Madrid, Angel


    The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward

  11. Planetary Data Archiving Activities of ISRO (United States)

    Gopala Krishna, Barla; D, Rao J.; Thakkar, Navita; Prashar, Ajay; Manthira Moorthi, S.

    ISRO has launched its first planetary mission to moon viz., Chandrayaan-1 on October 22, 2008. This mission carried eleven instruments; a wealth of science data has been collected during its mission life (November 2008 to August 2009), which is archived at Indian Space Science Data Centre (ISSDC). The data centre ISSDC is responsible for the Ingest, storage, processing, Archive, and dissemination of the payload and related ancillary data in addition to real-time spacecraft operations support. ISSDC is designed to provide high computation power, large storage and hosting a variety of applications necessary to support all the planetary and space science missions of ISRO. State-of-the-art architecture of ISSDC provides the facility to ingest the raw payload data of all the science payloads of the science satellites in automatic manner, processes raw data and generates payload specific processed outputs, generate higher level products and disseminates the data sets to principal investigators, guest observers, payload operations centres (POC) and to general public. The data archive makes use of the well-proven archive standards of the Planetary Data System (PDS). The long term Archive for five payloads of Chandrayaan-1 data viz., TMC, HySI, SARA, M3 and MiniSAR is released from ISSDC on19th April 2013 ( to the users. Additionally DEMs generated from possible passes of Chandrayaan-1 TMC stereo data and sample map sheets of Lunar Atlas are also archived and released from ISSDC along with the LTA. Mars Orbiter Mission (MOM) is the recent planetary mission launched on October 22, 2013; currently enroute to MARS, carrying five instruments ( viz., Mars Color Camera (MCC) to map various morphological features on Mars with varying resolution and scales using the unique elliptical orbit, Methane Sensor for Mars (MSM) to measure total column of methane in the Martian atmosphere, Thermal Infrared Imaging Spectrometer (TIS) to map surface

  12. Planetary-Whigs: Optical MEMS-Based Seismometer, Phase I (United States)

    National Aeronautics and Space Administration — During this Phase I, Michigan Aerospace Corporation will adapt the design of an optical MEMS seismometer for lunar and other planetary science instrumentation. The...

  13. Sensor Array Analyzer for Planetary Exploration, Phase I (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions such as those planned by NASA and other space agencies over the next few decades require advanced chemical and biological...

  14. On planetary nebulae and Wolf-Rayet stars in the galactic-centre field

    International Nuclear Information System (INIS)

    Allen, D.A.


    A UK Schmidt objective-prism plate of the Galactic-centre field has been examined. Of the 74 objects in the field which have been catalogued as planetary nebulae, only half appear correctly classified; the others include Be stars, symbiotic stars, and stars without emission lines. A further 19 planetary nebulae and two Wolf-Rayet stars have been discovered. (author)

  15. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions: Workshop Report (United States)

    Race, Margaret S. (Editor); Johnson, James E. (Editor); Spry, James A. (Editor); Siegel, Bette; Conley, Catharine A.


    This report on Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions summarizes the presentations, deliberations and findings of a workshop at NASA Ames Research Center, March 24-26, 2015, which was attended by more than 100 participants representing a diverse mix of science, engineering, technology, and policy areas. The main objective of the three-day workshop was to identify specific knowledge gaps that need to be addressed to make incremental progress towards the development of NASA Procedural Requirements (NPRs) for Planetary Protection during human missions to Mars.

  16. Planetary Dynamos: Investigations of Saturn and Ancient Mars

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Sabine [University of Toronto


    Magnetic field observations by spacecraft missions have provided vital information on planetary dynamos. The four giant planets as well as Earth, Mercury and Ganymede have observable magnetic fields generated by active dynamos. In contrast, Moon and Mars only have remanent crustal fields from dynamo action in their early histories. A variety of magnetic field morphologies and intensities can be found in the solar system. We have found that some of the differences between planetary magnetic fields can be explained as the result of the presence of boundary thermal variations or stably-stratified layers. In this talk, I will discuss how dynamos are affected by these complications and discuss the implications for Mars’ magnetic dichotomy and Saturn’s extremely axisymmetric magnetic field.

  17. Radial Velocity Detection of Extra-Solar Planetary Systems (United States)

    Cochran, William D.


    This NASA Origins Program grant supported four closely related research programs at The University of Texas at Austin: 1) The McDonald Observatory Planetary Search (MOPS) Program, using the McDonald Observatory 2.7m Harlan Smith telescope and its 2dcoude spectrometer, 2) A high-precision radial-velocity survey of Hyades dwarfs, using the Keck telescope and its HIRES spectrograph, 3) A program at McDonald Observatory to obtain spectra of the parent stars of planetary systems at R = 210,000, and 4) the start of high precision radial velocity surveys using the Hobby-Eberly Telescope. The most important results from NASA support of these research programs are described. A list of all papers published under support of this grant is included at the end.

  18. Examining Volcanic Terrains Using In Situ Geochemical Technologies; Implications for Planetary Field Geology (United States)

    Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.


    Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..

  19. Design of Mobility System for Ground Model of Planetary Exploration Rover

    Directory of Open Access Journals (Sweden)

    Younkyu Kim


    Full Text Available In recent years, a number of missions have been planned and conducted worldwide on the planets such as Mars, which involves the unmanned robotic exploration with the use of rover. The rover is an important system for unmanned planetary exploration, performing the locomotion and sample collection and analysis at the exploration target of the planetary surface designated by the operator. This study investigates the development of mobility system for the rover ground model necessary to the planetary surface exploration for the benefit of future planetary exploration mission in Korea. First, the requirements for the rover mobility system are summarized and a new mechanism is proposed for a stable performance on rough terrain which consists of the passive suspension system with 8 wheeled double 4-bar linkage (DFBL, followed by the performance evaluation for the mechanism of the mobility system based on the shape design and simulation. The proposed mobility system DFBL was compared with the Rocker-Bogie suspension system of US space agency National Aeronautics and Space Administration and 8 wheeled mobility system CRAB8 developed in Switzerland, using the simulation to demonstrate the superiority with respect to the stability of locomotion. On the basis of the simulation results, a general system configuration was proposed and designed for the rover manufacture.

  20. Chemical composition of planetary nebulae : Including ISO results

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Feibelman, WA; Henney, WJ; Franco, J; Martos, M; Pena, M


    The method of determining abundances using Infrared Space Observatory spectra is discussed. The results for seven planetary nebula are given. Using these data, a preliminary discussion of their evolution is given.

  1. Ultra-Compact Raman Spectrometer for Planetary Explorations (United States)

    Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul


    To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.

  2. FIGIFIGO as a tool to characterize and identify planetary analogue sites (United States)

    Gritsevich, M.; Peltoniemi, J.; Hakala, T.; Muinonen, K.


    We present an overview of the Finnish Geodetic Institute's field goniospectrometer (FIGIFIGO) and highlight its usability to study extraterrestrial analogues on the Earth. The design concept of this custom-made instrument has been proved to have a number of advantages, such as a well-adopted user-friendly interface, a high level of automation, and excellent suitability for field measurements within a wide range of weather conditions. It is perfect for collection of reference data on a given target in natural undisturbed (and well-recorded for further data interpretation) conditions. The instrument communicates via a controlled computer with an implemented simple and user-friendly interface. This allows users to easily set up optional parameters at the beginning of the measurement series. Thus a number of details may be modified, such as the initial position of the sensor, the range and speed of further automated zenith turns, and length of the turnable arm holding the selected optics (including an option for a computer-turned linear polarizer) above the target. The assembly and operation of the instrument are fast and efficient in both laboratory and field conditions. It is battery powered and easily portable, including possible transportation by plane, car, boat, or sledge. The system includes a sky camera to detect the goniometer orientation and a pyranometer to monitor the actual illumination conditions. A fine-tune mirror is used for spatial correction of the optics footprint. Recent calibration of the system has significantly increased the measurement robustness and data reliability, and has provided the operators with information on how to operate the instrument in the most efficient and accurate way. Measurement campaigns are organized frequently and significant amount of reference data has been already collected. The identification of new planetary analogue sites and characterization of known ones using FIGIFIGO could offer new possibilities and provide

  3. Robotic Planetary Drill Tests (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.


    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  4. Sustainability, glocal development and planetary citizenship. References for a Pedagogy towards Sustainable Development

    Directory of Open Access Journals (Sweden)

    M.ª Ángeles MURGA-MENOYO


    Full Text Available Sustainability approaches advise adopting a glocal development model that links local possibilities and practices to global needs and constraints. The complexity of this phenomenon, taken to the political plane, leads to a model of planetary citizenship where humanity’s commitment to nature and the necessary social equity amongst human beings are emphasized. This has clear implications for pedagogy, which this paper aims to highlight. This work starts from the sustainable development scenarios and concludes with a proposal of a planetary citizenship rooted locally. Glocality and planetary citizenship, a concept close to that of cosmopolitan citizenship –once stripped of its anthropocentric connotations–, both lead to significant missions of education in this framework: the formation of a holistic worldview, based on a complex-system thinking, and building a planetary citizenship. In both cases, the consideration of the human as an eco-dependent being, attributes nature an essential position in the educational processes.

  5. Review on the Role of Planetary Factors on Habitability. (United States)

    Kereszturi, A; Noack, L


    In this work various factors on the habitability were considered, focusing on conditions irrespective of the central star's radiation, to see the role of specific planetary body related effects. These so called planetary factors were evaluated to identify those trans-domain issues where important information is missing but good chance exit to be filled by new knowledge that might be gained in the next decade(s). Among these strategic knowledge gaps, specific issues are listed, like occurrence of radioactive nucleides in star forming regions, models to estimate the existence of subsurface liquid water from bulk parameters plus evolutionary context of the given system, estimation on the existence of redox gradient depending on the environment type etc. These issues require substantial improvement of modelling and statistical handling of various cases, as "planetary environment types". Based on our current knowledge it is probable that subsurface habitability is at least as frequent, or more frequent than surface habitability. Unfortunately it is more difficult from observations to infer conditions for subsurface habitability, but specific argumentation might help with indirect ways, which might result in new methods to approach habitability in general.

  6. Advances in planetary geology, volume 2

    International Nuclear Information System (INIS)


    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons

  7. New geoscience techniques for Earth and planetary studies developed in Moscow State University of Geodesy and Cartography (MIIGAiK) (United States)

    Mayorov, Andrey; Karachevtseva, Irina; Oberst, Jürgen


    The University was established in 1779 and for all these years it has been the centre of higher geodetic education in Russia, the largest specialized educational institution of this profile in Europe. The great historical past, long pedagogical and scientific traditions developed throughout almost the two and a half centuries' history of the University, importance of geodetic sciences and land survey branch for many fields of knowledge and national economy, a wide range of specialties in which MIIGAiK trains specialists have given the University the leading position as a specialized higher educational institution [1]. Now, the University is a large educational-and-scientific and production complex including six faculties of full-time training, a faculty of distance learning, a Training Centre for teachers of high schools and retraining of experts, postgraduate and doctoral courses, educational specialized laboratories in various directions of geodesy, cartography and remote sensing. In the University structure, there are also research-and-production centers Geodynamics, Geomonitoring, a Center for satellite technologies in geodesy, a Cartographic centre, Geodesy and Air Photography Journal Publishing House, two educational test fields, computing centers, an educational-and-geodetic museum and a library. New MIIGAiK Extraterrestrial Laboratory (MExLab) [2], which was established in 2010 under the leadership of invited scientist Prof. Dr. Jürgen Oberst (DLR, TUB, Germany), studies of characteristics of Solar System bodies with geodetic and cartographic methods. The several celestial bodies are chosen as subjects for new planetary project: Europa, Ganymede, Callisto (Galilean satellites of Jupiter), and Enceladus (a satellite of Saturn), as well as the Moon, Mars, its satellite Phobos, and Mercury. The significance of the project objectives is defined both by necessity of gaining fundamental knowledge about properties of the Solar System bodies, and practical needs

  8. The internal kinematics of the planetary nebula NGC 650/1

    International Nuclear Information System (INIS)

    Taylor, K.


    Hα and [N II], lambda 6584 line profiles from the bright lobes of planetary nebula NGC 650/1 have been obtained. These emission lines show a very strong symmetrical triple-peak velocity structure, not observed previously to the author's knowledge in planetary nebulae. Models are tentatively proposed to explain both the velocity data and the nebula's optical appearance. The velocity splitting amounts to approximately 62 km/s and the rest frame of the nebula is found to have a heliocentric radial velocity of -19 +- 2 km/s. (author)

  9. Tests of the planetary hypothesis for PTFO 8-8695b

    DEFF Research Database (Denmark)

    Yu, Liang; Winn, Joshua N.; Gillon, Michaël


    The T Tauri star PTFO 8-8695 exhibits periodic fading events that have been interpreted as the transits of a giant planet on a precessing orbit. Here we present three tests of the planet hypothesis. First, we sought evidence for the secular changes in light-curve morphology that are predicted...... planetary orbit. Our spectroscopy also revealed strong, time-variable, high-velocity H{\\alpha} and Ca H & K emission features. All these observations cast doubt on the planetary hypothesis, and suggest instead that the fading events represent starspots, eclipses by circumstellar dust, or occultations...

  10. Fiber Optic Strain Sensor for Planetary Gear Diagnostics (United States)

    Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason


    This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented

  11. Planetary boundaries : Governing emerging risks and opportunities

    NARCIS (Netherlands)

    Galaz, V.; de Zeeuw, Aart; Shiroyama, Hideaki; Tripley, Debbie

    The climate, ecosystems and species, ozone layer, acidity of the oceans, the flow of energy and elements through nature, landscape change, freshwater systems, aerosols, and toxins—these constitute the planetary boundaries within which humanity must find a safe way to live and prosper. These are

  12. 75 FR 57520 - NASA Advisory Council; Planetary Science Subcommittee; Supporting Research and Technology Working... (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-112)] NASA Advisory Council; Planetary Science Subcommittee; Supporting Research and Technology Working Group; Meeting AGENCY: National... announces a meeting of the Supporting Research and Technology Working Group of the Planetary Science...

  13. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Phillip E


    The drive is on to devise LPI radar systems that evade hostile detection as well as develop non-cooperative intercept devices that outsmart enemy LPI radar. Based on the author's own design experience, this comprehensive, hands-on book gives you the latest design and development techniques to innovate new LPI radar systems and discover new ways to intercept enemy LPI radar. and help you visually identify waveform parameters. Filled with more than 500 equations that provide rigorous mathematical detail, this book can be used by both entry-level and seasoned engineers. Besides thoroughly treatin

  14. First Prototype of a Web Map Interface for ESA's Planetary Science Archive (PSA) (United States)

    Manaud, N.; Gonzalez, J.


    We present a first prototype of a Web Map Interface that will serve as a proof of concept and design for ESA's future fully web-based Planetary Science Archive (PSA) User Interface. The PSA is ESA's planetary science archiving authority and central repository for all scientific and engineering data returned by ESA's Solar System missions [1]. All data are compliant with NASA's Planetary Data System (PDS) Standards and are accessible through several interfaces [2]: in addition to serving all public data via FTP and the Planetary Data Access Protocol (PDAP), a Java-based User Interface provides advanced search, preview, download, notification and delivery-basket functionality. It allows the user to query and visualise instrument observations footprints using a map-based interface (currently only available for Mars Express HRSC and OMEGA instruments). During the last decade, the planetary mapping science community has increasingly been adopting Geographic Information System (GIS) tools and standards, originally developed for and used in Earth science. There is an ongoing effort to produce and share cartographic products through Open Geospatial Consortium (OGC) Web Services, or as standalone data sets, so that they can be readily used in existing GIS applications [3,4,5]. Previous studies conducted at ESAC [6,7] have helped identify the needs of Planetary GIS users, and define key areas of improvement for the future Web PSA User Interface. Its web map interface shall will provide access to the full geospatial content of the PSA, including (1) observation geometry footprints of all remote sensing instruments, and (2) all georeferenced cartographic products, such as HRSC map-projected data or OMEGA global maps from Mars Express. It shall aim to provide a rich user experience for search and visualisation of this content using modern and interactive web mapping technology. A comprehensive set of built-in context maps from external sources, such as MOLA topography, TES

  15. The Early Planetary Research of Tobias C. Owen (United States)

    Cruikshank, Dale P.


    Tobias Chant Owen (Toby) was a graduate student of G. P. Kuiper, receiving his Ph.D. in the Dept. of Astronomy, University of Arizona, in 1965. His thesis was broadly titled "Studies of Planetary Spectra in the Photographic Infrared", and primarily presented a study of the composition and other properties of Jupiter, as well as the abundance and surface pressure of CO2 on Mars. The surface pressure on Mars was a topic of debate at that time, with a wide range of diverse observational results from several investigators. The Jupiter work in particular consisted of the analysis of Kuiper's unpublished spectra that were made with photographic plates pushed to the longest wavelength possible, about 1120 nm, with ammonia-hypersensitized Kodak Z emulsions. Toby used the long-pathlength absorption cells at the Lunar and Planetary Lab to study the spectra of CH4 and NH3 at pressures and temperatures relevant to Jupiter (and Saturn), as well as to search for spectral signatures of potential minor components of their atmospheres. Toby also obtained new spectra of Io, Ganymede, and Saturn and its rings, extended to the long-wavelength limit of photographic emulsions. No new molecular absorptions were found, although Owen basically confirmed Kuiper's earlier result that Saturn's rings are covered (or composed of) with H2O ice or frost. As he pursued a broad range of problems of planetary atmospheres, Toby used existing and newly acquired spectra of the planets in the photographic and near-infrared wavelength regions, together with data he obtained in the laboratory with long-pathlength absorption cells, to resolve some outstanding issues of unidentified spectral features and to clarify issues of the compositions, temperatures, and atmospheric pressures of several bodies. This work laid the foundation for his later decades of studies of planetary atmospheres and comets with spacecraft as an active participant in many US and European missions. He was very influential in shaping

  16. The distribution of mass in the planetary system and solar nebulae

    International Nuclear Information System (INIS)

    Weidenschilling, S.J.


    A model 'solar nebula' is constructed by adding the solar complement of light elements to each planet, using recent models of planetary compositions. Uncertainties in this approach are estimated. The computed surface density varies approximately as rsup(-3/2). Mercury, Mars and the asteroid belt are anomalously low in mass, but processes exist which would preferentially remove matter from these regions. Planetary masses and compositions are generally consistent with a monotonic density distribution in the primordial solar nebula. (Auth.)

  17. Planetary exploration and science recent results and advances

    CERN Document Server

    Jin, Shuanggen; Ip, Wing-Huen


    This contributed monograph is the first work to present the latest results and findings on the new topic and hot field of planetary exploration and sciences, e.g., lunar surface iron content and mare orientale basalts, Earth's gravity field, Martian radar exploration, crater recognition, ionosphere and astrobiology, Comet ionosphere, exoplanetary atmospheres and planet formation in binaries. By providing detailed theory and examples, this book helps readers to quickly familiarize themselves with the field. In addition, it offers a special section on next-generation planetary exploration, which opens a new landscape for future exploration plans and missions. Prof. Shuanggen Jin works at the Shanghai Astronomical Observatory, Chinese Academy of Sciences, China. Dr. Nader Haghighipour works at the University of Hawaii-Manoa, USA. Prof. Wing-Huen Ip works at the National Central University, Taiwan.

  18. Upper atmospheric planetary-wave and gravity-wave observations (United States)

    Justus, C. G.; Woodrum, A.


    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.

  19. MExLab Planetary Geoportal: 3D-access to planetary images and results of spatial data analysis (United States)

    Karachevtseva, I.; Garov, A.


    MExLab Planetary Geoportal was developed as Geodesy and Cartography Node which provide access to results of study of celestial bodies such as DEM and orthoimages, as well as basemaps, crater catalogues and derivative products: slope, roughness, crater density ( The main feature of designed Geoportal is the ability of spatial queries and access to the contents selecting from the list of available data set (Phobos, Mercury, Moon, including Lunokhod's archive data). Prior version of Geoportal has been developed using Flash technology. Now we are developing new version which will use 3D-API (OpenGL, WebGL) based on shaders not only for standard 3D-functionality, but for 2D-mapping as well. Users can obtain quantitative and qualitative characteristics of the objects in graphical, tabular and 3D-forms. It will bring the advantages of unification of code and speed of processing and provide a number of functional advantages based on GIS-tools such as: - possibility of dynamic raster transform for needed map projection; - effective implementation of the co-registration of planetary images by combining spatial data geometries; - presentation in 3D-form different types of data, including planetary atmospheric measurements, subsurface radar data, ect. The system will be created with a new software architecture, which has a potential for development and flexibility in reconfiguration based on cross platform solution: - an application for the three types of platforms: desktop (Windows, Linux, OSX), web platform (any HTML5 browser), and mobile application (Android, iOS); - a single codebase shared between platforms (using cross compilation for Web); - a new telecommunication solution to connect between modules and external system like PROVIDE WebGIS ( The research leading to these result was partly supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n

  20. Radio synthesis observations of planetary nebulae. II. A search for sub-arcsecond structure

    International Nuclear Information System (INIS)

    Balick, B.; Terzian, Y.


    Observations of 11 planetary nebulae with spatial resolutions from 0''.2 to 2'' at 2695 and 8085 MHz failed to show any very bright structure smaller than about 2''. The observations are shown to be consistent with the present understanding of the temperatures and density distributions thought to typify most planetary nebulae

  1. The planetary data system educational CD-ROM (United States)

    Guinness, E. A.; Arvidson, R. E.; Martin, M.; Dueck, S.


    The Planetary Data System (PDS) is producing a special educational CD-ROM that contains samples of PDS datasets and is expected to be released in 1993. The CD-ROM will provide university-level instructors with PDS-compatible materials and information that can be used to construct student problem sets using real datasets. The main purposes of the CD-ROM are to facilitate wide use of planetary data and to introduce a large community to the PDS. To meet these objectives the Educational CD-ROM will also contain software to manipulate the data, background discussions about scientific questions that can be addressed with the data, and a suite of exercises that illustrate analysis techniques. Students will also be introduced to the SPICE concept, which is a new way of maintaining geometry and instrument information. The exercises will be presented at the freshman through graduate student levels. With simplification, some of the material should also be of use at the high school level.

  2. Planetary Missions of the 20th Century* (United States)

    Moroz, V. I.; Huntress, W. T.; Shevalev, I. L.


    Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.

  3. Cosmic Education: Formation of a Planetary and Cosmic Personality

    Directory of Open Access Journals (Sweden)

    Bazaluk Oleg


    Full Text Available The major stages of development of cosmic pedagogy have been researched. Based on the achievements of the modern neurosciences as well as of psychology, cosmology, and philosophy, the authors provide their reasoning for the cosmic education and its outlooks for the educational systems of the world. Through the studies of how important human mind is for the Earth and the cosmos and by researching the evolution of human mind within the structure of the Universe, the authors create a more advanced scientific and philosophic basis for the cosmic education where the subject is a comprehensive process of formation and directed progress of both an individual mind and a conglomerate of minds called the "psychospace". The cosmic education researches the permanent progress of the intelligent matter of the Earth. The purpose of the cosmic education has been determined as formation of a planetary and cosmic personality. According to the authors, a planetary and cosmic personality is a harmony of mind, soul, and body, and such harmony is directed to use the internal creative potential of mind to the benefit of the intelligent matter of the entire Earth and the cosmos. The properties of such a planetary and cosmic personality are being improved continuously; they are a sample (the ideal of the cosmic pedagogy and the image of a human being of the future. Through the usage of the entire potential and art of upbringing and educating, the cosmic pedagogy is called to embody the major properties of the image of a human being of the future in the new generations of minds and to form a planetary and cosmic personality capable of self-actualization to the benefit of the permanent progress of the intelligent matter.

  4. Considerations in the Design of Future Planetary Laser Altimeters (United States)

    Smith, D. E.; Neumann, G. A.; Mazarico, E.; Zuber, M. T.; Sun, X.


    Planetary laser altimeters have generally been designed to provide high accuracy measurements of the nadir range to an uncooperative surface for deriving the shape of the target body, and sometimes specifically for identifying and characterizing potential landing sites. However, experience has shown that in addition to the range measurement, other valuable observations can be acquired, including surface reflectance and surface roughness, despite not being given high priority in the original altimeter design or even anticipated. After nearly 2 decades of planetary laser altimeter design, the requirements are evolving and additional capabilities are becoming equally important. The target bodies, once the terrestrial planets, are now equally asteroids and moons that in many cases do not permit simple orbital operations due to their small mass, radiation issues, or spacecraft fuel limitations. In addition, for a number of reasons, it has become necessary to perform shape determination from a much greater range, even thousands of kilometers, and thus ranging is becoming as important as nadir altimetry. Reflectance measurements have also proved important for assessing the presence of ice, water or CO2, and laser pulse spreading informed knowledge of surface roughness; all indicating a need for improved instrument capability. Recently, the need to obtain accurate range measurement to laser reflectors on landers or on a planetary surface is presenting new science opportunities but for which current designs are far from optimal. These changes to classic laser altimetry have consequences for many instrument functions and capabilities, including beam divergence, laser power, number of beams and detectors, pixelation, energy measurements, pointing stability, polarization, laser wavelengths, and laser pulse rate dependent range. We will discuss how a new consideration of these trades will help make lidars key instruments to execute innovative science in future planetary

  5. Lunar and Planetary Geology (United States)

    Basilevsky, Alexander T.


    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  6. An apodized Kepler periodogram for separating planetary and stellar activity signals (United States)

    Gregory, Philip C.


    A new apodized Keplerian (AK) model is proposed for the analysis of precision radial velocity (RV) data to model both planetary and stellar activity (SA) induced RV signals. A symmetrical Gaussian apodization function with unknown width and centre can distinguish planetary signals from SA signals on the basis of the span of the apodization window. The general model for m AK signals includes a linear regression term between RV and the SA diagnostic log (R′hk), as well as an extra Gaussian noise term with unknown standard deviation. The model parameters are explored using a Bayesian fusion Markov chain Monte Carlo code. A differential version of the generalized Lomb–Scargle periodogram that employs a control diagnostic provides an additional way of distinguishing SA signals and helps guide the choice of new periods. Results are reported for a recent international RV blind challenge which included multiple state-of-the-art simulated data sets supported by a variety of SA diagnostics. In the current implementation, the AK method achieved a reduction in SA noise by a factor of approximately 6. Final parameter estimates for the planetary candidates are derived from fits that include AK signals to model the SA components and simple Keplerians to model the planetary candidates. Preliminary results are also reported for AK models augmented by a moving average component that allows for correlations in the residuals. PMID:27346979

  7. Spacecraft computer technology at Southwest Research Institute (United States)

    Shirley, D. J.


    Southwest Research Institute (SwRI) has developed and delivered spacecraft computers for a number of different near-Earth-orbit spacecraft including shuttle experiments and SDIO free-flyer experiments. We describe the evolution of the basic SwRI spacecraft computer design from those weighing in at 20 to 25 lb and using 20 to 30 W to newer models weighing less than 5 lb and using only about 5 W, yet delivering twice the processing throughput. Because of their reduced size, weight, and power, these newer designs are especially applicable to planetary instrument requirements. The basis of our design evolution has been the availability of more powerful processor chip sets and the development of higher density packaging technology, coupled with more aggressive design strategies in incorporating high-density FPGA technology and use of high-density memory chips. In addition to reductions in size, weight, and power, the newer designs also address the necessity of survival in the harsh radiation environment of space. Spurred by participation in such programs as MSTI, LACE, RME, Delta 181, Delta Star, and RADARSAT, our designs have evolved in response to program demands to be small, low-powered units, radiation tolerant enough to be suitable for both Earth-orbit microsats and for planetary instruments. Present designs already include MIL-STD-1750 and Multi-Chip Module (MCM) technology with near-term plans to include RISC processors and higher-density MCM's. Long term plans include development of whole-core processors on one or two MCM's.

  8. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts

    NARCIS (Netherlands)

    Vries, de W.; Kros, J.; Kroeze, C.; Seitzinger, S.P.


    This paper first describes the concept of, governance interest in, and criticism on planetary boundaries, specifically with respect to the nitrogen (N) cycle. These criticisms are then systematically evaluated. We argue that planetary N boundaries should include both the benefits and adverse impacts

  9. Stream Lifetimes Against Planetary Encounters (United States)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.


    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  10. Challenges in implementing a Planetary Boundaries based Life-Cycle Impact Assessment methodology

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Richardson, Katherine


    of resolving the challenges and developing such methodology is discussed. The challenges are related to technical issues, i.e., modelling and including the Earth System processes and their control variables as impact categories in Life-Cycle Impact Assessment and to theoretical considerations with respect...... to the interpretation and use of Life-Cycle Assessment results in accordance with the Planetary Boundary framework. The identified challenges require additional research before a Planetary Boundaries based Life-Cycle Impact Assessment method can be developed. Research on modelling the impacts on Earth System processes......Impacts on the environment from human activities are now threatening to exceed thresholds for central Earth System processes, potentially moving the Earth System out of the Holocene state. To avoid such consequences, the concept of Planetary Boundaries was defined in 2009, and updated in 2015...

  11. Terrestrial analogs, planetary geology, and the nature of geological reasoning (United States)

    Baker, Victor R.


    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  12. Probing Shocks of the Young Planetary Nebula NGC 7027 (United States)

    Montez, Rodolfo


    The rapid evolution of the planetary nebula NGC 7027 provides a rare glimpse at the evolution of the shocks. We propose a detailed spatial and spectroscopic study of the shock conditions in NGC 7027 that will enhance and bridge our understanding of the shocks seen in other planetary nebula. Comparison between the Cycle 1 observation and a new Cycle 15 observation will (i) confirm the presence of the two components in the extended X-ray emission, (ii) measure the changes (spatial and spectral) in the components, and, (iii) provide a valuable trove of tests and inputs for shock conditions and hydrodynamical simulations. We rely on the unprecedented spatial resolution and soft-sensitivity of Chandra.

  13. The Planetary Virtual Observatory and Laboratory (PVOL) and its integration into the Virtual European Solar and Planetary Access (VESPA) (United States)

    Hueso, R.; Juaristi, J.; Legarreta, J.; Sánchez-Lavega, A.; Rojas, J. F.; Erard, S.; Cecconi, B.; Le Sidaner, Pierre


    Since 2003 the Planetary Virtual Observatory and Laboratory (PVOL) has been storing and serving publicly through its web site a large database of amateur observations of the Giant Planets (Hueso et al., 2010a). These images are used for scientific research of the atmospheric dynamics and cloud structure on these planets and constitute a powerful resource to address time variable phenomena in their atmospheres. Advances over the last decade in observation techniques, and a wider recognition by professional astronomers of the quality of amateur observations, have resulted in the need to upgrade this database. We here present major advances in the PVOL database, which has evolved into a full virtual planetary observatory encompassing also observations of Mercury, Venus, Mars, the Moon and the Galilean satellites. Besides the new objects, the images can be tagged and the database allows simple and complex searches over the data. The new web service: PVOL2 is available online in

  14. Transiting planetary system WASP-17 (Southworth+, 2012)

    DEFF Research Database (Denmark)

    Southworth, J.; Hinse, T. C.; Dominik, M.


    A light curve of four transits of the extrasolar planetary system WASP-17 is presented. The data were obtained using the Danish 1.5m telescope and DFOSC camera at ESO La Silla in 2012, with substantial telescope defocussing in order to improve the photometric precision of the observations...

  15. A second list of new planetary nebulae found on United Kingdom 1.2-m Schmidt telescope plates

    International Nuclear Information System (INIS)

    Longmore, A.J.; Tritton, S.B.


    Positions, photographs and descriptions are given for 11 new planetary nebulae discovered on United Kingdom Schmidt plates. One of the planetary nebulae has the highest galactic latitude of any known planetary, and may be associated with a magnitude 9 G5 star. Near-infrared (J,H,K) magnitudes are given for the star. (author)

  16. The Phobos Atlas and Geo-portal: geodesy and cartography approach for planetary exploration (United States)

    Karachevtseva, Irina; Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Zubarev, Anatoliy; Nadezhdina, Irina; Patraty, Vyacheslav; Konopikhin, Anatoliy; Garov, Andrey

    -spatial support of future missions to celestial bodies. Our technological solutions are open-source, which makes it possible to increase the functionality of the system, for example, using 3D-modeling. Phobos Geo-portal provides access to results of calculation of the gravity field parameters (Uchaev Dm. et al., 2013); catalog of craters and calculations of surface roughness (Karachevtseva et al., 2012); surface compositional studies based on HRSC color-channel data (Patsyn et al., 2012). Acknowledgments: The Phobos study was supported by RBRF under grant for “Geodesy, cartography and research satellites Phobos and Deimos” (Helmholtz-Russia Joint Research Group), grant agreement No. 11-05-91323. References: Basilevsky A.T., Lorenz C.A., Shingareva T.V., Head J.W., Ramsley K.R., Zubarev A.E. Surface Geology and Geomorphology of Phobos, 2014, Elsevier, Planetary and Space Science, in press. Karachevtseva I. P., Shingareva K. B., Konopikhin A. A., Mukabenova B. V., Nadezhdina I. E., Zubarev A. E., 2012. GIS mapping of Phobos on the results of data processing of remote sensing satellite Mars Express, Modern problems of remote sensing of the Earth from Space. Space Research Institute, Moscow, 304-311 (in Russian). Karachevtseva I.P., Oberst J., Zubarev A.E., Nadezhdina I.E., Kokhanov A.A., Garov A. S. Uchaev D.V., Uchaev Dm.V., Malinnikov V.A., Klimkin N.D. 2014, The Phobos information system. Elsevier, Planetary and Space Science. Kokhanov A.A., Basilevsky A.T., Karachevtseva I.P., Nadezhdina I.E., Zubarev A.E. Depth/Diameter Ratio and Inner Walls Steepness of Large Phobos Craters. The 44th Lunar and Planetary Science Conference, The Woodlands, Texas, USA, March 18-22, 2013. Abstracts [#2289]. Nadezhdina I.E., Zubarev A.E. Create reference coordinate network as a basis for studying the physical parameters of Phobos. 2014, Solar System Research, Moscow, Nauka, in press. Oberst J., Schwarz, G., Behnke, T., Hoffmann, H., Matz, K

  17. Advanced Calibration Source for Planetary and Earth Observing Imaging (United States)

    National Aeronautics and Space Administration — Planetary and Earth imaging requires radiometrically calibrated and stable imaging sensors.  Radiometric calibration enables the ability to remove or mitigate...

  18. Planetary Ions at Mercury: Unanswered Questions After MESSENGER (United States)

    Raines, J. M.


    We will discuss the key open questions relating to planetary ions, including the behavior of recently created photoions, the near absence of Ca+ / K+ in MESSENGER ion measurements, and the role of ion sputtering in the system.

  19. Cathodoluminescence and its application in the planetary sciences

    CERN Document Server

    Gucsik, Arnold


    This book provides an overview of cathodoluminescence properties of the planetary materials. It provides a unique introduction to cathodoluminescence which is widely used in the geosciences, because it is a non-destructive and "easy to use" method.

  20. Public Outreach with NASA Lunar and Planetary Mapping and Modeling (United States)

    Law, E.; Day, B.


    NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.

  1. Radiation protection for human interplanetary spaceflight and planetary surface operations

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.C. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States)]|[DLR Inst. of Aerospace Medicine, Cologne (Germany)]|[NASA, Goddard Space Flight Center, Greenbelt, MD (United States)


    Radiation protection issues are reviewed for five categories of radiation exposure during human missions to the moon and Mars: trapped radiation belts, galactic cosmic rays, solar flare particle events, planetary surface emissions, and on-board radiation sources. Relative hazards are dependent upon spacecraft and vehicle configurations, flight trajectories, human susceptibility, shielding effectiveness, monitoring and warning systems, and other factors. Crew cabins, interplanetary mission modules, surface habitats, planetary rovers, and extravehicular mobility units (spacesuits) provide various degrees of protection. Countermeasures that may be taken are reviewed relative to added complexity and risks that they could entail, with suggestions for future research and analysis.

  2. Photoionization modelling of planetary nebulae - II. Galactic bulge nebulae, a comparison with literature results

    NARCIS (Netherlands)

    van Hoof, PAM; Van de Steene, GC


    We have constructed photoionization models of five galactic bulge planetary nebulae using our automatic method, which enables a fully self-consistent determination of the physical parameters of a planetary nebula. The models are constrained using the spectrum, the IRAS and radio fluxes and the

  3. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS

    Directory of Open Access Journals (Sweden)

    Moshen Kuai


    Full Text Available For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN Adaptive Neuro-fuzzy Inference System (ANFIS in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively.

  4. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS. (United States)

    Kuai, Moshen; Cheng, Gang; Pang, Yusong; Li, Yong


    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively.

  5. McDonald Observatory Planetary Search - A high precision stellar radial velocity survey for other planetary systems (United States)

    Cochran, William D.; Hatzes, Artie P.


    The McDonald Observatory Planetary Search program surveyed a sample of 33 nearby F, G, and K stars since September 1987 to search for substellar companion objects. Measurements of stellar radial velocity variations to a precision of better than 10 m/s were performed as routine observations to detect Jovian planets in orbit around solar type stars. Results confirm the detection of a companion object to HD114762.

  6. Reassessment of planetary protection requirements for Venus missions (United States)

    Szostak, J.; Riemer, R.; Smith, D.; Rummel, J.

    In 2005 the US Space Studies Board SSB was asked by NASA to reexamine the planetary protection requirements for spacecraft missions to Venus In particular the SSB was tasked to 1 Assess the surface and atmospheric environments of Venus with respect to their ability to support the survival and growth of Earth-origin microbial contamination by future spacecraft missions and 2 Provide recommendations related to planetary protection issues associated with the return to Earth of samples from Venus The task group established by the SSB to address these issues assessed the known aspects of the present-day environment of Venus and the ability of Earth organisms to survive in the physical and chemical conditions found on the planet s surface or in the clouds in the planet s atmosphere As a result of its deliberations the task group found compelling evidence against there being significant dangers of forward or reverse biological contamination as a result of contact between a spacecraft and the surface of Venus or the clouds in the atmosphere of Venus regardless of the current unknowns The task group did however conclude that Venus is a body of interest relative to the process of chemical evolution and the origin of life As a result the task group endorses NASA s current policy of subjecting missions to Venus to the requirements imposed by planetary protection Category II rather than the less restrictive Category I recommended by COSPAR

  7. Highly Efficient Compact Laser for Planetary Exploration, Phase I (United States)

    National Aeronautics and Space Administration — In response to the solicitation for advances in critical components of instruments for enhanced scientific investigations on future planetary mission, Q-Peak...

  8. Control System for the NSTX Lithium Pellet Injector

    International Nuclear Information System (INIS)

    Sichta, P.; Dong, J.; Gernhardt, R.; Gettelfinger, G.; Kugel, H.


    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI

  9. Shock modification and chemistry and planetary geologic processes

    International Nuclear Information System (INIS)

    Boslough, M.S.


    This paper brings the rapid advances on shock processing of materials to the attention of Earth scientists, and to put these advances in the context of planetary geologic processes. Most of the recent research in this area has been directed at materials modification an synthesis, and the information gained has direct relevance to shock effects in nature. Research on various types of shock modification and chemistry in both naturally and experimentally shocked rocks and minerals is reviewed, and where appropriate their significance to planetary processes is indicated. As a case study, the surface of Mars is suggested as a place where conditions are optimal for shock processing to be a dominant factor. The various mechanisms of shock modification, activation, synthesis and decomposition are all proposed as major contributors to the evolution of chemical, mineralogical, and physical properties of the Martian regolith

  10. Planetary sciences and exploration: An Indian perspective

    Indian Academy of Sciences (India)

    Studies of impact craters records in the Indian shield have also been pursued and led to ... and emission of X-rays from planets as well as analytical modelling of martian ionosphere and ... Meteorite; moon; solar activity; solar system; martian atmosphere; planetary .... face layers of any meteorite reaching the earth, one.

  11. INPOP17a planetary ephemerides (United States)

    Viswanathan, V.; Fienga, A.; Gastineau, M.; Laskar, J.


    Based on the use of Cassini radio tracking data and the introduction of LLR data obtained at 1064 nm, a new planetary ephemerides INPOP17a was built including improvements for the planet orbits as well as for Moon ephemerides. Besides new asteroid masses, new parameters related to the inner structure of the Moon were obtained and presented here. Comparisons with values found in the literature are also discussed. LLR Residuals reach the centimeter level for the new INPOP17a ephemerides.

  12. Terahertz heterodyne technology for astronomy and planetary science

    NARCIS (Netherlands)

    Wild, Wolfgang


    Heterodyne detection techniques play an important role in high-resolution spectroscopy in astronomy and planetary science. In particular, heterodyne technology in the Terahertz range has rapidly evolved in recent years. Cryogenically cooled receivers approaching quantum-limited sensitivity have been

  13. Adaptive bio-inspired navigation for planetary exploration, Phase II (United States)

    National Aeronautics and Space Administration — Exploration of planetary environments with current robotic technologies relies on human control and power-hungry active sensors to perform even the most elementary...

  14. Planetary Atmosphere and Surfaces Chamber (PASC: A Platform to Address Various Challenges in Astrobiology

    Directory of Open Access Journals (Sweden)

    Eva Mateo-Marti


    Full Text Available The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres’ conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces

  15. In-situ Planetary Subsurface Imaging System (United States)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.


    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  16. Leachate characterization and identification of dominant pollutants using leachate pollution index for an uncontrolled landfill site

    Directory of Open Access Journals (Sweden)

    S. De


    Full Text Available Landfill leachates are potential threats for environmental degradation. This study was conducted to determine the leachate quality, to identify the dominant pollutants and to evaluate the leachate pollution potential of an active and closed dumping ground of an uncontrolled municipal solid waste landfill site in Kolkata, India using leachate pollution index. The results of the physico-chemical and biological analyses of leachate indicated that landfill site was in its methanogenic phase. Among the analysed leachate pollutants, TDS, BOD5, COD, TKN, NH3-N, Cl¯, TCB, Pb, and Hg surpassed the leachate discharge standards for inland surface water as specified by the municipal solid waste (Management and Handling Rules, 2013 for both the dumping grounds. Moreover the concentrations of total Cr and Zn also exceeded the leachate disposal standards for the active dumping ground. The leachate pollution potentialities of both the active and closed dumping grounds were comparable as the overall LPI obtained 34.02 and 31.80 respectively. The overall LPI, LPI organic (LPIor, LPI inorganic (LPIin and LPI heavy metals (LPIhm of both the dumping grounds largely exceeded the LPI and sub-LPI values for treated leachate before disposal to the inland surface water. In terms of the individual pollution rating, total coliform bacteria, TKN, NH3-N and Hg were identified as the dominant pollutants and major contributing factors for the leachate pollution potential.

  17. Leachate characterization and identification of dominant pollutants using leachate pollution index for an uncontrolled landfill site

    International Nuclear Information System (INIS)

    De, S.; Maiti, S. K.; Hazra, T.; Debsarkar, A.; Dutta, A.


    Landfill leachates are potential threats for environmental degradation. This study was conducted to determine the leachate quality, to identify the dominant pollutants and to evaluate the leachate pollution potential of an active and closed dumping ground of an uncontrolled municipal solid waste (MSW) landfill site in Kolkata, India using leachate pollution index. The results of the physico-chemical and biological analyses of leachate indicated that landfill site was in its methanogenic phase. Among the analysed leachate pollutants, TDS, BOD5, COD, TKN, NH3-N, Cl¯ , TCB, Pb, and Hg surpassed the leachate discharge standards for inland surface water as specified by the municipal solid waste (management and handling) rules, 2013 for both the dumping grounds. Moreover the concentrations of total Cr and Zn also exceeded the leachate disposal standards for the active dumping ground. The leachate pollution potentialities of both the active and closed dumping grounds were comparable as the overall LPI obtained 34.02 and 31.80 respectively. The overall LPI, LPI organic (LPIor), LPI inorganic (LPIin) and LPI heavy metals (LPIhm) of both the dumping grounds largely exceeded the LPI and sub-LPI values for treated leachate before disposal to the inland surface water. In terms of the individual pollution rating, total coliform bacteria, TKN, NH3-N and Hg were identified as the dominant pollutants and major contributing factors for the leachate pollution potential.

  18. Frequency analysis of a two-stage planetary gearbox using two different methodologies (United States)

    Feki, Nabih; Karray, Maha; Khabou, Mohamed Tawfik; Chaari, Fakher; Haddar, Mohamed


    This paper is focused on the characterization of the frequency content of vibration signals issued from a two-stage planetary gearbox. To achieve this goal, two different methodologies are adopted: the lumped-parameter modeling approach and the phenomenological modeling approach. The two methodologies aim to describe the complex vibrations generated by a two-stage planetary gearbox. The phenomenological model describes directly the vibrations as measured by a sensor fixed outside the fixed ring gear with respect to an inertial reference frame, while results from a lumped-parameter model are referenced with respect to a rotating frame and then transferred into an inertial reference frame. Two different case studies of the two-stage planetary gear are adopted to describe the vibration and the corresponding spectra using both models. Each case presents a specific geometry and a specific spectral structure.

  19. A review of the scientific rationale and methods used in the search for other planetary systems (United States)

    Black, D. C.


    Planetary systems appear to be one of the crucial links in the chain leading from simple molecules to living systems, particularly complex (intelligent?) living systems. Although there is currently no observational proof of the existence of any planetary system other than our own, techniques are now being developed which will permit a comprehensive search for other planetary systems. The scientific rationale for and methods used in such a search effort are reviewed here.

  20. Increasing Underrepresented Students in Geophysics and Planetary Science Through the Educational Internship in Physical Sciences (EIPS) (United States)

    Terrazas, S.; Olgin, J. G.; Enriquez, F.


    The number of underrepresented minorities pursuing STEM fields, specifically in the sciences, has declined in recent times. In response, the Educational Internship in Physical Sciences (EIPS), an undergraduate research internship program in collaboration with The University of Texas at El Paso (UTEP) Geological Sciences Department and El Paso Community College (EPCC), was created; providing a mentoring environment so that students can actively engage in science projects with professionals in their field so as to gain the maximum benefits in an academic setting. This past year, interns participated in planetary themed projects which exposed them to the basics of planetary geology, and worked on projects dealing with introductory digital image processing and synthesized data on two planetary bodies; Pluto and Enceladus respectively. Interns harnessed and built on what they have learned through these projects, and directly applied it in an academic environment in solar system astronomy classes at EPCC. Since the majority of interns are transfer students or alums from EPCC, they give a unique perspective and dimension of interaction; giving them an opportunity to personally guide and encourage current students there on available STEM opportunities. The goal was to have interns gain experience in planetary geology investigations and networking with professionals in the field; further promoting their interests and honing their abilities for future endeavors in planetary science. The efficacy of these activities toward getting interns to pursue STEM careers, enhance their education in planetary science, and teaching key concepts in planetary geophysics are demonstrated in this presentation.

  1. Multi-city assessment of lifetime pregnancy involvement among street youth, Ukraine. (United States)

    Zapata, Lauren B; Kissin, Dmitry M; Robbins, Cheryl L; Finnerty, Erin; Skipalska, Halyna; Yorick, Roman V; Jamieson, Denise J; Marchbanks, Polly A; Hillis, Susan D


    Although street youth are at increased risk of lifetime pregnancy involvement (LPI), or ever becoming or getting someone pregnant, no reports to date describe the epidemiology of LPI among systematically sampled street youth from multiple cities outside of North America. The purpose of our assessment was to describe the prevalence of and risk factors associated with LPI among street youth from three Ukrainian cities. We used modified time-location sampling to conduct a cross-sectional assessment in Odesa, Kyiv, and Donetsk that included citywide mapping of 91 public venue locations frequented by street youth, random selection of 74 sites, and interviewing all eligible and consenting street youth aged 15-24 years found at sampled sites (n = 929). Characteristics of youth and prevalence of LPI overall and by demographic, social, sexual, and substance use risk factors, were estimated separately for males and females. Adjusted odds ratios (AORs) were calculated with multivariable logistic regression and effect modification by gender was examined. Most (96.6%) eligible youth consented to participate. LPI was reported for 41.7% of females (93/223) and 23.5% of males (166/706). For females, LPI was significantly elevated and highest (>70%) among those initiating sexual activity at ≤12 years and for those reporting lifetime anal sex and exchanging sex for goods. For males, LPI was significantly elevated and highest (>40%) among those who reported lifetime anal sex and history of a sexually transmitted infection. Overall, risk factors associated with LPI were similar for females and males. Among the total sample (females and males combined), significant independent risk factors with AORs ≥2.5 included female gender, being aged 20-24 years, having five to six total adverse childhood experiences, initiating sex at age ≤12 or 13-14 years, lifetime anal sex, most recent sex act unprotected, and lifetime exchange of sex for goods. Among street youth with LPI (n = 259), the

  2. Keplerian planetary orbits in multidimensional Euclidian spaces ...

    African Journals Online (AJOL)

    Newton's laws of motion are three physical laws that together, laid the foundation for classical three dimensional mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. Kepler's laws of planetary motion are also three scientific laws describing the ...

  3. Developing a Web-Based Developmental Feedback Program (United States)


    instruments. Theory Behind and Development of the Feedback Instruments The Leadership Practices Inventory (LPI) has been used extensively to... Leadership Practices Inventory. To develop the original Leadership Practices Inventory (LPI), Posner and Kouzes (1988) asked managers to describe their...respondents were satisfied with the leadership provided by the manager , among other things. To demonstrate LPI validity, Posner and Kouzes hypothesized

  4. DPS Planetary Science Graduate Programs Database for Students and Advisors (United States)

    Klassen, David R.; Roman, Anthony; Meinke, Bonnie K.


    Planetary science is a topic that covers an extremely diverse set of disciplines; planetary scientists are typically housed in a departments spanning a wide range of disciplines. As such it is difficult for undergraduate students to find programs that will give them a degree and research experience in our field as Department of Planetary Science is a rare sighting, indeed. Not only can this overwhelm even the most determined student, it can even be difficult for many undergraduate advisers.Because of this, the DPS Education committee decided several years ago that it should have an online resource that could help undergraduate students find graduate programs that could lead to a PhD with a focus in planetary science. It began in 2013 as a static page of information and evolved from there to a database-driven web site. Visitors can browse the entire list of programs or create a subset listing based on several filters. The site should be of use not only to undergraduates looking for programs, but also for advisers looking to help their students decide on their future plans. We present here a walk-through of the basic features as well as some usage statistics from the collected web site analytics. We ask for community feedback on additional features to make the system more usable for them. We also call upon those mentoring and advising undergraduates to use this resource, and for program admission chairs to continue to review their entry and provide us with the most up-to-date information.The URL for our site is

  5. On Some General Regularities of Formation of the Planetary Systems

    Directory of Open Access Journals (Sweden)

    Belyakov A. V.


    Full Text Available J.Wheeler’s geometrodynamic concept has been used, in which space continuum is considered as a topologically non-unitary coherent surface admitting the existence of transitions of the input-output kind between distant regions of the space in an additional dimension. This model assumes the existence of closed structures (micro- and macro- contours formed due to the balance between main interactions: gravitational, electric, magnetic, and inertial forces. It is such macrocontours that have been demonstrated to form — independently of their material basis — the essential structure of objects at various levels of organization of matter. On the basis of this concept in this paper basic regularities acting during formation planetary systems have been obtained. The existence of two sharply different types of planetary systems has been determined. The dependencies linking the masses of the planets, the diameters of the planets, the orbital radii of the planet, and the mass of the central body have been deduced. The possibility of formation of Earth-like planets near brown dwarfs has been grounded. The minimum mass of the planet, which may arise in the planetary system, has been defined.

  6. Wake of a blunt planetary probe model under hypervelocity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kastell, D.; Hannemann, D.; Eitelberg, G. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Stroemungsmechanik


    The flow in the wake of a planetary probe under hypervelocity re-entry conditions has two idiosyncrasies not present in the conventional (cold) hypersonic flows: the strong dissociation reaction occurring behind the bow shock wave, and the freezing of the chemical reactions of the flow by the rapid expansion at the shoulder of the probe. The aim of the present study was to both understand the relative importance of the two phenomena upon the total heat and pressure loads on a planetary probe and its possible payload as well as to provide experimental validation data for those developing numerical codes for planetary probe design and analysis. For the experimental study an instrumented blunted 140 cone was tested in the High Enthalpy Shock Tunnel in Goettingen (HEG). The numerical calculations were performed with a Thin-Layer Navier-Stokes code which is capable of simulating chemical and thermal nonequilibrium flows. For the forebody loads the prediction methods were very reliable and capable of accounting for the kinetic effects caused by the high specific enthalpy of the flow. On the other side considerable discrepancies between experimental and numerical results for the wake of the model have been observed. (orig.)

  7. Wake of a blunt planetary probe model under hypervelocity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kastell, D.; Hannemann, D.; Eitelberg, G. (DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Stroemungsmechanik)


    The flow in the wake of a planetary probe under hypervelocity re-entry conditions has two idiosyncrasies not present in the conventional (cold) hypersonic flows: the strong dissociation reaction occurring behind the bow shock wave, and the freezing of the chemical reactions of the flow by the rapid expansion at the shoulder of the probe. The aim of the present study was to both understand the relative importance of the two phenomena upon the total heat and pressure loads on a planetary probe and its possible payload as well as to provide experimental validation data for those developing numerical codes for planetary probe design and analysis. For the experimental study an instrumented blunted 140 cone was tested in the High Enthalpy Shock Tunnel in Goettingen (HEG). The numerical calculations were performed with a Thin-Layer Navier-Stokes code which is capable of simulating chemical and thermal nonequilibrium flows. For the forebody loads the prediction methods were very reliable and capable of accounting for the kinetic effects caused by the high specific enthalpy of the flow. On the other side considerable discrepancies between experimental and numerical results for the wake of the model have been observed. (orig.)

  8. Planetary Mission Entry Vehicles Quick Reference Guide. Version 3.0 (United States)

    Davies, Carol; Arcadi, Marla


    This is Version 3.0 of the planetary mission entry vehicle document. Three new missions, Re-entry F, Hayabusa, and ARD have been added to t he previously published edition (Version 2.1). In addition, the Huyge ns mission has been significantly updated and some Apollo data correc ted. Due to the changing nature of planetary vehicles during the desi gn, manufacture and mission phases, and to the variables involved in measurement and computation, please be aware that the data provided h erein cannot be guaranteed. Contact Carol Davies at cdavies@mail.arc. to correct or update the current data, or to suggest other missions.

  9. Continental Ice Sheets and the Planetary Radiation Budget

    NARCIS (Netherlands)

    Oerlemans, J.


    The interaction between continental ice sheets and the planetary radiation budget is potentially important in climate-sensitivity studies. A simple ice-sheet model incorporated in an energybalance climate model provides a tool for studying this interaction in a quantitative way. Experiments in which

  10. Risk to civilization: A planetary science perspective

    International Nuclear Information System (INIS)

    Chapman, C.R.; Morrison, D.


    One of the most profound changes in our perspective of the solar system resulting from the first quarter century of planetary exploration by spacecraft is the recognition that planets, including Earth, were bombarded by cosmic projectiles for 4.5 aeons and continue to be bombarded today. Although the planetary cratering rate is much lower now than it was during the first 0.5 aeons, sizeable Earth-approaching asteroids and comets continue to hit the Earth at a rate that poses a finite risk to civilization. The evolution of this planetary perspective on impact cratering is gradual over the last two decades. It took explorations of Mars and Mercury by early Mariner spacecraft and of the outer solar system by the Voyagers to reveal the significance of asteroidal and cometary impacts in shaping the morphologies and even chemical compositions of the planets. An unsettling implication of the new perspective is addressed: the risk to human civilization. Serious scientific attention was given to this issue in July 1981 at a NASA-sponsored Spacewatch Workshop in Snowmass, Colorado. The basic conclusion of the 1981 NASA sponsored workshop still stands: the risk that civilization might be destroyed by impact with an as-yet-undiscovered asteroid or comet exceeds risk levels that are sometimes deemed unacceptable by modern societies in other contexts. Yet these impact risks have gone almost undiscussed and undebated. The tentative quantitative assessment by some members of the 1981 workshop was that each year, civilization is threatened with destruction with a probability of about 1 in 100,000. The enormous spread in risk levels deemed by the public to be at the threshold of acceptability derives from a host of psychological factors that were widely discussed in the risk assessment literature

  11. Circumstellar Gas in Young Planetary Debris Disks (United States)

    Roberge, A.

    Circumstellar (CS) disks orbiting young stars fall into two categories: primordial disks, composed of unprocessed interstellar dust and gas, and debris disks, produced by the destruction of solid planetary bodies. In the first class, the most abundant gas is H_2; in the second, it appears that the H_2 gas has disappeared, possibly through incorporation into gas giant planets. The lifetime of H_2 gas in a CS disk is therefore of great importance, as it dictates the timescale for the formation of giant planets. FUSE observations of H_2 in CS disk systems have shown that FUV absorption spectroscopy may sensitively probe for small amounts of gas along the line of sight to the star. Most importantly, the FUSE non-detection of H_2 gas in the Beta Pictoris disk suggests that the primordial gas lifetime is less than about 12 Myr, and that gas giant planets must form very quickly. However, this suggestion is based on one system, and needs to be tested in additional systems with a range of ages, especially since there are indications that age is not the only factor in the evolution of a CS disk. We propose for FUSE observations of 3 additional debris disk systems, Fomalhaut, HD3003, and HD2884. Fomalhaut is an intermediate age debris disk, one of the Fabulous Four CS disks first discovered in 1984. The other two disks are younger, with ages similar to that of Beta Pic. All three stars are brighter in the FUV than Beta Pic, permitting us to sensitively probe for traces of H_2 gas. We will also measure the amount of secondary atomic gas produced from planetary bodies in these disks, in an effort to understand the entire evolution of CS gas in young planetary systems.

  12. Allowed planetary orbits in the solar system

    International Nuclear Information System (INIS)

    Pintr, P.; Perinova, V.; Luks, A.


    A new law of the Titius-Bode type for planetary distances from the Sun is proposed. These distances for each planet are determined using appropriate nodal circle of a vibrating membrane. Regularities in the distribution of bodies in the solar system and in the systems of giant planets and some exoplanets are pointed out

  13. Galileo Avionica's technologies and instruments for planetary exploration. (United States)

    Battistelli, E; Falciani, P; Magnani, P; Midollini, B; Preti, G; Re, E


    Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies: Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples. The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities devoted to investigate the body (planet, asteroid or comet) both remotely and by in situ measurements. The paper is an overview of some instruments for remote sensing and in situ planetary exploration already developed or under study by Galileo Avionica Space & Electro-Optics B.U. (in the following shortened as Galileo Avionica) for both the Italian Space Agency (ASI) and for the European Space Agency (ESA). Main technologies and specifications are outlined; for more detailed information please refer to Galileo Avionica's web-site at: .

  14. Planetary Nebulae and How to Observe Them

    CERN Document Server

    Griffiths, Martin


    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what is it they are observing. This is the basis of the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Planetary Nebulae and How to Observe Them is intended for amateur astronomers who want to concentrate on one of the most beautiful classes of astronomical objects in the sky. This book will help the observer to see these celestial phenomena using telescopes of various apertures. As a Sun-like star reaches the end of its life, its hydrogen fuel starts to run out. It collapses until helium nuclei begin nuclear fusion, whereupon the star begins to pulsate, each pulsation throwing off a layer of the star's atmosphere. Eventually the atmosphere has all been ejected as an expanding cloud of gas, the star's core is exposed and ultraviolet photons cause the shell of gas to glow brilliantly - that's planetary ...

  15. The problem of scale in planetary geomorphology (United States)

    Rossbacher, L. A.


    Recent planetary exploration has shown that specific landforms exhibit a significant range in size between planets. Similar features on Earth and Mars offer some of the best examples of this scale difference. The difference in heights of volcanic features between the two planets has been cited often; the Martian volcano Olympus Mons stands approximately 26 km high, but Mauna Loa rises only 11 km above the Pacific Ocean floor. Polygonally fractured ground in the northern plains of Mars has diameters up to 20 km across; the largest terrestrial polygons are only 500 m in diameter. Mars also has landslides, aeolian features, and apparent rift valleys larger than any known on Earth. No single factor can explain the variations in landform size between planets. Controls on variation on Earth, related to climate, lithology, or elevation, have seldom been considered in detail. The size differences between features on Earth and other planets seem to be caused by a complex group of interacting relationships. The major planetary parameters that may affect landform size are discussed.

  16. Selecting and implementing scientific objectives. [for Voyager 1 and 2 planetary encounters (United States)

    Miner, E. D.; Stembridge, C. H.; Doms, P. E.


    The procedures used to select and implement scientific objectives for the Voyager 1 and 2 planetary encounters are described. Attention is given to the scientific tradeoffs and engineering considerations must be addressed at various stages in the mission planning process, including: the limitations of ground and spacecraft communications systems, ageing of instruments in flight, and instrument calibration over long distances. The contribution of planetary science workshops to the definition of scientific objectives for deep space missions is emphasized.

  17. Identification of faint central stars in extended, low-surface-brightness planetary nebulae

    International Nuclear Information System (INIS)

    Kwitter, K.B.; Lydon, T.J.; Jacoby, G.H.


    As part of a larger program to study the properties of planetary nebula central stars, a search for faint central stars in extended, low-surface-brightness planetary nebulae using CCD imaging is performed. Of 25 target nebulae, central star candidates have been identified in 17, with certainties ranging from extremely probable to possible. Observed V values in the central star candidates extend to fainter than 23 mag. The identifications are presented along with the resulting photometric measurements. 24 references

  18. Spatio-kinematic modelling: Testing the link between planetary nebulae and close binaries


    Jones, David; Tyndall, Amy A.; Huckvale, Leo; Prouse, Barnabas; Lloyd, Myfanwy


    It is widely believed that central star binarity plays an important role in the formation and evolution of aspherical planetary nebulae, however observational support for this hypothesis is lacking. Here, we present the most recent results of a continuing programme to model the morphologies of all planetary nebulae known to host a close binary central star. Initially, this programme allows us to compare the inclination of the nebular symmetry axis to that of the binary plane, testing the theo...

  19. CRL 2688: A post-carbon-star object and probable planetary nebula progenitor

    International Nuclear Information System (INIS)

    Zuckerman, B.; Gilra, D.P.; Turner, B.E.; Morris, M.; Palmer, P.


    Millimeter-wavelength emission is observed toward CRL 2688 from H 12 CN, H 13 CN, CS, and HC 3 N. The similarity of this emission and that from the molecular envelope of the carbon star IRC+10216 establishes, beyond a reasonable doubt, that CRL 2688 is a post--carbon-star object. It appears probable that both of these objects will evolve into planetary nebulae. An evolutionary sequence leading from carbon stars to planetary nebulae is outlined

  20. Development of a Planetary Web GIS at the ``Photothèque Planétaire'' in Orsay (United States)

    Marmo, C.


    The “Photothèque Planétaire d'Orsay” belongs to the Regional Planetary Image Facilities (RPIF) network started by NASA in 1984. The original purpose of the RPIF was mainly to provide easy access to data from US space missions throughout the world. The “Photothèque” itself specializes in planetary data processing and distribution for research and public outreach. Planetary data are heterogeneous, and combining different observations is particularly challenging, especially if they belong to different data-sets. A common description framework is needed, similar to the existing Geographical Information Systems (GIS) that have been developed for manipulating Earth data. In their present state, GIS software and standards cannot directly be applied to other planets because they still lack flexibility in managing coordinate systems. Yet, the GIS framework serves as an excellent starting point for the implementation of a Virtual Observatory for Planetary Sciences, provided it is made more generic and inter-operable. The “Photothèque Planétaire d'Orsay” has produced some planetary GIS examples using historical and public data-sets. Our main project is a Web-based visualization system for planetary data, which features direct point-and-click access to quantitative measurements. Thanks to being compatible with all recent web browsers, our interface can also be used for public outreach and to make data accessible for education and training.