WorldWideScience

Sample records for planetary formation geodynamics

  1. Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    CERN Document Server

    Herndon, J M

    2006-01-01

    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound imp...

  2. Planetary Sciences, Geodynamics, Impacts, Mass Extinctions, and Evolution: Developments and Interconnections

    Directory of Open Access Journals (Sweden)

    Jaime Urrutia-Fucugauchi

    2016-01-01

    Full Text Available Research frontiers in geophysics are being expanded, with development of new fields resulting from technological advances such as the Earth observation satellite network, global positioning system, high pressure-temperature physics, tomographic methods, and big data computing. Planetary missions and enhanced exoplanets detection capabilities, with discovery of a wide range of exoplanets and multiple systems, have renewed attention to models of planetary system formation and planet’s characteristics, Earth’s interior, and geodynamics, highlighting the need to better understand the Earth system, processes, and spatio-temporal scales. Here we review the emerging interconnections resulting from advances in planetary sciences, geodynamics, high pressure-temperature physics, meteorite impacts, and mass extinctions.

  3. The Role of Carbon in Extrasolar Planetary Geodynamics and Habitability

    CERN Document Server

    Unterborn, Cayman T; Pigott, Jeffrey S; Reaman, Daniel R; Panero, Wendy R

    2013-01-01

    The proportions of oxygen, carbon and major rock-forming elements (e.g. Mg, Fe, Si) determine a planet's dominant mineralogy. Variation in a planet's mineralogy subsequently affects planetary mantle dynamics as well as any deep water or carbon cycle. Through thermodynamic models and high pressure diamond anvil cell experiments, we demonstrate the oxidation potential of C is above that of Fe at all pressures and temperatures indicative of 0.1 - 2 Earth-mass planets. This means that for a planet with (Mg+2Si+Fe+2C)/O > 1, excess C in the mantle will in the form of diamond. We model the general dynamic state of planets as a function of interior temperature, carbon composition, and size, showing that above a critical threshold of $\\sim$3 atom% C, limited to no mantle convection will be present assuming an Earth-like geotherm. We assert then that in the C-(Mg+2Si+Fe)-O system, only a very small compositional range produce habitable planets. Planets outside of this habitable range will be dynamically sluggish or st...

  4. The role of carbon in extrasolar planetary geodynamics and habitability

    Energy Technology Data Exchange (ETDEWEB)

    Unterborn, Cayman T.; Kabbes, Jason E.; Pigott, Jeffrey S.; Panero, Wendy R. [School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH 43202 (United States); Reaman, Daniel M., E-mail: unterborn.1@buckeyemail.osu.edu [US Army Research Laboratory, RDRL-WML-B (Bldg. 390), Aberdeen Proving Ground, MD 21005 (United States)

    2014-10-01

    The proportions of oxygen, carbon, and major rock-forming elements (e.g., Mg, Fe, Si) determine a planet's dominant mineralogy. Variation in a planet's mineralogy subsequently affects planetary mantle dynamics as well as any deep water or carbon cycle. Through thermodynamic models and high pressure diamond anvil cell experiments, we demonstrate that the oxidation potential of C is above that of Fe at all pressures and temperatures, indicative of 0.1-2 Earth-mass planets. This means that for a planet with (Mg+2Si+Fe+2C)/O > 1, excess C in the mantle will be in the form of diamond. We find that an increase in C, and thus diamond, concentration slows convection relative to a silicate-dominated planet, due to diamond's ∼3 order of magnitude increase in both viscosity and thermal conductivity. We assert then that in the C-(Mg+2Si+Fe)-O system, there is a compositional range in which a planet can be habitable. Planets outside of this range will be dynamically sluggish or stagnant, thus having limited carbon or water cycles leading to surface conditions inhospitable to life as we know it.

  5. Formation around planetary displaced orbit

    Institute of Scientific and Technical Information of China (English)

    GONG Sheng-ping; LI Jun-feng; BAOYIN He-xi

    2007-01-01

    The paper investigates the relative motion around the planetary displaced orbit. Several kinds of displaced orbits for geocentric and martian cases were discussed. First, the relative motion was linearized around the displaced orbits. Then, two seminatural control laws were investigated for each kind of orbit and the stable regions were obtained for each case. One of the two control laws is the passive control law that is very attractive for engineering practice. However, the two control laws are not very suitable for the Martian mission. Another special semi-natural control law is designed based on the requirement of the Martian mission. The results show that large stable regions exist for the control law.

  6. Probing Planetary Formation and Evolution Through Occultations

    Science.gov (United States)

    Rodriguez, Joseph E.; KELT Team

    2016-01-01

    The circumstellar environments of young stellar objects (YSOs) involve complex dynamical interactions between dust and gas that directly influence the formation of planets. However, our understanding of the evolution from the material in the circumstellar disk to the thousands of planetary systems discovered to date, is limited. One means to better constrain the size, mass, and composition of this planet-forming material is to observe a YSO being eclipsed by its circumstellar disk. Through this dissertation project, we are discovering and characterizing both disk eclipsing systems and exoplanets using the Kilodegree Extremely Little Telescope (KELT) project. KELT is a photometric survey for transiting planets orbiting bright stars (8 TYC 2505-672-1, the latter now representing the longest-period eclipsing object known (period ~ 69 years). I will describe our results for planet atmosphere characterization and for protoplanetary disk structure and composition, and discuss how to search for these kinds of systems in future surveys such as LSST.

  7. Debris disc formation induced by planetary growth

    CERN Document Server

    Kobayashi, Hiroshi

    2014-01-01

    Several hundred stars older than 10 million years have been observed to have infrared excesses. These observations are explained by dust grains formed by the collisional fragmentation of hidden planetesimals. Such dusty planetesimal discs are known as debris discs. In a dynamically cold planetesimal disc, collisional coagulation of planetesimals produces planetary embryos which then stir the surrounding leftover planetesimals. Thus, the collisional fragmentation of planetesimals that results from planet formation forms a debris disc. We aim to determine the properties of the underlying planetesimals in debris discs by numerically modelling the coagulation and fragmentation of planetesimal populations. The brightness and temporal evolution of debris discs depend on the radial distribution of planetesimal discs, the location of their inner and outer edges, their total mass, and the size of planetesimals in the disc. We find that a radially narrow planetesimal disc is most likely to result in a debris disc that ...

  8. Metamorphic pattern of the Cretaceous Celica Formation, SW Ecuador, and its geodynamic implications

    Science.gov (United States)

    Aguirre, Luis

    1992-04-01

    The volcanic rocks of the Cretaceous Celica Formation of southern Ecuador are affected by a weak although widespread alteration. The chemical study of the secondary chemical phases present in andesitic and basaltic lava flows reveals that this alteration corresponds to very low-grade metamorphism comprising the zeolite and the prehnite-pumpellyite facies. Main features of this metamorphism are: weak lithostatic pressure, moderate to steep thermal gradient, high ƒ O2, low value of the seawater/rock ratio and total absence of deformation. These characteristics are typically present in other volcanic suites of similar age and composition along the Andes and correspond to the pattern of metamorphism developed in extensional settings (diastathermal metamorphism) linked to various degrees of thinning of the continental crust. Based on this metamorphic pattern, a geodynamic model is proposed in which the Celica Formation is interpreted as an ensialic, aborted, marginal basin developed on strongly attenuated continental crust at the border of the South American plate. The relationship between the Ecuadorian and Colombian volcanic suites of Cretaceous age present along the Western Cordillera is discussed in the light of the model suggested.

  9. Architectures of planetary systems and implications for their formation

    Science.gov (United States)

    Ford, Eric B.

    2014-01-01

    Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA’s Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade. PMID:24778212

  10. The effect of carbon monoxide on planetary haze formation

    Energy Technology Data Exchange (ETDEWEB)

    Hörst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO (United States)

    2014-01-20

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N{sub 2}/CH{sub 4} to a variety of energy sources. However, many N{sub 2}/CH{sub 4} atmospheres in both our solar system and extrasolar planetary systems also contain carbon monoxide (CO). We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on the formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  11. The Effect of CO on Planetary Haze Formation

    CERN Document Server

    Hörst, Sarah M

    2014-01-01

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N$_{2}$/CH$_{4}$ to a variety of energy sources. However, many N$_{2}$/CH$_{4}$ atmospheres in both our solar system and extrasolar planetary systems also contain CO. We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  12. Local space density and formation rate of planetary nebulae

    NARCIS (Netherlands)

    Pottasch, [No Value

    1996-01-01

    Individual distances of 50 nearby planetary nebulae are determined using a variety of methods, but excluding statistical methods or distance scales. These distances, together with a discussion of the sample completeness, are used to determine local PN formation rate. Together with the brightness of

  13. Mechanistic Studies of Planetary Haze Formation

    Science.gov (United States)

    Hicks, Raea Kay

    2015-10-01

    Planetary atmospheres can be thought of as global-scale reactors capable of synthesizing large, complex molecules from small gases such as methane (CH4), carbon dioxide (CO2), and nitrogen (N2). The atmosphere of Titan, the largest moon of Saturn covered by a thick organic haze, contains trace amounts (2%) of CH4 in an atmosphere of N2 at a surface pressure of 1.5 bar. This is similar to the Earth's Archaean atmosphere, which possibly contained trace amounts of CH4 and CO2 (˜1,000 ppmv each) in an N2 -dominant atmosphere before the rise of biogenic oxygen. Laboratory simulations of the atmospheric chemistry on Titan and the early Earth have shown that these atmospheres are capable of generating biologically-relevant molecules that condense to form particles which can then settle to the surface of the planetary body, possibly providing the molecules required for the emergence of life. The work presented here examines the mechanisms by which FUV photochemistry initiates incorporation of N atoms into Titan aerosol analogs, and C atoms into early Earth aerosol analogs. Results from the Aerosol Collector and Pyrolyser onboard the Huygens lander reveal the presence of nitrogen in Titan's aerosols. This nitrogen incorporation is thought to occur primarily by extreme-UV photons or energetic electrons. However, recent results from our laboratory indicate a surprising amount of nitrogen incorporation- up to 16% by mass- in Titan aerosol analogs produced by photochemistry initiated by FUV irradiation of CH4/N 2 mixtures. The termolecular reaction CH+N2 +M → HCN2 has been proposed to account for this observation. Here, we test this hypothesis by using a high- resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the mass loading and chemical composition of aerosol produced at a range of pressures from roughly 0.1 to 1 atm. We report a 10-fold increase in aerosol mass loading across the range of pressures studied, indicating that the mechanism

  14. Chondrule Formation via Impact Jetting Triggered by Planetary Accretion

    CERN Document Server

    Hasegawa, Yasuhiro; Matsumoto, Yuji; Oshino, Shoichi

    2015-01-01

    Chondrules are one of the most primitive elements that can serve as a fundamental clue as to the origin of our Solar system. We investigate a formation scenario of chondrules that involves planetesimal collisions and the resultant impact jetting. Planetesimal collisions are the main agent to regulate planetary accretion that corresponds to the formation of terrestrial planets and cores of gas giants. The key component of this scenario is that ejected materials can melt when the impact velocity between colliding planetesimals exceeds about 2.5 km s$^{-1}$. The previous simulations show that the process is efficient enough to reproduce the primordial abundance of chondrules. We examine this scenario carefully by performing semi-analytical calculations that are developed based on the results of direct $N$-body simulations. As found by the previous work, we confirm that planetesimal collisions that occur during planetary accretion can play an important role in forming chondrules. This arises because protoplanet-p...

  15. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    CERN Document Server

    Mann, Christopher R; Morris, Melissa M

    2016-01-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo's eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adia...

  16. Geodetic implications on block formation and geodynamic domains in the South Shetland Islands, Antarctic Peninsula

    Science.gov (United States)

    Berrocoso, M.; Fernández-Ros, A.; Prates, G.; García, A.; Kraus, S.

    2016-01-01

    The South Shetland Islands archipelago is dynamically complex due to its tectonic surroundings. Most islands are part of a formerly active volcanic arc, although Deception, Penguin and Bridgeman Islands, as well as several submarine volcanoes, are characterized by active back-arc volcanism. Geodetic benchmarks were deployed and the movement of the lithosphere to which they were fixed measured to provide geodynamic insight for the South Shetland Islands, Bransfield Basin and Antarctic Peninsula area based on surface deformation. These benchmarks' data add spatial and temporal coverage to previous results. The results reveal two different geodynamic patterns, each confined to a distinct part of the South Shetland Islands archipelago. The inferred absolute horizontal velocity vectors for the benchmarks in the northeastern part of the archipelago are consistent with the opening of the Bransfield Basin, while benchmark vectors in the southwestern part of the archipelago are similar to those of the benchmarks on the Antarctic Peninsula. In between, Snow, Deception and Livingston Islands represent a transition zone. In this area, the horizontal velocity vectors relative to the Antarctic plate shift northeastwards from N to NW. Furthermore, the South Shetland Islands benchmarks, except for that at Gibbs (Elephant) Islands, indicate subsidence, which might be a consequence of the slab roll-back at the South Shetland Trench. In contrast, the uplift revealed by the Antarctic Peninsula benchmarks suggests glacial isostatic adjustment after the Larson B ice-shelf breakup.

  17. On Some General Regularities of Formation of the Planetary Systems

    Directory of Open Access Journals (Sweden)

    Belyakov A. V.

    2014-01-01

    Full Text Available J.Wheeler’s geometrodynamic concept has been used, in which space continuum is considered as a topologically non-unitary coherent surface admitting the existence of transitions of the input-output kind between distant regions of the space in an additional dimension. This model assumes the existence of closed structures (micro- and macro- contours formed due to the balance between main interactions: gravitational, electric, magnetic, and inertial forces. It is such macrocontours that have been demonstrated to form — independently of their material basis — the essential structure of objects at various levels of organization of matter. On the basis of this concept in this paper basic regularities acting during formation planetary systems have been obtained. The existence of two sharply different types of planetary systems has been determined. The dependencies linking the masses of the planets, the diameters of the planets, the orbital radii of the planet, and the mass of the central body have been deduced. The possibility of formation of Earth-like planets near brown dwarfs has been grounded. The minimum mass of the planet, which may arise in the planetary system, has been defined.

  18. Architectures of Planetary Systems and Implications for their Formation

    CERN Document Server

    Ford, Eric B

    2014-01-01

    Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely-spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variatio...

  19. Planetary Systems Detection, Formation and Habitability of Extrasolar Planets

    CERN Document Server

    Ollivier, Marc; Casoli, Fabienne; Encrenaz, Thérèse; Selsis, Franck

    2009-01-01

    Over the past ten years, the discovery of extrasolar planets has opened a new field of astronomy, and this area of research is rapidly growing, from both the observational and theoretical point of view. The presence of many giant exoplanets in the close vicinity of their star shows that these newly discovered planetary systems are very different from the solar system. New theoretical models are being developed in order to understand their formation scenarios, and new observational methods are being implemented to increase the sensitivity of exoplanet detections. In the present book, the authors address the question of planetary systems from all aspects. Starting from the facts (the detection of more than 300 extraterrestrial planets), they first describe the various methods used for these discoveries and propose a synthetic analysis of their global properties. They then consider the observations of young stars and circumstellar disks and address the case of the solar system as a specific example, different fr...

  20. Siderophile Elements in Tracing Planetary Formation and Evolution

    Science.gov (United States)

    Walker, R. J.

    2016-12-01

    The siderophile elements have many applications in the Earth and planetary sciences. In primitive meteorites, differences in the relative abundances of these elements are likely due to both nebular and parent body processes. In addition, some siderophile elements are also characterized by isotopically distinctive nucleosynthetic signatures. Thus, the relative abundances and isotopic compositions of these elements can be used to trace the genetics of planetary building blocks. Although the siderophile elements are largely concentrated in the metallic cores of differentiated planetary bodies, their absolute and relative abundances, as well as their isotopic compositions can also reveal important information regarding conditions of core formation and subsequent late stages of accretion. For example, the chondritic 187Os/188Os and 186Os/188Os estimated for the bulk silicate Earth require long-term, precisely chondritic Re/Os and Pt/Os, chemical characteristics that are seemingly most easily imposed by late accretion. The lithophile-siderophile nature of the radiogenic 182Hf-182W system allows it to be used to place chronologic constraints on planetary core formation. The differing incompatibilities of the two elements in the silicate portions of planets also means that the system can also be used to study early differentiation processes and efficiency of subsequent convective mixing. Positive and negative 182W anomalies present in rocks throughout the terrestrial rock record indicate the long-term survivability of mantle domains formed within the first 30 to 100 Ma of Solar System history. When matched with other short- and long-lived isotope systems, tungsten isotopes can potentially be used to identify mantle domains created by early magma ocean processes, as well as possible core-mantle interactions.

  1. PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Christopher R.; Boley, Aaron C. [Department of Physics and Astronomy University of British Columbia Vancouver, BC V6T 1Z1 (Canada); Morris, Melissa A. [Physics Department State University of New York at Cortland Cortland, NY 13045 (United States)

    2016-02-20

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  2. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    Science.gov (United States)

    Mann, Christopher R.; Boley, Aaron C.; Morris, Melissa A.

    2016-02-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s-1 are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  3. Formation, Orbital and Internal Evolutions of Young Planetary Systems

    CERN Document Server

    Baruteau, Clément; Mordasini, Christoph; Mollière, Paul

    2016-01-01

    The growing body of observational data on extrasolar planets and protoplanetary disks has stimulated intense research on planet formation and evolution in the past few years. The extremely diverse, sometimes unexpected physical and orbital characteristics of exoplanets lead to frequent updates on the mainstream scenarios for planet formation and evolution, but also to the exploration of alternative avenues. The aim of this review is to bring together classical pictures and new ideas on the formation, orbital and internal evolutions of planets, highlighting the key role of the protoplanetary disk in the various parts of the theory. We begin by briefly reviewing the conventional mechanism of core accretion by the growth of planetesimals, and discuss a relatively recent model of core growth through the accretion of pebbles. We review the basic physics of planet-disk interactions, recent progress in this area, and discuss their role in observed planetary systems. We address the most important effects of planets i...

  4. Formation of fullerenes in H-containing Planetary Nebulae

    CERN Document Server

    Garcia-Hernandez, D A; Garcia-Lario, P; Stanghellini, L; Villaver, E; Shaw, R A; Szczerba, R; Perea-Calderon, J V

    2010-01-01

    Hydrogen depleted environments are considered an essential requirement for the formation of fullerenes. The recent detection of C60 and C70 fullerenes in what was incorrectly interpreted as a hydrogen-poor Planetary Nebula (PN) seemed to confirm this picture. Here, we present strong evidence that challenges the current paradigm regarding fullerene formation, showing that it can take place in circumstellar environments containing hydrogen. We report the simultaneous detection of Polycyclic Aromatic Hydrocarbons (PAHs) and fullerenes towards C-rich and H-containing PNe belonging to environments with very different chemical histories such as our own Galaxy and the Small Magellanic Cloud. We suggest that PAHs and fullerenes may be formed by the photochemical processing of hydrogenated amorphous carbon. These observations have profound implications on our current understanding of the chemistry of large organic molecules as well as the chemical processing in space.

  5. Simple scaling relations in geodynamics:the role of pressure in mantle convection and plume formation

    Institute of Scientific and Technical Information of China (English)

    Don L. Anderson

    2004-01-01

    Scaling relations are important in extrapolating laboratory experiments to the Earth's mantle. In planetary interiors, compression becomes an important parameter and it is useful to explore scalings that involve volume. I use simple volume scaling relations that allow one to extrapolate laboratory experiments and upper mantle behavior, in a thermodynamically self-consistent way, to predict lower mantle behavior. The relations are similar to the quasi- harmonic approximation. Slabs and plates have characteristic dimensions of hundreds of kilometers and time constants of 100 million years, but the volume scalings predict order of magnitude higher values in the deep mantle. The scaling relations imply that the deep mantle is a sluggish system with ancient features. They imply irreversible chemical stratification and do not favor the plume hypothesis.

  6. Formation, Orbital and Internal Evolutions of Young Planetary Systems

    Science.gov (United States)

    Baruteau, Clément; Bai, Xuening; Mordasini, Christoph; Mollière, Paul

    2016-12-01

    The growing body of observational data on extrasolar planets and protoplanetary disks has stimulated intense research on planet formation and evolution in the past few years. The extremely diverse, sometimes unexpected physical and orbital characteristics of exoplanets lead to frequent updates on the mainstream scenarios for planet formation and evolution, but also to the exploration of alternative avenues. The aim of this review is to bring together classical pictures and new ideas on the formation, orbital and internal evolutions of planets, highlighting the key role of the protoplanetary disk in the various parts of the theory. We begin by briefly reviewing the conventional mechanism of core accretion by the growth of planetesimals, and discuss a relatively recent model of core growth through the accretion of pebbles. We review the basic physics of planet-disk interactions, recent progress in this area, and discuss their role in observed planetary systems. We address the most important effects of planets internal evolution, like cooling and contraction, the mass-luminosity relation, and the bulk composition expressed in the mass-radius and mass-mean density relations.

  7. Planet formation with envelope enrichment: new insights on planetary diversity

    CERN Document Server

    Venturini, Julia; Benz, Willy

    2016-01-01

    We compute, for the first time, self-consistent models of planet growth including the effect of envelope enrichment. The change of envelope metallicity is assumed to be the result of planetesimal disruption or icy pebble sublimation. We solve internal structure equations taking into account global energy conservation for the envelope to compute in-situ planetary growth. We consider different opacities and equations of state suited for a wide range of metallicities. We find that envelope enrichment speeds up the formation of gas giants. It also explains naturally the formation of low and intermediate mass objects with large fractions of H-He (~ 20 - 30 % in mass). High opacity models explain well the metallicity of the giant planets of the solar system, whereas low opacity models are suited for forming small mass objects with thick H-He envelopes and gas giants with sub-solar envelope metallicities. We find good agreement between our models and the estimated water abundance for WASP-43b. For HD 189733b, HD 209...

  8. Planetary Systems and the Formation of Habitable Planets

    CERN Document Server

    Dvorak, Rudolf; Burger, Christoph; Schäfer, Christoph; Speith, Roland

    2015-01-01

    As part of a national scientific network 'Pathways to Habitability' the formation of planets and the delivery of water onto these planets is a key question as water is essential for the development of life. In the first part of the paper we summarize the state of the art of planet formation - which is still under debate in the astronomical community - before we show our results on this topic. The outcome of our numerical simulations depends a lot on the choice of the initial distribution of planetesimals and planetary embryos after gas disappeared in the protoplanetary disk. We also take into account that some of these planetesimals of sizes in the order of the mass of the Moon already contained water; the quantity depends on the distance from the Sun - close-by bodies are dry, but starting from a distance of about 2 AU they can contain substantial amounts of water. We assume that the gas giants and terrestrial planets are already formed when we check the collisions of the small bodies containing water (in th...

  9. PAH Formation in O-rich Planetary Nebulae

    CERN Document Server

    Guzman-Ramirez, L; Jones, D; Zijlstra, A A; Gesicki, K

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) have been observed in O-rich planetary nebulae towards the Galactic Bulge. This combination of oxygen-rich and carbon-rich material, known as dual-dust or mixed chemistry, is not expected to be seen around such objects. We recently proposed that PAHs could be formed from the photodissociation of CO in dense tori. In this work, using VISIR/VLT, we spatially resolved the emission of the PAH bands and ionised emission from the [SIV] line, confirming the presence of dense central tori in all the observed O-rich objects. Furthermore, we show that for most of the objects, PAHs are located at the outer edge of these dense/compact tori, while the ionised material is mostly present in the inner parts of these tori, consistent with our hypothesis for the formation of PAHs in these systems. The presence of a dense torus has been strongly associated with the action of a central binary star and, as such, the rich chemistry seen in these regions may also be related to the formation o...

  10. Dust traps as planetary birthsites: basics and vortex formation

    CERN Document Server

    Owen, James E

    2016-01-01

    We present a simple model for low-mass planet formation and subsequent evolution within "transition" discs. We demonstrate quantitatively that the predicted and observed structure of such discs are prime birthsites of planets. Planet formation is likely to proceed through pebble accretion, should a planetary embryo ($M\\gtrsim 10^{-4}\\,$M$_\\oplus$) form. Efficient pebble accretion is likely to be unavoidable in transition disc dust traps, as the size of the dust particles required for pebble accretion are those which are most efficiently trapped in the transition disc dust trap. Rapid pebble accretion within the dust trap gives rise, not only to low-mass planets, but to a large accretion luminosity. This accretion luminosity is sufficient to heat the disc outside the gravitational influence of the planet and makes the disc locally baroclinic, and a source of vorticity. Using numerical simulations we demonstrate that this source of vorticity can lead to the growth of a single large scale vortex in $\\sim 100$ or...

  11. Tandem planet formation for solar system-like planetary systems

    Directory of Open Access Journals (Sweden)

    Yusuke Imaeda

    2017-03-01

    Full Text Available We present a new united theory of planet formation, which includes magneto-rotational instability (MRI and porous aggregation of solid particles in a consistent way. We show that the “tandem planet formation” regime is likely to result in solar system-like planetary systems. In the tandem planet formation regime, planetesimals form at two distinct sites: the outer and inner edges of the MRI suppressed region. The former is likely to be the source of the outer gas giants, and the latter is the source for the inner volatile-free rocky planets. Our study spans disks with a various range of accretion rates, and we find that tandem planet formation can occur for M˙=10−7.3-10−6.9M⊙yr−1. The rocky planets form between 0.4–2 AU, while the icy planets form between 6–30 AU; no planets form in 2–6 AU region for any accretion rate. This is consistent with the gap in the solid component distribution in the solar system, which has only a relatively small Mars and a very small amount of material in the main asteroid belt from 2–6 AU. The tandem regime is consistent with the idea that the Earth was initially formed as a completely volatile-free planet. Water and other volatile elements came later through the accretion of icy material by occasional inward scattering from the outer regions. Reactions between reductive minerals, such as schreibersite (Fe3P, and water are essential to supply energy and nutrients for primitive life on Earth.

  12. On the formation of planetary systems in photoevaporating transition discs

    Science.gov (United States)

    Terquem, Caroline

    2017-01-01

    In protoplanetary discs, planetary cores must be at least 0.1 M⊕ at 1 au for migration to be significant; this mass rises to 1 M⊕ at 5 au. Planet formation models indicate that these cores form on million year time-scales. We report here a study of the evolution of 0.1 and 1 M⊕ cores, migrating from about 2 and 5 au, respectively, in million year old photoevaporating discs. In such a disc, a gap opens up at around 2 au after a few million years. The inner region subsequently accrete on to the star on a smaller time-scale. We find that, typically, the smallest cores form systems of non-resonant planets beyond 0.5 au with masses up to about 1.5 M⊕. In low-mass discs, the same cores may evolve in situ. More massive cores form systems of a few Earth-mass planets. They migrate within the inner edge of the disc gap only in the most massive discs. Delivery of material to the inner parts of the disc ceases with opening of the gap. Interestingly, when the heavy cores do not migrate significantly, the type of systems that are produced resembles our Solar system. This study suggests that low-mm flux transition discs may not form systems of planets on short orbits but may instead harbour Earth-mass planets in the habitable zone.

  13. On the formation of planetary systems in photoevaporating transition discs

    CERN Document Server

    Terquem, Caroline

    2016-01-01

    In protoplanetary discs, planetary cores must be at least 0.1 earth mass at 1 au for migration to be significant; this mass rises to 1 earth mass at 5 au. Planet formation models indicate that these cores form on million year timescales. We report here a study of the evolution of 0.1 earth mass and 1 earth mass cores, migrating from about 2 and 5 au respectively, in million year old photoevaporating discs. In such a disc, a gap opens up at around 2 au after a few million years. The inner region subsequently accrete onto the star on a smaller timescale. We find that, typically, the smallest cores form systems of non-resonant planets beyond 0.5 au with masses up to about 1.5 earth mass. In low mass discs, the same cores may evolve in situ. More massive cores form systems of a few earth masses planets. They migrate within the inner edge of the disc gap only in the most massive discs. Delivery of material to the inner parts of the disc ceases with opening of the gap. Interestingly, when the heavy cores do not mig...

  14. Terrestrial Planet Formation in Extra-Solar Planetary Systems

    CERN Document Server

    Raymond, Sean N

    2008-01-01

    Terrestrial planets form in a series of dynamical steps from the solid component of circumstellar disks. First, km-sized planetesimals form likely via a combination of sticky collisions, turbulent concentration of solids, and gravitational collapse from micron-sized dust grains in the thin disk midplane. Second, planetesimals coalesce to form Moon- to Mars-sized protoplanets, also called "planetary embryos". Finally, full-sized terrestrial planets accrete from protoplanets and planetesimals. This final stage of accretion lasts about 10-100 Myr and is strongly affected by gravitational perturbations from any gas giant planets, which are constrained to form more quickly, during the 1-10 Myr lifetime of the gaseous component of the disk. It is during this final stage that the bulk compositions and volatile (e.g., water) contents of terrestrial planets are set, depending on their feeding zones and the amount of radial mixing that occurs. The main factors that influence terrestrial planet formation are the mass an...

  15. PLANETARY SYSTEM FORMATION IN THE PROTOPLANETARY DISK AROUND HL TAURI

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Eiji; Hasegawa, Yasuhiro; Hayashi, Masahiko; Iguchi, Satoru, E-mail: eiji.akiyama@nao.ac.jp, E-mail: yasuhiro.hasegawa@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-20

    We reprocess the Atacama Large Millimeter/Submillimeter Array (ALMA) long-baseline science verification data taken toward HL Tauri. Assuming the observed gaps are opened up by currently forming, unseen bodies, we estimate the mass of such hypothetical bodies based on the following two approaches: the Hill radius analysis and a more elaborate approach developed from the angular momentum transfer analysis in gas disks. For the former, the measured gap widths are used for estimating the mass of the bodies, while for the latter, the measured gap depths are utilized. We show that their masses are comparable to or less than the mass of Jovian planets. By evaluating Toomre’s gravitational instability (GI) condition and cooling effect, we find that the GI might be a mechanism to form the bodies in the outer region of the disk. As the disk might be gravitationally unstable only in the outer region of the disk, inward planetary migration would be needed to construct the current architecture of the observed disk. We estimate the gap-opening mass and show that type II migration might be able to play such a role. Combining GIs with inward migration, we conjecture that all of the observed gaps may be a consequence of bodies that might have originally formed at the outer part of the disk, and have subsequently migrated to the current locations. While ALMA’s unprecedented high spatial resolution observations can revolutionize our picture of planet formation, more dedicated observational and theoretical studies are needed to fully understand the HL Tauri images.

  16. Lithospheric structure and continental geodynamics

    Institute of Scientific and Technical Information of China (English)

    许忠淮; 石耀霖

    2003-01-01

    This paper briefly reviews main progress in the research on lithospheric structure and continental geodynamics made by Chinese geophysicists during last 4 years since 22nd IUGG general assembly in July 1999. The research mainly covers the following fields: investigations on regional lithospheric structure, DSS survey of crust and upper mantle velocity structure, study on present-day inner movement and deformation of Chinese mainland by analyzing GPS observations, geodynamics of Qingzang plateau, geophysical survey of the Dabie-Sulu ultra-high pressure metamorphic belt and probing into its formation mechanism, geophysical observations in sedimentary basins and study on their evolution process, and plate dynamics, etc.

  17. Bright Planetary Nebulae and their Progenitors in Galaxies Without Star Formation

    CERN Document Server

    Richer, Michael G

    2008-01-01

    We present chemical abundances for planetary nebulae in M32, NGC 185, and NGC 205 based upon spectroscopy obtained at the Canada-France-Hawaii Telescope using the Multi-Object Spectrograph. From these and similar data compiled from the literature for other Local Group galaxies, we consider the origin and evolution of the stellar progenitors of bright planetary nebulae in galaxies where star formation ceased long ago. The ratio of neon to oxygen abundances in bright planetary nebulae is either identical to that measured in the interstellar medium of star-forming dwarf galaxies or at most changed by a few percent, indicating that neither abundance is significantly altered as a result of the evolution of their stellar progenitors. Several planetary nebulae appear to have dredged up oxygen, but these are the exception, not the rule. The progenitors of bright planetary nebulae typically enhance their original helium abundances by less than 50%. In contrast, nitrogen enhancements can reach factors of 100. However, ...

  18. The formation of retrograde planetary orbits by close stellar encounters

    Directory of Open Access Journals (Sweden)

    Ford E. B.

    2011-02-01

    Full Text Available We consider the growing number of observations of the RossiterMcLaughlin effect in transiting planets, which seem to suggest that ~30% of transiting planets are in highly inclined or retrograde orbits. We consider the dense cluster environment in which stars are born and investigate whether perturbations from passing stars can drive planetary systems into retrograde configurations. We find that fly-bys can result in significantly more inclination excitation than might naively be expected from impulse approximations, leading to several percent of stellar systems possessing planets in retrograde orbits.

  19. Composition of Early Planetary Atmospheres I: Connecting Disk Astrochemistry to the Formation of Planetary Atmospheres

    CERN Document Server

    Cridland, Alex J; Alessi, Matthew

    2016-01-01

    We present a model of early planetary atmospheres which represents the cumulative gaseous chemical species that are accreted onto planets forming by core accretion from an evolving protoplanetary disk. The astrochemistry of the host disk is computed using ionization driven, non-equilibrium chemistry networks within viscously evolving disk models. We accrete gas giant planets whose evolution is controlled by planet traps using the standard core accretion model and track the chemical composition of the material that is accreted onto the protoplanet. We choose a fiducial disk model and evolve planets in 3 traps - water ice line, dead zone and heat transition. For a disk with a lifetime of $4.1$ Myr we produce two Hot Jupiters (M $= 1.43, 2.67$ M$_{\\rm Jupiter}$, r $= 0.15, 0.11$ AU) in the heat transition and ice line trap and one failed core (M $= 0.003$ M$_{\\rm Jupiter}$, r $=3.7$ AU) in the dead zone. These planets are found with mixing ratios for CO and H$_2$O of $1.99\\times 10^{-4}$, $5.0\\times 10^{-4}$ res...

  20. Deep geodynamics of far field intercontinental back-arc extension:Formation of Cenozoic volcanoes in northeastern China

    Institute of Scientific and Technical Information of China (English)

    石耀霖; 张健

    2004-01-01

    There are three cases of variation of trench location possible to occur during subduction: trench fixed, trench advancing, and trench retreating. Retreat of trench may lead to back-arc extension. The Pacific plate subducts at low angle beneath the Eurasia plate, tomographic results indicate that the subducted Pacific slab does not penetrate the 670 km discontinuity, instead, it is lying flat above the interface. The flattening occurred about 28 Ma ago. Geodynamic computation suggests: when the frontier of the subducted slab reaches the phase boundary of lower and upper mantle, it may be hindered and turn flat lying above the boundary, facilitates the retreat of trench and back-arc extension. Volcanism in northeastern China is likely a product of such retreat of subduction, far field back-arc extension, and melting due to reduce of pressure while mantle upwelling.

  1. Neptune trojan formation during planetary instability and migration

    Science.gov (United States)

    Gomes, R.; Nesvorný, D.

    2016-08-01

    Aims: We investigate the process of Neptune trojan capture and permanence in resonance up to the present time based on a planetary instability migration model. Methods: We do a numerical simulation of the migration of the giant planets in a planetesimal disk. Several planetesimals became trapped in coorbital resonance with Neptune, but no trojan survived to the end of the integration at 4.5 Gy. We increased the statistics by running synthetic integrations with cloned particles from the original integration and keeping the same migration rates of the planets. Results: For the synthetic integrations, Neptune trojans survived to the end of the simulations. The total mass that corresponds to these surviving trojans is about 1.6 × 10-4 Earth mass and the distributions of eccentricities, inclinations, and libration amplitudes are respectively 0.007-0.173, 4.9°-32.9°, and 6.9°-64.3°. In a specific run where Neptune to Uranus mean motion ratio reached 1.963 and decreased to its present value (1.961), many more trojans escaped the coorbital resonance with Neptune and in the end there was an equivalent mass of 5 × 10-5 Earth mass of Neptune trojans. Conclusions: The simulations yielded Neptune trojans that match the orbital distribution of real Neptune trojans quite well. Since planetary migration in an instability model shows the possibility that in the past Neptune was a little farther from the Sun than it is today, it is reasonable to consider this possibility to explain the relatively low mass of Neptune trojans.

  2. Composition of early planetary atmospheres - I. Connecting disc astrochemistry to the formation of planetary atmospheres

    Science.gov (United States)

    Cridland, A. J.; Pudritz, R. E.; Alessi, M.

    2016-09-01

    We present a model of the early chemical composition and elemental abundances of planetary atmospheres based on the cumulative gaseous chemical species that are accreted on to planets forming by core accretion from evolving protoplanetary discs. The astrochemistry of the host disc is computed using an ionization-driven, non-equilibrium chemistry network within viscously evolving disc models. We accrete gas giant planets whose orbital evolution is controlled by planet traps using the standard core accretion model and track the chemical composition of the material that is accreted on to the protoplanet. We choose a fiducial disc model and evolve planets in three traps - water ice line, dead zone and heat transition. For a disc with a lifetime of 4.1 Myr, we produce two hot Jupiters (M = 1.43, 2.67 MJupiter, r = 0.15, 0.11 au) in the heat transition and ice line trap and one failed core (M = 0.003 MJupiter, r = 3.7 au) in the dead zone. These planets are found with mixing ratios for CO and H2O of 1.99 × 10-4 and 5.0 × 10-4, respectively, for both hot Jupiters. Additionally, for these planets we find CO2 and CH4, with mixing ratios of 1.8 × 10-6 → 9.8 × 10-10 and 1.1 × 10-8 → 2.3 × 10-10, respectively. These ranges correspond well with the mixing ratio ranges that have been inferred through the detection of emission spectra from hot Jupiters by multiple authors. We compute a carbon-to-oxygen ratio of 0.227 for the ice line planet and 0.279 for the heat transition planet. These planets accreted their gas inside the ice line, hence the sub-solar C/O.

  3. On the Formation Age of the First Planetary System

    CERN Document Server

    Hara, Tetsuya; Shigeyasu, Masanobu; Kajiura, Daigo

    2012-01-01

    Recently, it has been observed the extreme metal-poor stars in the Galactic halo, which must be formed just after Pop III objects. On the other hand, the first gas clouds of mass $\\sim 10^6 M_{\\odot}$ are supposed to be formed at $ z \\sim $ 10, 20, and 30 for the $1\\sigma$, $2\\sigma $ and $3\\sigma$, where the density perturbations are assumed of the standard $\\Lambda$CDM cosmology. If we could apply this gaussian distribution to the extreme small probability, the gas clouds would be formed at $ z \\sim $40, 60, and 80 for the $4\\sigma$, $6\\sigma$, and $8\\sigma$. The first gas clouds within our galaxy must be formed around $z\\sim 40$. Even if the gas cloud is metal poor, there is a lot of possibility to form the planets around such stars. The first planetary systems could be formed within $\\sim 6\\times 10^7$ years after the Big Bang in the universe. Even in our galaxies, it could be formed within $\\sim 1.7\\times 10^8$ years. It is interesting to wait the observations of planets around metal-poor stars. For the ...

  4. Modelling of asteroid formation in planetary vortex and calculation its orbital parameters

    Directory of Open Access Journals (Sweden)

    L. V. Klychinska

    2015-01-01

    Full Text Available The theory of planetary vortex as the initial state of creation of the star systems is used to the study of conditions of formation of asteroids and calculation its orbital parameters. In application to Main asteroid belt of the Solar system the kind coincidence of theoretical and experimental data is got.

  5. Formation and X-ray emission from Hot Bubbles in Planetary Nebulae. I. Hot Bubble formation

    CERN Document Server

    Toalá, J A

    2014-01-01

    We carry out high resolution two-dimensional radiation-hydrodynamic numerical simulations to study the formation and evolution of hot bubbles inside planetary nebulae (PNe). We take into account the evolution of the stellar parameters, wind velocity and mass-loss rate from the final thermal pulses during the asymptotic giant branch (AGB) through to the post-AGB stage for a range of initial stellar masses. The instabilities that form at the interface between the hot bubble and the swept-up AGB wind shell lead to hydrodynamical interactions, photoevaporation flows and opacity variations. We explore the effects of hydrodynamical mixing combined with thermal conduction at this interface on the dynamics, photoionization, and emissivity of our models. We find that even models without thermal conduction mix significant amounts of mass into the hot bubble. When thermal conduction is not included, hot gas can leak through the gaps between clumps and filaments in the broken swept-up AGB shell and this depressurises the...

  6. Formation and evolution of planetary systems: the impact of high angular resolution optical techniques

    CERN Document Server

    Absil, Olivier; 10.1007/s00159-009-0028-y

    2009-01-01

    The direct images of giant extrasolar planets recently obtained around several main sequence stars represent a major step in the study of planetary systems. These high-dynamic range images are among the most striking results obtained by the current generation of high angular resolution instruments, which will be superseded by a new generation of instruments in the coming years. It is therefore an appropriate time to review the contributions of high angular resolution visible/infrared techniques to the rapidly growing field of extrasolar planetary science. During the last 20 years, the advent of the Hubble Space Telescope, of adaptive optics on 4- to 10-m class ground-based telescopes, and of long-baseline infrared stellar interferometry has opened a new viewpoint on the formation and evolution of planetary systems. By spatially resolving the optically thick circumstellar discs of gas and dust where planets are forming, these instruments have considerably improved our models of early circumstellar environments...

  7. Toward a Deterministic Model of Planetary Formation VII: Eccentricity Distribution of Gas Giants

    CERN Document Server

    Ida, S; Nagasawa, M

    2013-01-01

    The ubiquity of planets and diversity of planetary systems reveal planet formation encompass many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches leads to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interaction between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamical interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form wit...

  8. Principles of geodynamics

    CERN Document Server

    Scheidegger, Adrian E

    1982-01-01

    Geodynamics is commonly thought to be one of the subjects which provide the basis for understanding the origin of the visible surface features of the Earth: the latter are usually assumed as having been built up by geodynamic forces originating inside the Earth ("endogenetic" processes) and then as having been degrad­ ed by geomorphological agents originating in the atmosphere and ocean ("exogenetic" agents). The modem view holds that the sequence of events is not as neat as it was once thought to be, and that, in effect, both geodynamic and geomorphological processes act simultaneously ("Principle of Antagonism"); however, the division of theoretical geology into the principles of geodynamics and those of theoretical geomorphology seems to be useful for didactic purposes. It has therefore been maintained in the present writer's works. This present treatise on geodynamics is the first part of the author's treatment of theoretical geology, the treatise on Theoretical Geomorphology (also published by the Sprin...

  9. The role of magnetic fields for planetary formation

    CERN Document Server

    Johansen, Anders

    2009-01-01

    The role of magnetic fields for the formation of planets is reviewed. Protoplanetary disc turbulence driven by the magnetorotational instability has a huge influence on the early stages of planet formation. Small dust grains are transported both vertically and radially in the disc by turbulent diffusion, counteracting sedimentation to the mid-plane and transporting crystalline material from the hot inner disc to the outer parts. The conclusion from recent efforts to measure the turbulent diffusion coefficient of magnetorotational turbulence is that turbulent diffusion of small particles is much stronger than naively thought. Larger particles -- pebbles, rocks and boulders -- get trapped in long-lived high pressure regions that arise spontaneously at large scales in the turbulent flow. These gas high pressures, in geostrophic balance with a sub-Keplerian/super-Keplerian zonal flow envelope, are excited by radial fluctuations in the Maxwell stress. The coherence time of the Maxwell stress is only a few orbits, ...

  10. A New Hypothesis On The Origin and Formation of The Solar And Extrasolar Planetary Systems

    CERN Document Server

    Yao, Lihong

    2014-01-01

    A new theoretical hypothesis on the origin and formation of the solar and extrasolar planetary systems is summarized and briefly discussed in the light of recent detections of extrasolar planets, and studies of shock wave interaction with molecular clouds, as well as H. Alfven's work on Sun's magnetic field and its effect on the formation of the solar system (1962). We propose that all objects in a planetary system originate from a small group of dense fragments in a giant molecular cloud (GMC). The mechanism of one or more shock waves, which propagate through the protoplanetary disk during the star formation is necessary to trigger rapid cascade fragmentation of dense clumps which in turn collapse quickly, simultaneously, and individually to form multi-planet and multi-satellite systems. Magnetic spin resonance may be the cause of the rotational directions of newly formed planets to couple and align in the strong magnetic field of a younger star.

  11. On the formation of compact planetary systems via concurrent core accretion and migration

    CERN Document Server

    Coleman, Gavin A L

    2016-01-01

    We present the results of planet formation N-body simulations based on a comprehensive physical model that includes planetary mass growth through mutual embryo collisions and planetesimal/boulder accretion, viscous disc evolution, planetary migration and gas accretion onto planetary cores. The main aim of this study is to determine which set of model parameters leads to the formation of planetary systems that are similar to the compact low mass multi-planet systems that have been discovered by radial velocity surveys and the Kepler mission. We vary the initial disc mass, solids-to-gas ratio and the sizes of the boulders/planetesimals, and for a restricted volume of the parameter space we find that compact systems containing terrestrial planets, super-Earths and Neptune-like bodies arise as natural outcomes of the simulations. Disc models with low values of the solids-to-gas ratio can only form short-period super-Earths and Neptunes when small planetesimals/boulders provide the main source of accretion, since ...

  12. Thermal Evolution And Core Formation In Planetesimals And Planetary Embryos

    Science.gov (United States)

    Sramek, O.; Labrosse, S.; Ricard, Y. R.; milelli, L.

    2011-12-01

    Recent dating of iron meteorites shows that they were formed almost as early as the oldest known objects of the solar system, the CAIs. Moreover, several meteorites show a magnetization that is thought to originate from the action of a dynamo at the early stages of the planetesimals evolution. Core formation requires melting of the metal which then can percolate toward the center, providing the solid matrix deforms and compacts. The energy source for melting of the metal comes from a combination of short lived radionuclides, mostly 26Al, and accretion energy for bodies larger than about 1000 km. We considered a suite of numerical calculations solving for the coupled problem of thermal evolution, melt percolation and matrix compaction, systematically exploring the different accretion histories, final body size and initial concentration in 26Al. Our model handles simultaneously metal and silicates in both solid and liquid states. Depending on the accretion rate, melting occurs from the center outward, in a shallow outer shell progressing inward, or in the two locations. Segregation of the protocore decreases the efficiency of radiogenic heating by confining the 26Al in the outer silicate shell. Various types of planetesimals partly differentiated and sometimes differentiated in multiple metal-silicate layers can be obtained. We discuss the thermal profiles of the accreted bodies in relation to possible early dynamo action as evidenced by remanent magnetization observed on some meteorite samples.

  13. Exoplanets and Formation of Planetary Systems: Studies With Esa Science Missions

    Science.gov (United States)

    Foing, B. H.

    Several space missions from the ESA Science Horizons 2000 Programme address key questions on the formation/evolution of planetary systems and on the study of ex- oplanets: - How do solar systems form ? (with HST, ISO, NGST, FIRST/Herschel, Rosetta, Gaia) - Geological evolution of terrestrial planets (with Living planet, Mars- express, SMART-1, Venus-express, Bepi-Colombo) - History and Role of impacts (with SMART-1, Bepi-Colombo, outer planets missions) - How to detect other solar systems and habitable zones (with space photometry, COROT, Eddington, Gaia, Dar- win) - Water and ices on other planets and comets (with instruments on Mars Express, Rosetta and other planetary missions) - Signature of biosphere and photosynthesis evolution (living Planet missions, Darwin) We shall review how the results from these ESA missions (and other relevant missions from other agencies) can be exploited in synergy to advance our knowledge on the formation of solar systems and on exoplanets.

  14. Non-chondritic iron isotope ratios in planetary mantles as a result of core formation

    Science.gov (United States)

    Elardo, Stephen M.; Shahar, Anat

    2017-02-01

    Information about the materials and conditions involved in planetary formation and differentiation in the early Solar System is recorded in iron isotope ratios. Samples from Earth, the Moon, Mars and the asteroid Vesta reveal significant variations in iron isotope ratios, but the sources of these variations remain uncertain. Here we present experiments that demonstrate that under the conditions of planetary core formation expected for the Moon, Mars and Vesta, iron isotopes fractionate between metal and silicate due to the presence of nickel, and enrich the bodies' mantles in isotopically light iron. However, the effect of nickel diminishes at higher temperatures: under conditions expected for Earth's core formation, we infer little fractionation of iron isotopes. From our experimental results and existing conceptual models of magma ocean crystallization and mantle partial melting, we find that nickel-induced fractionation can explain iron isotope variability found in planetary samples without invoking nebular or accretionary processes. We suggest that near-chondritic iron isotope ratios of basalts from Mars and Vesta, as well as the most primitive lunar basalts, were achieved by melting of isotopically light mantles, whereas the heavy iron isotope ratios of terrestrial ocean floor basalts are the result of melting of near-chondritic Earth mantle.

  15. Earth rotation and geodynamics

    Science.gov (United States)

    Bogusz, Janusz; Brzezinski, Aleksander; Kosek, Wieslaw; Nastula, Jolanta

    2015-12-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals with monitoring of geodynamic phenomena. It contains analysis of geodynamic networks of local, and regional scale using space (GNSS and SLR) techniques, Earth tides monitoring with gravimeters and water-tube hydrostatic clinometer, and the determination of secular variation of the Earth' magnetic field.

  16. Geodynamics: Introduction and Background

    Science.gov (United States)

    1984-01-01

    An overview is given of the field of geodynamics and its major scientific questions. The NASA geodynamics program is described as well as its status and accomplishments projected by 1988. Federal coordination and international cooperation in monitoring tectonic plate motion, polar motion, and Earth rotation are mentioned. The development of a GPS receiver for civilian geodesy and results obtained using satellite laser ranging and very long baseline interferometry in measuring crustal dynamics, global dynamics, and the geopotential field are reported.

  17. Earth rotation and geodynamics

    OpenAIRE

    Bogusz Janusz; Brzezinski Aleksander; Kosek Wieslaw; Nastula Jolanta

    2015-01-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals wit...

  18. Planetary system, star formation, and black hole science with non-redundant masking on space telescopes

    CERN Document Server

    Sivaramakrishna, Anand; Ireland, Michael; Lloyd, James; Perrin, Marshall; Soummer, Remi; McKernan, Barry; Ford, Saavik

    2009-01-01

    Non-redundant masking (NRM) is a high contrast, high resolution technique relevant to future space missions concerned with extrasolar planetary system and star formation, as well as general high angular resolution galactic and extragalactic astronomy. NRM enables the highest angular resolution science possible given the telescope's diameter and operating wavelength. It also provides precise information on a telescope's optical state. We must assess NRM contrast limits realistically to understand the science yield of NRM in space, and, simultaneously, develop NRM science for planet and star formation and extragalactic science in the UV-NIR, to help steer high resolution space-based astronomy in the coming decade.

  19. Insights into Planet Formation from Debris Disks. II. Giant Impacts in Extrasolar Planetary Systems

    Science.gov (United States)

    Wyatt, Mark C.; Jackson, Alan P.

    2016-12-01

    Giant impacts refer to collisions between two objects each of which is massive enough to be considered at least a planetary embryo. The putative collision suffered by the proto-Earth that created the Moon is a prime example, though most Solar System bodies bear signatures of such collisions. Current planet formation models predict that an epoch of giant impacts may be inevitable, and observations of debris around other stars are providing mounting evidence that giant impacts feature in the evolution of many planetary systems. This chapter reviews giant impacts, focussing on what we can learn about planet formation by studying debris around other stars. Giant impact debris evolves through mutual collisions and dynamical interactions with planets. General aspects of this evolution are outlined, noting the importance of the collision-point geometry. The detectability of the debris is discussed using the example of the Moon-forming impact. Such debris could be detectable around another star up to 10 Myr post-impact, but model uncertainties could reduce detectability to a few 100 yr window. Nevertheless the 3 % of young stars with debris at levels expected during terrestrial planet formation provide valuable constraints on formation models; implications for super-Earth formation are also discussed. Variability recently observed in some bright disks promises to illuminate the evolution during the earliest phases when vapour condensates may be optically thick and acutely affected by the collision-point geometry. The outer reaches of planetary systems may also exhibit signatures of giant impacts, such as the clumpy debris structures seen around some stars.

  20. Formation of Authigenic Sulfates in Cold Dry Glaciers: Terrestrial and Planetary Implications of Sublimites

    Science.gov (United States)

    Massé, M.; Rondeau, B.; Ginot, P.; Schmitt, B.; Bourgeois, O.; Mitri, G.

    2015-12-01

    Salts are common on planetary surfaces, and sulfates have been widely observed on Earth, Mars (Gendrin et al., 2005) and on some of Jupiter's and Saturn's icy moons like Europa (Dalton et al., 2007). These minerals can form under a wide range of conditions, and the determination of sulfate formation processes can provide key elements for deciphering past planetary surface conditions. Most terrestrial sulfates form as evaporites in warm environments with high water/rock ratios, but these conditions are rarely encountered on other planets. Here we describe the formation of cryogenic sulfates in an extreme cold and dry environment: the Guanaco glacier located in the Chilean Andes (Fig.1a, Rabatel et al., 2011). Field analyses reveal that it is a cold-based glacier, its surface temperature remains below 0°C throughout the year, and ablation occurs mostly by sublimation. Ablation creates ice cliffs punctuated of pluricentimetric whitish, tapered crystals embedded in the ice (Fig.1b, c). By Raman and chemistry, they proved to be gypsum, covered by micrometric crystals of jarosite, halotrichite and native sulfur. The euhedral morphology of these soft minerals indicates that they are neoformed and have not been transported in the ice. This is supported by the absence of gypsum crystals in ice cores drilled through the glacier. We infer that the crystallization thus occurred at the glacier surface during ice sublimation and does not involve liquid water. To distinguish this original salt formation process from the more common evaporites, we name these minerals "sublimites". Though this formation process is uncommon and generates minor quantities of sulfates on Earth, it may be dominant on other bodies in the Solar System where sublimation is effective. Examples of planetary sublimites may include gypsum on the North Polar Cap of Mars (Massé et al., 2012), and other sulfates on icy moons where sublimation has been observed (Howard et al., 2008).

  1. M1-46: A Case Study on Multiple-Shell Planetary Nebula Formation

    Science.gov (United States)

    Guerrero, M. A.; Manchado, A.; Stanghellini, L.; Herrero, A.

    1996-06-01

    We discuss in detail the evolutionary path of the multiple-shell planetary nebula M1-46, in the light of our new observations. The velocities of the halo and main nebula correspond to a dynamical time lap between the shells of about 6.8 x 104 yr. By means of a non-LTE analysis of the central star's spectrum, we derived a stellar temperature of Teff = 45,000 K, which, coupled to the visual magnitude and an appropriate bolometric correction, gives a stellar luminosity of 5370 Lsun. The mass of the central star has been evaluated to be 0.6 Msun, and its interpulse time on the asymptotic giant branch is 7.6 x 104 yr. The agreement between the observed intershell time lap and the evolutionary interpulse time lap points to the fact that the formation of this planetary nebula could be ascribed to the gasping mass loss associated with the thermal pulses at the thermally pulsating asymptotic giant branch. The high-resolution spatially resolved observations reveal the presence of different kinematical components in the main nebula which cannot be understood in a homogeneous expanding shell scenario. As regards the chemical abundances, M1-46 has the typical abundances of a type II planetary nebula. No definite abundance gradient between the shells is found.

  2. Habitable Planet Formation in Extreme Planetary Systems: Systems with Multiple Stars and/or Multiple Planets

    CERN Document Server

    Haghighipour, Nader

    2007-01-01

    Understanding the formation and dynamical evolution of habitable planets in extrasolar planetary systems is a challenging task. In this respect, systems with multiple giant planets and/or multiple stars present special complications. The formation of habitable planets in these environments is strongly affected by the dynamics of their giant planets and/or their stellar companions. These objects have profound effects on the structure of the disk of planetesimals and protoplanetary objects in which terrestrial-class planets are formed. To what extent the current theories of planet formation can be applied to such "extreme" planetary systems depends on the dynamical characteristics of their planets and/or their binary stars. In this paper, I present the results of a study of the possibility of the existence of Earth-like objects in systems with multiple giant planets (namely Upsilon Andromedae, 47 UMa, GJ 876, and 55 Cnc) and discuss the dynamics of the newly discovered Neptune-size object in 55 Cnc system. I wi...

  3. Nonlinear adaptive formation control for a class of autonomous holonomic planetary exploration rovers

    Science.gov (United States)

    Ganji, Farid

    This dissertation presents novel nonlinear adaptive formation controllers for a heterogeneous group of holonomic planetary exploration rovers navigating over flat terrains with unknown soil types and surface conditions. A leader-follower formation control architecture is employed. In the first part, using a point-mass model for robots and a Coulomb-viscous friction model for terrain resistance, direct adaptive control laws and a formation speed-adaptation strategy are developed for formation navigation over unknown and changing terrain in the presence of actuator saturation. On-line estimates of terrain frictional parameters compensate for unknown terrain resistance and its variations. In saturation events over difficult terrain, the formation speed is reduced based on the speed of the slowest saturated robot, using internal fleet communication and a speed-adaptation strategy, so that the formation error stays bounded and small. A formal proof for asymptotic stability of the formation system in non-saturated conditions is given. The performance of robot controllers are verified using a modular 3-robot formation simulator. Simulations show that the formation errors reduce to zero asymptotically under non-saturated conditions as is guaranteed by the theoretical proof. In the second part, the proposed adaptive control methodology is extended for formation control of a class of omnidirectional rovers with three independently-driven universal holonomic rigid wheels, where the rovers' rigid-body dynamics, drive-system electromechanical characteristics, and wheel-ground interaction mechanics are incorporated. Holonomic rovers have the ability to move simultaneously and independently in translation and rotation, rendering great maneuverability and agility, which makes them suitable for formation navigation. Novel nonlinear adaptive control laws are designed for the input voltages of the three wheel-drive motors. The motion resistance, which is due to the sinkage of rover

  4. Insights into planet formation from debris disks: II. Giant impacts in extrasolar planetary systems

    CERN Document Server

    Wyatt, Mark C

    2016-01-01

    Giant impacts refer to collisions between two objects each of which is massive enough to be considered at least a planetary embryo. The putative collision suffered by the proto-Earth that created the Moon is a prime example, though most Solar System bodies bear signatures of such collisions. Current planet formation models predict that an epoch of giant impacts may be inevitable, and observations of debris around other stars are providing mounting evidence that giant impacts feature in the evolution of many planetary systems. This chapter reviews giant impacts, focussing on what we can learn about planet formation by studying debris around other stars. Giant impact debris evolves through mutual collisions and dynamical interactions with planets. General aspects of this evolution are outlined, noting the importance of the collision-point geometry. The detectability of the debris is discussed using the example of the Moon-forming impact. Such debris could be detectable around another star up to 10Myr post-impac...

  5. New Discoveries in Planetary Systems and Star Formation through Advances in Laboratory Astrophysics

    CERN Document Server

    WGLA, AAS; Cowan, John; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    As the panel on Planetary Systems and Star Formation (PSF) is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of solar system bodies (other than the Sun) and extrasolar planets, debris disks, exobiology, the formation of individual stars, protostellar and protoplanetary disks, molecular clouds and the cold ISM, dust, and astrochemistry. Central to the progress in these areas are the corresponding advances in laboratory astro- physics which are required for fully realizing the PSF scientific opportunities in the decade 2010-2020. Laboratory astrophysics comprises both theoretical and experimental studies of the underlying physics and chemistry which produce the observed spectra and describe the astrophysical processes. We discuss four areas of laboratory astrophysics relevant to the PSF panel: atomic, molecular, solid matter, and plasma physics. Section 2 describes some of the new opportunitie...

  6. Targeting Young Stars with Kepler: Planet Formation, Migration Mechanisms and the Early History of Planetary Systems

    CERN Document Server

    Lloyd, James P; Mamajek, Eric; Spiegel, David S; Covey, Kevin R; Shkolnik, Evgenya L; Walkowicz, Lucianne; Chavez, Miguel; Bertone, Emanuele; Aguilar, Jose Manuel Olmedo

    2013-01-01

    This white paper discusses a repurposed mission for the Kepler spacecraft that focusses on solving outstanding problems in planet formation and evolution by targeting the study of the hot Jupiter population of young stars. This mission can solve the question of the mode of migration of hot Jupiters, address the problem of whether Jupiters form by hot-start (gravitational instability) or cold-start (core accretion) mechanisms, and provide a wealth of data on the early stages of planetary system evolution during the active phases of stars which impact planetary habitability. In one year of observations of three weeks dwell time per field, Kepler would increase by more than an order of magnitude the number of known hot Jupiters, which can be followed up with fast cadence observations to to search for transit timing variations and to perform asteroseismological characterization of the host stars. This mission scenario continues to operate Kepler in the photometric monitoring mode for which it was designed, and is...

  7. Dynamical Stability of Imaged Planetary Systems in Formation: Application to HL Tau

    CERN Document Server

    Tamayo, Daniel; Menou, Kristen; Rein, Hanno

    2015-01-01

    We present a general and simple framework for understanding the dynamical stability of planets embedded in a protoplanetary nebula over typical disk lifetimes, and provide estimates for the maximum allowable planetary masses. We collect these easily evaluated dynamical constraints into a workflow that can help guide the design and interpretation of new observational campaigns and numerical simulations of gap opening in such systems. We argue that the locations of resonances should be significantly shifted from integer period ratios in massive disks like HL Tau, and that theoretical uncertainties in the exact shift, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. This renders our results largely insensitive to an improved determination of the gaps' orbital radii, and presents an important barrier to using systems like HL Tau as a proxy for the initial conditions following planet formation. An important observational avenue to breaking this degen...

  8. Formation and Evolution of Planetary Systems: Cold Outer Disks Associated with Sun-like stars

    CERN Document Server

    Kim, J S; Backman, D E; Hillenbrand, L A; Meyer, M R; Rodmann, J; Moro-Martin, A; Carpenter, J M; Silverstone, M D; Bouwman, J; Mamajek, E E; Wolf, S; Malhotra, R; Pascucci, I; Najita, J; Padgett, D L; Henning, T; Brooke, T Y; Cohen, M; Strom, S E; Stobie, E B; Engelbracht, C W; Gordon, K D; Misselt, K; Morrison, J E; Muzerolle, J; Su, K Y L; Kim, Jinyoung Serena; Hines, Dean C.; Backman, Dana E.; Hillenbrand, Lynne A.; Meyer, Michael R.; Rodmann, Jens; Moro-Martin, Amaya; Carpenter, John M.; Silverstone, Murray D.; Bouwman, Jeroen; Mamajek, Eric E.; Wolf, Sebastian; Malhotra, Renu; Pascucci, Ilaria; Najita, Joan; Padgett, Deborah L.; Henning, Thomas; Brooke, Timothy Y.; Cohen, Martin; Strom, Stephen E.; Stobie, Elizabeth B.; Engelbracht, Charles W.; Gordon, Karl D.; Misselt, Karl; Morrison, Jane E.; Muzerolle, James; Su, Kate Y. L.

    2005-01-01

    We present the discovery of debris systems around three solar mass stars based upon observations performed with the Spitzer Space Telescope as part of a Legacy Science Program, ``the Formation and Evolution of Planetary Systems'' (FEPS). We also confirm the presence of debris around two other stars. All the stars exhibit infrared emission in excess of the expected photospheres in the 70 micron band, but are consistent with photospheric emission at <= 33 micron. This restricts the maximum temperature of debris in equilibrium with the stellar radiation to T < 70 K. We find that these sources are relatively old in the FEPS sample, in the age range 0.7 - 3 Gyr. Based on models of the spectral energy distributions, we suggest that these debris systems represent materials generated by collisions of planetesimal belts. We speculate on the nature of these systems through comparisons to our own Kuiper Belt, and on the likely planet(s) responsible for stirring the system and ultimately releasing dust through coll...

  9. NanoRocks: A Long-Term Microgravity Experiment to Stydy Planet Formation and Planetary Ring Particles

    Science.gov (United States)

    Brisset, J.; Colwell, J. E.; Dove, A.; Maukonen, D.; Brown, N.; Lai, K.; Hoover, B.

    2015-12-01

    We report on the results of the NanoRocks experiment on the International Space Station (ISS), which simulates collisions that occur in protoplanetary disks and planetary ring systems. A critical stage of the process of early planet formation is the growth of solid bodies from mm-sized chondrules and aggregates to km-sized planetesimals. To characterize the collision behavior of dust in protoplanetary conditions, experimental data is required, working hand in hand with models and numerical simulations. In addition, the collisional evolution of planetary rings takes place in the same collisional regime. The objective of the NanoRocks experiment is to study low-energy collisions of mm-sized particles of different shapes and materials. An aluminum tray (~8x8x2cm) divided into eight sample cells holding different types of particles gets shaken every 60 s providing particles with initial velocities of a few cm/s. In September 2014, NanoRocks reached ISS and 220 video files, each covering one shaking cycle, have already been downloaded from Station. The data analysis is focused on the dynamical evolution of the multi-particle systems and on the formation of cluster. We track the particles down to mean relative velocities less than 1 mm/s where we observe cluster formation. The mean velocity evolution after each shaking event allows for a determination of the mean coefficient of restitution for each particle set. These values can be used as input into protoplanetary disk and planetary rings simulations. In addition, the cluster analysis allows for a determination of the mean final cluster size and the average particle velocity of clustering onset. The size and shape of these particle clumps is crucial to understand the first stages of planet formation inside protoplanetary disks as well as many a feature of Saturn's rings. We report on the results from the ensemble of these collision experiments and discuss applications to planetesimal formation and planetary ring

  10. The Kepler Dichotomy in Planetary Disks: Linking Kepler Observables to Simulations of Late-Stage Planet Formation

    CERN Document Server

    Moriarty, John

    2015-01-01

    NASA's Kepler Mission uncovered a wealth of planetary systems, many with planets on short-period orbits. These short-period systems reside around 50% of Sun-like stars and are similarly prevalent around M dwarfs. Their formation and subsequent evolution is the subject of active debate. In this paper, we simulate late-stage, in-situ planet formation across a grid of planetesimal disks with varying surface density profiles and total mass. We compare simulation results with observable characteristics of the Kepler sample. We identify mixture models with different primordial planetesimal disk properties that self-consistently recover the multiplicity, period ratio and duration ratio distributions of the Kepler planets. We draw three main conclusions: (1) We favor a "frozen-in" narrative for systems of short period planets, in which they are stable over long timescales, as opposed to metastable. (2) The "Kepler dichotomy", an observed phenomenon of the Kepler sample wherein the architectures of planetary systems a...

  11. Seismological Constraints on Geodynamics

    Science.gov (United States)

    Lomnitz, C.

    2004-12-01

    Earth is an open thermodynamic system radiating heat energy into space. A transition from geostatic earth models such as PREM to geodynamical models is needed. We discuss possible thermodynamic constraints on the variables that govern the distribution of forces and flows in the deep Earth. In this paper we assume that the temperature distribution is time-invariant, so that all flows vanish at steady state except for the heat flow Jq per unit area (Kuiken, 1994). Superscript 0 will refer to the steady state while x denotes the excited state of the system. We may write σ 0=(J{q}0ṡX{q}0)/T where Xq is the conjugate force corresponding to Jq, and σ is the rate of entropy production per unit volume. Consider now what happens after the occurrence of an earthquake at time t=0 and location (0,0,0). The earthquake introduces a stress drop Δ P(x,y,z) at all points of the system. Response flows are directed along the gradients toward the epicentral area, and the entropy production will increase with time as (Prigogine, 1947) σ x(t)=σ 0+α {1}/(t+β )+α {2}/(t+β )2+etc A seismological constraint on the parameters may be obtained from Omori's empirical relation N(t)=p/(t+q) where N(t) is the number of aftershocks at time t following the main shock. It may be assumed that p/q\\sim\\alpha_{1}/\\beta times a constant. Another useful constraint is the Mexican-hat geometry of the seismic transient as obtained e.g. from InSAR radar interferometry. For strike-slip events such as Landers the distribution of \\DeltaP is quadrantal, and an oval-shaped seismicity gap develops about the epicenter. A weak outer triggering maxiμm is found at a distance of about 17 fault lengths. Such patterns may be extracted from earthquake catalogs by statistical analysis (Lomnitz, 1996). Finally, the energy of the perturbation must be at least equal to the recovery energy. The total energy expended in an aftershock sequence can be found approximately by integrating the local contribution over

  12. Geodynamic environments of ultra-slow spreading

    Science.gov (United States)

    Kokhan, Andrey; Dubinin, Evgeny

    2015-04-01

    Ultra-slow spreading is clearly distinguished as an outstanding type of crustal accretion by recent studies. Spreading ridges with ultra-slow velocities of extension are studied rather well. But ultra-slow spreading is characteristic feature of not only spreading ridges, it can be observed also on convergent and transform plate boundaries. Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on divergent plate boundaries: 1. On spreading ridges with ultra-slow spreading, both modern (f.e. Gakkel, South-West Indian, Aden spreading center) and ceased (Labrador spreading center, Aegir ridge); 2. During transition from continental rifting to early stages of oceanic spreading (all spreading ridges during incipient stages of their formation); 3. During incipient stages of formation of spreading ridges on oceanic crust as a result of ridge jumps and reorganization of plate boundaries (f.e. Mathematicians rise and East Pacific rise); 4. During propagation of spreading ridge into the continental crust under influence of hotspot (Aden spreading center and Afar triple junction), under presence of strike-slip faults preceding propagation (possibly, rift zone of California Bay). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on transform plate boundaries: 1. In transit zones between two "typical" spreading ridges (f.e. Knipovich ridge); 2. In semi strike-slip/extension zones on the oceanic crust (f.e. American-Antarctic ridge); 3. In the zones of local extension in regional strike-slip areas in pull-apart basins along transform boundaries (Cayman trough, pull-apart basins of the southern border of Scotia plate). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on convergent plate boundaries: 1. During back-arc rifting on the stage of transition into back-arc spreading (central

  13. GEODYNAMIC WAVES AND GRAVITY

    Directory of Open Access Journals (Sweden)

    A. V. Vikulin

    2015-09-01

    Full Text Available  Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related.  The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.  

  14. Experimental study of Gas Phase Formation and Evolution in Low fO2 Planetary Basalts.

    Science.gov (United States)

    Rutherford, M. J.; Wetzel, D. T.; Saal, A. E.; Hauri, E. H.

    2012-12-01

    The existence of a gas phase in planetary basaltic magmas is demonstrated by the ubiquitous presence of vesicles in returned lunar samples and meteorites as well as basalts from Earth and Mars. Additionally, formation of the fine-grained glass bead deposits during eruption of lunar picritic glasses required a large gas-bubble volume (> 90%) at the time of eruption/fragmentation. Up to 100-200 ppm levels of H, S, Cl and F still remain as diffusion-loss profiles in individual lunar glass beads SIMS (1), and higher volatile concentrations occur in olivine melt inclusions (2). The composition and origin of such volcanic gases were investigated by experiments on a volatile (C-O-H-S-Cl-F)-bearing picritic glass composition as a function of fO2 near iron-wustite (IW). The C-O-H species dissolved in gas-saturated basaltic melt above IW-0.5 are carbonate, OH and H2O with 100 to 10,000 ppm H2O in the sample; below IW-0.5, the C-species present (Raman and FTIR) are Fe(CO)5 (iron pentacarbonyl) and lesser CH4 [3]. The change in melt speciation in part reflects a change in calculated speciation in the coexisting gas [4]. The carbon solubility in these experimental melts increases linearly with increasing pressure; the more oxidized glasses contain 32-620 ppm C for pressures of 98 to 980 MPa, the reduced glasses contain 8-240 ppm C for pressures between 36 and 900 MPa. Thus, the C solubility of the more reduced Fe-carbonyl and CH4 is about one-half that of carbonate at the same pressure, and indicates the carrying capacity for C in reduced (i.e., lunar) magmas is much lower than it is in present day terrestrial magmas. Varioles up to 200 um in diameter formed in some experiments with higher dissolved water contents (1%); they have radiating crystalline textures (olivine, glass and poorly crystallized graphite) initiated at a central nucleation site. A sharp peak in the variole Ramen spectra indicates methane as well as CO is released during variole formation and a reaction such

  15. Tectonometamorphic Cycles in Different Geodynamic Conditions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Formation and attenuation of crust thermal anomalies, accompanied by development of geological structures, are governed by special laws, together with metamorphism and other endogenic process, form tectonometamorphic cycle (TMC). Because of rock rheology under metamorphic conditions, the structures, concurring with metamorphism, reflect geodynamic conditions much more perfect than those of the structures of nonmetamorphosed rocks. For this reason, structural investigations open wide, sometimes unique, possibilities for geodynamic research into regional metamorphosed terrains. The TMC features under different geodynamic conditions are shown with examples of California (subduction), Himalaya and Junggar Alatau (collision), and Northwest environs of the White Sea (polycyclic development). The analysis of these units serves as basis of some general conclusions. TMC, the steady pattern of crust thermal anomalies manifestation, does not practically depend on peculiarities of metamorphism. At lower and middle crust levels, occur the high-temperature complete cycles that include following two stages. The first is represented by nappes and paragenes of parallel bedding flow, the second, by linear folds, domes and faults. At top levels of fold complexes display the low-temperature reduced cycles, expressed only by structures of the second stage. There are gradual transitions between the complete and reduced cycles. Thermal anomalies in the first stage of complete cycles devolop against the background of large horizontal displacements at contacts between interacting plates or are genetically connected with their gently sloping fault planes. Of all structural elements of the cycles, in compressional environments (nappes, linear folds, domes etc. ), only the structures of the first stage of complete cycles can be considered as indications of plate tectonics. Presence of such structures at the most ancient supracrustal complexes point to existence of plate tectonics already at

  16. Diversity of planetary systems in low-mass disks: Terrestrial-type planet formation and water delivery

    CERN Document Server

    Ronco, María Paula

    2014-01-01

    Several studies, observational and theoretical, suggest that planetary systems with only rocky planets should be the most common in the Universe. We study the diversity of planetary systems that might form around Sun-like stars in low-mass disks without giant planets. We focus on the formation process of terrestrial planets in the habitable zone (HZ) and analyze their water contents with the goal to determine systems of astrobiological interest. Besides, we study the formation of planets on wide orbits because they can be detected with the microlensing technique. N-body simulations of high resolution (embryos + planetesimals) are developed for a wide range of surface density profiles. The surface density profile combines a power law to the inside of the disk of the form r^{-gamma}, with an exponential decay to the outside. We adopt a disk of 0.03M_sun and values of gamma = 0.5, 1 and 1.5. All our simulations form planets in the HZ with different masses and final water contents depending on the 3 profiles. For...

  17. Stellar halos and elliptical galaxy formation: Origin of dynamical properties of the planetary nebular systems

    CERN Document Server

    Bekki, K; Bekki, Kenji; Peng, Eric

    2006-01-01

    Recent spectroscopic observations of planetary nebulae (PNe) in several elliptical galaxies have revealed structural and kinematical properties of the outer stellar halo regions. In order to elucidate the origin of the properties of these planetary nebula systems (PNSs), we consider the merger scenario in which an elliptical galaxy is formed by merging of spiral galaxies. Using numerical simulations, we particularly investigate radial profiles of projected PNe number densities, rotational velocities, and velocity dispersions of PNSs extending to the outer halo regions of elliptical galaxies formed from major and unequal-mass merging. We find that the radial profiles of the project number densities can be fitted to the power-law and the mean number density in the outer halos of the ellipticals can be more than an order of magnitude higher than that of the original spiral's halo. The PNSs are found to show a significant amount of rotation (V/sigma >0.5) in the outer halo regions ($R$ $>$ $5R_{\\rm e}$) of the el...

  18. A geodynamic model of Andean mountain building

    Science.gov (United States)

    Schellart, Wouter P.

    2017-04-01

    The Andes mountain range in South America is the longest in the world and is unique in that it has formed at a subduction zone and not at a continent-continent collision zone. The mountain range has formed due to overriding plate shortening since the Late Cretaceous, and its origin and the driving mechanism(s) responsible for its formation remain a topic of intense debate. Here I present a buoyancy-driven geodynamic model of South American-style subduction, mantle flow and overriding plate deformation, illustrating how subduction-induced mantle flow drives overriding plate deformation. The model reproduces several first-order characteristics of the Andes, including major crustal thickening (up to double the initial crustal thickness) and hundreds of km of east-west shortening in the Central Andes, as well as a slab geometry that is comparable to that of the Nazca slab below the Central Andes. Ultimately, the geodynamic model shows that subduction-induced mantle flow is responsible for Andean-style mountain building.

  19. Rings and arcs around evolved stars - I. Fingerprints of the last gasps in the formation process of planetary nebulae

    Science.gov (United States)

    Ramos-Larios, G.; Santamaría, E.; Guerrero, M. A.; Marquez-Lugo, R. A.; Sabin, L.; Toalá, J. A.

    2016-10-01

    Evolved stars such as asymptotic giant branch stars (AGB), post-AGB stars, proto-planetary nebulae (proto-PNe), and planetary nebulae (PNe) show rings and arcs around them and their nebular shells. We have searched for these morphological features in optical Hubble Space Telescope and mid-infrared Spitzer Space Telescope images of ˜650 proto-PNe and PNe and discovered them in 29 new sources. Adding those to previous detections, we derive a frequency of occurrence ≃8 per cent. All images have been processed to remove the underlying envelope emission and enhance outer faint structures to investigate the spacing between rings and arcs and their number. The averaged time lapse between consecutive rings and arcs is estimated to be in the range 500-1200 yr. The spacing between them is found to be basically constant for each source, suggesting that the mechanism responsible for the formation of these structures in the final stages of evolved stars is stable during time periods of the order of the total duration of the ejection. In our sample, this period of time spans ≤4500 yr.

  20. Planetary Rings

    Science.gov (United States)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  1. The formation and evolution of planetary systems: Grain growth and chemical processing of dust in T Tauri systems

    CERN Document Server

    Bouwman, J; Hillenbrand, L A; Meyer, M R; Pascucci, I; Carpenter, J; Hines, D; Kim, J S; Silverstone, M D; Hollenbach, D; Wolf, S

    2008-01-01

    This paper is one in a series presenting results obtained within the Formation and Evolution of Planetary Systems (FEPS) Legacy Science Program on the Spitzer Space Telescope. Here we present a study of dust processing and growth in seven protoplanetary disks. Our spectra indicate that the circumstellar silicate dust grains have grown to sizes at least 10 times larger than observed in the interstellar medium, and show evidence for a non-negligible (~5 % in mass fractions) contribution from crystalline species. These results are similar to those of other studies of protoplanetary disks. In addition, we find a correlation between the strength of the amorphous silicate feature and the shape of the spectral energy distribution. This latter result is consistent with the growth and subsequent gravitational settling of dust grains towards the disk mid-plane. Further, we find a change in the relative abundance of the different crystalline species: more enstatite relative to forsterite is observed in the inner warm du...

  2. Experimental Behavior of Sulfur Under Primitive Planetary Differentiation Processes, the Sulfide Formations in Enstatite Meteorites and Implications for Mercury.

    Science.gov (United States)

    Malavergne, V.; Brunet, F.; Righter, K.; Zanda, B.; Avril, C.; Borensztajn, S.; Berthet, S.

    2012-01-01

    Enstatite meteorites are the most reduced naturally-occuring materials of the solar system. The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in these meteorite groups. The importance of such minerals, their formation, composition and textural relationships for understanding the genesis of enstatite chondrites (EC) and aubrites, has long been recognized (e.g. [1]). However, the mechanisms of formation of these sulfides is still not well constrained certainly because of possible multiple ways to produce them. We propose to simulate different models of formation in order to check their mineralogical, chemical and textural relevancies. The solubility of sulfur in silicate melts is of primary interest for planetary mantles, particularly for the Earth and Mercury. Indeed, these two planets could have formed, at least partly, from EC materials (e.g. [2, 3, 4]). The sulfur content in silicate melts depends on the melt composition but also on pressure (P), temperature (T) and oxygen fugacity fO2. Unfortunately, there is no model of general validity in a wide range of P-T-fO2-composition which describes precisely the evolution of sulfur content in silicate melts, even if the main trends are now known. The second goal of this study is to constrain the sulfur content in silicate melts under reducing conditions and different temperatures.

  3. Formation of planetary debris discs around white dwarfs I: Tidal disruption of an extremely eccentric asteroid

    CERN Document Server

    Veras, Dimitri; Bonsor, Amy; Gaensicke, Boris T

    2014-01-01

    25%-50% of all white dwarfs (WDs) host observable and dynamically active remnant planetary systems based on the presence of close-in circumstellar dust and gas and photospheric metal pollution. Currently-accepted theoretical explanations for the origin of this matter include asteroids that survive the star's giant branch evolution at au-scale distances and are subsequently perturbed onto WD-grazing orbits following stellar mass loss. In this work we investigate the tidal disruption of these highly-eccentric (e > 0.98) asteroids as they approach and tidally disrupt around the WD. We analytically compute the disruption timescale and compare the result with fully self-consistent numerical simulations of rubble piles by using the N-body code PKDGRAV. We find that this timescale is highly dependent on the orbit's pericentre and largely independent of its semimajor axis. We establish that spherical asteroids readily break up and form highly eccentric collisionless rings, which do not accrete onto the WD without add...

  4. Broad H$\\alpha$ Wing Formation in the Planetary Nebula IC 4997

    CERN Document Server

    Lee, H W; Lee, Hee-Won; Hyung, Siek

    1999-01-01

    The young and compact planetary nebula IC 4997 is known to exhibit very broad wings with a width exceeding $5000 {\\rm km s^{-1}}$ around H$\\alpha$. We propose that the broad wings are formed through Rayleigh-Raman scattering involving atomic hydrogen, by which Ly$\\beta$ photons with a velocity width of a few $10^2 {\\rm km s^{-1}}$ are converted to optical photons and fill the H$\\alpha$ broad wing region. The conversion efficiency reaches 0.6 near the line center where the scattering optical depth is much larger than 1 and rapidly decreases in the far wings.Assuming that close to the central star there exists an unresolved inner compact core of high density, $n_H\\sim 10^{9-10} {\\rm cm^{-3}}$, we use the photoionization code `CLOUDY' to show that sufficient Ly$\\beta$ photons for scattering are produced. Using a top-hat incident profile for the Ly$\\beta$ flux and a scattering region with a H~I column density $N_{HI}=2\\times 10^{20} {\\rm cm^{-2}}$ and a substantial covering factor, we perform a profile fitting an...

  5. Geodynamics Project. US progress report, 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The recommendations of the US Geodynamics Committee relative to program activities are presented. US Program progress is reviewed in the following areas: fine structure of the crust and upper mantle; continuous seismic reflection profiling of the deep basement: Hardeman County, Texas; Mid-Atlantic Ridge - evolution of oceanic lithosphere; internal processes and properties; crystal growing; chemical differentiation of magmas; geodynamic modelling; magnetic problems; plate boundaries; plate interiors; geodynamic syntheses; and eustatic cycles of sea level changes. (MHR)

  6. Planetary Rings

    CERN Document Server

    Tiscareno, Matthew S

    2011-01-01

    Planetary rings are the only nearby astrophysical disks, and the only disks that have been investigated by spacecraft. Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 1e-7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close-range and in real-time in planetary rings. We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The main rings of Saturn comprise our system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty...

  7. Geodynamics map of northeast Asia

    Science.gov (United States)

    Parfenov, Leonid M.; Khanchuk, Alexander I.; Badarch, Gombosuren; Miller, Robert J.; Naumova, Vera V.; Nokleberg, Warren J.; Ogasawara, Masatsugu; Prokopiev, Andrei V.; Yan, Hongquan

    2013-01-01

    This map portrays the geodynamics of Northeast Asia at a scale of 1:5,000,000 using the concepts of plate tectonics and analysis of terranes and overlap assemblages. The map is the result of a detailed compilation and synthesis at 5 million scale and is part of a major international collaborative study of the mineral resources, metallogenesis, and tectonics of northeast Asia conducted from 1997 through 2002 by geologists from earth science agencies and universities in Russia, Mongolia, northeastern China, South Korea, Japan, and the USA.

  8. Computational Infrastructure for Geodynamics (CIG)

    Science.gov (United States)

    Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.

    2004-12-01

    Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to

  9. Japanese Exploration to Solar System Small Bodies: Rewriting a Planetary Formation Theory with Astromaterial Connection (Invited)

    Science.gov (United States)

    Yano, H.

    2013-12-01

    space probe with hybrid propulsion of solar photon sail and ion engine system that will enable Japan to reach out deep interplanetary space beyond the main asteroid belt. Since 2002, Japanese scientists and engineers have been investigating the solar power sail mission to Jupiter Trojans and interdisciplinary cruising science, such as infrared observation of zodiacal light due to cosmic dust, which at the same time hit a large cross section of the solar sail membrane dust detector, concentrating inside the main asteroid belt. Now the mission design has extended from cruising and fly-by only to rendezvous and sample return options from Jupiter Trojan asteroids. Major scientific goal of Jupiter Trojan exploration is to constrain its origin between two competing hypothesis such as remnants of building blocks the Jovian system as the classic model and the second generation captured EKBOs as the planetary migration models, in which several theories are in deep discussion. Also important is to better understand mixing process of material and structure of the early Solar System just beyond snow line. The current plan involves its launch and both solar photon and IES accelerations combined with Earth and Jupiter gravity assists in 2020's, detailed rendezvous investigation of a few 10-km sized D-type asteroid among Jupiter Trojans in early 2030's and an optional sample return of its surface materials to the Earth in late 2030's.

  10. Monte Carlo simulation of the jet stream process. [planetary/satellite systems formation

    Science.gov (United States)

    Ip, W.-H.

    1977-01-01

    A Monte Carlo model is formulated to simulate the orbital evolution of a system of colliding particles. It is found that inelastic collision alone (even if the impact energy dissipation from collision is very large) does not lead to the formation of a narrow ring-like jet stream; instead, a flat disk structure, similar to Saturn's rings, usually results. To produce the radial focusing effect, it is argued that additional dynamical effects, which would strengthen the collisional interaction between the particles in near-circular orbits, is needed.

  11. Nuclear planetology: understanding planetary mantle and crust formation in the light of nuclear and particle physics

    Science.gov (United States)

    Roller, Goetz

    2017-04-01

    conceptual model constraining the evolution of a rocky planet like Earth or Mercury from a stellar precursor of the oldest population to a Fe-C BLD, shifting through different spectral classes in a HR diagram after massive decompression and tremendous energy losses. In the light of WD/BLD cosmochronology [1], solar system bodies like Earth, Mercury and Moon are regarded as captured interlopers from the Galactic bulge, Earth and Moon possibly representing remnants of an old binary system. Such a preliminary scenario is supported by similar ages obtained from WD's for the Galactic halo [1] and, independently, by means of 187Re-232Th-238U nuclear geochronometry [3, 4], together with recent observations extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way [8]. This might be further elucidated in the near future by Th/U cosmochronometry based upon a nuclear production ratio Th/U = 0.96 [9] and additionally by means of a newly developed nucleogeochronometric age dating method for stellar spectroscopy [9-11]. The model shall stimulate geochemical data interpretation from a different perspective, to constrain the evolution and differentiation of planetary or lunar crusts and mantles in general. [1] Fontaine et al. (2001), Public. Astron. Soc. of the Pacific 113, 409-435. [2] Roller (2015), Abstract T34B-0407, AGU Spring Meeting 2015. [3] Roller (2016), Goldschmidt Conf. Abstr. 26, 2642. [4] Roller (2015), Goldschmidt Conf. Abstr. 25, 2672. [5] Roller (2015), Geophys. Res. Abstr. 18, EGU2016-33. [6] Arevalo et al. (2010), Chem. Geol. 271, 70-85. [7] Roller (2015), Geophys. Res. Abstr. 17, EGU2015-2399. [8] Howes et al. (2015), Nature 527, 484-487. [9] Roller (2016), JPS Conf. Proc., Nuclei in the Cosmos (NIC XIV), Niigata, Japan, subm. (NICXIV-001); NICXIV Abstr. #1570244284. [10] Roller (2016), JPS Conf. Proc., Nuclei in the Cosmos (NIC XIV), Niigata, Japan, subm. (NICXIV-002); NICXIV Abstr. #1570244285. [11] Roller (2016), JPS Conf. Proc., Nuclei in the

  12. Formation and X-ray Emission from Hot Bubbles in Planetary Nebulae. II. Hot bubble X-ray emission

    CERN Document Server

    Toalá, J A

    2016-01-01

    We present a study of the X-ray emission from numerical simulations of hot bubbles in planetary nebulae (PNe). High-resolution, two-dimensional, radiation-hydrodynamical simulations of the formation and evolution of hot bubbles in PNe, with and without thermal conduction, are used to calculate the X-ray emission and study its time-dependence and relationship to the changing stellar parameters. Instabilities in the wind-wind interaction zone produce clumps and filaments in the swept-up shell of nebular material. Turbulent mixing and thermal conduction at the corrugated interface can produce quantities of intermediate temperature and density gas between the hot, shocked wind bubble and the swept-up photoionized nebular material, which can emit in soft, diffuse X-rays. We use the CHIANTI software to compute synthetic spectra for the models and calculate their luminosities. We find that models both with conduction and those without can produce the X-ray temperatures and luminosities that are in the ranges reporte...

  13. The Formation of Free-Floating Brown Dwarves and Planetary-Mass Objects by Photo-Erosion of Prestellar Cores

    CERN Document Server

    Whitworth, A P

    2004-01-01

    We explore the possibility that, in the vicinity of an OB star, a prestellar core which would otherwise have formed an intermediate or low-mass star may form a free-floating brown dwarf or planetary-mass object, because the outer layers of the core are eroded by the ionizing radiation from the OB star before they can accrete onto the protostar at the centre of the core. The masses of objects formed in this way are given approximately by $\\sim 0.010 M_\\odot (a_{\\rm I} / 0.3 {\\rm km} {\\rm s}^{-1})^6 (\\dot{\\cal N}_{\\rm Lyc} / 10^{50} {\\rm s}^{-1})^{-1/3} (n_{\\rm 0} / 10^3 {\\rm cm}^{-3})^{-1/3} $, where $a_{\\rm I}$ is the isothermal sound speed in the neutral gas of the core, $\\dot{\\cal N}_{\\rm Lyc}$ is the rate of emission of Lyman continuum photons from the OB star (or stars), and $n_{\\rm 0}$ is the number-density of protons in the HII region surrounding the core. We conclude that the formation of low-mass objects by this mechanism should be quite routine, because the mechanism operates over a wide range of con...

  14. Planetary Formation and Evolution Revealed with a Saturn Entry Probe: The Importance of Noble Gases

    CERN Document Server

    Fortney, Jonathan J; Baraffe, Isabelle; Burrows, Adam; Dodson-Robinson, Sarah E; Chabrier, Gilles; Guillot, Tristan; Helled, Ravit; Hersant, Franck; Hubbard, William B; Lissauer, Jack J; Marley, Mark S

    2009-01-01

    The determination of Saturn's atmospheric noble gas abundances are critical to understanding the formation and evolution of Saturn, and giant planets in general. These measurements can only be performed with an entry probe. A Saturn probe will address whether enhancement in heavy noble gases, as was found in Jupiter, are a general feature of giant planets, and their ratios will be a powerful constraint on how they form. The helium abundance will show the extent to which helium has phase separated from hydrogen in the planet's deep interior. Jupiter's striking neon depletion may also be tied to its helium depletion, and must be confirmed or refuted in Saturn. Together with Jupiter's measured atmospheric helium abundance, a consistent evolutionary theory for both planets, including "helium rain" will be possible. We will then be able to calibrate the theory of the evolution of all giant planets, including exoplanets. In addition, high pressure H/He mixtures under giant planet conditions are an important area of...

  15. Moon formation and orbital evolution in extrasolar planetary systems - A literature review

    Directory of Open Access Journals (Sweden)

    Lewis K.

    2011-02-01

    Full Text Available With over 450 extrasolar planets detected, the possibility of searching for moons of these planets is starting to be investigated. In order to make efficient use of limited observing resources, it would be useful if the types of moons that a given planet is likely to host was known prior to detection. Fortunately, informed by simulations of moon formation in our own solar system, as well as more general theoretical investigations of moon orbital evolution, such information is now available. I present a review of literature results concerning the likely physical and orbital properties of extra-solar moons, and how these properties are predicted to vary with the properties of their host planet.

  16. Constraints on planetary formation from the discovery & study of transiting Extrasolar Planets

    Science.gov (United States)

    Triaud, A. H. M. J.

    2011-08-01

    After centuries of wondering about the presence of other worlds outside our Solar System, the first extrasolar planets were discovered about fifteen years ago. Since the quest continued. The greatest discovery of our new line of research, exoplanetology, has probably been the large diversity that those new worlds have brought forward; a diversity in mass, in size, in orbital periods, as well as in the architecture of the systems we discover. Planets very different from those composing our system have been detected. As such, we found hot Jupiters, gas giants which orbital period is only of a few days, mini-Neptunes, bodies five to ten time the mass of the Earth but covered by a thick gas layer, super-Earths of similar masses but rocky, lava worlds, and more recently, maybe the first ocean planet. Many more surprises probably await us. This thesis has for subject this very particular planet class: the hot Jupiters. Those astonishing worlds are still badly understood. Yet, thanks to the evolution of observational techniques and of the treatment of their signals, we probably have gathered as much knowledge from these worlds, than what was known of our own gas giants prior to their visit by probes. They are laboratories for a series of intense physical phenomena caused by their proximity to their star. Notably, these planets are found in average much larger than expected. In addition to these curiosities, their presence so close to their star is abnormal, the necessary conditions for the formation of such massive bodies, this close, not being plausible. Thus it is more reasonable to explain their current orbits by a formation far from their star, followed by an orbital migration. It is on this last subject that this thesis is on: the origin of hot Jupiters. The laws of physics are universal. Therefore, using the same physical phenomena, we need to explain the existence of hot Jupiters, while explaining why the Jupiter within our Solar System is found five times the

  17. Geodynamic investigation of the processes that control Lu-Hf isotopic differences between different mantle domains and the crust

    Science.gov (United States)

    Jones, Rosie; van Keken, Peter; Hauri, Erik; Vervoort, Jeff; Ballentine, Chris J.

    2016-04-01

    The chemical and isotopic composition of both the Earth's mantle and the continental crust are greatly influenced by subduction zone processes, such as the formation of continental crust through arc volcanism and the recycling of surface material into the deep mantle. Here we use a combined geodynamical-geochemical approach to investigate the long term role of subduction on the Lu-Hf isotopic evolution of the mantle and the continental crust. We apply the geodynamic model developed by Brandenburg et al., 2008. This model satisfies the geophysical constraints of oceanic heat flow and average plate velocities, as well as geochemical observations such as 40Ar in the atmosphere, and reproduces the geochemical distributions observed in multiple isotope systems which define the HIMU, MORB and EM1 mantle endmembers. We extend this application to investigate the detail of terrestrial Lu-Hf isotope distribution and evolution, and specifically to investigate the role of sediment recycling in the generation of EM2 mantle compositions. The model has been updated to produce higher resolution results and to include a self-consistent reorganisation of the plates with regions of up-/down-wellings. The model assumes that subduction is initiated at 4.5 Ga and that a transition from 'dry' to 'wet' subduction occurred at 2.5 Ga. The modelling suggests that the epsilon Hf evolution of the upper mantle can be generated through the extraction and recycling of the oceanic crust, and that the formation of continental crust plays a lesser role. Our future intention is to utilise the model presented here to investigate the differences observed in the noble gas compositions (e.g., 40Ar/36Ar, 3He/4He) of MORB and OIB. Brandenburg, J.P., Hauri, E.H., van Keken, P.E., Ballentine, C.J., 2008. Earth and Planetary Science Letters 276, 1-13.

  18. Geodynamic Reconstructions of the Australides—1: Palaeozoic

    Directory of Open Access Journals (Sweden)

    Gérard M. Stampfli

    2013-06-01

    Full Text Available A full global geodynamical reconstruction model has been developed at the University of Lausanne over the past 20 years, and is used herein to re-appraise the evolution of the Australides from 600 to 200 Ma. Geological information of geodynamical interest associated with constraints on tectonic plate driving forces allow us to propose a consistent scenario for the evolution of Australia–Antarctica–proto-Pacific system. According to our model, most geodynamic units (GDUs of the Australides are exotic in origin, and many tectonic events of the Delamerian Cycle, Lachlan SuperCycle, and New England SuperCycle are regarded as occurring off-shore Gondwana.

  19. The Computational Infrastructure for Geodynamics as a Community of Practice

    Science.gov (United States)

    Hwang, L.; Kellogg, L. H.

    2016-12-01

    Computational Infrastructure for Geodynamics (CIG), geodynamics.org, originated in 2005 out of community recognition that the efforts of individual or small groups of researchers to develop scientifically-sound software is impossible to sustain, duplicates effort, and makes it difficult for scientists to adopt state-of-the art computational methods that promote new discovery. As a community of practice, participants in CIG share an interest in computational modeling in geodynamics and work together on open source software to build the capacity to support complex, extensible, scalable, interoperable, reliable, and reusable software in an effort to increase the return on investment in scientific software development and increase the quality of the resulting software. The group interacts regularly to learn from each other and better their practices formally through webinar series, workshops, and tutorials and informally through listservs and hackathons. Over the past decade, we have learned that successful scientific software development requires at a minimum: collaboration between domain-expert researchers, software developers and computational scientists; clearly identified and committed lead developer(s); well-defined scientific and computational goals that are regularly evaluated and updated; well-defined benchmarks and testing throughout development; attention throughout development to usability and extensibility; understanding and evaluation of the complexity of dependent libraries; and managed user expectations through education, training, and support. CIG's code donation standards provide the basis for recently formalized best practices in software development (geodynamics.org/cig/dev/best-practices/). Best practices include use of version control; widely used, open source software libraries; extensive test suites; portable configuration and build systems; extensive documentation internal and external to the code; and structured, human readable input formats.

  20. COMMENTARY ON THE PAPER "THE H-R DIAGRAMS OF YOUNG CLUSTERS AND THE FORMATION OF PLANETARY SYSTEMS" BY POVEDA (1965

    Directory of Open Access Journals (Sweden)

    L. F. Rodríguez

    2011-01-01

    Full Text Available I present a review on the paper by A. Poveda, 1965, BOTT, 4, 26, 15, where he discusses from a theoretical point of view the expected characteristics of a forming star. Originally motivated to explain two apparent puzzles of star formation, the existence of young stars below the main sequence and the Faulkner-Griffiths- Hoyle paradox, the paper went on to predict phenomena that were later confirmed observationally and that constitute important part of our present knowledge of stellar and planetary formation.

  1. Planetary influence in the gap of a protoplanetary disk: structure formation and an application to V1247 Ori

    Science.gov (United States)

    Alvarez-Meraz, R.; Nagel, E.; Rendon, F.; Barragan, O.

    2017-10-01

    We present a set of hydrodynamical models of a planetary system embedded in a protoplanetary disk in order to extract the number of dust structures formed in the disk, their masses and sizes, within optical depth ranges τ≤0.5, 0.5an increase in the number of planets implies an increase in the creation rate of massive structures; (2) a lower planetary mass accretion corresponds to slower time effects for optically thin structures; (3) an increase in the number of planets allows a faster evolution of the structures in the Hill radius for the different optical depth ranges of the inner planets. An ad-hoc simulation was run using the available information of the stellar system V1247 Ori, leading to a model of a planetary system which explains the SED and is consistent with interferometric observations of structures.

  2. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  3. Chemical Clues on the Formation of Planetary Systems: C/O vs Mg/Si for HARPS GTO Sample

    CERN Document Server

    Mena, Elisa Delgado; González-Hernández, Jonay I; Bond, Jade C; Santos, Nuno C; Udry, Stephane; Mayor, Mayor

    2010-01-01

    Theoretical studies suggest that C/O and Mg/Si are the most important elemental ratios in determining the mineralogy of terrestrial planets. The C/O ratio controls the distribution of Si among carbide and oxide species, while Mg/Si gives information about the silicate mineralogy. We present a detailed and uniform study of C, O, Mg and Si abundances for 61 stars with detected planets and 270 stars without detected planets from the homogeneous high-quality unbiased HARPS GTO sample, together with 39 more planet-host stars from other surveys. We determine these important mineralogical ratios and investigate the nature of the possible terrestrial planets that could have formed in those planetary systems. We find mineralogical ratios quite different from those of the Sun, showing that there is a wide variety of planetary systems which are not similar to Solar System. Many of planetary host stars present a Mg/Si value lower than 1, so their planets will have a high Si content to form species such as MgSiO$_{3}$. Th...

  4. StagLab: Post-Processing and Visualisation in Geodynamics

    Science.gov (United States)

    Crameri, Fabio

    2017-04-01

    Despite being simplifications of nature, today's Geodynamic numerical models can, often do, and sometimes have to become very complex. Additionally, a steadily-increasing amount of raw model data results from more elaborate numerical codes and the still continuously-increasing computational power available for their execution. The current need for efficient post-processing and sensible visualisation is thus apparent. StagLab (www.fabiocrameri.ch/software) provides such much-needed strongly-automated post-processing in combination with state-of-the-art visualisation. Written in MatLab, StagLab is simple, flexible, efficient and reliable. It produces figures and movies that are both fully-reproducible and publication-ready. StagLab's post-processing capabilities include numerous diagnostics for plate tectonics and mantle dynamics. Featured are accurate plate-boundary identification, slab-polarity recognition, plate-bending derivation, mantle-plume detection, and surface-topography component splitting. These and many other diagnostics are derived conveniently from only a few parameter fields thanks to powerful image processing tools and other capable algorithms. Additionally, StagLab aims to prevent scientific visualisation pitfalls that are, unfortunately, still too common in the Geodynamics community. Misinterpretation of raw data and exclusion of colourblind people introduced with the continuous use of the rainbow (a.k.a. jet) colour scheme is just one, but a dramatic example (e.g., Rogowitz and Treinish, 1998; Light and Bartlein, 2004; Borland and Ii, 2007). StagLab is currently optimised for binary StagYY output (e.g., Tackley 2008), but is adjustable for the potential use with other Geodynamic codes. Additionally, StagLab's post-processing routines are open-source. REFERENCES Borland, D., and R. M. T. Ii (2007), Rainbow color map (still) considered harmful, IEEE Computer Graphics and Applications, 27(2), 14-17. Light, A., and P. J. Bartlein (2004), The end of

  5. Temporal observations of a linear sand dune in the Simpson Desert, central Australia: Testing models for dune formation on planetary surfaces

    Science.gov (United States)

    Craddock, Robert A.; Tooth, Stephen; Zimbelman, James R.; Wilson, Sharon A.; Maxwell, Ted A.; Kling, Corbin

    2015-10-01

    Linear dunes are the most common dune form found on planetary surfaces, yet questions remain about their formation. Temporal observations of a linear dune located in the Simpson Desert of central Australia were made to monitor dune movement and to test competing hypotheses regarding linear dune formation. Our observations were collected on three separate occasions from 2006 to 2014. Rebar stakes were placed in a gridded pattern so that multiple measurements of sand thickness, GPS surveys, and photographs could be taken at the same locations over time. We observed widespread reworking of sand on and around the dune crest, with sand accumulation locally exceeding a meter between surveys. Overall, the height of the dune crest increased by several centimeters. We also observed fluctuations in the sand cover in the adjacent swales that often exceeded 2-3 cm between surveys, yet we did not observe any appreciable changes in the position of the dune's downwind terminus. Weather data indicate that the effective sand-transporting winds in the Simpson are widely unimodal. Net sediment flux (resultant drift direction) is toward the north-northwest, locally at an oblique angle to dune orientation. Collectively, our results suggest that the linear dune is actively maintained by vertical accretion. The implications from our observations are that linear dunes on other planetary surfaces could form in wind regimes that are widely unimodal, even where the resultant drift direction is locally oblique to dune orientation. In particular, such findings may provide support for global circulation models of Titan.

  6. Water Fountains in the Sky: Streaming Water Jets from Aging Star Provide Clues to Planetary-Nebula Formation

    Science.gov (United States)

    2002-06-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found that an aging star is spewing narrow, rotating streams of water molecules into space, like a jerking garden hose that has escaped its owner's grasp. The discovery may help resolve a longstanding mystery about how the stunningly beautiful objects called planetary nebulae are formed. Artist's Conception of W43A. Artist's conception of W43A, with the aging star surrounded by a disk of material and a precessing, twisted jet of molecules streaming away from it in two directions. Credit: Kirk Woellert/National Science Foundation. The astronomers used the VLBA, operated by the National Radio Astronomy Observatory, to study a star called W43A. W43A is about 8,500 light-years from Earth in the direction of the constellation Aquila, the eagle. This star has come to the end of its normal lifetime and, astronomers believe, is about to start forming a planetary nebula, a shell of brightly glowing gas lit by the hot ember into which the star will collapse. "A prime mystery about planetary nebulae is that many are not spherical even though the star from which they are ejected is a sphere," said Phillip Diamond, director of the MERLIN radio observatory at Jodrell Bank in England, and one of the researchers using the VLBA. "The spinning jets of water molecules we found coming from this star may be one mechanism for producing the structures seen in many planetary nebulae," he added. The research team, led by Hiroshi Imai of Japan's National Astronomical Observatory (now at the Joint Institute for VLBI in Europe, based in the Netherlands), also includes Kumiko Obara of the Mizusawa Astrogeodynamics Observatory and Kagoshima University; Toshihiro Omodaka, also of Kagoshima University; and Tetsuo Sasao of the Japanese National Astronomical Observatory. The scientists reported their findings in the June 20 issue of the scientific journal Nature. As stars similar to our Sun

  7. Electrical conductivity of Jupiter's shallow interior and the formation of a resonant of a resonant planetary-ionospheric cavity

    Science.gov (United States)

    Sentman, D. D.

    1990-01-01

    The present consideration of hydrogenic atmospheric reactions on Jupiter, to a depth of 4000 km, notes the primary ion constituents at these depths to be both positive and negative ions of molecular hydrogen contributing less than 20 percent to total electrical conductivity by free electrons. An electrical surface defined by the boundary beneath which the interior is electrically conducting exists at depths which vary according to EM wave frequency, from 1100 km for 1 mHz to 3000 for 1 MHz. The presence of a lower electrical boundary within the shallow interior suggests that a planetary-ionosphere resonant cavity analogous to the earth-ionosphere cavity may exist.

  8. The Planetary Project

    Science.gov (United States)

    Pataki, Louis P.

    2016-06-01

    This poster presentation presents the Planetary Project, a multi-week simulated research experience for college non-science majors. Students work in research teams of three to investigate the properties of a fictitious planetary system (the “Planetary System”) created each semester by the instructor. The students write team and individual papers in which they use the available data to draw conclusions about planets, other objects or general properties of the Planetary System and in which they compare, contrast and explain the similarities between the objects in the Planetary System and comparable objects in the Solar System.Data about the orbital and physical properties of the planets in the Planetary System are released at the start of the project. Each week the teams request data from a changing pool of available data. For example, in week one pictures of the planets are available. Each team picks one planet and the data (pictures) on that planet are released only to that team. Different data are available in subsequent weeks. Occasionally a news release to all groups reports an unusual occurrence - e.g. the appearance of a comet.Each student acts as principal author for one of the group paper which must contain a description of the week’s data, conclusions derived from that data about the Planetary System and a comparison with the Solar System. Each students writes a final, individual paper on a topic of their choice dealing with the Planetary System in which they follow the same data, conclusion, comparison format. Students “publish” their papers on a class-only restricted website and present their discoveries in class talks. Data are released to all on the website as the related papers are “published.” Additional papers commenting on the published work and released data are encouraged.The successes and problems of the method are presented.

  9. Geodynamics in Modular Course System at Vienna High School

    Science.gov (United States)

    Pitzl-Reinbacher, Robert

    2017-04-01

    In Austria there are currently some major reforms concerning high school education underway. At our school, the Bundesgymnasium and Bundesrealgymnasium Draschestrasse, a school belonging to the Vienna Bilingual Schooling branch, we have developed a course system in which pupils can select courses and determine individually which areas of study they want to focus on. Specially devised courses have been developed which fit within the framework of natural and applied sciences but go beyond the basic curriculum in physics. Geodynamics is the title of one of these courses, with an emphasis on weather, climate and geodynamic processes of the earth's crust. The course „The restless earth" deals specifically with plate tectonics, vulcanism, formation of mountains and processes such as ocean currents and the physics involved. Apart from theoretical basics we use manifold media and approaches concerning visualization: graphics, map data taken from Google Maps, satellite pictures, and others. The knowledge acquired in this course is broadened and consolidated by means of excursions to the Vienna Natural History Museum where additional instructional materials and visual aids are on display. Based on this experience pupils are requested to hold presentations (individually or in groups) at the end of the course.

  10. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  11. Forming different planetary systems

    Institute of Scientific and Technical Information of China (English)

    Ji-Lin Zhou; Ji-Wei Xie; Hui-Gen Liu; Hui Zhang; Yi-Sui Sun

    2012-01-01

    With the increasing number of detected exoplanet samples,the statistical properties of planetary systems have become much clearer.In this review,we summarize the major statistical results that have been revealed mainly by radial velocity and transiting observations,and try to interpret them within the scope of the classical core-accretion scenario of planet formation,especially in the formation of different orbital architectures for planetary systems around main sequence stars.Based on the different possible formation routes for different planet systems,we tentatively classify them into three major catalogs:hot Jupiter systems,standard systems and distant giant planet systems.The standard systems can be further categorized into three sub-types under different circumstances:solar-like systems,hot Super-Earth systems,and subgiant planet systems.We also review the theory of planet detection and formation in binary systems as well as planets in star clusters.

  12. ExoPTF Science Uniquely Enabled by Far-IR Interferometry: Probing the Formation of Planetary Systems, and Finding and Characterizing Exoplanets

    CERN Document Server

    Leisawitz, David; Bender, Chad; Benford, Dominic; Calzetti, Daniella; Carpenter, John; Danchi, William C; Fich, Michel; Fixsen, Dale; Gezari, Daniel Y; Griffin, Matt; Harwit, Martin; Kogut, Alan J; Langer, William D; Lawrence, Charles; Lester, Dan; Mundy, Lee G; Najita, Joan; Neufeld, David; Pilbratt, Goran; Rinehart, Stephen; Roberge, Aki; Serabyn, Eugene; Shenoy, Sachindev; Shibai, Hiroshi; Silverberg, Robert; Staguhn, Johannes; Swain, Mark R; Unwin, Stephen C; Wright, Edward L; Yorke, Harold W

    2007-01-01

    By providing sensitive sub-arcsecond images and integral field spectroscopy in the 25 - 400 micron wavelength range, a far-IR interferometer will revolutionize our understanding of planetary system formation, reveal otherwise-undetectable planets through the disk perturbations they induce, and spectroscopically probe the atmospheres of extrasolar giant planets in orbits typical of most of the planets in our solar system. The technical challenges associated with interferometry in the far-IR are greatly relaxed relative to those encountered at shorter wavelengths or when starlight nulling is required. A structurally connected far-IR interferometer with a maximum baseline length of 36 m can resolve the interesting spatial structures in nascent and developed exoplanetary systems and measure exozodiacal emission at a sensitivity level critical to TPF-I mission planning. The Space Infrared Interferometric Telescope was recommended in the Community Plan for Far-IR/Submillimeter Space Astronomy, studied as a Probe-cl...

  13. Precise geodynamic measurements in South America

    Science.gov (United States)

    Groten, E.

    First high precision gravity measurements carried out in 1984 were repeated in November 1987 when in a wider frame, ranging from Santa Cruz de la Sierra (Bolivia) down to Santiago de Chile and Mendoza (Argentina), a regional densified network in Northern Chile was observed. The carefully monumented regional network extends from the earthquake-active coastal area in Chile up to Salta in Argentina. The repeated measurements are considered as a first step in a longtime study where geometric vertical control will be provided by GPS-measurements. Additional geodynamic information is provided by parallel seismic and other observations. Special interest arose from the fact that briefly after the first observations in 1984 significant earthquake deformation occurred in the area of Mendoza and Santiago de Chile. As far as gravimetry is concerned, all possible error sources are being carefully considered where also absolute measurements in view of scaling errors are planned. Reference is being made with respect to those areas which appear to be decoupled from the well known uplift of the High Andes. A detailed discussion and analysis of gravimetric data is presented. Correlation with geodynamic phenomena is studied. Future prospects of the general concept "GPS-gravimetry" as a geodynamic tool for studying vertical phenomena are interpreted.

  14. Strongly Interacting Planetary Systems

    Science.gov (United States)

    Ford, Eric

    2017-01-01

    Both ground-based Doppler surveys and NASA's Kepler mission have discovered a diversity of planetary system architectures that challenge theories of planet formation. Systems of tightly-packed or near-resonant planets are particularly useful for constraining theories of orbital migration and the excitation of orbital eccentricities and inclinations. In particular, transit timing variations (TTVs) provide a powerful tool to characterize the masses and orbits of dozens of small planets, including many planets at orbital periods beyond the reach of both current Doppler surveys and photoevaporation-induced atmospheric loss. Dynamical modeling of these systems has identified some ``supper-puffy'' planets, i.e., low mass planets with surprisingly large radii and low densities. I will describe a few particularly interesting planetary systems and discuss the implications for the formation of planets ranging from gaseous super-Earth-size planets to rocky planets the size of Mars.

  15. CRYOGENESIS AND GEODYNAMICS OF ICING VALLEYS

    Directory of Open Access Journals (Sweden)

    V. R. Alekseyev

    2015-09-01

    Full Text Available Due to local groundwater seeping and freezing in layers that accumulate over each other and create large ice clusters on the ground surface, specific conditions of energy and mass transfer are created in the atmosphere–soil–lithosphere system. In winter, the vertical temperature distribution curve is significantly deformed due to heat emission from the water layer above the ice cover during its freezing, and a thermocline is thus formed. Deformation of the temperature curve is gradually decreasing in size downward the profile and decays at the interface of frozen and thaw rocks. Values and numbers of temperature deviations from a 'normal' value depend on heat reserves of aufeis water and the number of water seeps/discharges at a given location. The production of the thermocline alters freezing conditions for underlying ground layers and changes the mechanism of ice saturation, thus leading to formation of two-layer ice-ground complexes (IGC. IGCs are drastically different from cryogenic formations in the neighbouring sections of the river valley. Based on genetic characteristics and the ratios of components in the surface and subsurface layers, seven types of aufeis IGCs are distinguished: massive-segregation, cement-basal, layered-segregation, basal-segregation, vacuum-filtration, pressure-injection, and fissure-vein. Annual processes of surface and subsurface icing and ice ablation are accompanied by highly hazardous geodynamic phenomena, such as winter flooding, layered water freezing, soil heaving/pingo, thermokarst and thermal erosion. Combined, these processes lead to rapid and often incidental reconfigurations of the surface and subsurface runoff channels, abrupt uplifting and subsiding of the ground surface, decompaction and 'shaking-up' of seasonally freezing/thawing rocks, thereby producing exceptionally unfavourable conditions for construction and operation of engineering structures.Formation and development of river networks are

  16. The star formation histories of local group dwarf galaxies. I. Hubble space telescope/wide field planetary camera 2 observations

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger Street, Las Cruces, NM 88003 (United States); Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F., E-mail: drw@ucsc.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-07-10

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 10{sup 5} M{sub ☉} to 30% for galaxies with M > 10{sup 7} M{sub ☉}) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.

  17. Gravity and low-frequency geodynamics

    CERN Document Server

    Teisseyre, Roman

    1989-01-01

    This fourth volume in the series Physics and Evolution of the Earth's Interior, provides a comprehensive review of the geophysical and geodetical aspects related to gravity and low-frequency geodynamics. Such aspects include the Earth's gravity field, geoid shape theory, and low-frequency phenomena like rotation, oscillations and tides.Global-scale phenomena are treated as a response to source excitation in spherical Earth models consisting of several shells: lithosphere, mantle, core and sometimes also the inner solid core. The effect of gravitation and rotation on the Earth's shape is anal

  18. Planetary Society

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  19. CHARACTERIZING THE COOL KOIs. IV. KEPLER-32 AS A PROTOTYPE FOR THE FORMATION OF COMPACT PLANETARY SYSTEMS THROUGHOUT THE GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Jonathan J.; Johnson, John Asher; Morton, Timothy D.; Montet, Benjamin T.; Muirhead, Philip S. [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Crepp, Justin R. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Fabrycky, Daniel C., E-mail: jswift@astro.caltech.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States)

    2013-02-10

    The Kepler space telescope has opened new vistas in exoplanet discovery space by revealing populations of Earth-sized planets that provide a new context for understanding planet formation. Approximately 70% of all stars in the Galaxy belong to the diminutive M dwarf class, several thousand of which lie within Kepler's field of view, and a large number of these targets show planet transit signals. The Kepler M dwarf sample has a characteristic mass of 0.5 M {sub Sun} representing a stellar population twice as common as Sun-like stars. Kepler-32 is a typical star in this sample that presents us with a rare opportunity: five planets transit this star, giving us an expansive view of its architecture. All five planets of this compact system orbit their host star within a distance one-third the size of Mercury's orbit, with the innermost planet positioned a mere 4.3 stellar radii from the stellar photosphere. New observations limit possible false positive scenarios, allowing us to validate the entire Kepler-32 system making it the richest known system of transiting planets around an M dwarf. Based on considerations of the stellar dust sublimation radius, a minimum mass protoplanetary nebula, and the near period commensurability of three adjacent planets, we propose that the Kepler-32 planets formed at larger orbital radii and migrated inward to their present locations. The volatile content inferred for the Kepler-32 planets and order of magnitude estimates for the disk migration rates suggest that these planets may have formed beyond the snow line and migrated in the presence of a gaseous disk. If true, then this would place an upper limit on their formation time of {approx}10 Myr. The Kepler-32 planets are representative of the full ensemble of planet candidates orbiting the Kepler M dwarfs for which we calculate an occurrence rate of 1.0 {+-} 0.1 planet per star. The formation of the Kepler-32 planets therefore offers a plausible blueprint for the formation

  20. 多机器人主—从行星式编队控制%Multi-robot Leader-follower Planetary Formation Control

    Institute of Scientific and Technical Information of China (English)

    郑秀娟; 吴怀宇; 程磊; 陈洋; 张玉礼

    2012-01-01

    研究了二阶积分器描述的多机器人主—从行星式编队控制问题,提出了将多机器人编队分解为每个机器人对各自具有时变速度的虚拟机器人的跟踪控制,使得每个机器人相对于虚拟机器人的位置与速度跟踪误差收敛为零且彼此不相碰撞,此时编队系统收敛到理想队形.在统一的算法框架下,分别实现了跟随者以领航者为中心的公转运动编队(revolution formation,RF)模式和跟随者与领航者保持期望距离、期望速度的编队(desired formation,DF)模式.公转运动编队(RF)模式适用于异构多机器人系统的环境探索任务;保持期望距离、期望速度的编队(DF)模式适用于自主水下机器人(AUV)、无人机(UAV)等合作与协调任务.应用李亚普诺夫稳定性理论对控制算法的稳定性进行了分析,并通过计算机仿真验证了该方法的有效性.%The leader-follower planetary formation control problem for multiple robots with double-integrator is studied, and an approach is proposed to transform the multi-robot formation control method into tracking control problem of desired virtual robot with varying velocity for each robot, and then the position and velocity tracking errors between each robot and its virtual robot converge to zero without any collision, while the formation system converges to the desired formation. Under the unified algorithm framework, two kinds of formation modes are realized respectively, including the followers moving around the leader formation (revolution Formation, RF) mode and the followers maintaining desired distance and velocity with the leader formation (desired formation, DF) mode. The RF mode is applied to the exploration mission for heterogeneous multi-robot system, and the DF mode is applied to the cooperation and coordination tasks for AUVs (autonomous underwater vehicle) and UAVs (unmanned aerial vehicle). The stability of the control algorithm is analyzed through Lyapunov

  1. The Star Formation Histories of Local Group Dwarf Galaxies I. Hubble Space Telescope / Wide Field Planetary Camera 2 Observations

    CERN Document Server

    Weisz, Daniel R; Skillman, Evan D; Holtzman, Jon; Gilbert, Karoline M; Dalcanton, Julianne J; Williams, Benjamin F

    2014-01-01

    We present uniformly measured star formation histories (SFHs) of 40 Local Group dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with $\\tau$ $\\sim$ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs (dTrans), and dwarf ellipticals (dEs) can be approximated by the combination of an exponentially declining SFH ($\\tau$ $\\sim$ 3-4 Gyr) for lookback ages $>$ 10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z=2 ranges considerably (80\\%...

  2. FORMATION OF LARGE-SCALE TECTONIC ELEMENTS FROM THE POSITION OF CENTRIFUGAL-INERTIAL FORCE ACTION

    Institute of Scientific and Technical Information of China (English)

    Molchanov Ⅴ. Ⅰ.; Paraev Ⅴ. Ⅴ.

    2005-01-01

    We describe the earlier unknown, when applied to global tectonics, centrifugal inertial mechanism of lithosphere plate moving under the effect of forces appearing as a result of Earth's planetary rotation. The mechanism stated gives an insight into global tectonics of plates with the indirect participation of emanation streams which, in their turn, are the derivatives of centrifugal and inertial forces of planetary motion. The application of this mechanism provides a logical explanation for the regularities of global tectogenesis including the formation of mountain ridges mainly of submeridional and sublatitudinal strike,and also the drift of continental plates from the east to the west and from the south to the north. The mechanism clarifies the significance of the Arctic and the Antarctic Circles as geodynamic barriers.

  3. Observing the planet formation time-scale by ground-based direct imaging of planetary companions to young nearby stars Gemini\\/Hokupa'a image of TWA-5

    CERN Document Server

    Neuhäuser, R; Brandner, W; Neuhaeuser, Ralph; Potter, Dan; Brandner, Wolfgang

    2001-01-01

    Many extra-solar planets and a few planetary systems have been found indirectly by small periodic radial velocity variations around old nearby stars. The orbital characteristics of most of them are different from the planets in our solar system. Hence, planet formation theories have to be revised. Therefore, observational constraints regarding young planets would be very valuable. We have started a ground-based direct imaging search for giant planets in orbit around young nearby stars. Here, we will motivate the sample selection and will present our direct imaging observation of the very low-mass (15 to 40 Jupiter masses) brown dwarf companion TWA-5 B in orbit around the nearby young star TWA-5 A, recently obtained with the 36-element curvature-sensing AO instrument Hokupa'a of the University of Hawai'i at the 8.3m Gemini-North telescope on Mauna Kea. We could achieve a FWHM of 64 mas and 25 % Strehl. We find significance evidence for orbital motion of B around A.

  4. Formation and Evolution of Planetary Systems (FEPS): Primordial Warm Dust Evolution From 3-30 Myr around Sun-like Stars

    CERN Document Server

    Silverstone, M D; Mamajek, E E; Hines, D C; Hillenbrand, L A; Najita, J; Pascucci, I; Bouwman, J; Kim, J S; Carpenter, J M; Stauffer, J R; Backman, D E; Moro-Martin, A; Henning, T; Wolf, S; Brooke, T Y; Padgett, D L

    2006-01-01

    We present data obtained with the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope (Spitzer) for a sample of 74 young (t < 30 Myr old) Sun-like (0.7 < M(star)/M(Sun) < 1.5) stars. These are a sub-set of the observations that comprise the Spitzer Legacy science program entitled the Formation and Evolution of Planetary Systems (FEPS). Using IRAC we study the fraction of young stars that exhibit 3.6-8.0 micron infrared emission in excess of that expected from the stellar photosphere, as a function of age from 3-30 Myr. The most straightforward interpretation of such excess emission is the presence of hot (300-1000K) dust in the inner regions (< 3 AU) of a circumstellar disk. Five out of the 74 young stars show a strong infrared excess, four of which have estimated ages of 3-10 Myr. While we detect excesses from 5 optically thick disks, and photospheric emission from the remainder of our sample, we do not detect any excess emission from optically thin disks at these wavelengths. We comp...

  5. Spatially Resolved 3 um Spectroscopy of IRAS 22272+5435 Formation and Evolution of Aliphatic Hydrocarbon Dust in Proto-Planetary Nebula

    CERN Document Server

    Goto, M; Hayano, Y; Iye, M; Kamata, Y; Kanzawa, T; Kobayashi, N; Minowa, Y; Saint-Jacques, D J; Takami, H; Takato, N; Terada, H

    2003-01-01

    We present medium-resolution 3 um spectroscopy of the carbon-rich proto-planetary nebula IRAS 22272+5435. Spectroscopy with the Subaru Telescope adaptive optics system revealed a spatial variation of hydrocarbon molecules and dust surrounding the star. The ro-vibrational bands of acetylene (C2H2) and hydrogen cyanide (HCN) at 3.0 um are evident in the central star spectra. The molecules are concentrated in the compact region near the center. The 3.3 and 3.4 um emission of aromatic and aliphatic hydrocarbons is detected at 600--1300 AU from the central star. The separation of spatial distribution between gas and dust suggests that the small hydrocarbon molecules are indeed the source of solid material, and that the gas leftover from the grain formation is being observed near the central star. The intensity of aliphatic hydrocarbon emission relative to the aromatic hydrocarbon emission decreases with distance from the central star. The spectral variation is well matched to that of a laboratory analog thermally ...

  6. Iranian Permanent GPS Network for Geodynamics (IPGN)

    Science.gov (United States)

    Tavakoli, F.; Nankali, H. R.; Sedighi, M.; Djamour, Y.; Mosavi, Z.

    2009-04-01

    Iran is one of the most tectonically active zone in Alpine-Himalayan seismic belt where has been shaken by largely destroying historical and instrumental earthquakes. Iran is located in the convergence zone between Arabia and Eurasia with a velocity of 22 mm/yr nearly to the North. The shortening between Arabian and Eurasian plates in Iran is mainly distributed on Zagros and Alborz belts. Despite the historical and scientific awareness of seismic hazard in Iran, unfortunately this country lacked a Continuous GPS network to study geodynamic and tectonic movements. Such geodetic measurement can play an important role to understand the tectonic deformation then to evaluate the seismic hazard on Iran. Since early 2005 National Cartographic Center of Iran (NCC) is establishing a continuous GPS network named Iranian Permanent GPS Network for Geodynamics (IPGN). Taking into account the number of provided GPS receivers, (108) we made a priority based on two factors of seismicity and population. At the first, in order to study general tectonic behavior in Iran 41 stations, globally distributed in whole of Iran, were been considered. Three other areas in the priority list were: Centeral Alborz, North-West of Iran and North-East of Iran. The rest of receivers, i.e. ~60, were considered for these areas as local networks. These four networks are daily processed and give us a continuous monitoring of any surface deformation. In this paper we try to present the results obtained from the network

  7. Limits of photosynthesis in extrasolar planetary systems for earth-like planets.

    Science.gov (United States)

    Franck, S; von Bloh, W; Bounama, C; Steffen, M; Schonberner, D; Schellnhuber, H J

    2001-01-01

    We present a general modeling scheme for investigating the possibility of photosynthesis-based life on extrasolar planets. The scheme focuses on the identification of the habitable zone in main-sequence-star planetary systems with planets of Earth mass and size. Our definition of habitability is based on the long-term possibility of photosynthetic biomass production as a function of mean planetary surface temperature and atmospheric CO2-content. All the astrophysical, climatological, biogeochemical, and geodynamic key processes involved in the generation of photosynthesis-driven life conditions are taken into account. Implicitly, a co-genetic origin of the central star and the orbiting planet is assumed. The numerical solution of an advanced geodynamic model yields realistic look-up diagrams for determining the limits of photosynthesis in extrasolar planetary systems, assuming minimum CO2 levels set by the demand of C4 photosynthesis.

  8. Characterizing the Cool KOIs IV: Kepler-32 as a prototype for the formation of compact planetary systems throughout the Galaxy

    CERN Document Server

    Swift, Jonathan J; Morton, Timothy D; Crepp, Justin R; Montet, Benjamin T; Fabrycky, Daniel C; Muirhead, Philip S

    2013-01-01

    The Kepler space telescope has opened new vistas in exoplanet discovery space by revealing populations of Earth-sized planets that provide a new context for understanding planet formation. Approximately 70% of all stars in the Galaxy belong to the diminutive M dwarf class, several thousand of which lie within Kepler's field of view, and a large number of these targets show planet transit signals. Kepler-32 is a typical star in the Kepler M dwarf sample that presents us with a rare opportunity: five planets transit this star giving us an expansive view of its architecture. All five planets of this compact system orbit their host star within a distance one third the size of Mercury's orbit with the innermost planet positioned a mere 4.3 stellar radii from the stellar photosphere. New observations limit possible false positive scenarios allowing us to validate the entire Kepler-32 system making it the richest known system of transiting planets around an M dwarf. Based on considerations of the stellar dust sublim...

  9. Scientific Data Analysis and Software Support: Geodynamics

    Science.gov (United States)

    Klosko, Steven; Sanchez, B. (Technical Monitor)

    2000-01-01

    The support on this contract centers on development of data analysis strategies, geodynamic models, and software codes to study four-dimensional geodynamic and oceanographic processes, as well as studies and mission support for near-Earth and interplanetary satellite missions. SRE had a subcontract to maintain the optical laboratory for the LTP, where instruments such as MOLA and GLAS are developed. NVI performed work on a Raytheon laser altimetry task through a subcontract, providing data analysis and final data production for distribution to users. HBG had a subcontract for specialized digital topography analysis and map generation. Over the course of this contract, Raytheon ITSS staff have supported over 60 individual tasks. Some tasks have remained in place during this entire interval whereas others have been completed and were of shorter duration. Over the course of events, task numbers were changed to reflect changes in the character of the work or new funding sources. The description presented below will detail the technical accomplishments that have been achieved according to their science and technology areas. What will be shown is a brief overview of the progress that has been made in each of these investigative and software development areas. Raytheon ITSS staff members have received many awards for their work on this contract, including GSFC Group Achievement Awards for TOPEX Precision Orbit Determination and the Joint Gravity Model One Team. NASA JPL gave the TOPEX/POSEIDON team a medal commemorating the completion of the primary mission and a Certificate of Appreciation. Raytheon ITSS has also received a Certificate of Appreciation from GSFC for its extensive support of the Shuttle Laser Altimeter Experiment.

  10. Magmatism and Geodynamics of Eastern Turkey

    Science.gov (United States)

    Keskin, Mehmet; Oyan, Vural; Sharkov, Evgenii V.; Chugaev, Andrey V.; Genç, Ş. Can; Ünal, Esin; Aysal, Namık; Duru, Olgun; Kavak, Orhan

    2013-04-01

    from the Afar plume reached beneath Eastern Anatolian by a mantle convection cell. We argue that both the uplift and the widespread volcanism across the region share a common reason: a major "slab-steepening and breakoff event beneath the large Eastern Anatolian Accretionary Complex". We argue that the older intermediate calc-alkaline volcanic products displaying a distinct subduction signature were possibly derived from the mantle wedge that opened out due to the steepening of the slab after the continental collision. Being unsupported by the subduction, the slab started to be steepened beneath the region, possibly resulting in widening, invasion and upwelling of the mantle wedge beneath E Anatolian accretionary complex. This possibly created a sucking effect on the asthenosphere, creating a mantle flow from the Pontides in the north to the south. The inferred asthenospheric flow perhaps pulled a portion of the asthenosphere that once had resided beneath the Pontide arc. Therefore, the subduction component was inherited from the previous Pontide arc magmatism. The widespread decompressional melting generated voluminous magmas with the aforementioned inherited subduction signature in a period from 15 to 10 Ma. The slab broke off beneath the region, creating a slab window at around 10 Ma. This caused the enriched asthenospheric mantle with no subduction component beneath the Arabian continent to flow to the north through a slab-window. As a result, the subduction-modified E Anatolian and the enriched Arabian asthenospheric mantles started to mix into each other. We interpret the eruption of the first alkaline lavas in the region at around 10 Ma (e.g. tephrites and alkaline basalts in the N of Lake Van) as the indication of the formation of the slab-window beneath the region due to tearing of the slab. The volcanism in the collision zone continued till the historical times. The region includes some of the largest volcanic centers (e.g. Ararat, Nemrut, Tendürek and S

  11. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphere-application to basin evolution

    OpenAIRE

    Elesin, Y; Gerya, T.; Artemieva, Irina; Thybo, Hans

    2010-01-01

    We present a new 2D finite difference code, Samovar, for high-resolution numerical modeling of complex geodynamic processes. Examples are collision of lithospheric plates (including mountain building and subduction) and lithosphere extension (including formation of sedimentary basins, regions of extended crust, and rift zones). The code models deformation of the lithosphere with viscoelastoplastic rheology, including erosion/sedimentation processes and formation of shear zones in areas of hig...

  12. Iron isotope systematics in planetary reservoirs

    Science.gov (United States)

    Sossi, Paolo A.; Nebel, Oliver; Foden, John

    2016-10-01

    Iron is the only polyvalent major element, and controls reduction-oxidation (redox) reactions in a host of geologic processes and reservoirs, from the mineral- to planetary-scale, on Earth and in space. Mass transfer of Fe is often accompanied by changes in bonding environment, meaning the resultant variation in bond-strength in crystals, liquids and gases induces stable isotope fractionation, even at high temperatures. In the absence of iron exchange, electron transfer can also affect iron's valence state and calculated oxygen fugacity (fO2), however its isotope composition remains unchanged. Thus, iron isotopes are a powerful tool to investigate processes that involve mass transfer, redox reactions and changes in bonding environment in planetary systems. Primitive chondritic meteorites show remarkable isotopic homogeneity, δ57 Fe = - 0.01 ± 0.01 ‰ (2SE), over a wide range of Fe/Mg vs Ni/Mg, a proxy for fO2 in the solar nebula. In chondrites, there are iron isotope differences between metal and silicates that become more pronounced at higher metamorphic grades. However, on a planetary scale, Mars and Vesta overlap with chondrites, preserving no trace of core formation or volatile depletion on these bodies. Upon assessment of pristine lherzolites, the Bulk Silicate Earth is heavier than chondrites (δ57 Fe = + 0.05 ± 0.01 ‰; 2SE), and similar to or slightly lighter than the Moon. That the mantles of some differentiated inner solar system bodies extend to heavier compositions (+ 0.2 ‰) than chondrites may principally result from volatile depletion either at a nebular or late accretion stage. Within terrestrial silicate reservoirs, iron isotopes provide insight into petrogenetic and geodynamic processes. Partial melting of the upper mantle produces basalts that are heavier than their sources, scaling with degree of melting and driving the increasingly refractory peridotite to lighter compositions. Mid-Ocean Ridge Basalts (MORBs) are homogeneous to δ57 Fe

  13. Pushing the Frontier of Data-Oriented Geodynamic Modeling: from Qualitative to Quantitative to Predictive

    Science.gov (United States)

    Liu, L.; Hu, J.; Zhou, Q.

    2016-12-01

    The rapid accumulation of geophysical and geological data sets poses an increasing demand for the development of geodynamic models to better understand the evolution of the solid Earth. Consequently, the earlier qualitative physical models are no long satisfying. Recent efforts are focusing on more quantitative simulations and more efficient numerical algorithms. Among these, a particular line of research is on the implementation of data-oriented geodynamic modeling, with the purpose of building an observationally consistent and physically correct geodynamic framework. Such models could often catalyze new insights into the functioning mechanisms of the various aspects of plate tectonics, and their predictive nature could also guide future research in a deterministic fashion. Over the years, we have been working on constructing large-scale geodynamic models with both sequential and variational data assimilation techniques. These models act as a bridge between different observational records, and the superposition of the constraining power from different data sets help reveal unknown processes and mechanisms of the dynamics of the mantle and lithosphere. We simulate the post-Cretaceous subduction history in South America using a forward (sequential) approach. The model is constrained using past subduction history, seafloor age evolution, tectonic architecture of continents, and the present day geophysical observations. Our results quantify the various driving forces shaping the present South American flat slabs, which we found are all internally torn. The 3-D geometry of these torn slabs further explains the abnormal seismicity pattern and enigmatic volcanic history. An inverse (variational) model simulating the late Cenozoic western U.S. mantle dynamics with similar constraints reveals a different mechanism for the formation of Yellowstone-related volcanism from traditional understanding. Furthermore, important insights on the mantle density and viscosity structures

  14. Planetary systems in star clusters

    CERN Document Server

    Kouwenhoven, M B N; Cai, Maxwell Xu; Spurzem, Rainer

    2016-01-01

    Thousands of confirmed and candidate exoplanets have been identified in recent years. Consequently, theoretical research on the formation and dynamical evolution of planetary systems has seen a boost, and the processes of planet-planet scattering, secular evolution, and interaction between planets and gas/debris disks have been well-studied. Almost all of this work has focused on the formation and evolution of isolated planetary systems, and neglect the effect of external influences, such as the gravitational interaction with neighbouring stars. Most stars, however, form in clustered environments that either quickly disperse, or evolve into open clusters. Under these conditions, young planetary systems experience frequent close encounters with other stars, at least during the first 1-10 Myr, which affects planets orbiting at any period range, as well as their debris structures.

  15. Constraints on Planetary Formation Scenarios

    Directory of Open Access Journals (Sweden)

    M. G. Parisi

    2006-01-01

    Full Text Available Para entender la variedad de sistemas planetarios extra-solares es necesario comprender mejor el proceso de formación del Sistema Solar. Por esta razón, investigamos la relación entre el origen de la oblicuidad de los planetas gigantes y el origen de sus satélites, aún de poner límites a las teorías actuales relacionadas con los procesos finales de formación de planetas. Hacemos énfasis en el sistema de Urano.

  16. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphere-application to basin evolution

    DEFF Research Database (Denmark)

    Elesin, Y; Gerya, T; Artemieva, Irina;

    2010-01-01

    We present a new 2D finite difference code, Samovar, for high-resolution numerical modeling of complex geodynamic processes. Examples are collision of lithospheric plates (including mountain building and subduction) and lithosphere extension (including formation of sedimentary basins, regions...... of extended crust, and rift zones). The code models deformation of the lithosphere with viscoelastoplastic rheology, including erosion/sedimentation processes and formation of shear zones in areas of high stresses. It also models steady-state and transient conductive and advective thermal processes including...... partial melting and magma transport in the lithosphere. The thermal and mechanical parts of the code are tested for a series of physical problems with analytical solutions. We apply the code to geodynamic modeling by examining numerically the processes of lithosphere extension and basin formation...

  17. NEW TYPE OF ELASTIC ROTATIONAL WAVES IN GEO-MEDIUM AND VORTEX GEODYNAMICS

    Directory of Open Access Journals (Sweden)

    Alexander V. Vikulin

    2015-09-01

    nonlinear wave mechanics of the geo-medium, admitting rotational movements of blocks. According to М.V. Stovas, V.Е. Khain and other researchers, rotation of the planet around its axis is of critical importance for understating the origin of geodynamic movements.Based on the review of results from the previous comprehensive geological and geophysical studies, a conclusion is made on the torque origin of rotating block geo-medium which is termed as Peive–Sedov–Sadovsky medium. Analyses of migration of earthquake foci and volcanic eruptions and movements of edges of tectonic plates provided grounds to design a principally new model, and this rotational model is described in the present publication. Blocks and plates interacting with each other in the model are interrelated by long-range elastic fields which comprise a uniform planetary geodynamic medium, i.e. ‘self-consistent’ state of the geo-medium. Briefly reviewed are data about vortex geological structures and rotary motions of blocks and plates; such data have been detected and recorded in abundance in a variety of geophysical fields. It is stressed that similar, in principle, vortex movements / flows are solutions of the well known Dirichlet–Dedekind–Riemann problem of rotating and gravitating liquid drop that is the problem of the Earth’s equilibrium shape. According to the proposed rotational model, geodynamic solutions of the rotational model combine geodynamic flows in the solution of the problem of the Earth’s equilibrium shape and geologic-geophysical vortex structures and movements on the Earth’s surface in one and the same class of phenomena. It is proposed to apply such solutions for establishing a new geological paradigm – new torque (and/or wave / vortex geodynamics.

  18. Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT)

    Science.gov (United States)

    Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.

    2017-01-01

    Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.

  19. Advanced cyberinfrastructure for research in Geodynamics

    Science.gov (United States)

    Manea, Marina; Constantin Manea, Vlad

    2010-05-01

    Today's scientists need access to new information technology capabilities, able to perform high-resolution complex computing simulations in a reasonable time frame. Sophisticated simulation tools allow us to study phenomena that can never be observed or replicated by standard laboratory experiments. Modeling complex natural processes in general, and numerical computation in particular, represents today an essential need of research, and all modern research centers benefit from a computing center of one form or another. The combined power of hardware and sophisticated software, visualization tools, and scientific applications produced and used by interdisciplinary research teams make possible nowadays to advance the frontiers of science and to pose new key scientific questions. Cyberinfrastructure integrates hardware for high speed computing, a collection of highly specialized software and tools, and a powerful visualization tool. A new interdisciplinary research domain is emerging at the interface of geosciences and computing with essential inputs from geology and geophysics. In this study we show how to rapidly deploy a low-cost high-performance computing cluster (HPCC) and a 3D visualization system that can be used both in teaching and research in geosciences. Also, we present several geodynamic simulations performed with such systems.

  20. Towards Modelling slow Earthquakes with Geodynamics

    Science.gov (United States)

    Regenauer-Lieb, K.; Yuen, D. A.

    2006-12-01

    We explore a new, properly scaled, thermal-mechanical geodynamic model{^1} that can generate timescales now very close to those of earthquakes and of the same order as slow earthquakes. In our simulations we encounter two basically different bifurcation phenomena. One in which the shear zone nucleates in the ductile field, and the second which is fully associated with elasto-plastic (brittle, pressure- dependent) displacements. A quartz/feldspar composite slab has all two modes operating simultaneously in three different depth levels. The bottom of the crust is predominantly controlled by the elasto-visco-plastic mode while the top is controlled by the elasto-plastic mode. The exchange of the two modes appears to communicate on a sub-horizontal layer in a flip-flop fashion, which may yield a fractal-like signature in time and collapses into a critical temperature which for crustal rocks is around 500-580 K; in the middle of the brittle-ductile transition-zone. Near the critical temperature, stresses close to the ideal strength can be reached at local, meter-scale. Investigations of the thermal-mechanical properties under such extreme conditions are pivotal for understanding the physics of earthquakes. 1. Regenauer-Lieb, K., Weinberg, R. & Rosenbaum, G. The effect of energy feedbacks on continental strength. Nature 442, 67-70 (2006).

  1. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    . Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of project-specific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well (e.g., Hare and others, 2009). Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically (e.g., Wilhelms, 1972, 1990; Tanaka and others, 1994). As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program s Planetary Cartography and Geologic Mapping Working Group s (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  2. Geodynamic evolution of the lithosphere beneath the Eastern Anatolia region: Constraints from geodynamic modeling

    Science.gov (United States)

    Memis, Caner; Hakan Gogus, Oguz; Pysklywec, Russell; Keskin, Mehmet; Celal Sengor, A. M.; Topuz, Gultekin

    2016-04-01

    The east Anatolian orogenic plateau is characterized by an average elevation of 2 km, and is delimited by the Bitlis-Zagros collision zone to the south and the Pontide arc to the north. Stratigraphic evidence suggests that the high plateau attained its current elevation since the Serravallian (about 12 million years ago), but probably did not reach its present height until at least the latest Pliocene. While the crustal shortening following the Arabia-Eurasia collision in the south enabled its relatively rapid rise and regional tectonic evolution, the presumed removal of the downgoing slab beneath east Anatolia has potentially played a significant role in this geodynamic configuration. According to the proposed scenario, the northward subducting slab of Neo-Tethys peels away from the overlying crust similar to the lithospheric delamination model. In this work, we performed a series of lithospheric removal models by varying rheological, physical and mechanical properties by using 2D numerical geodynamic experiments, (e.g. plate convergence rate, crustal thickness, mantle lithosphere yield-stress). Our model results show that the average amount of delamination hinge motion is maximum (18 km/my) when the lower crustal rheology is felsic granulite. The slab break-off only occurs at lower convergence rates (≤ 2 cm/yr), and is imposed on the margin of delaminating mantle lithosphere. The surface uplift takes place above the asthenospheric column (or plateau gap) through isostatic and thermal support of asthenospheric upwelling, and varies dependent on the width of the asthenospheric column. However; with higher plate convergence rates (≥3 cm/yr), the asthenospheric column does not widen enough and the continental collision occurs rather than delamination/peeling away. In this case, the average uplift appears in the central section of the crust, and this exceeds a surface elevation of 3 km. All model results are consistent with the observations from the Eastern

  3. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  4. Monitoring of global geodynamic processes using satellite observations

    Directory of Open Access Journals (Sweden)

    S.K. Tatevian

    2014-06-01

    One of the active tectonic zones of Egypt located in Aswan, is characterized by regional basement rock uplift and regional faulting. In 1997, the African Regional Geodynamic Network was developed around the northern part of Lake Nasser, consists of 11 points, on both sides of the Lake. Its main goal is to study the geodynamical behavior around the northern part of the lake. The collected data were processed using the Bernese software version 5.0. From the velocity results, including also the African plate motion, it can be noticed that all stations of this network are moved to the northeast direction and it is typically the direction of the African plate motion.

  5. Geodynamic and metabolic cycles in the Hadean

    Directory of Open Access Journals (Sweden)

    N. T. Arndt

    2004-09-01

    Full Text Available High-degree melting of hot dry Hadean mantle at ocean ridges and plumes resulted in a crust about 30km thick, overlain in places by extensive and thick mafic volcanic plateaus. Continental crust, by contrast, was relatively thin and mostly submarine. At constructive and destructive plate boundaries, and above the many mantle plumes, acidic hydrothermal springs at ~400°C contributed Fe and other transition elements as well as P and H2 to the deep ocean made acidulous by dissolved CO2 and minor HCl derived from volcanoes. Away from ocean ridges, submarine hydrothermal fluids were cool (≤100°C, alkaline (pH ~10, highly reduced and also H2-rich. Reaction of solvents in this fluid with those in ocean water was catalyzed in a hydrothermal mound, a natural self-restoring flow reactor and fractionation column made up of carbonates and freshly precipitated Fe-Ni sulfide and greenrust pores and bubbles, developed above the alkaline spring. Acetate and the amino acetate glycine were the main products, much of which was eluted to the ocean. Other organic byproducts were retained, concentrated and reacted within the compartments. These compartments comprising the natural hydrothermal reactor consisted partly of greigite (Fe5NiS8. It was from reactions between organic modules confined within these inorganic compartments that the first prokaryotic organism evolved. These acetogenic precursors to the Bacteria diversified and migrated down the mound and into the ocean floor to inaugurate the "deep biosphere". Once there the Bacteria, and the recently differentiated Archaea, were protected from cataclysmic heating events caused by large bolide impacts. Geodynamic forces led to the eventual obduction of the deep biosphere into the photic zone where, initially protected by a thin veneer of sediment, the use of solar energy was mastered and photosynthesis emerged. The further evolution to oxygenic photosynthesis was effected as catalytic [CaMn4+] bearing

  6. Geodynamic and metabolic cycles in the Hadean

    Directory of Open Access Journals (Sweden)

    M. J. Russell

    2005-01-01

    Full Text Available High-degree melting of hot dry Hadean mantle at ocean ridges and plumes resulted in a crust about 30km thick, overlain in places by extensive and thick mafic volcanic plateaus. Continental crust, by contrast, was relatively thin and mostly submarine. At constructive and destructive plate boundaries, and above the many mantle plumes, acidic hydrothermal springs at ~400°C contributed Fe and other transition elements as well as P and H2 to the deep ocean made acidulous by dissolved CO2 and minor HCl derived from volcanoes. Away from ocean ridges, submarine hydrothermal fluids were cool (≤100°C, alkaline (pH ~10, highly reduced and also H2-rich. Reaction of solvents in this fluid with those in ocean water was catalyzed in a hydrothermal mound, a natural self-restoring flow reactor and fractionation column developed above the alkaline spring. The mound consisted of brucite, Mg-rich clays, ephemeral carbonates, Fe-Ni sulfide and green rust. Acetate and glycine were the main products, some of which were eluted to the ocean. The rest, along with other organic byproducts were retained and concentrated within Fe-Ni sulfide compartments. These compartments, comprising the natural hydrothermal reactor, consisted partly of greigite (Fe5NiS8. It was from reactions between organic modules confined within these inorganic compartments that the first prokaryotic organism evolved. These acetogenic precursors to the bacteria diversified and migrated down the mound and into the ocean floor to inaugurate the 'deep biosphere'. Once there they were protected from cataclysmic heating events caused by large meteoritic impacts. Geodynamic forces led to the eventual obduction of the deep biosphere into the photic zone where, initially protected by a thin veneer of sediment, the use of solar energy was mastered and photosynthesis emerged. The further evolution to oxygenic photosynthesis was effected as catalytic [Mn,Ca]-bearing molecules that otherwise would have been

  7. Methods of Celestial Mechanics Volume II: Application to Planetary System, Geodynamics and Satellite Geodesy

    CERN Document Server

    Beutler, Gerhard

    2005-01-01

    G. Beutler's Methods of Celestial Mechanics is a coherent textbook for students as well as an excellent reference for practitioners. Volume II is devoted to the applications and to the presentation of the program system CelestialMechanics. Three major areas of applications are covered: (1) Orbital and rotational motion of extended celestial bodies. The properties of the Earth-Moon system are developed from the simplest case (rigid bodies) to more general cases, including the rotation of an elastic Earth, the rotation of an Earth partly covered by oceans and surrounded by an atmosphere, and the rotation of an Earth composed of a liquid core and a rigid shell (Poincaré model). (2) Artificial Earth Satellites. The oblateness perturbation acting on a satellite and the exploitation of its properties in practice is discussed using simulation methods (CelestialMechanics) and (simplified) first order perturbation methods. The perturbations due to the higher-order terms of the Earth's gravitational potential and reso...

  8. Planetary Doppler Imaging

    Science.gov (United States)

    Murphy, N.; Jefferies, S.; Hart, M.; Hubbard, W. B.; Showman, A. P.; Hernandez, G.; Rudd, L.

    2014-12-01

    Determining the internal structure of the solar system's gas and ice giant planets is key to understanding their formation and evolution (Hubbard et al., 1999, 2002, Guillot 2005), and in turn the formation and evolution of the solar system. While internal structure can be constrained theoretically, measurements of internal density distributions are needed to uncover the details of the deep interior where significant ambiguities exist. To date the interiors of giant planets have been probed by measuring gravitational moments using spacecraft passing close to, or in orbit around the planet. Gravity measurements are effective in determining structure in the outer envelope of a planet, and also probing dynamics (e.g. the Cassini and Juno missions), but are less effective in probing deep structure or the presence of discrete boundaries. A promising technique for overcoming this limitation is planetary seismology (analogous to helioseismology in the solar case), postulated by Vorontsov, 1976. Using trapped pressure waves to probe giant planet interiors allows insight into the density and temperature distribution (via the sound speed) down to the planetary core, and is also sensitive to sharp boundaries, for example at the molecular to metallic hydrogen transition or at the core-envelope interface. Detecting such boundaries is not only important in understanding the overall structure of the planet, but also has implications for our understanding of the basic properties of matter at extreme pressures. Recent Doppler measurements of Jupiter by Gaulme et al (2011) claimed a promising detection of trapped oscillations, while Hedman and Nicholson (2013) have shown that trapped waves in Saturn cause detectable perturbations in Saturn's C ring. Both these papers have fueled interest in using seismology as a tool for studying the solar system's giant planets. To fully exploit planetary seismology as a tool for understanding giant planet structure, measurements need to be made

  9. Geodynamic Evolution of the Banda Sea Region

    Science.gov (United States)

    Kaymakci, N.; Decker, J.; Orange, D.; Teas, P.; Van Heiningen, P.

    2013-12-01

    We've carried out a large on- and offshore study in Eastern Indonesia to characterize the major structures and to provide constraints on the Neogene geodynamic evolution of the Banda Sea region. The onshore portion utilized remote sensing data and published geology. We tied the onshore to the offshore using recently acquired high resolution bathymetric data (16m and 25m bin size) and 2D seismic profiles that extend from Sulawesi in the west to Irian Jaya in the east across the northern part of the Banda Arc. We interpret the northern boundary of the 'Birds Head' (BH) of Papua, the Sorong Fault, to be a sinistral strike-slip fault zone with a minimum of 48 km displacement over the last few million years. The western boundary fault of Cendrawasih Basin defines the eastern boundary of BH and corresponds to the Wandamen Peninsula which comprises high pressure metamorphic rocks, including eclogite and granulite facies rocks, with exhumation ages from 4 to 1 Ma. Earthquake focal mechanism solutions indicate that the eastern boundary of BH is linked with a large scale offshore normal fault which we suggest may be related to the exhumation of the Wandamen Peninsula. The eastern boundary of Cendrawasih Basin is defined by a large transpressive belt along which BH is decoupled from the rest of Papua / Irian Jaya. This interpretation is supported by recent GPS studies. We propose that the BH and the Pacific plate are coupled, and therefore the Birds Head is therefore completely detached from Irian Jaya. Furthermore, Aru Basin, located at the NE corner of Banda Arc, is a Fault-Fault-Transform (FFT) type triple junction. According to available literature information the Banda Sea includes three distinct basins with different geologic histories; the North Banda Sea Basin (NBSB) was opened during 12-7 Ma, Wetar-Damar Basin (WDB) during 7-3.5 Ma and Weber Basin (WB) 3-0 Ma. Our bathymetric and seismic data indicated that the NBSB and Weber Basin lack normal oceanic crust and are

  10. Coupling geodynamic earthquake cycles and dynamic ruptures

    Science.gov (United States)

    van Zelst, Iris; van Dinther, Ylona; Gabriel, Alice-Agnes; Heuret, Arnauld

    2016-04-01

    Studying the seismicity in a subduction zone and its effects on tsunamis requires diverse modelling methods that span spatial and temporal scales. Hundreds of years are necessary to build the stresses and strengths on a fault, while consequent earthquake rupture propagation is determined by both these initial fault conditions and the feedback of seismic waves over periods of seconds up to minutes. This dynamic rupture displaces the sea floor, thereby causing tsunamis. The aim of the ASCETE (Advanced Simulations of Coupled Earthquake and Tsunami Events) project is to study all these aspects and their interactions. Here, we present preliminary results of the first aspects in this modelling chain: the coupling of a seismo-thermo-mechanical (STM) code to the dynamic rupture model SeisSol. STM models of earthquake cycles have the advantage of solving multiple earthquake events in a self-consistent manner concerning stress, strength and geometry. However, the drawback of these models is that they often lack in spatial or temporal resolution and do not include wave propagation. In contrast, dynamic rupture models solve for frictional failure coupled to seismic wave propagation. We use the software package SeisSol (www.seissol.org) based on an ADER-DG discretization allowing high-order accuracy in space and time as well as flexible tetrahedral meshing. However, such simulations require assumptions on the initial fault stresses and strengths and its geometry, which are hard to constrain due to the lack of near-field observations and the complexity of coseismic conditions. By adapting the geometry as well as the stress and strength properties of the self-consistently developing non-finite fault zones from the geodynamic models as initial conditions for the dynamic rupture models, the advantages of both methods are exploited and modelling results may be compared. Our results show that a dynamic rupture can be triggered spontaneously and that the propagating rupture is

  11. Geodynamics, Seismicity, Minerageny and Ecology of Arctic Regions

    Science.gov (United States)

    Kutinov, Y. G.

    The researches of Arctic region is necessary for beginning from delimitation of Arctic. Geographically concept "Arctic" uncertain enough. There is a set of approach to definition of its borders and set the variants of these borders (eternal permafrost, boreal tayga, drifting ice, temperature, etc.). Most correct the point of view of Ecology is realization of Arctic borders on borders of the Arctic geo - depression. Such approach allows to consider in a complex migration of natural substance and polluting substance from orogenes to deep-water hollows of Arctic Ocean. On other hand, it is necessary to take into account natural power flows from zone of Mid-Arctic ridge system at Arctic Ocean to continental land, that is opposition direction process. The certificates of such influence at different levels of Earth's crust already has collected enough (speed of seismic wave on Moho discontinuity; modern vertical movement of Earth's crust; distribution of temperature on depth; structure of basement, etc.). During the last 250 million years the Arctic geo-depression has been developing as an autonomous region with circumpolar zonality, and mass-and-energy transfer in its bowlers as well as shitting of lithospheric plates and expansion of the ocean are caused by rotational forces under conditions of an expanding planet. Four types of geoecological structures have been recorded on the basis of deep structures, position in the over-all structures of regions, place in geological history of its evolution, time of appearance, geodynamic regimes , seismicity, structural-morphological features, specific form of appearance and composition of magmatic and sedimentary formations, compositions of soil, specific metallogenic nature, types of human activity, etc. It is tectonic Segments of Earth, as geoecological global structures; the continental marginal perioceanic zones; the branches of continental marginal perioceanic zones; the mineragenic province. The main criteria of ecological

  12. Kepler Planet Formation

    Science.gov (United States)

    Lissauer, Jack J.

    2015-01-01

    Kepler has vastly increased our knowledge of planets and planetary systems located close to stars. The new data shows surprising results for planetary abundances, planetary spacings and the distribution of planets on a mass-radius diagram. The implications of these results for theories of planet formation will be discussed.

  13. Geodynamic and Magmatic Evolution of the Eastern Anatolian-Arabian Collision Zone, Turkey

    Science.gov (United States)

    Keskin, Mehmet

    2014-05-01

    The Eastern Anatolian-Arabian Collision Zone represents a crucial site within the Tethyan domain where a subduction system involving a volcanic arc (i.e. Cretaceous to Oligocene Pontide volcanic arc in the north) associated with a large subduction-accretion complex (i.e. Cretaceous to Oligocene Eastern Anatolian Accretionary Complex i.e. "EAAC" in the south) turned later into a major continental collision zone that experienced a series of geodynamic events including lithospheric delamination, slab-steepening & breakoff, regional domal uplift, widespread volcanism and tectonic escape via strike slip fault systems. The region includes some of the largest volcanic centers (e.g. Karacadaǧ, Aǧırkaya caldera, Ararat, Nemrut, Tendürek and Süphan volcanoes) and plateaus (e.g. The Erzurum-Kars Plateau) as well as the largest transform fault zones in the Mediterranean region. A recent geodynamic modeling study (Faccenna et al., 2013) has suggested that both the closure of the Tethys Ocean and the resultant collision were driven by a large scale and northerly directed asthenospheric mantle flow named the "Tethyan convection cell". This convection cell initiated around 25 Ma by combined effects of mantle upwelling of the Afar super plume located in the south, around 3,000 km away from the collision zone and the slab-pull of the Tethyan oceanic lithosphere beneath Anatolia in the north. The aforementioned mantle flow dragged Arabia to the north towards Eastern Anatolia with an average velocity of 2 cm/y for the last 20 My, twice as fast as the convergence of the African continent (i.e. 1 cm/y) with western and Central Turkey. This 1 cm/y difference resulted in the formation of the left lateral Dead Sea Strike Slip Fault between the African and Arabian plates. Not only did this mantle flow result in the formation of a positive dynamic topography in the west of Arabian block, but also created a dynamic tilting toward the Persian Gulf (Faccenna et al., 2013). Another

  14. From Planetary Intelligence to Planetary Wisdom

    Science.gov (United States)

    Moser, S. C.

    2016-12-01

    "Planetary intelligence" - when understood as an input into the processes of "managing" Earth - hints at an instrumental understanding of scientific information. At minimum it is a call for useful data of political (and even military) value; at best it speaks to an ability to collect, integrate and apply such information. In this sense, 21st century society has more "intelligence" than any generation of humans before, begging the question whether just more or better "planetary intelligence" will do anything at all to move us off the path of planetary destruction (i.e., beyond planetary boundaries) that it has been on for decades if not centuries. Social scientists have argued that there are at least four shortcomings in this way of thinking that - if addressed - could open up 1) what is being researched; 2) what is considered socially robust knowledge; 3) how science interacts with policy-makers and other "planet managers"; and 4) what is being done in practice with the "intelligence" given to those positioned at the levers of change. To the extent "planetary management" continues to be approached from a scientistic paradigm alone, there is little hope that Earth's future will remain in a safe operating space in this or coming centuries.

  15. Role of the Earth's rotation in global geodynamics

    Science.gov (United States)

    Pavlenkova, N.

    2009-04-01

    Role of the Earth's rotation in the global geodynamics. Pavlenkova N.I., Institute of Physics of the Earth of Russian Academy of Science, B.Grusinskaja 10, 123995, Moscow, ninapav@ifz.ru Geophysical studies show several regularities in Earth's structures which are not explained by the traditional global tectonics conceptions. (1) The surface of the Earth, as well as a surface of other planets, precisely shares on two hemispheres with a different relief and structure of an earth's crust: on the Pacific (oceanic) hemisphere with the lowered relief and a thin oceanic crust, and a continental hemisphere with prevalence of the raised relief and a thick continental crust. (2) There is a regular system of global lineaments and ring structures which are stretched on thousand kilometers, covering continents and oceans. As one of examples it is possible to result system of rift zones (mid-oceanic ridges), forming a ring around of the Antarctica with rift branches from it through everyone of 90 degrees. (3) Asymmetry with a relief of a day time surface when to each raised structure there corresponds the lowered surface on the opposite side of globe is observed. (4) The continental and oceanic mantles have different compositions and deep roots (>300 km) beneath the continents are prominent as regions with relatively high seismic velocities. There are regular connections between geological structures and deep mantle roots. (5) The classical lithosphere-asthenosphere model is not confirmed by seismic data. The asthenosphere can not be traced as a continuous layer, there are disconnected lenses (asthenolenses) even beneath mid-oceanic ridges. Significant horizontal movements of the lithosphere, as proposed by the global plate tectonics, would destroy all these regularities and crust-mantle interaction. To make an agreement between all observed data, the fluids-rotation hypothesis is proposed. The hypothesis supposes two main energy sources of the global tectonics: the

  16. Aconcagua peak geodynamics from GPS observations, Mendoza, Argentina: preliminary results

    OpenAIRE

    2009-01-01

    In 2005, the SIGMA Program (Mount Aconcagua GNSS Research System) was implemented to investigate the geodynamics of the Aconcagua mountain region in the Central Andes. For this purpose, a continuously recording GPS station, ACON, was installed on the summit of Mount Aconcagua at 6.292 m a.s.l. The installation required special technology to support the equipment under extreme climatic conditions. The power supply system was optimized in 2008, so that a greater quantity of d...

  17. Cultural and Technological Issues and Solutions for Geodynamics Software Citation

    Science.gov (United States)

    Heien, E. M.; Hwang, L.; Fish, A. E.; Smith, M.; Dumit, J.; Kellogg, L. H.

    2014-12-01

    Computational software and custom-written codes play a key role in scientific research and teaching, providing tools to perform data analysis and forward modeling through numerical computation. However, development of these codes is often hampered by the fact that there is no well-defined way for the authors to receive credit or professional recognition for their work through the standard methods of scientific publication and subsequent citation of the work. This in turn may discourage researchers from publishing their codes or making them easier for other scientists to use. We investigate the issues involved in citing software in a scientific context, and introduce features that should be components of a citation infrastructure, particularly oriented towards the codes and scientific culture in the area of geodynamics research. The codes used in geodynamics are primarily specialized numerical modeling codes for continuum mechanics problems; they may be developed by individual researchers, teams of researchers, geophysicists in collaboration with computational scientists and applied mathematicians, or by coordinated community efforts such as the Computational Infrastructure for Geodynamics. Some but not all geodynamics codes are open-source. These characteristics are common to many areas of geophysical software development and use. We provide background on the problem of software citation and discuss some of the barriers preventing adoption of such citations, including social/cultural barriers, insufficient technological support infrastructure, and an overall lack of agreement about what a software citation should consist of. We suggest solutions in an initial effort to create a system to support citation of software and promotion of scientific software development.

  18. Multi-phase multi-component reactive flow in Geodynamics

    Science.gov (United States)

    Oliveira, Beñat; Afonso, Juan Carlos; Zlotnik, Sergio

    2016-04-01

    Multi-phase multi-component reactive flow (MPMCRF) controls a number of important complex geodynamic/geochemical problems, such as melt generation and percolation, metasomatism, rheological weakening, magmatic differentiation, ore emplacement, and fractionation of chemical elements, to name a few. These interacting processes occur over very different spatial and temporal scales and under very different physico-chemical conditions. Therefore, there is a strong motivation in geodynamics for investigating the equations governing MPMCRF, their mathematical structure and properties, and the numerical techniques necessary to obtain reliable and accurate results. In this contribution we present results from a novel numerical framework to solve multiscale MPMCRF problems in geodynamic contexts. Our approach is based on the effective tracking of the most basic building blocks: internal energy and chemical composition. This is achieved through the combination of rigorous solutions to the conservation equations (mass, energy and momentum) for each dynamic phase (instead of the more common "mixture-type" approach) and the transport equation for the chemical species, within the context of classical irreversible thermodynamics. Interfacial processes such as phase changes, chemical diffusion+reaction, and surface tension effects are explicitly incorporated in the context of ensemble averaging. Phase assemblages, mineral and melt compositions, and all other physical parameters of multi-phase systems are obtained through dynamic free-energy minimization procedures.

  19. Continental geodynamics and mineral exploration - the Western Australian perspective

    Science.gov (United States)

    Gessner, Klaus; Murdie, Ruth; Yuan, Huaiyu; Brisbout, Lucy; Sippl, Christian; Tyler, Ian; Kirkland, Chris; Wingate, Michael; Johnson, Simon; Spaggiari, Catherine; Smithies, Hugh; Lu, Yongjun; Gonzalez, Chris; Jessell, Mark; Holden, Eun-Jung; Gorczyk, Weronika; Occhipinti, Sandra

    2017-04-01

    The exploration for mineral resources and their extraction has been a fundamental human activity since the dawn of civilisation: Geology is everywhere - ore deposits are rare. Most deposits were found at or near Earth's surface, often by chance or serendipity. To meet the challenge of future demand, successful exploration requires the use of advanced technology and scientific methods to identify targets at depth. Whereas the use and development of high-tech exploration, extraction and processing methods is of great significance, understanding how, when and where dynamic Earth systems become ore-forming systems is a difficult scientific challenge. Ore deposits often form by a complex interplay of coupled physical processes with evolving geological structure. The mineral systems approach states that understanding the geodynamic and tectonic context of crustal scale hydrothermal fluid flow and magmatism can help constrain the spatial extent of heat and mass transport and therefore improve targeting success in mineral exploration. Tasked with promoting the geological assets of one of the World's largest and most resource-rich jurisdictions, the Geological Survey of Western Australia is breaking new ground by systematically collecting and integrating geophysical, geological and geochemical data with the objective to reveal critical ties between lithospheric evolution and mineral deposits. We present examples where this approach has led to fundamental reinterpretations of Archean and Proterozoic geodynamics and the nature of tectonic domains and their boundaries, including cases where geodynamic modelling has played an important role in testing hypotheses of crustal evolution.

  20. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  1. Urey prize lecture: On the diversity of plausible planetary systems

    Science.gov (United States)

    Lissauer, J. J.

    1995-01-01

    Models of planet formation and of the orbital stability of planetary systems are used to predict the variety of planetary and satellite systems that may be present within our galaxy. A new approximate global criterion for orbital stability of planetary systems based on an extension of the local resonance overlap criterion is proposed. This criterion implies that at least some of Uranus' small inner moons are significantly less massive than predicted by estimates based on Voyager volumes and densities assumed to equal that of Miranda. Simple calculations (neglecting planetary gravity) suggest that giant planets which acrete substantial amounts of gas while their envelopes are extremely distended ultimately rotate rapidly in the prgrade direction.

  2. Mathematical optimization of matter distribution for a planetary system configuration

    Science.gov (United States)

    Morozov, Yegor; Bukhtoyarov, Mikhail

    2016-07-01

    Planetary formation is mostly a random process. When the humanity reaches the point when it can transform planetary systems for the purpose of interstellar life expansion, the optimal distribution of matter in a planetary system will determine its population and expansive potential. Maximization of the planetary system carrying capacity and its potential for the interstellar life expansion depends on planetary sizes, orbits, rotation, chemical composition and other vital parameters. The distribution of planetesimals to achieve maximal carrying capacity of the planets during their life cycle, and maximal potential to inhabit other planetary systems must be calculated comprehensively. Moving much material from one planetary system to another is uneconomic because of the high amounts of energy and time required. Terraforming of the particular planets before the whole planetary system is configured might drastically decrease the potential habitability the whole system. Thus a planetary system is the basic unit for calculations to sustain maximal overall population and expand further. The mathematical model of optimization of matter distribution for a planetary system configuration includes the input observed parameters: the map of material orbiting in the planetary system with specified orbits, masses, sizes, and the chemical compound for each, and the optimized output parameters. The optimized output parameters are sizes, masses, the number of planets, their chemical compound, and masses of the satellites required to make tidal forces. Also the magnetic fields and planetary rotations are crucial, but they will be considered in further versions of this model. The optimization criteria is the maximal carrying capacity plus maximal expansive potential of the planetary system. The maximal carrying capacity means the availability of essential life ingredients on the planetary surface, and the maximal expansive potential means availability of uranium and metals to build

  3. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  4. Planetary data definition

    Science.gov (United States)

    1984-10-01

    Planetary data include all of those data which have resulted from measurements made by the instruments carried aboard planetary exploration spacecraft, and (for our purposes) exclude observations of Moon and Earth. The working, planetary data base is envisioned to contain not only these data, but also a wide range of supporting measurements such as calibration files, navigation parameters, spacecraft engineering states, and the various Earth-based and laboratory measurements which provide the planetary research scientist with historical and comparative data. No convention exists across the disciplines of the planetary community for defining or naming the various levels through which data pass in the progression from a sensed impulse at the spacecraft to a reduced, calibrated, and/or analyzed element in a planetary data set. Terms such as EDR (experiment data record), RDR (reduced data record), and SEDR (supplementary experiment data record) imply different meanings depending on the data set under consideration. The development of standard terminology for the general levels of planetary data is necessary.

  5. Planetary cratering mechanics

    Science.gov (United States)

    O'Keefe, John D.; Ahrens, Thomas J.

    1993-09-01

    The objective of this study was to obtain a quantitative understanding of the cratering process over a broad range of conditions. Our approach was to numerically compute the evolution of impact induced flow fields and calculate the time histories of the key measures of crater geometry (e.g., depth, diameter, lip height) for variations in planetary gravity (0 to 109 cm/s2), material strength (0 to 2400 kbar), and impactor radius (0.05 to 5000 km). These results were used to establish the values of the open parameters in the scaling laws of Holsapple and Schmidt (1987). We describe the impact process in terms of four regimes: (1) penetration, (2) inertial, (3) terminal, and (4) relaxation. During the penetration regime, the depth of impactor penetration grows linearly for dimensionless times τ=(Ut/a)5.1, the crater grows at a slower rate until it is arrested by either strength or gravitational forces. In this regime, the increase of crater depth, d, and diameter, D, normalized by projectile radius is given by d/a=1.3 (Ut/a)0.36 and D/a=2.0(Ut/a)0.36. For strength-dominated craters, growth stops at the end of the inertial regime, which occurs at τ=0.33 (Yeff/ρU2)-0.78, where Yeff is the effective planetary crustal strength. The effective strength can be reduced from the ambient strength by fracturing and shear band melting (e.g., formation of pseudo-tachylites). In gravity-dominated craters, growth stops when the gravitational forces dominate over the inertial forces, which occurs at τ=0.92 (ga/U2)-0.61. In the strength and gravity regimes, the maximum depth of penetration is dp/a=0.84 (Y/ρ U2)-0.28 and dp/a=1.2 (ga/U2)-0.22, respectively. The transition from simple bowl-shaped craters to complex-shaped craters occurs when gravity starts to dominate over strength in the cratering process. The diameter for this transition to occur is given by Dt=9.0 Y/ρg, and thus scales as g-1 for planetary surfaces when strength is not strain-rate dependent. This scaling result

  6. MIGRATION OF SEISMIC AND VOLCANIC ACTIVITY AS DISPLAY OF WAVE GEODYNAMIC PROCESS

    Directory of Open Access Journals (Sweden)

    Alexander V. Vikulin

    2015-09-01

    Full Text Available Publications about the earthquake foci migration have been reviewed. An important result of such studies is establishment of wave nature of seismic activity migration that is manifested by two types of rotational waves; such waves are responsible for interaction between earthquakes foci and propagate with different velocities. Waves determining long-range interaction of earthquake foci are classified as Type 1; their limiting velocities range from 1 to 10 cm/s. Waves determining short-range interaction of foreshocks and aftershocks of individual earthquakes are classified as Type 2; their velocities range from 1 to 10 km/s. According to the classification described in [Bykov, 2005], these two types of migration waves correspond to slow and fast tectonic waves. The most complete data on earthquakes (for a period over 4.1 million of years and volcanic eruptions (for 12 thousand years of the planet are consolidated in a unified systematic format and analyzed by methods developed by the authors. For the Pacific margin, Alpine-Himalayan belt and the Mid-Atlantic Ridge, which are the three most active zones of the Earth, new patterns of spatial and temporal distribution of seismic and volcanic activity are revealed; they correspond to Type 1 of rotational waves. The wave nature of the migration of seismic and volcanic activity is confirmed. A new approach to solving problems of geodynamics is proposed with application of the data on migration of seismic and volcanic activity, which are consolidated in this study, in combination with data on velocities of movement of tectonic plate boundaries. This approach is based on the concept of integration of seismic, volcanic and tectonic processes that develop in the block geomedium and interact with each other through rotating waves with a symmetric stress tensor. The data obtained in this study give grounds to suggest that a geodynamic value, that is mechanically analogous to an impulse

  7. Uncovering Circumbinary Planetary Architectural Properties from Selection Biases

    CERN Document Server

    Li, Gongjie; Tao, Molei

    2016-01-01

    The new discoveries of circumbinary planetary systems shed light on the understanding of planetary system formation. Learning the architectural properties of these systems is essential for constraining the different formation mechanisms. We first revisit the stability limit of circumbinary planets. Next, we focus on eclipsing stellar binaries and obtain an analytical expression for the transit probability in a realistic setting, where finite observation period and planetary orbital precession are included. Then, understanding of the architectural properties of the currently observed transiting systems is refined, based on Bayesian analysis and a series of hypothesis tests. We find 1) it is not a selection bias that the innermost planets reside near the stability limit for eight of the nine observed systems, and this is consistent with a log uniform distribution of the planetary semi-major axis; 2) it is not a selection bias that the planetary and stellar orbits are nearly coplanar ($\\lesssim 3^\\circ$), and th...

  8. The Key Roles of the Gas Disk in the Formation and Evolution of Planetary Systems%原行星盘对行星系统形成及演化的影响

    Institute of Scientific and Technical Information of China (English)

    刘慧根

    2012-01-01

    The detection of exoplanets becomes hotter and hotter, especially the detection of Earth-like exoplanets. With the accumulation of observational data and the progress of Kepler mission of NASA, more exoplanets can be found or confirmed. The understanding of formation and evolution of exoplanets will be largely improved when much more samples are provided. According to the acknowledged theories of planet formation, the protoplanet is formed in the protoplanetary disc. Due to the interactions between the disc and protoplanets, the property of the disc plays a key role during the formation and evolution of planets. We investigate the later stage of planet formation, when the Mars-sized cores appear and the gas disc has not been depleted yet. Interactions among the planetary cores can excite their orbital eccentricities, accelerate their mergings, and thus sculpture their final orbital architecture. The interactions between the cores and gas discs lead to the type I and II migrations as well as the eccentricity damping. However, the rates of type I, II migrations are still uncertain in different disc models. In chapter 1, we introduce the main methods of exoplanet detection and the achievements of Kepler space telescope. We also list some examples of exoplanetary systems to show their diversity. The acknowledged theories of planet formation, including the gravitational instability and core accretion scenarios, are presented in detail in chapter 2. The studies in chapter 3 contribute to the final assembling of planetary systems with N-body simulations, including the type I and II migrations of planets, the eccentricity damping, and the gas accretion of massive cores in a viscous disk. In order to compare the observations in statistics, we use the Monte Carlo method to set a distribution of different discs. Our results of simulations interpret the distribution of exoplanets and may be a guidance for the further observations. In chapter 5, considering the uncertainty of

  9. Planetary mass function and planetary systems

    CERN Document Server

    Dominik, M

    2010-01-01

    With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows to derive all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their r...

  10. Effects of differentiation on the geodynamics of the early Earth

    Science.gov (United States)

    Piccolo, Andrea; Kaus, Boris; White, Richard; Johnson, Tim

    2016-04-01

    Archean geodynamic processes are not well understood, but there is general agreement that the mantle potential temperature was higher than present, and that as a consequence significant amounts of melt were produced both in the mantle and any overlying crust. This has likely resulted in crustal differentiation. An early attempt to model the geodynamic effects of differentiation was made by Johnson et al. (2014), who used numerical modeling to investigate the crust production and recycling in conjunction with representative phase diagrams (based on the inferred chemical composition of the primary melt in accordance with the Archean temperature field). The results of the simulations show that the base of the over-thickened primary basaltic crust becomes gravitational unstable due to the mineral assemblage changes. This instability leads to the dripping of dense material into the mantle, which causes an asthenospheric return flow, local partial melting and new primary crust generation that is rapidly recycled in to mantle. Whereas they gave important insights, the previous simulations were simplified in a number of aspects: 1) the rheology employed was viscous, and both elasticity and pressure-dependent plasticity were not considered; 2) extracted mantle melts were 100% transformed into volcanic rocks, whereas on the present day Earth only about 20-30% are volcanic and the remainder is plutonic; 3) the effect of a free surface was not studied in a systematic manner. In order to better understand how these simplifications affect the geodynamic models, we here present additional simulations to study the effects of each of these parameters. Johnson, T.E., Brown, M., Kaus, B., and VanTongeren, J.A., 2014, Delamination and recycling of Archaean crust caused by gravitational instabilities: Nature Geoscience, v. 7, no. 1, p. 47-52, doi: 10.1038/NGEO2019.

  11. Basin geodynamics and sequence stratigraphy of Upper Triassic to Lower Jurassic deposits of Southern Tunisia

    Science.gov (United States)

    Carpentier, Cédric; Hadouth, Suhail; Bouaziz, Samir; Lathuilière, Bernard; Rubino, Jean-Loup

    2016-05-01

    Aims of this paper are to propose a geodynamic and sequential framework for the late Triassic and early Jurassic of and south Tunisia and to evidence the impact of local tectonics on the stratigraphic architecture. Facies of the Upper Triassic to Lower Jurassic of Southern Tunisia have been interpreted in terms of depositional environments. A sequential framework and correlation schemes are proposed for outcrops and subsurface transects. Nineteen middle frequency sequences inserted in three and a half low frequency transgression/regression cycles were evidenced. Despite some datation uncertainties and the unknown durations of Lower Jurassic cycles, middle frequency sequences appear to be controlled by eustasy. In contrast the tectonics acted as an important control on low frequency cycles. The Carnian flooding was certainly favored by the last stages of a rifting episode which started during the Permian. The regression accompanied by the formation of stacked angular unconformities and the deposition of lowstand deposits during the late Carnian and Norian occured during the uplift and tilting of the northern basin margins. The transpressional activity of the Jeffara fault system generated the uplift of the Tebaga of Medenine high from the late Carnian and led to the Rhaetian regional angular Sidi Stout Unconformity. Facies analysis and well-log correlations permitted to evidence that Rhaetian to Lower Jurassic Messaoudi dolomites correspond to brecciated dolomites present on the Sidi Stout unconformity in the North Dahar area. The Early-cimmerian compressional event is a possible origin for the global uplift of the northern African margin and Western Europe during the late Carnian and the Norian. During the Rhaetian and the early Jurassic a new episode of normal faulting occured during the third low frequency flooding. This tectonosedimentary evolution ranges within the general geodynamic framework of the north Gondwana margin controlled by the opening of both

  12. Dynamical Problems in Extrasolar Planetary Science

    Science.gov (United States)

    Morbidelli, Alessandro; Haghighipour, Nader

    2016-10-01

    The past few years have witnessed a large increase in the number of extrasolar planets. Thanks to successful surveys from the ground and from space, there are now over 1000 confirmed exoplanets and more then 3000 planetary candidates. More than 130 of these systems host multiple planets. Many of these systems demonstrate physical and orbital characteristics fundamentally different from those of our solar system. The challenges associated with the diversity of planetary systems have raised many interesting questions on planet formation and orbital dynamics.

  13. Geodynamics of the South China Sea

    Science.gov (United States)

    Sibuet, Jean-Claude; Yeh, Yi-Ching; Lee, Chao-Shing

    2016-12-01

    in the Xisha trough and eventually south of the Macclesfield Bank extends to the Qui Nhon ridge, located along the eastern margin of Vietnam, in the southward prolongation of the Red River fault system. Normal faults curve toward the south with a horsetail geometry interpreted as evidence for a few tens of kilometers of dextral motion along the Qui Nhon ridge. Since chron 10 and until the end of SCS opening, the plate boundary located between the southern South China Sea (SSCS) and EU plates jumped westward several times from the location of the Ulugan fault near Palawan to the western limit of the southwest basin, explaining the progressive formation of the SCS from east to west and giving the characteristic V-shape of the SCS. The opening of the whole SCS is linked and occurred simultaneously with the northward subduction of the proto-SCS whose suture is located south of Palawan and extends westwards in north Borneo.

  14. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of projectspecific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well. Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically. As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program's Planetary Cartography and Geologic Mapping Working Group's (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  15. Geological and geodynamic reconstruction of the East Barents megabasin from analysis of the 4-AR regional seismic profile

    Science.gov (United States)

    Startseva, K. F.; Nikishin, A. M.; Malyshev, N. A.; Nikishin, V. A.; Valyushcheva, A. A.

    2017-07-01

    The article considers problems related to the geological structure and geodynamic history of sedimentary basins of the Barents Sea. We analyze new seismic survey data obtained in 2005-2016 to refine the geological structure model for the study area and to render it in more detail. Based on the data of geological surveys in adjacent land (Novaya Zemlya, Franz Josef Land, and Kolguev Island), drilling, and seismic survey, we identified the following geodynamic stages of formation of the East Barents megabasin: Late Devonian rifting, the onset of postrift sinking and formation of the deep basin in Carboniferous-Permian, unique (in terms of extent) and very rapid sedimentation in the Early Triassic, continued thermal sinking with episodes of inversion vertical movements in the Middle Triassic-Early Cretaceous, folded pressure deformations that formed gently sloping anticlines in the Late Cretaceous-Cenozoic, and glacial erosion in the Quaternary. We performed paleoreconstructions for key episodes in evolution of the East Barents megabasin based on the 4-AR regional profile. From the geometric modeling results, we estimated the value of total crustal extension caused by Late Devonian rifting for the existing crustal model.

  16. Risk and Geodynamically active areas of Carpathian lithosphere

    Directory of Open Access Journals (Sweden)

    Lubomil Pospíšil

    2007-01-01

    Full Text Available This paper illustrates an application of multidisciplinary data analysis to the Carpathian–Pannonian region and presents a verification of a Complex model of the Carpathian - Pannonian lithosphere by recent data sets and geophysical data analyses and its utilization for the determination of risk and active geodynamic and tectonic zones of Ist order . This model can be used for the analysing any Carpathian area from the point of view of the seismic risk, hazards and geodynamic activity, which is important to know for the building of a repository for the radioactive wasted material. Besides the traditionally used geological (sedimentological and volcanological data and geomorphological data (Remote Sensing, an emphasis was laid on geodetic, grav/mag data, seismic, seismological and other geophysical data (magnetotelluric, heat flow, paleomagnetic etc.. All available geonomic (geologic, geodetic, geophysical, geomorphological data were verified and unified on the basis of the same scale and in the Western Carpathians on the Remote Sensing data. The paper concentrates on two problematic areas – the so call “rebounding area” in the Eastern Carpathians and the Raba – Muran - Malcov tectonic systems.

  17. Geodynamic evolution of early Mesozoic sedimentary basins in eastern Australia

    Science.gov (United States)

    Rosenbaum, G.; Babaahmadi, A.; Esterle, J.

    2014-12-01

    Eastern Australia is covered by a series of continental sedimentary basins deposited during the Triassic and Jurassic, but the geodynamic context of these basins is not fully understood. Using gridded aeromagnetic data, seismic reflection data, geological maps, digital elevation models, and field observations, we conducted a structural synthesis aimed at characterizing major structures and deformation style in the Triassic-Jurassic sedimentary basins of eastern Australia. Our results show evidence for four alternating episodes of rifting and contractional events during the Triassic. Two major episodes of rifting, characterized by syn-sedimentary steep normal faults and bimodal volcanism, resulted in the development of the Early-Middle Triassic Esk-Nymboida Rift System and the early Late Triassic Ipswich Basin. Faults in the Esk-Nymboida Rift System have been controlled by a pre-existing oroclinal structure. Each phase of rifting was followed by a contractional event, which produced folds, reverse faults and unconformities in the basins. Since the latest Late Triassic, thermal subsidence led to the deposition of continental sediments in the Clarence-Moreton Basin, which continued until the Early Cretaceous. We suggest that the geodynamic control on the alternating episodes of rifting and contraction during the Triassic in eastern Australia was ultimately related to plate boundary migration and switches between trench retreat and advance.

  18. Geodynamical aspects of the Hoggar Shield (Algeria) from Aeromagnetic data

    Science.gov (United States)

    Bournas, N.; Hamoudi, M.; Galdeano, A.; Ouzegane, K.; Kienast, J. R.

    2003-04-01

    The Hoggar is a wide region situated in the central part of northwest Africa. It represents the main component of the Tuareg shield, which is a part of the Panafrican Transaharan belt. The Hoggar is mainly composed of metamorphic rocks formed during the Panafrican orogeny and is crossed by several north-south mega-shear zones separating crustal blocks with different lithology. This region has been covered by a regional airborne magnetic survey carried out during the seventies. The survey was flown using a cesium magnetometer with a 2 km flight line spacing and a constant terrain clearance of 150 meters above the ground. Comprehensive processing and interpretation procedures including digital filtering and inversion techniques of the aeromagnetic data are presented in this work. The synergetic analysis of the aeromagnetic data with the geological considerations, has been very useful to clearly identifying the principal structural features of this region. The obtained results confirm the proposed earlier geodynamical model, in which the 4°50 and the 8°30 mega shears have played a major role in the geodynamical evolution of the Hoggar during the Panafrican event. On the other hand, the interpretation of the aeromagnetic anomalies suggests the existence of a NW-SE rifting zone affecting the whole region.

  19. The compressible adjoint equations in geodynamics: equations and numerical assessment

    Science.gov (United States)

    Ghelichkhan, Siavash; Bunge, Hans-Peter

    2016-04-01

    The adjoint method is a powerful means to obtain gradient information in a mantle convection model relative to past flow structure. While the adjoint equations in geodynamics have been derived for the conservation equations of mantle flow in their incompressible form, the applicability of this approximation to Earth is limited, because density increases by almost a factor of two from the surface to the Core Mantle Boundary. Here we introduce the compressible adjoint equations for the conservation equations in the anelastic-liquid approximation. Our derivation applies an operator formulation in Hilbert spaces, to connect to recent work in seismology (Fichtner et al (2006)) and geodynamics (Horbach et al (2014)), where the approach was used to derive the adjoint equations for the wave equation and incompressible mantle flow. We present numerical tests of the newly derived equations based on twin experiments, focusing on three simulations. A first, termed Compressible, assumes the compressible forward and adjoint equations, and represents the consistent means of including compressibility effects. A second, termed Mixed, applies the compressible forward equation, but ignores compressibility effects in the adjoint equations, where the incompressible equations are used instead. A third simulation, termed Incompressible, neglects compressibility effects entirely in the forward and adjoint equations relative to the reference twin. The compressible and mixed formulations successfully restore earlier mantle flow structure, while the incompressible formulation yields noticeable artifacts. Our results suggest the use of a compressible formulation, when applying the adjoint method to seismically derived mantle heterogeneity structure.

  20. Toward a Deterministic Model of Planetary Formation VI: Dynamical Interaction and Coagulation of Multiple Rocky Embryos and Super-Earth Systems around Solar Type Stars

    CERN Document Server

    Ida, S

    2010-01-01

    Radial velocity and transit surveys indicate that solar-type stars bear super-Earths, with mass and period up to ~ 20 M_E and a few months, are more common than those with Jupiter-mass gas giants. In many cases, these super-Earths are members of multiple-planet systems in which their mutual dynamical interaction has influenced their formation and evolution. In this paper, we modify an existing numerical population synthesis scheme to take into account protoplanetary embryos' interaction with their evolving natal gaseous disk, as well as their close scatterings and resonant interaction with each other. We show that it is possible for a group of compact embryos to emerge interior to the ice line, grow, migrate, and congregate into closely-packed convoys which stall in the proximity of their host stars. After the disk-gas depletion, they undergo orbit crossing, close scattering, and giant impacts to form multiple rocky Earths or super-Earths in non-resonant orbits around ~ 0.1AU with moderate eccentricities of ~...

  1. Foundations of planetary quarantine.

    Science.gov (United States)

    Hall, L. B.; Lyle, R. G.

    1971-01-01

    Discussion of some of the problems in microbiology and engineering involved in the implementation of planetary quarantine. It is shown that the solutions require new knowledge in both disciplines for success at low cost in terms of both monetary outlay and man's further exploration of the planets. A related problem exists in that engineers are not accustomed to the wide variation of biological data and microbiologists must learn to work and think in more exact terms. Those responsible for formulating or influencing national and international policies must walk a tightrope with delicate balance between unnecessarily stringent requirements for planetary quarantine on the one hand and prevention of contamination on the other. The success of planetary quarantine measures can be assured only by rigorous measures, each checked, rechecked, and triple-checked to make sure that no errors have been made and that no factor has been overlooked.

  2. Airships for Planetary Exploration

    Science.gov (United States)

    Colozza, Anthony

    2004-01-01

    The feasibility of utilizing an airship for planetary atmospheric exploration was assessed. The environmental conditions of the planets and moons within our solar system were evaluated to determine their applicability for airship flight. A station-keeping mission of 50 days in length was used as the baseline mission. Airship sizing was performed utilizing both solar power and isotope power to meet the baseline mission goal at the selected planetary location. The results show that an isotope-powered airship is feasible within the lower atmosphere of Venus and Saturn s moon Titan.

  3. On the Coupling of Geodynamic and Resistivity Models: A Progress Report and the Way Forward

    Science.gov (United States)

    Heise, Wiebke; Ellis, Susan

    2016-01-01

    Magnetotelluric (MT) studies represent the structure of crust and mantle in terms of conductivity anomalies, while geodynamic modelling predicts the deformation and evolution of crust and mantle subject to plate tectonic processes. Here, we review the first attempts to link MT models with geodynamic models. An integration of MT with geodynamic modelling requires the use of relationships between conductivity and rheological parameters such as viscosity and melt fraction, which are provided by laboratory measurements of rock properties. Owing to present limitations in our understanding of these relationships, and in interpreting the trade-off between scale and magnitude of conductivity anomalies from MT inversions, most studies linking MT and geodynamic models are qualitative rather than providing hard constraints. Some recent examples attempt a more quantitative comparison, such as a study from the Himalayan continental collision zone, where rheological parameters have been calculated from a resistivity model and compared to predictions from geodynamic modelling. We conclude by demonstrating the potential in combining MT results and geodynamic modelling with examples that directly use MT results as constraints within geodynamic models of ore bodies and studies of an active volcano-tectonic rift.

  4. Frontiers in mineral physics relevant to geodynamics issues

    Science.gov (United States)

    Karato, Shun-ichiro

    2014-05-01

    Mineral physics plays a critical role in understanding geodynamics for two reasons. First, properties of mineral play an important role in mass and energy transport in Earth's interior. Particularly important are the rheological properties that control the nature of mantle convection. Key issues in this area are the rheological properties of deep mantle and those of the lithosphere. Second, mineral physics knowledge is critical in interpreting various geophysical observations in terms of geodynamics. Interpretation of geophysical observations such as anomalies in seismic wave velocities, seismic anisotropy and electrical conductivity is not straightforward, and requires understanding of subtle details such as the role of minor element, hydrogen. In this talk, I will present a review of some of the recent advances in these areas focusing on the results obtained in my group. Understanding of rheological properties under the deep mantle conditions is challenging because of technical difficulties. We have developed a new deformation apparatus (RDA: rotational Drickamer apparatus) to study rheological properties under deep mantle conditions. This apparatus has been operated to P~25 GPa and T~2200 K. Even the study of rheological properties under the lithospheric conditions requires some technical development because orthopyroxene that is stable only above ~1 GPa plays a key role (commonly used gas apparatus cannot be used under these conditions). I will review some new results using these new techniques including the first quantitative results on the rheological properties of a perovskite + (Mg,Fe)O mixture and the strain weakening of a model peridotite under the lithospheric conditions. These new results provide some hints as to plausible models of dynamics and evolution of Earth's interior. However, Earth is complex and geodynamic studies must also be constrained by observations. Seismological observations including seismic discontinuities, lateral variation in

  5. Lithospheric Stress and Geodynamics: History, Accomplishments and Challenges

    Science.gov (United States)

    Richardson, R. M.

    2016-12-01

    The kinematics of plate tectonics was established in the 1960s, and shortly thereafter the Earth's stress field was recognized as an important constraint on the dynamics of plate tectonics. Forty years ago the 1976 Chapman Conference on the Stress in the Lithosphere, which I was fortunate to attend as a graduate student, and the ensuing 1977 PAGEOPH Stress in the Earth publication's 28 articles highlighted a range of datasets and approaches that established fertile ground for geodynamic research ever since. What are the most useful indicators of stress? Do they measure residual or tectonic stresses? Local or far field sources? What role does rheology play in concentrating deformation? Great progress was made with the first World Stress Map in 1991 by Zoback and Zoback, and the current version (2016 release with 42,348 indicators) remains a tremendous resource for geodynamic research. Modeling sophistication has seen significant progress over the past 40 years. Early applications of stress to dynamics involved simple lithospheric flexure, particularly at subduction zones, Hawaii, and continental foreland basin systems. We have progressed to full 3-D finite element models for calculating the flexure and stress associated with loads on a crust and mantle with realistic non-linear viscoelastic rheology, including frictional sliding, low-temperature plasticity, and high-temperature creep. Initial efforts to use lithospheric stresses to constrain plate driving forces focused on a "top-down" view of the lithosphere. Such efforts have evolved to better include asthenosphere-lithosphere interactions, have gone from simple to complicated rheologies, from 2-D to 3-D, and seek to obtain a fully thermo-mechanical model that avoids relying on artificial boundary conditions to model plate dynamics. Still, there are a number of important issues in geodynamics, from philosophy (when are more complicated models necessary? can one hope to identify "the" answer with modeling, or only

  6. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  7. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphere-application to basin evolution

    DEFF Research Database (Denmark)

    Elesin, Y; Gerya, T; Artemieva, Irina

    2010-01-01

    . The results are directly applicable to the Basin and Range province, western USA, and demonstrate the roles of crust–mantle coupling, preexisting weakness zones, and erosion rate on the evolutionary trends of extending continental regions. Modeling of basin evolution indicates a critical role of syn......We present a new 2D finite difference code, Samovar, for high-resolution numerical modeling of complex geodynamic processes. Examples are collision of lithospheric plates (including mountain building and subduction) and lithosphere extension (including formation of sedimentary basins, regions...... of extended crust, and rift zones). The code models deformation of the lithosphere with viscoelastoplastic rheology, including erosion/sedimentation processes and formation of shear zones in areas of high stresses. It also models steady-state and transient conductive and advective thermal processes including...

  8. Introduction to the special issue celebrating 200 years of geodynamic modelling

    Science.gov (United States)

    Strak, Vincent; Schellart, Wouter P.

    2016-10-01

    Since the first published laboratory models from Sir James Hall in 1815, analogue and numerical geodynamic modelling have become widely used as they provide qualitative and quantitative insights into a broad range of geological processes. To celebrate the 200th anniversary of geodynamic modelling, this special issue gathers review works and recent studies on analogue and numerical modelling of tectonic and geodynamic processes, as an opportunity to present some of the milestones and recent breakthroughs in this field, to discuss potential issues and to highlight possible future developments.

  9. Planetary polarization nephelometer

    NARCIS (Netherlands)

    Banfield, D.; Dissly, R.; Mishchenko, M.; Muñoz, O.; Roos-Serote, M.; Stam, D.M.; Volten, H.; Wilson, A.

    2004-01-01

    We have proposed to develop a polarization nephelometer for use on future planetary descent probes. It will measure both the scattered intensity and polarization phase functions of the aerosols it encounters descending through an atmosphere. These measurements will be taken at two wavelengths

  10. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina

    1998-01-01

    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  11. Planetary polarization nephelometer

    NARCIS (Netherlands)

    Banfield, D.; Dissly, R.; Mishchenko, M.; Muñoz, O.; Roos-Serote, M.; Stam, D.M.; Volten, H.; Wilson, A.

    2004-01-01

    We have proposed to develop a polarization nephelometer for use on future planetary descent probes. It will measure both the scattered intensity and polarization phase functions of the aerosols it encounters descending through an atmosphere. These measurements will be taken at two wavelengths separa

  12. Catalogues of planetary nebulae.

    Science.gov (United States)

    Acker, A.

    Firstly, the general requirements concerning catalogues are studied for planetary nebulae, in particular concerning the objects to be included in a catalogue of PN, their denominations, followed by reflexions about the afterlife and comuterized versions of a catalogue. Then, the basic elements constituting a catalogue of PN are analyzed, and the available data are looked at each time.

  13. Planetary ring systems

    CERN Document Server

    Miner, Ellis D; Cuzzi, Jeffrey N

    2007-01-01

    This is the most comprehensive and up-to-date book on the topic of planetary rings systems yet written. The book is written in a style that is easily accessible to the interested non expert. Each chapter includes notes, references, figures and tables.

  14. Planetary rings - Theory

    Science.gov (United States)

    Borderies, Nicole

    1989-01-01

    Theoretical models of planetary-ring dynamics are examined in a brief analytical review. The mathematical description of streamlines and streamline interactions is outlined; the redistribution of angular momentum due to collisions between particles is explained; and problems in the modeling of broad, narrow, and arc rings are discussed.

  15. Geodynamics branch data base for main magnetic field analysis

    Science.gov (United States)

    Langel, Robert A.; Baldwin, R. T.

    1991-01-01

    The data sets used in geomagnetic field modeling at GSFC are described. Data are measured and obtained from a variety of information and sources. For clarity, data sets from different sources are categorized and processed separately. The data base is composed of magnetic observatory data, surface data, high quality aeromagnetic, high quality total intensity marine data, satellite data, and repeat data. These individual data categories are described in detail in a series of notebooks in the Geodynamics Branch, GSFC. This catalog reviews the original data sets, the processing history, and the final data sets available for each individual category of the data base and is to be used as a reference manual for the notebooks. Each data type used in geomagnetic field modeling has varying levels of complexity requiring specialized processing routines for satellite and observatory data and two general routines for processing aeromagnetic, marine, land survey, and repeat data.

  16. Coupling geodynamic with thermodynamic modelling for reconstructions of magmatic systems

    Science.gov (United States)

    Rummel, Lisa; Kaus, Boris J. P.; White, Richard

    2016-04-01

    Coupling geodynamic with petrological models is fundamental for understanding magmatic systems from the melting source in the mantle to the point of magma crystallisation in the upper crust. Most geodynamic codes use very simplified petrological models consisting of a single, fixed, chemistry. Here, we develop a method to better track the petrological evolution of the source rock and corresponding volcanic and plutonic rocks by combining a geodynamic code with a thermodynamic model for magma generation and evolution. For the geodynamic modelling a finite element code (MVEP2) solves the conservation of mass, momentum and energy equations. The thermodynamic modelling of phase equilibria in magmatic systems is performed with pMELTS for mantle-like bulk compositions. The thermodynamic dependent properties calculated by pMELTS are density, melt fraction and the composition of the liquid and solid phase in the chemical system: SiO2-TiO2-Al2O3-Fe2O3-Cr2O3-FeO-MgO-CaO-Na2O-K2O-P2O5-H2O. In order to take into account the chemical depletion of the source rock with increasing melt extraction events, calculation of phase diagrams is performed in two steps: 1) With an initial rock composition density, melt fraction as well as liquid and solid composition are computed over the full upper mantle P-T range. 2) Once the residual rock composition (equivalent to the solid composition after melt extraction) is significantly different from the initial rock composition and the melt fraction is lower than a critical value, the residual composition is used for next calculations with pMELTS. The implementation of several melt extraction events take the change in chemistry into account until the solidus is shifted to such high temperatures that the rock cannot be molten anymore under upper mantle conditions. An advantage of this approach is that we can track the change of melt chemistry with time, which can be compared with natural constraints. In the thermo-mechanical code the

  17. Aconcagua peak geodynamics from GPS observations, Mendoza, Argentina: preliminary results

    Directory of Open Access Journals (Sweden)

    M. L. Mateo

    2009-12-01

    Full Text Available In 2005, the SIGMA Program (Mount Aconcagua GNSS Research System was implemented to investigate the geodynamics of the Aconcagua mountain region in the Central Andes. For this purpose, a continuously recording GPS station, ACON, was installed on the summit of Mount Aconcagua at 6.292 m a.s.l. The installation required special technology to support the equipment under extreme climatic conditions. The power supply system was optimized in 2008, so that a greater quantity of data could be recorded. This, in turn, will lead to more accurate estimates of displacement of the Aconcagua peak. Preliminary results from the ACON station indicate an average horizontal velocity of 0.023±0.0001 m/yr toward NE in 2 time windows between 2006 and 2008.

  18. The Earth's heterogeneous mantle a geophysical, geodynamical, and geochemical perspective

    CERN Document Server

    Khan, Amir

    2015-01-01

    This book highlights and discusses recent developments that have contributed to an improved understanding of observed mantle heterogeneities and their relation to the thermo-chemical state of Earth's mantle, which ultimately holds the key to unlocking the secrets of the evolution of our planet. This series of topical reviews and original contributions address 4 themes. Theme 1 covers topics in geophysics, including global and regional seismic tomography, electrical conductivity and seismic imaging of mantle discontinuities and heterogeneities in the upper mantle, transition zone and lower mantle. Theme 2 addresses geochemical views of the mantle including lithospheric evolution from analysis of mantle xenoliths, composition of the deep Earth and the effect of water on subduction-zone processes. Theme 3 discusses geodynamical perspectives on the global thermo-chemical structure of the deep mantle. Theme 4 covers application of mineral physics data and phase equilibrium computations to infer the regional-scale ...

  19. On the global geodynamic model of the earth

    Science.gov (United States)

    Nedoma, J.

    A geodynamic-evolution model based on plate tectonics, the assumed gradual density differentiation of the earth's masses, their phase transitions in response to high temperature and pressure, and the theory of thermoelastoviscoplasticity is developed and illustrated with diagrams. In the model, an unstable layer of light materials enriched with Fe, Mg, and other elements arises at the outer core-mantle boundary by density differentiation of the molten materials and migrates upward through channels of greater temperature and lower viscosity between the mantle convective cells to generate rift zones which eventually break the lithosphere into colliding megaplates. The model is shown to provide explanations of such phenomena as the primary geomagnetic field and its fluctuations; the origin of the protocontinent Pangaea; the basifications of the beds of the original oceans, the present inland and marginal seas, and marginal subduction regions of continents; recent tectonic movements; the unfolded sediments of the deep-sea trenches; and the Conrad, Mohorovicic, and other transitional zones.

  20. RECENT GEODYNAMICS OF FAULT ZONES: FAULTING IN REAL TIME SCALE

    Directory of Open Access Journals (Sweden)

    Yu. O. Kuzmin

    2015-09-01

    Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A

  1. Geodynamical features and geotectonic evolution of Kalimantan and adjacent areas

    Institute of Scientific and Technical Information of China (English)

    杨牧; 彭省临

    2004-01-01

    Kalimantan Island is located in the Southeast Asia continental marginal tectono-magmatic mobile zone in the West Pacific Ocean, where the lithosphere of Earth is one of the most complicated tectonic mobile regions on the Earth since Meso-Cenozoic. Based on the geophysical data of the basement and deep structures, the stress field of mantle flow, the maximum principal stress field and geothermal flux, the crustal nature and geodynamical features of Kalimantan Island and adjacent areas were analyzed. Researches on geotectonic movement and evolution of Kalimantan and adjacent areas show that Southeast Asia continental margin crustobody was formed at about middle-late Triassic. In addition, the geotectonic units of the Kalimantan area were subdivided, and characteristics of their geotectonic evolution were discussed.

  2. Appraisal of geodynamic inversion results: a data mining approach

    Science.gov (United States)

    Baumann, T. S.

    2016-11-01

    Bayesian sampling based inversions require many thousands or even millions of forward models, depending on how nonlinear or non-unique the inverse problem is, and how many unknowns are involved. The result of such a probabilistic inversion is not a single `best-fit' model, but rather a probability distribution that is represented by the entire model ensemble. Often, a geophysical inverse problem is non-unique, and the corresponding posterior distribution is multimodal, meaning that the distribution consists of clusters with similar models that represent the observations equally well. In these cases, we would like to visualize the characteristic model properties within each of these clusters of models. However, even for a moderate number of inversion parameters, a manual appraisal for a large number of models is not feasible. This poses the question whether it is possible to extract end-member models that represent each of the best-fit regions including their uncertainties. Here, I show how a machine learning tool can be used to characterize end-member models, including their uncertainties, from a complete model ensemble that represents a posterior probability distribution. The model ensemble used here results from a nonlinear geodynamic inverse problem, where rheological properties of the lithosphere are constrained from multiple geophysical observations. It is demonstrated that by taking vertical cross-sections through the effective viscosity structure of each of the models, the entire model ensemble can be classified into four end-member model categories that have a similar effective viscosity structure. These classification results are helpful to explore the non-uniqueness of the inverse problem and can be used to compute representative data fits for each of the end-member models. Conversely, these insights also reveal how new observational constraints could reduce the non-uniqueness. The method is not limited to geodynamic applications and a generalized MATLAB

  3. A Feasibility Study of Space VLBI for Geodesy and Geodynamics

    Science.gov (United States)

    Kulkarni, Madhav Narayan

    1992-01-01

    Space Very Long Baseline Interferometry (VLBI) is an extension of the ground based VLBI to the space. With the launching of two or more Space VLBI satellites in the future, Space VLBI observations will be available for astrometric, geodetic and geodynamic applications. This new technique holds potential for various important applications including monitoring Earth rotation and interconnection of the reference frames used in geodesy and geodynamics. The aim of this feasibility study has been to investigate the possibility of precise estimation of geodetic parameters, with emphasis on the Earth rotation parameters (ERP's), from Space VLBI observations. A brief description of the Space VLBI technique, it's possible applications, and the Space VLBI missions being planned has been given. Estimability analysis to investigate the estimability of geodetic parameters from Space VLBI observations has been carried out and a simplified mathematical model is derived in terms of estimable parameters. Results of sensitivity analysis carried out to study the sensitivity of the Space VLBI observables to the geodetic parameters of interest, including the number of these parameters and random errors in their a priori values, have been presented. Some of the dominant systematic effects including atmospheric refraction, solar radiation pressure and relativistic effects have also been investigated. Simulation studies have been carried out to study the influence of these systematic effects and a priori information on the estimation of the Earth rotation parameters. The results from the simulation studies indicate that it may be possible to use the Space VLBI technique for monitoring Earth rotation and polar motion, only if the orbital systematic effects can be modeled to a high degree of accuracy (or the satellites can be tracked, with high accuracy, independently), and precise a priori information on station coordinates from other sources is used. A brief description of the Space VLBI

  4. Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences

    Science.gov (United States)

    Kuang, Weijia; Chao, Benjamin F.; Fang, Ming

    2004-01-01

    The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other

  5. Dependency of geodynamic parameters on the GNSS constellation

    Science.gov (United States)

    Scaramuzza, Stefano; Dach, Rolf; Beutler, Gerhard; Arnold, Daniel; Sušnik, Andreja; Jäggi, Adrian

    2017-07-01

    Significant differences in time series of geodynamic parameters determined with different Global Navigation Satellite Systems (GNSS) exist and are only partially explained. We study whether the different number of orbital planes within a particular GNSS contributes to the observed differences by analyzing time series of geocenter coordinates (GCCs) and pole coordinates estimated from several real and virtual GNSS constellations: GPS, GLONASS, a combined GPS/GLONASS constellation, and two virtual GPS sub-systems, which are obtained by splitting up the original GPS constellation into two groups of three orbital planes each. The computed constellation-specific GCCs and pole coordinates are analyzed for systematic differences, and their spectral behavior and formal errors are inspected. We show that the number of orbital planes barely influences the geocenter estimates. GLONASS' larger inclination and formal errors of the orbits seem to be the main reason for the initially observed differences. A smaller number of orbital planes may lead, however, to degradations in the estimates of the pole coordinates. A clear signal at three cycles per year is visible in the spectra of the differences between our estimates of the pole coordinates and the corresponding IERS 08 C04 values. Combinations of two 3-plane systems, even with similar ascending nodes, reduce this signal. The understanding of the relation between the satellite constellations and the resulting geodynamic parameters is important, because the GNSS currently under development, such as the European Galileo and the medium Earth orbit constellation of the Chinese BeiDou system, also consist of only three orbital planes.

  6. Present-day geodynamics of the northern North American Cordillera

    Science.gov (United States)

    Finzel, Emily S.; Flesch, Lucy M.; Ridgway, Kenneth D.

    2014-10-01

    Diffuse continental deformation results from interactions at plate boundaries, buoyancy forces generated by gradients in gravitational potential energy, and loads applied to the base of the lithosphere. Using finite element models, we calculate a deviatoric stress field associated with buoyancy forces, and then perform an iterative inversion to calculate deviatoric stress fields associated with boundary forces in the northern North American Cordillera. Our results reveal the presence of two distinct geodynamic domains. In the outboard domain, approximately equal magnitudes of boundary and buoyancy forces can account for the observed deformation along the Aleutian megathrust. In contrast, large boundary forces related to subduction of the Pacific and Yakutat slabs dominate the force-balance in south-central Alaska and combine with relatively small buoyancy forces to reproduce the observed kinematic indicators. In the inboard domain, encompassed by interior and northern Alaska and western Canada, boundary and buoyancy forces alone cannot reproduce the observed deformation. Therefore, we infer that deviatoric stresses due to basal tractions from a deeper mantle convection cell contribute to surface deformation in the inboard domain. Low effective lithospheric viscosity in south-central Alaska and the balancing effect of an independent geodynamic system driven by basal tractions in northern Alaska combine to confine the anomalously large Yakutat-related boundary deviatoric stresses to south-central Alaska. Deviatoric stresses associated with flat-slab subduction of the Yakutat microplate are a factor of two greater than boundary force estimates for the Andean and Indian-Eurasian convergent margins, where buoyancy and boundary forces are roughly equal in magnitude and dominate the force-balance.

  7. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  8. Geodynamic Evolution of Northeastern Tunisia During the Maastrichtian-Paleocene Time: Insights from Integrated Seismic Stratigraphic Analysis

    Science.gov (United States)

    Abidi, Oussama; Inoubli, Mohamed Hédi; Sebei, Kawthar; Amiri, Adnen; Boussiga, Haifa; Nasr, Imen Hamdi; Salem, Abdelhamid Ben; Elabed, Mahmoud

    2016-12-01

    The Maastrichtian-Paleocene El Haria formation was studied and defined in Tunisia on the basis of outcrops and borehole data; few studies were interested in its three-dimensional extent. In this paper, the El Haria formation is reviewed in the context of a tectono-stratigraphic interval using an integrated seismic stratigraphic analysis based on borehole lithology logs, electrical well logging, well shots, vertical seismic profiles and post-stack surface data. Seismic analysis benefits from appropriate calibration with borehole data, conventional interpretation, velocity mapping, seismic attributes and post-stack model-based inversion. The applied methodology proved to be powerful for charactering the marly Maastrichtian-Paleocene interval of the El Haria formation. Migrated seismic sections together with borehole measurements are used to detail the three-dimensional changes in thickness, facies and depositional environment in the Cap Bon and Gulf of Hammamet regions during the Maastrichtian-Paleocene time. Furthermore, dating based on their microfossil content divulges local and multiple internal hiatuses within the El Haria formation which are related to the geodynamic evolution of the depositional floor since the Campanian stage. Interpreted seismic sections display concordance, unconformities, pinchouts, sedimentary gaps, incised valleys and syn-sedimentary normal faulting. Based on the seismic reflection geometry and terminations, seven sequences are delineated. These sequences are related to base-level changes as the combination of depositional floor paleo-topography, tectonic forces, subsidence and the developed accommodation space. These factors controlled the occurrence of the various parts of the Maastrichtian-Paleocene interval. Detailed examinations of these deposits together with the analysis of the structural deformation at different time periods allowed us to obtain a better understanding of the sediment architecture in depth and the delineation of

  9. Planetary nebulae in the Small Magellanic Cloud

    Science.gov (United States)

    Ventura, P.; Stanghellini, L.; Di Criscienzo, M.; García-Hernández, D. A.; Dell'Agli, F.

    2016-08-01

    We analyse the planetary nebulae (PNe) population of the Small Magellanic Cloud (SMC), based on evolutionary models of stars with metallicities in the range 10-3 ≤ Z ≤ 4 × 10-3 and mass 0.9 M⊙ Magellanic Cloud is explained on the basis of the diverse star formation history and age-metallicity relation of the two galaxies. The implications of this study for some still highly debated points regarding the AGB evolution are also commented.

  10. At the craton edge: Geodynamic evolution of the southern Canadian Cordillera

    Science.gov (United States)

    DiCaprio, L.; Eaton, D. W. S.

    2016-12-01

    In the southern Canadian Cordillera, the thermal and mechanical interface with the craton may influence the geodynamic evolution of the lithosphere-asthenosphere system. Evidence including recent Rayleigh-wave tomography studies suggest that, beneath the southern Canadian Cordillera, the mantle lithosphere is virtually absent. Here, the boundary between craton and Cordillera also marks a step change in measured surface heat flux and a westward termination of magnetic anomalies. This study provides a numerical simulation of lithospheric-mantle removal by geodynamic processes that include delamination, viscous erosion, and mantle dripping. An additional constraint to the geodynamic model comes from thermochronologic data demonstrating long wavelength uplift of the cordilleran plateau in the Eocene. We have developed a suite of 2D visco-plastic models of a transect through the southern Canadian Cordillera and North American Craton. Sensitivity tests elucidate a range of geodynamic models that are consistent with tomographic results and the observed uplift history.

  11. Implementation of Newton-Rapshon iterations for parallel staggered-grid geodynamic models

    Science.gov (United States)

    Popov, A. A.; Kaus, B. J. P.

    2012-04-01

    Staggered-grid finite differences discretization has a good potential for solving highly heterogeneous geodynamic models on parallel computers (e.g. Tackey, 2008; Gerya &Yuen, 2007). They are inherently stable, computationally inexpensive and relatively easy to implement. However, currently used staggered-grid geodynamic codes employ almost exclusively the sub-optimal Picard linearization scheme to deal with nonlinearities. It was shown that Newton-Rapshon linearization can lead to substantial improvements of the solution quality in geodynamic problems, simultaneously with reduction of computer time (e.g. Popov & Sobolev, 2008). This work is aimed at implementation of the Newton-Rapshon linearization in the parallel geodynamic code LaMEM together with staggered-grid discretization and viso-(elasto)-plastic rock rheologies. We present the expressions for the approximate Jacobian matrix, and give detailed comparisons with the currently employed Picard linearization scheme, in terms of solution quality and number of iterations.

  12. Geodynamics implication of GPS and satellite altimeter and gravity observations to the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    Khaled H. Zahran

    2012-06-01

    Results show important zones of mass discontinuity in this region correlated with the seismological activities and temporal gravity variations agree with the crustal deformation obtained from GPS observations. The current study indicates that satellite gravity data is a valuable source of data in understanding the geodynamical behavior of the studied region and that satellite gravity data is an important contemporary source of data in the geodynamical studies.

  13. Sink or swim? Geodynamic and petrological model constraints on the fate of Archaean primary crust

    Science.gov (United States)

    Kaus, B.; Johnson, T.; Brown, M.; VanTongeren, J. A.

    2013-12-01

    Ambient mantle potential temperatures in the Archaean were significantly higher than 1500 °C, leading to a high percent of melting and generating thick MgO-rich primary crust underlain by highly residual mantle. However, the preserved volume of this crust is low suggesting much of it was recycled. Here we couple calculated phase equilibria for hydrated and anhydrous low to high MgO crust compositions and their complementary mantle residues with 2-D numerical geodynamic models to investigate lithosphere dynamics in the early Earth. We show that, with increasing ambient mantle potential temperature, the density of primary crust increases more dramatically than the density of residual mantle decreases and the base of MgO-rich primary crust becomes gravitationally unstable with respect to the underlying mantle even when fully hydrated. To study this process we use geodynamic models that include the effects of melt extraction, crust formation and depletion of the mantle in combination with laboratory-constrained dislocation and diffusion creep rheologies for the mantle. The models show that the base of the gravitationally unstable lithosphere delaminates through relatively small-scale Rayleigh-Taylor instabilities, but only if the viscosity of the mantle lithosphere is sufficiently low. Thickening of the crust above upwelling mantle and heating at the base of the crust are the main mechanisms that trigger the delamination process. Scaling laws were developed that are in good agreement with the numerical simulations and show that the key parameters that control the instability are the density contrast between crust and underlying mantle lithosphere, the thickness of the unstable layer and the effective viscosity of the upper mantle. Depending on uncertainties in the melting relations and rheology (hydrous or anhydrous) of the mantle, this process is shown to efficiently recycle the crust above potential temperatures of 1550-1600 °C. However, below these temperatures

  14. ESA Planetary Science Archive

    Science.gov (United States)

    Arviset, C.; Dowson, J.; Ortiz, I.; Parrilla, E.; Salgado, J.; Zender, J.

    2007-10-01

    The (ESA Planetary Science Archive {http://www.rssd.esa.int/psa} (PSA) hosts all the data from ESA's planetary missions into a single archive. It currently contains data from the Giotto, Mars Express, Rosetta, and Huygens spacecraft, some ground-based observations, and will host data from the Smart-1, Venus Express, and BepiColombo spacecraft in the future. Based on the NASA Planetary Data Systems (PDS) data dictionary, all datasets provided by the instrument teams are scientifically peer-reviewed and technically validated by software before being ingested into the Archive. Based on a modular and flexible architecture, the PSA offers a classical user-interface based on input fields, with powerful query and display possibilities. Data can be downloaded directly or through a more detailed shopping basket. Furthermore, a map-based interface is available to access Mars Express data without requiring any knowledge of the mission. Interoperability between the ESA PSA and the NASA PDS archives is also in progress, re-using concepts and experience gained from existing IVOA protocols. Prototypes are being developed to provide functionalities like GoogleMars, allowing access to both ESA PSA and NASA PDS data.

  15. Galactic planetary science.

    Science.gov (United States)

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

  16. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces

    Institute of Scientific and Technical Information of China (English)

    Robert; Kerrich[1; Richard; Goldfarb[2; David; Groves[3; Steven; Garwin[4

    2000-01-01

    There are six distinct classes of gold deposits, each represented by metallogenic provinces, having 100’s to > 1 000 tonne gold production. The deposit classes are: (1) erogenic gold; (2) Carlin and Carlin-like gold deposits; (3) epithermal gold-silver deposits; (4) copper-gold porphyry deposits; (5) iron-oxide copper-gold deposits; and (6) gold-rich volcanic hosted massive sul-fide (VMS) to sedimentary exhalative (SEDEX) deposits. This classification is based on ore and alteration mineral assemblages; ore and alteration metal budgets; ore fluid pressure(s) and compositions; crustal depth or depth ranges of formation; relationship to structures and/or magmatic intrusions at a variety of scales; and relationship to the P-T-t evolution of the host terrane. These classes reflect distinct geodynamic settings. Orogenic gold deposits are generated at mid-crustal (4-16 km) levels proximal to terrane boundaries, in transpressional subduction-accretion complexes of Cordilleran style erogenic belts; other orogeni

  17. Geodynamic and Seismic Constraints on the Evolution of the Oceanic Lithosphere and Asthenosphere

    Science.gov (United States)

    Fahy, E. H.; Hall, P. S.; Dalton, C. A.; Faul, U.

    2011-12-01

    We report on a series of numerical geodynamic experiments undertaken to investigate the evolution the oceanic lithosphere and the characteristics of the underlying asthenosphere. In particular, we used the CitcomCU finite element package to model mantle flow beneath an oceanic plate. Experiments incorporated deformation by both diffusion creep and dislocation creep mechanisms, with experimentally constrained constants used for the relevant flow laws. We find that the use of flow laws appropriate for wet olivine aggregates leads to the formation of instabilities at the base of the thermal boundary layer corresponding to the lithosphere, which are not found in the experiments employing flow laws for dry olivine. These instabilities effectively thin the older portions of the thermal boundary layer, resulting in an average temperature structure closely resembling the GDH1 plate model [Stein and Stein, 1992] within the model domain. In contrast, the thermal structure of experiments in which instabilities do not form resembles resembles that of a half-space cooling model. Comparison of experimental results to seismic models of variations in shear wave velocity and shear attenuation with both depth and age within the oceanic upper mantle indicates that experiments in which instabilities occur provide a better match to seismic observations than do experiments without such instabilities.

  18. Preliminary results of systematic sampling of gas manifestations in geodynamically active areas of Greece

    Science.gov (United States)

    Daskalopoulou, Kyriaki; D'Alessandro, Walter; Calabrese, Sergio; Kyriakopoulos, Konstantinos

    2016-04-01

    Greece is located on a convergent plate boundary comprising the subduction of the African Plate beneath the Eurasian, while the Arabian plate approaches the Eurasian in a northwestward motion. It is considered to be one of the most tectonically active regions of Earth with a complex geodynamic setting, deriving from a long and complicated geological history. Due to this specific geological background, conditions for the formation of many thermal springs are favoured. In the past years, almost all the already known sites of degassing (fumaroles, soil gases, mofettes, gas bubbling in cold and thermal waters) located in the Hellenic area were sampled at least one time. Collected samples were analysed for their chemical (He, Ne, Ar, O2, N2, H2, H2S, CO, CH4 and CO2) and isotopic composition (He, C and N). Some of these sites have been selected for systematic sampling. Four of them have records longer than 10 years with tens of samplings also considering some literature data. Two of the sites are located in active volcanic areas (Santorini and Nisyros) while the other two are close to actively spreading graben structures with intense seismic activity (Gulf of Korinth and Sperchios basin). Results allowed to define long term background values and also some interesting variation related to seismic or volcanic activity.

  19. The Role of Planetary Data System Archive Standards in International Planetary Data Archives

    Science.gov (United States)

    Guinness, Edward; Slavney, Susan; Beebe, Reta; Crichton, Daniel

    A major objective of NASA's Planetary Data System (PDS) is to efficiently archive and make accessible digital data produced by NASA's planetary missions, research programs, and data analysis programs. The PDS is comprised of a federation of groups known as nodes, with each node focused on archiving and managing planetary data from a given science discipline. PDS nodes include Atmospheres, Geosciences, Small Bodies (asteroids, comets, and dust), Rings, Planetary Plasma Interactions, and Imaging. There are also support nodes for engineering, radio science, and ancillary data, such as geometry information. The PDS archives include space-borne, ground-based, and laboratory experiment data from several decades of NASA exploration of comets, asteroids, moons, and planets. PDS archives are peer-reviewed, welldocumented, and accessible online via web sites, catalogs, and other user-interfaces that provide search and retrieval capabilities. Current holdings within the PDS online repositories total approximately 50 TB of data. Over the next few years, the PDS is planning for a rapid expansion in the volume of data being delivered to its archives. The archive standards developed by the PDS are crucial elements for producing planetary data archives that are consistent across missions and planetary science disciplines and that yield archives that are useable by the planetary research community. These standards encompass the full range of archiving needs. They include standards for the format of data products and the metadata needed to detail how observations were made. They also specify how data products and ancillary information such as documentation, calibration, and geometric information are packaged into data sets. The PDS standards are documented in its Planetary Science Data Dictionary and in its Standards Reference Document and Archive Preparation Guide. The PDS standards are being used to design and implement data archives for current and future NASA planetary missions

  20. Petrogenetic and geodynamic origin of the Neoarchean Doré Lake Complex, Abitibi subprovince, Superior Province, Canada

    DEFF Research Database (Denmark)

    Polat, Ali; Frei, Robert; Longstaffe, Fred J.

    2017-01-01

    Group, which is composed of two cycles of tholeiitic-to-calc-alkaline volcanic and volcaniclastic rocks, siliciclastic and chemical sedimentary rocks, and layered mafic-to-ultramafic sills. In this study, we report major and trace element results, and Nd, Sr, Pb and O isotope data for anorthosites......, leucogabbros, gabbros and mafic dykes from the Doré Lake Complex and spatially associated basalts and gabbros of the Obatogamau Formation to assess their petrogenetic origin and geodynamic setting. Field and petrographic observations indicate that the Doré Lake Complex and associated volcanic rocks underwent...... extensive metamorphic alteration under greenschist facies conditions, resulting in widespread epidotization (20–40%) and chloritization (10–40%) of many rock types. Plagioclase recrystallized mainly to anorthite and albite endmembers, erasing intermediate compositions. Metamorphic alteration also led...

  1. Orogenesis of the Oman Mountains - a new geodynamic model based on structural geology, plate reconstructions and thermochronology

    Science.gov (United States)

    Grobe, Arne; Virgo, Simon; von Hagke, Christoph; Ralf, Littke; Urai, Janos L.

    2017-04-01

    Ophiolite obduction is an integral part of mountain building in many orogens. However, because the obduction stage is usually overprinted by later tectonic events, obduction geodynamics and its influence on orogenesis are often elusive. The best-preserved ophiolite on Earth is the Semail Ophiolite, Oman Mountains. 350 km of ophiolite and the entire overthrusted margin sequence are exposed perpendicular to the direction of obduction along the northeastern coast of the Sultanate of Oman. Despite excellent exposure, it has been debated whether early stages of obduction included formation of a micro-plate, or if the Oman Mountains result from collision of two macro-plates (e.g. Breton et al., 2004). Furthermore, different tectonic models for the Oman Mountains exist, and it is unclear how structural and tectonic phases relate to geodynamic context. Here we present a multidisciplinary approach to constrain orogenesis of the Oman Mountains. To this end, we first restore the structural evolution of the carbonate platform in the footwall of the Semail ophiolite. Relative ages of nine structural generations can be distinguished, based on more than 1,500 vein and fault overprintings. Top-to-S overthrusting of the Semail ophiolite is witnessed by three different generations of bedding confined veins in an anticlockwise rotating stress field. Rapid burial induced the formation of overpressure cells, and generation and migration of hydrocarbons (Fink et al., 2015; Grobe et al., 2016). Subsequent tectonic thinning of the ophiolite took place above a top-to-NNE crustal scale, ductile shear zone, deforming existing veins and forming a cleavage in clay-rich layers. Ongoing extension formed normal- to oblique-slip faults and horst-graben structures. This was followed by NE-SW oriented ductile shortening, the formation of the Jebel Akhdar anticline, potentially controlled by the positions of the horst-graben structures. Exhumation in the Cenozoic was associated with low angle normal

  2. High Speed Networking and Large-scale Simulation in Geodynamics

    Science.gov (United States)

    Kuang, Weijia; Gary, Patrick; Seablom, Michael; Truszkowski, Walt; Odubiyi, Jide; Jiang, Weiyuan; Liu, Dong

    2004-01-01

    Large-scale numerical simulation has been one of the most important approaches for understanding global geodynamical processes. In this approach, peta-scale floating point operations (pflops) are often required to carry out a single physically-meaningful numerical experiment. For example, to model convective flow in the Earth's core and generation of the geomagnetic field (geodynamo), simulation for one magnetic free-decay time (approximately 15000 years) with a modest resolution of 150 in three spatial dimensions would require approximately 0.2 pflops. If such a numerical model is used to predict geomagnetic secular variation over decades and longer, with e.g. an ensemble Kalman filter assimilation approach, approximately 30 (and perhaps more) independent simulations of similar scales would be needed for one data assimilation analysis. Obviously, such a simulation would require an enormous computing resource that exceeds the capacity of a single facility currently available at our disposal. One solution is to utilize a very fast network (e.g. 10Gb optical networks) and available middleware (e.g. Globus Toolkit) to allocate available but often heterogeneous resources for such large-scale computing efforts. At NASA GSFC, we are experimenting with such an approach by networking several clusters for geomagnetic data assimilation research. We shall present our initial testing results in the meeting.

  3. Paradoxes of high and low velocities in modern geodynamics

    Science.gov (United States)

    Makarov, P. V.

    2016-11-01

    An analysis of the data on the vertical and horizontal movements of the Earth's crust obtained within recent 40 years has revealed paradoxical deviations of its deformations from the movements inherited from the past geological times. Currently, high local deformation velocities are observed both in the aseismic and seismically active regions. There are no clues to this phenomenon within the conventional concepts of geodynamics and mechanics of deformed solids. It is shown in this work that the paradoxes of high and low velocities could be solved if deformation processes taking place in the Earths' crust would be treated as the evolution of the stress-strain state of the loaded medium as a typical non-linear dynamic system. In this case, fracture develops in two stages—a comparatively slow quasi-stationary stage and a superfast catastrophic one, wherein the spatial localization of parameters is followed by the localization of the deformation process in time. This property is a fundamental characteristic of any non-linear dynamic systems.

  4. Geodynamic Reconstructions of the Australides—2: Mesozoic–Cainozoic

    Directory of Open Access Journals (Sweden)

    Gérard M. Stampfli

    2013-06-01

    Full Text Available The present work, derived from a full global geodynamic reconstruction model over 600 Ma and based on a large database, focuses herein on the interaction between the Pacific, Australian and Antarctic plates since 200 Ma, and proposes integrated solutions for a coherent, physically consistent scenario. The evolution of the Australia–Antarctica–West Pacific plate system is dependent on the Gondwana fit chosen for the reconstruction. Our fit, as defined for the latest Triassic, implies an original scenario for the evolution of the region, in particular for the “early” opening history of the Tasman Sea. The interaction with the Pacific, moreover, is characterised by many magmatic arc migrations and ocean openings, which are stopped by arc–arc collision, arc–spreading axis collision, or arc–oceanic plateau collision, and subduction reversals. Mid-Pacific oceanic plateaus created in the model are much wider than they are on present-day maps, and although they were subducted to a large extent, they were able to stop subduction. We also suggest that adduction processes (i.e., re-emergence of subducted material may have played an important role, in particular along the plate limit now represented by the Alpine Fault in New Zealand.

  5. Geodynamic Background of the Mesozoic Intracontinental Magmatism in Southeast China

    Institute of Scientific and Technical Information of China (English)

    毛建仁; 陶奎元; 等

    1997-01-01

    The authors have proposed a dynamic model in this paper based on the ages,rock series and associations,Sr-Nd isotopic signatures of the Mesozoic intracontinental magmatism overlying the Cathaysian and Yangtze blocks.The model describes the relation of intracontinental collision and subduction in the Tethyan tectonic regie with Paleo-Pacific oceanic plate sudbuction-strike slip-extension in the Pacific tectonic regime.During 220-150Ma,the horizontal collision between the North China block and the Yangtze block,as well as the intracontinental subduction of some divergent microcontinental terranes in the southwestern part of South China are ascribed to the influence of the Tethyan tectonic regime,giving rise to a volume of high-Isr and low-εNd(t) S-type granites only in the Cathaysian Block.During 145-90Ma,under the geodynamic backgound of subduction-strike slip-extension of the Paleo-Pacific oceanic plate on the basis of the deep tectonic process in the Tethyan tectonic regime,high-K,alkalirich calc-alkaline and shoshonitic volcano-plutonic complexes were generated in the Yangtze block,and high-K calc-alkalic and bimodal volcano-plutonic complexes were generated in the Cathaysian block.The occurrence of A-type peralkaline granites in the coastal areas of South east China indicates the end of Mesozoic intracontinental magmatism.

  6. Geodynamic Effects of Ocean Tides: Progress and Problems

    Science.gov (United States)

    Richard, Ray

    1999-01-01

    Satellite altimetry, particularly Topex/Poseidon, has markedly improved our knowledge of global tides, thereby allowing significant progress on some longstanding problems in geodynamics. This paper reviews some of that progress. Emphasis is given to global-scale problems, particularly those falling within the mandate of the new IERS Special Bureau for Tides: angular momentum, gravitational field, geocenter motion. For this discussion I use primarily the new ocean tide solutions GOT99.2, CSR4.0, and TPXO.4 (for which G. Egbert has computed inverse-theoretic error estimates), and I concentrate on new results in angular momentum and gravity and their solid-earth implications. One example is a new estimate of the effective tidal Q at the M_2 frequency, based on combining these ocean models with tidal estimates from satellite laser ranging. Three especially intractable problems are also addressed: (1) determining long-period tides in the Arctic [large unknown effect on the inertia tensor, particularly for Mf]; (2) determining the global psi_l tide [large unknown effect on interpretations of gravimetry for the near-diurnal free wobble]; and (3) determining radiational tides [large unknown temporal variations at important frequencies]. Problems (2) and (3) are related.

  7. Lightning detection in planetary atmospheres

    CERN Document Server

    Aplin, Karen L

    2016-01-01

    Lightning in planetary atmospheres is now a well-established concept. Here we discuss the available detection techniques for, and observations of, planetary lightning by spacecraft, planetary landers and, increasingly, sophisticated terrestrial radio telescopes. Future space missions carrying lightning-related instrumentation are also summarised, specifically the European ExoMars mission and Japanese Akatsuki mission to Venus, which could both yield lightning observations in 2016.

  8. Provenance analysis of heavy minerals in beach sands (Falkland Islands/Islas Malvinas) - A view to mineral deposits and the geodynamics of the South Atlantic Ocean

    Science.gov (United States)

    Dill, Harald G.; Skoda, Radek

    2017-10-01

    Beach sands are ideal traps to collect heavy minerals (HM) from different geodynamic settings and mineral deposits. The coastal sediments contain a mixture of HM derived from the submarine shelf and from source rocks in the hinterland. This is true in a transgressive periglacial regime, where drowned valleys and estuaries are instrumental in draining HM to the arenaceous beach sediments from more distal basement lithologies. A scenario like this can be found in the Falkland Islands/Islas Malvinas. The site under study is the missing link between South Africa and South America, the splitting-apart of which is mirrored by the HM distribution predominantly concentrated in the backshore and dune belt along the coast. The HM are subdivided into three HM associations reflecting the geodynamic evolution of the South Atlantic Ocean and of some of the prominent mineral deposits on the Gondwana Continent: (1) Gondwana cratons and Proterozoic orogens, with Cr and BIF deposits (rutile, zircon, ilmenite, tourmaline, garnet, Cr spinel), (2) rift-related and break-apart magmatic lithologies with mantle-derived pipe rocks such as kimberlites (zircon, pyroxene, spinel, Mg ilmenite), (3) Cordillera-type lithologies with polymetallic stratabound deposits (tourmaline, amphibole, chlorite, REE phosphates). The variation of the major HM from the stable craton (Kalahari-Kaapvaal Craton) in the East to the mobile fold belt (Andes) in the West follows the order of stability of HM. In addition to these 3 geodynamic HM groups, sporadic occurrences of HM originating from alteration (leucoxene, chlorite s.s.s. (= solid solution series)) are part of armored relics such as ;nigrine; which on transport disintegrated and thereby released these HM. The major ultrastable and stable HM zircon, rutile, tourmaline s.s.s., spinel s.s.s., and garnet s.s.s. are displayed in a synoptical x-y plot showing the mantle and crustal trends of fractionation and formation of cumulates by means of particular

  9. Earth-like Habitats in Planetary Systems

    CERN Document Server

    Fritz, Jörg; Kührt, Ekkehard; Morbidelli, Alessandro; Tornow, Carmen; Wünnemann, Kai; Fernandes, Vera A; Grenfell, Lee J; Rauer, Heike; Wagner, Roland; Werner, Stephanie C

    2014-01-01

    Understanding the concept of habitability is related to an evolutionary knowledge of the particular planet-in-question. Additional indications so-called "systemic aspects" of the planetary system as a whole governs a particular planet's claim on habitability. Here we focus on such systemic aspects and discuss their relevance to the formation of an 'Earth-like' habitable planet. We summarize our results obtained by lunar sample work and numerical models within the framework of the Research Alliance "Planetary Evolution and Life". We consider various scenarios which simulate the dynamical evolution of the Solar System and discuss the likelihood of forming an Earth-like world orbiting another star. Our model approach is constrained by observations of the modern Solar System and the knowledge of its history. Results suggest that the long-term presence of terrestrial planets is jeopardized due to gravitational interactions if giant planets are present. But habitability of inner rocky planets may be supported in th...

  10. The final fate of planetary systems

    Science.gov (United States)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  11. The Spectroscopic Properties of Bright Extragalactic Planetary Nebulae

    CERN Document Server

    Richer, M G

    2006-01-01

    The properties of bright extragalactic planetary nebulae are reviewed based upon the results of low and high resolution spectroscopy. It is argued that bright extragalactic planetary nebulae from galaxies (or subsystems) with and without star formation have different distributions of central star temperature and ionization structure. As regards the chemical compositions, oxygen and neon are generally found to be unchanged as a result of the evolution of the stellar progenitors. Nitrogen enrichment may occur as a result of the evolution of the progenitors of bright planetary nebulae in all stellar populations, though this enrichment may be (more) random in old stellar populations. Helium abundances appear to be influenced by the chemical evolution of the host galaxy, with planetary nebulae in dwarf spheroidals having systematically elevated abundances. Neither the age nor the metallicity of the progenitor stellar population has a strong effect upon the kinematics observed for nebular shells. Both the range of ...

  12. Universal planetary tectonics (supertectonics)

    Science.gov (United States)

    Kochemasov, G. G.

    2009-04-01

    Universal planetary tectonics (supertectonics) G. Kochemasov IGEM of the Russian Academy of Sciences, Moscow, Russia, kochem.36@mail.ru The wave planetology [1-3 & others] proceeds from the following: "planetary structures are made by orbits and rotations". A uniform reason makes uniform structures. Inertia-gravity waves arising in planetary bodies due to their movements in Keplerian elliptical orbits with periodically changing accelerations warp these bodies in such way that they acquire polyhedron shapes (after interference of standing waves of four directions). Strong Newtonian gravity makes bodies larger than ~400 to 500 km in diameter globular and polyhedra are rarely seen. Only geomorphologic, geologic and geophysical mapping can develop these hidden structures. But small bodies, normally less than ~ 300 to 400 km in diameter, often show parts of the polyhedra, rarely fully developed forms (the asteroid Steins and satellite Amalthea present rather perfect forms of "diamond"). Depending on warping wavelengths (they make harmonics) various Plato's figures superimposed on each other can be distinguished. The fundamental wave 1 produces a tetrahedron, intrinsically dichotomic figure in which a vertex (contraction) always is opposed to a face (expansion). From the recent examples the best is the saturnian northern hexagon (a face) opposed to the southern hurricane (a vertex). The first overtone wave 2 is responsible for creation of structural octahedra. Whole ‘diamonds" and their parts are known [4, 5]. Other overtones produce less developed (because of smaller wave amplitudes) planetary shapes complicating main forms. Thus, the first common structural peculiarity of planetary bodies is their polyhedron nature. Not less important is the second common structural peculiarity. As all globular or smaller more or less isometric bodies rotate, they have an angular momentum. It is inevitably different in tropic and extra-tropic belts having uneven radii or distances to

  13. Geodynamics and ore content of basite-ultrabasite complexes of Siberian Platform southern framing rocks (Kodaro-Udokan and Muja zones of North Transbaikalye)

    Institute of Scientific and Technical Information of China (English)

    Bair N.Abramov

    2004-01-01

    In southern framing of Siberian Platform, basite-ultrabasite intrusive complexes were forming over a long period of time (Early Proterozoic-Paleozoic Era) as a result of collisional and post-collisional processes. In Muja zone they formed mainly in island-arch geodynamic conditions, in Kodaro-Udokan zone-in continental. Most productive toward noble metals in Muja zones are basite-ultrabasites of the Dovyrensk complex, in Kodaro-Udokan basites of the Chiney complex. Gold in these formations has both mantle and crustal springs.

  14. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  15. Planetary Ices Attenuation Properties

    Science.gov (United States)

    McCarthy, Christine; Castillo-Rogez, Julie C.

    In this chapter, we review the topic of energy dissipation in the context of icy satellites experiencing tidal forcing. We describe the physics of mechanical dissipation, also known as attenuation, in polycrystalline ice and discuss the history of laboratory methods used to measure and understand it. Because many factors - such as microstructure, composition and defect state - can influence rheological behavior, we review what is known about the mechanisms responsible for attenuation in ice and what can be inferred from the properties of rocks, metals and ceramics. Since attenuation measured in the laboratory must be carefully scaled to geologic time and to planetary conditions in order to provide realistic extrapolation, we discuss various mechanical models that have been used, with varying degrees of success, to describe attenuation as a function of forcing frequency and temperature. We review the literature in which these models have been used to describe dissipation in the moons of Jupiter and Saturn. Finally, we address gaps in our present knowledge of planetary ice attenuation and provide suggestions for future inquiry.

  16. Galactic planetary science

    CERN Document Server

    Tinetti, Giovanna

    2014-01-01

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets -mainly radial velocity and transit - or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next...

  17. Warner Prize Lecture: A New View on Planetary Orbital Dynamics

    Science.gov (United States)

    Ford, Eric B.

    2013-01-01

    Prior to the discovery of exoplanets, astronomers fine tuned theories of planet formation to explain detailed properties of the solar system. Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke strong mutual gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with sizes between Earth and Neptune and closely-spaced orbits. These systems represent another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. I will describe how transit timing observations by Kepler are characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets and providing precise (but complex) constraints on planetary masses, densities and orbits, even for planetary systems with faint host stars. I will discuss early efforts to translate these observations into new constraints on the formation and orbital evolution of planetary systems with low-mass planets.

  18. ELEFANT: a user-friendly multipurpose geodynamics code

    Directory of Open Access Journals (Sweden)

    C. Thieulot

    2014-07-01

    Full Text Available A new finite element code for the solution of the Stokes and heat transport equations is presented. It has purposely been designed to address geological flow problems in two and three dimensions at crustal and lithospheric scales. The code relies on the Marker-in-Cell technique and Lagrangian markers are used to track materials in the simulation domain which allows recording of the integrated history of deformation; their (number density is variable and dynamically adapted. A variety of rheologies has been implemented including nonlinear thermally activated dislocation and diffusion creep and brittle (or plastic frictional models. The code is built on the Arbitrary Lagrangian Eulerian kinematic description: the computational grid deforms vertically and allows for a true free surface while the computational domain remains of constant width in the horizontal direction. The solution to the large system of algebraic equations resulting from the finite element discretisation and linearisation of the set of coupled partial differential equations to be solved is obtained by means of the efficient parallel direct solver MUMPS whose performance is thoroughly tested, or by means of the WISMP and AGMG iterative solvers. The code accuracy is assessed by means of many geodynamically relevant benchmark experiments which highlight specific features or algorithms, e.g., the implementation of the free surface stabilisation algorithm, the (visco-plastic rheology implementation, the temperature advection, the capacity of the code to handle large viscosity contrasts. A two-dimensional application to salt tectonics presented as case study illustrates the potential of the code to model large scale high resolution thermo-mechanically coupled free surface flows.

  19. The DORIS benefits as seen from flight dynamics to geodynamics

    Science.gov (United States)

    Nouel, F.; Berthias, J. P.; Broca, P.; Comps, A.; Deleuze, M.; Guitart, A.; Jayles, C.; Laudet, Ph.; Pierret, C.; Piuzzi, A.

    DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) is a radio receiver designed to accurately measure the carrier frequencies of incoming signals generated by a worldwide beacon network. The DORIS concept is to minimize error sources so that the submeter level on the low Earth orbit satellite position can be reached almost permanently. The DORIS ground segment includes a control center and an orbit determination service, which were conceived to adequately process DORIS measurements and to maintain this high accuracy objective. Since February 1991, DORIS has been used to track the Earth observation satellite SPOT 2 and will also be a passenger for the following SPOT platforms. DORIS is the French tracking system of the oceanographic altimetry satellite TOPEX/POSEIDON which includes laser and experimental global positioning system (GPS) tracking on the US data. During 1990 and 1991, the SPOT Precise Orbit Determination (POD) was performed allowing an orbit time coverage of more than 70% (including frequent system tests during the first year). Taking the SPOT POD as a reference other tracking systems were evaluated and calibrated. Range, range rate, angular measurements have now generated adequate statistics characterizing their noises and their bias behavior, in terms of instrumental and propagation and time tag. Actual station keeping maneuver performances can also be estimated to the millimeter per second level in the three dimension space. Ionospheric daily maps are a by-product of the DORIS concept with its two coherent stable frequencies 2.03625 GHz and 401.24 MHz. As the measurements are performed on board, an autonomous orbit determination system prototype has been developed and performance estimated. As far as geodynamics are concerned, new Earth gravity fields have been developed by several groups from Europe and United States. These models will allow better orbit determination, especially for sun-synchronous orbits.

  20. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia)

    Science.gov (United States)

    Taboada, Alfredo; Rivera, Luis A.; Fuenzalida, AndréS.; Cisternas, Armando; Philip, Hervé; Bijwaard, Harmen; Olaya, José; Rivera, Clara

    2000-10-01

    New regional seismological data acquired in Colombia during 1993 to 1996 and tectonic field data from the Eastern Cordillera (EC) permit a reexamination of the complex geodynamics of northwestern South America. The effect of the accretion of the Baudó-Panama oceanic arc, which began 12 Myr ago, is highlighted in connection with mountain building in the EC. The Istmina and Ibagué faults in the south and the Santa Marta-Bucaramanga fault to the northeast limit an E-SE moving continental wedge. Progressive indentation of the wedge is absorbed along reverse faults located in the foothills of the Cordilleras (northward of 5°N) and transpressive deformation in the Santander Massif. Crustal seismicity in Colombia is accurately correlated with active faults showing neotectonic morphological evidences. Intermediate seismicity allows to identify a N-NE trending subduction segment beneath the EC, which plunges toward the E-SE. This subduction is interpreted as a remnant of the paleo-Caribbean plateau (PCP) as suggested by geological and tomographic profiles. The PCP shows a low-angle subduction northward of 5.2°N and is limited southward by a major E-W transpressive shear zone. Normal oceanic subduction of the Nazca plate (NP) ends abruptly at the southern limit of the Baudó Range. Northward, the NP subducts beneath the Chocó block, overlapping the southern part of the PCP. Cenozoic shortening in the EC estimated from a balanced section is ˜120 km. Stress analysis of fault slip data in the EC (northward of 4°N), indicates an ˜E-SE orientation of σ1 in agreement with the PCP subduction direction. Northward, near Bucaramanga, two stress solutions were observed: (1) a late Andean N80°E compression and (2) an early Andean NW-SE compression.

  1. Dynamical approach to study and interpret geodynamical and geophysical effects

    Science.gov (United States)

    Ferronsky, V.

    2009-04-01

    It was proved by satellite and terrestrial observation that the hydrostatics, which operates by the outer forces, is not able to ensure correct description and interpretation of geodynamical and geophysical effects. In order to find solution of the problem, we applied to dynamics. For this purpose the outer force field of the Earth was replaced by its inner (volumetric) force pressure. Doing so we introduced new physical basis for study dynamics of the planet in its own force field. The analytics for that is as follows. The body is considered as a system of n elementary particles (n → ∞) of masses mi and many degrees of freedom. The volumetric moment of a particle pi is written as pi = midri/dt. Then the moment of momentum M of the system is found to be derivative from the moment of inertia I in the form: M = ∑piri = ∑miridri/dt = d/dt(∑½ miri2) = ½ dI/dt. Then derivative on time from M gives the energy of the system as second derivative from I: M' = ∑pidri/dt + ∑ridpi/dt = ½I" where ∑pidri/dt = 2T is the kinetic energy and ∑ridpi/dt = U is the potential energy of the oscillating moment of inertia (interacting particles). So, equation of dynamical equilibrium (equation of state) of a body, where the interacted particles are presented by nonlinear oscillators, is ½I" = 2T + U. We used this for study and interpretation of oscillation and rotation parameters of the Earth. Note that the center of mass of the Earth is presented here by a surface of asymmetric spheroid. For more information see our works: Ferronsky V.I. and S.V.Ferronsky (2007). Dynamics of the Earth, Scientific World, Moscow; Ferronsky V.I. (2008) Non-averaged virial theorem for natural systems: http://zhurnal.ape.relarn.ru/articles/2008/066e.pdf

  2. Lay and Expert Perceptions of Planetary Protection

    Science.gov (United States)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  3. Lay and Expert Perceptions of Planetary Protection

    Science.gov (United States)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  4. Distances from Planetary Nebulae

    CERN Document Server

    Ciardullo, R

    2003-01-01

    The [O III] 5007 planetary nebula luminosity function (PNLF) occupies an important place on the extragalactic distance ladder. Since it is the only method that is applicable to all the large galaxies of the Local Supercluster, it is uniquely useful for cross-checking results and linking the Population I and Population II distance scales. We review the physics underlying the method, demonstrate its precision, and illustrate its value by comparing its distances to distances obtained from Cepheids and the Surface Brightness Fluctuation (SBF) method. We use the Cepheid and PNLF distances to 13 galaxies to show that the metallicity dependence of the PNLF cutoff is in excellent agreement with that predicted from theory, and that no additional systematic corrections are needed for either method. However, when we compare the Cepheid-calibrated PNLF distance scale with the Cepheid-calibrated SBF distance scale, we find a significant offset: although the relative distances of both methods are in excellent agreement, th...

  5. Planetary internal structures

    CERN Document Server

    Baraffe, I; Fortney, J; Sotin, C

    2014-01-01

    This chapter reviews the most recent advancements on the topic of terrestrial and giant planet interiors, including Solar System and extrasolar objects. Starting from an observed mass-radius diagram for known planets in the Universe, we will discuss the various types of planets appearing in this diagram and describe internal structures for each type. The review will summarize the status of theoretical and experimental works performed in the field of equation of states (EOS) for materials relevant to planetary interiors and will address the main theoretical and experimental uncertainties and challenges. It will discuss the impact of new EOS on interior structures and bulk composition determination. We will discuss important dynamical processes which strongly impact the interior and evolutionary properties of planets (e.g plate tectonics, semiconvection) and describe non standard models recently suggested for our giant planets. We will address the case of short-period, strongly irradiated exoplanets and critica...

  6. 3D Geodynamic Modelling Reveals Stress and Strain Partitioning within Continental Rifting

    Science.gov (United States)

    Rey, P. F.; Mondy, L. S.; Duclaux, G.; Moresi, L. N.

    2014-12-01

    The relative movement between two divergent rigid plates on a sphere can be described using a Euler pole and an angular velocity. On Earth, this typically results in extensional velocities increasing linearly as a function of the distance from the pole (for example in the South Atlantic, North Atlantic, Woodlark Basin, Red Sea Basin, etc.). This property has strong implications for continental rifting and the formation of passive margins, given the role that extensional velocity plays on both rift style (wide or narrow), fault pattern, subsidence histories, and magmatism. Until now, this scissor-style opening has been approached via suites of 2D numerical models of contrasting extensional velocities, complimenting field geology and geophysics. New advances in numerical modelling tools and computational hardware have enabled us to investigate the geodynamics of this problem in a 3D self-consistent high-resolution context. Using Underworld at a grid resolution of 2 km over a domain of 500 km x 500 km x 180 km, we have explored the role of the velocity gradient on the strain pattern, style of rifting, and decompression melting, along the margin. We find that the three dimensionality of this problem is important. The rise of the asthenosphere is enhanced in 2D models compared to 3D numerical solutions, due to the limited volume of material available in 2D. This leads to oceanisation occurring significantly sooner in 2D models. The 3D model shows that there is a significant time and space dependent flows parallel to the rift-axis. A similar picture emerges from the stress field, showing time and space partitioning, including regions of compression separating areas dominated by extension. The strain pattern shows strong zonation along the rift axis, with increasingly localised deformation with extension velocity and though time.

  7. Neogene-Quaternary magmatic activity and its geodynamic implications in the Central Mediterranean region

    Directory of Open Access Journals (Sweden)

    G. Serri

    1997-06-01

    Full Text Available The petrogenesis and time/space distribution of the magmatism associated with the formation of the Northern and Southern Tyrrhenian basins, together with the directions and ages of lithospheric extension and/or spreading north and south of the 410N discontinuity, show that the two arc/back-arc systems have undergone a different structural evolution at least since the middle Miocene (Langhian. The geochemical components involved in the genesis of the heterogeneities of the mantle sources of this magmatism require two separate, compositionally different slabs: 1 an old oceanic (Ionian lithosphere still seismically active below the Calabrian arc and the Southern Tyrrhenian region; 2 an almost seismically inactive continental (Adriatic lithosphere which carried large amounts of upper crustal materials within the upper mantle under the NW Roman Province/Tuscan/Northern Tyrrhenian region. The proposed geodynamic models require: 1 for the Northern Tyrrhenian/Northern Apenninic arc/back-arc system, the delamination and foundering of the Adriatic continental lithosphere as a consequence of the continental collision between the Corsica block and the Adriatic continental margin. This delamination process, which is still ongoing, probably started in the early-middle Miocene, but earlier than 15-14 Ma, as indicated by the age and petrogenesis of the first documented magmatic episode (the Sisco lamproite of the Northern Apennine orogenesis; 2 for the Southern Tyrrhenian/Southern Apenninic-Calabrian arc/back-arc system, the roll-back subduction and back-arc extension driven by gravitational sinking of the Ionian oceanic subducted lithosphere. This process started after the end of the arc volcanism of Sardinia (about 13 Ma but earlier than the first recorded episode of major rifting (about 9 Ma in the Southern Tyrrhenian back-arc basin.

  8. GEODYNAMICS AS WAVE DYNAMICS OF THE MEDIUM COMPOSED OF ROTATING BLOCKS

    Directory of Open Access Journals (Sweden)

    Alexander V. Vikulin

    2015-10-01

    Full Text Available The geomedium block concept envisages that stresses in the medium composed of rotating blocks have torque and thus predetermine the medium's energy capacity (in terms of [Ponomarev, 2008]. The present paper describes the wave nature of the global geodynamic process taking place in the medium characterized by the existence of slow and fast rotation strain waves that are classified as a new type of waves. Movements may also occur as rheid, superplastic and/or superfluid motions and facilitate the formation of vortex geological structures in the geomedium.Our analysis of data on almost 800 strong volcanic eruptions shows that the magma chamber’s thickness is generally small, about 0.5 km, and this value is constant, independent of the volcanic process and predetermined by properties of the crust. A new magma chamber model is based on the idea of 'thermal explosion’/‘self-acceleration' manifested by intensive plastic movements along boundaries between the blocks in conditions of the low thermal conductivity of the geomedium. It is shown that if the solid rock in the magma chamber is overheated above its melting point, high stresses may occur in the surrounding area, and their elastic energy may amount to 1015 joules per 1 km3 of the overheated solid rock. In view of such stresses, it is possible to consider the interaction between volcano’s magma chambers as the migration of volcanic activity along the volcanic arc and provide an explanation of the interaction between volcanic activity and seismicity within the adjacent parallel arcs.The thin overheated interlayer/magma chamber concept may be valid for the entire Earth's crust. In our hypothesis, properties of the Moho are determined by the phase transition from the block structure of the crust to the nonblock structure of the upper mantle.

  9. Phase Equilibrium Investigations of Planetary Materials

    Science.gov (United States)

    Grove, T. L.

    1997-01-01

    This grant provided funds to carry out experimental studies designed to illuminate the conditions of melting and chemical differentiation that has occurred in planetary interiors. Studies focused on the conditions of mare basalt generation in the moon's interior and on processes that led to core formation in the Shergottite Parent Body (Mars). Studies also examined physical processes that could lead to the segregation of metal-rich sulfide melts in an olivine-rich solid matrix. The major results of each paper are discussed below and copies of the papers are attached as Appendix I.

  10. Thermal evolution of planetary size bodies

    Science.gov (United States)

    Hsui, A. T.; Toksoz, M. N.

    1977-01-01

    The size dependence of planetary thermal evolution is investigated through calculations which take into account the effects of heat source differentiation and convection. The theoretical computations make use of hypothetical bodies for minor planets; Mercury, Venus and Mars are employed to represent the size spectrum of the inner planets. If started at a cold initial condition, an object with a radius less than 1000 km is unlikely to reach melting. Accretional heating, inductive heating and short half-life radioactive heating are among the mechanisms which may produce early melting and differentiation in larger planets. Core formation in Mercury and Venus is also discussed.

  11. Geodynamic laboratory SRC PAS in Książ - state of 2013

    Directory of Open Access Journals (Sweden)

    Damian Kasza

    2014-07-01

    Full Text Available The paper provides information on the history of the creation and activities of the Geodynamic Laboratory in Książ (Central Sudetes, SW Poland. A unique laboratory environment, instrumental facilities and research program were presented. Particular attention was paid to the study of geodynamic signals of non-tidal nature, relating to the local geological and tectonic situation. Tectonic research is examined in terms of both cognitive (identification of causes of the occurrence and scale of the problem, as well as utilitarian aspect designed to assess the impact of recorded effects on the earth's surface and architectural objects.

  12. Planetary Landscape Geography

    Science.gov (United States)

    Hargitai, H.

    INTRODUCTION Landscape is one of the most often used category in physical ge- ography. The term "landshap" was introduced by Dutch painters in the 15-16th cen- tury. [1] The elements that build up a landscape (or environment) on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements. The same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. Landscapes build up a hierarchic system and cover the whole surface. On Earth, landscapes can be classified and qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered. Using the data from landers and data from orbiters we can now classify planetary landscapes (these can be used as geologic mapping units as well). By looking at a unknown landscape, we can determine the processes that created it and its development history. This was the case in the Pathfinder/Sojourner panoramas. [2]. DISCUSSION Planetary landscape evolution. We can draw a raw landscape develop- ment history by adding the different landscape building elements to each other. This has a strong connection with the planet's thermal evolution (age of the planet or the present surface materials) and with orbital parameters (distance from the central star, orbit excentricity etc). This way we can build a complex system in which we use differ- ent evolutional stages of lithologic, atmospheric, hydrologic and biogenic conditions which determine the given - Solar System or exoplanetary - landscape. Landscape elements. "Simple" landscapes can be found on asteroids: no linear horizon is present (not differentiated body, only impact structures), no atmosphere (therefore no atmospheric scattering - black sky as part of the landscape) and no

  13. Linking geodynamics and geophysical inversion with multiobservable probabilistic tomography

    Science.gov (United States)

    Afonso, Juan Carlos; Rawlinson, Nicholas; Yang, Yingjie; Zlotnik, Sergio; Ortega, Olga

    2017-04-01

    Our recent work (Afonso et al., 2013a,b; 2016) has demonstrated that multiobservable probabilistic tomography offers a sound method to characterize the thermochemical structure of the lithosphere and upper mantle and opens exiting new opportunities for deep-Earth imaging. In this method, all physical and chemical parameters defining an Earth model are linked together by fundamental thermodynamic relations, rather than by ad hoc empirical assumptions. This allows us to directly invert for the fundamental variables defining the physical state of the Earth's interior, namely, temperature, pressure, and major-element composition using a multitude of data sets with complementary strengths: body wave teleseismic data, surface wave phase dispersion data, gravity anomalies, long-wavelength gravity gradients, geoid height, receiver functions, absolute elevation, and surface heat flow data. In this probabilistic inversion scheme, traditional tomographic images of physical parameters such as 3-D seismic velocity become a "free" by-product. However, our tomographic images are, by design, also thermodynamically compatible with all the other inverted observables instead of satisfying one type of data set only. This is important, as any model deemed representative of the real physical state of the Earth's interior should pass the test of explaining other geophysical data sets as well. Inverting for "geodynamic" parameters such as viscosity or convection-related topography in 3D within this multiobservable probabilistic inverse framework is a major challenge, mainly due to the computational cost of solving the Stokes equations; we are not aware of previous attempts to do so with a probabilistic approach. However, recent advances on Reduced Order Modelling and Proper Generalized Decompositions have allowed us to overcome the traditional difficulties and create a probabilistic inversion framework that not only inverts for the physical state of the mantle but also for dynamic

  14. Cometary dust in the planetary belts of β Pictoris

    NARCIS (Netherlands)

    de Vries, B.L.; Acke, B.; Waters, L.B.F.M.; Blommaert, J.A.D.L.; Vandenbussche, B.; Dominik, C.; Waelkens, C.

    2012-01-01

    The discovery of more than 600 exo-planets in the past two decades has shown an amazing diversity in the properties of planetary systems. The origin of this diversity and the way the Solar Systemfits inmust be understood by studying young systems in which planet formation is ongoing, and by comparin

  15. Planetary Protection Constraints For Planetary Exploration and Exobiology

    Science.gov (United States)

    Debus, A.; Bonneville, R.; Viso, M.

    According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.

  16. Planetary science: Eris under scrutiny

    Science.gov (United States)

    Gulbis, Amanda

    2011-10-01

    A stellar occultation by the dwarf planet Eris provides a new estimate of its size. It also reveals a surprisingly bright planetary surface, which could indicate the relatively recent condensation of a putative atmosphere. See Letter p.493

  17. Magnetic Helicity and Planetary Dynamos

    Science.gov (United States)

    Shebalin, John V.

    2012-01-01

    A model planetary dynamo based on the Boussinesq approximation along with homogeneous boundary conditions is considered. A statistical theory describing a large-scale MHD dynamo is found, in which magnetic helicity is the critical parameter

  18. What characterizes planetary space weather?

    OpenAIRE

    2014-01-01

    International audience; Space weather has become a mature discipline for the Earth space environment. With increasing efforts in space exploration, it is becoming more and more necessary to understand the space environments of bodies other than Earth. This is the background for an emerging aspect of the space weather discipline: planetary space weather. In this article, we explore what characterizes planetary space weather, using some examples throughout the solar system. We consider energy s...

  19. Molecular studies of Planetary Nebulae

    OpenAIRE

    Zhang, Yong

    2016-01-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition ...

  20. Planetary satellites - an update

    Science.gov (United States)

    Beatty, J. K.

    1983-11-01

    General features of all known planetary satellites in the system are provided, and attention is focused on prominent features of several of the bodies. Titan has an atmosphere 1.5 times earth's at sea level, a well a a large body of liquid which may be ethane, CH4, and disolved N2. Uranus has at least five moons, whose masses have recently been recalculated and determined to be consistent with predictions of outer solar system composition. Io's violent volcanic activity is a demonstration of the conversion of total energy (from Jupiter) to heat, i.e., interior melting and consequent volcanoes. Plumes of SO2 have been seen and feature temperatures of up to 650 K. Enceladus has a craterless, cracked surface, indicating the presence of interior ice and occasional breakthroughs from tidal heating. Hyperion has a chaotic rotation, and Iapetus has one light and one dark side, possibly from periodic collisions with debris clouds blasted off the surface of the outer moon Phoebe.

  1. Planetary Bow Shocks

    CERN Document Server

    Treumann, R A

    2008-01-01

    Our present knowledge of the properties of the various planetary bow shocks is briefly reviewed. We do not follow the astronomical ordering of the planets. We rather distinguish between magnetised and unmagnetised planets which groups Mercury and Earth with the outer giant planets of the solar system, Mars and Moon in a separate group lacking magnetic fields and dense atmospheres, and Venus together with the comets as the atmospheric celestial objects exposed to the solar wind. Asteroids would, in this classification, fall into the group together with the Moon and should behave similarly though being much smaller. Extrasolar planets are not considered as we have only remote information about their behaviour. The presentation is brief in the sense that our in situ knowledge is rather sporadic yet, depending on just a countable number of bow shock crossings from which just some basic conclusions can be drawn about size, stationarity, shape and nature of the respective shock. The only bow shock of which we have ...

  2. Planetary Vital Signs

    Science.gov (United States)

    Kennel, Charles; Briggs, Stephen; Victor, David

    2016-07-01

    The climate is beginning to behave in unusual ways. The global temperature reached unprecedented highs in 2015 and 2016, which led climatologists to predict an enormous El Nino that would cure California's record drought. It did not happen the way they expected. That tells us just how unreliable temperature has become as an indicator of important aspects of climate change. The world needs to go beyond global temperature to a set of planetary vital signs. Politicians should not over focus policy on one indicator. They need to look at the balance of evidence. A coalition of scientists and policy makers should start to develop vital signs at once, since they should be ready at the entry into force of the Paris Agreement in 2020. But vital signs are only the beginning. The world needs to learn how to use the vast knowledge we will be acquiring about climate change and its impacts. Is it not time to use all the tools at hand- observations from space and ground networks; demographic, economic and societal measures; big data statistical techniques; and numerical models-to inform politicians, managers, and the public of the evolving risks of climate change at global, regional, and local scales? Should we not think in advance of an always-on social and information network that provides decision-ready knowledge to those who hold the responsibility to act, wherever they are, at times of their choosing?

  3. A New Paradigm for Habitability in Planetary Systems: the Extremophilic Zone

    Science.gov (United States)

    Janot-Pacheco, E., Bernardes, L., Lage, C. A. S.

    2014-03-01

    More than a thousand exoplanets have been discovered so far. Planetary surface temperature may strongly depends on its albedo and geodynamic conditions. We have fed exoplanets from the Encyclopedia database with a comprehensive model of Earth's atmosphere and plate tectonics. As CO2 is the main agent responsible for the greenhouse effect, its partial pressure has been taken as a free parameter to estimate the surface temperature of some known planets. We also investigated the possible presence of "exomoons" belonging to giant planets in the Habitable Zone capable of harbour dynamic stability, to retain an atmosphere and to keep geodynamic activity for long time spans. Biological data on earthly micro-organisms classified as "extremophiles" indicate that such kind of microbial species could dwell on the surface of many exoplanets and exomoons. We thus propose an extension of the mainly astronomically defined "Habitable Zone" concept into the more astrobiologically one, the "Extremophililic Zone", that takes into account other parameters allowing survival of more robust life forms. This contribution comes from an ongoing project developed by a French-Brazilian colaboration in Astrophysics and Biophysics to search for living fingerprints in astrobiologically promising exoplanets.

  4. Geodetic and Geodynamic Studies at Department of Geodesy and Geodetic Astronomy Wut

    Directory of Open Access Journals (Sweden)

    Brzeziński Aleksander

    2016-06-01

    Full Text Available The article presents current issues and research work conducted in the Department of Geodesy and Geodetic Astronomy at the Faculty of Geodesy and Cartography at Warsaw University of Technology. It contains the most important directions of research in the fields of physical geodesy, satellite measurement techniques, GNSS meteorology, geodynamic studies, electronic measurement techniques and terrain information systems.

  5. Miocene to Recent Magmatism and Geodynamics of Eastern Turkey

    Science.gov (United States)

    Keskin, M.; Sharkov, E. V.; Lebedev, V. A.; Chugaev, A. V.; Oyan, V.; Genc, S. C.; Unal, E.; Aysal, N.

    2012-04-01

    ) mantle source, while magmas of the later stages were derived from deeper (asthenospheric) sources. Based on the results of seismic tomography, tectonics and geochemical/isotopic studies of the volcanic successions, it has now been well established that both uplift and widespread volcanism across the region have a common reason: a major "slab-steepening and breakoff event beneath a large accretionary complex". After the collision, being unsupported by the subduction, the slab started to be steepened beneath the region. This possibly resulted in widening, invasion and upwelling of the mantle wedge beneath E Anatolian accretionary complex, followed by a widespread decompressional melting, generating voluminous magmas with an inherited subduction signature. The subducted slab broke off beneath the Bitlis-Pötürge massif ~10 Ma, causing the enriched asthenospheric mantle with no subduction component beneath the Arabian continent to flow to the north through a slab-window. This resulted in mixing between the subduction-modified E Anatolian and the Arabian asthenospheres. On the basis of the results from our geochemical/ geochronologic/isotopic data and petrologic models, we argue that the temporal and spatial changes in the chemistry of volcanics across the region are the artifacts of these geodynamic events that controlled the movement and interaction of mantle domains with contrasting geochemical, isotopic and mineralogical identities. Compositions of some of the primitive magmas were further modified via interactions with the lithospheric mantle and/or crustal material coupled with fractionation en route to the surface.

  6. Paleoproterozoic andesitic volcanism in the southern Amazonian craton (northern Brazil); lithofacies analysis and geodynamic setting

    Science.gov (United States)

    Roverato, Matteo; Juliani, Caetano; Capra, Lucia; Dias Fernandes, Carlos Marcelo

    2016-04-01

    Precambrian volcanism played an important role in geological evolution and formation of new crust. Most of the literature on Precambrian volcanic rocks describes settings belonging to subaqueous volcanic systems. This is likely because subaerial volcanic rocks in Proterozoic and Archean volcano-sedimentary succession are poorly preserved due to erosive/weathering processes. The late Paleoproterozoic Sobreiro Formation (SF) here described, seems to be one of the rare exceptions to the rule and deserves particular attention. SF represents the subaerial expression of an andesitic magmatism that, linked with the upper felsic Santa Rosa F., composes the Uatumã Group. Uatumã Group is an extensive magmatic event located in the Xingú region, southwestern of Pará state, Amazonian Craton (northern Brazil). The Sobreiro volcanism is thought to be related to an ocean-continent convergent margin. It is characterized by ~1880 Ma well-preserved calc-alkaline basaltic/andesitic to andesitic lava flows, pyroclastic rocks and associated reworked successions. The superb preservation of its rock-textures allowed us to describe in detail a large variety of volcaniclastic deposits. We divided them into primary and secondary, depending if they result from a direct volcanic activity (pyroclastic) or reworked processes. Our study reinforces the importance of ancient volcanic arcs and rocks contribution to the terrestrial volcaniclastic sedimentation and evolution of plate tectonics. The volcanic activity that produced pyroclastic rocks influenced the amount of detritus shed into sedimentary basins and played a major role in the control of sedimentary dispersal patterns. This study aims to provide, for the first time, an analysis of the physical volcanic processes for the subaerial SF, based in field observation, lithofacies analysis, thin section petrography and less geochemical data. The modern volcanological approach here used can serve as a model about the evolution of Precambrian

  7. The OpenPlanetary initiative

    Science.gov (United States)

    Manaud, Nicolas; Rossi, Angelo Pio; Hare, Trent; Aye, Michael; Galluzzi, Valentina; van Gasselt, Stephan; Martinez, Santa; McAuliffe, Jonathan; Million, Chase; Nass, Andrea; Zinzi, Angelo

    2016-10-01

    "Open" has become attached to several concepts: science, data, and software are some of the most obvious. It is already common practice within the planetary science community to share spacecraft missions data freely and openly [1]. However, this is not historically the case for software tools, source code, and derived data sets, which are often reproduced independently by multiple individuals and groups. Sharing data, tools and overall knowledge would increase scientific return and benefits [e.g. 2], and recent projects and initiatives are helping toward this goal [e.g. 3,4,5,6].OpenPlanetary is a bottom-up initiative to address the need of the planetary science community for sharing ideas and collaborating on common planetary research and data analysis problems, new challenges, and opportunities. It started from an initial participants effort to stay connected and share information related to and beyond the ESA's first Planetary GIS Workshop [7]. It then continued during the 2nd (US) Planetary Data Workshop [8], and aggregated more people.Our objective is to build an online distributed framework enabling open collaborations within the planetary science community. We aim to co-create, curate and publish resource materials and data sets; to organise online events, to support community-based projects development; and to offer a real-time communication channel at and between conferences and workshops.We will present our current framework and resources, developing projects and ideas, and solicit for feedback and participation. OpenPlanetary is intended for research and education professionals: scientists, engineers, designers, teachers and students, as well as the general public that includes enthusiasts and citizen scientists. All are welcome to join and contribute at openplanetary.co[1] International Planetary Data Alliance, planetarydata.org. [2] Nosek et al (2015), dx.doi.org/10.1126/science.aab2374. [3] Erard S. et al. (2016), EGU2016-17527. [4] Proposal for a PDS

  8. The NASA/USGS Planetary Geologic Mapping Program

    Science.gov (United States)

    Tanaka, K.

    NASA's Planetary Geologic Mapping Program (PGM) publishes geologic maps of the planets based on released, geodetically controlled spacecraft data. The general objectives of PGM include (1) production of geologic maps that will greatly increase our knowledge of the materials and processes that have contributed to the evolution of Solar System bodies, and (2) geologic surveys of areas of special interest that may be investigated by future missions. Although most map authors are from U.S. institutions, some European investigators have also served as authors. PGM is sponsored by NASA's Planetary Geology and Geophysics Program (PGG) and has been supported by personnel of the Astrogeology Team of the U.S. Geological Survey (USGS) for more than 40 years. PGG also supports the Astrogeology Team to prepare and distribute controlled data products necessary for the production of geologic maps. USGS coordination and outreach activities for PGM include developing new planetary geologic map series, managing existing map series, generating geologic mapping databases and packages for individual mapping investigators, providing oversight and expertise in meeting the requirements of USGS map standards, providing editorial support in map reviews and revisions, supporting map pre-press production, and maintaining an informative planetary geologic mapping web page (http://astrogeology.usgs.gov/Projects/PlanetaryMapping/). The Astrogeology Team also provides a Geographic Information Systems (GIS) web site (Planetary Interactive GIS on the Web Analyzable Database, or PIGWAD) to facilitate distribution and analysis of spatially registered, planetary geologic data primarily in vector form. USGS now publishes planetary geologic map data in GIS format. Geologic maps of planetary bodies published by USGS through 2005 include 80 of the Moon from 1:10K to 1:5M scale, 93 of Mars from 1:500K to 1:15M scale, 18 of Venus at 1:5M and 1:15M scales, 9 of Mercury at 1:5M scale, and 16 of the Galilean

  9. A Geodynamical Perspective on the Subduction of Cocos and Rivera plates beneath Mexico and Central America

    Science.gov (United States)

    Constantin Manea, Vlad; Manea, Marina; Ferrari, Luca

    2013-04-01

    The Middle America subduction zone (MASZ) is one of the world most complex convergent margins as it involves the subduction of the Rivera and Cocos young oceanic plates beneath the North American and Caribbean plates and is bounded by the Gulf of California rift and the Panama slab window. Characterized by contorted and unusual slab geometry, irregularly distributed seismicity and volcanism, exceptionally large slow slip events (SSE) and non-volcanic tremors (NVT), this subduction system represents a great natural laboratory for better understanding geodynamic processes at a fundamental level. Based on a solid observational foundation, and incorporating the latest experimental results into a coherent geodynamical framework, we shed light on the main processes controlling the subduction system evolution in this region. The tectonics, volcanism, slab geometry and segmentation along the margin are reviewed from a geodynamical perspective. We proposed and discussed a series of evolutionary scenarios for the Mexican and Central American subduction zones, providing a coherent starting base for future geodynamical modeling studies tailored to this active margin. We discuss comparatively the recently discovered SSEs and NVTs along the MASZ, and try to differentiate among the proposed mechanisms responsible for these observations. Finally we discuss the recent seismic anisotropy observations in a geodynamic context, offering an integrated view of mantle flow pattern along the entire active margin. Although the MASZ as a whole may be considered a fairly complicated region with many unusual features and sometimes controversial interpretations, its complexity and unusual characteristics can improve our knowledge about the linkage between deep and surface processes associated with subduction zone dynamics.

  10. Metastability of Subducted Slabs in the Mantle Transition Zone: A Collaborative Geodynamic, Petrologic, and Seismological Approach

    Science.gov (United States)

    Garber, J. M.; Billen, M. I.; Duncan, M. S.; Roy, C.; Ibourichene, A. S.; Olugboji, T.; Celine, C.; Rodríguez-González, J.; Grand, S. P.; Madrigal, P.; Sandiford, D.; Valencia-Cardona, J. J.

    2016-12-01

    Subducted slabs exhibit a range of geometries in the mantle transition zone. Studies of this phenomenon suggest that olivine and/or pyroxene metastability may profoundly alter the slab density profile, leading to slab flattening (e.g., King et al., 2015) and potentially yielding a resolvable seismological signature (e.g., Kawakatsu and Yoshioka, 2011; Yoshioka et al., 2015). Such metastability may also be critical for deep earthquake generation. Geodynamic modelling of this process is typically done with a simplified petrologic model of the downgoing slab, whereas petrologic studies of phase assemblages in subducted slabs typically impose an idealized geodynamic model with an unrealistic thermal structure. Connecting these two approaches should lead to a better understanding of the consequences of metastable assemblages on subducting slabs. Here, we present a new methodology that combines geodynamic, seismic and petrologic approaches to assess the impact of mineral metastability on dynamic subduction models, developed in a collaborative effort begun at the 2016 NSF CIDER summer program in Santa Barbara, CA. We use two parallel approaches to extrapolate equilibrium rock properties to metastable regions and impose these data on extracted time-slices from robust thermo-mechanical geodynamic models, allowing us to quantify the density and buoyancy changes in the slab that result from considering metastable phase assemblages. Our preliminary results suggest that metastable assemblages can yield a 10-30% density decrease over the subducted slab relative to an equilibrium reference model. We then generate a seismic velocity profile of the slab, and compute waveforms based on the 2D finite-difference method (e.g., Vidale & Helmberger, 1987) to determine whether metastable phases could reasonably be detected by different seismic approaches. Continuing analyses will be aimed at coupling the evolution of geodynamic models with phase metastability to model the feedback between

  11. NASA Planetary Visualization Tool

    Science.gov (United States)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  12. Planetary Geophysics and Tectonics

    Science.gov (United States)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  13. Birth and early evolution of a planetary nebula

    CERN Document Server

    Bobrowsky, M; Parthasarathy, M; García-Lario, P

    1998-01-01

    The final expulsion of gas by a star as it forms a planetary nebula --- the ionized shell of gas often observed surrounding a young white dwarf --- is one of the most poorly understood stages of stellar evolution. Such nebulae form extremely rapidly (about 100 years for the ionization) and so the formation process is inherently difficult to observe. Particularly puzzling is how a spherical star can produce a highly asymmetric nebula with collimated outflows. Here we report optical observations of the Stingray Nebula which has become an ionized planetary nebula within the past few decades. We find that the collimated outflows are already evident, and we have identified the nebular structure that focuses the outflows. We have also found a companion star, reinforcing previous suspicions that binary companions play an important role in shaping planetary nebulae and changing the direction of successive outflows.

  14. A wind-shell interaction model for multipolar planetary nebulae

    CERN Document Server

    Steffen, W; Esquivel, A; Garcia-Segura, G; Garcia-Diaz, Ma T; Lopez, J A; Magnor, M

    2013-01-01

    We explore the formation of multipolar structures in planetary and pre-planetary nebulae from the interaction of a fast post-AGB wind with a highly inhomogeneous and filamentary shell structure assumed to form during the final phase of the high density wind. The simulations were performed with a new hydrodynamics code integrated in the interactive framework of the astrophysical modeling package SHAPE. In contrast to conventional astrophysical hydrodynamics software, the new code does not require any programming intervention by the user for setting up or controlling the code. Visualization and analysis of the simulation data has been done in SHAPE without external software. The key conclusion from the simulations is that secondary lobes in planetary nebulae, such as Hubble 5 and K3-17, can be formed through the interaction of a fast low-density wind with a complex high density environment, such as a filamentary circumstellar shell. The more complicated alternative explanation of intermittent collimated outflow...

  15. Dynamical architectures of planetary systems induced by orbital migration

    CERN Document Server

    Szuszkiewicz, Ewa

    2009-01-01

    The aim of this talk is to present the most recent advances in establishing plausible planetary system architectures determined by the gravitational tidal interactions between the planets and the disc in which they are embedded during the early epoch of planetary system formation. We concentrate on a very well defined and intensively studied process of the disc-planet interaction leading to the planet migration. We focus on the dynamics of the systems in which low-mass planets are present. Particular attention is devoted to investigation of the role of resonant configurations. Our studies, apart from being complementary to the fast progress occurring just now in observing the whole variety of planetary systems and uncovering their structure and origin, can also constitute a valuable contribution in support of the missions planned to enhance the number of detected multiple systems.

  16. General Analysis of Type I Planetary Migration with Stochastic Perturbations

    CERN Document Server

    Adams, Fred C

    2009-01-01

    This paper presents a generalized treatment of Type I planetary migration in the presence of stochastic perturbations. In many planet-forming disks, the Type I migration mechanism, driven by asymmetric torques, acts on a short time scale and compromises planet formation. If the disk also supports MHD instabilities, however, the corresponding turbulent fluctuations produce additional stochastic torques that modify the steady inward migration scenario. This work studies the migration of planetary cores in the presence of stochastic fluctuations using complementary methods, including a Fokker-Planck approach and iterative maps. Stochastic torques have two main effects: [1] Through outward diffusion, a small fraction of the planetary cores can survive in the face of Type I inward migration. [2] For a given starting condition, the result of any particular realization of migration is uncertain, so that results must be described in terms of the distributions of outcomes. In addition to exploring different regimes of...

  17. Connections between the bulk composition, geodynamics and habitability of Earth

    Science.gov (United States)

    Jellinek, A. M.; Jackson, M. G.

    2015-08-01

    The bulk composition of the silicate part of Earth has long been linked to chondritic meteorites. Ordinary chondrites -- the most abundant meteorite class -- are thought to represent planetary building materials. However, a landmark discovery showed that the 142Nd/144Nd ratio of the accessible parts of the modern terrestrial mantle on Earth is greater than that of ordinary chondrites. If Earth was derived from these precursors, mass balance requires that a missing reservoir with 142Nd/144Nd lower than ordinary chondrites was isolated from the accessible mantle within 20 to 30 million years of accretion. This reservoir would host the equivalent of the modern continents' budget of radioactive heat-producing elements (uranium, thorium and potassium), yet has not been discovered. We argue that this reservoir could have been lost to space by ablation from early impactors. If so, Earth's radiogenic heat generation is between 18 and 45% lower than estimates based on a chondritic composition. Calculations of Earth's thermal history that incorporate such reduced radiogenic heating are consistent with a transition to the current plate tectonic mode in the past 2.5 billion years or so, a late onset of the dynamo and an evolving rate of volcanic outgassing consistent with Earth's long-term habitable climate. Reduced heat production compared with Venus and Mars could also explain aspects of the differences between the current climatic regimes of these planets and Earth.

  18. Granitoids of different geodynamic settings of Baikal region (Russia) their geochemical evolution and origin

    Science.gov (United States)

    Antipin, Viktor; Sheptyakova, Natalia

    2016-04-01

    In the southern folded framing of the Siberian craton the granitoid magmatism of different ages involves batholiths, small low-depth intrusions and intrusion-dyke belts with diverse mineral and geochemical characteristics of rocks. Granitoid formation could be related to the Early Paleozoic collision stage and intra-plate magmatism of the Late Paleozoic age of the geologic development of Baikal area. The Early Paleozoic granitoids of Khamar-Daban Ridge and Olkhon region revealed their closeness in age and composition. They were referred to syncollision S-type formations derived from gneiss-schistose substratum of metamorphic sequences. The magmatic rocks were classified into various geochemical types comprising formations of normal Na-alkalinity (migmatites and plagiogranites), calc-alkaline and subalkaline (K-Na granitoids, granosyenites and quartz syenites) series. It is significant, that plagiomigmatites and plagiogranites in all elements repeat the shape of the chart of normalized contents marked for trend of K-Na granitoids, but at considerably lower level of concentrations of all elements. This general pattern of element distribution might indicate similar anatectic origin of both granitoid types, but from crustal substrata distinguished by composition and geochemical features. Comparative geochemical analysis pointed out that the source of melts of the Early Paleozoic granitoids of the Olkhon (505-477 Ma) and Khamar-Daban (516-490 Ma) complexes of the Baikal region could be the crustal substratum, which is obviously the criterion for their formation in the collisional geodynamic setting. Using the Late Paleozoic subalkaline magmatism proceeding at the Khamar-Daban Range (Khonzurtay pluton, 331 Ma) as an example, it was found that the formation of monzodiorite-syenite-leucogranite series was considerably contributed by the processes of hybridism and assimilation through mixing of the upper mantle basaltoid magma derived melts of granitic composition. The

  19. A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: Example from the Pietersburg block (South Africa)

    Science.gov (United States)

    Laurent, Oscar; Zeh, Armin

    2015-11-01

    Combined U-Pb and Lu-Hf isotope data from zircon populations are widely used to constrain Hadean-Archean crustal evolution. Linear Hf isotope-age arrays are interpreted to reflect the protracted, internal reworking of crust derived from the (depleted) mantle during a short-lived magmatic event, and related 176Lu/177Hf ratios are used to constrain the composition of the reworked crustal reservoir. Results of this study, however, indicate that Hf isotope-age arrays can also result from complex geodynamic processes and crust-mantle interactions, as shown by U-Pb and Lu-Hf isotope analyses of zircons from well characterized granitoids of the Pietersburg Block (PB), northern Kaapvaal Craton (South Africa). Apart from scarce remnants of Paleoarchean crust, most granitoids of the PB with ages between 2.94 and 2.05 Ga (n = 32) define a straight Hf isotope-age array with low 176Lu/177Hf of 0.0022, although they show a wide compositional range, were derived from various sources and emplaced successively in different geodynamic settings. The crustal evolution occurred in five stages: (I) predominately mafic crust formation in an intra-oceanic environment (3.4-3.0 Ga); (II) voluminous TTG crust formation in an early accretionary orogen (3.0-2.92 Ga); (III) internal TTG crust reworking and subduction of TTG-derived sediments in an Andean-type setting (2.89-2.75 Ga); (IV) (post-)collisional high-K magmatism from both mantle and crustal sources (2.71-2.67 Ga); and (V) alkaline magmatism in an intra-cratonic environment (2.05-2.03 Ga). The inferred array results from voluminous TTG crust formation during stage II, and involvement of this crust during all subsequent stages by two different processes: (i) internal crust reworking through both partial melting and assimilation at 2.89-2.75 Ga, leading to the formation of biotite granites coeval with minor TTGs, and (ii) subduction of TTG-derived sediments underneath the PB, causing enrichment of the mantle that subsequently became

  20. Progress of Interoperability in Planetary Research for Geospatial Data Analysis

    Science.gov (United States)

    Hare, T. M.; Gaddis, L. R.

    2015-12-01

    For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an

  1. Interstellar Transfer of Planetary Microbiota

    Science.gov (United States)

    Wallis, Max K.; Wickramasinghe, N. C.

    Panspermia theories require the transport of micro-organisms in a viable form from one astronomical location to another. The evidence of material ejection from planetary surfaces, of dynamical orbit evolution and of potential survival on landing is setting a firm basis for interplanetary panspermia. Pathways for interstellar panspermia are less clear. We compare the direct route, whereby life-bearing planetary ejecta exit the solar system and risk radiation hazards en route to nearby stellar systems, and an indirect route whereby ejecta hitch a ride within the shielded environment of comets of the Edgeworth- Kuiper Belt that are subsequently expelled from the solar system. We identify solutions to the delivery problem. Delivery to fully-fledged planetary systems of either the direct ejecta or the ejecta borne by comets depends on dynamical capture and is of very low efficiency. However, delivery into a proto-planetary disc of an early solar-type nebula and into pre-stellar molecular clouds is effective, because the solid grains efficiently sputter the incoming material in hypervelocity collisions. The total mass of terrestrial fertile material delivered to nearby pre-stellar systems as the solar system moves through the galaxy is from kilogrammes up to a tonne. Subject to further study of bio-viability under irradiation and fragmenting collisions, a few kg of original grains and sputtered fragments could be sufficient to seed the planetary system with a wide range of solar system micro-organisms.

  2. The Planetary Archive

    Science.gov (United States)

    Penteado, Paulo F.; Trilling, David; Szalay, Alexander; Budavári, Tamás; Fuentes, César

    2014-11-01

    We are building the first system that will allow efficient data mining in the astronomical archives for observations of Solar System Bodies. While the Virtual Observatory has enabled data-intensive research making use of large collections of observations across multiple archives, Planetary Science has largely been denied this opportunity: most astronomical data services are built based on sky positions, and moving objects are often filtered out.To identify serendipitous observations of Solar System objects, we ingest the archive metadata. The coverage of each image in an archive is a volume in a 3D space (RA,Dec,time), which we can represent efficiently through a hierarchical triangular mesh (HTM) for the spatial dimensions, plus a contiguous time interval. In this space, an asteroid occupies a curve, which we determine integrating its orbit into the past. Thus when an asteroid trajectory intercepts the volume of an archived image, we have a possible observation of that body. Our pipeline then looks in the archive's catalog for a source with the corresponding coordinates, to retrieve its photometry. All these matches are stored into a database, which can be queried by object identifier.This database consists of archived observations of known Solar System objects. This means that it grows not only from the ingestion of new images, but also from the growth in the number of known objects. As new bodies are discovered, our pipeline can find archived observations where they could have been recorded, providing colors for these newly-found objects. This growth becomes more relevant with the new generation of wide-field surveys, particularly LSST.We also present one use case of our prototype archive: after ingesting the metadata for SDSS, 2MASS and GALEX, we were able to identify serendipitous observations of Solar System bodies in these 3 archives. Cross-matching these occurrences provided us with colors from the UV to the IR, a much wider spectral range than that

  3. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  4. Astrophysical Conditions for Planetary Habitability

    CERN Document Server

    Guedel, M; Erkaev, N; Kasting, J; Khodachenko, M; Lammer, H; Pilat-Lohinger, E; Rauer, H; Ribas, I; Wood, B E

    2014-01-01

    With the discovery of hundreds of exoplanets and a potentially huge number of Earth-like planets waiting to be discovered, the conditions for their habitability have become a focal point in exoplanetary research. The classical picture of habitable zones primarily relies on the stellar flux allowing liquid water to exist on the surface of an Earth-like planet with a suitable atmosphere. However, numerous further stellar and planetary properties constrain habitability. Apart from "geophysical" processes depending on the internal structure and composition of a planet, a complex array of astrophysical factors additionally determine habitability. Among these, variable stellar UV, EUV, and X-ray radiation, stellar and interplanetary magnetic fields, ionized winds, and energetic particles control the constitution of upper planetary atmospheres and their physical and chemical evolution. Short- and long-term stellar variability necessitates full time-dependent studies to understand planetary habitability at any point ...

  5. Variational Principle for Planetary Interiors

    CERN Document Server

    Zeng, Li

    2016-01-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. Variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying this principle to planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From it, a universal mass-radius relation, an estimate of error propagation from equation of state to mass-radius relation, and a form of virial theorem applicable to planetary interiors are derived.

  6. Variational Principle for Planetary Interiors

    Science.gov (United States)

    Zeng, Li; Jacobsen, Stein B.

    2016-09-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass-radius relation, an estimate of the error propagation from the equation of state to the mass-radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  7. Subduction to the lower mantle – a comparison between geodynamic and tomographic models

    Directory of Open Access Journals (Sweden)

    B. Steinberger

    2012-07-01

    Full Text Available It is generally believed that subduction of lithospheric slabs is a major contribution to thermal heterogeneity in Earth's entire mantle and provides a main driving force for mantle flow. Mantle structure can, on the one hand, be inferred from plate tectonic models of subduction history and geodynamic models of mantle flow. On the other hand, seismic tomography models provide important information on mantle heterogeneity. Yet, the two kinds of models are only similar on the largest (1000s of km scales and are quite different in their detailed structure. Here, we provide a quantitative assessment how good a fit can be currently achieved with a simple viscous flow geodynamic model. The discrepancy between geodynamic and tomography models can indicate where further model refinement could possibly yield an improved fit. Our geodynamical model is based on 300 Myr of subduction history inferred from a global plate reconstruction. Density anomalies are inserted into the upper mantle beneath subduction zones, and flow and advection of these anomalies is calculated with a spherical harmonic code for a radial viscosity structure constrained by mineral physics and surface observations. Model viscosities in the upper mantle beneath the lithosphere are ~1020 Pas, and viscosity increases to ~1023 Pas in the lower mantle above D". Comparison with tomography models is assessed in terms of correlation, both overall and as a function of depth and spherical harmonic degree. We find that, compared to previous geodynamic and tomography models, correlation is improved significantly, presumably because of improvements in both plate reconstructions and mantle flow computation. However, high correlation is still limited to lowest spherical harmonic degrees. An important ingredient to achieve high correlation – in particular at spherical harmonic degree two – is a basal chemical layer. Subduction shapes this layer into two rather stable hot but

  8. Subduction to the lower mantle – a comparison between geodynamic and tomographic models

    Directory of Open Access Journals (Sweden)

    T. W. Becker

    2012-11-01

    Full Text Available It is generally believed that subduction of lithospheric slabs is a major contribution to thermal heterogeneity in Earth's entire mantle and provides a main driving force for mantle flow. Mantle structure can, on the one hand, be inferred from plate tectonic models of subduction history and geodynamic models of mantle flow. On the other hand, seismic tomography models provide important information on mantle heterogeneity. Yet, the two kinds of models are only similar on the largest (1000 s of km scales and are quite different in their detailed structure. Here, we provide a quantitative assessment how good a fit can be currently achieved with a simple viscous flow geodynamic model. The discrepancy between geodynamic and tomography models can indicate where further model refinement could possibly yield an improved fit. Our geodynamical model is based on 300 Myr of subduction history inferred from a global plate reconstruction. Density anomalies are inserted into the upper mantle beneath subduction zones, and flow and advection of these anomalies is calculated with a spherical harmonic code for a radial viscosity structure constrained by mineral physics and surface observations. Model viscosities in the upper mantle beneath the lithosphere are ~1020 Pas, and viscosity increases to ~1023 Pas in the lower mantle above D". Comparison with tomography models is assessed in terms of correlation, both overall and as a function of depth and spherical harmonic degree. We find that, compared to previous geodynamic and tomography models, correlation is improved, presumably because of advances in both plate reconstructions and mantle flow computations. However, high correlation is still limited to lowest spherical harmonic degrees. An important ingredient to achieve high correlation – in particular at spherical harmonic degree two – is a basal chemical layer. Subduction shapes this layer into two rather stable hot but chemically dense "piles

  9. Online Planetary Science Courses at Athabasca University

    Science.gov (United States)

    Connors, Martin; Munyikwa, Ken; Bredeson, Christy

    2016-01-01

    Athabasca University offers distance education courses in science, at freshman and higher levels. It has a number of geology and astronomy courses, and recently opened a planetary science course as the first upper division astronomy course after many years of offering freshman astronomy. Astronomy 310, Planetary Science, focuses on process in the Solar System on bodies other than Earth. This process-oriented course uses W. F. Hartmann's "Moons and Planets" as its textbook. It primarily approaches the subject from an astronomy and physics perspective. Geology 415, Earth's Origin and Early Evolution, is based on the same textbook, but explores the evidence for the various processes, events, and materials involved in the formation and evolution of Earth. The course provides an overview of objects in the Solar System, including the Sun, the planets, asteroids, comets, and meteoroids. Earth's place in the solar system is examined and physical laws that govern the motion of objects in the universe are looked at. Various geochemical tools and techniques used by geologists to reveal and interpret the evidence for the formation and evolution of bodies in the solar system as well as the age of earth are also explored. After looking at lines of evidence used to reconstruct the evolution of the solar system, processes involved in the formation of planets and stars are examined. The course concludes with a look at the origin and nature of Earth's internal structure. GEOL415 is a senior undergraduate course and enrols about 15-30 students annually. The courses are delivered online via Moodle and student evaluation is conducted through assignments and invigilated examinations.

  10. Secular geodynamic changes at the base of the crust recorded by anorthosites

    Science.gov (United States)

    Bybee, G. M.; Parman, S. W.

    2016-12-01

    Proterozoic anorthosites (PA) were formed by fractionation of large basaltic magma bodies as they impinged on the continental crust. Despite their complex magmatic origins, the composition of plagioclases in PA are notably constant, most lying between An 40 and 60. PA first appear in the geological record at 2.7 Ga and disappear at 0.6 Ga. The constancy of mineral composition and texture over 2 Ga is remarkable. But what caused PA to begin to form at 2.7 Ga? And what ended their formation at 0.6 Ga? PA are produced by a distinct set of conditions: 1) voluminous batholiths of high-Al basaltic magma (±104 km3for the largest batholiths), 2) highly effective separation of plagioclase from melt and mafic crystals, 3) crystallization at lower crustal conditions (>30km depth) and 4) fairly anhydrous conditions. The lack of PA prior to 2.7 Ga and after 0.6 Ga implies these conditions did not exist on the Earth at those times, suggesting fundamental secular change. Observations of both the Earth's interior (zircon age distributions, age of cratonic mantle) and atmosphere/hydrosphere (S-MIF in sediments, d13C in organic carbon) suggest 2.7 Ga was a unique period in Earth's history. The appearance of PA at this time implies that whatever was driving these effects involved not just the Earth's surface (e.g. area of exposed continent, continental geometry) as has been postulated, but also secular changes in conditions at the base of the crust. One possibility is that the continental crust thickened or stiffened dramatically at this time, producing conditions necessary for PA production (i.e. high pressure at the crust/mantle boundary) not present in pre-2.7 Ga crust. Longer-lived subduction events could also promote extensive basaltic magma ponding at the base of the crust. At 0.6 Ga, the crust may have become too thick or stiff to allow passage of large, viscous mushes. Thus PA could record the thermo-tectonic evolution of the continental crust. Alternatively, the high

  11. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  12. Some geodynamic complexities related to the evolution of Bengal Fan and the neotectonic activity of the south Indian shield

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.

    After three decades of the International Indian Ocean Expedition (IIOE) and in spite of extensive geophysical data collected during the last one decade, the geodynamics of the Bengal Fan and the Peninsular shield at the northern end of the Indian...

  13. Interoperability In The New Planetary Science Archive (PSA)

    Science.gov (United States)

    Rios, C.; Barbarisi, I.; Docasal, R.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; Grotheer, E.; Besse, S.; Martinez, S.; Heather, D.; De Marchi, G.; Lim, T.; Fraga, D.; Barthelemy, M.

    2015-12-01

    As the world becomes increasingly interconnected, there is a greater need to provide interoperability with software and applications that are commonly being used globally. For this purpose, the development of the new Planetary Science Archive (PSA), by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is focused on building a modern science archive that takes into account internationally recognised standards in order to provide access to the archive through tools from third parties, for example by the NASA Planetary Data System (PDS), the VESPA project from the Virtual Observatory of Paris as well as other international institutions. The protocols and standards currently being supported by the new Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet-Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. The architecture of the PSA consists of a Geoserver (an open-source map server), the goal of which is to support use cases such as the distribution of search results, sharing and processing data through a OGC Web Feature Service (WFS) and a Web Map Service (WMS). This server also allows the retrieval of requested information in several standard output formats like Keyhole Markup Language (KML), Geography Markup Language (GML), shapefile, JavaScript Object Notation (JSON) and Comma Separated Values (CSV), among others. The provision of these various output formats enables end-users to be able to transfer retrieved data into popular applications such as Google Mars and NASA World Wind.

  14. Chemical Abundances and Dust in Planetary Nebulae in the Galactic Bulge

    CERN Document Server

    Gutenkunst, S; Pottasch, S R; Sloan, G C; Houck, J R

    2008-01-01

    We present mid-infrared Spitzer spectra of eleven planetary nebulae in the Galactic Bulge. We derive argon, neon, sulfur, and oxygen abundances for them using mainly infrared line fluxes combined with some optical line fluxes from the literature. Due to the high extinction toward the Bulge, the infrared spectra allow us to determine abundances for certain elements more accurately that previously possible with optical data alone. Abundances of argon and sulfur (and in most cases neon and oxygen) in planetary nebulae in the Bulge give the abundances of the interstellar medium at the time their progenitor stars formed; thus these abundances give information about the formation and evolution of the Bulge. The abundances of Bulge planetary nebulae tend to be slightly higher than those in the Disk on average, but they do not follow the trend of the Disk planetary nebulae, thus confirming the difference between Bulge and Disk evolution. Additionally, the Bulge planetary nebulae show peculiar dust properties compared...

  15. Jim Pollack's Contributions to Planetary Science

    Science.gov (United States)

    Haberle, Robert M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Jim Pollack was an extraordinary scientist. Since receiving his Ph.D. from Harvard in 1965, he published hundreds of papers in scientific journals, encyclopedias, popular magazines, and books. The sheer volume of this kind of productivity is impressive enough, but when considering the diversity and detail of his work, these accomplishments seem almost superhuman. Jim studied and wrote about every planet in the solar system. For, this he was perhaps the most distinguished planetary scientist of his generation. He successfully identified the composition of Saturn's rings and Venus's clouds. With his collaborators, he created the first detailed models for the formation of the outer planets, and the general circulation of the Martian atmosphere. His interest in Mars dust storms provided a foundation for the "nuclear winter" theory that ultimately helped shape foreign policy in the cold war era. Jim's creative talents brought him many awards including the Kuiper Award of the Division of Planetary Sciences, the Leo Szilard Award of the American Physical Society, H. Julian Allen award of the Ames Research Center, and several NASA medals for exceptional scientific achievement.

  16. Planetary Systems and the Origins of Life

    Science.gov (United States)

    Pudritz, Ralph; Higgs, Paul; Stone, Jonathon

    2013-01-01

    Preface; Part I. Planetary Systems and the Origins of Life: 1. Observations of extrasolar planetary systems Shay Zucker; 2. The atmospheres of extrasolar planets L. Jeremy Richardson and Sara Seager; 3. Terrestrial planet formation Edward Thommes; 4. Protoplanetary disks, amino acids and the genetic code Paul Higgs and Ralph Pudritz; 5. Emergent phenomena in biology: the origin of cellular life David Deamer; Part II. Life on Earth: 6. Extremophiles: defining the envelope for the search for life in the Universe Lynn Rothschild; 7. Hyperthermophilic life on Earth - and on Mars? Karl Stetter; 8. Phylogenomics: how far back in the past can we go? Henner Brinkmann, Denis Baurain and Hervé Philippe; 9. Horizontal gene transfer, gene histories and the root of the tree of life Olga Zhaxybayeva and J. Peter Gogarten; 10. Evolutionary innovation versus ecological incumbency Adolf Seilacher; 11. Gradual origins for the Metazoans Alexandra Pontefract and Jonathan Stone; Part III. Life in the Solar System?: 12. The search for life on Mars Chris McKay; 13. Life in the dark dune spots of Mars: a testable hypothesis Eörs Szathmary, Tibor Ganti, Tamas Pocs, Andras Horvath, Akos Kereszturi, Szaniszlo Berzci and Andras Sik; 14. Titan: a new astrobiological vision from the Cassini-Huygens data François Raulin; 15. Europa, the Ocean Moon: tides, permeable ice, and life Richard Greenberg; Index.

  17. InSight Planetary Protection Status

    Science.gov (United States)

    Benardini, James; Vaishampayan, Parag; Chen, Fei; Kazarians, Gayane; Willis, Jason; Witte, Joe; Hendrickson, Ryan

    2016-07-01

    The InSight Project is a Discovery mission that consists of a single spacecraft with an overarching mission goal of illuminating the fundamentals of formation and evolution of terrestrial planets by investigating the interior structure and processes of Mars. The flight system is comprised of a 2008 Phoenix mission heritage cruise stage, aeroshell (heatshield and backshell), and lander. The lander payload contains cameras, a seismometer, a mole to penetrate the regolith (≤5 meters) to measure the geothermal gradient of Mars, and an auxiliary payload sensor suite to measure wind, temperature, and pressure. As a Mars lander mission without life detection instruments, the InSight mission has been designated PP Category IVa. Therefore, planetary protection bioburden requirements are applicable to this mission and require microbial reduction procedures and biological burden reports. Due to primary payload technical issues, InSight's 2016 launch has been delayed by NASA. The mission is currently under a re-planning phase. InSight has completed an approved Planetary Protection Plan, Subsidiary PP Plans, PP Implementation Documentation, and ~50% of the PPO verification biological assays. The flight system and additional payloads were assembled and being readied for launch at the launch site at the time of the project stand-down and has since been secured for storage. The status of the PP activities will be reported.

  18. Planetary nebulae abundances and stellar evolution

    CERN Document Server

    Pottasch, S R

    2006-01-01

    A summary is given of planetary nebulae abundances from ISO measurements. It is shown that these nebulae show abundance gradients (with galactocentric distance), which in the case of neon, argon, sulfur and oxygen (with four exceptions) are the same as HII regions and early type star abundance gradients. The abundance of these elements predicted from these gradients at the distance of the Sun from the center are exactly the solar abundance. Sulfur is the exception to this; the reason for this is discussed. The higher solar neon abundance is confirmed; this is discussed in terms of the results of helioseismology. Evidence is presented for oxygen destruction via ON cycling having occurred in the progenitors of four planetary nebulae with bilobal structure. These progenitor stars had a high mass, probably greater than 5 solar masses. This is deduced from the high values of He/H and N/H found in these nebulae. Formation of nitrogen, helium and carbon are discussed. The high mass progenitors which showed oxygen de...

  19. Revised Diagnostic Diagrams for Planetary Nebulae

    CERN Document Server

    Riesgo, H

    2006-01-01

    Diagnostic diagrams of electron density - excitation for a sample of 613 planetary nebulae are presented. The present extensive sample allows the definition of new statistical limits for the distribution of planetary nebulae in the log [Ha/[SII

  20. The International Planetary Data Alliance (IPDA)

    Science.gov (United States)

    Stein, Thomas; Gopala Krishna, Barla; Crichton, Daniel J.

    2016-07-01

    The International Planetary Data Alliance (IPDA) is a close association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA is focused on developing an international standard that allows discovery, query, access, and usage of such data across international planetary data archive systems. While trends in other areas of space science are concentrating on the sharing of science data from diverse standards and collection methods, the IPDA concentrates on promoting governing data standards that drive common methods for collecting and describing planetary science data across the international community. This approach better supports the long term goal of easing data sharing across system and agency boundaries. An initial starting point for developing such a standard will be internationalization of NASA's Planetary Data System's (PDS) PDS4 standard. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. It has grown to a dozen member agencies represented by a number of different groups through the IPDA Steering Committee. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of

  1. Geodynamic evolution and morphostructural analysis of the Western sector of the Russian Arctic shelf

    Directory of Open Access Journals (Sweden)

    Sorokhtin N. O.

    2016-03-01

    Full Text Available The paper considers issues of the Barents Sea shelf geodynamic evolution and influence of basement geologic structural processes on seabed morphology in their interaction. The obtained data have made possible to assume that the Norwegian-Mezenskaya rift system, Voronin graben, St. Anne and Victoria grabens were formed at the expense of the lithosphere stretching processes, but the Vostochno-Barentsevomorskaya basin and Medvezinsko-Edzinskaya area of depressions developed on the initial stage of lithosphere plate evolution due to collision of several island arcs and now all of them are outliers of the ancient oceanic crust. The technique of morphostructural analysis developed by the authors has allowed solve the inverse problem, and under morphological approach split all largest depressions on two main genetic types that confirm received geodynamic conclusion

  2. International Infrastructure for Planetary Sciences: Universal Planetary Database Development Project 'the International Planetary Data Alliance'

    Science.gov (United States)

    Kasaba, Yasumasa; Crichton, D.; Capria, M. T.; Beebe, R.; Zender, J.

    2009-09-01

    The International Planetary Data Alliance (IPDA), formed under COSPAR in 2008, is a joint international effort to enable global access and exchange of high quality planetary science data, and to establish archive standards that make it easier to share data across international boundaries. In June - July 2009, we held the 4th Steering Committee meeting. Thanks to the many players from several agencies and institutions in the world, we got fruitful results in 6 projects: (1) Inter-operable Planetary Data Access Protocol (PDAP) implementations [led by J. Salgado@ESA], (2) Small bodies interoperability [led by I. Shinohara@JAXA & N. Hirata@U. Aizu], (3) PDAP assessment [led by Y. Yamamoto@JAXA], (4) Architecture and standards definition [led by D. Crichton@NASA], (5) Information model and data dictionary [led by S. Hughes@NASA], and (6) Venus Express Interoperability [led by N. Chanover@NMSU]. The projects demonstrated the feasibility of sharing data and emphasized the importance of developing common data standards to ensure world-wide access to international planetary archives. The Venus Express Interoperability project leveraged standards and technology efforts from both the Planetary Data System (PDS) and IPDA in order to deliver a new capability for data sharing between NASA/PDS and ESA/PSA. This project demonstrated a model and framework for linking compliant planetary archive systems for future international missions. The next step for IPDA, during the 2009-2010 period, will be to work with NASA/PDS to review and participate in an upgrade of its standards to improve both the consistency of the standards to build compliant international archives as well as improve long-term usability of the science data products. This paper presents the achievements and plans, which will be summarized in the paper which will appear in 'Space Research Today' in December 2009.

  3. Newly developed paleomagnetic map of the Easternmost Mediterranean joined with tectono-structural analysis unmask geodynamic history of this region

    Science.gov (United States)

    Eppelbaum, Lev; Katz, Youri

    2015-02-01

    Comprehensive magnetic-paleomagnetic analysis of physical-geological models developed for the Easternmost Mediterranean (northern part of the Sinai plate) accompanied by gravity and seismic data examination enabled the detection of a zone of inverse magnetization of submeridional strike with a total volume exceeding 120,000 km3. Such a large zone must correspond to the prolonged period of inverse polarity in the Earth's magnetic field history. We suggest that this inversely magnetized thick block of the Earth's crust corresponds to the known Kiama hyperzone. A paleomagnetic map constructed on the basis of abovementioned geophysical data analysis combined with detailed examination of structural, radiometric, petrological, facial, paleogeographical and some other data indicates that to the west of the Kiama zone is situated the Jalal zone, and to the east - Illawarra, Omolon and Gissar zones. Discovery of the Kiama paleomagnetic zone combined with tectonogeodynamical analysis and paleobiographical data examination indicates that the Earth's oceanic crust blocks may have been shifted by transform faults from the eastern part of the Tethys Ocean to their modern position in the Easternmost Mediterranean. Analysis of potential geophysical fields and seismological maps integrated with tectonostructural examination show the isolation of the northern part of Sinai plate from other terranes. For the first time formation-paleogeographical maps of Triassic and Jurassic for the Easternmost Mediterranean have been compiled and their tectono-geodynamical explanation has been given. The obtained data create a basis for reconsidering tectonic zonation, paleogeodynamical reconstructions and searching for economic deposits in this region.

  4. RECENT GEODYNAMICS AND SEISMICITY OF THE FAR EAST AND THE EASTERN SIBERIA

    Directory of Open Access Journals (Sweden)

    Victor G. Bykov

    2015-09-01

    Full Text Available The information on the «Problems of seismicity and recent geodynamics of the Far East and Eastern Siberia» Symposium is presented. It was held on June 1–4, 2010 at the Yu.A. Kosygin Institute of tectonics and teophysics, Far Eastern branch, Russian academy of sciences, Khabarovsk. The scope of plenary meetings, sessions and round-table discussions conducted during the Symposium is presented with a brief review of the most interesting scientific reports.

  5. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  6. Virtual reality and planetary exploration

    Science.gov (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  7. Thermal and geodynamic contributions to the elevation of the Altiplano-Puna plateau

    Science.gov (United States)

    Prezzi, Claudia; Iglesia Llanos, María Paula; Götze, Hans-Jürgen; Schmidt, Sabine

    2014-12-01

    The most remarkable feature of the Central Andes is the Altiplano-Puna plateau. This plateau is characterized by 3.5 km average elevation, approximately 70 km crustal thickness and very high heat flow. The upper mantle structure changes along strike below the plateau. The upper mantle below the Puna becomes hotter, and the lithosphere becomes thinner and weaker. These features suggest that thermal isostasy could play a role in the compensation of the Altiplano-Puna. Thermal isostasy is the geodynamic process whereby regional variations in the lithospheric thermal regime cause changes in elevation. Elevation changes result from variations in rock density in response to thermal expansion. The aim of this study is to estimate the thermal and geodynamic contributions to the elevation. While the thermal component of the Altiplano elevation would be of 1 km, the thermal contribution to the southern Puna elevation would be of 1.5 km. However, in the case of the southern Puna a portion of the actual topography (∼20%) cannot be explained considering only compositional and thermal effects, suggesting additional geodynamical support. The obtained results suggest that the thermal state of the lithosphere would play a significant role in the elevation of the Central Andes, and may be responsible of some of the geological differences displayed by the Altiplano and the Puna.

  8. Multi-disciplinary contributions of HartRAO to global geodesy and geodynamics

    Science.gov (United States)

    Combrinck, Ludwig

    2015-04-01

    The Hartebeesthoek Radio Astronomy Observatory (South Africa) supports global initiatives in both geodesy and geodynamics through an active programme of science platform provision in Africa, the Atlantic Ocean, Indian Ocean and Antarctica. Our involvement ranges from the installation of tide gauges, Global Navigation Satellite Systems stations, seismometers and accelerometers on remote islands to the installation of radar reflectors in Antarctica which enable accurate, geo-referenced maps of the Antarctic coast line to be made. Currently we also participate in the African VLBI Network (AVN), with the aim to densify not only astronomical observatories in Africa, but to improve the geometry and distribution of advanced geodetic and geophysical equipment to facilitate development of research platforms in Africa, which can be used for geodynamics and related sciences, supporting international projects such as the WEGENER initiative. We present our multi-disciplinary activities during the last decade and sketch the way forward. Participation of Africa in the global arena of astronomy, geodesy, geodynamics and related fields will receive a major boost during the next decade. This is partially due to the development of a component of the Square Kilometre Array (SKA) in Africa but also due to the Global Geodetic Observing System (GGOS) project and the international objectives of higher geodetic accuracies and more stable reference frames. Consequent spinoffs into many disciplines relying on global reference frames and sub-cm positional accuracies stand to benefit and Africa can play a major role in improving both science and network geometries.

  9. Geodynamic evolution of the Earth over 600 Ma: implications for palaeo-climatic indicators

    Science.gov (United States)

    Hochard, C.; Vérard, C.

    2011-12-01

    During the last decades numerous local reconstructions were developed by the Geodynamic School of Lausanne. They participated to the elaboration of a 600Ma to present global plate tectonics model* based on field geology and controlled by geometric and kinematic constraints. Plate tectonics principles and lithospheric behaviour were applied to the model that drastically differs from the continental drift approach (i.e. based on palaeomagnetic data). Step after step lithospheric plates were reconstructed by adding or removing oceanic material (symbolized by synthetic isochrones) to major continents. The geodynamic evolution obtained is thus physically coherent and covers the whole surface of the Earth for the Phanerozoic. In the present contribution, we detail the basic tectonic features making up the model and the way they can be tested against the main palaeoclimatic indicators. Using synthetic isochrones, we developed a series of ocean lithosphere age maps. Based on plate rotation poles we computed velocity maps showing accretion and convergence rates. Converting ages into lithosphere thicknesses we quantified the volume of subducting material. Such tectonic parameters can be compared with the evolution of chemical proxies (e.g. CO2, δ18O, 87Sr/86Sr, Mg/Ca, SO4) offering a different way to decipher long-term climate changes. * This work was carried out as part of work done within the research program of the University of Lausanne on the Stampfli geodynamic model, model which is now owned by Neftex Petroleum Consultants Ltd. and is now attached to the "Neftex Earth Model ".

  10. Turning Planetary Theory Upside Down

    Science.gov (United States)

    2010-04-01

    The discovery of nine new transiting exoplanets is announced today at the RAS National Astronomy Meeting (NAM2010). When these new results were combined with earlier observations of transiting exoplanets astronomers were surprised to find that six out of a larger sample of 27 were found to be orbiting in the opposite direction to the rotation of their host star - the exact reverse of what is seen in our own Solar System. The new discoveries provide an unexpected and serious challenge to current theories of planet formation. They also suggest that systems with exoplanets of the type known as hot Jupiters are unlikely to contain Earth-like planets. "This is a real bomb we are dropping into the field of exoplanets," says Amaury Triaud, a PhD student at the Geneva Observatory who, with Andrew Cameron and Didier Queloz, leads a major part of the observational campaign. Planets are thought to form in the disc of gas and dust encircling a young star. This proto-planetary disc rotates in the same direction as the star itself, and up to now it was expected that planets that form from the disc would all orbit in more or less the same plane, and that they would move along their orbits in the same direction as the star's rotation. This is the case for the planets in the Solar System. After the initial detection of the nine new exoplanets [1] with the Wide Angle Search for Planets (WASP, [2]), the team of astronomers used the HARPS spectrograph on the 3.6-metre ESO telescope at the La Silla observatory in Chile, along with data from the Swiss Euler telescope, also at La Silla, and data from other telescopes to confirm the discoveries and characterise the transiting exoplanets [3] found in both the new and older surveys. Surprisingly, when the team combined the new data with older observations they found that more than half of all the hot Jupiters [4] studied have orbits that are misaligned with the rotation axis of their parent stars. They even found that six exoplanets in this

  11. Efficiency of Planetesimal Ablation in Giant Planetary Envelopes

    CERN Document Server

    Pinhas, Arazi; Clarke, Cathie

    2016-01-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. I...

  12. The Rings Node for the Planetary Data System

    Science.gov (United States)

    Showalter, Mark R.; Bollinger, Kenneth J.; Cuzzi, Jeffrey N.; Nicholson, Philip D.

    1994-01-01

    The Planetary Data System's Rings Node is devoted to the archiving and distributing of scientific data sets relevant to planetary ring systems. The two major classes of ring data are images and occultation profiles, although a variety of additional data types (e.g. spectra, particle absorption signatures, etc.) are also of interest. A large fraction of our data sets are from the Voyager missions to the outer planets, but Earth-based and Hubble Space Telescope data sets are also represented. Archiving work often includes re-formatting the data into standardized formats and reconstructing some of the data processing steps. The Rings Node also performs a variety of services to support research into these data sets. These services include developing on-line catalogs and information systems, filling orders for data, developing software tools, and coordinating special observing campaigns.

  13. On information-provided monitoring of geodynamic processes in the Kuznetsk Coal Basin in the conditions of highly intensive sub-soil usage

    Energy Technology Data Exchange (ETDEWEB)

    Oparin, V.N.; Potapov, V.P.; Tanaino, A.S. [Russian Academy of Science, Novosibirsk (Russian Federation). Inst. of Mining

    2006-09-15

    It is shown that formation of underground hollows of the Kuznetsk Coal Basin (Kuzbass), induced by opencut and underground mining has reached an intensity of 1.3-1.5 million m{sup 3}/day. In the conditions of high concentration of mines and open-cuts in small areas, a regional monitoring network is required in view of a generated geomechanical space, hazardous in geodynamic manifestations. A developed information support of this network is presented, including information models of a geological environment and database obtained from instrumental observations on geomechanical processes. The equations of connection between structural and strength characteristics of rocks, their metamorphization grade and occurrence depth are given for five geological-tectonic zones of the Kuzbass as a way of prediction of their properties.

  14. Planetary systems and real planetary nebulae from planets destruction near white dwarfs

    CERN Document Server

    Bear, Ealeal

    2015-01-01

    We suggest that tidal destruction of Earth-like and icy planets near a white dwarf (WD) might lead to the formation of one or more low-mass planets in tight orbits around the WD. More massive planets contain hydrogen which will start burning on the surface of the WD and inflate an envelope, part of which be ejected to form a nebula. This nebula will be ionized and be observed as a planetary nebulae. The formation of the WD planetary system starts with a tidal break-up of icy or lower mass planets to planetesimals near their tidal radius of about 1Rsun. Internal stress forces keep the planetesimal from tidal break-up when their radius is less than about 100km. We suggest that the planetesimals then bind together to form new sub-Earth-like planets around the WD at a few solar radii. More massive planets that contain hydrogen will supply the WD with fresh nuclear fuel to reincarnate its stellar-giant phase. Some of the hydrogen will be inflated in a large envelope that will cause the planetesimal formed from the...

  15. Natural fracture systems on planetary surfaces: Genetic classification and pattern randomness

    Science.gov (United States)

    Rossbacher, Lisa A.

    1987-01-01

    One method for classifying natural fracture systems is by fracture genesis. This approach involves the physics of the formation process, and it has been used most frequently in attempts to predict subsurface fractures and petroleum reservoir productivity. This classification system can also be applied to larger fracture systems on any planetary surface. One problem in applying this classification system to planetary surfaces is that it was developed for ralatively small-scale fractures that would influence porosity, particularly as observed in a core sample. Planetary studies also require consideration of large-scale fractures. Nevertheless, this system offers some valuable perspectives on fracture systems of any size.

  16. Planetary nebulae as tracers of galaxy stellar populations

    OpenAIRE

    A. Buzzoni; Arnaboldi, M.; Corradi, R.L.M.

    2006-01-01

    We address the general problem of the luminosity-specific planetary nebula (PN) number, defined as alpha = N(PN)/L(gal), and its relationship with age and metallicity of the parent stellar population. Our analysis relies on population synthesis models for simple stellar populations and more elaborated galaxy models along the full star-formation range of the Hubble morphological sequence. This theoretical framework is compared with the updated census of the PN population in Local Group galaxie...

  17. The latest geodynamics in Asia: Synthesis of data on volcanic evolution, lithosphere motion, and mantle velocities in the Baikal-Mongolian region

    Directory of Open Access Journals (Sweden)

    Sergei Rasskazov

    2017-07-01

    Full Text Available From a synthesis of data on volcanic evolution, movement of the lithosphere, and mantle velocities in the Baikal-Mongolian region, we propose a comprehensive model for deep dynamics of Asia that assumes an important role of the Gobi, Baikal, and North Transbaikal transition-layer melting anomalies. This layer was distorted by lower-mantle fluxes at the beginning of the latest geodynamic stage (i.e. in the early late Cretaceous due to avalanches of slab material that were stagnated beneath the closed fragments of the Solonker, Ural-Mongolian paleoceans and Mongol-Okhotsk Gulf of Paleo-Pacific. At the latest geodynamic stage, Asia was involved in east–southeast movement, and the Pacific plate moved in the opposite direction with subduction under Asia. The weakened upper mantle region of the Gobi melting anomaly provided a counterflow connected with rollback in the Japan Sea area. These dynamics resulted in the formation of the Honshu-Korea flexure of the Pacific slab. A similar weakened upper mantle region of the North Transbaikal melting anomaly was associated with the formation of the Hokkaido-Amur flexure of the Pacific slab, formed due to progressive pull-down of the slab material into the transition layer in the direction of the Pacific plate and Asia convergence. The early–middle Miocene structural reorganization of the mantle processes in Asia resulted in the development of upper mantle low-velocity domains associated with the development of rifts and orogens. We propose that extension at the Baikal Rift was caused by deviator flowing mantle material, initiated under the moving lithosphere in the Baikal melting anomaly. Contraction at the Hangay orogen was created by facilitation of the tectonic stress transfer from the Indo-Asian interaction zone due to the low-viscosity mantle in the Gobi melting anomaly.

  18. Planetary Protection Bioburden Analysis Program

    Science.gov (United States)

    Beaudet, Robert A.

    2013-01-01

    is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks. This work was done by Shannon Ryan of the USRA Lunar and Planetary Institute for Johnson Space Center. Further information is contained in a TSP (see page 1). MSC- 24582-1 Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program Lyndon B. Johnson Space Center, Houston, Texas Commercially, because it is so generic, Enigma can be used for almost any project that requires engineering visualization, model building, or animation. Models in Enigma can be exported to many other formats for use in other applications as well. Educationally, Enigma is being used to allow university students to visualize robotic algorithms in a simulation mode before using them with actual hardware. This work was done by David Shores and Sharon P. Goza of Johnson Space Center; Cheyenne McKeegan, Rick Easley, Janet Way, and Shonn Everett of MEI Technologies; Mark Manning of PTI; and Mark Guerra, Ray Kraesig, and William Leu of Tietronix Software, Inc. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809. MSC-24211-1 Spitzer Telemetry Processing System NASA's Jet Propulsion Laboratory, Pasadena, California The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real

  19. The Anthropocene: A Planetary Perspective

    Science.gov (United States)

    Anbar, A. D.; Hartnett, H. E.; York, A.; Selin, C.

    2016-12-01

    The Anthropocene is a new planetary epoch defined by the emergence of human activity as one of the most important driving forces on Earth, rivaling and also stressing the other systems that govern the planet's habitability. Public discussions and debates about the challenges of this epoch tend to be polarized. One extreme denies that humans have a planetary-scale impact, while the other wishes that this impact could disappear. The tension between these perspectives is often paralyzing. Effective adaptation and mitigation requires a new perspective that reframes the conversation. We propose a planetary perspective according to which this epoch is the result of a recent major innovation in the 4 ­billion ­year history of life on Earth: the emergence of an energy-intensive planetary civilization. The rate of human energy use is already within an order of magnitude of that of the rest of the biosphere, and rising rapidly, and so this innovation is second only to the evolution of photosynthesis in terms of energy capture and utilization by living systems. Such energy use has and will continue to affect Earth at planetary scale. This reality cannot be denied nor wished away. From this pragmatic perspective, the Anthropocene is not an unnatural event that can be reversed, as though humanity is separate from the Earth systems with which we are co-evolving. Rather, it is an evolutionary transition to be managed. This is the challenge of turning a carelessly altered planet into a carefully designed and managed world, maintaining a "safe operating space" for human civilization (Steffen et al., 2011). To do so, we need an integrated approach to Earth systems science that considers humans as a natural and integral component of Earth's systems. Insights drawn from the humanities and the social sciences must be integrated with the natural sciences in order to thrive in this new epoch. This type of integrated perspective is relatively uncontroversial on personal, local, and even

  20. Scaling properties of planetary calderas and terrestrial volcanic eruptions

    Directory of Open Access Journals (Sweden)

    L. Sanchez

    2012-11-01

    Full Text Available Volcanism plays an important role in transporting internal heat of planetary bodies to their surface. Therefore, volcanoes are a manifestation of the planet's past and present internal dynamics. Volcanic eruptions as well as caldera forming processes are the direct manifestation of complex interactions between the rising magma and the surrounding host rock in the crust of terrestrial planetary bodies. Attempts have been made to compare volcanic landforms throughout the solar system. Different stochastic models have been proposed to describe the temporal sequences of eruptions on individual or groups of volcanoes. However, comprehensive understanding of the physical mechanisms responsible for volcano formation and eruption and more specifically caldera formation remains elusive. In this work, we propose a scaling law to quantify the distribution of caldera sizes on Earth, Mars, Venus, and Io, as well as the distribution of calderas on Earth depending on their surrounding crustal properties. We also apply the same scaling analysis to the distribution of interevent times between eruptions for volcanoes that have the largest eruptive history as well as groups of volcanoes on Earth. We find that when rescaled with their respective sample averages, the distributions considered show a similar functional form. This result implies that similar processes are responsible for caldera formation throughout the solar system and for different crustal settings on Earth. This result emphasizes the importance of comparative planetology to understand planetary volcanism. Similarly, the processes responsible for volcanic eruptions are independent of the type of volcanism or geographical location.

  1. Summary and abstracts of the Planetary Data Workshop, June 2012

    Science.gov (United States)

    Gaddis, Lisa R.; Hare, Trent; Beyer, Ross

    2014-01-01

    The recent boom in the volume of digital data returned by international planetary science missions continues to both delight and confound users of those data. In just the past decade, the Planetary Data System (PDS), NASA’s official archive of scientific results from U.S. planetary missions, has seen a nearly 50-fold increase in the amount of data and now serves nearly half a petabyte. In only a handful of years, this volume is expected to approach 1 petabyte (1,000 terabytes or 1 quadrillion bytes). Although data providers, archivists, users, and developers have done a creditable job of providing search functions, download capabilities, and analysis and visualization tools, the new wealth of data necessitates more frequent and extensive discussion among users and developers about their current capabilities and their needs for improved and new tools. A workshop to address these and other topics, “Planetary Data: A Workshop for Users and Planetary Software Developers,” was held June 25–29, 2012, at Northern Arizona University (NAU) in Flagstaff, Arizona. A goal of the workshop was to present a summary of currently available tools, along with hands-on training and how-to guides, for acquiring, processing and working with a variety of digital planetary data. The meeting emphasized presentations by data users and mission providers during days 1 and 2, and developers had the floor on days 4 and 5 using an “unconference” format for day 5. Day 3 featured keynote talks by Laurence Soderblom (U.S. Geological Survey, USGS) and Dan Crichton (Jet Propulsion Laboratory, JPL) followed by a panel discussion, and then research and technical discussions about tools and capabilities under recent or current development. Software and tool demonstrations were held in break-out sessions in parallel with the oral session. Nearly 150 data users and developers from across the globe attended, and 22 National Aeronautics and space Administration (NASA) and non-NASA data providers

  2. Two empirical regimes of the planetary mass-radius relation

    Science.gov (United States)

    Bashi, Dolev; Helled, Ravit; Zucker, Shay; Mordasini, Christoph

    2017-08-01

    Today, with the large number of detected exoplanets and improved measurements, we can reach the next step of planetary characterization. Classifying different populations of planets is not only important for our understanding of the demographics of various planetary types in the galaxy, but also for our understanding of planet formation. We explore the nature of two regimes in the planetary mass-radius (M-R) relation. We suggest that the transition between the two regimes of "small" and "large" planets occurs at a mass of 124 ± 7M⊕ and a radius of 12.1 ± 0.5R⊕. Furthermore, the M-R relation is R ∝ M0.55 ± 0.02 and R ∝ M0.01 ± 0.02 for small and large planets, respectively. We suggest that the location of the breakpoint is linked to the onset of electron degeneracy in hydrogen, and therefore to the planetary bulk composition. Specifically, it is the characteristic minimal mass of a planet that consists of mostly hydrogen and helium, and therefore its M-R relation is determined by the equation of state of these materials. We compare the M-R relation from observational data with the relation derived by population synthesis calculations and show that there is a good qualitative agreement between the two samples.

  3. Multiple planetary systems: Properties of the current sample

    Science.gov (United States)

    Hobson, Melissa J.; Gomez, Mercedes

    2017-08-01

    We carry out analyses on stellar and planetary properties of multiple exoplanetary systems in the currently available sample. With regards to the stars, we study their temperature, distance from the Sun, and metallicity distributions, finding that the stars that harbour multiple exoplanets tend to have subsolar metallicities, in contrast to metal-rich Hot Jupiter hosts; while non-Hot Jupiter single planet hosts form an intermediate group between these two, with approximately solar metallicities. With regards to the planetary systems, we select those with four or more planets and analyse their configurations in terms of stability (via Hill radii), compactness, and size variations. We find that most planetary pairs are stable, and that the compactness correlates to the size variation: More compact systems have more similarly sized planets and vice versa. We also investigate the spectral energy distributions of the stars hosting multiple exoplanetary systems, seeking infra-red excesses that could indicate the presence of debris disks. These disks would be leftovers from the planetary formation process, and could be considered as analogues of the Solar System's Asteroid or Kuiper belts. We identify potential candidates for disks that are good targets for far infra-red follow-up observations to confirm their existence.

  4. AMD-stability and the classification of planetary systems

    Science.gov (United States)

    Laskar, J.; Petit, A. C.

    2017-09-01

    We present here in full detail the evolution of the angular momentum deficit (AMD) during collisions as it was described in Laskar (2000, Phys. Rev. Lett., 84, 3240). Since then, the AMD has been revealed to be a key parameter for the understanding of the outcome of planetary formation models. We define here the AMD-stability criterion that can be easily verified on a newly discovered planetary system. We show how AMD-stability can be used to establish a classification of the multiplanet systems in order to exhibit the planetary systems that are long-term stable because they are AMD-stable, and those that are AMD-unstable which then require some additional dynamical studies to conclude on their stability. The AMD-stability classification is applied to the 131 multiplanet systems from The Extrasolar Planet Encyclopaedia database for which the orbital elements are sufficiently well known. The AMD-stability coefficients of selected planetary systems are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A72

  5. Star Surface Polluted by Planetary Debris

    Science.gov (United States)

    2007-07-01

    Looking at the chemical composition of stars that host planets, astronomers have found that while dwarf stars often show iron enrichment on their surface, giant stars do not. The astronomers think that the planetary debris falling onto the outer layer of the star produces a detectable effect in a dwarf star, but this pollution is diluted by the giant star and mixed into its interior. "It is a little bit like a Tiramisu or a Capuccino," says Luca Pasquini from ESO, lead-author of the paper reporting the results. "There is cocoa powder only on the top!' ESO PR Photo 29/07 ESO PR Photo 29/07 The Structure of Stars Just a few years after the discovery of the first exoplanet it became evident that planets are preferentially found around stars that are enriched in iron. Planet-hosting stars are on average almost twice as rich in metals than their counterparts with no planetary system. The immediate question is whether this richness in metals enhances planet formation, or whether it is caused by the presence of planets. The classic chicken and egg problem. In the first case, the stars would be metal-rich down to their centre. In the second case, debris from the planetary system would have polluted the star and only the external layers would be affected by this pollution. When observing stars and taking spectra, astronomers indeed only see the outer layers and can't make sure the whole star has the same composition. When planetary debris fall onto a star, the material will stay in the outer parts, polluting it and leaving traces in the spectra taken. A team of astronomers has decided to tackle this question by looking at a different kind of stars: red giants. These are stars that, as will the Sun in several billion years, have exhausted the hydrogen in their core. As a result, they have puffed up, becoming much larger and cooler. Looking at the distribution of metals in fourteen planet-hosting giants, the astronomers found that their distribution was rather different from

  6. New Cretaceous palaeointensity data and the constraints on geodynamics

    Institute of Scientific and Technical Information of China (English)

    ZHU; Rixiang(朱日祥); PAN; Yongxin(潘永信); SHI; Ruiping(史瑞萍)

    2002-01-01

    A combined geochronologic(K-Ar) and palaeomagnetic study has been conducted on a basalt lava sequence at Yixian Formation in Liaoning Province, northeastern China. The new K-Ar age obtained from thirteen lava flows is 120.93±0.88 Ma. Detailed rock-magnetic investigations were conducted on each lava flow to determine their remanence carriers. The modified version of the Thellier-Thellier palaeointensity method with systematic partial thermoremanent magnetization(pTRM) checks was used for the palaeointensity determination. Virtual dipole moment(VDM) value is(3.66±0.10)×1022 Am2. This low dipole-field intensity value is approximately forty-five percent of the today field VDM. Combined with all of the other published palaeointensity data, possible links between the earth's interior process and its control on the variation of the earth's magnetic field during the geological time were tentatively discussed.

  7. Geophysical and geodynamic studies of the North Atlantic Realm

    DEFF Research Database (Denmark)

    Schiffer, Christian

    2015-01-01

    The geology of the North Atlantic Realm (NAR), including the North Atlantic, Greenland, the Arctic, Iceland, Scandinavia, Northern Europe and Northeast America has been studied for more than a century and inspired some of the most fundamental theories in geoscience, such as plate tectonics...... by the results from East Greenland and focus on continuing tectonic considerations on how a fossil subduction zone might have affected the formation of the NAR. Assuming fossil subduction zones are the common rule along suture zones (which share the same genetic origin) these might have a considerable impact...... zone along the western edge of the Caledonian Orogen and is consistent with tectonic scenarios of the Caledonian orogeny, which include early eastward subduction events (Taconian and Grampian). Further, this structure might have had a crucial impact on major post-Caledonian tectonic events in the North...

  8. Teaching, Learning, and Planetary Exploration

    Science.gov (United States)

    Brown, Robert A.

    2002-01-01

    This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

  9. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  10. Evolution of Planetary Ringmoon Systems

    Science.gov (United States)

    Cuzzi, Jeffrey N.

    1995-01-01

    The last few decades have seen an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of these systems as our intuition (and our computers) catch up with the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is an emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system.

  11. Molecular studies of Planetary Nebulae

    CERN Document Server

    Zhang, Yong

    2016-01-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition of PNe is rather different from those of AGB and PPNe, suggesting that the molecules synthesized in PN progenitors have been heavily processed by strong ultraviolet radiation from the central star. Intriguingly, fullerenes and complex organic compounds having aromatic and aliphatic structures can be rapidly formed and largely survive during the PPN/PN evolution. The similar molecular compositions in PNe and diffuse clouds as well as the detection of C$_{60}^+$ in the ISM reinforce the view that the mass-loss from PNe can ...

  12. The PSA: Planetary Science Archive

    Science.gov (United States)

    Barthelemy, M.; Martinez, S.; Heather, D.; Vazquez, J. L.; Arviset, C.; Osuna, P.; PSA development Team

    2012-04-01

    Scientific and engineering data from ESA's planetary missions are made accessible to the world-wide scientific community via the Planetary Science Archive (PSA). The PSA consists of online services incorporating search, preview, download, notification and delivery basket functionality. Besides data from the GIOTTO spacecraft and several ground-based cometary observations, the PSA contains data from the Mars Express, Venus Express, Rosetta, SMART-1 and Huygens missions. The focus of the PSA activities is on the long-term preservation of data and knowledge from ESA's planetary missions. Scientific users can access the data online using several interfaces: - The Advanced Search Interface allows complex parameter based queries, providing the end user with a facility to complete very specific searches on meta-data and geometrical parameters. By nature, this interface requires careful use and heavy interaction with the end-user to input and control the relevant search parameters. - The Map-based Interface is currently operational only for Mars Express HRCS and OMEGA data. This interface allows an end-user to specify a region-of-interest by dragging a box onto a base map of Mars. From this interface, it is possible to directly visualize query results. The Map-based and Advanced interfaces are linked and cross-compatible. If a user defines a region-of-interest in the Map-based interface, the results can be refined by entering more detailed search parameters in the Advanced interface. - The FTP Browser Interface is designed for more experienced users, and allows for direct browsing and access of the data set content through ftp-tree search. Each dataset contains documentation and calibration information in addition to the scientific or engineering data. All data are prepared by the corresponding instrument teams, mostly located in Europe. PSA supports the instrument teams in the full archiving process, from the definition of the data products, meta-data and product labels

  13. Mars 2020 Planetary Protection Status

    Science.gov (United States)

    Stricker, Moogega; Bernard, Douglas; Benardini, James Nick; Jones, Melissa

    2016-07-01

    The Mars 2020 (M2020) flight system consists of a cruise stage; an entry, descent and landing system (EDL); and a Radioisotope Thermoelectric Generator (RTG) powered roving science vehicle that will land on the surface of Mars. The M2020 Mission is designed to investigate key question related to the habitability of Mars and will conduct assessments that set the stage for potential future human exploration of Mars. Per its Program Level Requirements, the project will also acquire and cache samples of rock, regolith, and/or procedural "blank" samples for possible return to Earth by a subsequent mission. NASA has assigned the M2020 Mission as a Category V Restricted Earth Return due to the possible future return of collected samples. As indicated in NPR8020.12D, Section 5.3.3.2, the outbound leg of a Category V mission that could potentially return samples to Earth, Mars 2020 would be expected to meet the requirements of a Category IVb mission. The entire flight system is subject to microbial reduction requirements, with additional specific emphasis on the sample acquisition and caching. A bioburden accounting tool is being used to track the microbial population on the surfaces to ensure that the biological cleanliness requirements are met. Initial bioburden estimates based on MSL heritage allows M2020 to gauge more precisely how the bioburden is allocated throughout each hardware element. Mars 2020 has completed a Planetary Protection Plan with Planetary Implementation Plans at a mature draft form. Planetary protection sampling activities have commenced with the start of flight system fabrication and assembly. The status of the Planetary Protection activities will be reported.

  14. Precision photometry for planetary transits

    CERN Document Server

    Pont, F; Pont, Frederic; Moutou, Claire

    2007-01-01

    We review the state of the art in follow-up photometry for planetary transit searches. Three topics are discussed: (1) Photometric monitoring of planets discovered by radial velocity to detect possible transits (2) Follow-up photometry of candidates from photometric transit searches to weed out eclipsing binaries and false positives (3) High-precision lightcurves of known transiting planets to increase the accuracy on the planet parameters.

  15. Planetary Exploration in the Classroom

    Science.gov (United States)

    Slivan, S. M.; Binzel, R. P.

    1997-07-01

    We have developed educational materials to seed a series of undergraduate level exercises on "Planetary Exploration in the Classroom." The goals of the series are to teach modern methods of planetary exploration and discovery to students having both science and non-science backgrounds. Using personal computers in a "hands-on" approach with images recorded by planetary spacecraft, students working through the exercises learn that modern scientific images are digital objects that can be examined and manipulated in quantitative detail. The initial exercises we've developed utilize NIH Image in conjunction with images from the Voyager spacecraft CDs. Current exercises are titled "Using 'NIH IMAGE' to View Voyager Images", "Resolving Surface Features on Io", "Discovery of Volcanoes on Io", and "Topography of Canyons on Ariel." We expect these exercises will be released during Fall 1997 and will be available via 'anonymous ftp'; detailed information about obtaining the exercises will be on the Web at "http://web.mit.edu/12s23/www/pec.html." This curriculum development was sponsored by NSF Grant DUE-9455329.

  16. Finite-frequency tomography of P and S waves in the Carpathian-Pannonian region: Implications for geodynamics of the continental collision

    Science.gov (United States)

    Ren, Y.; Stuart, G. W.; Houseman, G. A.; Dando, B. D.; Ionescu, C.; Hegedus, E.; Radovanovic, S.

    2011-12-01

    The Carpathian-Pannonian system which is the most tectonically active region in Eastern and Central Europe, represents an unique geodynamical case in continental collision zone for studying the interaction between the surface tectonic processes and the deep lithospheric and mantle processes. Particularly, the geodynamical processes involved in the formation of both Pannonian basin and Vrancea seismogenic zone are still debated today. Here, we present high-resolution upper mantle structures beneath the region from finite-frequency tomography using P and S waves in order to bring constraints on geodynamical models. We have selected teleseismic earthquakes with magnitude greater than 5.5, which occurred between 2005 and 2010. The data were recorded on 57 temporary stations deployed in the South Carpathian Project, 56 temporary stations deployed in the earlier Carpathian Basins Project (CBP), and 50 permanent broadband stations. The differential travel times are measured in high, intermediate and low frequencies (0.5-2.0 Hz, 0.1-0.5 Hz and 0.03-0.1 Hz for both P-wave, 0.1-0.5 Hz, 0.05-0.1 Hz and 0.02-0.05 Hz for S-wave), and are inverted according to the 3-D finite-frequency formulation to produce P and S-wave velocity maps at different depths in the mantle. Our images show the presence of a sub-vertical fast material beneath the eastern Alps which extends across the centre of the Pannonian region below ~ 300 km depth. It extends downward into the mantle transition zone and appears to spread outward beneath the entire basin. The upper mantle below the Pannonian basin is dominated by a slow anomaly extending down to ~ 300 km depth. We suggest that a late stage of gravitational instability with detachment of cold mantle lithospheric downwellings is occurring beneath the eastern Alps in the present-day. The same mechanism could also have occurred below the Pannonian basin in the past and though explain the mantle lithospheric extension. In the Vrancea Zone, the seismicity

  17. Crustal structure and geodynamic of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas: insights from deep seismic reflection profiling

    Science.gov (United States)

    Lu, Q.; Shi, D.; Liu, Z.; Zhang, Y.; Zhao, J.

    2014-12-01

    A 300 km deep seismic reflection profile across the middle and lower Yangtze River metallogenic belt (YRMB) and its adjacent areas established the architecture and geodynamic framework of the region. Results based on the interpretation of the deep seismic data include the deep complicated geometry of the Tan-Lu fault and Zhangbaling uplift, appears as a subvertical thrust fault with its deep portion dip toward the southeast, and along which the Zhangbaling uplift is squeezed out; complex upper crust deformation structure beneath Chuquan depression, within which there are both kink bands, thrusts, imbrication and fold structures reflecting contraction deformation, and detachment fault and normal-fault structures reflecting extensional deformation; the "crocodile" reflection structure emerging beneath the Tan-Lu fault and Ningwu-Lishui volcanic basin, i.e., the upper crust reflection thrust upward, and the lower crust reflection thrust downward and offsetting the Moho discontinuity, which reflects the decoupled deformation process of the upper and lower crust, and is interpreted as an intracontinental subduction. Further to the southeast, the upper crust deformation shows a large-scale "wave-form" pattern, making crustal scale syncline and anticline. The entire section of the reflection Moho is clearly discernible at depth of 30.0-34.5 km, and the Moho beneath the YRMB is shallowest, while the Moho beneath the North China block is deeper than that beneath the Yangtze block. Moho offsets could be seen beneath the Ningwu volcanic basin. Overall, the seismic data show evidence for an intracontinental orogeny and imposes constraints on the deep geodynamic model applied to study region. Our interpretation of seismic profile supports the view that the Yanshanian orogeny, due to the northwest subduction of the paleo-Pacific plate during the Middle-Late Jurassic, is the major event that shaped the tectonic framework of the region. A geodynamic model is proposed for the

  18. Cenozoic back-arc magmatism of the southern extra-Andean Patagonia (44° 30' - 52° S: A review of geochemical data and geodynamic interpretations

    Directory of Open Access Journals (Sweden)

    M. D'Orazio

    2004-12-01

    framework of the space-time evolution of the magmatism and in the wider frame of the Cenozoic history of the Pacific margin of southern South America. The slab window openings associated with the collision between oceanic spreading ridges and the Chile Trench are the preferred geodynamic interpretation of the southern Patagonia magmatism. However, the occurrence of many volcanic formations whose age and location are not entirely compatible with the slab window model suggests that other geodynamic processes inducing mantle melting could have been active during Cenozoic time in the extra Andean Patagonia.

  19. JMARS - A Planetary GIS

    Science.gov (United States)

    Christensen, P. R.; Engle, E.; Anwar, S.; Dickenshied, S.; Noss, D.; Gorelick, N.; Weiss-Malik, M.

    2009-12-01

    JMARS is a cross-platform software application for working with raster, vector, and hyper-spectral data. It was developed by the Mars Space Flight Facility to provide mission planning and data analysis tools to NASA's orbiters, instrument team members, students of all ages, and the general public. It began with a focus on Mars but is branching out to work with data for the Earth and Moon. It is free and open source. JMARS has several strategies for providing users with efficient and easy access to data products. Commonly-used data products are integrated, alleviating concerns about downloading, projecting, and converting data in advance, but users may still import their own data products. JMARS can load and process raw numeric rasters. Rasters may be stretched and colorized on the fly. Contour maps may be created. Groups of layers can be composed by transparency blending or building an HSV/RGB composite. Plots may be created by drawing multi-segment lines on the map, making it easy to sample elevation, thermal inertia, or other surface properties in an area of interest. JMARS can load and process vector data in several common formats. Vector data can be edited on the map or in a table. Vector processing tools can calculate properties like line bearing or polygonal area. An SQL-like scripting language provides a powerful transformation and filtering feature. JMARS provides access to many Mars data products: image footprints and rasters from the THEMIS, MOC, CTX, HiRISE, Viking, HRSC, CRISM, and Omega missions; mosaics from THEMIS, Viking, and CTX; topography from MGS MOLA; compositional maps from TES and GRS/HEND; albedo and thermal inertia from TES and Viking; spectral data from TES; the USGS Dune Database; and many more. Products are available in both graphic and numeric form where applicable. JMARS is used by the Mars Odyssey and Mars Reconnaissance Orbiter, and Lunar Reconnaissance Orbiter missions for planning and analyzing images. Mission planners decide how

  20. An integral approach to investigate planetary cores

    Science.gov (United States)

    Fei, Y.

    2012-12-01

    The same core-mantle differentiation process was in operation during the early formation of the terrestrial planets, but it led to unique cores for the Earth, Venus, Mars, and Mercury, with different magnetic fields, reflecting their different dynamic, physical, and chemical states. Assuming all terrestrial planets shared the same materials of the building block, the differences must be resulted from the different conditions of the early accretion and the subsequent planetary evolution unique to each planet. The pressures at the core-mantle boundary of the terrestrial planets range from as low as 7 GPa to 136 GPa. The physical state (liquid or solid) for each planetary core is closely tied to the melting and chemical composition of the cores. In order to determine the minimal temperature of a liquid core or the maximal temperature of a solid core, we have systematically investigated melting relations in the binary systems Fe-FeS, Fe-C, and Fe-FeSi, move toward unravelling the crystallization sequence and element partitioning between solid and liquid metal in the ternary and quaternary systems up to 25 GPa, using multi-anvil apparatus. We have developed new techniques to analyze the quenched samples recovered from laser-heating diamond-anvil cell experiments using combination of focus ion beam (FIB) milling, high-resolution SEM imaging, and quantitative chemical analysis with silicon drift detector EDS. With precision milling of the laser-heating spot, we determined melting using quenching texture criteria imaged with high-resolution SEM and the sulfur partitioning between solid and liquid at submicron spatial resolution. We have also re-constructed 3D image of the laser-heating spot at multi-megabar pressures to better constrain melting point and understanding melting process. The new techniques allow us to extend precise measurements of melting relations to core pressures in the laser-heating diamond-anvil cell. In addition to the static experiments, we also used

  1. Water in the Martian interior—The geodynamical perspective

    Science.gov (United States)

    Breuer, Doris; Plesa, Ana-Catalina; Tosi, Nicola; Grott, Matthias

    2016-11-01

    Petrological analysis of the Martian meteorites suggests that rheologically significant amounts of water are present in the Martian mantle. A bulk mantle water content of at least a few tens of ppm is thus expected to be present despite the potentially efficient degassing during accretion, magma ocean solidification, and subsequent volcanism. We examine the dynamical consequences of different thermochemical evolution scenarios testing whether they can lead to the formation and preservation of mantle reservoirs, and compare model predictions with available data. First, the simplest scenario of a homogenous mantle that emerges when ignoring density changes caused by the extraction of partial melt is found to be inconsistent with the isotopic evidence for distinct reservoirs provided by the analysis of the Martian meteorites. In a second scenario, reservoirs can form as a result of partial melting that induces a density change in the depleted mantle with respect to its primordial composition. However, efficient mantle mixing prevents these reservoirs from being preserved until present unless they are located in the stagnant lid. Finally, reservoirs could be formed during fractional crystallization of a magma ocean. In this case, however, the mantle would likely end up being stably stratified as a result of the global overturn expected to accompany the fractional crystallization. Depending on the assumed density contrast, little secondary crust would be produced and the lithosphere would be extremely cool and dry, in contrast to observations. In summary, it is very challenging to obtain a self-consistent evolution scenario that satisfies all available constraints.

  2. On the use of the stabilised Q1P0 element for geodynamical simulations and why this is a bad choice for buyoancy-driven flows.

    Science.gov (United States)

    Thieulot, Cedric

    2016-04-01

    Many Finite Element geodynamical codes (Fullsack,1995; Zhong et al., 2000; Thieulot, 2011) are based on bi/tri­-linear velocity constant pressure element (commonly called Q1P0), because of its ease of programming and rather low memory footprint, despite the presence of (pressure) checker­board modes. However, it is long known that the Q1P0 is not inf­-sup stable and does not lend itself to the use of iterative solvers, which makes it a less­ than­ ideal candidate for high resolution 3D models. Other attempts were made more recently (Burstedde et al., 2013; Le Pourhiet et al., 2012) with the use of the stabilised Q1Q1 element (bi/tri­-linear velocity and pressure). This element, while also attractive from an implementation and memory standpoint, suffers a major drawback due to the artificial compressibility introduced by the polynomial projection stabilization. These observations have shifted part of the community towards the Finite Difference Method while the remaining part is now embracing inf­sup stable second­ order elements [May et al., 2015; Kronbichler,2012). Rather surprinsingly, a third option exists when it comes to first ­order elements in the form of the stabilised Q1P0 element, but virtually no literature exists concerning its use for geodynamical applications. I will then recall the specificity of the stabilisation and will carry out a series of benchmark experiments and geodynamical tests to assess its performance. While being shown to work as expected in benchmark experiments, the stabilised Q1P0 element turns out to introduce first-order numerical artefacts in the velocity and pressure solutions in the case of buoyancy-driven flows. Burstedde, C., Stadler, G., Alisic, L., Wilcox, L. C., Tan, E., Gurnis, M., & Ghattas, O. (2013). Large­scale adaptive mantle convection simulation. Geophysical Journal International, 192(3), 889­906. Fullsack, P. (1995). An arbitrary Lagrangian­Eulerian formulation for creeping flows and its application in

  3. TECTONOPHYSICAL EVIDENCES OF GEODYNAMIC EVOLUTION OF THE PRIKOLYMA TERRAIN (NORTH-EASTERN REGIONS OF RUSSIA

    Directory of Open Access Journals (Sweden)

    Anton N. Glukhov

    2015-10-01

    Full Text Available The Prikolyma terrain is a part of the Yana-Kolyma orogenic belt located in the North Eastern Asia. It is generally composed of the Proterozoic deposits, including sandstones, metapellites, quartz-feldspar and carbonate rocks, meta- and hyperbasites. The Prikolyma terrain represents a fragment of passive margin of the North-Asian craton that was detached in the Middle Paleozoic due to progressing rifting. Subsequent geological development of the terrain was determined by accretion events at its boundary with margin of the North-Asian craton and the Omolon microcraton. Its longterm geodynamic evolution is reflected in the character and sequence of formation of the Prikolyma terrain deformation structures. In the central part of the Prikolyma terrain, i.e. in the basin of the Malaya Stolbovaya river, two reference areas of tectonics were studied, which contain packs of thrust sheets complicated by subsequent highangle faults.The fault pattern is complex, and its major elements are gently dipping zones of plastic deformation, which mark the boundaries of petrographically heterogenous plates. The thrust packs  are more than 200 m thick; their root zones are represented by series of highangle reverse faults. Another important element of the fault pattern is highangle zones of brittle deformation, which kinematic characteristics are ambiguous. A vertical component of displacement is predominant for the faults of the north-western strike; a strike-slip component is characteristic of latitudinal and meridional faults. The fault pattern developed in several stages under the impact of fields of tectonic stress, which vectors were variable. The folds, comprising a uniform structural paragenesis with thrusts, are of great importance for the structure under study. The largest folds exhibit the asymmetric structure with the N-E dipping axial planes. Axes of smaller folds are oriented to N-W and N–NW.Four stages of deformation are

  4. Thermal-rheological structure of the lithosphere beneath Jiyang Depression: Its implications for geodynamics

    Institute of Scientific and Technical Information of China (English)

    LIU Shaowen; WANG Liangshu; GONG Yuling; LI Cheng; LI Hua; HAN Yongbing

    2005-01-01

    ductile, and lithospheric mantle is dominated by the ductile layer. Additionally, lateral rheological heterogeneities exist in the depression, and the lithospheric strength of sags within depression differs much from each other. The total lithospheric strength of Jiyang Depression is between 1.52 and 2.16×1012 N/m, effective elastic thickness (Te) of the lithosphere in Jiyang Depression is about 24 km, approximating to the thickness of mechanically strong crust (MSC). We suggested that the dehydration of minerals in the subducting zone, along with upwelling of hot materials in the mantle wedge during subduction and back-arc spreading, results in the partial melting at the bottom of curst, which triggers magma intrusion and underplating. This geodynamics process maybe is the reason for the reduction of lower crustal viscosity for ductile flow. Lithospheric rheological stratification controlling the differential deformation styles of brittle fracture or frictional slide in the upper crust and ductile flow in the middle and lower crust, accounts for the basin formation and evolution of Jiyang Depression during Cenozoic.

  5. Herschel Planetary Nebula Survey (HerPlaNS) - First Detection of OH+ in Planetary Nebulae

    CERN Document Server

    Aleman, I; Ladjal, D; Exter, K M; Kastner, J H; Montez, R; Tielens, A G G M; Chu, Y H; Izumiura, H; McDonald, I; Sahai, R; Siodmiak, N; Szczerba, R; van Hoof, P A M; Villaver, E; Vlemmings, W; Wittkowski, M; Zijlstra, A A

    2014-01-01

    We report the first detections of OH+ emission in planetary nebulae (PNe). As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the Herschel Space Observatory, we performed a line survey in these PNe over the entire spectral range between 51 and 672$\\mu$m to look for new detections. OH+ rotational emission lines at 152.99, 290.20, 308.48, and 329.77$\\mu$m were detected in the spectra of three planetary nebulae: NGC 6445, NGC 6720, and NGC 6781. Excitation temperatures and column densities derived from these lines are in the range of 27 to 47 K and 2 x $10$^{10}$ to 4 x $10$^{11}$ cm$^{-2}$, respectively. In PNe, the OH+ rotational line emission appears to be produced in the photodissociation region (PDR) in these objects. The emission of OH+ is observed only in PNe with hot central stars (Teff > 100000 K), suggesting that high-energy photons may play a role in the OH+ formation and its line excitation in these objects, as it seems to be the case for...

  6. Geodynamic simulations using the fast multipole boundary element method

    Science.gov (United States)

    Drombosky, Tyler W.

    Interaction between viscous fluids models two important phenomena in geophysics: (i) the evolution of partially molten rocks, and (ii) the dynamics of Ultralow-Velocity Zones. Previous attempts to numerically model these behaviors have been plagued either by poor resolution at the fluid interfaces or high computational costs. We employ the Fast Multipole Boundary Element Method, which tracks the evolution of the fluid interfaces explicitly and is scalable to large problems, to model these systems. The microstructure of partially molten rocks strongly influences the macroscopic physical properties. The fractional area of intergranular contact, contiguity, is a key parameter that controls the elastic strength of the grain network in the partially molten aggregate. We study the influence of matrix deformation on the contiguity of an aggregate by carrying out pure shear and simple shear deformations of an aggregate. We observe that the differential shortening, the normalized difference between the major and minor axes of grains is inversely related to the ratio between the principal components of the contiguity tensor. From the numerical results, we calculate the seismic anisotropy resulting from melt redistribution during pure and simple shear deformation. During deformation, the melt is expelled from tubules along three grain corners to films along grain edges. The initially isotropic fractional area of intergranular contact, contiguity, becomes anisotropic due to deformation. Consequently, the component of contiguity evaluated on the plane parallel to the axis of maximum compressive stress decreases. We demonstrate that the observed global shear wave anisotropy and shear wave speed reduction of the Lithosphere-Asthenosphere Boundary are best explained by 0.1 vol% partial melt distributed in horizontal films created by deformation. We use our microsimulation in conjunction with a large scale mantle deep Earth simulation to gain insight into the formation of

  7. The Roles of Discs for Planetary Systems

    CERN Document Server

    Yeh, L C; Yeh, Li-Chin; Jiang, Ing-Guey

    2007-01-01

    It is known that the discs are detected for some of the extra-solar planetary systems. It is also likely that there was a disc mixing with planets and small bodies while our Solar System was forming. From our recent results, we conclude that the discs play two roles: the gravity makes planetary systems more chaotic and the drag makes planetary systems more resonant.

  8. Meteorites, Continents, Heat, and Non-Steady State Geodynamics

    Science.gov (United States)

    White, W. M.; Morgan, J. P.

    2011-12-01

    Previous geochemical estimates of terrestrial radiogenic heat production were based on the assumption that refractory lithophile elements, such as the REE, U, and Th, are present in the Earth in chondritic relative proportions (the 'modified chondritic Earth' model, e.g., McDonough & Sun, Chem. Geol., 120: 223, 1995). However, 142Nd/144Nd ratios in modern terrestrial materials are 10 and 18 ppm higher than in enstatite and ordinary chondrites, respectively. One explanation is that the Sm/Nd ratio in the Earth, or at least the observable part of it, is 3 to 6% higher than chondritic, implying the Earth is non-chondritic, even for refractory lithophile elements. The most likely explanation is that a low Sm/Nd igneous protocrust formed as the Earth accreted and was lost through collisional erosion. A protocrust 3 to 6% enriched in Nd relative to Sm would have been even more strongly enriched in the more highly incompatible elements K, U, and Th. Calculations based on a model of protocrust formation and collisional erosion (O'Neill, & Palme, Phil. Trans. R. Soc. A366: 4205, 2008) that satisfy both Sm-Nd and Lu-Hf isotopic constraints imply U and Th concentrations in the bulk silicate Earth (BSE) that are 20 to 40% lower than in the 'modified chondritic Earth' model. Assuming a K/U = 13800 for the BSE, the K concentration is 10 to 30% lower than previously believed. This corresponds to a terrestrial heat production of 3.0 to 3.9 pW/kg or 11.9 to 15.8 TW. At the high end, these estimates are in excellent agreement with those of Lyubetskaya & Korenaga (JGR, 112: B03211, 2007), but are much lower than the 20 TW value derived from the 'modified chondritic Earth' model. Of this, some 5 to 10 TW of heat production is in the continental crust, leaving ≤10 TW of heat production in the mantle. For comparison, recent estimates of U, Th, and K in the depleted mantle imply heat production in the range of 0.7-1.0 pW/kg; if the depleted mantle occupies the entire mantle, this

  9. Hydrocarbon degassing of the earth and origin of oil-gas fields (isotope-geochemical and geodynamic aspects)

    Science.gov (United States)

    Valyaev, Boris; Dremin, Ivan

    2016-04-01

    formation of traditional and nontraditional hydrocarbon accumulations. The genesis of hydrocarbon fluids turn up to be associated with a hydrocarbon branch of deep degassing and recycling of crustal materials and processes of crust-mantle interaction [1,2,3]. The study was supported by the Russian Foundation for Basic Research (RFBR), grant № 14-05-00869. 1. Valyaev B.M., Dremin I.S. Deep Roots of the Fluid Systems and Oil-Gas Fields (Isotope Geochemical and Geodynamic Aspects) // International Conference Goldschmidt2015, Prague, Czech Republic, August 16-21, 2015. Abstracts. P. 3221. 2. Valyaev B., Dremin I. Recycling of crustal matter and the processes of mantle-crust interaction in the genesis of hydrocarbon fluids // International Conference on Gas Geochemistry 2013, Patras, Greece, 1-7 September 2013, Book of abstracts. P. 32. 3. Degassing of the Earth: Geotectonics, Geodynamics, Geofluids; Oil and Gas; Hydrocarbon and Life. Proceedings of the all-Russian with International Participation Conference, devoted the centenary of Academician P.N. Kropotkin, October 18-22, 2010, Moscow. Responsible editors: Academician A.N. Dmitrievsky, senior doctorate B.M. Valyaev. -Moscow: GEOS, 2010. 712 p.

  10. Planetary exploration and science recent results and advances

    CERN Document Server

    Jin, Shuanggen; Ip, Wing-Huen

    2014-01-01

    This contributed monograph is the first work to present the latest results and findings on the new topic and hot field of planetary exploration and sciences, e.g., lunar surface iron content and mare orientale basalts, Earth's gravity field, Martian radar exploration, crater recognition, ionosphere and astrobiology, Comet ionosphere, exoplanetary atmospheres and planet formation in binaries. By providing detailed theory and examples, this book helps readers to quickly familiarize themselves with the field. In addition, it offers a special section on next-generation planetary exploration, which opens a new landscape for future exploration plans and missions. Prof. Shuanggen Jin works at the Shanghai Astronomical Observatory, Chinese Academy of Sciences, China. Dr. Nader Haghighipour works at the University of Hawaii-Manoa, USA. Prof. Wing-Huen Ip works at the National Central University, Taiwan.

  11. Planet heating prevents inward migration of planetary cores

    CERN Document Server

    Benítez-Llambay, Pablo; Koenigsberger, Gloria; Szulágyi, Judit

    2015-01-01

    Planetary systems are born in the disks of gas, dust and rocky fragments that surround newly formed stars. Solid content assembles into ever-larger rocky fragments that eventually become planetary embryos. These then continue their growth by accreting leftover material in the disc. Concurrently, tidal effects in the disc cause a radial drift in the embryo orbits, a process known as migration. Fast inward migration is predicted by theory for embryos smaller than three to five Earth masses. With only inward migration, these embryos can only rarely become giant planets located at Earth's distance from the Sun and beyond, in contrast with observations. Here we report that asymmetries in the temperature rise associated with accreting infalling material produce a force (which gives rise to an effect that we call "heating torque") that counteracts inward migration. This provides a channel for the formation of giant planets and also explains the strong planet-metallicity correlation found between the incidence of gia...

  12. A Primordial Origin for Misalignments Between Stellar Spin Axes and Planetary Orbits

    CERN Document Server

    Batygin, Konstantin

    2013-01-01

    The presence of gaseous giant planets whose orbits lie in extreme proximity to their host stars ("hot Jupiters"), can largely be accounted for by planetary migration, associated with viscous evolution of proto-planetary nebulae. Recently, observations of the Rossiter-McLaughlin effect during planetary transits have revealed that a considerable fraction of detected hot Jupiters reside on orbits that are misaligned with respect to the spin-axes of their host stars. This observational fact has cast significant doubts on the importance of disk-driven migration as a mechanism for production of hot Jupiters, thereby reestablishing the origins of close-in planetary orbits as an open question. Here we show that misaligned orbits can be a natural consequence of disk migration. Our argument rests on an enhanced abundance of binary stellar companions in star formation environments, whose orbital plane is uncorrelated with the spin axes of the individual stars. We analyze the dynamical evolution of idealized proto-planet...

  13. SBS 1150+599A an extremely oxygen-poor planetary nebula in the Galactic halo?

    CERN Document Server

    Tovmassian, G H; Chavushyan, V H; Zharikov, S V; Gutíerrez, C; Prada, F

    2001-01-01

    We report results of a spectrophotometric study of SBS 1150+599A and discuss the nature of this object based upon our data. Our study shows that SBS 1150+599A is most probably a planetary nebula located in the Galactic halo and not a cataclysmic variable as originally proposed by the authors of the Second Byurakan Survey from low resolution spectroscopy. We have further elaborated on the properties of SBS 1150+599A (now becoming PN G135.9+55.9) with tools used for planetary nebula analysis. Our photoionization models show that, in order to match the observational constraints, the oxygen abundance in the nebula is probably extremely low, around 1/500 solar, which is one order of magnitude lower than the most oxygen-poor planetary nebulae known so far. This finding has strong implications on our understanding of the formation of planetary nebulae and of the evolution of the Galactic halo.

  14. Twenty-Second Lunar and Planetary Science Conference

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The papers in this collection were written for general presentation, avoiding jargon and unnecessarily complex terms. Some of the topics covered include: planetary evolution, planetary satellites, planetary composition, planetary surfaces, planetary geology, volcanology, meteorite impacts and composition, and cosmic dust. Particular emphasis is placed on Mars and the Moon.

  15. Sealed Planetary Return Canister (SPRC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  16. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  17. Nasa's Planetary Geologic Mapping Program: Overview

    Science.gov (United States)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  18. Robotic Tool Changer for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions will require compact, lightweight robotic manipulators for handling a variety of tools & instruments without increasing the...

  19. Sealed Planetary Return Canister (SPRC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  20. Teaching, learning, and planetary exploration

    Science.gov (United States)

    Brown, Robert A.

    1992-01-01

    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers

  1. Planetary Radars Operating Centre PROC

    Science.gov (United States)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  2. Central Stars of Planetary Nebulae

    CERN Document Server

    Jones, David

    2016-01-01

    In this brief invited review, I will attempt to summarise some of the key areas of interest in the study of central stars of planetary nebulae which (probably) won't be covered by other speakers' proceedings. The main focus will, inevitably, be on the subject of multiplicity, with special emphasis on recent results regarding triple central star systems as well as wide binaries which avoid a common-envelope phase. Furthermore, in light of the upcoming release of Kepler's Campaign 11 data, I will discuss a few of the prospects from that data including the unique possibility to detect merger products.

  3. Europlanet/IDIS: Combining Diverse Planetary Observations and Models

    Science.gov (United States)

    Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gerard

    2013-04-01

    Planetary research involves a diversity of research fields from astrophysics and plasma physics to atmospheric physics, climatology, spectroscopy and surface imaging. Data from all these disciplines are collected from various space-borne platforms or telescopes, supported by modelling teams and laboratory work. In order to interpret one set of data often supporting data from different disciplines and other missions are needed while the scientist does not always have the detailed expertise to access and utilize these observations. The Integrated and Distributed Information System (IDIS) [1], developed in the framework of the Europlanet-RI project, implements a Virtual Observatory approach ([2] and [3]), where different data sets, stored in archives around the world and in different formats, are accessed, re-formatted and combined to meet the user's requirements without the need of familiarizing oneself with the different technical details. While observational astrophysical data from different observatories could already earlier be accessed via Virtual Observatories, this concept is now extended to diverse planetary data and related model data sets, spectral data bases etc. A dedicated XML-based Europlanet Data Model (EPN-DM) [4] was developed based on data models from the planetary science community and the Virtual Observatory approach. A dedicated editor simplifies the registration of new resources. As the EPN-DM is a super-set of existing data models existing archives as well as new spectroscopic or chemical data bases for the interpretation of atmospheric or surface observations, or even modeling facilities at research institutes in Europe or Russia can be easily integrated and accessed via a Table Access Protocol (EPN-TAP) [5] adapted from the corresponding protocol of the International Virtual Observatory Alliance [6] (IVOA-TAP). EPN-TAP allows to search catalogues, retrieve data and make them available through standard IVOA tools if the access to the archive

  4. Proceedings of the 38th Lunar and Planetary Science Conference

    Science.gov (United States)

    2007-01-01

    The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects

  5. Tibetan Plateau: Geodynamics and Environmental Evolution--The cooperative projects based upon the memorandum of CAS and DFG%青藏高原:地球动力学与环境演变研究进展

    Institute of Scientific and Technical Information of China (English)

    姚檀栋; 朱立平; 谈戈

    2006-01-01

    The Tibetan Plateau (TP) plays a unique role in Earth System Sciences. It represents a key area to understand not only basic geodynamic processes linked with the formation and uplift of mountains and plateaus, but also the interaction between plateau uplift and environmental changes. Over the last 50 million years the formation of the TP has considerably influenced the global climate and monsoon system.Moreover, the TP proves to be extremely sensitive to present-day global change phenomena. Based upon the foundation of the new Institute of Tibetan Plateau Research (ITP) by the Chinese Academy of Sciences (CAS) and through the Memorandum signed by the CAS and DFG (Deutschen Forschungsgemeinschaft), both CAS and DFG provide opportunities to intensify TP research and to develop coordinated research programs. "The Tibetan Plateau - Geodynamics and Environmental Evolution" consisting of one big projects funded by CAS and five projects funded by DFG that cover the pre- and early-collision history of the TP, the Palaeogene/Neogene uplift and climatic dynamics as well as the Late Quaternary and recent environmental and climatic changes on the TP. The projects are linked through several levels of interactions.

  6. Lunar and Planetary Science XXXVI, Part 13

    Science.gov (United States)

    2005-01-01

    Contents include the following: A Fast, Non-Destructive Method for Classifying Ordinary Chondrite Falls Using Density and Magnetic Susceptibility. An Update on Results from the Magnetic Properties Experiments on the Mars Exploration Rovers, Spirit and Opportunity. Measurement Protocols for In Situ Analysis of Organic Compounds at Mars and Comets. Piping Structures on Earth and Possibly Mars: Astrobiological Implications. Uranium and Lead in the Early Planetary Core Formation: New Insights Given by High Pressure and Temperature Experiments. The Mast Cameras and Mars Descent Imager (MARDI) for the 2009 Mars Science Laboratory. MGS MOC: First Views of Mars at Sub-Meter Resolution from Orbit. Analysis of Candor Chasma Interior Layered Deposits from OMEGA/MEX Spectra. Analysis of Valley Networks on Valles Marineris Plateau Using HRSC/MEX Data. Solar Abundance of Elements from Neutron-Capture Cross Sections. Preliminary Evaluation of the Secondary Ion/Accelerator Mass Spectrometer, MegaSIMS. Equilibrium Landforms in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars. Continued Study of Ba Isotopic Compositions of Presolar Silicon Carbide Grains from Supernovae. Paleoenviromental Evolution of the Holden-Uzboi Area. Stability of Magnesium Sulfate Minerals in Martian Environments. Tungsten Isotopic Constraints on the Formation and Evolution of Iron Meteorite Parent Bodies. Migration of Dust Particles and Volatiles Delivery to the Inner Planets. On the Sitting of Trapped Noble Gases in Insoluble Organic Matter of Primitive Meteorites. Trapping of Xenon Upon Evaporation-Condensation of Organic Matter Under UV Irradiation: Isotopic Fractionation and Electron Paramagnetic Resonance Analysis. Stability of Water on Mars. A Didactic Activity. Analysis of Coronae in the Parga Chasma Region, Venus. Photometric and Compositional Surface Properties of the Gusev Crater Region, Mars, as Derived from Multi-Angle, Multi-Spectral Investigation of

  7. Formation of planetary systems is in sight now. ; On transformation on Initial solar system as seen from meteorites (On transformation of source celestial bodies). Wakuseikei no keisei ga mietekita. ; Inseki ni miru shoki taiyokei (Shigen botaiten no henka wo megutte)

    Energy Technology Data Exchange (ETDEWEB)

    Tomeoka, K. (The University of Tokyo, Tokyo (Japan). Faculty of Science)

    1992-02-01

    The meteoritic studies using high-resolution transmission electron microscopes are in a process of elucidating the problem as to whether the carbon-based chondrite meteorites regarded as initial chemically are the substance resulted from accumulation of solid particles which have had existed in the solar system nebulae, or whether they have had been subjected to any secondary modification after the accumulation. The initial state of the solar system was inferred through considering the latest research results on transforming actions given to these source celestial bodies. The intervention of the water quality transformation as a result of water actions at temperatures as low as associating no loss in volatile elements has been elucidated from the researches on micro-structures in a substance contained in the carbon-based chondrite. As to at what stage the water quality transformation has taken place, a view that its timing is after the formation of the base celestial bodies is predominant. A consideration was given on what the first celestial body integrated from a solar system nebula was like using a model presenting the transforming actions on the carbon-based chondrite celestial bodies. 11 refs., 4 figs.

  8. Geological and geophysical evidences for mud diapirism in south-eastern Sicily (Italy) and geodynamic implications

    Science.gov (United States)

    Barreca, Giovanni

    2014-12-01

    A recent investigation on the northern margin of the Hyblean Plateau in south-eastern Sicily highlights the occurrence of a clayey diapiric intrusion into the foreland carbonate series. The piercing body, exposed along a ∼270 long and ∼30 m deep NE-SW elongated quarry, consists of serpentinite-bearing clayey material. As suggested by the internal contractional features and by its geometric relations with the adjacent rocks, the clayey body intruded in the foreland series producing on its flanks a set of domino-arranged normal faults which nucleated as a result of gravitative collapse. Taking into account previous petrological studies, which provided information about the origin of the mud, a deep geodynamic model for the northern part of the Hyblean Plateau is here presented. The mud diapirs originated from the uprising of pre-existing serpentinite bodies and others products of alteration probably developed along an ancient ridge-transform intersection where a hydrothermally altered mantle wedge occurred. This interpretation is supported by seismic, magnetic and gravimetric anomalies beneath the analyzed area and has implications on its geodynamic evolution.

  9. Postcollisional lithospheric evolution of the Southeast Carpathians: Comparison of geodynamical models and observations

    Science.gov (United States)

    Göǧüş, Oǧuz H.; Pysklywec, Russell N.; Faccenna, Claudio

    2016-05-01

    Seismic evidence and thermal and topographic transients have led to the interpretation of lithospheric removal beneath the Southeast Carpathians region. A series of numerical geodynamic experiments in the context of the tectonic evolution of the region are conducted to test the surface-crustal response to lithosphere delamination and slab break-off. The results show that a delamination-type removal ("plate-like" migrating instability) causes a characteristic pattern of surface uplift/subsidence and crustal extension/shortening to occur due to the lithospheric deformation and dynamic/thermal forcing of the sublithospheric mantle. These features migrate with the progressive removal of the underlying lithosphere. Model results for delamination are comparable with observables related to the geodynamic evolution of the Southeast Carpathians since 10 Ma: the mantle structure inferred by seismic tomography, migrating patterns of uplift (>1.5 km) and subsidence (>2 km) in the region, crustal thinning in the Carpathian hinterland and thickening at the Focsani depression, and regional extension in the Carpathian corner (e.g., opening of Brasov basin) correlating with volcanism (e.g., Harghita and Persani volcanics) in the last 3 Myr.

  10. Early signs of geodynamic activity before the 2011-2012 El Hierro eruption

    Science.gov (United States)

    López, Carmen; García-Cañada, Laura; Martí, Joan; Domínguez Cerdeña, Itahiza

    2017-02-01

    The potential relation between mantle plume dynamics, regional tectonics and eruptive activity in the Canary Islands has not been studied yet through the analysis of long-time series of geophysical observational data. The existence of highly reliable seismic and geodetic data has enabled us to study from 1996 to 2014 the geodynamic evolution of the North Atlantic Azores-Gibraltar region (including the NW African margin) and its relationship with recent volcanic activity in El Hierro (Canary Islands). We compiled a new and unified regional seismic catalog and used long time-series of digital 3D surface displacements recorded by permanent GPS stations in the region. A joint regional- and local-scale analysis based on these data enabled us to identify signs of anomalous tectonic activity from 2003 onwards, whose intensity increased in 2007 and finally accelerated three months before the onset of the volcanic eruption on El Hierro in October 2011. Activity included the occurrence of regional extension and an uplift process affecting the southern Iberian Peninsula, NW Africa, and the Canary Islands. We interpret these observations as early signs of the geodynamic activity, which led to El Hierro eruption and the subsequent episodes of magma intrusion. Results point to the significant contribution of the mantle plume dynamics (i.e. external forces) in this renewed volcanic activity in the Canary Islands and emphasize the role of mantle dynamics in controlling regional tectonics.

  11. Detrital provenance of Early Mesozoic basins in the Jiangnan domain, South China: Paleogeographic and geodynamic implications

    Science.gov (United States)

    Xu, Xianbing; Tang, Shuai; Lin, Shoufa

    2016-04-01

    Detrital provenance analysis is an effective way to understand paleogeographic change and geodynamics. In this paper, we present petrological, whole-rock geochemical and detrital zircon U-Pb geochronological analysis of Early and Middle Jurassic terrestrial clastic rocks in the Jingdezhen Basin and the Huangshan Basin in the Jiangnan domain, South China. Petrology and whole-rock geochemistry show that the source rocks are dominated by intermediate to acid component. The Chemical Index of Alteration ranges from 69 to 86, suggesting a moderate weathering history for the source rocks. The Early-Middle Jurassic sediments in the Jingdezhen and Huangshan basins were mostly sourced from magmatogenic greywackes and felsic magmatic rocks, respectively. Detrital zircons have seven age peaks at 240 Ma, 430 Ma, 1390 Ma, 1880 Ma, 2500 Ma, -3200 Ma and 788-999 Ma (a wide peak). Provenance analysis indicates that the source rocks are in the Jiangnan domain, the Northwest Zhejiang Basin and the Wuyishan domain. Combining these with previous results and paleocurrent directions, we infer that the NE-trending Wuyishan and Xuefengshan domains and the nearly E-W-Jiangnan domain and Nanling tectonic belt were orogenic uplifts and watersheds during the Late Triassic to Middle Jurassic. The Early Mesozoic geodynamics in the South China Block was related to the westward subduction of the Paleo-Pacific Plate and the northward continent-continent collision following the closure of the Paleo-Tethys Ocean.

  12. PERIODIZATION OF RECENT AND LATE PLEISTOCENE – HOLOCENE GEODYNAMIC AND PALEOCLIMATIC PROCESSES

    Directory of Open Access Journals (Sweden)

    S. V. Rasskazov

    2015-09-01

    Full Text Available Based on comparative analyses of spatial and temporal patterns of high- and medium-potassic basaltic eruptions in the Central Mongolia and marine survey records of Sr isotopes, it is revealed that the start of the recent geodynamic stage in the Central Mongolia correlates with the starting point of its global manifestation, which gives an evidence of a close relationship between magmatic occurrences in the region under study and processes of global convergence. The magmatic occurrences are considered as representing the recent geodynamic evolution of the past 90 Ma with milestones of ~66, 40–37, ~32 and 17–15 Ma ago. Global changes, except those ~32 Ma ago, are shown in marine records of Sr isotopes. The Late Plestocene – Holocene natural and climate setting is reconstructed from radiocarbon datings of various geological and paleobiological objects. Changes of the natural environment and climate of the Northern hemisphere are plotted with account of strong magma eruptions, attacks of asteroids and meteorites, changes of lithological compositions of sedimentary complexes and species compositions of fauna at the given time interval.  

  13. Accretionary prisms of the Sikhote-Alin Orogenic Belt: Composition, structure and significance for reconstruction of the geodynamic evolution of the eastern Asian margin

    Science.gov (United States)

    Kemkin, I. V.; Khanchuk, A. I.; Kemkina, R. A.

    2016-12-01

    We present overview for geological studies of the terranes of the Sikhote-Alin orogenic belt in the Russian Far East. The belt is formed by accretionary prisms with alternating tectonic packets of thrust-like slices which consist of complexly deformed marine (pelagic and hemipelagic deposits, as well as oceanic plateau and paleo-guyot fragments), marginal oceanic turbidites and chaotic (subduction mélange) formations. We reconstruct a stepwise history of accretion of paleo-oceanic crustal fragments of different ages, based on detailed lithological-biostratigraphic and structural analysis. We propose geodynamic model for evolution of the eastern margin of the paleo-Asian continent during the Mesozoic time by combining geological observations for the region with geological data for others terranes of the Sikhote-Alin Orogenic Belt. We recognize several principal Mesozoic geological processes that have led to formation of the continental crust at the eastern margin of Asia: (i) accretion of paleo-oceanic fragments to the continent margin during the subduction of the paleo-Pacific plate along the convergent margins, (ii) subsequent intense deformation of rocks of the accretionary prisms of the transform margin including folding and multiple thrusting which led to a multifold increase in thickness of sediments, (iii) formation of granitic-metamorphic complexes due to intrusion of the orogenic granites into the accretionary prisms.

  14. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  15. Interactive investigations into planetary interiors

    Science.gov (United States)

    Rose, I.

    2015-12-01

    Many processes in Earth science are difficult to observe or visualize due to the large timescales and lengthscales over which they operate. The dynamics of planetary mantles are particularly challenging as we cannot even look at the rocks involved. As a result, much teaching material on mantle dynamics relies on static images and cartoons, many of which are decades old. Recent improvements in computing power and technology (largely driven by game and web development) have allowed for advances in real-time physics simulations and visualizations, but these have been slow to affect Earth science education.Here I demonstrate a teaching tool for mantle convection and seismology which solves the equations for conservation of mass, momentum, and energy in real time, allowing users make changes to the simulation and immediately see the effects. The user can ask and answer questions about what happens when they add heat in one place, or take it away from another place, or increase the temperature at the base of the mantle. They can also pause the simulation, and while it is paused, create and visualize seismic waves traveling through the mantle. These allow for investigations into and discussions about plate tectonics, earthquakes, hot spot volcanism, and planetary cooling.The simulation is rendered to the screen using OpenGL, and is cross-platform. It can be run as a native application for maximum performance, but it can also be embedded in a web browser for easy deployment and portability.

  16. Gallery of Planetary Nebula Spectra

    CERN Document Server

    Kwitter, K B; Kwitter, Karen B.; Henry, Richard B.C.

    2006-01-01

    We present the Gallery of Planetary Nebula Spectra now available at http://oitwilliams.edu/nebulae. The website offers high-quality, moderate resolution (~7-10 A FWHM) spectra of 128 Galactic planetary nebulae from 3600-9600 A, obtained by Kwitter, Henry, and colleagues with the Goldcam spectrograph at the KPNO 2.1-m or with the RC spectrograph at the CTIO 1.5-m. The master PN table contains atlas data and an image link. A selected object's spectrum is displayed in a zoomable window; line identification templates are provided. In addition to the spectra themselves, the website also contains a brief discussion of PNe as astronomical objects and as contributors to our understanding of stellar evolution. We envision that this website, which concentrates a large amount of data in one place, will be of interest to a variety of users: researchers might need to check the spectrum of a particular object of interest; the non-specialist astronomer might simply be interested in perusing such a collection of spectra; and...

  17. New Indivisible Planetary Science Paradigm

    CERN Document Server

    Herndon, J Marvin

    2013-01-01

    I present here a new, indivisible planetary science paradigm, a wholly self-consistent vision of the nature of matter in the Solar System, and dynamics and energy sources of planets. Massive-core planets formed by condensing and raining-out from within giant gaseous protoplanets at high pressures and high temperatures. Earth's complete condensation included a 300 Earth-mass gigantic gas/ice shell that compressed the rocky kernel to about 66% of Earth's present diameter. T-Tauri eruptions stripped the gases away from the inner planets and stripped a portion of Mercury's incompletely condensed protoplanet, and transported it to the region between Mars and Jupiter where it fused with in-falling oxidized condensate from the outer regions of the Solar System and formed the parent matter of ordinary chondrite meteorites, the main-Belt asteroids, and veneer for the inner planets, especially Mars. In response to decompression-driven planetary volume increases, cracks form to increase surface area and mountain ranges ...

  18. Infrastructure for Planetary Sciences: Universal planetary database development project

    Science.gov (United States)

    Kasaba, Yasumasa; Capria, M. T.; Crichton, D.; Zender, J.; Beebe, R.

    The International Planetary Data Alliance (IPDA), formally formed under COSPAR (Formal start: from the COSPAR 2008 at Montreal), is a joint international effort to enable global access and exchange of high quality planetary science data, and to establish archive stan-dards that make it easier to share the data across international boundaries. In 2008-2009, thanks to the many players from several agencies and institutions, we got fruitful results in 6 projects: (1) Inter-operable Planetary Data Access Protocol (PDAP) implementations [led by J. Salgado@ESA], (2) Small bodies interoperability [led by I. Shinohara@JAXA N. Hirata@U. Aizu], (3) PDAP assessment [led by Y. Yamamoto@JAXA], (4) Architecture and standards definition [led by D. Crichton@NASA], (5) Information model and data dictionary [led by S. Hughes@NASA], and (6) Venus Express Interoperability [led by N. Chanover@NMSU]. 'IPDA 2009-2010' is important, especially because the NASA/PDS system reformation is now reviewed as it develops for application at the international level. IPDA is the gate for the establishment of the future infrastructure. We are running 8 projects: (1) IPDA Assessment of PDS4 Data Standards [led by S. Hughes (NASA/JPL)], (2) IPDA Archive Guide [led by M.T. Capria (IASF/INAF) and D. Heather (ESA/PSA)], (3) IPDA Standards Identification [led by E. Rye (NASA/PDS) and G. Krishna (ISRO)], (4) Ancillary Data Standards [led by C. Acton (NASA/JPL)], (5) IPDA Registries Definition [led by D. Crichton (NASA/JPL)], (6) PDAP Specification [led by J. Salgado (ESA/PSA) and Y. Yamamoto (JAXA)], (7) In-teroperability Assessment [R. Beebe (NMSU) and D. Heather (ESA/PSA)], and (8) PDAP Geographic Information System (GIS) extension [N. Hirata (Univ. Aizu) and T. Hare (USGS: thare@usgs.gov)]. This paper presents our achievements and plans summarized in the IPDA 5th Steering Com-mittee meeting at DLR in July 2010. We are now just the gate for the establishment of the Infrastructure.

  19. Planetary plains: subsidence and warping

    Science.gov (United States)

    Kochemasov, G.

    A common feature of all celestial bodies is their tectonic dichotomy best studied, naturally, at Earth [1]. Here there is an opposition of the eastern continental hemisphere and the western oceanic one. The first one is uplifted and cracked, the second one subsided, squeezed and warped. The next excellent example of dichotomy is at Mars where the subsided northern hemisphere is opposed by the highly uplifted southern one. The enigmatic two-face Iapetus now with help of Cassini SC presents a more clear picture: the leading dark hemisphere is opposed by the trailing light one. The light hemisphere is built mainly of water ice, the dark one of some more dense material. Bean-shaped asteroids with one convex and another concave hemispheres are best exemplified by Ida. Examples of dichotomic asteroids, satellites, planets and stars could be extended. Ubiquity of this phenomenon was expressed as the 1st theorem of the planetary wave tectonics [2 & others]: "Celestial bodies are dichotomic". A reason of this phenomenon is in action of inertia-gravity waves occurring in any celestial body because of its movement in non-round but elliptical (parabolic) orbit with periodically changing accelerations. The inertia-gravity standing waves warp rotating bodies (but all bodies rotate !) in 4 ortho- and diagonal interfering directions and in several harmonic wave-lengths. The fundamental wave1 produces ubiquitous tectonic dichotomy (2πR-structure): an opposition of two hemispheres with different planetary radii. To keep angular momenta of two hemispheres equal (otherwise a body will fall apart) the lower subsiding one is constructed of denser material than the higher one. Normally in terrestrial planets lowlands are filled with dense basalts, highlands are built by lighter lithologies. A subsidence means diminishing radius, otherwise, the larger surface must be fit into a smaller space. It is possible only if an original infilling is warped. At Earth cosmic altimetry shows complex

  20. Mechanisms and Geochemical Models of Core Formation

    CERN Document Server

    Rubie, David C

    2015-01-01

    The formation of the Earth's core is a consequence of planetary accretion and processes in the Earth's interior. The mechanical process of planetary differentiation is likely to occur in large, if not global, magma oceans created by the collisions of planetary embryos. Metal-silicate segregation in magma oceans occurs rapidly and efficiently unlike grain scale percolation according to laboratory experiments and calculations. Geochemical models of the core formation process as planetary accretion proceeds are becoming increasingly realistic. Single stage and continuous core formation models have evolved into multi-stage models that are couple to the output of dynamical models of the giant impact phase of planet formation. The models that are most successful in matching the chemical composition of the Earth's mantle, based on experimentally-derived element partition coefficients, show that the temperature and pressure of metal-silicate equilibration must increase as a function of time and mass accreted and so m...

  1. Magmatic evolution of Sulawesi (Indonesia): constraints on the Cenozoic geodynamic history of the Sundaland active margin

    Science.gov (United States)

    Polvé, M.; Maury, R. C.; Bellon, H.; Rangin, C.; Priadi, B.; Yuwono, S.; Joron, J. L.; Atmadja, R. Soeria

    1997-04-01

    Tertiary and Quaternary magmatic rocks from West Sulawesi record the complex history of part of the Sundaland margin where subduction and collision have been and are still active. The present study, based on petrographic data, major- and trace-element chemistry and 40K 40Ar dating aims to document the age and chemical characteristics of the magmatic formations from West Sulawesi and to determine the corresponding constraints on the geodynamic evolution of the Sundaland border. The West Sulawesi magmatic province includes the South Arm of Sulawesi (Ujung Pandang area), the western part of Central Sulawesi with the Toraja and Palu areas, and finally, the North Arm, extending from Palu to Manado, which includes the Tolitoli and Manado areas. Paleocene magmatic activity seems to be restricted to an episode of calc-alkaline magmatism in the Ujung Pandang area (61-59 Ma). The major Eocene (50-40 Ma) magmatic event is tholeiitic and is documented in all areas except in Ujung Pandang. It led to the emplacement of tholeiitic pillow-lavas and basaltic dykes of back-arc basin (BAB) affinity. These rocks are potential equivalents to the Celebes Sea basaltic basement. From Oligocene to Miocene, magmatic eruptions produced successively island-arc tholeiitic (IAT) and calc-alkaline (CA) rock series. The youngest IAT activity occurred around 18 Ma in the central part (Palu area) and around 14 Ma in the North Arm (Tolitoli area) while CA magmas were emplaced in the North Arm at ca. 18 Ma (Tolitoli and Manado areas). Typical calc-alkaline activity resumed only in the North Arm (Tolitoli and Manado areas) during the Late Miocene (9 Ma) and is still active in the Manado region. In other areas (Palu, Toraja and Ujung Pandang areas) an important and widespread magmatic event occurred between 13 and 10 Ma and emplaced K-rich magmas, either silica-undersaturated alkali-potassic basalts (AK), ultrapotassic basanites (UK) or shoshonites (SH). K-rich activity continued in the south until

  2. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The d

  3. Introduction to the special issue: Planetary geomorphology

    Science.gov (United States)

    Burr, Devon M.; Howard, Alan D.

    2015-07-01

    Planetary geomorphology is the study of extraterrestrial landscapes. In recognition of the promise for productive interaction between terrestrial and planetary geomorphologists, the 45th annual Binghamton Geomorphology Symposium (BGS) focused on Planetary Geomorphology. The aim of the symposium was to bring planetary and terrestrial geomorphologists together for symbiotic and synthetic interactions that would enrich both subdisciplines. In acknowledgment of the crucial role of terrestrial field work in planetary geomorphology and of the BGS tradition, the symposium began with a field trip to the Appalachian Mountains, followed by a dinner talk of recent results from the Mars Surface Laboratory. On Saturday and Sunday, the symposium was organized around major themes in planetary geomorphology, starting with the geomorphic processes that are most common in our Solar System-impact cratering, tectonism, volcanism-to set the stage for other geomorphic processes, including aeolian, fluvial, lacustrine, and glacial/polar. On Saturday evening, the banquet talk provided an historical overview of planetary geomorphology, including its roots in the terrestrial geosciences. The symposium concluded with a full-afternoon tutorial on planetary geomorphologic datasets. This special issue of Geomorphology consists of papers by invited authors from the 2014 BGS, and this introduction provides some context for these papers.

  4. Visualization of Kepler's Laws of Planetary Motion

    Science.gov (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-01-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  5. Planetary nebulae abundances and stellar evolution II

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.

    2010-01-01

    Context. In recent years mid-and far infrared spectra of planetary nebulae have been analysed and lead to more accurate abundances. It may be expected that these better abundances lead to a better understanding of the evolution of these objects. Aims. The observed abundances in planetary nebulae are

  6. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The d

  7. Mpo - the Bepicolombo Mercury Planetary Orbiter.

    Science.gov (United States)

    Benkhoff, J.

    2008-09-01

    so far. BepiColombo will also contribute to the understanding of the history and formation of the inner planets of the Solar System in general, including the Earth. The 'Mercury Planetary Orbiter' (MPO), under ESA's responsibility, will study the surface and the internal composition of the planet at different wavelengths and with different techniques. The Mercury Magnetospheric Orbiter (MMO), under the responsibility of the Japan Aerospace Exploration Agency (ISAS/JAXA), will study the magnetosphere, that is the region of space around the planet that is dominated by its magnetic field. Objectives BepiColombo will study and understand the composition, geophysics, atmosphere, magnetosphere and history of Mercury, the least explored planet in the inner Solar System. In particular, the mission objectives are: • markedly higher than that of all other terrestrial planets, Moon included • to understand if the core of Mercury is liquid or solid, and if the planet is still tectonically active today • to understand why such a small planet possesses an intrinsic magnetic field, while Venus, Mars and the Moon do not have any, and investigate if Mercury's magnetised environment is characterised by features reminiscent of the aurorae, radiation belts and magnetospheric substorms observed at Earth • to understand why spectroscopic observations not reveal the presence of any iron, while this element is supposedly the major constituent of the planet • to investigate if the permanently shadowed craters of the polar regions contain sulphur or water ice • to observe the yet unseen hemisphere of Mercury • to study the production mechanisms of the exosphere and to understand the interaction between planetary magnetic field and the solar wind in the absence of a ionosphere • to obtain new clues about the composition of the primordial solar nebula and about the formation of the solar system • to test general relativity with improved accuracy, taking advantage of the

  8. Plasma Processing of Lunar and Planetary Materials

    Science.gov (United States)

    Currier, R.; Blacic, J.

    2000-01-01

    Space exploration and colonization must include oxygen for propulsion and life support, as well as, structural materials for construction. To the extent possible, these should be derived from locally available planetary resources. We propose an extractive metallurgy and oxygen recovery process well-suited for resource utilization in space. Locally available minerals are placed in a radio frequency-generated hydrogen plasma. This is accomplished using a fluidized bed contacting device. Electromagnetic energy is coupled to the hydrogen gas forming a non-equilibrium plasma. The plasma produces the ideal reducing agent - atomic hydrogen - in direct and intimate contact with the solid particles. When using oxide minerals as a feed, atomic hydrogen extracts oxygen from the matrix through the formation of water. The water is subsequently split into oxygen and hydrogen (the hydrogen is then recycled back to the plasma reactor). The processed solids could then be refined to produce structural materials. A conceptual process flow diagram, which requires an initial charge of hydrogen, is given.

  9. The Iron abundance in Galactic Planetary Nebulae

    CERN Document Server

    Delgado-Inglada, G; Mampaso, A; Viironen, K

    2008-01-01

    We constrain the iron abundance in a sample of 33 low-ionization Galactic planetary nebulae (PNe) using [Fe III] lines and correcting for the contribution of higher ionization states with ionization correction factors (ICFs) that take into account uncertainties in the atomic data. We find very low iron abundances in all the objects, suggesting that more than 90% of their iron atoms are condensed onto dust grains. This number is based on the solar iron abundance and implies a lower limit on the dust-to-gas mass ratio, due solely to iron, of M_dust/M_gas>1.3x10^{-3} for our sample. The depletion factors of different PNe cover about two orders of magnitude, probably reflecting differences in the formation, growth, or destruction of their dust grains. However, we do not find any systematic difference between the gaseous iron abundances calculated for C-rich and O-rich PNe, suggesting similar iron depletion efficiencies in both environments. The iron abundances of our sample PNe are similar to those derived follow...

  10. The Rocky World of Young Planetary Systems

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Panel A of Inset Panel B of Inset Panel C of Inset This artist's concept illustrates how planetary systems arise out of massive collisions between rocky bodies. New findings from NASA's Spitzer Space Telescope show that these catastrophes continue to occur around stars even after they have developed full-sized planets, when they are as old as one hundred million years. For reference, our own Sun, at 4.5 billion years old, is far past this late stage of planet formation. In this image, a young star is shown circled by full-sized planets, and rings of dust beyond. These rings, also called 'debris discs,' arise when embryonic planets smash into each other. One of these collisions is illustrated in the inset of Figure 1. Spitzer was able to see the dust generated by these collisions with its powerful infrared vision.

  11. Planetary Nebulae in the Small Magellanic Cloud

    CERN Document Server

    Ventura, P; Di Criscienzo, M; García-Hernández, D A; Dell'Agli, F

    2016-01-01

    We analyse the planetary nebulae (PNe) population of the Small Magellanic Cloud (SMC), based on evolutionary models of stars with metallicities in the range $10^{-3} \\leq Z \\leq 4\\times 10^{-3}$ and mass $0.9 M\\odot < M < 8M\\odot$, evolved through the asymptotic giant branch (AGB) phase. The models used account for dust formation in the circumstellar envelope. To characterise the PNe sample of the SMC, we compare the observed abundances of the various species with the final chemical composition of the AGB models: this study allows us to identify the progenitors of the PNe observed, in terms of mass and chemical composition. According to our interpretation, most of the PNe descend from low-mass ($M < 2 M\\odot$) stars, which become carbon rich, after experiencing repeated third dredge-up episodes, during the AGB phase. A fraction of the PNe showing the signature of advanced CNO processing are interpreted as the progeny of massive AGB stars, with mass above $\\sim 6 M\\odot$, undergoing strong hot bottom ...

  12. Planetary companions around the metal-poor star HIP 11952

    Science.gov (United States)

    Setiawan, J.; Roccatagliata, V.; Fedele, D.; Henning, Th.; Pasquali, A.; Rodríguez-Ledesma, M. V.; Caffau, E.; Seemann, U.; Klement, R. J.

    2012-04-01

    Aims: We carried out a radial-velocity survey to search for planets around metal-poor stars. In this paper we report the discovery of two planets around HIP 11952, a metal-poor star with [Fe/H] = -1.9 that belongs to our target sample. Methods: Radial velocity variations of HIP 11952 were monitored systematically with FEROS at the 2.2 m telescope located at the ESO La Silla observatory from August 2009 until January 2011. We used a cross-correlation technique to measure the stellar radial velocities (RV). Results: We detected a long-period RV variation of 290 d and a short-period one of 6.95 d. The spectroscopic analysis of the stellar activity reveals a stellar rotation period of 4.8 d. The Hipparcos photometry data shows intra-day variabilities, which give evidence for stellar pulsations. Based on our analysis, the observed RV variations are most likely caused by the presence of unseen planetary companions. Assuming a primary mass of 0.83 M⊙, we computed minimum planetary masses of 0.78 MJup for the inner and 2.93 MJup for the outer planet. The semi-major axes are a1 = 0.07 AU and a2 = 0.81 AU, respectively. Conclusions: HIP 11952 is one of very few stars with [Fe/H] < -1.0 which have planetary companions. This discovery is important to understand planet formation around metal-poor stars.

  13. GTR Component of Planetary Precession

    Indian Academy of Sciences (India)

    P C Deshmukh; Kaushal Jaikumar Pillay; Thokala Solomon Raju; Sudipta Dutta; Tanima Banerjee

    2017-06-01

    Even as the theory of relativity is more than a hundred yearsold, it is not within easy reach of undergraduate students.These students have an insatiable urge to learn more aboutit even if the full machinery of the tools required to studythe same is not within their comfortable reach. The recentdetection of gravitational waves has only augmented their enthusiasmabout the General Theory of Relativity (GTR), developedjust over a hundred years now, encapsulated in Einstein’sField Equations. The GTR provided a consistent formulationof the theory of gravity, removed the anomalies inthe Newtonian model, and predicted spectacular natural phenomenawhich eventual experiments have testified to. Thispedagogical article retraces some of the major milestones thatled to the GTR and presents a simple numerical simulation ofthe GTR advance of the perihelion of planetary motion aboutthe sun.

  14. Tidal Evolution of Planetary Systems

    Science.gov (United States)

    Rodríguez, A.

    2017-07-01

    We review the orbital and rotational evolution of single and two-planet systems under tidal dissipation. In the framework of mutual gravitational perturbation and tidal interaction between the star and the innermost planet, we shall present the main results for the variations of eccentricities in both cases. These results are obtained through the numerical solution of the exact equations of motions. Moreover, we will also give an analysis of the planetary rotation, which can be temporarily trapped in special configurations such as spin-orbit resonances. Results will be shown using a Maxwell viscoelastic deformation law for the inner planet. This rheology is characterized by a viscous relaxation time, τ, that can be seen as the characteristic average time that the planet requires to achieve a new equilibrium shape after being disturbed by an external forcing (tides of the star).

  15. Dynamical evolution of planetary systems

    CERN Document Server

    Morbidelli, Alessandro

    2011-01-01

    The apparent regularity of the motion of the giant planets of our solar system suggested for decades that said planets formed onto orbits similar to the current ones and that nothing dramatic ever happened during their lifetime. The discovery of extra-solar planets showed astonishingly that the orbital structure of our planetary system is not typical. Many giant extra-solar planets have orbits with semi major axes of $\\sim 1$ AU, and some have even smaller orbital radii, sometimes with orbital periods of just a few days. Moreover, most extra-solar planets have large eccentricities, up to values that only comets have in our solar system. Why such a big diversity between our solar system and the extra-solar systems, as well as among the extra-solar systems themselves? This chapter aims to give a partial answer to this fundamental question....

  16. Application of a long-range terrestrial laser scanner in research on lowland geodynamic processes

    Science.gov (United States)

    Wiśniewska, Daria; Kramkowski, Mateusz; Tyszkowski, Sebastian

    2015-04-01

    Progress in the LIDAR technology allows collection of data over a longer range and with a higher precision than most of geodetic measurement methods. It is particularly useful in areas that are inaccessible, dangerous, or with a highly variable morphology. These include mountains, steep slopes of river valleys, and edges of water bodies. Because of a high variation in altitude, they are particularly prone to geodynamic processes. In recent years, such areas have been surveyed more and more often with the use of Airborne Laser Scanning, but the high costs and low frequency of surveys make it difficult to trace the dynamics of phenomena and recorded processes. A few years ago, a new method for imaging of land surfaces started to be used: Terrestrial Laser Scanning. The latest scanners make long-distance scanning possible, up to several kilometres), which until recently had been reserved exclusively for Airborne Laser Scanning. The ease and mobility of scanning allows recording of geodynamic processes immediately after their initiation and their constant monitoring, with a high frequency of data collection. The usefulness of long-distance Terrestrial Laser Scanning is presented here on the basis of mass movements on slopes of a large river valley (the lower Vistula valley) and edges of artificial water bodies. These areas were selected because of a high dynamics of geodynamic processes. The scanning was performed at a distance of 2-4 km from the objects, with a resolution of 0.002°. Such parameters of the equipment and the broad scope and long range enable researchers simultaneous scanning of wide belts of the marginal zone. They also allow precise imaging of slopes, including the microforms that cannot be recorded with any other method. Thanks to the characteristics of laser beam reflection, it is also possible to perform analyses that allow identification of landslide initiation, as well as initial stages of erosion of river banks and edges of water bodies. In this

  17. Autonomous geodynamics of the Pamir-Tien Shan junction zone from seismology data

    Science.gov (United States)

    Lukk, A. A.; Shevchenko, V. I.; Leonova, V. G.

    2015-11-01

    The geodynamics of the Tajik Depression, the junction zone of the Pamirs and Tien Shan, is typically considered in the context of plate tectonic concept, which implies intense subhorizontal compression of the zone resulting from the subduction of the Indian and Eurasian lithospheric plates. This convergence has been reliably confirmed by the GPS measurements. However, the joint analysis of the geological structure, seismicity, and geodimeter measurements conducted during a few years at the Garm geodynamical testing site of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, demonstrates a widening of the Tajik Depression instead of its shortening, as should be expected from the subhorizontal compression predominant in the present-day stress-state of this region. This conclusion, together with the data from the other regions, suggests that, along with the plate tectonic mechanisms, there are also other, local, autonomous drivers that contribute to the tectogenesis of this region. Besides, the probable existence of these autonomous sources within the Tajik Depression directly follows from the seismology data. Among them is the crustal spreading within the depression suggested by the seismotectonic displacements in the focal mechanisms of the earthquakes. These displacements are directed in different azimuths off the axial's most subsided part of the depression at a depth of 20-30 km. Above this region the distribution of seismotectonic deformations (STD) is chaotic. This pattern of deformation is barely accounted for by a simple model of subhorizontal compression of the Earth's crust in the region. In our opinion, these features of the seismotectonic deformation in the crust within the studied part of the Tajik Depression is probably associated with the gain in the volume of the rocks due to the inflow of the additional material, which is supplied from the bottom crust or upper mantle by the deep fluids. This increase in the rock volume

  18. Probabilistic seismic hazard study based on active fault and finite element geodynamic models

    Science.gov (United States)

    Kastelic, Vanja; Carafa, Michele M. C.; Visini, Francesco

    2016-04-01

    We present a probabilistic seismic hazard analysis (PSHA) that is exclusively based on active faults and geodynamic finite element input models whereas seismic catalogues were used only in a posterior comparison. We applied the developed model in the External Dinarides, a slow deforming thrust-and-fold belt at the contact between Adria and Eurasia.. is the Our method consists of establishing s two earthquake rupture forecast models: (i) a geological active fault input (GEO) model and, (ii) a finite element (FEM) model. The GEO model is based on active fault database that provides information on fault location and its geometric and kinematic parameters together with estimations on its slip rate. By default in this model all deformation is set to be released along the active faults. The FEM model is based on a numerical geodynamic model developed for the region of study. In this model the deformation is, besides along the active faults, released also in the volumetric continuum elements. From both models we calculated their corresponding activity rates, its earthquake rates and their final expected peak ground accelerations. We investigated both the source model and the earthquake model uncertainties by varying the main active fault and earthquake rate calculation parameters through constructing corresponding branches of the seismic hazard logic tree. Hazard maps and UHS curves have been produced for horizontal ground motion on bedrock conditions VS 30 ≥ 800 m/s), thereby not considering local site amplification effects. The hazard was computed over a 0.2° spaced grid considering 648 branches of the logic tree and the mean value of 10% probability of exceedance in 50 years hazard level, while the 5th and 95th percentiles were also computed to investigate the model limits. We conducted a sensitivity analysis to control which of the input parameters influence the final hazard results in which measure. The results of such comparison evidence the deformation model and

  19. Gnss Geodetic Monitoring as Support of Geodynamics Research in Colombia, South America

    Science.gov (United States)

    Mora-Paez, H.; Acero-Patino, N.; Rodriguez-Zuluaga, J. S.; Diederix, H.; Bohorquez-Orozco, O. P.; Martinez-Diaz, G. P.; Diaz-Mila, F.; Giraldo-Londono, L. S.; Cardozo-Giraldo, S.; Vasquez-Ospina, A. F.; Lizarazo, S. C.

    2013-05-01

    To support the geodynamics research at the northwestern corner of South America, GEORED, the acronym for "Geodesia: Red de Estudios de Deformación" has been adopted for the Project "Implementation of the National GNSS Network for Geodynamics" carried out by the Colombian Geological Survey, (SGC), formerly INGEOMINAS. Beginning in 2007, discussions within the GEORED group led to a master plan for the distribution of the base permanent GPS/GNSS station array and specific areas of interest for campaign site construction. The use of previously identified active faults as preferred structures along which stresses are transferred through the deformational area led to the idea of segmentation of the North Andes within Colombia into 20 tectonic sub-blocks. Each of the 20 sub-blocks is expected to have, at least, three-four permanent GPS/GNSS stations within the block along with construction of campaign sites along the boundaries. Currently, the GEORED Network is managing 46 continuously including: 40 GEORED GPS/GNSS continuously operating stations; 4 GNSS continuously operating stations provided by the COCONet (Continuously Operating Caribbean GPS Observational Network) Project; the Bogotá IGS GPS station (BOGT), installed in 1994 under the agreement between JPL-NASA and the SGC; and the San Andres Island station, installed in 2007 under the MOU between UCAR and the SGC. In addition to the permanent installations, more than 230 GPS campaign sites have been constructed and are being occupied one time per year. The Authority of the Panama Canal and the Escuela Politecnica de Quito have also provided data of 4 and 5 GPS/GNSS stations respectively. The GPS data are processed using the GIPSY-OASIS II software, and the GPS time series of daily station positions give fundamental information for both regional and local geodynamics studies. Until now, we have obtained 100 quality vector velocities for Colombia, 23 of them as part of the permanent network. The GPS/GNSS stations

  20. Jurassic (uppermost Sinemurian - Aalenian sequence stratigraphy and geodynamic evolution of the Ait Bou Guemmez area (Central High Atlas, Morocco

    Directory of Open Access Journals (Sweden)

    El Bchari, F.

    2008-12-01

    Full Text Available In the Ait Bou Guemmez region (Central High Atlas, Morocco, five formations are recognised within the Jurassic (Late Sinemurian - Aalenian record. They are organised into seven third order sequences involved in three second order cycles. Three stages characterise the geodynamic evolution of the considered area: 1 Upper Sinemurian -Lower Carixian: lagoonal area; 2 Middle Carixian - Upper Domerian: NE dipping open carbonate platform; and 3 Late Domerian - Aalenian: tectonic activity of the Jbel Tizal -Jbel Azourki fault leading to the setting up of a mosaic sedimentary environments in the study area.Dans la région d’Ait Bou Guemmez (Haut Atlas central, Maroc, la série Jurassique (Sinémurien terminal - l’Aalénien à été subdivisée en cinq formations sédimentaires distinctes. Ces dernières s’organisent en sept séquences de troisième ordre, elles mêmes comprises dans trois cycles de deuxième ordre présentant les maxima de régression au sommet du Carixien inférieur et au Domérien supérieur. L’évolution géodynamique comporte trois étapes successives: 1 Sinémurien terminal - Carixien inférieur: un milieu de lagon limité par des zones émergées ou faiblement subsidentes situées le long de l’accident J.Tizal - J.Azourki; 2 Carixien moyen - Domérien supérieur: vaste plateforme carbonatée ouverte vers le NE; 3 Domérien terminal - Aalénien: intensification dans l’activité tectonique de l’accident de Jbel Tizal - Jbel Azourki, conduisant à la mise en place d’une mosaïque d’environnements sédimentaires dans l’ensemble du secteur étudié.

  1. Nature and distribution of geological domains at the Africa-Eurasia plate boundary off SW Iberia and regional geodynamic implications

    Science.gov (United States)

    Martínez-Loriente, Sara; Sallarès, Valentí; Gràcia, Eulàlia; Bartolome, Rafael

    2014-05-01

    We present a new classification of geological domains at the Africa-Eurasia plate boundary off SW Iberia, together with a regional geodynamic reconstruction spanning from the Mesozoic extension to the Neogene-to-present-day convergence. It is based on seismic velocity and density models along two regional wide-angle seismic transects, one running NW-SE from the Horseshoe to the Seine abyssal plains, and the other running N-S from S Portugal to the Seine Abyssal Plain, combined with previously available information. The seismic velocity and density structure at the Seine Abyssal Plain and the internal Gulf of Cadiz indicates the presence of a highly heterogeneous oceanic crust, similar to that described in ultra-slow spreading centers, whereas in the Horseshoe and Tagus abyssal plains, the basement structure resembles that of exhumed mantle sections identified in the Northern Atlantic margin. The integration of all this new information allows defining the presence of three oceanic domains offshore SW Iberia: (1) the Seine Abyssal Plain domain, generated during the first stages of slow seafloor spreading in the NE Central Atlantic (Early Jurassic); (2) the Gulf of Cadiz domain, made of oceanic crust generated in the Alpine-Tethys spreading system between Iberia and Africa, which was coeval with the formation of the Seine Abyssal Plain domain and lasted up to the North Atlantic continental break-up (Late Jurassic); and (3) the Gorringe Bank domain, mainly made of rocks exhumed from the mantle with little synchronous magmatism, which formed during the first stages of North Atlantic opening. Our models suggest that the Seine Abyssal Plain and Gulf of Cadiz domains are separated by the Lineament South strike-slip fault, whereas the Gulf of Cadiz and Gorringe Bank domains appear to be limited by a deep thrust fault located at the center of the Horseshoe Abyssal Plain. The formation and evolution of these three domains during the Mesozoic is key to understand the sequence

  2. Challenges in Predicting Planetary Granular Mechanics

    Science.gov (United States)

    Metzger, Philip T.

    2005-01-01

    Through the course of human history, our needs in agriculture, habitat construction, and resource extraction have driven us to gain more experience working with the granular materials of planet Earth than with any other type of substance in nature, with the possible exception being water. Furthermore, throughout the past two centuries we have seen a dramatic and ever growing interest among scientists and engineers to understand and predict both its static and rheological properties. Ironically, however, despite this wealth of experience we still do not have a fundamental understanding of the complex physical phenomena that emerge even as just ordinary sand is shaken, squeezed or poured. As humanity is now reaching outward through the solar system, not only robotic ally but also with our immediate human presence, the need to understand and predict granular mechanics has taken on a new dimension. We must learn to farm, build and mine the regoliths of other planets where the environmental conditions are different than on Earth, and we are rapidly discovering that the effects of these environmental conditions are not trivial. Some of the relevant environmental features include the regolith formation processes throughout a planet's geologic and hydrologic history, the unknown mixtures of volatiles residing within the soil, the relative strength of gravitation, d the atm9spheric pressure and its seasonal variations. The need to work with soils outside our terrestrial experience base provides us with both a challenge and an opportunity. The challenge is to learn how to extrapolate our experience into these new planetary conditions, enabling the engineering decisions that are needed right now as we take the next few steps in solar system exploration. The opportunity is to use these new planetary environments as laboratories that will help us to see granular mechanics in new ways, to challenge our assumptions, and to help us finally unravel the elusive physics that lie

  3. Carbon Dioxide: The Other Planetary Fluid

    Science.gov (United States)

    Glaser, S.; Gamez, D.; Shock, E.

    2016-12-01

    Cometary and interstellar ices have carbon dioxide to water mole ratios of up to 0.3. When melted, such high levels of carbon dioxide cannot all be dissolved in the aqueous phase and instead partition into a CO2-rich (carbonic) fluid. This implies that during the accretion and formation of planetary systems carbonic fluids are not only possible, but common. In fact, they make up the atmosphere of Venus, are found bubbling out of Champagne Vent in the Pacific Ocean, and are documented by metamorphic fluid inclusions. Examination of phase diagrams reveals the conditions where carbonic fluids will exist or predominate. Carbonic fluids are predicted to exist in Earth's subduction zones and under the ice of small ocean worlds. CO2 had previously been shown to completely dissolve into NH­­3­-H­­2O oceans on small icy bodies by forming ammonium carbonate, but the newer measurements of CO2­ abundances indicate that not all of the CO2 can partition into the aqueous fluid as ammonium carbonate. The remaining CO2 would necessarily form a separate carbonic fluid making it likely that liquid CO2 would be a major oceanic component on some small icy bodies. The enhanced solubility of nonpolar and slightly polar organic compounds in carbonic fluids relative to aqueous fluids means that generation, transport, and deposition processes can be greatly enhanced in those cases where carbonic fluids occur. As an example, the solubility of benzoic acid, a polar compound, is about an order of magnitude greater in carbonic than in aqueous fluids, which is surprising given that water is a polar solvent and carbon dioxide is a nonpolar solvent. Anthracene, a nonpolar compound, has an even greater solubility difference between carbonic and aqueous fluids at approximately four orders of magnitude. Highly polar compounds, including most of the building blocks of life, are more soluble in aqueous fluids than in carbonic fluids. The solubility difference of organic molecules in carbonic

  4. Footprint Representation of Planetary Remote Sensing Data

    Science.gov (United States)

    Walter, S. H. G.; Gasselt, S. V.; Michael, G.; Neukum, G.

    The geometric outline of remote sensing image data, the so called footprint, can be represented as a number of coordinate tuples. These polygons are associated with according attribute information such as orbit name, ground- and image resolution, solar longitude and illumination conditions to generate a powerful base for classification of planetary experiment data. Speed, handling and extended capabilites are the reasons for using geodatabases to store and access these data types. Techniques for such a spatial database of footprint data are demonstrated using the Relational Database Management System (RDBMS) PostgreSQL, spatially enabled by the PostGIS extension. Exemplary, footprints of the HRSC and OMEGA instruments, both onboard ESA's Mars Express Orbiter, are generated and connected to attribute information. The aim is to provide high-resolution footprints of the OMEGA instrument to the science community for the first time and make them available for web-based mapping applications like the "Planetary Interactive GIS-on-the-Web Analyzable Database" (PIG- WAD), produced by the USGS. Map overlays with HRSC or other instruments like MOC and THEMIS (footprint maps are already available for these instruments and can be integrated into the database) allow on-the-fly intersection and comparison as well as extended statistics of the data. Footprint polygons are generated one by one using standard software provided by the instrument teams. Attribute data is calculated and stored together with the geometric information. In the case of HRSC, the coordinates of the footprints are already available in the VICAR label of each image file. Using the VICAR RTL and PostgreSQL's libpq C library they are loaded into the database using the Well-Known Text (WKT) notation by the Open Geospatial Consortium, Inc. (OGC). For the OMEGA instrument, image data is read using IDL routines developed and distributed by the OMEGA team. Image outlines are exported together with relevant attribute

  5. A system architecture for a planetary rover

    Science.gov (United States)

    Smith, D. B.; Matijevic, J. R.

    1989-01-01

    Each planetary mission requires a complex space vehicle which integrates several functions to accomplish the mission and science objectives. A Mars Rover is one of these vehicles, and extends the normal spacecraft functionality with two additional functions: surface mobility and sample acquisition. All functions are assembled into a hierarchical and structured format to understand the complexities of interactions between functions during different mission times. It can graphically show data flow between functions, and most importantly, the necessary control flow to avoid unambiguous results. Diagrams are presented organizing the functions into a structured, block format where each block represents a major function at the system level. As such, there are six blocks representing telecomm, power, thermal, science, mobility and sampling under a supervisory block called Data Management/Executive. Each block is a simple collection of state machines arranged into a hierarchical order very close to the NASREM model for Telerobotics. Each layer within a block represents a level of control for a set of state machines that do the three primary interface functions: command, telemetry, and fault protection. This latter function is expanded to include automatic reactions to the environment as well as internal faults. Lastly, diagrams are presented that trace the system operations involved in moving from site to site after site selection. The diagrams clearly illustrate both the data and control flows. They also illustrate inter-block data transfers and a hierarchical approach to fault protection. This systems architecture can be used to determine functional requirements, interface specifications and be used as a mechanism for grouping subsystems (i.e., collecting groups of machines, or blocks consistent with good and testable implementations).

  6. Experimental studies of oblique impact. [of meteorites on planetary surfaces

    Science.gov (United States)

    Gault, D. E.; Wedekind, J. A.

    1978-01-01

    Meteoritic materials most probably impact planetary bodies along oblique trajectories inclined less than 45 deg above their surfaces. Laboratory studies of hypervelocity impacts against rock and particulate media are presented that indicate important effects of obliquity on crater size, shape, and ejecta distribution. The effects are particularly important to crater size-frequency analyses and geologic interpretations of crater formations. Impacts at shallow incidence, which are not uncommon, lead to ricochet of the impacting object accompanied with some entrained excavated materials at velocities only slightly reduced from the pre-impact value.

  7. Urey Prize Lecture: Planetary Evolution and the Origin of Life.

    Science.gov (United States)

    McKay, C P

    1991-01-01

    The origin of life appears to be closely tied to the formation and early evolution of the solar system. Key questions deal with the source of abiotic organic material on the early Earth, the nature of interstellar organic material and its relationship to the observed organic compounds in the outer solar system, and the possible origin of life on Mars early in its history. From the perspective of planetary environments, liquid water is the essential requirement for life and serves as a surrogate indicator for life. New models and analyses in conjunction with data returned from upcoming missions promise to significantly advance our knowledge of how life originated in our solar system.

  8. Planetary nebulae as tracers of galaxy stellar populations

    CERN Document Server

    Buzzoni, A; Corradi, R L M

    2006-01-01

    We address the general problem of the luminosity-specific planetary nebula (PN) number, defined as alpha = N(PN)/L(gal), and its relationship with age and metallicity of the parent stellar population. Our analysis relies on population synthesis models for simple stellar populations and more elaborated galaxy models along the full star-formation range of the Hubble morphological sequence. This theoretical framework is compared with the updated census of the PN population in Local Group galaxies and external ellipticals in the Leo group, and the Virgo and Fornax clusters.

  9. Comprehensive planning of data archive in Japanese planetary missions

    Science.gov (United States)

    Yamamoto, Yukio; Shinohara, Iku; Hoshino, Hirokazu; Tateno, Naoki; Hareyama, Makoto; Okada, Naoki; Ebisawa, Ken

    Comprehensive planning of data archive in Japanese planetary missions Japan Aerospace Exploration Agency (JAXA) provides HAYABUSA and KAGUYA data as planetary data archives. These data archives, however, were prepared independently. Therefore the inconsistency of data format has occurred, and the knowledge of data archiving activity is not inherited. Recently, the discussion of comprehensive planning of data archive has started to prepare up-coming planetary missions, which indicates the comprehensive plan of data archive is required in several steps. The framework of the comprehensive plan is divided into four items: Preparation, Evaluation, Preservation, and Service. 1. PREPARATION FRAMEWORK Data is classified into several types: raw data, level-0, 1, 2 processing data, ancillary data, and etc. The task of mission data preparation is responsible for instrument teams, but preparations beside mission data and support of data management are essential to make unified conventions and formats over instruments in a mission, and over missions. 2. EVALUATION FRAMEWORK There are two meanings of evaluation: format and quality. The format evaluation is often discussed in the preparation framework. The data quality evaluation which is often called quality assurance (QA) or quality control (QC) must be performed by third party apart from preparation teams. An instrument team has the initiative for the preparation itself, and the third-party group is organized to evaluate the instrument team's activity. 3. PRESERVATION FRAMEWORK The main topic of this framework is document management, archiving structure, and simple access method. The mission produces many documents in the process of the development. Instrument de-velopment is no exception. During long-term development of a mission, many documents are obsoleted and updated repeatedly. A smart system will help instrument team to reduce some troubles of document management and archiving task. JAXA attempts to follow PDS manners

  10. Experiments in Planetary and Related Sciences and the Space Station

    Science.gov (United States)

    Greeley, Ronald (Editor); Williams, Richard J. (Editor)

    1987-01-01

    Numerous workshops were held to provide a forum for discussing the full range of possible experiments, their science rationale, and the requirements on the Space Station, should such experiments eventually be flown. During the workshops, subgroups met to discuss areas of common interest. Summaries of each group and abstracts of contributed papers as they developed from a workshop on September 15 to 16, 1986, are included. Topics addressed include: planetary impact experimentation; physics of windblown particles; particle formation and interaction; experimental cosmochemistry in the space station; and an overview of the program to place advanced automation and robotics on the space station.

  11. Where Do Messy Planetary Nebulae Come From?

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a

  12. Process engineering with planetary ball mills.

    Science.gov (United States)

    Burmeister, Christine Friederike; Kwade, Arno

    2013-09-21

    Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.

  13. Planetary Data System (PDS) Strategic Roadmap

    Science.gov (United States)

    Law, Emily; McNutt, Ralph; Crichton, Daniel J.; Morgan, Tom

    2016-07-01

    The Planetary Data System (PDS) archives and distributes scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. NASA's Science Mission Directorate (SMD) sponsors the PDS. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. The Planetary Science Division (PSD) within the SMD at NASA Headquarters has directed the PDS to set up a Roadmap team to formulate a PDS Roadmap for the period 2017-2026. The purpose of this activity is to provide a forecast of both the rapidly changing Information Technology (IT) environment and the changing expectations of the planetary science communities with respect to Planetary Data archives including, specifically, increasing assessability to all planetary data. The Roadmap team will also identify potential actions that could increase interoperability with other archive and curation elements within NASA and with the archives of other National Space Agencies. The Roadmap team will assess the current state of the PDS and report their findings to the PSD Director by April 15, 2017. This presentation will give an update of this roadmap activity and serve as an opportunity to engage the planetary community at large to provide input to the Roadmap.

  14. Morphodynamics of Planetary Deserts: A Laboratory Approach

    Science.gov (United States)

    Garcia, A.; Courrech Du Pont, S.; Rodriguez, S.

    2014-12-01

    Earth deserts show a rich variety of dune shapes from transverse to barchan, star and linear dunes depending on the history of wind regimes (strength and variability) and sand availability [1]. In desert, exposed to one wind direction, dunes perpendicular to the wind direction are found to be transverse or barchans, only sand availability plays a key role on their formation and evolution. However, the evolution time scale of such structures (several years) limits our investigation of their morphodynamics understanding. We use here, a laboratory experiment able to considerably reduce space and time scales by reproducing millimeter to centimeter subaqueous dunes by controlling environmental parameters such as type of wind (multi-winds, bimodal, quasi-bimodal or unidirectional wind) and amount of sediment [2,3]. This set up allows us to characterize more precisely the different modes of dune formation and long-term evolution, and to constrain the physics behind the morphogenesis and dynamics of dunes. Indeed, the formation, evolution and transition between the different dune modes are better understood and quantified thanks to a new setting experiment able to give a remote sediment source in continuous (closer to what happens in terrestrial desert): a sand distributor that controls the input sand flow. Firstly, in a one wind direction conditions, we managed to follow and quantify the growth of the instability of transverse dunes that break into barchans when the sand supply is low and reversely when the sand supply is higher, barchan fields evolve to bars dunes ending to form transverse. The next step will be to perform experiments under two winds conditions in order to better constrain the formation mode of linear dunes, depending also only on the input sand flux. Previous experiments shown that linear "finger" dunes can be triggered by the break of transverse dunes and then the elongating of one barchan's arm [4]. These studies can farther explain more precisely in

  15. Geophysical Imprints of the Geodynamic Evolution of Moesia Following the Black Sea Opening

    Science.gov (United States)

    Besutiu, Lucian

    2014-05-01

    Genesis of the two types of the Moesia basement (the so called Walachian, and Dobrogean sectors) along with the complex fault system affecting its cover and basement are still debated issues. Besides, there are two other intriguing aspects raised by the seismicity map of Romania: the sub-crustal events in the bending zone of East Carpathians, and the crust seismicity of the eastern Moesian Plate (MoP). Both the intermediate-depth earthquakes within full intra-continental environment and the intense craton seismicity are unusual aspects, and their apparent association difficult to explain. The paper proposes an integrated geodynamic model of MoP able to justify its current tectonics and both the crustal events in front of Carpathians, and the intermediate-depth earthquakes in the Vrancea zone within the frame of a unique geodynamic process. It starts from the idea that tectonic and geodynamic evolution of the E MoP and the bending zone of East Carpathians has been strongly affected by the opening of the W Black Sea basin, and is currently maintained by active rifting in SW Arabian Plate. The model is supported by geophysical and geodetic evidence. Unlike some previous geology-based models assuming that Black Sea opened during a singular geodynamic event (northward subduction of the Neo-Tethys Ocean floor), the pattern of the gravity and geomagnetic field, along with off-shore seismics bring convincing evidence on the distinct timing of the W and E Black Sea basins opening. Fingerprints of the lithosphere expelled by the W Black Sea rifting in the NW inland may be seen in the distribution of compression (P) wave velocity. In-depth development of NW striking major faults (splitting MoP into numerous vertical compartments) is also well revealed by seismic tomography (e.g. Peceneaga-Camena Fault, as the limit between MoP and East European Plate (EEP), still separates two distinct P wave velocity domains at 150 km depth). A second major fault system was created by the

  16. Arctic geodynamics: Continental shelf and deep ocean geophysics. ERS-1 satellite altimetry: A first look

    Science.gov (United States)

    Anderson, Allen Joel; Sandwell, David T.; Marquart, Gabriele; Scherneck, Hans-Georg

    1993-01-01

    An overall review of the Arctic Geodynamics project is presented. A composite gravity field model of the region based upon altimetry data from ERS-1, Geosat, and Seasat is made. ERS-1 altimetry covers unique Arctic and Antarctic latitudes above 72 deg. Both areas contain large continental shelf areas, passive margins, as well as recently formed deep ocean areas. Until ERS-1 it was not possible to study these areas with satellite altimetry. Gravity field solutions for the Barents sea, portions of the Arctic ocean, and the Norwegian sea north of Iceland are shown. The gravity anomalies around Svalbard (Spitsbergen) and Bear island are particularly large, indicating large isostatic anomalies which remain from the recent breakup of Greenland from Scandinavian. Recently released gravity data from the Armed Forces Topographic Service of Russia cover a portion of the Barents and Kara seas. A comparison of this data with the ERS-1 produced gravity field is shown.

  17. Constraining the rheology of the lithosphere and upper mantle with geodynamic inverse modelling

    Science.gov (United States)

    Kaus, Boris; Baumann, Tobias

    2016-04-01

    The rheology of the lithosphere is of key importance for the physics of the lithosphere. Yet, it is probably the most uncertain parameter in geodynamics as experimental rock rheologies have to be extrapolated to geological conditions and as existing geophysical methods such as EET estimations make simplifying assumptions about the structure of the lithosphere. In many geologically interesting regions, such as the Alps, Andes or Himalaya, we actually have a significant amount of data already and as a result the geometry of the lithosphere is quite well constrained. Yet, knowing the geometry is only one part of the story, as we also need to have an accurate knowledge on the rheology and temperature structure of the lithosphere. Here, we discuss a relatively new method that we developed over the last few years, which is called geodynamic inversion. The basic principle of the method is simple: we compile available geophysical data into a realistic geometric model of the lithosphere and incorporate that into a thermo-mechanical numerical model of lithospheric deformation. In order to do so, we have to know the temperature structure, the density and the (nonlinear) rheological parameters for various parts of the lithosphere (upper crust, upper mantle, etc.). Rather than fixing these parameters we assume that they are all uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology, we first perform a geodynamic inversion of a synthetic forward model of intra-oceanic subduction with known parameters. This requires solving an inverse problem with 14-16 parameters, depending on whether temperature is assumed to be known or not. With the help of a massively parallel direct-search combined with a Markov Chain Monte Carlo method, solving the inverse problem

  18. Pre-collisional geodynamics of the Mediterranean Sea: the Mediterranean Ridge and the Tyrrhenian Sea

    Directory of Open Access Journals (Sweden)

    E. Chaumillon

    1997-06-01

    Full Text Available Today the Mediterranean Sea consists of a series of small-sized and almost geographically disconnected oceanic or continental crust rooted marine basins. It is also an area almost totally surrounded by mountain ranges, which chiefly belong to the alpine realm. This overall geodynamic setting results from a long term convergence between the two major, African and European, plates. Previous collisions have led to the edification of surrounding chains, while subduction and new-collisional processes tend to create new extensional back-arc basins and wide tectonized accretionary prisms. In this paper we briefly outline the most recent and almost land-locked back-arc basin that has developed in the Mediterranean,i.e., the Tyrrhenian Sea, and the Mediterranean Ridge, which may be regarded as a collisional sedimentary wedge predating a future mountain chain.

  19. Petrogenetic and geodynamic origin of the Neoarchean Doré Lake Complex, Abitibi subprovince, Superior Province, Canada

    Science.gov (United States)

    Polat, Ali; Frei, Robert; Longstaffe, Fred J.; Woods, Ryan

    2017-06-01

    The Neoarchean (ca. 2728 Ma) anorthosite-bearing Doré Lake Complex in the northeastern Abitibi subprovince, Quebec, was emplaced into an association of intra-oceanic tholeiitic basalts and gabbros known as the Obatogamau Formation. The Obatogamau Formation constitutes the lower part of the Roy Group, which is composed of two cycles of tholeiitic-to-calc-alkaline volcanic and volcaniclastic rocks, siliciclastic and chemical sedimentary rocks, and layered mafic-to-ultramafic sills. In this study, we report major and trace element results, and Nd, Sr, Pb and O isotope data for anorthosites, leucogabbros, gabbros and mafic dykes from the Doré Lake Complex and spatially associated basalts and gabbros of the Obatogamau Formation to assess their petrogenetic origin and geodynamic setting. Field and petrographic observations indicate that the Doré Lake Complex and associated volcanic rocks underwent extensive metamorphic alteration under greenschist facies conditions, resulting in widespread epidotization (20-40%) and chloritization (10-40%) of many rock types. Plagioclase recrystallized mainly to anorthite and albite endmembers, erasing intermediate compositions. Metamorphic alteration also led to the mobilization of many elements (e.g., LILE and transition metals) and to significant disturbance of the Rb-Sr and U-Pb isotope systems, resulting in 1935 ± 150 and 3326 ± 270 Ma errorchron ages, respectively. The Sm-Nd isotope system was less disturbed, yielding an errorchron age of 2624 ± 160 Ma. On many binary major and trace element diagrams, the least altered anorthosites and leucogabbros, and the gabbros and mafic dykes of the Doré Lake Complex plot in separate fields, signifying the presence of two distinct magma types in the complex. The gabbros and mafic dykes in the Doré Lake Complex share the geochemical characteristics of tholeiitic basalts and gabbros in the Obatogamau Formation, suggesting a possible genetic link between the two rock associations. Initial

  20. The Magnetic Field Effect on Planetary Nebulae

    Institute of Scientific and Technical Information of China (English)

    A. R. Khesali; K. Kokabi

    2006-01-01

    In our previous work on the 3-dimensional dynamical structure of planetary nebulae the effect of magnetic field was not considered. Recently Jordan et al. have directly detected magnetic fields in the central stars of some planetary nebulae. This discovery supports the hypothesis that the non-spherical shape of most planetary nebulae is caused by magnetic fields in AGB stars. In this study we focus on the role of initially weak toroidal magnetic fields embedded in a stellar wind in altering the shape of the PN. We found that magnetic pressure is probably influential on the observed shape of most PNe.

  1. Planetary climates (princeton primers in climate)

    CERN Document Server

    Ingersoll, Andrew

    2013-01-01

    This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

  2. Spectroscopic detection and characterisation of planetary atmospheres

    Directory of Open Access Journals (Sweden)

    Collier Cameron A.

    2011-07-01

    Full Text Available Space based broadband infrared observations of close orbiting extrasolar giant planets at transit and secondary eclipse have proved a successful means of determining atmospheric spectral energy distributions and molecular composition. Here, a ground-based spectroscopic technique to detect and characterise planetary atmospheres is presented. Since the planet need not be transiting, this method enables a greater sample of systems to be studied. By modelling the planetary signature as a function of phase, high resolution spectroscopy has the potential to recover the signature of molecules in planetary atmospheres.

  3. Planetary astronomy in the 1990's

    Science.gov (United States)

    Morrison, David

    1992-01-01

    An overview is presented of current achievements and future possibilities that exist in planetary astronomy. Planetary astronomers employ a wide range of techniques, from straightforward telescopic observation to laboratory analysis of meteorites and cosmic dust. Much of this work focuses on three fundamental questions: how abundant are planets throughout the universe, how did the solar system form, and what can other planets tell us about earth? Several examples show that many recent discoveries reveal the continuing value of earth-orbit and ground-based methods for planetary studies.

  4. Software Attribution for Geoscience Applications in the Computational Infrastructure for Geodynamics

    Science.gov (United States)

    Hwang, L.; Dumit, J.; Fish, A.; Soito, L.; Kellogg, L. H.; Smith, M.

    2015-12-01

    Scientific software is largely developed by individual scientists and represents a significant intellectual contribution to the field. As the scientific culture and funding agencies move towards an expectation that software be open-source, there is a corresponding need for mechanisms to cite software, both to provide credit and recognition to developers, and to aid in discoverability of software and scientific reproducibility. We assess the geodynamic modeling community's current citation practices by examining more than 300 predominantly self-reported publications utilizing scientific software in the past 5 years that is available through the Computational Infrastructure for Geodynamics (CIG). Preliminary results indicate that authors cite and attribute software either through citing (in rank order) peer-reviewed scientific publications, a user's manual, and/or a paper describing the software code. Attributions maybe found directly in the text, in acknowledgements, in figure captions, or in footnotes. What is considered citable varies widely. Citations predominantly lack software version numbers or persistent identifiers to find the software package. Versioning may be implied through reference to a versioned user manual. Authors sometimes report code features used and whether they have modified the code. As an open-source community, CIG requests that researchers contribute their modifications to the repository. However, such modifications may not be contributed back to a repository code branch, decreasing the chances of discoverability and reproducibility. Survey results through CIG's Software Attribution for Geoscience Applications (SAGA) project suggest that lack of knowledge, tools, and workflows to cite codes are barriers to effectively implement the emerging citation norms. Generated on-demand attributions on software landing pages and a prototype extensible plug-in to automatically generate attributions in codes are the first steps towards reproducibility.

  5. 3-D seismic tomography of the lithosphere and its geodynamic implications beneath the northeast India region

    Science.gov (United States)

    Raoof, J.; Mukhopadhyay, S.; Koulakov, I.; Kayal, J. R.

    2017-05-01

    We have evolved 3-D seismic velocity structures in northeast India region and its adjoining areas to understand the geodynamic processes of Indian lithosphere that gently underthrusts under the Himalayas and steeply subducts below the Indo-Burma Ranges. The region is tectonically buttressed between the Himalayan arc to the north and the Indo-Burmese arc to the east. The tomographic image shows heterogeneous structure of lithosphere depicting different tectonic blocks. Though our results are limited to shallower depth (0-90 km), it matches well with the deeper continuation of lithospheric structure obtained in an earlier study. We observe low-velocity structure all along the Eastern Himalayas down to 70 km depth, which may be attributed to deeper roots/thicker crust developed by underthrusting of Indian plate. Parallel to this low-velocity zone lies a high-velocity zone in foredeep region, represents the Indian lithosphere. The underthrusting Indian lithosphere under the Himalayas as well as below the Indo-Burma Ranges is well reflected as a high-velocity dipping structure. The buckled up part of bending Indian plate in study region, the Shillong Plateau-Mikir Hills tectonic block, is marked as a high-velocity structure at shallower depth. The Eastern Himalayan Syntaxis, tectonic block where the two arcs meet, is identified as a high-velocity structure. The Bengal Basin, tectonic block to the south of Shillong Plateau, shows low velocity due to its thicker sediments. Based on the tomographic image, a schematic model is presented to elucidate the structure and geodynamics of Indian lithosphere in study region.

  6. Large-scale Geodynamics Controls Secular Trend of the Total Ozone

    Science.gov (United States)

    Steblova, R. S.

    2014-12-01

    A steady tendency towards decrease in the observed total ozone cannot be attributed to space sources of energy such as the sun and cosmic galactic rays because the energy of these sources is stable for several decades. The north-south asymmetry of ozone in the global structure of ozonosphere rules out man-made sources as a significant factor of the ozone decrease. Most of the pollutants come to the northern hemisphere; however, there is about 30% more ozone in it than in the southern hemisphere. We jointly analyzed the global distribution of ozone from TOMS satellite data, the surface of the earth's core from seismic tomography, and lithospheric plate movements from GPS and concluded the following: (1) There are sources of energy in the solid earth which contribute to the atmospheric ozone; (2) The large-scale geodynamics should be considered among the mechanisms responsible for the global structure of ozonosphere and its evolution with time. We also note similarities in the pattern of ozone caused by sources in the solid earth ("terrestrial ozone") and the patterns of geomagnetic and gravity fields. The global morphology of terrestrial ozone suggests a "breakup" in the initial ozone distribution at about the same time as a breakup of Pangea and subsequent spreading of the area of higher ozone content. A restored initial breakup is located in the oceanic region and runs northwest to southeast across Africa. We propose a large-scale geodynamic process: a convective flow in the mantle from the earth's core surface provokes the breakup of Pangea and the breakup of ozone distribution

  7. On the solvability of incompressible Stokes with viscoplastic rheologies in geodynamics

    Science.gov (United States)

    Spiegelman, Marc; May, Dave A.; Wilson, Cian R.

    2016-06-01

    Plasticity/failure is an essential ingredient in geodynamics models as earth materials cannot sustain unbounded stresses. However, many questions remain as to appropriate models of plasticity as well as effective solvers for these strongly nonlinear systems. Here we present some simplified model problems designed to elucidate many of the issues involved for the description and solution of viscoplastic problems as currently used in geodynamic modeling. We consider compression and extension of a viscoplastic layer overlying an isoviscous layer and introduce a single plastic yield criterion which includes the most commonly used viscoplasticity models: von Mises, depth-dependent von Mises, and Drucker-Prager. We show that for all rheologies considered, successive substitution schemes (aka Picard iteration) often stall at large values of the nonlinear residual, producing spurious solutions. However, combined Picard-Newton schemes can be effective for rheologies that are independent of the dynamic pressure. Difficulties arise when solving incompressible Stokes problems for rheologies that depend on the dynamic pressure such as Drucker-Prager viscoplasticity. Analysis suggests that incompressible Stokes can become ill-posed when the dependence of the deviatoric stress tensor on dynamic pressure (i.e., |∂τ/∂p'|) becomes large. We demonstrate empirically that, in these cases, Newton solvers can fail by introducing spurious shear bands and discuss the consequence of interpreting the results of nonconverged computations. Even for problems where solvers converge, Drucker-Prager viscoplasticity can produce dynamic pressures that deviate significantly from lithostatic and both the velocity and pressure fields should be evaluated to determine whether solutions are geologically reasonable.

  8. A 3-D Geodynamic Model of Strain Partitioning in Southern California

    Science.gov (United States)

    Ye, J.; Liu, M.; Lin, F.

    2012-12-01

    In southern California, strain resulting from the relative motion between the Pacific and the North American plates is partitioned in a complex system of transcurrent, transcompressional, and transtensional faults. High-precision GPS measurements in this region have enabled kinematic modeling of the present-day strain partitioning between major faults in southern California. However, geodynamic models are needed to understand the cause of strain partitioning and to determine strain in regions where faults are blind or diffuse. We have developed a regional-scale geodynamic model of strain partitioning in southern California. This 3-D viscoelasto-plastic finite element model incorporates first-order fault geometry of the major active faults in the region. The model domain includes an elastoplastic upper crust on top of a viscoelastic lower lithospheric layer. Deformation is driven by the relative motion between the Pacific and the North American plates, imposed as a displacement boundary condition. Plastic deformation both within the fault zones and in the unfaulted surrounding crust is calculated. Our results show that the Big Bend of the San Andreas Fault, and other geometric complexity of faults in southern California, plays a major role in strain partitioning. The observed variations of strain portioning in southern California can be explained by the geometric configuration of fault systems relative to the relative plate motion, without appealing to basal traction of a flowing lower lithosphere. The model predicts concentrated plastic strain under the reverse fault systems in the Transverse Ranges and the young and diffuse faults in the Eastern California Shear Zone across the Mojave Desert, where a number damaging earthquakes occurred in the past decades.

  9. Testing Absolute Plate Reference Frames and the Implications for the Generation of Geodynamic Mantle Heterogeneity Structure

    Science.gov (United States)

    Shephard, G. E.; Bunge, H.; Schuberth, B. S.; Müller, D.; Talsma, A.; Moder, C.

    2010-12-01

    Several absolute reference frames for Cretaceous-Tertiary plate tectonic reconstructions have been proposed over the last decade. They include reference frames based on hotspot tracks displaying age progression, and assuming either fixed or moving hotspots, as well as palaeomagnetically-based reference frames, a subduction reference frame and hybrid reference frames. All these alternative reference frames imply a particular history of the location of subduction zones through time, the associated subduction history, and the evolution of mantle heterogeneity via the mixing of subducted slab material with the mantle. Therefore it is possible to evaluate the observed distribution of subducted slab material in the mantle versus that predicted by a forward geodynamic model in which the plate kinematic history given by a particular absolute plate is coupled with a mantle convection model. We present a comparison of five alternative absolute plate motion models in terms of their consequences for global deep mantle structure by utilizing the 3-D spherical finite element mantle convection code TERRA, coupled with the global plate tectonic reconstruction software GPlates. We impose global palaeo-plate boundaries and plate velocities back to 140 Ma as surface boundary conditions for each absolute rotation model and forward model the associated subduction history. The correlation of seismic tomography with the predicted present-day mantle structure from each of plate models is then assessed using well-imaged slabs. We will present and discuss a comparison of geodynamically predicted mantle heterogeneity and seismic tomography to infer the robustness of each absolute reference frame through time, thus providing additional constraints for the integration of plate tectonics and mantle dynamics.

  10. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models

    KAUST Repository

    van Dinther, Y.

    2013-04-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco-elasto-plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco-elastic gelatin wedge underthrusted by a rigid plate with defined velocity-weakening and -strengthening regions. Our geodynamic simulation approach includes velocity-weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity-strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack-, or occasionally even pulse-like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back-propagation and repeated slip, and the agreement with laboratory results demonstrate that visco-elasto-plastic geodynamic models with rate-dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones.

  11. Planck intermediate results XVIII. The millimetre and sub-millimetre emission from planetary nebulae

    DEFF Research Database (Denmark)

    Cardoso, J.-F.; Delabrouille, J.; Ganga, K.;

    2015-01-01

    Late stages of stellar evolution are characterized by copious mass-loss events whose signature is the formation of circumstellar envelopes (CSE). Planck multi-frequency measurements have provided relevant information on a sample of Galactic planetary nebulae (PNe) in the important and relatively ...

  12. Planck intermediate results XVIII. The millimetre and sub-millimetre emission from planetary nebulae

    DEFF Research Database (Denmark)

    Cardoso, J.-F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    Late stages of stellar evolution are characterized by copious mass-loss events whose signature is the formation of circumstellar envelopes (CSE). Planck multi-frequency measurements have provided relevant information on a sample of Galactic planetary nebulae (PNe) in the important and relatively ...

  13. Uzon-Geysernaya volcano-tectonic depression: geodynamics phenomena last years

    Science.gov (United States)

    Kugaenko, Yulia

    2010-05-01

    One of the most active volcanic arcs in the Pacific Rim, Kamchatka is also one with poor geophysical constraints on its shallow magma plumbing systems. Uzon calderas lie within a graben approximately 20 km wide running beneath the eastern Kamchatka volcanic group. Cross sections of the shallow crustal graben show that it steps WNW from its southeasterly bounding fault beneath Kikhpinych volcano, deepening toward Uzon caldera. Uzon Caldera Summary (by Global Volcanism Program, http://www.volcano.si.edu ): Country, Subregion Name: Russia; Kamchatka Peninsula Volcano Number: 1000-17 Volcano Type: Calderas Last Known Eruption: 200 AD +/- 300 years Summit Elevation: 1617 m (5,305 feet) Coordinates: 54.50°N, 159.97°E Kikhpinych volcano Summary (by Global Volcanism Program, http://www.volcano.si.edu ): Country, Subregion Name: Russia, Kamchatka Peninsula Volcano Number: 1000-18 Volcano Type: Stratovolcanoes Last Known Eruption: 1550 (?) Summit Elevation: 1552 m (5,092 feet) Coordinates: 160.253°N, 160.253°E The twin Uzon and Geysernaya calderas, containing Kamchatka's largest geothermal area, from a 7x18 km Uzon-Geysernaya volcano-tectonic depression that originated during multiple eruptions during the mid-Pleistocene. Post-caldera activity was largely Pleistocene in age and consisted of the extrusion of small silicic lava domes and flows, maar formation and several Holocene phreatic eruptions. The extensive high-temperature hydrothermal system includes the many hot springs, mudpots, and geysers of the Valley of the Geysers on the SE margin of the Uzon-Geysernaya depression. Hydrothermal explosions took place in the western part of caldera in 1986 and 1989. The Valley of the Geysers in the far eastern portion of Uzon caldera is considered derived from shallow meteoric water in contact with a heat source associated with Kikhpinych volcano The general structure places a deep aquifer shallower than a depth of about 2 km with the top of a cooling magma chamber at depths

  14. Planetary System Formation in Protoplanetary Disk around HL Tauri

    CERN Document Server

    Akiyama, Eiji; Hayashi, Masahiko; Iguchi, Satoru

    2015-01-01

    We re-process the Atacama Large Millimeter/Submillimeter Array (ALMA) long-baseline science verification data taken toward HL Tauri. As shown by the previous work, we confirm that the high spatial resolution (~ 0."019, corresponding to ~ 2.7 AU) dust continuum images at \\lambda = 0.87, 1.3, and 2.9 mm exhibit a multiple ring-like gap structure in the circumstellar disk. Assuming that the observed gaps are opened up by currently forming, unseen bodies, we estimate the mass of such hypothetical bodies based on following two approaches; the Hill radius analysis and a more elaborated approach developed from the angular momentum transfer analysis in gas disks. For the former, the measured gap widths are used for calibrating the mass of the bodies, while for the latter, the measured gap depths are utilized. We show that their masses are likely comparable to or less than the mass of Jovian planets, and then discuss an origin of the observed gap structure. By evaluating Toomre's gravitational instability (GI) conditi...

  15. On the formation of the Kepler-10 planetary system

    CERN Document Server

    Terquem, Caroline

    2014-01-01

    In this paper, we investigate the conditions required for the 3 and 17 Earth mass solid planets in the Kepler-10 system to have formed through collisions and mergers within an initial population of embryos. By performing a large number of N-body simulations, we show that the total mass of the initial population had to be significantly larger than the masses of the two planets, and that the two planets must have built-up farther away than their present location, at a distance of at least a few au from the central star. The planets had to grow fast enough so that they would detach themselves from the population of remaining, less massive, cores and migrate in to their present location. By the time the other cores migrated in, the disc's inner edge would have moved out so that these cores cannot be detected today. We also compute the critical core mass beyond which a massive gaseous envelope would be accreted and show that it is larger than 17 Earth masses if the planetesimal accretion rate onto the core is larg...

  16. Sensor Array Analyzer for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions such as those planned by NASA and other space agencies over the next few decades require advanced chemical and biological...

  17. Planetary science: Cometary dust under the microscope

    Science.gov (United States)

    Kolokolova, Ludmilla

    2016-09-01

    The Rosetta spacecraft made history by successfully orbiting a comet. Data from the craft now reveal the structure of the comet's dust particles, shedding light on the processes that form planetary systems. See Letter p.73

  18. Planetary camera control improves microfiche production

    Science.gov (United States)

    Chesterton, W. L.; Lewis, E. B.

    1965-01-01

    Microfiche is prepared using an automatic control system for a planetary camera. The system provides blank end-of-row exposures and signals card completion so the legend of the next card may by photographed.

  19. Low-energy Planetary Excavator (LPE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop an innovative Low-energy Planetary Excavator (LPE) to excavate in situ regolith, ice-regolith mixes, and a variety of other geologic...

  20. Low-energy Planetary Excavator (LPE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC is developing an innovative Low-energy Planetary Excavator (LPE) to excavate in situ regolith, ice-regolith mixes, and a variety of other geologic materials...

  1. An ecological compass for planetary engineering.

    Science.gov (United States)

    Haqq-Misra, Jacob

    2012-10-01

    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  2. Fourier transform spectroscopy for future planetary missions

    Science.gov (United States)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  3. Planetary science: Flow of an alien ocean

    Science.gov (United States)

    Goodman, Jason

    2014-01-01

    Liquid water may lurk beneath the frozen surfaces of Jupiter's moon Europa and other icy worlds. Extending ocean science beyond Earth, planetary oceanographers are linking Europa's ocean dynamics to its enigmatic surface geology.

  4. The Planetary Science Workforce: Goals Through 2050

    Science.gov (United States)

    Rathbun, J. A.; Cohen, B. A.; Turtle, E. P.; Vertesi, J. A.; Rivkin, A. S.; Hörst, S. M.; Tiscareno, M. S.; Marchis, F.; Milazzo, M.; Diniega, S.; Lakdawalla, E.; Zellner, N.

    2017-02-01

    The planetary science workforce is not nearly as diverse as the society from which its membership is drawn and from which the majority of our funding comes. We discuss the current state and recommendations for improvement.

  5. Predictions of mineral assemblages in planetary interiors

    Science.gov (United States)

    Stolper, E.

    1980-01-01

    It is shown that mineral compatibilities in the model system CaO-MgO-Al2O3-SiO2 can be applied to deduce the mineral assemblages expected in planetary interiors and their variation with depth. In general, the available estimates of bulk composition of the terrestrial planets suggest that the terrestrial planets can be divided into two groups based on their predicted mineral assemblages. The terrestrial, Venusian, and lunar bulk compositions are expected to display the following sequence of mineral assemblages with increasing pressure: plagioclase lherzolite, spinel lherzolite, and garnet lherzolite. The sequences expected in Martian and Mercurian are different: spinel-plagioclase wehrlite, spinel lherzolite, and spinel-garnet wehrlite. These assemblages have a major influence on the compositions of liquids produced by melting of these planetary interiors, on the solidus temperatures, and thus on the nature of planetary differentiation and the types of magmas extruded at planetary surfaces.

  6. Photochemical hazes in planetary atmospheres: solar system bodies and beyond

    Science.gov (United States)

    Imanaka, Hiroshi; Cruikshank, Dale P.; McKay, Christopher P.

    2015-11-01

    Recent transit observations of exoplanets have demonstrated the possibility of a wide prevalence of haze/cloud layers at high altitudes. Hydrocarbon photochemical haze could be the candidate for such haze particles on warm sub-Neptunes, but the lack of evidence for methane poses a puzzle for such hydrocarbon photochemical haze. The CH4/CO ratios in planetary atmospheres vary substantially from their temperature and dynamics. An understanding of haze formation rates and plausible optical properties in a wide diversity of planetary atmospheres is required to interpret the current and future observations.Here, we focus on how atmospheric compositions, specifically CH4/CO ratios, affect the haze production rates and their optical properties. We have conducted a series of cold plasma experiments to constrain the haze mass production rates from gas mixtures of various CH4/CO ratios diluted either in H2 or N2 atmosphere. The mass production rates in the N2-CH4-CO system are much greater than those in the H2-CH4-CO system. They are rather insensitive to the CH4/CO ratios larger than at 0.3. Significant formation of solid material is observed both in H2-CO and N2-CO systems without CH4 in the initial gas mixtures. The complex refractive indices were derived for haze samples from N2-CH4, H2-CH4, and H2-CO gas mixtures. These are the model atmospheres for Titan, Saturn, and exoplanets, respectively. The imaginary part of the complex refractive indices in the UV-Vis region are distinct among these samples, which can be utilized for modeling these planetary atmospheres.

  7. Planetary boundaries: Governing emerging risks and opportunities

    OpenAIRE

    2016-01-01

    The climate, ecosystems and species, ozone layer, acidity of the oceans, the flow of energy and elements through nature, landscape change, freshwater systems, aerosols, and toxins—these constitute the planetary boundaries within which humanity must find a safe way to live and prosper. These are thresholds that, if we cross them, we run the risk of rapid, non-linear, and irreversible changes to the environment, with severe consequences for human wellbeing. The concept of planetary boundaries, ...

  8. Sonar equations for planetary exploration.

    Science.gov (United States)

    Ainslie, Michael A; Leighton, Timothy G

    2016-08-01

    The set of formulations commonly known as "the sonar equations" have for many decades been used to quantify the performance of sonar systems in terms of their ability to detect and localize objects submerged in seawater. The efficacy of the sonar equations, with individual terms evaluated in decibels, is well established in Earth's oceans. The sonar equations have been used in the past for missions to other planets and moons in the solar system, for which they are shown to be less suitable. While it would be preferable to undertake high-fidelity acoustical calculations to support planning, execution, and interpretation of acoustic data from planetary probes, to avoid possible errors for planned missions to such extraterrestrial bodies in future, doing so requires awareness of the pitfalls pointed out in this paper. There is a need to reexamine the assumptions, practices, and calibrations that work well for Earth to ensure that the sonar equations can be accurately applied in combination with the decibel to extraterrestrial scenarios. Examples are given for icy oceans such as exist on Europa and Ganymede, Titan's hydrocarbon lakes, and for the gaseous atmospheres of (for example) Jupiter and Venus.

  9. Cosmological aspects of planetary habitability

    CERN Document Server

    Shchekinov, Yu A; Murthy, J

    2014-01-01

    The habitable zone (HZ) is defined as the region around a star where a planet can support liquid water on its surface, which, together with an oxygen atmosphere, is presumed to be necessary (and sufficient) to develop and sustain life on the planet. Currently, about twenty potentially habitable planets are listed. The most intriguing question driving all these studies is whether planets within habitable zones host extraterrestrial life. It is implicitly assumed that a planet in the habitable zone bears biota. However along with the two usual indicators of habitability, an oxygen atmosphere and liquid water on the surface, an additional one -- the age --- has to be taken into account when the question of the existence of life (or even a simple biota) on a planet is addressed. The importance of planetary age for the existence of life as we know it follows from the fact that the primary process, the photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones. Therefore on...

  10. Fluid dynamics of planetary ices

    CERN Document Server

    Greve, Ralf

    2009-01-01

    The role of water ice in the solar system is reviewed from a fluid-dynamical point of view. On Earth and Mars, water ice forms ice sheets, ice caps and glaciers at the surface, which show glacial flow under their own weight. By contrast, water ice is a major constituent of the bulk volume of the icy satellites in the outer solar system, and ice flow can occur as thermal convection. The rheology of polycrystalline aggregates of ordinary, hexagonal ice Ih is described by a power law, different forms of which are discussed. The temperature dependence of the ice viscosity follows an Arrhenius law. Therefore, the flow of ice in a planetary environment constitutes a thermo-mechanically coupled problem; its model equations are obtained by inserting the flow law and the thermodynamic material equations in the balance laws of mass, momentum and energy. As an example of gravity-driven flow, the polar caps of Mars are discussed. For the north-polar cap, large-scale flow velocities of the order of 0.1...1 mm/a are likely...

  11. Unveiling shocks in planetary nebulae

    CERN Document Server

    Guerrero, M A; Medina, J J; Luridiana, V; Miranda, L F; Riera, A; Velázquez, P F

    2013-01-01

    The propagation of a shock wave into a medium is expected to heat the material beyond the shock, producing noticeable effects in intensity line ratios such as [O III]/Halpha. To investigate the occurrence of shocks in planetary nebulae (PNe), we have used all narrowband [O III] and Halpha images of PNe available in the HST archive to build their [O III]/Halpha ratio maps and to search for regions where this ratio is enhanced. Regions with enhanced [O III]/Halpha emission ratio can be ascribed to two different types of morphological structures: bow-shock structures produced by fast collimated outflows and thin skins enveloping expanding nebular shells. Both collimated outflows and expanding shells are therefore confirmed to generate shocks in PNe. We also find regions with depressed values of the [O III]/Halpha ratio which are found mostly around density bounded PNe, where the local contribution of [N II] emission into the F656N Halpha filter cannot be neglected.

  12. The Upper Triassic alkaline magmatism of the western Neo-Tethys (Bajo Ebro, NE Spain): age and geodynamic implications

    Science.gov (United States)

    Sanz, T.; Lago, M.; Gil, A.; Pocoví, A.; Galé, C.; Ubide, T.; Larrea, P.; Ramajo, J.; Tierz, P.

    2012-04-01

    A set of mafic rocks crop out in the north-western margin of the Neo-Tethys (eastern Spain and France). These rocks show three common features: 1) they were emplaced into Upper Triassic sediments (Keuper facies), 2) they are mainly basalts and dolerites and show an alkaline geochemical affinity and 3) these magmas rose to their emplacement level through deep fractures; some of the fractures were newly opened as a result of the Triassic extension (Triassic-Liassic rifting), whereas others had been generated during the Permian extension (Lower Permian rifting) and were reopened. Magmatic activity has also been recognized in these areas during the Jurassic, the Cretaceous and the Quaternary. The Bajo Ebro sector (NE Spain) comprises two types of Upper Triassic mafic rocks: 1) massive rocks emplaced as dikes, sills and basaltic lavas (10-12 meters in thickness and up to kilometric in extension) and 2) a wide range of pyroclasts (from ash grains to bombs) forming layers more than 100 meters thick, which are usually interbedded with argillites and carbonates. Protrusions of the sills into the overlying sediments, together with spilitization of the igneous rocks, suggest that the magmas emplaced into unconsolidated sediments. Furthermore, a level of epiclastic-basaltic breccias is recognized overlying the magmatic levels and below the dolostones of the Imón Formation (Rhaetian in age); these breccias are interpreted to represent an erosive episode which affected the magmatic rocks in emerged areas. According to these criteria, these rocks can be considered Upper Triassic (pre-Rhaetian) in age. The basaltic lavas show alkaline mineral assemblages composed of: olivine (Fo79-65), Ti-rich clinopyroxene (Fs3-15, En52-35, Wo50-42), plagioclase (An80-50), Ti-rich magnetite and apatite. Their major and trace element whole rock compositions show contents in SiO2 (41,3-49,3 w.%), Nb/Y (1,5-4,1), Zr/TiO2 (0,0057-0,013), V (157,8-292,1 ppm) and Ti/1000 (11,3-18,53) which indicate

  13. High spatial resolution mid-infrared studies of planetary systems

    Science.gov (United States)

    Skemer, Andrew

    I present the results of six papers related the formation and evolution of planets and planetary systems, all of which are based on high-resolution, ground-based, mid-infrared observations. The first three chapters are studies of T Tauri binaries. T Tauri stars are young, low mass stars, whose disks form the building blocks of extrasolar planets. The first chapter is a study of the 0.68"/0.12" triple system, T Tauri. Our spatially resolved N-band photometry reveals silicate absorption towards one component, T Tau Sa, indicating the presence of an edge-on disk, which is in contrast to the other components. The second chapter is an adaptive optics fed N-band spectroscopy study of the 0.88" binary, UY Aur. We find that the dust grains around UY Aur A are ISM-like, while the mineralogy of the dust around UY Aur B is more uncertain, due to self-extinction. The third chapter presents a survey of spatially resolved silicate spectroscopy for nine T Tauri binaries. We find with 90%-95% confidence that the silicate features of the binaries are more similar than those of randomly paired single stars. This implies that a shared binary property, such as age or composition, is an important parameter in dust grain evolution. The fourth chapter is a study of the planetary system, 2MASS 1207. We explore the source of 2MASS 1207 b's under-luminosity, which has typically been explained as the result of an edge-on disk of large, grey-extincting dust grains. We find that the edge-on disk theory is incompatible with several lines of evidence, and suggest that 2MASS 1207 b's appearance can be explained by a thick cloudy atmosphere, which might be typical among young, planetary systems. The fifth chapter is a study of the white dwarf, Sirius B, which in the context of this thesis is being studied as a post-planetary system. Our N-band imaging demonstrates that Sirius B does not have an infrared excess, in contrast to previous results. The sixth chapter is a study of mid

  14. Using Primary Literature for Teaching Undergraduate Planetary Sciences

    Science.gov (United States)

    Levine, J.

    2013-05-01

    Articles from the primary scientific literature can be a valuable teaching tool in undergraduate classrooms. At Colgate University, I emphasize selected research articles in an upper-level undergraduate course in planetary sciences. In addition to their value for conveying specific scientific content, I find that they also impart larger lessons which are especially apt in planetary sciences and allied fields. First, because of the interdisciplinary nature of planetary sciences, students discover that contributions to outstanding problems may arrive from unexpected directions, so they need to be aware of the multi-faceted nature of scientific problems. For instance, after millennia of astrometric attempts, the scale of the Solar System was determined with extraordinary precision with emerging radar technology in the 1960's. Second, students learn the importance of careful work, with due attention to detail. After all, the timescales of planetary formation are encoded in systematic isotopic variations of a few parts in 10,000; in students' own experiences with laboratory data they might well overlook such a small effect. Third, students identify the often-tortuous connections between measured and inferred quantities, which corrects a common student misconception that all quantities of interest (e.g., the age of a meteorite) can be measured directly. Fourth, research articles provide opportunities for students to practice the interpretation of graphical data, since figures often represent a large volume of data in succinct form. Fifth, and perhaps of greatest importance, by considering the uncertainties inherent in reported data, students come to recognize the limits of scientific understanding, the extent to which scientific conclusions are justified (or not), and the lengths to which working scientists go to mitigate their uncertainties. These larger lessons are best mediated by students' own encounters with the articles they read, but require instructors to make

  15. Using Planetary Nebulae to Teach Physics

    Science.gov (United States)

    Kwitter, Karen B.

    2011-05-01

    We have developed an interactive website, "Gallery of Planetary Nebula Spectra," (www.williams.edu/Astronomy/research/PN/nebulae/) that contains high-quality optical-to-near-infrared spectra, atlas information, and bibliographic references for more than 160 planetary nebulae that we have observed in the Milky Way Galaxy. To make the material more accessible to students, I have created three undergraduate-level exercises that explore physics-related aspects of planetary nebulae. "Emission Lines and Central Star Temperature” uses the presence or absence of emission lines from species with different ionization potentials to rank the temperatures of the exciting stars in a selection of nebulae. "Interstellar Reddening” uses the observed Balmer decrement in a sample of planetary nebulae at different Galactic latitudes to infer the distribution of interstellar dust in the Milky Way. Finally, "Determining the Gas Density in Planetary Nebulae,” which I will focus on here, uses the observed intensity ratio of the 6717 Å and 6731 Å emission lines from singly ionized sulfur to determine the electron density in the nebular gas. These exercises demonstrate that planetary nebula spectra are useful real-world examples illustrating a variety of physical principles, including the behavior of blackbodies, wavelength-dependent particle scattering, recombination-line ratios, atomic physics, and statistical mechanics.

  16. Planetary Gearbox Fault Diagnosis Using Envelope Manifold Demodulation

    OpenAIRE

    Weigang Wen; Gao, Robert X.; Weidong Cheng

    2016-01-01

    The important issue in planetary gear fault diagnosis is to extract the dependable fault characteristics from the noisy vibration signal of planetary gearbox. To address this critical problem, an envelope manifold demodulation method is proposed for planetary gear fault detection in the paper. This method combines complex wavelet, manifold learning, and frequency spectrogram to implement planetary gear fault characteristic extraction. The vibration signal of planetary gear is demodulated by w...

  17. The Period-Ratio and Mass-Ratio Correlation in Extra-Solar Multiple Planetary Systems

    CERN Document Server

    Jiang, Ing-Guey; Hung, Wen-Liang

    2015-01-01

    Employing the data from orbital periods and masses of extra-solar planets in 166 multiple planetary systems, the period-ratio and mass-ratio of adjacent planet pairs are studied. The correlation between the period-ratio and mass-ratio is confirmed and found to have a correlation coefficient of 0.5303 with a 99% confidence interval (0.3807, 0.6528). A comparison with the distribution of synthetic samples from a Monte Carlo simulation reveals the imprint of planet-planet interactions on the formation of adjacent planet pairs in multiple planetary systems.

  18. Do Interactive Globes and Games Help Students Learn Planetary Science?

    Science.gov (United States)

    Coba, Filis; Burgin, Stephen; De Paor, Declan; Georgen, Jennifer

    2016-01-01

    The popularity of animations and interactive visualizations in undergraduate science education might lead one to assume that these teaching aids enhance student learning. We tested this assumption for the case of the Google Earth virtual globe with a comparison of control and treatment student groups in a general education class of over 370 students at a large public university. Earth and Planetary Science course content was developed in two formats: using Keyhole Markup Language (KML) to create interactive tours in Google Earth (the treatment group) and Portable Document Format (PDF) for on-screen reading (the control group). The PDF documents contained identical text and images to the placemark balloons or "tour stops" in the Google Earth version. Some significant differences were noted between the two groups based on the immediate post-questionnaire with the KML students out-performing the PDF students, but not on the delayed measure. In a separate but related project, we undertake preliminary investigations into methods of teaching basic concepts in planetary mantle convection using numerical simulations. The goal of this project is to develop an interface with a two-dimensional finite element model that will allow students to vary parameters such as the temperatures assigned to the boundaries of the model domain, to help them actively explore important variables that control convection.

  19. Lunar and Planetary Science XXXVI, Part 18

    Science.gov (United States)

    2005-01-01

    Topics discussed include: PoDS: A Powder Delivery System for Mars In-Situ Organic, Mineralogic and Isotopic Analysis Instruments Planetary Differentiation of Accreting Planetesimals with 26Al and 60Fe as the Heat Sources Ground-based Observation of Lunar Surface by Lunar VIS/NIR Spectral Imager Mt. Oikeyama Structure: First Impact Structure in Japan? Central Mounds in Martian Impact Craters: Assessment as Possible Perennial Permafrost Mounds (Pingos) A Further Analysis of Potential Photosynthetic Life on Mars New Insight into Valleys-Ocean Boundary on Mars Using 128 Pixels per Degree MOLA Data: Implication for Martian Ocean and Global Climate Change; Recursive Topography Based Surface Age Computations for Mars: New Insight into Surficial Processes That Influenced Craters Distribution as a Step Toward the Formal Proof of Martian Ocean Recession, Timing and Probability; Laser-induced Breakdown Spectroscopy: A New Method for Stand-Off Quantitative Analysis of Samples on Mars; Milk Spring Channels Provide Further Evidence of Oceanic, >1.7-km-Deep Late Devonian Alamo Crater, Southern Nevada; Exploration of Martian Polar Residual Caps from HEND/ODYSSEY Data; Outflow Channels Influencing Martian Climate: Global Circulation Model Simulations with Emplaced Water; Presence of Nonmethane Hydrocarbons on Pluto; Difference in Degree of Space Weathering on the Newborn Asteroid Karin; Circular Collapsed Features Related to the Chaotic Terrain Formation on Mars; A Search for Live (sup 244)Pu in Deep-Sea Sediments: Preliminary Results of Method Development; Some Peculiarities of Quartz, Biotite and Garnet Transformation in Conditions of Step-like Shock Compression of Crystal Slate; Error Analysis of Remotely-Acquired Mossbauer Spectra; Cloud Activity on Titan During the Cassini Mission; Solar Radiation Pressure and Transient Flows on Asteroid Surfaces; Landing Site Characteristics for Europa 1: Topography; and The Crop Circles of Europa.

  20. New Indivisible Planetary Science Paradigm: Consequence of Questioning Popular Paradigms

    Science.gov (United States)

    Marvin Herndon, J.

    2014-05-01

    Progress in science involves replacing less precise understanding with more precise understanding. In science and in science education one should always question popular ideas; ask "What's wrong with this picture?" Finding limitations, conflicts or circumstances that require special ad hoc consideration sometimes is the key to making important discoveries. For example, from thermodynamic considerations, I found that the 'standard model of solar system formation' leads to insufficiently massive planetary cores. That understanding led me to discover a new indivisible planetary science paradigm. Massive-core planets formed by condensing and raining-out from within giant gaseous protoplanets at high pressures and high temperatures, accumulating heterogeneously on the basis of volatility with liquid core-formation preceding mantle-formation; the interior states of oxidation resemble that of the Abee enstatite chondrite. Core-composition was established during condensation based upon the relative solubilities of elements, including uranium, in liquid iron in equilibrium with an atmosphere of solar composition at high pressures and high temperatures. Uranium settled to the central region and formed planetary nuclear fission reactors, producing heat and planetary magnetic fields. Earth's complete condensation included a ~300 Earth-mass gigantic gas/ice shell that compressed the rocky kernel to about 66% of Earth's present diameter. T-Tauri eruptions, associated with the thermonuclear ignition of the Sun, stripped the gases away from the Earth and the inner planets. The T-Tauri outbursts stripped a portion of Mercury's incompletely condensed protoplanet and transported it to the region between Mars and Jupiter where it fused with in-falling oxidized condensate from the outer regions of the Solar System, forming the parent matter of ordinary chondrite meteorites, the main-Belt asteroids, and veneer for the inner planets, especially Mars. With its massive gas/ice shell

  1. Brown dwarfs and planetary mass objects in star-forming regions. (Spanish Title: Enanas marrones y objetos de masas planetarias en regiones de formación estelar)

    Science.gov (United States)

    Gómez, M.

    In this contribution we present the properties of substellar mass objects and discuss the different formation mechanisms of brown dwarfs. In particular we analyze the so-called T Tauri formation mode, with disks and jets, and its implications for the existence of planetary systems associated with subestellar mass objects or brown dwarfs. We also briefly discuss the properties of planemos (planetary mass objects). Finally we consider the contribution of these objects to the Initial Mass Function (IMF). Although brown dwarfs and planetary mass objects seem to be as common as stars in the Galaxy, their precise contribution to the IMF still remains uncertain.

  2. Isotopic enrichment of forming planetary systems from supernova pollution

    CERN Document Server

    Lichtenberg, Tim; Meyer, Michael R

    2016-01-01

    Heating by short-lived radioisotopes (SLRs) such as aluminum-26 and iron-60 fundamentally shaped the thermal history and interior structure of Solar System planetesimals during the early stages of planetary formation. The subsequent thermo-mechanical evolution, such as internal differentiation or rapid volatile degassing, yields important implications for the final structure, composition and evolution of terrestrial planets. SLR-driven heating in the Solar System is sensitive to the absolute abundance and homogeneity of SLRs within the protoplanetary disk present during the condensation of the first solids. In order to explain the diverse compositions found for extrasolar planets, it is important to understand the distribution of SLRs in active planet formation regions (star clusters) during their first few Myr of evolution. By constraining the range of possible effects, we show how the imprint of SLRs can be extrapolated to exoplanetary systems and derive statistical predictions for the distribution of alumi...

  3. Geophysics of Small Planetary Bodies

    Science.gov (United States)

    Asphaug, Erik I.

    1998-01-01

    As a SETI Institute PI from 1996-1998, Erik Asphaug studied impact and tidal physics and other geophysical processes associated with small (low-gravity) planetary bodies. This work included: a numerical impact simulation linking basaltic achondrite meteorites to asteroid 4 Vesta (Asphaug 1997), which laid the groundwork for an ongoing study of Martian meteorite ejection; cratering and catastrophic evolution of small bodies (with implications for their internal structure; Asphaug et al. 1996); genesis of grooved and degraded terrains in response to impact; maturation of regolith (Asphaug et al. 1997a); and the variation of crater outcome with impact angle, speed, and target structure. Research of impacts into porous, layered and prefractured targets (Asphaug et al. 1997b, 1998a) showed how shape, rheology and structure dramatically affects sizes and velocities of ejecta, and the survivability and impact-modification of comets and asteroids (Asphaug et al. 1998a). As an affiliate of the Galileo SSI Team, the PI studied problems related to cratering, tectonics, and regolith evolution, including an estimate of the impactor flux around Jupiter and the effect of impact on local and regional tectonics (Asphaug et al. 1998b). Other research included tidal breakup modeling (Asphaug and Benz 1996; Schenk et al. 1996), which is leading to a general understanding of the role of tides in planetesimal evolution. As a Guest Computational Investigator for NASA's BPCC/ESS supercomputer testbed, helped graft SPH3D onto an existing tree code tuned for the massively parallel Cray T3E (Olson and Asphaug, in preparation), obtaining a factor xIO00 speedup in code execution time (on 512 cpus). Runs which once took months are now completed in hours.

  4. FIELD TECTONOPHYSICS IN SOLUTIONS OF GEODYNAMIC EVOLUTION PROBLEMS OF THE UKRAINE TERRITORY

    Directory of Open Access Journals (Sweden)

    O. B. Gintov

    2015-09-01

    Full Text Available The integrated approach combining kinematic and structural-paragenetic field tectonophysics techniques allows us to construct a continuous time scan of the stress-strain state (SSS and deformation modes (DM from sediment lithification to the final orogenic process for the studied areas. Definitions of the continuous sequence of SSS and DM provide for control of the known geodynamic reconstructions and adjustment of geodynamic models. An example is the tectonophysical study of the Alpine structural stage of the Western Mountainous Crimea (WMC and the Pre-Cambrian complexes of the Ukrainian Shield (USh.Data from WMC allow us to make adjustments to the geodynamic model of the Mountainous Crimea. In particular, trajectories of the principal normal stresses (Fig. 4 and 5, both for shifts and shear faults with reverse components/ normal faults, suggest the reverse nature of movements of the Eastern and Western Black Sea microplates with their overall pushing onto the Crimean peninsula in the south-east, south and south-west (Fig. 7. In the Precambrian USh complexes (Fig. 8, 13 stages of regional deformation are revealed between ≥2.7 and 1.6 billion years ago. Until the turn of 2.05–2.10 billion years, the region was subject to transtension and transpression, as the Western (gneiss-granulite and Eastern (granite-greenstone Archean microplates of USh moved to separate from each other in the Neo-Archean and then diverged and converged in the Paleoproterozoic (movements at a sharp angle. It is assumed that in the Archean the Western and Eastern microplates were separated by the oceanic or sub-oceanic lithosphere (Fig. 12, 13. During the period of 2.3–2.4 billion years, the plates fully converged creating a zone of collision. It may be suggested that a possible mechanism for the oceanic window close-up was underthrusting of the upper suboceanic lithosphere layers beneath the crust-mantle plates on gently sloping break-up surfaces (non

  5. Methods for computing internal flattening, with applications to the Earth's structure and geodynamics

    Science.gov (United States)

    Denis, C.; Amalvict, M.; Rogister, Y.; Tomecka-Suchoń, S.

    1998-03-01

    After general comments (Section 1) on using variational procedures to compute the oblateness of internal strata in the Earth and slowly rotating planets, we recall briefly some basic concepts about barotropic equilibrium figures (Section 2), and then proceed to discuss several accurate methods to derive the internal flattening. The algorithms given in Section 3 are based on the internal gravity field theory of Clairaut, Laplace and Lyapunov. They make explicit use of the concept of a level surface. The general formulation given here leads to a number of formulae which are of both theoretical and practical use in studying the Earth's structure, dynamics and rotational evolution. We provide exact solutions for the figure functions of three Earth models, and apply the formalism to yield curves for the internal flattening as a function of the spin frequency. Two more methods, which use the general deformation equations, are discussed in Section 4. The latter do not rely explicitly on the existence of level surfaces. They offer an alternative to the classical first-order internal field theory, and can actually be used to compute changes of the flattening on short timescales produced by variations in the LOD. For short durations, the Earth behaves elastically rather than hydrostatically. We discuss in some detail static deformations and Longman's static core paradox (Section 5), and demonstrate that in general no static solution exists for a realistic Earth model. In Section 6 we deal briefly with differential rotation occurring in cylindrical shells, and show why differential rotation of the inner core such as has been advocated recently is incompatible with the concept of level surfaces. In Section 7 we discuss first-order hydrostatic theory in relation to Earth structure, and show how to derive a consistent reference Earth model which is more suitable for geodynamical modelling than are modern Earth models such as 1066-A, PREM or CORE11. An important result is that a

  6. Geodynamic inversion to constrain the rheology of the lithosphere: What is the effect of elasticity?

    Science.gov (United States)

    Baumann, Tobias; Kaus, Boris; Thielmann, Marcel

    2016-04-01

    The concept of elastic thickness (T_e) is one of the main methods to describe the integrated strength of oceanic lithosphere (e.g. Watts, 2001). Observations of the Te are in general agreement with yield strength envelopes estimated from laboratory experiments (Burov, 2007, Goetze & Evans 1979). Yet, applying the same concept to the continental lithosphere has proven to be more difficult (Burov & Diament, 1995), which resulted in an ongoing discussion on the rheological structure of the lithosphere (e.g. Burov & Watts, 2006, Jackson, 2002; Maggi et al., 2000). Recently, we proposed a new approach, which constrains rheological properties of the lithosphere directly from geophysical observations such as GPS-velocity, topography and gravity (Baumann & Kaus, 2015). This approach has the advantage that available data sets (such as Moho depth) can be directly taken into account without making the a-priori assumption that the lithosphere is thin elastic plate floating on the mantle. Our results show that a Bayesian inversion method combined with numerical thermo-mechanical models can be used as independent tool to constrain non-linear viscous and plastic parameters of the lithosphere. As the rheology of the lithosphere is strongly temperature dependent, it is even possible to add a temperature parameterisation to the inversion method and constrain the thermal structure of the lithosphere in this manner. Results for the India-Asia collision zone show that existing geophysical data require India to have a quite high effective viscosity. Yet, the rheological structure of Tibet less well constrained and a number of scenarios give a nearly equally good fit to the data. Yet, one of the assumptions that we make while doing this geodynamic inversion is that the rheology is viscoplastic, and that elastic effects do not significantly alter the large-scale dynamics of the lithosphere. Here, we test the validity of this assumption by performing synthetic forward models and retrieving

  7. Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models

    Science.gov (United States)

    Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.

    2008-12-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality

  8. Sources of Chaos in Planetary Systems Formed Through Numerical Methods

    Science.gov (United States)

    Clement, Matthew S.

    2017-01-01

    The formation of the solar system’s terrestrial planets has been numerically modeled in countless works, and many other studies have been devoted to char- acterizing our modern planets’ chaotic dynamical state. However, it is still not known whether our planets fragile chaotic state is an expected outcome of terrestrial planet accretion. We use a large suite of numerical simulations to present a detailed analysis and characterization of the dynamical chaos in 145 different systems produced via terrestrial planet formation in Kaib & Cowan (2015). These systems were created in the presence of a fully formed Jupiter and Saturn, using a variety of different initial conditions. We provide the first analysis of the dynamical states of fully evolved (4.5 Gyr) planetary systems formed using numerical simulations. We find that dynamical chaos is preva- lent in roughly half of the systems, with the largest source of the chaos being perturbations from Jupiter. Chaos is most prevalent in systems that form 4 or 5 terrestrial planets. Additionally, an eccentric Jupiter and Saturn is shown to enhance the prevalence of chaos in systems. Furthermore, systems with a center of mass highly concentrated between 0.8-1.2 AU generally prove to be less chaotic than systems with more exotic mass distributions. Through the process of evolving systems to the current epoch, we show that late instabilities are quite common in our systems. Of greatest interest, many of the sources of chaos observed in our own solar system (such as the secularly driven chaos between Mercury and Jupiter) are shown to be common outcomes of terrestrial planetary formation. Thus, the solar system’s marginally stable, chaotic state may naturally arise from the process of terrestrial planet formation.

  9. Assessing planetary protection and contamination control technologies for planetary science missions

    Science.gov (United States)

    Beauchamp, Patricia; Belz, Andrea

    Planetary protection and organic contamination control, like many technologically rich areas, continually progress. As a result of the 2011 Planetary Science Decadal Survey Report, Vision and Voyages for Planetary Science in the Decade 2013-2022, the future focus is now on proposed Mars sample return missions. In addition to Mars exploration we now have the exciting possibility of a potential mission to the outer planets, most likely Europa. This paper reassesses planetary protection and organic contamination control technologies, which were evaluated in 2005, and provides updates based on new science results, technology development, and programmatic priorities. The study integrates information gathered from interviews of a number of National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) scientists, systems engineers, planetary protection engineers, and consultants, as well as relevant documents, and focuses on the technologies and practices relevant to the current project mission set as presented in the 2011 Planetary Science Decadal Survey. This paper provides the status of planetary protection and contamination control technologies as they apply to potential future missions, and provides findings and recommendations to improve our capabilities as we further explore our solar system. It has become clear that linking planetary protection and contamination control requirements and processes together early in mission development and spacecraft design is key to keeping mission costs in check and returning high-quality samples that are free from biological and organic contaminants.

  10. RECENT GEODYNAMICS OF INTRACONTINENTAL AREAS: INSTRUMENTAL AND GEOMORPHOLOGICAL ASSESSMENT OF CRUSTAL MOVEMENTS AND DEFORMATION IN CENTRAL ASIA

    Directory of Open Access Journals (Sweden)

    V. А. Sankov

    2015-09-01

    Full Text Available Studies of recent geodynamics have been conducted by the Institute of the Earth’s Crust, SB RAS since 1998. Present-day crustal deformations are monitored at the geodynamic GPS polygon established by the Laboratory of Recent Geodynamics in the Mongol-Baikal region. Original methods and techniques using specialized equipment are applied to research intra-continental tectonic deformation and have already provided original scientific results. Independent data are received concerning the onset and character of processes of neotectonic activation and the state of stresses and deformation of the crust in the southern part of Siberia and in Mongolia. A model of the Late Cenozoic and contemporary geodynamics of the Mongol-Siberian mobile area is proposed. With application of GPS geodesy methods, quantitative parameters of present-day horizontal movements and deformations are determined for Central Asia and a part of the Far East at different scale levels. Present-day velocities of extension of the Baikal rift are estimated, and parameters of rotation of the Amur plate relative to Eurasia are calculated. Data on long-term and contemporary deformation are subject to comparative analyses. The Laboratory develops studies of present-day and historical seismicity in relation to processes of contemporary faulting in active tectonic zones of inter-plate boundaries and diffusive activation of subactive intraplate territories. The first results are obtained in studies of local crustal deformation by methods of satellite radar interferometry and ground polygonometry. Jointly with other institutes of SB RAS, the Laboratory conducts instrumental studies of interaction between the lithosphere and the ionosphere. Looking further ahead, the main scientific fields and prospects of the Laboratory are highlighted.  

  11. Europlanet - Joining the European Planetary Research Information Service

    Science.gov (United States)

    Capria, M. T.; Chanteur, G.; Schmidt, W.

    2009-04-01

    to data to be integrated into the VO features of IDIS? Any combination and many more alternatives are possible. 3. Contact the staff of the selected node(s) to go through the details 4. The node's expert team will evaluate the information to ensure that it is compliant with the minimum requirements for Europlanet information providers like correct address, related field of competence, quality of data if any etc. 5. The new resource meta data (addresses, contents etc) will be added to the IDIS system including update of the search facilities 6. If data are offered for on-line access, the IDIS team will provide tools to generate a network-compatible generic interface. This one-time effort will make it possible to search the new data sets and combine them with related in-formation from other sources. Benefits for the information provider: - wide advertisement for the own resources and capabilities with increase in scientific references to the own activities and publications - new co-operation possibilities with so far unknown teams. Team exchange might be financially supported by other segments of the Europlanet RI - strong arguments for new funding applications and many more aspects List of contact web-sites: Technical node for support and management aspects: http://www.europlanet-idis.fi/ Planetary Surfaces and Interiors node: http://europlanet.dlr.de/ Planetary Plasma node: http://europlanet-plasmanode.oeaw.ac.at/ Planetary Atmospheres node: http://idis.ipsl.jussieu.fr/ Virtual Observatory Paris Data Centre: http://vo.obspm.fr/ Small Bodies and Dust node: http://www.ifsi-roma.inaf.it/europlanet/

  12. Brittle Solvers: Lessons and insights into effective solvers for visco-plasticity in geodynamics

    Science.gov (United States)

    Spiegelman, M. W.; May, D.; Wilson, C. R.

    2014-12-01

    Plasticity/Fracture and rock failure are essential ingredients in geodynamic models as terrestrial rocks do not possess an infinite yield strength. Numerous physical mechanisms have been proposed to limit the strength of rocks, including low temperature plasticity and brittle fracture. While ductile and creep behavior of rocks at depth is largely accepted, the constitutive relations associated with brittle failure, or shear localisation, are more controversial. Nevertheless, there are really only a few macroscopic constitutive laws for visco-plasticity that are regularly used in geodynamics models. Independent of derivation, all of these can be cast as simple effective viscosities which act as stress limiters with different choices for yield surfaces; the most common being a von Mises (constant yield stress) or Drucker-Prager (pressure dependent yield-stress) criterion. The choice of plasticity model, however, can have significant consequences for the degree of non-linearity in a problem and the choice and efficiency of non-linear solvers. Here we describe a series of simplified 2 and 3-D model problems to elucidate several issues associated with obtaining accurate description and solution of visco-plastic problems. We demonstrate that1) Picard/Successive substitution schemes for solution of the non-linear problems can often stall at large values of the non-linear residual, thus producing spurious solutions2) Combined Picard/Newton schemes can be effective for a range of plasticity models, however, they can produce serious convergence problems for strongly pressure dependent plasticity models such as Drucker-Prager.3) Nevertheless, full Drucker-Prager may not be the plasticity model of choice for strong materials as the dynamic pressures produced in these layers can develop pathological behavior with Drucker-Prager, leading to stress strengthening rather than stress weakening behavior.4) In general, for any incompressible Stoke's problem, it is highly advisable to

  13. From StGermain to Underworld: Enabling Community-based code Development in Geodynamics

    Science.gov (United States)

    Quenette, S. M.; Moresi, L.; Sunter, P. D.; Hodkinson, L.; Lo, A.; Hassan, R.; Appelbe, B.; Turnbull, R.

    2005-12-01

    Each discipline of geophysics has traditionally focused on limited sets of closely related phenomena using methodologies and data sets optimized for its specific area of interest. Why is that? Single discipline, single scale, foundation physics problems are relatively easy to code in Fortran, and hence they eventually become optimized for best performance whilst simultaneously becoming difficult to adapt to new interests. Yet geodynamicists want to break these ``out-of-scope'' barriers, and incorporate signals of interests beyond their immediate phenomena of interest. In turn this often entails a multi physics, multi scale and multi discipline development model. Multi physics is potentially easy to code, but application limited by the choice of numerical technique of the code. Multi scale is a numerical and discretisation issue that is closely related to the fundamental data structures of the code. This is difficult to change, and the ideal is hybrids of optimized solutions at desired scales. Multi discipline is much more focused on people and how they form problem constraints, the language / ontology they use, and their expectation in usability. In summary: facilitating a multi scale, multi physics , multi disciplinary development environment is difficult, complicated and generally not of core interest to a geodynamicist. However, today, with more powerful CPU architectures, we can move away from Fortran style coding with little wall-time cost. We have more powerful numerical techniques and models for constitutive laws, where disciplines beyond those specific to geodynamics such as numerical science, material science and computational science have progressed. Furthermore, more well proven and established libraries are available, when chosen and applied appropriately, lead to less work and for better results. How can we capitalize on this? We propose a multi-level community development model that allows computational scientists, numerical scientists, material

  14. Geodynamically Consistent Interpretation of Seismic Tomography for Thermal and Thermochemical Mantle Plumes

    Science.gov (United States)

    Samuel, H.; Bercovici, D.

    2006-05-01

    Recent theoretical developments as well as increased data quality and coverage have allowed seismic tomographic imaging to better resolve narrower structures at both shallow and deep mantle depths. However, despite these improvements, the interpretation of tomographic images remains problematic mainly because of: (1) the trade off between temperature and composition and their different influence on mantle flow; (2) the difficulty in determining the extent and continuity of structures revealed by seismic tomography. We present two geodynamic studies on mantle plumes which illustrate the need to consider both geodynamic and mineral physics for a consistent interpretation of tomographic images in terms of temperature composition and flow. The first study aims to investigate the coupled effect of pressure and composition on thermochemical plumes. Using both high resolution 2D numerical modeling and simple analytical theory we show that the coupled effect of composition and pressure have a first order impact on the dynamics of mantle thermochemical plumes in the lower mantle: (1) For low Si enrichment of the plume relative to a reference pyrolitic mantle, an oscillatory behavior of the plume head is observed; (2) For Si-enriched plume compositions, the chemical density excess of the plume increases with height, leading to stagnation of large plume heads at various depths in the lower mantle. As a consequence, these thermochemical plumes may display broad (~ 1200 km wide and more) negative seismic velocity anomalies at various lower mantle depths, which may not necessarily be associated with upwelling currents. The second study focuses on the identification of thermal mantle plumes by seismic tomography beneath the Hawaiian hot spot: we performed a set of 3D numerical experiments in a spherical shell to model a rising plume beneath a moving plate. The thermal structure obtained is converted into P and S wave seismic velocities using mineral physics considerations. We

  15. Metallogenesis related to Mesozoic Granitoids in the Nanling Range,South China and Their Geodynamic Settings

    Institute of Scientific and Technical Information of China (English)

    HUA Renmin; CHEN Peirong; ZHANG Wenlan; YAO Junming; LIN Jinfu; ZHANG Zhanshi; GU Shengyan; LIU Xiaodong; QI Huawen

    2005-01-01

    Affected by the compressive stress from the South-Central (Indo-China) Peninsula, the Indosinian orogenesis, characterized by collision, thrust and uplifting, took place inside the South China Plate during 250-230 Ma.The ages of the Indosinian granitoids in the Nanling Range and vicinity areas are mostly 240-205 Ma, indicating that they were emplaced in both late collision and post-collision geodynamic environments. No important granite-related metallogenesis occurred in this duration. A post-orogenic setting started at the beginning of the Yanshanian Period, which controlled large-scale granitic magmatism and related metallogenesis. This paper makes the first attempt to divide the Yanshanian Period into three sub-periods, i.e. the early, middle and late Yanshanian Periods, based mainly on the features of magmatism, especially granitoids and related metallogenesis and their geodynamic environments. The magmatic association of the Early Yanshanian (about 185-170 Ma) comprises four categories of magmatism, i.e. basalt, bimodal volcanics, A-type granite and intraplate high-K calc-alkaline (HKCA) magmatism, which indicates an extension-thinning of lithosphere and upwelling of mantle material to a relative small and local extent. Pb-Zn, Cu and Au mineralizations associated with HKCA magmatism represents the first high tide of Mesozoic metallogenesis in the Nanling Range area.During the middle Yanshanian, the lithosphere was subjected to more extensive and intensive extending and thinning, and hence mantle upwelling and basaltic magma underplating caused a great amount of crust remelting granitoids. This period can be further divided into two stages. The first stage (170-150 Ma) is represented by large-scale emplacement of crust remelting granites with local tungsten mineralization at its end. The second stage (150-140 Ma) is the most important time of large-scale mineralizations of non-ferrous and rare metals, e.g. W, Sn, Nb-Ta, Bi, Mo, Be, in the Nanling Range area

  16. Influences of a ridge subduction on seismicity and geodynamics in the central Vanuatu arc.

    Science.gov (United States)

    Baillard, C.; Crawford, W. C.; Ballu, V.; Regnier, M. M.; Pelletier, B.; Garaebiti, E.

    2014-12-01

    The central part of the Vanuatu arc is characterized by the subduction of the d'Entrecasteaux ridge under the North Fiji Basin. This ridge influences directly the seismicity and the geodynamics in the proximal region. By analyzing the hypocenters from a local microseismic catalog (2008-2009) and global catalogs we show that the subduction interface, in the first 50 km depth, presents a small dipping angle where the ridge is subducting. This bump highlights the buoyancy of the ridge associated to the excess of fluids present in the seamount. This underplating could explain 20% to 60% of the vertical displacement estimated on the forearc islands from corals datations and that can reach a maximum of 6 mm/yr. The high concentration of hydrous minerals in the subducting ridge might also explain the important activity of intermediate depth earthquakes (half of the total activity in the studied region), we observed a very good correlation between the supposed extension of the ridge in depth and the location of these earthquakes. We propose that they are associated to crust minerals dehydration that causes hydrous fracturation trough preexistent faults. This dehydration process is maintained to a maximum depth of 190 km due to the high thermal parameter of the australian plate.Using the geometry of the Wadati-Benioff plane derived from earthquakes localisations, we established a 2D mechanical model to explain the horizontal interseismic displacement observed by GPS on islands of the upper plate. We show that the subduction interface alone cannot explain the GPS velocities observed, the system of thrust faults located below the back arc islands of Maewo and Pentecost, plays a major role in the region geodynamics and accommodate as much convergence as the subduction interface (between ~16 and 34 mm/yr). Using the model we were also able to explain the closing of the Aoba basin during interseismic phase (~25 mm/an). Finally, the mechanical model suggests the existence of a 23

  17. Observations of planetary nebulae in the Galactic Bulge

    CERN Document Server

    Cuisinier, F; Köppen, J; Acker, A; Stenholm, B

    2000-01-01

    High quality spectrophotometric observations of 30 Planetary Nebulae in the Galactic Bulge have been made. Accurate reddenings, plasma parameters, and abundances of He,O,N,S,Ar,Cl are derived. We find the abundances of O,S,Ar in the Planetary Nebulae in the Galactic Bulge to be comparable with the abundances of the Planetary Nebulae in the Disk, high abundances being maybe slightly more frequent in the Bulge. The distribution of the N/O ratio does not present in the Galactic Bulge Planetary Nebulae the extension to high values that it presents in the Disk Planetary Nebulae. We interpret this as a signature of the greater age of Bulge Planetary Nebulae. We thus find the Bulge Planetary Nebulae to be an old population, slightly more metal-rich than the Disk Planetary Nebulae. The population of the Bulge Planetary Nebulae shows hence the same characteristics than the Bulge stellar population.

  18. Early planetary differentiation: Geophysical consequences

    Science.gov (United States)

    Schubert, G.

    1992-01-01

    Differentiation of a planet can have profound consequences for its structure and thermal evolution, including core formation and crystal growth. Recent theories for the origin and evolution of the terrestrial planets and the Moon have all these bodies forming hot and cooling thereafter. Early core formation, and in the cases of Earth and Moon, a deep magma ocean possibly encompassing the entire mantle are characteristic features of these models. Secular cooling of Mars from a hot origin and cooling of Moon from a hot initial state with a deep magma ocean have been criticized on the basis of their tectonic implications. The cases of Mars and the Moon are discussed.

  19. Light element controlled iron isotope fractionation in planetary cores

    Science.gov (United States)

    Shahar, A.; Hillgren, V. J.; Horan, M. F.; Duke, L.; Mock, T. D.

    2013-12-01

    Using iron isotope fractionations measured in planetary and meteorite samples to trace planetary differentiation or formation has yielded contradictory results. Iron from high-Ti lunar basalts is more enriched in 57Fe/54Fe than mantle-derived terrestrial samples, in contrast to the isotopic similarity for almost every other element between the Earth and Moon. SNC (Shergottite, Nakhlite, Chassigny) and HED (Howardite, Eucrite, Diogenite) meteorites, which are thought to be derived from the mantles of Mars and Vesta, respectively, show no isotopic fractionation relative to chondrites. While the Bulk Silicate Earth (BSE) value is debated, recent work has shown effectively that basalts (mid-ocean ridge basalts, terrestrial basalts, and ocean island basalts) are enriched in 57Fe/54Fe relative to chondrites, but the causes of that fractionation are unclear (Craddock et al. 2013). Angrites, basaltic achondrite meteorites, also show enrichment in δ57Fe (Wang et al. 2012). Possible mechanisms include high-pressure core formation, oxidation during perovskite disproportionation, evaporation during the giant impact, and mantle melting. It is important to reconcile why the Earth's basalts are enriched in 57Fe/54Fe but the meteorites from Mars and Vesta are not. One possible explanation is that Mars and Vesta are smaller and the lower pressure attenuated the potential Fe fractionation during core formation. A second possibility is that the intrinsic oxidation states of the planets are causing the differences. However, another option is that the light elements (e.g. S, C, O, H, Si) in the cores of differentiated bodies control the iron isotope fractionation during differentiation. We have conducted experiments at 1 GPa and 1650-1800°C in a piston cylinder apparatus to address how sulfur, carbon and silicon alloyed with iron affect the iron isotopic fractionation between metallic alloy and silicate melt. We find that sulfur has the greatest effect on the iron isotopic

  20. Lunar and Planetary Science XXXVI, Part 22

    Science.gov (United States)

    2005-01-01

    The Lunar and Planetary Science XXXVI, Part 22 is presented. The topics include: 1) Pressure Histories from Thin and Thick Shock-induced Melt Veins in Meteorites; 2) Nano-structured Minerals as Signature of Microbial Activity; 3) The Insoluble Carbonaceous Material of CM Chondrites as Possible Source of Discrete Organics During the Asteroidal Aqueous Phase; 4) Discovery of Abundant Presolar Silicates in Subgroups of Antarctic Micrometeorites; 5) Characteristics of a Seismometer for the LUNAR-A Penetrator; 6) Heating Experiments of the HaH 262 Eucrite and Implication for the Metamorphic History of Highly Metamorphosed Eucrites; 7) Measurements of Ejecta Velocity Distribution by a High-Speed Video Camera; 8) Petrological Comparison of Mongolian Jalanash Ureilite and Twelve Antarctic Ureilites; 9) Metallographic Cooling Rate of IVA Irons Revisited; 10) Inhomogeneous Temperature Distribution in Chondrules in Shock-Wave Heating Model; 11) Subsurface Weathering of Rocks and Soils at Gusev Crater; 12) Extinct Radioactivities in the Early Solar System and the Mean Age of the Galaxy; 13) Correlation of Rock Spectra with Quantitative Morphologic Indices: Evidence for a Single Rock Type at the Mars Pathfinder Landing Site; 14) Silicon Isotopic Ratios of Presolar Grains from Supernovae; 15) Current Status and Readiness on In-Situ Exploration of Asteroid Surface by MINERVA Rover in Hayabusa Mission; 16) Long Formation Period of Single CAI: Combination of O and Mg Isotope Distribution; 17) Supra-Canonical Initial 26Al/27Al Indicate a 105 Year Residence Time for CAIs in the Solar Proto-Planetary Disk; 18) Evolution of Mercury's Obliquity; 19) First Results from the Huygens Surface Science Package; 20) Polyhedral Serpentine Grains in CM Chondrites; 21) Mountainous Units in the Martian Gusev Highland Region: Volcanic, Tectonic, or Impact Related? 22) Petrography of Lunar Meteorite MET 01210, A New Basaltic Regolith Breccia; 23) Earth-Moon Impacts at 300 Ma and 500 Ma Ago; 24

  1. Access to the Online Planetary Research Literature

    Science.gov (United States)

    Henneken, E. A.; Accomazzi, A.; Kurtz, M. J.; Grant, C. S.; Thompson, D.; Di Milia, G.; Bohlen, E.; Murray, S. S.

    2009-12-01

    The SAO/NASA Astrophysics Data System (ADS) provides various free services for finding, accessing, and managing bibliographic data, including a basic search form, the myADS notification service, and private library capabilities (a useful tool for building bibliographies), plus access to scanned pages of published articles. The ADS also provides powerful search capabilities, allowing users to find e.g. the most instructive or most important articles on a given subject . For the Planetary Sciences, the citation statistics of the ADS have improved considerably with the inclusion of the references from Elsevier journals, including Icarus, Planetary and Space Science, and Earth and Planetary Science Letters. We currently have about 78 journals convering the planetary and space sciences (Advances in Space Research, Icarus, Solar Physics, Astrophusics and Space Science, JGRE, Meteoritics, to name a few). Currently, this set of journals represents about 180,000 articles and 1.1 million references. Penetration into the Solar Physics, Planetary Sciences and Geophysics community has increased significantly. During the period 2004-2008, user access to JGR and Icarus increased by a factor of 4.4, while e.g. access to the Astrophysical Journal "only" increased by a factor of 1.8.

  2. Seismic anisotropy: an original tool to understand the geodynamic evolution of the Italian peninsula

    Directory of Open Access Journals (Sweden)

    A. Amato

    1997-06-01

    Full Text Available Anisotropy is a common property of the Earth's crust and the upper mantle; it is related to the strain field of the medium and therefore to geodynamics. In this paper we describe the different possible origins of anisotropic behavior of the seismic waves and the seismological techniques used to define anisotropic bodies. In general it is found that the fast polarization direction is parallel to the absolute plate motion in cratonic areas, to the spreading direction near rifts or extensional zones, and to the main structural features in transpressive regimes. The delay times between fast and slow waves reflect the relative strength and penetration at depth of the deformation field. The correspondence between surface structural trends and anisotropy in the upper mantle, found in many regions of the world, strongly suggest that orogenic processes involve not only the shallow crust but the entire lithosphere. Recently in Italy both shear wave splitting analysis and Pn inversion were applied to define the trend of seismic anisotropy. Along the Northern Appeninic arc fast directions follow the strike of the arc (i.e., parallel to the strike of the Miocene-Pleistocene compressional features, whereas in the Tyrrhenian zone fast directions are about E-W SW-NE; parallel to the post-Miocene extension that is thought to have reoriented the mantle minerals fabric in the astenosphere.

  3. Integrated Remote Sensing and Geophysical Investigations of the Geodynamic Activities at Lake Magadi, Southern Kenyan Rift

    Directory of Open Access Journals (Sweden)

    Akinola Adesuji Komolafe

    2012-01-01

    Full Text Available The tectonic lineaments and thermal structure of Lake Magadi, southern Kenyan rift system, were investigated using ASTER data and geophysical methods. Five N-S faults close to known hot springs were identified for geoelectric ground investigation. Aeromagnetic data were employed to further probe faults at greater depths and determine the Curie-point depth. Results indicate a funnel-shaped fluid-filled (mostly saline hydrothermal zone with relatively low resistivity values of less than 1 Ω-m, separated by resistive structures to the west and east, to a depth of 75 m along the resistivity profiles. There was evidence of saline hydrothermal fluid flow toward the surface through the fault splays. The observed faults extend from the surface to a depth of 7.5 km and are probably the ones that bound the graben laterally. They serve as major conduits for the upward heat flux in the study area. The aeromagnetics spectral analysis also revealed heat source emplacement at a depth of about 12 km. The relative shallowness implies a high geothermal gradient evidenced in the surface manifestations of hot springs along the lake margins. Correlation of the heat source with the hypocenters showed that the seismogenetic zone exists directly above the magmatic intrusion, forming the commencement of geodynamic activities.

  4. Crust-mantle transitional zone of Tianshan orogenic beltand Junggar Basin and its geodynamic implication

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The traveling time of the reflection waves of each shot point from the crust-mantle tran-sitional zone has been obtained by data processing using wavelet transform to the waves reflectedfrom the crust-mantle transitional zone. The crust-mantle transitional zone of the Xayar-Burjinggeoscience transect can be divided into three sections: the northern margin of the Tarim Basin, theTianshan orogenic belt and Junggar Basin. The crust-mantle transitional zone is composed mainlyof first-order discontinuity in the Tarim Basin and the Junggar Basin, but in the Tianshan orogenicbelt, it is composed of 7-8 thin layers which are 2-3 km in thickness and high and Iow alterna-tively in velocity, with a total thickness of about 20km. The discovery of the crust-mantle transi-tional zone of the Tianshan orogenic belt and Junggar Basin and their differences in tectonic fea-tures provide evidence for the creation of the geodynamic model “lithospheric subduction with in-trusion layers in crust” for the Tianshan orogenic belt.

  5. Early Yanshanian post-orogenic granitoids in the Nanling region-- Petrological constraints and geodynamic settings

    Institute of Scientific and Technical Information of China (English)

    陈培荣; 华仁民; 章邦桐; 陆建军; 范春方

    2002-01-01

    Early Yanshanian magmatic suites predominate absolutely in the Nanling granite belt.They consist mainly of monzogranite and K-feldspar granite.There occur associations of early Yanshanian A-type granitoids(176 Ma-178 Ma) and bimodal volcanic rocks(158 Ma-179 Ma) in southern Jiangxi and southwestern Fujian in the eastern sector of the granite belt and early Yanshanian basalts(177 Ma-178 Ma) in southern Hunan in the central sector of the belt.Both the acid end-member rhyolite in the bimodal volcanic rock association and A-type granitoids in southern Jiangxi have the geochemical characteristics of intraplate granitic rocks and the basic end-member basalt of the association is intraplate tholeiite,while the basaltic rocks in southern Hunan include not only intraplate tholeiite but also intraplate alkali basalt.Therefore the early Yanshanian magmatic suites in the Nanling region are undoubtedly typical post-orogenic rock associations.Post-orogenic suites mark the end of a post-collision or late orogenic event and the initiation of Pangaea break-up,indicating that a new orogenic Wilson cycle is about to start.Therefore it may be considered that the early Yanshanian geodynamic settings in the Nanling region should be related to post-orogenic continental break-up after the Indosinian orogeny and the break-up did not begin in the Cretaceous.

  6. THERIAK_D: An add-on to implement equilibrium computations in geodynamic models

    Science.gov (United States)

    Duesterhoeft, Erik; Capitani, Christian

    2013-11-01

    This study presents the theory, applicability, and merits of the new THERIAK_D add-on for the open source Theriak/Domino software package. The add-on works as an interface between Theriak and user-generated scripts, providing the opportunity to process phase equilibrium computation parameters in a programming environment (e.g., C or MATLAB®). THERIAK_D supports a wide range of features such as calculating the solid rock density or testing the stability of mineral phases along any pressure-temperature (P-T) path and P-T grid. To demonstrate applicability, an example is given in which the solid rock density of a 2-D-temperature-pressure field is calculated, portraying a simplified subduction zone. Consequently, the add-on effectively combines thermodynamics and geodynamic modeling. The carefully documented examples could be easily adapted for a broad range of applications. THERIAK_D is free, and the program, user manual, and source codes may be downloaded from http://www.min.uni-kiel.de/˜ed/theriakd/.

  7. Application of the pseudorelief method for the territory of the Bishkek geodynamic polygon

    Science.gov (United States)

    Batalev, V. Yu.

    2013-02-01

    Based on 143 magnetotelluric soundings, the Berdichevskii impedance, the Wiese—Parkinson matrix, and the phase tensor component are calculated for the Bishkek geodynamic polygon 50 × 150 km in size. The pseudoreliefs of the apparent resistance Ro brd , phase Fi brd , Wiese-Parkinson matrix norm, and apparent phase Fi k calculated from the phase tensor are constructed. An area of the crustal conductor with elevated conductivity located below the northern part of the Chui depression is distinguished during analysis of pseudoreliefs. Its characteristics will be used for solution of the 3D direct task and creation of the starting model of 2D inversion. The reliability of anomalous objects and estimation of their size during the use of real data is caused by the fact that the anomalies are displayed by different parts of the observation system for the various parameters of the MT-field: the phases vary directly over the anomalous object, and magnetovariational parameters form the rim around it. This allows us more completely and effectively to use the network of real data.

  8. Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran

    Directory of Open Access Journals (Sweden)

    M. Nasrabady

    2011-11-01

    Full Text Available The Iranian ophiolites are part of the vast orogenic suture zones that mark the Alpine-Himalayan convergence zone. Few petrological and geochronological data are available from these ophiolitic domains, hampering a full assessment of the timing and regimes of subduction zone metamorphism and orogenic construction in the region. This paper describes texture, geochemistry, and the pressure-temperature path of the Early Cretaceous mafic granulites that occur within the Tertiary Sabzevar ophiolitic suture zone of NE Iran. Whole rock geochemistry indicates that the Sabzevar granulites are likely derived from a MORB-type precursor. They are thus considered as remnants of a dismembered dynamo-thermal sole formed during subduction of a back-arc basin (proto-Sabzevar Ocean formed in the upper-plate of the Neotethyan slab. The metamorphic history of the granulites suggests an anticlockwise pressure-temperature loop compatible with burial in a hot subduction zone, followed by cooling during exhumation. Transition from a nascent to a mature stage of oceanic subduction is the geodynamic scenario proposed to accomplish for the reconstructed thermobaric evolution. When framed with the regional scenario, results of this study point to diachronous and independent tectonic evolutions of the different ophiolitic domains of central Iran, for which a growing disparity in the timing of metamorphic equilibration and of pressure-temperature paths can be expected to emerge with further investigations.

  9. Some consequences of the geodynamics of sea level on the biosphere. The SE Asian example

    Science.gov (United States)

    Husson, Laurent; Sarr, Anta-Clarisse; Pastier, Anne-Morwenn; Sepulchre, Pierre; Pedoja, Kevin; Elliot, Mary; Hantoro, Wahyoe; Jaramillo, Carlos

    2017-04-01

    Mantle flow and subducting slabs dynamically deflect the surface of the Earth. These deflections occasionally suffice to alternatively inundate or emerge vast expanses of landmasses. This is the case in SE Asia, where geomorphological indicators attest for widespread uplift in the East, in "Wallacea" and subsidence in the West, in the very shallow Sunda platform. These movements attest for transient subduction dynamics of the Indo-Australian subduction zone. We conducted fieldwork in key areas : Sulawesi in the East, Belitung in the West. Geomorphological observations and modeling, geophysical measurements and age determinations have enable us to determine Quaternary rates of subsidence (Sunda shelf) and uplift (in Wallacea), of a few tenths of millimeters per year, faster than over longer time scales. We hypothesize that such rates of vertical ground motion triggered by the subducting slabs, though modest, are sufficient to very efficiently impact the external spheres of the Earth. More specifically, because it is associated with modifications of the relative sea level, we propose that they critically altered diverse aspects of the biosphere. We propose that such geodynamics ultimately modulate the dynamics of the biosphere in ways as diverse as boosting reef productivity by an order of magnitude, fostering the development of the "Coral Triangle" center of biodiversity and, in a rather provocative way, even helping Homo erectus reach Java and large faunas cross Sundaland even during interglacial periods.

  10. Petrography, geochemistry and geodynamic environment of potassic alkaline rocks in Eslamy peninsula, northwest of Iran

    Indian Academy of Sciences (India)

    B Hajalilou; M Moayyed; Gh Hosseinzadeh

    2009-12-01

    Eslamy peninsula, 360 km2 in area, is located in the eastern coast of Urmieh lake in the northwest of Iran. This peninsula is a complex stratovolcano with a collapsed center, which is elevated due to later intrusions of sub-volcanic masses with trachytic to microsyenitic composition. The composite cone consists of a sequence of leucite tephrite, tephrite, leucite basanite, basanite and related pyroclastic rocks. Magmatic activities in the Eslamy peninsula begin with potassic alkaline to ultrapotassic and basic, silica-undersaturated shoshonitic rocks and they are followed by intrusions of lamprophyric dykes and end with acidic magmatism including trachytic, microsyenitic, syenitic and phonolitic domes. The original magma of the Eslamy peninsula rocks has a potassic alkaline nature (Roman type) rich in LREE and LILE and depleted of HREE. These characteristics suggest that the origin of magma can be from deep mantle with a garnet lherzolite composition, a low partial melting rate which has been contaminated by crustal materials in its way up. Fractional crystallization of olivine, diopsidic clinopyroxene and leucite played an important role in the evolution of magmas. Scrutinizing the geodynamic environment of Eslamy peninsula rocks in discrimination diagrams indicates that these rocks must have been formed in a post-collision magmatic arc setting.

  11. Liberating exomoons in white dwarf planetary systems

    CERN Document Server

    Payne, Matthew J; Holman, Matthew J; Gaensicke, Boris T

    2016-01-01

    Previous studies indicate that more than a quarter of all white dwarf (WD) atmospheres are polluted by remnant planetary material, with some WDs being observed to accrete the mass of Pluto in 10^6 years. The short sinking timescale for the pollutants indicate that the material must be frequently replenished. Moons may contribute decisively to this pollution process if they are liberated from their parent planets during the post-main-sequence evolution of the planetary systems. Here, we demonstrate that gravitational scattering events among planets in WD systems easily triggers moon ejection. Repeated close encounters within tenths of a planetary Hill radii are highly destructive to even the most massive, close-in moons. Consequently, scattering increases both the frequency of perturbing agents in WD systems, as well as the available mass of polluting material in those systems, thereby enhancing opportunities for collision and fragmentation and providing more dynamical pathways for smaller bodies to reach the ...

  12. Magnetic investigations for studying planetary interiors

    Directory of Open Access Journals (Sweden)

    A. De Santis

    1994-06-01

    Full Text Available Most of the magnetic methods used for investigating planetary interiors are based on the reasonable hypothesis that the mechanism for the origin of the field is an Earth-like hydromagnetic dynamo: in this case the planet has an electrically conducting fluid shell within it as in the case of the Earth's core. The present paper describes several techniques of planetary magnetic investigation which give important clues on the internal constitution of planets. Some considerations on the possible mechanisms for maintaining a dynamo and simple concepts with the help of a few non-dimensional numbers are also introduced and discussed. Then some fundamental relationships are given in order to relate the planetary magnetism to other physical parameters, such as angular rotation, core dimensions etc. It finally summarizes some results available for the planets of the Solar System.

  13. Dust in the 55 Cancri planetary system

    CERN Document Server

    Jayawardhana, R; Greaves, J S; Dent, W R F; Marcy, G W; Hartmann, L W; Fazio, G G; Jayawardhana, Ray; Holland, Wayne S.; Greaves, Jane S.; Dent, William R. F.; Marcy, Geoffrey W.; Hartmann, Lee W.; Fazio, Giovanni G.

    2000-01-01

    The presence of debris disks around $\\sim$ 1-Gyr-old main sequence stars suggests that an appreciable amount of dust may persist even in mature planetary systems. Here we report the detection of dust emission from 55 Cancri, a star with one, or possibly two, planetary companions detected through radial velocity measurements. Our observations at 850$\\mu$m and 450$\\mu$m imply a dust mass of 0.0008-0.005 Earth masses, somewhat higher than that in the the Kuiper Belt of our solar system. The estimated temperature of the dust grains and a simple model fit both indicate a central disk hole of at least 10 AU in radius. Thus, the region where the planets are detected is likely to be significantly depleted of dust. Our results suggest that far-infrared and sub-millimeter observations are powerful tools for probing the outer regions of extrasolar planetary systems.

  14. Performance of Basic Geodynamic Solvers on BG/p and on Modern Mid-sized CPU Clusters

    Science.gov (United States)

    Omlin, S.; Keller, V.; Podladchikov, Y.

    2012-04-01

    Nowadays, most researchers have access to computer clusters. For the community developing numerical applications in geodynamics, this constitutes a very important potential: besides that current applications can be speeded up, much bigger problems can be solved. This is particularly relevant in 3D applications. However, current practical experiments in geodynamic high-performance applications normally end with the successful demonstration of the potential by exploring the performance of the simplest example (typically the Poisson solver); more advanced practical examples are rare. For this reason, we optimize algorithms for 3D scalar problems and 3D mechanics and design concise, educational Fortran 90 templates that allow other researchers to easily plug in their own geodynamic computations: in these templates, the geodynamic computations are entirely separated from the technical programming needed for the parallelized running on a computer cluster; additionally, we develop our code with minimal syntactical differences from the MATLAB language, such that prototypes of the desired geodynamic computations can be programmed in MATLAB and then copied into the template with only minimal syntactical changes. High-performance programming requires to a big extent taking into account the specificities of the available hardware. The hardware of the world's largest CPU clusters is very different from the one of a modern mid-sized CPU cluster. In this context, we investigate the performance of basic memory-bounded geodynamic solvers on the large-sized BlueGene/P cluster, having 13 Gb/s peak memory bandwidth, and compare it with the performance of a typical modern mid-sized CPU cluster, having 100 Gb/s peak memory bandwidth. A memory-bounded solver's performance depends only on the amount of data required for its computations and on the speed this data can be read from memory (or from the CPUs' cache). In consequence, we speed up the solvers by optimizing memory access and CPU

  15. Reconsideration of the planetary boundary for phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Stephen R [Center for Limnology, University of Wisconsin, Madison, WI 53706 (United States); Bennett, Elena M, E-mail: srcarpen@wisc.edu, E-mail: Elena.Bennett@mcgill.ca [Department of Natural Resource Sciences and McGill School of Environment, McGill University, 21 111 Lakeshore Road, Ste-Anne de Bellevue, QC, H9X 3V9 (Canada)

    2011-01-15

    Phosphorus (P) is a critical factor for food production, yet surface freshwaters and some coastal waters are highly sensitive to eutrophication by excess P. A planetary boundary, or upper tolerable limit, for P discharge to the oceans is thought to be ten times the pre-industrial rate, or more than three times the current rate. However this boundary does not take account of freshwater eutrophication. We analyzed the global P cycle to estimate planetary boundaries for freshwater eutrophication. Planetary boundaries were computed for the input of P to freshwaters, the input of P to terrestrial soil, and the mass of P in soil. Each boundary was computed for two water quality targets, 24 mg P m{sup -3}, a typical target for lakes and reservoirs, and 160 mg m{sup -3}, the approximate pre-industrial P concentration in the world's rivers. Planetary boundaries were also computed using three published estimates of current P flow to the sea. Current conditions exceed all planetary boundaries for P. Substantial differences between current conditions and planetary boundaries demonstrate the contrast between large amounts of P needed for food production and the high sensitivity of freshwaters to pollution by P runoff. At the same time, some regions of the world are P-deficient, and there are some indications that a global P shortage is possible in coming decades. More efficient recycling and retention of P within agricultural ecosystems could maintain or increase food production while reducing P pollution and improving water quality. Spatial heterogeneity in the global P cycle suggests that recycling of P in regions of excess and transfer of P to regions of deficiency could mitigate eutrophication, increase agricultural yield, and delay or avoid global P shortage.

  16. Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn

    CERN Document Server

    Izidoro, Andre; Raymond, Sean N; Hersant, Franck; Pierens, Arnaud

    2015-01-01

    Reproducing Uranus and Neptune remains a challenge for simulations of solar system formation. The ice giants' peculiar obliquities suggest that they both suffered giant collisions during their formation. Thus, there must have been an epoch of accretion dominated by collisions among large planetary embryos in the primordial outer solar system. We test this idea using N-body numerical simulations including the effects of a gaseous protoplanetary disk. One strong constraint is that the masses of the ice giants are very similar -- the Neptune/Uranus mass ratio is $\\sim1.18$. We show that similar-size ice giants do indeed form by collisions between planetary embryos beyond Saturn. The fraction of successful simulations varies depending on the initial number of planetary embryos in the system, their individual and total masses. Similar-sized ice giants are consistently reproduced in simulations starting with 5-10 planetary embryos with initial masses of $\\sim$3-6 ${\\rm M_\\oplus}$. We conclude that accretion from a ...

  17. Lunar and Planetary Science XXXV: Terrestrial Planets: Building Blocks and Differentiation

    Science.gov (United States)

    2004-01-01

    The session "Terrestrial Planets: Building Blocks and Differentiation: included the following topics:Magnesium Isotopes in the Earth, Moon, Mars, and Pallasite Parent Body: High-Precision Analysis of Olivine by Laser-Ablation Multi-Collector ICPMS; Meteoritic Constraints on Collision Rates in the Primordial Asteroid Belt and Its Origin; New Constraints on the Origin of the Highly Siderophile Elements in the Earth's Upper Mantle; Further Lu-Hf and Sm-Nd Isotopic Data on Planetary Materials and Consequences for Planetary Differentiation; A Deep Lunar Magma Ocean Based on Neodymium, Strontium and Hafnium Isotope Mass Balance Partial Resetting on Hf-W System by Giant Impacts; On the Problem of Metal-Silicate Equilibration During Planet Formation: Significance for Hf-W Chronometry ; Solid Metal-Liquid Metal Partitioning of Pt, Re, and Os: The Effect of Carbon; Siderophile Element Abundances in Fe-S-Ni-O Melts Segregated from Partially Molten Ordinary Chondrite Under Dynamic Conditions; Activity Coefficients of Silicon in Iron-Nickel Alloys: Experimental Determination and Relevance for Planetary Differentiation; Reinvestigation of the Ni and Co Metal-Silicate Partitioning; Metal/Silicate Paritioning of P, Ga, and W at High Pressures and Temperatures: Dependence on Silicate Melt Composition; and Closure of the Fe-S-Si Liquid Miscibility Gap at High Pressure and Its Implications for Planetary Core Formation.