WorldWideScience

Sample records for planetary boundaries exploring

  1. Exploring the planetary boundary for chemical pollution

    DEFF Research Database (Denmark)

    Diamond, Miriam L.; de Wit, Cynthia A.; Molander, Sverker

    2015-01-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience...... of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales......, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient...

  2. Exploring the planetary boundary for chemical pollution.

    Science.gov (United States)

    Diamond, Miriam L; de Wit, Cynthia A; Molander, Sverker; Scheringer, Martin; Backhaus, Thomas; Lohmann, Rainer; Arvidsson, Rickard; Bergman, Åke; Hauschild, Michael; Holoubek, Ivan; Persson, Linn; Suzuki, Noriyuki; Vighi, Marco; Zetzsch, Cornelius

    2015-05-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social

  3. Planetary boundaries: exploring the safe operating space for humanity

    Science.gov (United States)

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan Foley

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  4. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    DEFF Research Database (Denmark)

    Richardson, Katherine; Rockström, Johan; Steffen, Will

    2009-01-01

    boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance...... and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure...

  5. Horses for courses: analytical tools to explore planetary boundaries

    Science.gov (United States)

    van Vuuren, Detlef P.; Lucas, Paul L.; Häyhä, Tiina; Cornell, Sarah E.; Stafford-Smith, Mark

    2016-03-01

    There is a need for more integrated research on sustainable development and global environmental change. In this paper, we focus on the planetary boundaries framework to provide a systematic categorization of key research questions in relation to avoiding severe global environmental degradation. The four categories of key questions are those that relate to (1) the underlying processes and selection of key indicators for planetary boundaries, (2) understanding the impacts of environmental pressure and connections between different types of impacts, (3) better understanding of different response strategies to avoid further degradation, and (4) the available instruments to implement such strategies. Clearly, different categories of scientific disciplines and associated model types exist that can accommodate answering these questions. We identify the strength and weaknesses of different research areas in relation to the question categories, focusing specifically on different types of models. We discuss that more interdisciplinary research is need to increase our understanding by better linking human drivers and social and biophysical impacts. This requires better collaboration between relevant disciplines (associated with the model types), either by exchanging information or by fully linking or integrating them. As fully integrated models can become too complex, the appropriate type of model (the racehorse) should be applied for answering the target research question (the race course).

  6. Zeppelin NT - Measurement Platform for the Exploration of Atmospheric Chemistry and Dynamics in the Planetary Boundary Layer

    Science.gov (United States)

    Hofzumahaus, Andreas; Holland, Frank; Oebel, Andreas; Rohrer, Franz; Mentel, Thomas; Kiendler-Scharr, Astrid; Wahner, Andreas; Brauchle, Artur; Steinlein, Klaus; Gritzbach, Robert

    2014-05-01

    The planetary boundary layer (PBL) is the chemically most active and complex part of the atmosphere where freshly emitted reactive trace gases, tropospheric radicals, atmospheric oxidation products and aerosols exhibit a large variability and spatial gradients. In order to investigate the chemical degradation of trace gases and the formation of secondary pollutants in the PBL, a commercial Zeppelin NT was modified to be used as an airborne measurement platform for chemical and physical observations with high spatial resolution. The Zeppelin NT was developed by Zeppelin Luftschifftechnik (ZLT) and is operated by Deutsche Zeppelin Reederei (DZR) in Friedrichshafen, Germany. The modification was performed in cooperation between Forschungszentrum Jülich and ZLT. The airship has a length of 75 m, can lift about 1 ton of scientific payload and can be manoeuvered with high precision by propeller engines. The modified Zeppelin can carry measurement instruments mounted on a platform on top of the Zeppelin, or inside the gondola beneath the airship. Three different instrument packages were developed to investigate a. gas-phase oxidation processes involving free radicals (OH, HO2) b. formation of secondary organic aerosols (SOA) c. new particle formation (nucleation) The presentation will describe the modified airship and provide an overview of its technical performance. Examples of its application during the recent PEGASOS flight campaigns in Europe will be given.

  7. China's roadmap for planetary exploration

    Science.gov (United States)

    Wei, Yong; Yao, Zhonghua; Wan, Weixing

    2018-05-01

    China has approved or planned a string of several space exploration missions to be launched over the next decade. A new generation of planetary scientists in China is playing an important role in determining the scientific goals of future missions.

  8. Virtual reality and planetary exploration

    Science.gov (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  9. Virtual reality and planetary exploration

    Science.gov (United States)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  10. Robotic vehicles for planetary exploration

    Science.gov (United States)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  11. A variable K - planetary boundary layer model

    International Nuclear Information System (INIS)

    Misra, P.K.

    1976-07-01

    The steady-state, homogeneous and barotropic equations of motion within the planetary boundary layer are solved with the assumption that the coefficient of eddy viscosity varies as K(Z) = K 0 (1-Z/h)sup(p), where h is the height of the boundary layer and p a parameter which depends on the atmospheric stability. The solutions are compared with the observed velocity profiles based on the Wangara data. They compare favourably. (author)

  12. Planetary boundaries : Governing emerging risks and opportunities

    NARCIS (Netherlands)

    Galaz, V.; de Zeeuw, Aart; Shiroyama, Hideaki; Tripley, Debbie

    The climate, ecosystems and species, ozone layer, acidity of the oceans, the flow of energy and elements through nature, landscape change, freshwater systems, aerosols, and toxins—these constitute the planetary boundaries within which humanity must find a safe way to live and prosper. These are

  13. Teaching, learning, and planetary exploration

    Science.gov (United States)

    Brown, Robert A.

    1992-01-01

    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers

  14. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The

  15. Local and social facets of planetary boundaries: right to nutrients

    International Nuclear Information System (INIS)

    Kahiluoto, Helena; Kuisma, Miia; Kuokkanen, Anna; Mikkilä, Mirja; Linnanen, Lassi

    2015-01-01

    Anthropogenic nutrient flows exceed the planetary boundaries. The boundaries and the current excesses vary spatially. Such variations have both an ecological and a social facet. We explored the spatial variation using a bottom-up approach. The local critical boundaries were determined through the current or accumulated flow of the preceding five years before the planetary boundary criteria were met. Finland and Ethiopia served as cases with contrasting ecology and wealth. The variation in excess depends on historical global inequities in the access to nutrients. Globally, the accumulated use per capita is 2300 kg reactive nitrogen (N r ) and 200 kg phosphorus (P). For Finland, the accumulated use per capita is 3400 kg N r and 690 kg P, whereas for Ethiopia, it is 26 kg N r and 12 kg P. The critical N boundary in Finland is currently exceeded by 40 kg cap −1 a −1 and the accumulated excess is 65 kg cap −1 a −1 , while the global current excess is 24 kg cap −1 a −1 and there is space in Ethiopia to increase even the accumulated flow. The critical P boundary is exceeded in Finland and (although less so) in Ethiopia, but for contrary reasons: (1) the excessive past inflow to the agrifood system in Finland and (2) the excessive outflow from the agrifood system triggered by deficits in inflow and waste management in Ethiopia. The critical boundaries set by Finnish marine systems are lower and those set by freshwaters are higher than the planetary boundaries downscaled per capita. The shift to dominance of internal loading in watercourses represents a tipping point. We conclude that food security within the safe boundaries requires global redistribution of nutrients in residues, soils and sediments and of rights to use nutrients. Bottom-up assessments reveal local dynamics that shed new light on the relevant boundary criteria and on estimates and remedies. (letter)

  16. Planetary explorer liquid propulsion study

    Science.gov (United States)

    Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.

    1971-01-01

    An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.

  17. Agriculture production as a major driver of the Earth system exceeding planetary boundaries

    Directory of Open Access Journals (Sweden)

    Bruce M. Campbell

    2017-12-01

    Full Text Available We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or "safe limits": land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone depletion, atmospheric aerosol loading, and introduction of novel entities. Two planetary boundaries have been fully transgressed, i.e., are at high risk, biosphere integrity and biogeochemical flows, and agriculture has been the major driver of the transgression. Three are in a zone of uncertainty i.e., at increasing risk, with agriculture the major driver of two of those, land-system change and freshwater use, and a significant contributor to the third, climate change. Agriculture is also a significant or major contributor to change for many of those planetary boundaries still in the safe zone. To reduce the role of agriculture in transgressing planetary boundaries, many interventions will be needed, including those in broader food systems.

  18. Agriculture production as a major driver of the earth system exceeding planetary boundaries

    DEFF Research Database (Denmark)

    Campbell, Bruce Morgan; Beare, Douglas J.; Bennett, Elena M.

    2017-01-01

    We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or “safe limits”: land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone...

  19. Robots and humans: synergy in planetary exploration

    Science.gov (United States)

    Landis, Geoffrey A.

    2004-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments. Published by Elsevier Ltd.

  20. An online planetary exploration tool: ;Country Movers;

    Science.gov (United States)

    Gede, Mátyás; Hargitai, Henrik

    2017-08-01

    Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.

  1. MPLNET V3 Cloud and Planetary Boundary Layer Detection

    Science.gov (United States)

    Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.

    2016-01-01

    The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.

  2. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    International Nuclear Information System (INIS)

    Anderies, J M; Carpenter, S R; Steffen, Will; Rockström, Johan

    2013-01-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries. (letter)

  3. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    Science.gov (United States)

    Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan

    2013-12-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.

  4. HESS Opinions: A planetary boundary on freshwater use is misleading

    Science.gov (United States)

    Heistermann, Maik

    2017-07-01

    In 2009, a group of prominent Earth scientists introduced the planetary boundaries (PB) framework: they suggested nine global control variables, and defined corresponding thresholds which, if crossed, could generate unacceptable environmental change. The concept builds on systems theory, and views Earth as a complex adaptive system in which anthropogenic disturbances may trigger non-linear, abrupt, and irreversible changes at the global scale, and push the Earth system outside the stable environmental state of the Holocene. While the idea has been remarkably successful in both science and policy circles, it has also raised fundamental concerns, as the majority of suggested processes and their corresponding planetary boundaries do not operate at the global scale, and thus apparently lack the potential to trigger abrupt planetary changes. This paper picks up the debate with specific regard to the planetary boundary on global freshwater use. While the bio-physical impacts of excessive water consumption are typically confined to the river basin scale, the PB proponents argue that water-induced environmental disasters could build up to planetary-scale feedbacks and system failures. So far, however, no evidence has been presented to corroborate that hypothesis. Furthermore, no coherent approach has been presented to what extent a planetary threshold value could reflect the risk of regional environmental disaster. To be sure, the PB framework was revised in 2015, extending the planetary freshwater boundary with a set of basin-level boundaries inferred from environmental water flow assumptions. Yet, no new evidence was presented, either with respect to the ability of those basin-level boundaries to reflect the risk of regional regime shifts or with respect to a potential mechanism linking river basins to the planetary scale. So while the idea of a planetary boundary on freshwater use appears intriguing, the line of arguments presented so far remains speculative and

  5. Multiscale regime shifts and planetary boundaries

    NARCIS (Netherlands)

    Hughes, T.P.; Carpenter, S.; Rockstrom, J.; Scheffer, M.; Walker, B.

    2013-01-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a

  6. Communication System Architecture for Planetary Exploration

    Science.gov (United States)

    Braham, Stephen P.; Alena, Richard; Gilbaugh, Bruce; Glass, Brian; Norvig, Peter (Technical Monitor)

    2001-01-01

    Future human missions to Mars will require effective communications supporting exploration activities and scientific field data collection. Constraints on cost, size, weight and power consumption for all communications equipment make optimization of these systems very important. These information and communication systems connect people and systems together into coherent teams performing the difficult and hazardous tasks inherent in planetary exploration. The communication network supporting vehicle telemetry data, mission operations, and scientific collaboration must have excellent reliability, and flexibility.

  7. Information architecture for a planetary 'exploration web'

    Science.gov (United States)

    Lamarra, N.; McVittie, T.

    2002-01-01

    'Web services' is a common way of deploying distributed applications whose software components and data sources may be in different locations, formats, languages, etc. Although such collaboration is not utilized significantly in planetary exploration, we believe there is significant benefit in developing an architecture in which missions could leverage each others capabilities. We believe that an incremental deployment of such an architecture could significantly contribute to the evolution of increasingly capable, efficient, and even autonomous remote exploration.

  8. Miniaturisation of imaging spectrometer for planetary exploration

    Science.gov (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel

    2017-11-01

    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  9. Dynamic Reconfiguration in Planetary Exploration

    DEFF Research Database (Denmark)

    Cohn, Marisa

    2014-01-01

    In taking into account the ways in which material and social realms are constitutively entangled within organizations, it is rhetorically tempting to say that technologies and social structures reconfigure each other. But what does it mean to reconfigure? How does one "figure" the other and how do...... we fully embrace a mutually constitutive relationship when examining fluid relations? This paper delves into these questions by exploring how physical, social, material, technological, and organizational arrangements dynamically reconfigure each other in the duration of organizational practice. Using...... be gained by focusing attention on the dynamic reconfigurations between social and material realms. In so doing, we call attention to the ways in which current sociomaterial perspectives have difficulty articulating the shifting, figural, asymmetric and dynamic negotiations between people, social structures...

  10. SPEX: the Spectropolarimeter for Planetary Exploration

    Science.gov (United States)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.

    2017-11-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  11. Russian Planetary Exploration History, Development, Legacy, Prospects

    CERN Document Server

    Harvey, Brian

    2007-01-01

    Russia’s accomplishments in planetary space exploration were not achieved easily. Formerly, the USSR experienced frustration in trying to tame unreliable Molniya and Proton upper stages and in tracking spacecraft over long distances. This book will assess the scientific haul of data from the Venus and Mars missions and look at the engineering approaches. The USSR developed several generations of planetary probes: from MV and Zond to the Phobos type. The engineering techniques used and the science packages are examined, as well as the nature of the difficulties encountered which ruined several missions. The programme’s scientific and engineering legacy is also addressed, as well as its role within the Soviet space programme as a whole. Brian Harvey concludes by looking forward to future Russian planetary exploration (e.g Phobos Grunt sample return mission). Several plans have been considered and may, with a restoration of funding, come to fruition. Soviet studies of deep space and Mars missions (e.g. TMK, ...

  12. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    Science.gov (United States)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  13. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value...

  14. The surface roughness and planetary boundary layer

    Science.gov (United States)

    Telford, James W.

    1980-03-01

    Applications of the entrainment process to layers at the boundary, which meet the self similarity requirements of the logarithmic profile, have been studied. By accepting that turbulence has dominating scales related in scale length to the height above the surface, a layer structure is postulated wherein exchange is rapid enough to keep the layers internally uniform. The diffusion rate is then controlled by entrainment between layers. It has been shown that theoretical relationships derived on the basis of using a single layer of this type give quantitatively correct factors relating the turbulence, wind and shear stress for very rough surface conditions. For less rough surfaces, the surface boundary layer can be divided into several layers interacting by entrainment across each interface. This analysis leads to the following quantitatively correct formula compared to published measurements. 1 24_2004_Article_BF00877766_TeX2GIFE1.gif {σ _w }/{u^* } = ( {2/{9Aa}} )^{{1/4}} ( {1 - 3^{{1/2}{ a/k{d_n }/z{σ _w }/{u^* }z/L} )^{{1/4}} = 1.28(1 - 0.945({{σ _w }/{u^* }}}) {{z/L}})^{{1/4 where u^* = ( {{tau/ρ}}^{{1/2}}, σ w is the standard deviation of the vertical velocity, z is the height and L is the Obukhov scale lenght. The constants a, A, k and d n are the entrainment constant, the turbulence decay constant, Von Karman's constant, and the layer depth derived from the theory. Of these, a and A, are universal constants and not empirically determined for the boundary layer. Thus the turbulence needed for the plume model of convection, which resides above these layers and reaches to the inversion, is determined by the shear stress and the heat flux in the surface layers. This model applies to convection in cool air over a warm sea. The whole field is now determined except for the temperature of the air relative to the water, and the wind, which need a further parameter describing sea surface roughness. As a first stop to describing a surface where roughness elements

  15. Ambler - An autonomous rover for planetary exploration

    Science.gov (United States)

    Bares, John; Hebert, Martial; Kanade, Takeo; Krotkov, Eric; Mitchell, Tom

    1989-01-01

    The authors are building a prototype legged rover, called the Ambler (loosely an acronym for autonomous mobile exploration robot) and testing it on full-scale, rugged terrain of the sort that might be encountered on the Martian surface. They present an overview of their research program, focusing on locomotion, perception, planning, and control. They summarize some of the most important goals and requirements of a rover design and describe how locomotion, perception, and planning systems can satisfy these requirements. Since the program is relatively young (one year old at the time of writing) they identify issues and approaches and describe work in progress rather than report results. It is expected that many of the technologies developed will be applicable to other planetary bodies and to terrestrial concerns such as hazardous waste assessment and remediation, ocean floor exploration, and mining.

  16. The History of Planetary Exploration Using Mass Spectrometers

    Science.gov (United States)

    Mahaffy, Paul R.

    2012-01-01

    At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class.

  17. Planetary protection in the framework of the Aurora exploration program

    Science.gov (United States)

    Kminek, G.

    The Aurora Exploration Program will give ESA new responsibilities in the field of planetary protection. Until now, ESA had only limited exposure to planetary protection from its own missions. With the proposed ExoMars and MSR missions, however, ESA will enter the realm of the highest planetary protection categories. As a consequence, the Aurora Exploration Program has initiated a number of activities in the field of planetary protection. The first and most important step was to establish a Planetary Protection Working Group (PPWG) that is advising the Exploration Program Advisory Committee (EPAC) on all matters concerning planetary protection. The main task of the PPWG is to provide recommendations regarding: Planetary protection for robotic missions to Mars; Planetary protection for a potential human mission to Mars; Review/evaluate standards & procedures for planetary protection; Identify research needs in the field of planetary protection. As a result of the PPWG deliberations, a number of activities have been initiated: Evaluation of the Microbial Diversity in SC Facilities; Working paper on legal issues of planetary protection and astrobiology; Feasibility study on a Mars Sample Return Containment Facility; Research activities on sterilization procedures; Training course on planetary protection (May, 2004); Workshop on sterilization techniques (fall 2004). In parallel to the PPWG, the Aurora Exploration Program has established an Ethical Working Group (EWG). This working group will address ethical issues related to astrobiology, planetary protection, and manned interplanetary missions. The recommendations of the working groups and the results of the R&D activities form the basis for defining planetary protection specification for Aurora mission studies, and for proposing modification and new inputs to the COSPAR planetary protection policy. Close cooperation and free exchange of relevant information with the NASA planetary protection program is strongly

  18. Human-Robot Planetary Exploration Teams

    Science.gov (United States)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  19. Robotic Tool Changer for Planetary Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions will require compact, lightweight robotic manipulators for handling a variety of tools & instruments without increasing the...

  20. Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Science.gov (United States)

    Cezzar, Ruknet

    1993-01-01

    The project's main contributions have been in the area of student support. Throughout the project, at least one, in some cases two, undergraduate students have been supported. By working with the project, these students gained valuable knowledge involving the scientific research project, including the not-so-pleasant reporting requirements to the funding agencies. The other important contribution was towards the establishment of a graduate program in computer science at Hampton University. Primarily, the PAPER project has served as the main research basis in seeking funds from other agencies, such as the National Science Foundation, for establishing a research infrastructure in the department. In technical areas, especially in the first phase, we believe the trip to Jet Propulsion Laboratory, and gathering together all the pertinent information involving experimental computer architectures aimed for planetary explorations was very helpful. Indeed, if this effort is to be revived in the future due to congressional funding for planetary explorations, say an unmanned mission to Mars, our interim report will be an important starting point. In other technical areas, our simulator has pinpointed and highlighted several important performance issues related to the design of operating system kernels for MIMD machines. In particular, the critical issue of how the kernel itself will run in parallel on a multiple-processor system has been addressed through the various ready list organization and access policies. In the area of neural computing, our main contribution was an introductory tutorial package to familiarize the researchers at NASA with this new and promising field zone axes (20). Finally, we have introduced the notion of reversibility in programming systems which may find applications in various areas of space research.

  1. Scientific field training for human planetary exploration

    Science.gov (United States)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  2. Automation and Robotics for space operation and planetary exploration

    Science.gov (United States)

    Montemerlo, Melvin D.

    1990-01-01

    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  3. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  4. Sensor Array Analyzer for Planetary Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions such as those planned by NASA and other space agencies over the next few decades require advanced chemical and biological...

  5. Adaptive bio-inspired navigation for planetary exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Exploration of planetary environments with current robotic technologies relies on human control and power-hungry active sensors to perform even the most elementary...

  6. A preliminary assessment of the Titan planetary boundary layer

    Science.gov (United States)

    Allison, Michael

    1992-01-01

    Results of a preliminary assessment of the characteristic features of the Titan planetary boundary are addressed. These were derived from the combined application of a patched Ekman surface layer model and Rossby number similarity theory. Both these models together with Obukhov scaling, surface speed limits and saltation are discussed. A characteristic Akman depth of approximately 0.7 km is anticipated, with an eddy viscosity approximately equal to 1000 sq cm/s, an associated friction velocity approximately 0.01 m/s, and a surface wind typically smaller than 0.6 m/s. Actual values of these parameters probably vary by as much as a factor of two or three, in response to local temporal variations in surface roughness and stability. The saltation threshold for the windblown injection of approximately 50 micrometer particulates into the atmosphere is less than twice the nominal friction velocity, suggesting that dusty breezes might be an occassional feature of the Titan meteorology.

  7. Planetary sciences and exploration: An Indian perspective

    Indian Academy of Sciences (India)

    Studies of impact craters records in the Indian shield have also been pursued and led to ... and emission of X-rays from planets as well as analytical modelling of martian ionosphere and ... Meteorite; moon; solar activity; solar system; martian atmosphere; planetary .... face layers of any meteorite reaching the earth, one.

  8. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts

    NARCIS (Netherlands)

    Vries, de W.; Kros, J.; Kroeze, C.; Seitzinger, S.P.

    2013-01-01

    This paper first describes the concept of, governance interest in, and criticism on planetary boundaries, specifically with respect to the nitrogen (N) cycle. These criticisms are then systematically evaluated. We argue that planetary N boundaries should include both the benefits and adverse impacts

  9. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  10. Robots and Humans in Planetary Exploration: Working Together?

    Science.gov (United States)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

  11. Planetary Boundary Layer Dynamics over Reno, Nevada in Summer

    Science.gov (United States)

    Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.

    2014-12-01

    Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.

  12. FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

    Science.gov (United States)

    Djolov, G.; Esau, I.

    2010-05-01

    One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference. The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities

  13. Studies of planetary boundary layer by infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  14. Depletion of solar wind plasma near a planetary boundary

    International Nuclear Information System (INIS)

    Zwan, B.J.; Wolf, R.A.

    1976-01-01

    A mathematical model is presented that describes the squeezing of solar wind plasma out along interplanetary magnetic field lines in the region between the bow shock and the effective planetary boundary (in the case of the earth, the magnetopause). In the absence of local magnetic merging the squeezing process should create a 'depletion layer,' a region of very low plasma density just outside the magnetopause. Numerical solutions are obtained for the dimensionless magnetohydrodynamic equations describing this depletion process for the case where the solar wind magnetic field is perpendicular to the solar wind flow direction. For the case of the earth with a magnetopause standoff distance of 10 R/subE/, the theory predicts that the density should be reduced by a factor > or =2 in a layer about 700--1300 km thick if M/subA/, the Alfven Mach number in the solar wind, is equal to 8. The layer thickness should vary as M/subA/ -2 and should be approximately uniform for a large area of the magnetopause around the subsolar point. Computed layer thicknesses are somewhat smaller than those derived from Lees' axisymmetric model. Depletion layers should develop fully only where magnetic merging is locally unimportant. Scaling of the model calculations to Venus and Mars suggest layer thicknesses about 1/10 and 1/15 those of the earth, respectively, neglecting diffusion and ionospheric effects

  15. Evolution of space drones for planetary exploration: A review

    Science.gov (United States)

    Hassanalian, M.; Rice, D.; Abdelkefi, A.

    2018-02-01

    In the past decade, there has been a tendency to design and fabricate drones which can perform planetary exploration. Generally, there are various ways to study space objects, such as the application of telescopes and satellites, launching robots and rovers, and sending astronauts to the targeted solar bodies. However, due to the advantages of drones compared to other approaches in planetary exploration, ample research has been carried out by different space agencies in the world, including NASA to apply drones in other solar bodies. In this review paper, several studies which have been performed on space drones for planetary exploration are consolidated and discussed. Design and fabrication challenges of space drones, existing methods for their flight tests, different methods for deployment and planet entry, and various navigation and control approaches are reviewed and discussed elaborately. Limitations of applying space drones, proposed solutions for future space drones, and recommendations are also presented and discussed.

  16. Numerical Investigation of a Heated, Sheared Planetary Boundary Layer

    Science.gov (United States)

    Liou, Yu-Chieng

    1996-01-01

    A planetary boundary layer (PBL) developed on 11 July, 1987 during the First International Satellites Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) is investigated numerically by a two dimensional and a three dimensional large eddy simulation (LES) model. Most of the simulated mean and statistical properties are utilized to compare or verify against the observational results extracted from single Doppler lidar scans conducted by Gal-Chen et al. (1992) on the same day. Through the methods of field measurements and numerical simulations, it is found that this PBL, in contrast to the well-known convective boundary layer (CBL), is driven by not only buoyancy but also wind shear. Large eddies produced by the surface heating, as well as internal gravity waves excited by the convection, are both present in the boundary layer. The most unique feature is that in the stable layer, the momentum flux ({overlinerm u^' w^'}), transported by the gravity waves, is counter-gradient. The occurrence of this phenomenon is interpreted by Gal-Chen et al. (1992) using the theory of critical layer singularity, and is confirmed by the numerical simulations in this study. Qualitative agreements are achieved between the model-generated and lidar-derived results. However, quantitative comparisons are less satisfactory. The most serious discrepancy is that in the stable layer the magnitudes of the observed momentum flux ({overlinerm u^ ' w^'}) and vertical velocity variance ({overlinerm w^'^2}) are much larger than their simulated counterparts. Nevertheless, through the technique of numerical simulation, evidence is collected to show inconsistencies among the observations. Thus, the lidar measurements of {overline rm u^' w^'} and {overlinerm w^ '^2} seem to be doubtful. A Four Dimensional Data Assimilation (FDDA) experiment is performed in order to connect the evolution of the model integration with the observations. The results indicate that the dynamical relaxation

  17. Cavehopping Exploration of Planetary Skylights and Tunnels

    Data.gov (United States)

    National Aeronautics and Space Administration — The robots that venture into caves must leap, fly, or rappel into voids, traverse rubble, navigate safely in the dark, self-power, and explore autonomously with...

  18. Linking planetary boundaries and ecosystem accounting, with an illustration for the Colombian Orinoco river basin

    NARCIS (Netherlands)

    Vargas, Leonardo; Willemen, L.; Hein, Lars

    2018-01-01

    Economic development has increased pressures on natural resources during the last decades. The concept of planetary boundaries has been developed to propose limits on human activities based on earth processes and ecological thresholds. However, this concept was not developed to downscale planetary

  19. Global Distribution of Planetary Boundary Layer Height Derived from CALIPSO

    Science.gov (United States)

    Huang, J.

    2015-12-01

    The global distribution of planetary boundary layer (PBL) height, which was estimated from the attenuated back-scatter observations of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), is presented. In general, the PBL is capped by a temperature inversion that tends to trap moisture and aerosols. The gradient of back-scatter observed by lidar is almost always associated with this temperature inversion and the simultaneous decrease of moisture content. Thus, the PBL top is defined as the location of the maximum aerosol scattering gradient, which is analogous to the more conventional thermodynamic definition. The maximum standard deviation method, developed by Jordan et al. (2010), is modified and used to derive the global PBL heights. The derived PBL heights are not only consistent with the results of McGrath-Spangler and Denning (2012) but also agree well with the ground-based lidar measurements. It is found that the correlation between CALIPSO and the ground-based lidar was 0.73. The seasonal mean patterns from 4-year mid-day PBL heights over global are demonstrated. Also it is found that the largest PBL heights occur over the Tibetan Plateau and the coastal areas. The smallest PBL heights appear in the Tarim Basin and the northeast of China during the local winter. The comparison of PBL heights from CALIPSO and ECMWF under different land-cover conditions showed that, over ocean and forest surface, the PBL height estimated from the CALIPSO back-scatter climatology is larger than the ones estimated from ECMWF data. However, the PBL heights from ECMWF, over grass land and bare land surface in spring and summer are larger than the ones from CALIPSO.

  20. Exploring the magnetospheric boundary layer

    International Nuclear Information System (INIS)

    Hapgood, M.A.; Bryant, D.A.

    1992-01-01

    We show how, for most crossings of the boundary layer, one can construct a 'transition parameter', based on electron density and temperature, which orders independent plasma measurements into well-defined patterns which are consistent from case to case. We conclude that there is a gradual change in the balance of processes which determine the structure of the layer and suggest that there is no advantage in dividing the layer into different regions. We further conclude that the mixing processes in layer act in an organised way to give the consistent patterns revealed by the transition parameter. More active processes must sometimes take to give the extreme values (e.g. in velocity) which are seen in some crossings

  1. Planetary exploration and science recent results and advances

    CERN Document Server

    Jin, Shuanggen; Ip, Wing-Huen

    2014-01-01

    This contributed monograph is the first work to present the latest results and findings on the new topic and hot field of planetary exploration and sciences, e.g., lunar surface iron content and mare orientale basalts, Earth's gravity field, Martian radar exploration, crater recognition, ionosphere and astrobiology, Comet ionosphere, exoplanetary atmospheres and planet formation in binaries. By providing detailed theory and examples, this book helps readers to quickly familiarize themselves with the field. In addition, it offers a special section on next-generation planetary exploration, which opens a new landscape for future exploration plans and missions. Prof. Shuanggen Jin works at the Shanghai Astronomical Observatory, Chinese Academy of Sciences, China. Dr. Nader Haghighipour works at the University of Hawaii-Manoa, USA. Prof. Wing-Huen Ip works at the National Central University, Taiwan.

  2. Planetary boundary layer and circulation dynamics at Gale Crater, Mars

    Science.gov (United States)

    Fonseca, Ricardo M.; Zorzano-Mier, María-Paz; Martín-Torres, Javier

    2018-03-01

    The Mars implementation of the Planet Weather Research and Forecasting (PlanetWRF) model, MarsWRF, is used here to simulate the atmospheric conditions at Gale Crater for different seasons during a period coincident with the Curiosity rover operations. The model is first evaluated with the existing single-point observations from the Rover Environmental Monitoring Station (REMS), and is then used to provide a larger scale interpretation of these unique measurements as well as to give complementary information where there are gaps in the measurements. The variability of the planetary boundary layer depth may be a driver of the changes in the local dust and trace gas content within the crater. Our results show that the average time when the PBL height is deeper than the crater rim increases and decreases with the same rate and pattern as Curiosity's observations of the line-of-sight of dust within the crater and that the season when maximal (minimal) mixing is produced is Ls 225°-315° (Ls 90°-110°). Thus the diurnal and seasonal variability of the PBL depth seems to be the driver of the changes in the local dust content within the crater. A comparison with the available methane measurements suggests that changes in the PBL depth may also be one of the factors that accounts for the observed variability, with the model results pointing towards a local source to the north of the MSL site. The interaction between regional and local flows at Gale Crater is also investigated assuming that the meridional wind, the dynamically important component of the horizontal wind at Gale, anomalies with respect to the daily mean can be approximated by a sinusoidal function as they typically oscillate between positive (south to north) and negative (north to south) values that correspond to upslope/downslope or downslope/upslope regimes along the crater rim and Mount Sharp slopes and the dichotomy boundary. The smallest magnitudes are found in the northern crater floor in a region that

  3. Distant Worlds Milestones in Planetary Exploration

    CERN Document Server

    Bond, Peter

    2007-01-01

    Peter Bond provides an overview of key, unmanned missions, chapter by chapter, to planets in the twentieth century. He tells the story of the mission planners and engineers who, working mostly in the background, made these unprecedented achievements in scientific exploration possible. Bond’s perspective provides a much-needed overview, but it also details the very human feelings that animated the intense rivalries between the Soviet Union and the United States, and most recently the difficulties that arose in collaborations between NASA and ESA on the Rosetta and Halley's Comet missions.

  4. Food Production and Freshwater Use within Planetary Boundaries

    Science.gov (United States)

    Gerten, D.; Jägermeyr, J.; Heck, V.

    2016-12-01

    The concept of planetary boundaries (PBs) defines guardrails for 9 earth system processes that should not be transgressed by human activity to avoid undermining of earth system resilience. In addition to the scientific challenge of better (e.g. spatially explicit) estimations of PBs themselves, there is a need for assessing opportunities for humankind to stay within these guardrails - while still achieving societal goals such as producing sufficient food for a growing world population. This presentation provides study results (simulations with the LPJmL biosphere model) concerned with a new definition of the PB for human freshwater use in particular, and it addresses the question by how much food production could be increased through more effective water management while respecting this PB. Specifically, we represent this PB in more detail than in its provisional first iteration, i.e. based on spatially explicit estimations of rivers' environmental flow requirements, EFRs (with three different methods on a global 0.5° grid). A key finding is that present human water withdrawals already harm many river stretches around the world, as their EFRs are being tapped; this involves 950 km3/yr (39%) of irrigation water use and a further 226 km3/yr (22%) water use by other sectors. But, improved agricultural water management - here, a moderate upgrade of irrigation systems - could, if implemented across all irrigated regions along with policies to sustain EFRs, fully compensate for these production losses at global scale, albeit not everywhere. The overall, simulated potential of improved on-farm water management - also including measures of water harvesting and avoidance of evaporation in rainfed systems - is a 40% increase in global production. This highlights tremendous opportunities to produce more food without further compromising water systems, also buffering potential future climate change impacts. Finally, the presentation broadens the scope by considering further

  5. Hybrid Mobile Communication Networks for Planetary Exploration

    Science.gov (United States)

    Alena, Richard; Lee, Charles; Walker, Edward; Osenfort, John; Stone, Thom

    2007-01-01

    A paper discusses the continuing work of the Mobile Exploration System Project, which has been performing studies toward the design of hybrid communication networks for future exploratory missions to remote planets. A typical network could include stationary radio transceivers on a remote planet, mobile radio transceivers carried by humans and robots on the planet, terrestrial units connected via the Internet to an interplanetary communication system, and radio relay transceivers aboard spacecraft in orbit about the planet. Prior studies have included tests on prototypes of these networks deployed in Arctic and desert regions chosen to approximate environmental conditions on Mars. Starting from the findings of the prior studies, the paper discusses methods of analysis, design, and testing of the hybrid communication networks. It identifies key radio-frequency (RF) and network engineering issues. Notable among these issues is the study of wireless LAN throughput loss due to repeater use, RF signal strength, and network latency variations. Another major issue is that of using RF-link analysis to ensure adequate link margin in the face of statistical variations in signal strengths.

  6. The New Planetary Science Archive (PSA): Exploration and Discovery of Scientific Datasets from ESA's Planetary Missions

    Science.gov (United States)

    Heather, David; Besse, Sebastien; Vallat, Claire; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Coia, Daniela; Costa, Marc; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; MacFarlane, Alan; Martinez, Santa; Rios, Carlos; Vallejo, Fran; Saiz, Jaime

    2017-04-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. As of the end of 2016, the PSA is hosting data from all of ESA's planetary missions. This includes ESA's first planetary mission Giotto that encountered comet 1P/Halley in 1986 with a flyby at 800km. Science data from Venus Express, Mars Express, Huygens and the SMART-1 mission are also all available at the PSA. The PSA also contains all science data from Rosetta, which explored comet 67P/Churyumov-Gerasimenko and asteroids Steins and Lutetia. The year 2016 has seen the arrival of the ExoMars 2016 data in the archive. In the upcoming years, at least three new projects are foreseen to be fully archived at the PSA. The BepiColombo mission is scheduled for launch in 2018. Following that, the ExoMars Rover Surface Platform (RSP) in 2020, and then the JUpiter ICy moon Explorer (JUICE). All of these will archive their data in the PSA. In addition, a few ground-based support programmes are also available, especially for the Venus Express and Rosetta missions. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more customized views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will also be up

  7. On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers

    DEFF Research Database (Denmark)

    Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert

    2011-01-01

    The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory......, measurements, and modeling....

  8. Collecting, Managing, and Visualizing Data during Planetary Surface Exploration

    Science.gov (United States)

    Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.

    2017-12-01

    While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.

  9. One-dimensional, time dependent simulation of the planetary boundary layer over a 48-hour period

    International Nuclear Information System (INIS)

    Haschke, D.; Gassmann, F.; Rudin, F.

    1978-05-01

    Results of a one-dimensional, time dependent simulation of the planetary boundary layer are given. First, a description of the mathematical model used is given and its approximations are discussed. Then a description of the initial and boundary conditions used for the simulation is given. Results are discussed with respect to their agreement with observed data and their precision. It can be demonstrated that a simulation of the planetary boundary layer is possible with satisfactory precision. The incompleteness of observed data gives, however, problems with their use and thus introduces uncertainties into the simulation. As a consequence, the report tries to point to the inherent limitations of such a simulation. (Auth.)

  10. Galileo Avionica's technologies and instruments for planetary exploration.

    Science.gov (United States)

    Battistelli, E; Falciani, P; Magnani, P; Midollini, B; Preti, G; Re, E

    2006-12-01

    Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies: Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples. The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities devoted to investigate the body (planet, asteroid or comet) both remotely and by in situ measurements. The paper is an overview of some instruments for remote sensing and in situ planetary exploration already developed or under study by Galileo Avionica Space & Electro-Optics B.U. (in the following shortened as Galileo Avionica) for both the Italian Space Agency (ASI) and for the European Space Agency (ESA). Main technologies and specifications are outlined; for more detailed information please refer to Galileo Avionica's web-site at: http://www.galileoavionica.com .

  11. Challenges in implementing a Planetary Boundaries based Life-Cycle Impact Assessment methodology

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Richardson, Katherine

    2016-01-01

    of resolving the challenges and developing such methodology is discussed. The challenges are related to technical issues, i.e., modelling and including the Earth System processes and their control variables as impact categories in Life-Cycle Impact Assessment and to theoretical considerations with respect...... to the interpretation and use of Life-Cycle Assessment results in accordance with the Planetary Boundary framework. The identified challenges require additional research before a Planetary Boundaries based Life-Cycle Impact Assessment method can be developed. Research on modelling the impacts on Earth System processes......Impacts on the environment from human activities are now threatening to exceed thresholds for central Earth System processes, potentially moving the Earth System out of the Holocene state. To avoid such consequences, the concept of Planetary Boundaries was defined in 2009, and updated in 2015...

  12. Design of Hybrid Mobile Communication Networks for Planetary Exploration

    Science.gov (United States)

    Alena, Richard L.; Ossenfort, John; Lee, Charles; Walker, Edward; Stone, Thom

    2004-01-01

    The Mobile Exploration System Project (MEX) at NASA Ames Research Center has been conducting studies into hybrid communication networks for future planetary missions. These networks consist of space-based communication assets connected to ground-based Internets and planetary surface-based mobile wireless networks. These hybrid mobile networks have been deployed in rugged field locations in the American desert and the Canadian arctic for support of science and simulation activities on at least six occasions. This work has been conducted over the past five years resulting in evolving architectural complexity, improved component characteristics and better analysis and test methods. A rich set of data and techniques have resulted from the development and field testing of the communication network during field expeditions such as the Haughton Mars Project and NASA Mobile Agents Project.

  13. An Antarctic research outpost as a model for planetary exploration.

    Science.gov (United States)

    Andersen, D T; McKay, C P; Wharton, R A; Rummel, J D

    1990-01-01

    During the next 50 years, human civilization may well begin expanding into the solar system. This colonization of extraterrestrial bodies will most likely begin with the establishment of small research outposts on the Moon and/or Mars. In all probability these facilities, designed primarily for conducting exploration and basic science, will have international participation in their crews, logistical support and funding. High fidelity Earth-based simulations of planetary exploration could help prepare for these expensive and complex operations. Antarctica provides one possible venue for such a simulation. The hostile and remote dry valleys of southern Victoria Land offer a valid analog to the Martian environment but are sufficiently accessible to allow routine logistical support and to assure the relative safety of their inhabitants. An Antarctic research outpost designed as a planetary exploration simulation facility would have great potential as a testbed and training site for the operation of future Mars bases and represents a near-term, relatively low-cost alternative to other precursor activities. Antarctica already enjoys an international dimension, an aspect that is more than symbolically appropriate to an international endeavor of unprecedented scientific and social significance--planetary exploration by humans. Potential uses of such a facility include: 1) studying human factors in an isolated environment (including long-term interactions among an international crew); 2) testing emerging technologies (e.g., advanced life support facilities such as a partial bioregenerative life support system, advanced analytical and sample acquisition instrumentation and equipment, etc.); and 3) conducting basic scientific research similar to the research that will be conducted on Mars, while contributing to the planning for human exploration. (Research of this type is already ongoing in Antarctica).

  14. Introduction of JAXA Lunar and Planetary Exploration Data Analysis Group: Landing Site Analysis for Future Lunar Polar Exploration Missions

    Science.gov (United States)

    Otake, H.; Ohtake, M.; Ishihara, Y.; Masuda, K.; Sato, H.; Inoue, H.; Yamamoto, M.; Hoshino, T.; Wakabayashi, S.; Hashimoto, T.

    2018-04-01

    JAXA established JAXA Lunar and Planetary Exploration Data Analysis Group (JLPEDA) at 2016. Our group has been analyzing lunar and planetary data for various missions. Here, we introduce one of our activities.

  15. Lunar planetary exploration of Japan; Nippon no tsuki wakusei tansa

    Energy Technology Data Exchange (ETDEWEB)

    Haruyama, J. [Research Development Corporation of Japan, Tokyo (Japan)

    1996-05-01

    This paper describes lunar planetary exploration of Japan as a result of success in launching the H-II rocket. Under the cooperation between the Space Chemistry Research Institute (ISAS) of the Ministry of Education and the National Aerospace Development Association (NASDA), discussions have begun on launching an orbital satellite for lunar planetary exploration early in the 2000`s. The objective includes a study on origin and evolution of the moon, feasibility study on moon utilization, and learning the moon surface soft landing technology. Explorations on objects other than moon may be conceived by using such a large rocket as H-II. Exploration on living organisms on Mars may be one of them. Light emitting monitors that operate on the living organism dying identification method could be used on places where living organisms are likely to exist on Mars. Then, samples may be brought back, and it might be possible to pursue the mystery of life origin. A comet has no internal melting by heat as in planets, and keeps composing substances as they have been generated. In other words, it could be said a fossil in the solar system that retains initial substances in the solar system. Samples, if they can be brought back, could be keys to solve the mystery of the solar system formation. The Halley comet is said covered with organic substances. There is a theory that life originating substances on the earth were made on a comet, which were supplied to the earth as a result of collision.

  16. Planetary Protection Issues in the Human Exploration of Mars

    Science.gov (United States)

    Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

    2005-01-01

    This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

  17. The US planetary exploration program opportunities for international cooperation

    Science.gov (United States)

    Briggs, G. A.

    1984-01-01

    Opportunities for international participation in US-sponsored interplanetary missions are discussed on the basis of the recommendations of the Committee on Planetary and Lunar Exploration of the National Academy of Sciences Space Science Board. The initial core missions suggested are a Venus radar mapper, a Mars geoscience/climatology orbiter, a comet-rendezvous/asteroid-flyby mission, and a Titan probe/radar mapper. Subsequent core missions are listed, and the need for cooperation in planning and development stages to facilitate international participation is indicated.

  18. Approaches to defining a planetary boundary for biodiversity

    NARCIS (Netherlands)

    Mace, G.M.; Reyers, B.; Alkemade, R.; Biggs, R.; Stuart Chapin, F.; Cornell, S.E.; Diaz, S.

    2014-01-01

    The idea that there is an identifiable set of boundaries, beyond which anthropogenic change will put the Earth system outside a safe operating space for humanity, is attracting interest in the scientific community and gaining support in the environmental policy world. Rockstrom et al. (2009)

  19. Analyis of the role of the planetary boundary layer schemes during a severe convective storm

    NARCIS (Netherlands)

    Wisse, J.S.P.; Vilà-Guerau de Arellano, J.

    2004-01-01

    The role played by planetary boundary layer (PBL) in the development and evolution of a severe convective storm is studied by means of meso-scale modeling and surface and upper air observations. The severe convective precipitation event that occurred on 14 September 1999 in the northeast of the

  20. Mission-directed path planning for planetary rover exploration

    Science.gov (United States)

    Tompkins, Paul

    2005-07-01

    Robotic rovers uniquely benefit planetary exploration---they enable regional exploration with the precision of in-situ measurements, a combination impossible from an orbiting spacecraft or fixed lander. Mission planning for planetary rover exploration currently utilizes sophisticated software for activity planning and scheduling, but simplified path planning and execution approaches tailored for localized operations to individual targets. This approach is insufficient for the investigation of multiple, regionally distributed targets in a single command cycle. Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional access; the effect of route timing on resource availability; the limitations of finite resource capacity and other operational constraints on vehicle range and timing; and the mutual influence between traverses and upstream and downstream stationary activities. Encapsulating this reasoning in an efficient autonomous planner would allow a rover to continue operating rationally despite significant deviations from an initial plan. This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for robotic explorers. Planning operates in a space of position, time and energy. Unlike previous hierarchical approaches, it treats these dimensions simultaneously to enable globally-optimal solutions. The approach calls on a near incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher than two dimensions. Solutions under this method specify routes that avoid terrain obstacles, optimize the collection and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of interleaved mission activities. Furthermore, the approach efficiently re-plans in response to updates in vehicle state and world models, and is well suited to online operation aboard a robot

  1. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment.

    Science.gov (United States)

    Newbold, Tim; Hudson, Lawrence N; Arnell, Andrew P; Contu, Sara; De Palma, Adriana; Ferrier, Simon; Hill, Samantha L L; Hoskins, Andrew J; Lysenko, Igor; Phillips, Helen R P; Burton, Victoria J; Chng, Charlotte W T; Emerson, Susan; Gao, Di; Pask-Hale, Gwilym; Hutton, Jon; Jung, Martin; Sanchez-Ortiz, Katia; Simmons, Benno I; Whitmee, Sarah; Zhang, Hanbin; Scharlemann, Jörn P W; Purvis, Andy

    2016-07-15

    Land use and related pressures have reduced local terrestrial biodiversity, but it is unclear how the magnitude of change relates to the recently proposed planetary boundary ("safe limit"). We estimate that land use and related pressures have already reduced local biodiversity intactness--the average proportion of natural biodiversity remaining in local ecosystems--beyond its recently proposed planetary boundary across 58.1% of the world's land surface, where 71.4% of the human population live. Biodiversity intactness within most biomes (especially grassland biomes), most biodiversity hotspots, and even some wilderness areas is inferred to be beyond the boundary. Such widespread transgression of safe limits suggests that biodiversity loss, if unchecked, will undermine efforts toward long-term sustainable development. Copyright © 2016, American Association for the Advancement of Science.

  2. Exploration of the Moon to Enable Lunar and Planetary Science

    Science.gov (United States)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  3. Use of natural radioactive tracers for the determination of vertical exchanges in the planetary boundary layer

    International Nuclear Information System (INIS)

    Druilhet, A.; Guedalia, D.; Fontan, J.

    1980-01-01

    Methods for determining the vertical exchange coefficients in the planetary boundary layer using the natural radioactive tracers radon ( 222 Rn), thoron ( 220 Rn), and ThB( 212 Pb) are presented here. Thoron (T/sub 1/2/ = 54 sec) was used for the surface layer. The main results are given for two applications: vertical exchange studies above a flat country and inside a vegetable canopy. Owing to its lifetime, radon can be used for the nocturnal stabilities that have an important concentration increase near the ground. For the planetary layer (0 to 2000m), ThB(T/sub 1/2/ = 10.6 hr) was mainly used

  4. Thorpe method applied to planetary boundary layer data

    International Nuclear Information System (INIS)

    Gonzalez-Nieto, P.L.; Cano, J.L.; Tijera, M.; Cano, D.

    2008-01-01

    Turbulence affects the dynamics of atmospheric processes by enhancing the transport of mass, heat, humidity and pollutants. The global objective for our work is to analyze some direct turbulent descriptors which reflect the mixing processes in the atmospheric boundary layer (ABL). In this paper we present results related to the Thorpe displacements d Τ , the maximum Thorpe displacement (d Τ ) max and the Thorpe scale L Τ , the Ozmidov scale and their time evolution in the ABL during a day cycle. A tethered balloon was used to obtain vertical profiles of the atmospheric physical magnitudes up to 1000 m. We discuss the vertical and horizontal variability and how different descriptors are related to atmospheric mixing.

  5. Biomass-based negative emissions difficult to reconcile with planetary boundaries

    Science.gov (United States)

    Heck, Vera; Gerten, Dieter; Lucht, Wolfgang; Popp, Alexander

    2018-01-01

    Under the Paris Agreement, 195 nations have committed to holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to strive to limit the increase to 1.5 °C (ref. 1). It is noted that this requires "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of the century"1. This either calls for zero greenhouse gas (GHG) emissions or a balance between positive and negative emissions (NE)2,3. Roadmaps and socio-economic scenarios compatible with a 2 °C or 1.5 °C goal depend upon NE via bioenergy with carbon capture and storage (BECCS) to balance remaining GHG emissions4-7. However, large-scale deployment of BECCS would imply significant impacts on many Earth system components besides atmospheric CO2 concentrations8,9. Here we explore the feasibility of NE via BECCS from dedicated plantations and potential trade-offs with planetary boundaries (PBs)10,11 for multiple socio-economic pathways. We show that while large-scale BECCS is intended to lower the pressure on the PB for climate change, it would most likely steer the Earth system closer to the PB for freshwater use and lead to further transgression of the PBs for land-system change, biosphere integrity and biogeochemical flows.

  6. Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors

    Science.gov (United States)

    Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.

    2017-01-01

    Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.

  7. Food supply and bioenergy production within the global cropland planetary boundary.

    Science.gov (United States)

    Henry, R C; Engström, K; Olin, S; Alexander, P; Arneth, A; Rounsevell, M D A

    2018-01-01

    Supplying food for the anticipated global population of over 9 billion in 2050 under changing climate conditions is one of the major challenges of the 21st century. Agricultural expansion and intensification contributes to global environmental change and risks the long-term sustainability of the planet. It has been proposed that no more than 15% of the global ice-free land surface should be converted to cropland. Bioenergy production for land-based climate mitigation places additional pressure on limited land resources. Here we test normative targets of food supply and bioenergy production within the cropland planetary boundary using a global land-use model. The results suggest supplying the global population with adequate food is possible without cropland expansion exceeding the planetary boundary. Yet this requires an increase in food production, especially in developing countries, as well as a decrease in global crop yield gaps. However, under current assumptions of future food requirements, it was not possible to also produce significant amounts of first generation bioenergy without cropland expansion. These results suggest that meeting food and bioenergy demands within the planetary boundaries would need a shift away from current trends, for example, requiring major change in the demand-side of the food system or advancing biotechnologies.

  8. On the parametrization of the planetary boundary layer of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, D. [Bulgarian Academy of Sciences, Geophysical Inst., Sofia (Bulgaria); Syrakov, D.; Kolarova, M. [Bulgarian Academy of Sciences, National Inst. of Meteorology and Hydrology, Sofia (United Kingdom)

    1997-10-01

    The investigation of the dynamic processes in the planetary boundary layer presents a definite theoretical challenge and plays a growing role for the solution of a number of practical tasks. The improvement of large-scale atmospheric weather forecast depends, to a certain degree, on the proper inclusion of the planetary boundary layer dynamics in the numerical models. The modeling of the transport and the diffusion of air pollutants is connected with estimation of the different processes in the Planetary Boundary Layer (PBL) and needs also a proper PBL parametrization. For the solution of these practical tasks the following PBL models;(i) a baroclinic PBL model with its barotropic version, and (ii) a convective PBL model were developed. Both models are one dimensional and are based on the similarity theory and the resistance lows extended for the whole PBL. Two different PBL parametrizations under stable and under convective conditions are proposed, on the basis of which the turbulent surface heat and momentum fluxes are estimated using generalized similarity theory. By the proposed parametrizations the internal parameters are calculated from the synoptic scale parameters as geostrophyc wind, potential temperature and humidity given at two levels (ground level and at 850 hPa) and from them - the PBL profiles. The models consists of two layers: a surface layer (SL) with a variable height and a second (Ekman layer) over it with a constant with height turbulent exchange coefficient. (au) 14 refs.

  9. From Planetary Boundaries to national fair shares of the global safe operating space — How can the scales be bridged?

    NARCIS (Netherlands)

    Häyhä, Tiina; Lucas, Paul L.|info:eu-repo/dai/nl/272607444; van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X; Cornell, Sarah E.; Hoff, Holger

    2016-01-01

    The planetary boundaries framework proposes quantitative global limits to the anthropogenic perturbation of crucial Earth system processes, and thus marks out a planetary safe operating space for human activities. Yet, decisions regarding resource use and emissions are mostly made at less aggregated

  10. How to bring absolute sustainability into decision-making: An industry case study using a Planetary Boundary-based methodology

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikołaj; Clavreul, Julie

    2018-01-01

    The Planetary Boundaries concept has emerged as a framework for articulating environmental limits, gaining traction as a basis for considering sustainability in business settings, government policy and international guidelines. There is emerging interest in using the Planetary Boundaries concept...... as part of life cycle assessment (LCA) for gauging absolute environmental sustainability. We tested the applicability of a novel Planetary Boundaries-based life cycle impact assessment methodology on a hypothetical laundry washing case study at the EU level. We express the impacts corresponding...... to the control variables of the individual Planetary Boundaries together with a measure of their respective uncertainties. We tested four sharing principles for assigning a share of the safe operating space (SoSOS) to laundry washing and assessed if the impacts were within the assigned SoSOS. The choice...

  11. An Exploration of Boundaries and Solidarity in Counseling Relationships

    Science.gov (United States)

    Speight, Suzette L.

    2012-01-01

    This article explores the boundaries between clinicians and clients in light of the construct of solidarity. A universal conception of boundaries is critiqued and a culturally congruent view of boundaries is examined, rooted in the concept of solidarity. The article includes case illustrations of the connection between boundaries and solidarity…

  12. The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains

    DEFF Research Database (Denmark)

    Clift, Roland; Sim, Sarah; King, Henry

    2017-01-01

    The Planetary Boundaries (PB) framework represents a significant advance in specifying the ecological constraints on human development. However, to enable decision-makers in business and public policy to respect these constraints in strategic planning, the PB framework needs to be developed...... in operationalizing the planetary boundaries needs be complemented with progress in addressing the equity and ethical issues in allocating the safe operating space between companies and sectors....

  13. An Overview of Wind-Driven Rovers for Planetary Exploration

    Science.gov (United States)

    Hajos, Gregory A.; Jones, Jack A.; Behar, Alberto; Dodd, Micheal

    2005-01-01

    The use of in-situ propulsion is considered enabling technology for long duration planetary surface missions. Most studies have focused on stored energy from chemicals extracted from the soil or the use of soil chemicals to produce photovoltaic arrays. An older form of in-situ propulsion is the use of wind power. Recent studies have shown potential for wind driven craft for exploration of Mars, Titan and Venus. The power of the wind, used for centuries to power wind mills and sailing ships, is now being applied to modern land craft. Efforts are now underway to use the wind to push exploration vehicles on other planets and moons in extended survey missions. Tumbleweed rovers are emerging as a new type of wind-driven science platform concept. Recent investigations by the National Aeronautics and Space Administration (NASA) and Jet Propulsion Laboratory (JPL) indicate that these light-weight, mostly spherical or quasi-spherical devices have potential for long distance surface exploration missions. As a power boat has unique capabilities, but relies on stored energy (fuel) to move the vessel, the Tumbleweed, like the sailing ships of the early explorers on earth, uses an unlimited resource the wind to move around the surface of Mars. This has the potential to reduce the major mass drivers of robotic rovers as well as the power generation and storage systems. Jacques Blamont of JPL and the University of Paris conceived the first documented Mars wind-blown ball in 1977, shortly after the Viking landers discovered that Mars has a thin CO2 atmosphere with relatively strong winds. In 1995, Jack Jones, et al, of JPL conceived of a large wind-blown inflated ball for Mars that could also be driven and steered by means of a motorized mass hanging beneath the rolling axis of the ball. A team at NASA Langley Research Center started a biomimetic Tumbleweed design study in 1998. Wind tunnel and CFD analysis were applied to a variety of concepts to optimize the aerodynamic

  14. A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed

    Science.gov (United States)

    Antol, Jeffrey

    2005-01-01

    The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design

  15. Highly Efficient Compact Laser for Planetary Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to the solicitation for advances in critical components of instruments for enhanced scientific investigations on future planetary mission, Q-Peak...

  16. Novel Space Exploration Technique for Analysing Planetary Atmospheres

    OpenAIRE

    Dekoulis, George

    2010-01-01

    The chapter presents a new reconfigurable wide-beam radio interferometer system for analysing planetary atmospheres. The system operates at frequencies, where the ionisation of the planetary plasma regions induces strong attenuation. For Earth, the attenuation is undistinguishable from the CMB at frequencies over 50 MHz. The system introduces a set of advanced specifications to this field of science, previously unseen in similar suborbital experiments. The reprogrammable dynamic range of the ...

  17. Reports and recommendations from COSPAR Planetary Exploration Committee (PEX) & International Lunar Exploration Working Group (ILEWG)

    Science.gov (United States)

    Ehrenfreund, Pascale; Foing, Bernard

    2014-05-01

    In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and

  18. Observation-based estimation of aerosol-induced reduction of planetary boundary layer height

    Science.gov (United States)

    Zou, Jun; Sun, Jianning; Ding, Aijun; Wang, Minghuai; Guo, Weidong; Fu, Congbin

    2017-09-01

    Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 Wm-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.

  19. Simulations of the Urban Planetary Boundary Layer in an Arid Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Grossman-Clarke, Susanne; Liu, Yubao; Zehnder, Joseph A.; Fast, Jerome D.

    2008-03-15

    Characteristics of the summertime urban planetary boundary layer (PBL) were investigated for the arid Phoenix (Arizona, USA) metropolitan region using simulated data as well as observations from two field campaigns conducted in May/June 1998 and June 2001. A version of the fifth-generation PSU/NCAR mesoscale meteorological model (MM5) was applied that included a refined land cover classification and updated land use/cover data for Phoenix as well as bulk approaches of characteristics of the urban surface energy balance. Planetary boundary layer processes were simulated by a modified version of MM5¹s non-local closure Medium Range Forecast (MRF) scheme that was enhanced by new surface flux and non-local mixing approaches to better capture near-surface wind speeds and the evolution of the planetary boundary layer. Simulated potential temperature profiles were tested against radiosonde data, indicating that the PBL scheme was able to simulate the evolution and height of the PBL with good accuracy and better than the original MRF scheme. During both simulation periods, MM5¹s performance for near-surface meteorological variables in the urban area was consistently improved by the modifications applied to the standard MM5. The results showed that the urban PBL evolved faster after sunrise than the rural PBL due to the reminiscence of the nighttime urban heat island and its influence on the flow field and surface sensible heat fluxes. During afternoon hours the urban PBL was lower than the rural PBL due to the higher water availability for evaporation in the urban area and accompanying lower sensible heat fluxes. No consistent differences between the urban and rural PBL were detected during nighttime because of deviations in air flow and accompanying wind shear.

  20. Modelling Velocity Spectra in the Lower Part of the Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Olesen, H.R.; Larsen, Søren Ejling; Højstrup, Jørgen

    1984-01-01

    of the planetary boundary layer. Knowledge of the variation with stability of the (reduced) frequency f, for the spectral maximum is utilized in this modelling. Stable spectra may be normalized so that they adhere to one curve only, irrespective of stability, and unstable w-spectra may also be normalized to fit...... one curve. The problem of using filtered velocity variances when modelling spectra is discussed. A simplified procedure to provide a first estimate of the filter effect is given. In stable, horizontal velocity spectra, there is often a ‘gap’ at low frequencies. Using dimensional considerations...... and the spectral model previously derived, an expression for the gap frequency is found....

  1. Development of a life-cycle impact assessment methodology linked to the Planetary Boundaries framework

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Richardson, Katherine

    2018-01-01

    to quantify the share of the “safe operating space� that human activities occupy, as was illustrated by calculating indicator scores for about 10,600 products, technologies and services exemplifying several sectors, including materials, energy, transport, and processing. The PB-LCIA can be used...... by companies interested in gauging their activities against the Planetary Boundaries to support decisions that help to reduce the risk of human activities moving the Earth System out of the Holocene state....

  2. Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer

    Science.gov (United States)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.

  3. How to bring absolute sustainability into decision-making: An industry case study using a Planetary Boundary-based methodology.

    Science.gov (United States)

    Ryberg, Morten W; Owsianiak, Mikołaj; Clavreul, Julie; Mueller, Carina; Sim, Sarah; King, Henry; Hauschild, Michael Z

    2018-09-01

    The Planetary Boundaries concept has emerged as a framework for articulating environmental limits, gaining traction as a basis for considering sustainability in business settings, government policy and international guidelines. There is emerging interest in using the Planetary Boundaries concept as part of life cycle assessment (LCA) for gauging absolute environmental sustainability. We tested the applicability of a novel Planetary Boundaries-based life cycle impact assessment methodology on a hypothetical laundry washing case study at the EU level. We express the impacts corresponding to the control variables of the individual Planetary Boundaries together with a measure of their respective uncertainties. We tested four sharing principles for assigning a share of the safe operating space (SoSOS) to laundry washing and assessed if the impacts were within the assigned SoSOS. The choice of sharing principle had the greatest influence on the outcome. We therefore highlight the need for more research on the development and choice of sharing principles. Although further work is required to operationalize Planetary Boundaries in LCA, this study shows the potential to relate impacts of human activities to environmental boundaries using LCA, offering company and policy decision-makers information needed to promote environmental sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Application of radioactive sources in analytical instruments for planetary exploration

    International Nuclear Information System (INIS)

    Economou, T.E.

    2008-01-01

    Full text: In the past 50 years or so, many types of radioactive sources have been used in space exploration. 238 Pu is often used in space missions in Radioactive Heater Units (RHU) and Radioisotope Thermoelectric Generators (RTG) for heat and power generation, respectively. In 1960's, 2 ' 42 Cm alpha radioactive sources have been used for the first time in space applications on 3 Surveyor spacecrafts to obtain the chemical composition of the lunar surface with an instrument based on the Rutherford backscatterring of the alpha particles from nuclei in the analyzed sample. 242 Cm is an alpha emitter of 6.1 MeV alpha particles. Its half-life time, 163 days, is short enough to allow sources to be prepared with the necessary high intensity per unit area ( up to 470 mCi and FWHM of about 1.5% in the lunar instruments) that results in narrow energy distribution, yet long enough that the sources have adequate lifetimes for short duration missions. 242 Cm is readily prepared in curie quantities by irradiation of 241 Am by neutrons in nuclear reactors, followed by chemical separation of the curium from the americium and fission products. For long duration missions, like for example missions to Mars, comets, and asteroids, the isotope 244 Cm (T 1/2 =18.1 y, E α =5.8 MeV) is a better source because of its much longer half-life time. Both of these isotopes are also excellent x-ray excitation sources and have been used for that purpose on several planetary missions. For the light elements the excitation is caused mainly by the alpha particles, while for the heavier elements (> Ca) the excitation is mainly due to the x-rays from the Pu L-lines (E x =14-18 keV). 244 Cm has been used in several variations of the Alpha Proton Xray Spectrometer (APXS): PHOBOS 1 and 2 Pathfinder, Russian Mars-96 mission, Mars Exploration Rover (MER) and Rosetta. Other sources used in X-ray fluorescence instruments in space are 55 Fe and 109 Cd (Viking1,2, Beagle 2) and 57 Co is used in Moessbauer

  5. High Measurement Channel Density Sensor Array Impedance Analyzer for Planetary Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary exploration missions, such as those planned by NASA and other space agencies over the next few decades, require advanced chemical and biological marker...

  6. Development of efficient GPU parallelization of WRF Yonsei University planetary boundary layer scheme

    Directory of Open Access Journals (Sweden)

    M. Huang

    2015-09-01

    Full Text Available The planetary boundary layer (PBL is the lowest part of the atmosphere and where its character is directly affected by its contact with the underlying planetary surface. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transport in the whole atmospheric column. It determines the flux profiles within the well-mixed boundary layer and the more stable layer above. It thus provides an evolutionary model of atmospheric temperature, moisture (including clouds, and horizontal momentum in the entire atmospheric column. For such purposes, several PBL models have been proposed and employed in the weather research and forecasting (WRF model of which the Yonsei University (YSU scheme is one. To expedite weather research and prediction, we have put tremendous effort into developing an accelerated implementation of the entire WRF model using graphics processing unit (GPU massive parallel computing architecture whilst maintaining its accuracy as compared to its central processing unit (CPU-based implementation. This paper presents our efficient GPU-based design on a WRF YSU PBL scheme. Using one NVIDIA Tesla K40 GPU, the GPU-based YSU PBL scheme achieves a speedup of 193× with respect to its CPU counterpart running on one CPU core, whereas the speedup for one CPU socket (4 cores with respect to 1 CPU core is only 3.5×. We can even boost the speedup to 360× with respect to 1 CPU core as two K40 GPUs are applied.

  7. Ultra-Compact Raman Spectrometer for Planetary Explorations

    Science.gov (United States)

    Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul

    2016-01-01

    To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.

  8. Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2014-05-01

    The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.

  9. From Planetary Boundaries to national fair shares of the global safe operating space - How can the scales be bridged?

    Science.gov (United States)

    Häyhä, Tiina; Cornell, Sarah; Lucas, Paul; van Vuuren, Detlef; Hoff, Holger

    2016-04-01

    The planetary boundaries framework proposes precautionary quantitative global limits to the anthropogenic perturbation of crucial Earth system processes. In this way, it marks out a planetary 'safe operating space' for human activities. However, decisions regarding resource use and emissions are mostly made at much smaller scales, mostly by (sub-)national and regional governments, businesses, and other local actors. To operationalize the planetary boundaries, they need to be translated into and aligned with targets that are relevant at these smaller scales. In this paper, we develop a framework that addresses the three dimension of bridging across scales: biophysical, socio-economic and ethical, to provide a consistent universally applicable approach for translating the planetary boundaries into national level context-specific and fair shares of the safe operating space. We discuss our findings in the context of previous studies and their implications for future analyses and policymaking. In this way, we help link the planetary boundaries framework to widely- applied operational and policy concepts for more robust strong sustainability decision-making.

  10. Study of Diurnal Cycle Variability of Planetary Boundary Layer Characteristics over the Red Sea and Arabian Peninsula

    KAUST Repository

    Li, Weigang

    2012-07-01

    This work is aimed at investigating diurnal cycle variability of the planetary boundary layer characteristics over the Arabian Peninsula and the Red Sea region. To fulfill this goal the downscaling simulations are performed using Weather Research and Forecasting (WRF) model. We analyze planetary boundary layer height, latent and sensible heat fluxes, and surface air temperature. The model results are compared with observations in different areas, for different seasons, and for different model resolutions. The model results are analyzed in order to better quantify the diurnal cycle variability over the Arabian Peninsula and the Red Sea. The specific features of this region are investigated and discussed.

  11. Exploring exotic states with twisted boundary conditions

    International Nuclear Information System (INIS)

    Agadjanov, Dimitri

    2017-01-01

    he goal of this thesis is to develop methods to study the nature and properties of exotic hadrons from lattice simulations. The main focus lies in the application of twisted boundary conditions. The thesis consists of a general introduction and the collection of three papers, represented respectively in three chapters. The introduction of the thesis reviews the theoretical background, which is further used in the rest of the thesis. Further implementing partially twisted boundary conditions in the scalar sector of lattice QCD is studied. Then we develop a method to study the content of the exotic hadrons by determining the wave function renormalization constant from lattice simulations, exploiting the dependence of the spectrum on the twisted boundary conditions. The final chapter deals with a novel method to study the multi-channel scattering problem in a finite volume, which is relevant for exotic states. Its key idea is to extract the complex hadron-hadron optical potential, avoiding the difficulties, associated with the solution of the multi-channel Luescher equation.

  12. Exploring exotic states with twisted boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Agadjanov, Dimitri

    2017-09-11

    he goal of this thesis is to develop methods to study the nature and properties of exotic hadrons from lattice simulations. The main focus lies in the application of twisted boundary conditions. The thesis consists of a general introduction and the collection of three papers, represented respectively in three chapters. The introduction of the thesis reviews the theoretical background, which is further used in the rest of the thesis. Further implementing partially twisted boundary conditions in the scalar sector of lattice QCD is studied. Then we develop a method to study the content of the exotic hadrons by determining the wave function renormalization constant from lattice simulations, exploiting the dependence of the spectrum on the twisted boundary conditions. The final chapter deals with a novel method to study the multi-channel scattering problem in a finite volume, which is relevant for exotic states. Its key idea is to extract the complex hadron-hadron optical potential, avoiding the difficulties, associated with the solution of the multi-channel Luescher equation.

  13. A Path to Planetary Protection Requirements for Human Exploration: A Literature Review and Systems Engineering Approach

    Science.gov (United States)

    Johnson, James E.; Conley, Cassie; Siegel, Bette

    2015-01-01

    As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literature review of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current 'state of knowledge'. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection.

  14. A diagnostic approach to obtaining planetary boundary layer winds using satellite-derived thermal data

    Science.gov (United States)

    Belt, Carol L.; Fuelberg, Henry E.

    1984-01-01

    The feasibility of using satellite derived thermal data to generate realistic synoptic scale winds within the planetary boundary layer (PBL) is examined. Diagnostic modified Ekman wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite derived winds based on 62 predawn TIROS-N soundings are compared to similarly derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface.

  15. Planetary boundary layer model for estimating the radionuclides concentration in accidental liberations

    International Nuclear Information System (INIS)

    Molnary, Leslie de

    2002-01-01

    A two layer bulk model is used to simulate numerically the time and spatial evolution of concentration of radionuclides in the Planetary Boundary Layer (PBL) for convective and stable conditions. In this model, the closure hypothesis are based on the integrated version of the Turbulent Kinetics Energy equation. This type of model was adopted here because it is numerically simple to be applied operationally in routine and emergency support systems of atmospheric releases at nuclear power plants, and the hypothesis of the efficiency of the vertical mixing seems to be physically reasonable to simulate PBL evolution for high wind conditions and stable conditions in subtropical latitudes regions. In order to validate the model, numerical simulations were carried out with initial and boundary conditions based on vertical profiles of temperatures and horizontal wind speed and direction obtained from tethered balloon soundings, synoptic charts at 850 hPa and surface observations. Comparisons between a 24 hour long numerical simulation and observations indicate that the model is capable of reproduce the diurnal evolution of temperature and horizontal wind during the convective regime. During stable conditions, the slab model was able to simulate the intensity of the surface inversion as a difference between the mixed layer and the surface temperature. The simulated mixed layer height matches with observations during the convective and stable regime. (author)

  16. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    Science.gov (United States)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  17. Development and Testing of Compression Technologies Using Advanced Materials for Mechanical Counter-Pressure Planetary Exploration Suits

    Data.gov (United States)

    National Aeronautics and Space Administration — Mechanical counterpressure (MCP) space suits have the potential to greatly improve the mobility of astronauts as they conduct planetary exploration activities. MCP...

  18. Electrical sensing of the dynamical structure of the planetary boundary layer

    Science.gov (United States)

    Nicoll, K. A.; Harrison, R. G.; Silva, H. G.; Salgado, R.; Melgâo, M.; Bortoli, D.

    2018-04-01

    Turbulent and convective processes within the planetary boundary layer are responsible for the transport of moisture, momentum and particulate matter, but are also important in determining the electrical charge transport of the lower atmosphere. This paper presents the first high resolution vertical charge profiles during fair weather conditions, obtained with instrumented radiosonde balloons over Alqueva, Portugal during the summer of 2014. The short intervals (4 h) between balloon flights enabled the diurnal variation in the vertical profile of charge within the boundary layer to be examined in detail, with much smaller charges (up to 20 pC m- 3) observed during stable night time periods than during the day. Following sunrise, the evolution of the charge profile was complex, demonstrating charged ultrafine aerosol, lofted upwards by daytime convection. This produced charge up to 92 pC m- 3 up to 500 m above the surface. The diurnal variation in the integrated column of charge above the site tracked closely with the diurnal variation in near surface charge as derived from a nearby electric field sensor, confirming the importance of the link between surface charge generation processes and aloft. The local aerosol vertical profiles were estimated using backscatter measurements from a collocated ceilometer. These were utilised in a simple model to calculate the charge expected due to vertical conduction current flow in the global electric circuit through aerosol layers. The analysis presented here demonstrates that charge can provide detailed information about boundary layer transport, particularly in regard to the ultrafine aerosol structure, that conventional thermodynamic and ceilometer measurements do not.

  19. Design of Mobility System for Ground Model of Planetary Exploration Rover

    Directory of Open Access Journals (Sweden)

    Younkyu Kim

    2012-12-01

    Full Text Available In recent years, a number of missions have been planned and conducted worldwide on the planets such as Mars, which involves the unmanned robotic exploration with the use of rover. The rover is an important system for unmanned planetary exploration, performing the locomotion and sample collection and analysis at the exploration target of the planetary surface designated by the operator. This study investigates the development of mobility system for the rover ground model necessary to the planetary surface exploration for the benefit of future planetary exploration mission in Korea. First, the requirements for the rover mobility system are summarized and a new mechanism is proposed for a stable performance on rough terrain which consists of the passive suspension system with 8 wheeled double 4-bar linkage (DFBL, followed by the performance evaluation for the mechanism of the mobility system based on the shape design and simulation. The proposed mobility system DFBL was compared with the Rocker-Bogie suspension system of US space agency National Aeronautics and Space Administration and 8 wheeled mobility system CRAB8 developed in Switzerland, using the simulation to demonstrate the superiority with respect to the stability of locomotion. On the basis of the simulation results, a general system configuration was proposed and designed for the rover manufacture.

  20. Opportunities and trade-offs of biomass based negative emissions within planetary boundaries

    Science.gov (United States)

    Heck, Vera; Gerten, Dieter; Lucht, Wolfgang

    2017-04-01

    The Paris Agreement requires "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of the century" (UNFCCC, 2015). Without a full decarbonization of the energy and land use sector until the second half of this century, negative emission technologies (NETs) are required to achieve net zero greenhouse gas emissions. Integrated assessment studies indicate that bioenergy with carbon capture and storage (BECCS), a land based NET, has the potential to contribute substantially to balancing anthropogenic fossil fuel emissions. However, significant negative emission potentials from BECCS require substantial biomass potentials, which can only be achieved by intensively managed (fertilized and irrigated) large-scale biomass plantations. Additional to direct trade-offs of land and water availability, the implementation of large-scale biomass plantations implies major restructuring of the land surface on top of existing land use and would be accompanied by indirect trade-offs such as changes in moisture and energy fluxes. In the context of the planetary boundaries framework as proposed by Rockström et al. (2009), BECCS might contribute to reduce the transgression of the planetary boundary (PB) for climate change, but would most likely steer the Earth system closer to the PB for freshwater use and lead to further transgression of the PBs for land system change, biosphere integrity and biogeochemical flows. This presentation will investigate the opportunities of second generation biomass potentials within the safe operating space for humanity and highlight the multidimensional trade-offs between biomass potentials for BECCS in relation to the PBs. Scenarios of land availability for biomass plantations and land based carbon sequestration were developed with a spatially explicit multi-criterial optimization framework, considering the precautionary need to stay within the safe operating space vis-à-vis the need to

  1. Exploring boundary-spanning practices among creativity managers

    DEFF Research Database (Denmark)

    Andersen, Poul Houman; Kragh, Hanne

    2015-01-01

    Purpose – External inputs are critical for organisational creativity. In order to bridge different thought worlds and cross-organisational barriers, managers must initiate and motivate boundary spanning processes. The purpose of this paper is to explore how boundary spanners manage creativity...... and observation. Findings – Three meta-practices used by managers to manage boundary-spanning creative projects are presented: defining the creative space, making space for creativity and acting in the creative space. These practices are detailed in seven case studies of creative projects. Research limitations...

  2. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data

    Directory of Open Access Journals (Sweden)

    J. Guo

    2016-10-01

    Full Text Available The important roles of the planetary boundary layer (PBL in climate, weather and air quality have long been recognized, but little is known about the PBL climatology in China. Using the fine-resolution sounding observations made across China and reanalysis data, we conducted a comprehensive investigation of the PBL in China from January 2011 to July 2015. The boundary layer height (BLH is found to be generally higher in spring and summer than that in fall and winter. The comparison of seasonally averaged BLHs derived from observations and reanalysis, on average, shows good agreement, despite the pronounced inconsistence in some regions. The BLH, derived from soundings conducted three or four times daily in summer, tends to peak in the early afternoon, and the diurnal amplitude of BLH is higher in the northern and western subregions of China than other subregions. The meteorological influence on the annual cycle of BLH is investigated as well, showing that BLH at most sounding sites is negatively associated with the surface pressure and lower tropospheric stability, but positively associated with the near-surface wind speed and temperature. In addition, cloud tends to suppress the development of PBL, particularly in the early afternoon. This indicates that meteorology plays a significant role in the PBL processes. Overall, the key findings obtained from this study lay a solid foundation for us to gain a deep insight into the fundamentals of PBL in China, which helps to understand the roles that the PBL plays in the air pollution, weather and climate of China.

  3. Characterization of a Planetary Boundary Layer model to evaluate radionuclides releases in nuclear installations

    International Nuclear Information System (INIS)

    Molnary, Leslie de

    1993-01-01

    A two layer bulk model is used to simulate numerically the time and spatial evolution of concentration of radionuclides in the Planetary Boundary Layer (PBL) for convective and stable conditions. In this model, the closure hypothesis are based on the integrated version of the Turbulent Kinetics Energy (TKE) equation (Smeda,1979). This type of model was adopted here because it is numerically simple to be applied operationally in routine and emergency support systems of atmospheric releases at nuclear power plants, and the hypothesis of the efficiency of the vertical mixing seems to be physically reasonable to simulated PBL evolution for high wind conditions and stable conditions in Subtropical latitudes regions. In order to validate the model to the nuclear power plants of the Centro Experimental Aramar (CEA), located in Ipero, State of Sao Paulo, Brazil, numerical simulations were carried out with initial and boundary conditions based on vertical profiles of temperature and horizontal wind speed and direction obtained from tethered balloon soundings, synoptic charts at 850 hPa and surface observations. Comparisons between a 24 hour long numerical simulation and observations indicate that the model is capable of reproduce the diurnal evolution of temperature and horizontal wind during the convective regime. During stable conditions, the slab model was able to simulate the intensity of the surface inversion as a difference between the mixed layer and surface temperatures. The simulated mixed layer height matches with observations during the convective and stable regime. A daytime release of radionuclides was simulated for CEA region and the results indicated that the maximum relative concentration reaches a distance about 15 Km in 1 hour, varing from 100 times background at the moment of the release to 15 times the background. For night releases, the maximum concentration reaches the same distance in 45 minutes, varing from 100 to 30 times the background values

  4. Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations

    Directory of Open Access Journals (Sweden)

    S. Nishizawa

    2015-10-01

    Full Text Available We examine the influence of the grid aspect ratio of horizontal to vertical grid spacing on turbulence in the planetary boundary layer (PBL in a large-eddy simulation (LES. In order to clarify and distinguish them from other artificial effects caused by numerical schemes, we used a fully compressible meteorological LES model with a fully explicit scheme of temporal integration. The influences are investigated with a series of sensitivity tests with parameter sweeps of spatial resolution and grid aspect ratio. We confirmed that the mixing length of the eddy viscosity and diffusion due to sub-grid-scale turbulence plays an essential role in reproducing the theoretical −5/3 slope of the energy spectrum. If we define the filter length in LES modeling based on consideration of the numerical scheme, and introduce a corrective factor for the grid aspect ratio into the mixing length, the theoretical slope of the energy spectrum can be obtained; otherwise, spurious energy piling appears at high wave numbers. We also found that the grid aspect ratio has influence on the turbulent statistics, especially the skewness of the vertical velocity near the top of the PBL, which becomes spuriously large with large aspect ratio, even if a reasonable spectrum is obtained.

  5. Evolution of the Planetary Boundary Layer on the northern coast of Brazil during the CHUVA campaign

    Science.gov (United States)

    Ramos, Diogo Nunes da Silva; Fernandez, Julio Pablo Reyes; Fisch, Gilberto

    2018-05-01

    This study aims to characterize the wind and thermodynamic structure of the Planetary Boundary Layer (PBL) on the northern coast of Brazil (NCB) via the CHUVA datasets. Three synoptic conditions were present in the NCB region between March 1 and 25, 2010: a dry period, the Upper Tropospheric Cyclonic Vortex (UTCV) and the Intertropical Convergence Zone (ITCZ). Nighttime precipitation accounted for 78% of the total precipitation observed in the month, mainly during the ITCZ. In general, the surface meteorological fields were few changed by intense weather events due to proximity to the ocean and the predominant contribution of the northeasterly trade winds. There was also a weak sea breeze signal that maintained the horizontal moisture flow in the studied area. On dry days, the PBL depth was higher, drier, and warmer, resulting in stronger winds below 500 m. Moreover, trends throughout the period suggest that PBLs are near-neutral below 500 m. However, the wind variability was intensified by up to 20% due to downdrafts and higher wind shears during the deep convection mechanisms derived by UTCV. Furthermore, ITCZ mixed rainfall cooled the PBL at approximately 2 K, making it very stable according to the Richardson number classification adopted. The observed temporal and spatial scale represent challenges to the physical parameterizations used to improve numerical weather prediction models over tropical coastal areas.

  6. Sensitivity of WRF-simulated planetary boundary layer height to land cover and soil changes

    Directory of Open Access Journals (Sweden)

    Ferenc Ács

    2014-09-01

    Full Text Available Planetary boundary layer (PBL height sensitivity to both so-called single and accumulated land cover and soil changes is investigated in shallow convection under cloud-free conditions to compare the effects. Single land cover type and soil changes are carried out to be able to unequivocally separate the cause and effect relationships. The Yonsei University scheme in the framework of the Weather Research Forecasting (WRF mesoscale modeling system is used as a research tool. The area investigated lies in the Carpathian Basin, where anticyclonic weather type influence dominated on the five summer days chosen for simulations. Observation-based methods applied for validating diurnal PBL height courses manifest great deviations reaching 500–1300 m. The obtained deviations are somewhat smaller around midday and greater at night. They can originate either from the differences in the measuring principles or from the differences in the atmospheric profiles used. Concerning sensitivity analyses, we showed that PBL height differences caused by soil change are comparable with the PBL height differences caused by land cover change. The differences are much greater in the single than in the accumulated tests. Space averaged diurnal course difference around midday reaching a few tens of meters can be presumably treated as strongly significant. PBL height differences obtained in the sensitivity analyses are, at least in our case, smaller than those obtained by applying different observation based methods. The results may be utilized in PBL height diurnal course analyses.

  7. Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data

    Science.gov (United States)

    Molod, Andrea M.; Salmun, H.; Dempsey, M

    2015-01-01

    An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear conditions, summertime averaged hourly time series of PBL heights compare well with Richardson-number based estimates at the few NPN stations with hourly temperature measurements. Comparisons with clear sky reanalysis based estimates show that the wind profiler PBL heights are lower by approximately 250-500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy conditions, and are generally higher than both the Richardson number based and reanalysis PBL heights, resulting in a smaller clear-cloudy condition difference. The algorithm presented here was shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.

  8. Modeling dynamic behavior of Radon-222 in the planetary boundary layer

    International Nuclear Information System (INIS)

    Yuan, Y.C.; Stunder, M.J.

    1983-01-01

    A model has been used to simulate the dynamic behavior of radon concentration in the lower atmosphere from naturally occurring sources. The model includes prediction of radon exhalation rate from the surface of the ground due to convection and diffusion processes and the radon concentration profile in the planetary boundary layer. A time-dependent radon exhalation rate, variable mixing height, and altitude-dependent diffusivity are incorporated into the diffusion model by transforming the governing equation. The Galerkin finite-element technique and Crank-Nicholson finite different time marching are used in solving the discretized differential equations. The model-simulated time-varying radon concentrations near the ground agree well with measurements made over a period of seven days. It has been demonstrated that the model provides a reasonably good prediction of ambient radon concentration. As a general tool, with the input of actual radon concentration measurements, the model is also capable of estimating average radon exhalation rate from the ground surface. With current techniques, radon flux measurement is still a time-consuming and difficult task

  9. TOMOX : An X-rays tomographer for planetary exploration

    Science.gov (United States)

    Marinangeli, Lucia; Pompilio, Loredana; Chiara Tangari, Anna; Baliva, Antonio; Alvaro, Matteo; Chiara Domeneghetti, Maria; Frau, Franco; Melis, Maria Teresa; Bonanno, Giovanni; Consolata Rapisarda, Maria; Petrinca, Paolo; Menozzi, Oliva; Lasalvia, Vasco; Pirrotta, Simone

    2017-04-01

    The TOMOX instrument has recently been founded under the ASI DC-EOS-2014-309 call. The TOMOX objective is to acquire both X-ray fluorescence and diffraction measurements from a sample in order to: a) achieve its chemical and mineralogical composition; b) reconstruct a 3D tomography of the sample exposed surface; c) give hints regarding the sample age. Nevertheless, this technique has applicability in several disciplines other than planetary geology, especially archaeology. The word 'tomography' is nowadays used for many 3D imaging methods, not just for those based on radiographic projections, but also for a wider range of techniques that yield 3D images. Fluorescence tomography is based on the signal produced on an energy-sensitive detector, generally placed in the horizontal plane at some angle with respect to the incident beam caused by photons coming from fluorescence emission. So far, a number of setups have been designed in order to acquire X-rays fluorescence tomograms of several different sample types. The proposed instrument is based on the MARS-XRD heritage, an ultra miniaturised XRD and XRF instrument developed for the ESA ExoMars mission. The general idea of TOMOX is to distribute both sources and detectors along a moving hemispherical support around the target sample. As a result, both sources move integrally with the detectors while the sample is observed from a fixed position, thus preserving the geometry of observation. In that way, the whole sample surface is imagined and XRD and XRF measurements are acquired continuously along all the scans. We plan to irradiate the target sample with X-rays emitted from 55Fe and 109Cd radioactive sources. 55Fe and 109Cd radioisotopes are commonly used as X-ray sources for analysis of metals in soils and rocks. The excitation energies of 55Fe and 109Cd are 5.9 keV, and 22.1 and 87.9 keV, respectively. Therefore, the elemental analysis ranges are Al to Mn with K lines excited with 55Fe; Ca to Rh, with K lines

  10. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    Science.gov (United States)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley,; Scheidt, S.; Carter, L.; hide

    2017-01-01

    Through fly-by, orbiter, rover, and even crewed missions, National Aeronautics and Space Administration (NASA) has been extremely successful in exploring planetary bodies throughout our Solar System. The focus on increasingly complex Mars orbiter and rover missions has helped us understand how Mars has evolved over time and whether life has ever existed on the red planet. However, large strategic knowledge gaps (SKGs) still exist in our understanding of the evolution of the Solar System (e.g. the Lunar Exploration Analysis Group, Small Bodies Analysis Group, and Mars Exploration Program Analysis Group). Sending humans to these bodies is a critical part of addressing these SKGs in order to transition to a new era of planetary exploration by 2050.

  11. Planetary exploration with nanosatellites: a space campus for future technology development

    Science.gov (United States)

    Drossart, P.; Mosser, B.; Segret, B.

    2017-09-01

    Planetary exploration is at the eve of a revolution through nanosatellites accompanying larger missions, or freely cruising in the solar system, providing a man-made cosmic web for in situ or remote sensing exploration of the Solar System. A first step is to build a specific place dedicated to nanosatellite development. The context of the CCERES PSL space campus presents an environment for nanosatellite testing and integration, a concurrent engineering facility room for project analysis and science environment dedicated to this task.

  12. International cooperation in planetary exploration - Past success and future prospects

    Science.gov (United States)

    Rosendhal, Jeffrey D.

    1987-01-01

    A review is given of the ways in which the National Aeronautics and Space Administration (NASA) has participated in international efforts to explore the solar system. Past examples of successful international cooperative programs are described. Prospects for future cooperative efforts are discussed with emphasis placed on current events, issues, and trends which are likely to affect possibilities for cooperation over the next 5 to 10 years. Key factors which will play a major role in shaping future prospects for cooperation include the move towards balancing the budget in the United States and the impact of the Challenger accident on the NASA program.

  13. A study of the dilution potential of the planetary boundary layer over India and adjoining oceans using radon measurements

    International Nuclear Information System (INIS)

    Rangarajan, C; Eapen, C.D.

    1990-01-01

    A comparison is made of the dilution potential of the Planetary Boundary Layer (PBI) at surface and high altitude locations in India and over the oceans of the Arabian Sea, Bay of Bengal region, using radon as a tracer. The significant difference in the diffusive properties of the PBL at these locations and their variations through the seasons are discussed and the use of these studies for plant siting pointed out. (author)

  14. An investigation of ozone and planetary boundary layer dynamics over the complex topography of Grenoble combining measurements and modeling

    OpenAIRE

    Couach , O.; Balin , I.; Jiménez , R.; Ristori , P.; Perego , S.; Kirchner , F.; Simeonov , V.; Calpini , B.; Van Den Bergh , H.

    2003-01-01

    This paper concerns an evaluation of ozone (O3) and planetary boundary layer (PBL) dynamics over the complex topography of the Grenoble region through a combination of measurements and mesoscale model (METPHOMOD) predictions for three days, during July 1999. The measurements of O3 and PBL structure were obtained with a Differential Absorption Lidar (DIAL) system, situated 20 km south of Grenoble at Vif (310 m ASL). The combined lidar observations ...

  15. Combining Open-Source Packages for Planetary Exploration

    Science.gov (United States)

    Schmidt, Albrecht; Grieger, Björn; Völk, Stefan

    2015-04-01

    The science planning of the ESA Rosetta mission has presented challenges which were addressed with combining various open-source software packages, such as the SPICE toolkit, the Python language and the Web graphics library three.js. The challenge was to compute certain parameters from a pool of trajectories and (possible) attitudes to describe the behaviour of the spacecraft. To be able to do this declaratively and efficiently, a C library was implemented that allows to interface the SPICE toolkit for geometrical computations from the Python language and process as much data as possible during one subroutine call. To minimise the lines of code one has to write special care was taken to ensure that the bindings were idiomatic and thus integrate well into the Python language and ecosystem. When done well, this very much simplifies the structure of the code and facilitates the testing for correctness by automatic test suites and visual inspections. For rapid visualisation and confirmation of correctness of results, the geometries were visualised with the three.js library, a popular Javascript library for displaying three-dimensional graphics in a Web browser. Programmatically, this was achieved by generating data files from SPICE sources that were included into templated HTML and displayed by a browser, thus made easily accessible to interested parties at large. As feedback came and new ideas were to be explored, the authors benefited greatly from the design of the Python-to-SPICE library which allowed the expression of algorithms to be concise and easier to communicate. In summary, by combining several well-established open-source tools, we were able to put together a flexible computation and visualisation environment that helped communicate and build confidence in planning ideas.

  16. Planetary boundary layer height over the Indian subcontinent: Variability and controls with respect to monsoon

    Science.gov (United States)

    Sathyanadh, Anusha; Prabhakaran, Thara; Patil, Chetana; Karipot, Anandakumar

    2017-10-01

    Planetary boundary layer (PBL) height characteristics over the Indian sub-continent at diurnal to seasonal scales and its controlling factors in relation to monsoon are investigated. The reanalysis (Modern Era Retrospective analysis for Research and Applications, MERRA) PBL heights (PBLH) used for the study are validated against those derived from radiosonde observations and radio occultation air temperature and humidity profiles. The radiosonde observations include routine India Meteorological Department observations at two locations (coastal and an inland) for one full year and campaign based early afternoon radiosonde observations at six inland locations over the study region for selected days from May-September 2011. The temperature and humidity profiles from radio occultations spread over the sub-continent at irregular timings during the year 2011. The correlations and root mean square errors are in the range 0.74-0.83 and 407 m-643 m, respectively. Large pre-monsoon, monsoon and post-monsoon variations in PBL maximum height (1000 m-4000 m), time of occurrence of maximum height (11:00 LST-17:00 LST) and growth rate (100 to 400 m h- 1) are noted over the land, depending on geographical location and more significantly on the moisture availability which influences the surface sensible and latent heat fluxes. The PBLH variations associated with active-break intra-seasonal monsoon oscillations are up to 1000 m over central Indian locations. Inter relationship between the PBLH and the controlling factors, i.e. Evaporative Fraction, net radiation, friction velocity, surface Richardson number, and scalar diffusivity fraction, show significant variation between dry and wet PBL regimes, which also varies with geographical location. Evaporative fraction has dominant influence on the PBLH over the region. Enhanced entrainment during monsoon contributes to reduction in PBLH, whereas the opposite effect is noted during dry period. Linear regression, cross wavelet and

  17. Aerosol climatology and planetary boundary influence at the Jungfraujoch analyzed by synoptic weather types

    Directory of Open Access Journals (Sweden)

    M. Collaud Coen

    2011-06-01

    Full Text Available Fourteen years of meteorological parameters, aerosol variables (absorption and scattering coefficients, aerosol number concentration and trace gases (CO, NOx, SO2 measured at the Jungfraujoch (JFJ, 3580 m a.s.l. have been analyzed as a function of different synoptic weather types. The Schüepp synoptic weather type of the Alps (SYNALP classification from the Alpine Weather Statistics (AWS was used to define the synoptic meteorology over the whole Swiss region. The seasonal contribution of each synoptic weather type to the aerosol concentration was deduced from the aerosol annual cycles while the planetary boundary layer (PBL influence was estimated by means of the diurnal cycles. Since aerosols are scavenged by precipitation, the diurnal cycle of the CO concentration was also used to identify polluted air masses. SO2 and NOx concentrations were used as precursor tracers for new particle formation and growth, respectively. The aerosol optical parameters and number concentration show elevated loadings during advective weather types during the December–March period and for the convective anticyclonic and convective indifferent weather types during the April–September period. This study confirms the consensus view that the JFJ is mainly influenced by the free troposphere during winter and by injection of air parcels from the PBL during summer. A more detailed picture is, however, drawn where the JFJ is completely influenced by free tropospheric air masses in winter during advective weather types and largely influenced by the PBL also during the night in summer during the subsidence weather type. Between these two extreme situations, the PBL influence at the JFJ depends on both the time of year and the synoptic weather type. The fraction of PBL air transported to the JFJ was estimated by the relative increase of the specific humidity and CO.

  18. ESTIMASI KETINGGIAN PLANETARY BOUNDARY LAYER INDONESIA MENGGUNAKAN DATA ECMWF REANALYSIS ERA-INTERM

    Directory of Open Access Journals (Sweden)

    Vivi Fitriani

    2018-03-01

    Full Text Available Planetary Boundary Layer (PBL merupakan bagian dari troposfer yang mendapat pengaruh secara langsung dari permukaan bumi, yang memiliki peranan penting dalam iklim, cuaca dan kualitas udara. PBL dikenal sangat sulit untuk diobservasi dari luar angkasa dikarenakan strukturnya yang sangat kompleks dan berubah-ubah. Salah satu properties yang paling relevan dan fundamental untuk diselidiki adalah ketinggian PBL. Ketinggian PBL dihitung menggunakan tujuh metode berbasis gradien dari kelembaban relatif (RH, temperatur virtual (Tv, temperatur potensial ( , temperatur potensial virtual ( , kelembaban spesifik (q, refraktiviti atmosfer (N, dan Kecepatan angin (V yang diperoleh dari data ECMWF Reanalisis Era Interm selama enam bulan di wilayah 100LU–100LS, 900BT –1500BT dengan resolusi spasial 2.50 x 2.50. Beberapa metode menunjukkan hasil yang indentik untuk ketinggian PBL pada waktu dan tempat tertentu. Metode gradien  dan V konsisten memberikan ketinggian PBL yang tinggi, sementara metode q dan N menghasilkan ketinggian PBL terendah signifikan. Tingginya variasi bulanan dan harian umumnya ditemukan diseluruh wilayah daratan, sedangkan wilayah lautan relatif konstan. Beberapa sumber dari kedua parametrik dan struktur ketidakpastian dari nilai ketinggian PBL diestimasi secara statistik menggunakan lima uji statistik, yaitu uji Student’s t, Uji F, Uji Kormogoorv Sminorv, Uji Korelasi Pearson, dan Uji Korelasi NonParametrik Spearman. Ditemukan adanya perbedaan yang signifikan secara statistik antara ketujuh metode. Rata-rata median ketinggian PBL berbeda ratusan hingga ribuan meter untuk kebanyakan metode yang dibandingkan. Estimasi ketinggian PBL di Indonesia menggunakan metode RH berada di ketinggian 2000 m-4000m pada siang hari dan pada malam hari berada di bawah 2500  m.

  19. Evaluating Models of The Neutral, Barotropic Planetary Boundary Layer using Integral Measures: Part I. Overview

    Science.gov (United States)

    Hess, G. D.; Garratt, J. R.

    Data for the cross-isobaric angle 0, the geostrophic drag coefficient Cg, and the functions A and B of Rossby number similarity theory, obtained from meteorological field experiments, are used to evaluate a range of models of the neutral, barotropic planetary boundary layer. The data give well-defined relationships for 0, Cg, and the integrated dissipation rate over the boundary layer, as a function of the surface Rossby number. Lettau's first-order closure mixing-length model gives an excellent fit to the data; other simple models give reasonable agreement. However more sophisticated models, e.g., higher-order closure, large-eddy simulation, direct numerical simulation and laboratory models, give poor fits to the data. The simplemodels have (at least) one free parameter in their turbulence closure that is matched toatmospheric observations; the more sophisticated models either base their closure onmore general flows or have no free closure parameters. It is suggested that all of theatmospheric experiments that we could locate violate the strict simplifying assumptionsof steady, homogeneous, neutral, barotropic flow required by the sophisticated models.The angle 0 is more sensitive to violations of the assumptions than is Cg.The behaviour of the data varies in three latitude regimes. In middle and high latitudes the observed values of A and B exhibit little latitudinal dependence; the best estimates are A = 1.3 and B = 4.4. In lower latitudes the neutral, barotropic Rossby number theory breaks down. The value of B increases towards the Equator; the determination of A is ambiguous - the trend can increase or decrease towards the Equator. Between approximately 5° and 30° latitude, the scatter in the data is thought to be primarily due to the inherent presence of baroclinicity. The presence of the trade-wind inversion, thermal instability and the horizontal component of the Earth's rotation ΩH also contribute.Marked changes in the values of A and B occur in the

  20. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    Science.gov (United States)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant

  1. Relations between overturning length scales at the Spanish planetary boundary layer

    Science.gov (United States)

    López, Pilar; Cano, José L.

    2016-04-01

    tides and Thorpe scale in Uchiura Bay, Journal of Oceanography, 59, 845-850, 2003. López P., Cano J. L., Cano D. and Tijera M.: Thorpe method applied to planetary boundary layer data, Il Nuovo Cimento, 31C(5-6), 881-892, 2008. DOI: 10.1393/ncc/i2009-10338-3. Lorke A. and Wüest A.: Probability density of displacement and overturning length scales under diverse stratification, J. Geophys. Res., 107 (C12), 3214-3225, 2002. Piera, J., Roget, E. and Catalan, J.: Turbulent patch identification in microstructure profiles: a method based on wavelet denoising and Thorpe displacement analysis, J. Atmospheric and Oceanic Technology, 19, 1390-1402, 2002. Piera, J.: Signal processing of microstructure profiles: integrating turbulent spatial scales in aquatic ecological modelling, Ph. D. Thesis, Gerona University, Spain, 2004. Smyth, W. D. and Moum, J. N.: Length scales of turbulence in stably stratified mixing layers, Phys. Fluids., 12, 1327-1342, 2000. Thorpe, S.A.: Turbulence and Mixing in a Scottish Loch, Philos. Trans. R. Soc. London (Ser. A), 286(1334), 125-18, 1977.

  2. AN AUTONOMOUS GPS-DENIED UNMANNED VEHICLE PLATFORM BASED ON BINOCULAR VISION FOR PLANETARY EXPLORATION

    Directory of Open Access Journals (Sweden)

    M. Qin

    2018-04-01

    Full Text Available Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching based VO (Visual Odometry software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  3. An Autonomous Gps-Denied Unmanned Vehicle Platform Based on Binocular Vision for Planetary Exploration

    Science.gov (United States)

    Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.

    2018-04-01

    Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  4. The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains

    Directory of Open Access Journals (Sweden)

    Roland Clift

    2017-02-01

    Full Text Available The Planetary Boundaries (PB framework represents a significant advance in specifying the ecological constraints on human development. However, to enable decision-makers in business and public policy to respect these constraints in strategic planning, the PB framework needs to be developed to generate practical tools. With this objective in mind, we analyse the recent literature and highlight three major scientific and technical challenges in operationalizing the PB approach in decision-making: first, identification of thresholds or boundaries with associated metrics for different geographical scales; second, the need to frame approaches to allocate fair shares in the ‘safe operating space’ bounded by the PBs across the value chain and; third, the need for international bodies to co-ordinate the implementation of the measures needed to respect the Planetary Boundaries. For the first two of these challenges, we consider how they might be addressed for four PBs: climate change, freshwater use, biosphere integrity and chemical pollution and other novel entities. Four key opportunities are identified: (1 development of a common system of metrics that can be applied consistently at and across different scales; (2 setting ‘distance from boundary’ measures that can be applied at different scales; (3 development of global, preferably open-source, databases and models; and (4 advancing understanding of the interactions between the different PBs. Addressing the scientific and technical challenges in operationalizing the planetary boundaries needs be complemented with progress in addressing the equity and ethical issues in allocating the safe operating space between companies and sectors.

  5. Universal dependences between turbulent and mean flow parameters instably and neutrally stratified Planetary Boundary Layers

    Directory of Open Access Journals (Sweden)

    I. N. Esau

    2006-01-01

    Full Text Available We consider the resistance law for the planetary boundary layer (PBL from the point of view of the similarity theory. In other words, we select the set of the PBL governing parameters and search for an optimal way to express through these parameters the geostrophic drag coefficient Cg=u* /Ug and the cross isobaric angle α (where u* is the friction velocity and Ug is the geostrophic wind speed. By this example, we demonstrate how to determine the 'parameter space' in the most convenient way, so that make independent the dimensionless numbers representing co-ordinates in the parameter space, and to avoid (or at least minimise artificial self-correlations caused by the appearance of the same factors (such as u* in the examined dimensionless combinations (e.g. in Cg=u* /Ug and in dimensionless numbers composed of the governing parameters. We also discuss the 'completeness' of the parameter space from the point of view of large-eddy simulation (LES modeller creating a database for a specific physical problem. As recognised recently, very large scatter of data in prior empirical dependencies of Cg and α on the surface Rossby number Ro=Ug| fz0|-1 (where z0 is the roughness length and the stratification characterised by µ was to a large extent caused by incompactness of the set of the governing parameters. The most important parameter overlooked in the traditional approach is the typical value of the Brunt-Väisälä frequency N in the free atmosphere (immediately above the PBL, which involves, besides Ro and µ, one more dimensionless number: µN=N/ | f |. Accordingly, we consider Cg and α as dependent on the three (rather then two basic dimensionless numbers (including µN using LES database DATABASE64. By these means we determine the form of the dependencies under consideration in the part of the parameter space representing typical atmospheric PBLs, and provide analytical expressions for Cg and α.

  6. On the effectiveness of surface assimilation in probabilistic nowcasts of planetary boundary layer profiles

    Science.gov (United States)

    Rostkier-Edelstein, Dorita; Hacker, Joshua

    2013-04-01

    Surface observations comprise a wide, non-expensive and reliable source of information about the state of the near-surface planetary boundary layer (PBL). Operational data assimilation systems have encountered several difficulties in effectively assimilating them, among others due to their local-scale representativeness, the transient coupling between the surface and the atmosphere aloft and the balance constraints usually used. A long-term goal of this work is to find an efficient system for probabilistic PBL nowcasting that can be employed wherever surface observations are present. Earlier work showed that surface observations can be an important source of information with a single column model (SCM) and an ensemble filter (EF). Here we extend that work to quantify the probabilistic skill of ensemble SCM predictions with a model including added complexity. We adopt a factor separation analysis to quantify the contribution of surface assimilation relative to that of selected model components (parameterized radiation and externally imposed horizontal advection) to the probabilistic skill of the system, and of any beneficial or detrimental interactions between them. To assess the real utility of the flow-dependent covariances estimated with the EF and of the SCM of the PBL we compare the skill of the SCM/EF system to that of a reference one based on climatological covariances and a 30-min persistence model. It consists of a dressing technique, whereby a deterministic 3D mesoscale forecast (e.g. from WRF model) is adjusted and dressed with uncertainty using a seasonal sample of mesoscale forecasts and surface forecast errors. Results show that assimilation of surface observations can improve deterministic and probabilistic profile predictions more significantly than major model improvements. Flow-dependent covariances estimated with the SCM/EF show clear advantage over the use of climatological covariances when the flow is characterized by wide variability, when

  7. The new Planetary Science Archive: A tool for exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Heather, David

    2016-07-01

    Introduction: The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces (e.g. FTP browser, Map based, Advanced search, and Machine interface): http://archives.esac.esa.int/psa All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. Updating the PSA: The PSA is currently implementing a number of significant changes, both to its web-based interface to the scientific community, and to its database structure. The new PSA will be up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's upcoming ExoMars and BepiColombo missions. The newly designed PSA homepage will provide direct access to scientific datasets via a text search for targets or missions. This will significantly reduce the complexity for users to find their data and will promote one-click access to the datasets. Additionally, the homepage will provide direct access to advanced views and searches of the datasets. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). Queries to the PSA database will be possible either via the homepage (for simple searches of missions or targets), or through a filter menu for more tailored queries. The filter menu will offer multiple options to search for a particular dataset or product, and will manage queries for both in-situ and remote sensing instruments. Parameters such as start-time, phase angle, and heliocentric distance will be emphasized. A further

  8. The development of the human exploration demonstration project (HEDP), a planetary systems testbed

    Science.gov (United States)

    Chevers, Edward S.; Korsmeyer, David J.

    1993-01-01

    The Human Exploration Demonstration Project (HEDP) is an ongoing task at the National Aeronautics and Space Administration's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment will consist of life support systems, physiological monitoring of project crew, a virtual environment workstation, and centralized data acquisition and habitat systems health monitoring. There will be several robotic systems on a simulated planetary landscape external to the habitat environment to provide representative work loads for the crew. This paper describes the status of the HEDP after one year, the major facilities composing the HEDP, the project's role as an Ames Research Center testbed, and the types of demonstration scenarios that will be run to showcase the technologies.

  9. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    with different PBL parameterizations at one coastal site over western Denmark. The evaluation focuses on determining which PBL parameterization performs best for wind energy forecasting, and presenting a validation methodology that takes into account wind speed at different heights. Winds speeds at heights...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...

  10. Highly Sensitive Tunable Diode Laser Spectrometers for In Situ Planetary Exploration

    Science.gov (United States)

    Vasudev, Ram; Mansour, Kamjou; Webster, Christopher R.

    2013-01-01

    This paper describes highly sensitive tunable diode laser spectrometers suitable for in situ planetary exploration. The technology developed at JPL is based on wavelength modulated cavity enhanced absorption spectroscopy. It is capable of sensitively detecting chemical signatures of life through the abundance of biogenic molecules and their isotopic composition, and chemicals such as water necessary for habitats of life. The technology would be suitable for searching for biomarkers, extinct life, potential habitats of extant life, and signatures of ancient climates on Mars; and for detecting biomarkers, prebiotic chemicals and habitats of life in the outer Solar System. It would be useful for prospecting for water on the Moon and asteroids, and characterizing its isotopic composition. Deployment on the Moon could provide ground truth to the recent remote measurements and help to uncover precious records of the early bombardment history of the inner Solar System buried at the shadowed poles, and elucidate the mechanism for the generation of near-surface water in the illuminated regions. The technology would also be useful for detecting other volatile molecules in planetary atmospheres and subsurface reservoirs, isotopic characterization of planetary materials, and searching for signatures of extinct life preserved in solid matrices.

  11. Acoustic explorations of the upper ocean boundary layer

    Science.gov (United States)

    Vagle, Svein

    2005-04-01

    The upper ocean boundary layer is an important but difficult to probe part of the ocean. A better understanding of small scale processes at the air-sea interface, including the vertical transfer of gases, heat, mass and momentum, are crucial to improving our understanding of the coupling between atmosphere and ocean. Also, this part of the ocean contains a significant part of the total biomass at all trophic levels and is therefore of great interest to researchers in a range of different fields. Innovative measurement plays a critical role in developing our understanding of the processes involved in the boundary layer, and the availability of low-cost, compact, digital signal processors and sonar technology in self-contained and cabled configurations has led to a number of exciting developments. This talk summarizes some recent explorations of this dynamic boundary layer using both active and passive acoustics. The resonant behavior of upper ocean bubbles combined with single and multi-frequency broad band active and passive devices are now giving us invaluable information on air-sea gas transfer, estimation of biological production, marine mammal behavior, wind speed and precipitation, surface and internal waves, turbulence, and acoustic communication in the surf zone.

  12. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    Science.gov (United States)

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.

  13. Human Expeditions to Near-Earth Asteroids: Implications for Exploration, Resource Utilization, Science, and Planetary Defense

    Science.gov (United States)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on human exploration of near-Earth asteroids (NEAs) and planetary defence. Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. With respect to planetary defence, in 2005 the U.S. Congress directed NASA to implement a survey program to detect, track, and characterize NEAs equal or greater than 140 m in diameter in order to access the threat from such objects to the Earth. The current goal of this survey is to achieve 90% completion of objects equal or greater than 140 m in diameter by 2020.

  14. Considering the Ethical Implications of Space Exploration and Potential Impacts on Planetary Environments and Possible Indigenous Life

    Science.gov (United States)

    Race, Margaret

    Since the early days of the Outer Space Treaty, a primary concern of planetary protection policy has been to avoid contamination of planetary environments by terrestrial microbes that could compromise current or subsequent scientific investigations, particularly those searching for indigenous life. Over the past decade robotic missions and astrobiological research have greatly increased our understanding of diverse planetary landscapes and altered our views about the survivability of terrestrial organisms in extreme environments. They have also expanded notions about the prospect for finding evidence of extraterrestrial life. Recently a number of different groups, including the COSPAR Planetary Protection Workshop in Montreal (January 2008), have questioned whether it is advisable to re-examine current biological planetary protection policy in light of the ethical implications and responsibilities to preserve planetary environments and possible indigenous life. This paper discusses the issues and concerns that have led to recent recommendations for convening an international workshop specifically to discuss planetary protection policy and practices within a broader ethical and practical framework, and to consider whether revisions to policy and practices should be made. In addition to including various international scientific and legal organizations and experts in such a workshop, it will be important to find ways to involve the public in these discussions about ethical aspects of planetary exploration.

  15. Lunar and Planetary Robotic Exploration Missions in the 20th Century

    Science.gov (United States)

    Huntress, W. T., Jr.; Moroz, V. I.; Shevalev, I. L.

    2003-07-01

    The prospect of traveling to the planets was science fiction at the beginning of the 20th Century and science fact at its end. The space age was born of the Cold War in the 1950s and throughout most of the remainder of the century it provided not just an adventure in the exploration of space but a suspenseful drama as the US and USSR competed to be first and best. It is a tale of patience to overcome obstacles, courage to try the previously impossible and persistence to overcome failure, a tale of both fantastic accomplishment and debilitating loss. We briefly describe the history of robotic lunar and planetary exploration in the 20th Century, the missions attempted, their goals and their fate. We describe how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation.

  16. Evaluation of Planetary Boundary Layer Scheme Sensitivities for the Purpose of Parameter Estimation

    Science.gov (United States)

    Meteorological model errors caused by imperfect parameterizations generally cannot be overcome simply by optimizing initial and boundary conditions. However, advanced data assimilation methods are capable of extracting significant information about parameterization behavior from ...

  17. Evaluating Models Of The Neutral, Barotropic Planetary Boundary Layer Using Integral Measures: Part Ii. Modelling Observed Conditions

    Science.gov (United States)

    Hess, G. D.; Garratt, J. R.

    The steady-state, horizontally homogeneous, neutral, barotropiccase forms the foundation of our theoretical understanding of the planetary boundary layer (PBL).While simple analytical models and first-order closure models simulate atmospheric observationsof this case well, more sophisticated models, in general, do not. In this paperwe examine how well three higher-order closure models, E - - l, E - l, and LRR - l,which have been especially modified for PBL applications, perform in predicting the behaviour of thecross-isobaric angle 0, the geostrophic drag coefficient Cg, and the integral of the dissipationrate over the boundary layer, as a function of the surface Rossby number Ro. For comparison we alsoexamine the performance of three first-order closure mixing-length models, two proposed byA. K. Blackadar and one by H. H. Lettau, and the performance of the standard model forsecond-order closure and a modification of it designed to reduce the overprediction of turbulence inthe upper part of the boundary layer.

  18. Robotic Missions to Small Bodies and Their Potential Contributions to Human Exploration and Planetary Defense

    Science.gov (United States)

    Abell, Paul A.; Rivkin, Andrew S.

    2015-01-01

    Introduction: Robotic missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration and planetary defense. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. These data can also be applied for gaining an understanding of pertinent small body physical characteristics that would also be beneficial for formulating future impact mitigation procedures. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the

  19. Novel lidar algorithms for atmospheric slantrange visibility, planetary boundary layer height, meteorogical phenomena and atmospheric layering measurements

    Science.gov (United States)

    Pantazis, Alexandros; Papayannis, Alexandros; Georgoussis, Georgios

    2018-04-01

    In this paper we present a development of novel algorithms and techniques implemented within the Laser Remote Sensing Laboratory (LRSL) of the National Technical University of Athens (NTUA), in collaboration with Raymetrics S.A., in order to incorporate them into a 3-Dimensional (3D) lidar. The lidar is transmitting at 355 nm in the eye safe region and the measurements then are transposed to the visual range at 550 nm, according to the World Meteorological Organization (WMO) and the International Civil Aviation Organization (ICAO) rules of daytime visibility. These algorithms are able to provide horizontal, slant and vertical visibility for tower aircraft controllers, meteorologists, but also from pilot's point of view. Other algorithms are also provided for detection of atmospheric layering in any given direction and vertical angle, along with the detection of the Planetary Boundary Layer Height (PBLH).

  20. Challenging the planetary boundaries II: Assessing the sustainable global population and phosphate supply, using a systems dynamics assessment model

    International Nuclear Information System (INIS)

    Sverdrup, Harald U.; Ragnarsdottir, Kristin Vala

    2011-01-01

    Highlights: → Peak phosphorus supply behaviour. → Recycling essential for phosphorus supply. → Phosphorus supply is connected to food security. - Abstract: A systems dynamics model was developed to assess the planetary boundary for P supply in relation to use by human society. It is concluded that present day use rates and poor recycling rates of P are unsustainable at timescales beyond 100+ a. The predictions made suggest that P will become a scarce and expensive material in the future. The study shows clearly that market mechanisms alone will not be able to secure an efficient use before a large part of the resource will have been allowed to dissipate into the natural environment. It is suggested that population size management and effective recycling measures must be planned long term to avoid unpleasant consequences of hunger and necessary corrections imposed on society by mass balance and thermodynamics.

  1. Planetary Science Exploration Through 2050: Strategic Gaps in Commercial and International Partnerships

    Science.gov (United States)

    Ghosh, A.

    2017-02-01

    Planetary science will see greater participation from the commercial sector and international space agencies. It is critical to understand how these entities can partner with NASA through 2050 and help realize NASA's goals in planetary science.

  2. Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts

    Science.gov (United States)

    Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In

  3. The TMT International Observatory: A quick overview of future opportunities for planetary science exploration

    Science.gov (United States)

    Dumas, Christophe; Dawson, Sandra; Otarola, Angel; Skidmore, Warren; Squires, Gordon; Travouillon, Tony; Greathouse, Thomas K.; Li, Jian-Yang; Lu, Junjun; Marchis, Frank; Meech, Karen J.; Wong, Michael H.

    2015-11-01

    The construction of the Thirty-Meter-Telescope International Observatory (TIO) is scheduled to take about eight years, with first-light currently planned for the horizon 2023/24, and start of science operations soon after. Its innovative design, the unequalled astronomical quality of its location, and the scientific capabilities that will be offered by its suite of instruments, all contribute to position TIO as a major ground-based facility of the next decade.In this talk, we will review the expected observing performances of the facility, which will combine adaptive-optics corrected wavefronts with powerful imaging and spectroscopic capabilities. TMT will enable ground-based exploration of our solar system - and planetary systems at large - at a dramatically enhanced sensitivity and spatial resolution across the visible and near-/thermal- infrared regimes. This sharpened vision, spanning the study of planetary atmospheres, ring systems, (cryo-)volcanic activity, small body populations (asteroids, comets, trans-Neptunian objects), and exoplanets, will shed new lights on the processes involved in the formation and evolution of our solar system, including the search for life outside the Earth, and will expand our understanding of the physical and chemical properties of extra-solar planets, complementing TIO's direct studies of planetary systems around other stars.TIO operations will meet a wide range of observing needs. Observing support associated with "classical" and "queue" modes will be offered (including some flavors of remote observing). The TIO schedule will integrate observing programs so as to optimize scientific outputs and take into account the stringent observing time constraints often encountered for observations of our solar system such as, for instance, the scheduling of target-of-oportunity observations, the implementation of short observing runs, or the support of long-term "key-science" programmes.Complementary information about TIO, and the

  4. The effect of baroclinicity on the wind in the planetary boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Peña, Alfredo; Gryning, Sven-Erik

    2015-01-01

    close to zero and a standard deviation of approximately 3ms−1km−1. The geostrophic wind shear had a strong seasonal dependence because of temperature differences between land and sea. The mean wind profile in Hamburg, observed during an intensive campaign using radio sounding and during the whole year...... using the wind lidar, was influenced by baroclinicity. For easterly winds at Høvsøre, the estimated gradient wind decreased rapidly with height, resulting in a mean low-level jet. The turning of the wind in the boundary layer, the boundary-layer height and the empirical constants in the geostrophic drag...

  5. Super Ball Bot - Structures for Planetary Landing and Exploration, NIAC Phase 2 Final Report

    Science.gov (United States)

    SunSpiral, Vytas; Agogino, Adrian; Atkinson, David

    2015-01-01

    Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals. Ideally teams of small, collapsible, light weight robots, will be conveniently packed during launch and would reliably separate and unpack at their destination. Such robots will allow rapid, reliable in-situ exploration of hazardous destination such as Titan, where imprecise terrain knowledge and unstable precipitation cycles make single-robot exploration problematic. Unfortunately landing lightweight conventional robots is difficult with current technology. Current robot designs are delicate, requiring a complex combination of devices such as parachutes, retrorockets and impact balloons to minimize impact forces and to place a robot in a proper orientation. Instead we are developing a radically different robot based on a "tensegrity" structure and built purely with tensile and compression elements. Such robots can be both a landing and a mobility platform allowing for dramatically simpler mission profile and reduced costs. These multi-purpose robots can be light-weight, compactly stored and deployed, absorb strong impacts, are redundant against single-point failures, can recover from different landing orientations and can provide surface mobility. These properties allow for unique mission profiles that can be carried out with low cost and high reliability and which minimizes the inefficient dependance on "use once and discard" mass associated with traditional landing systems. We believe tensegrity robot technology can play a critical role in future planetary exploration.

  6. A micro seismometer based on molecular electronic transducer technology for planetary exploration

    International Nuclear Information System (INIS)

    Huang, Hai; Tang, Rui; Carande, Bryce; Oiler, Jonathan; Zaitsev, Dmitri; Agafonov, Vadim; Yu, Hongyu

    2013-01-01

    This letter describes an implementation of micromachined seismometer based on molecular electronic transducer (MET) technology. As opposed to a solid inertial mass, MET seismometer senses the movement of liquid electrolyte relative to fixed electrodes. The employment of micro-electro-mechanical systems techniques reduces the internal size of the sensing cell to 1μm and improves the reproducibility of the device. For operating bias of 600 mV, a sensitivity of 809 V/(m/s 2 ) was measured under acceleration of 400μg(g≡9.81m/s 2 ) at 0.32 Hz. A −115 dB (relative to (m/s 2 )/√(Hz)) noise level at 1 Hz was achieved. This work develops an alternative paradigm of seismic sensing device with small size, high sensitivity, low noise floor, high shock tolerance, and independence of installation angle, which is promising for next generation seismometers for planetary exploration.

  7. Compact Neutron Generators for Medical, Home Land Security, and Planetary Exploration

    CERN Document Server

    Reijonen, Jani

    2005-01-01

    The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0 - 9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration in form of neutron based, sub-surface hydrogen detection systems. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Three main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-c...

  8. Impacts of synoptic condition and planetary boundary layer structure on the trans-boundary aerosol transport from Beijing-Tianjin-Hebei region to northeast China

    Science.gov (United States)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Zhao, Chun; Li, Xiaolan; Zhang, Gen; Wei, Wei; Ma, Yanjun

    2018-05-01

    The northeastern China frequently experiences severe aerosol pollution in winter under unfavorable meteorological conditions. How and to what extent the meteorological factors affect the air quality there are not yet clearly understood. Thus, this study investigated the impacts of synoptic patterns on the aerosol transport and planetary boundary layer (PBL) structure in Shenyang from 1 to 3 December 2016, using surface observations, sounding measurements, satellite data, and three-dimensional simulations. Results showed that the aerosol pollution occurred in Shenyang was not only related to the local emissions, but also contributed by trans-boundary transport of aerosols from the Beiijng-Tianjin-Hebei (BTH) region. In the presence of the westerly and southwesterly synoptic winds, the aerosols emitted from BTH could be brought to Shenyang. From December 2 to 3, the aerosols emitted from BTH accounted for ∼20% of near-surface PM2.5 in Shenyang. In addition, the large-scale synoptic forcings could affect the vertical mixing of pollutants through modulating the PBL structure in Shenyang. The westerly and southwesterly synoptic winds not only brought the aerosols but also the warmer air masses from the southwest regions to Shenyang. The strong warm advections above PBL could enhance the already existing thermal inversion layers capping over PBL in Shenyang, leading to the suppressions of PBL. Both the trans-boundary transport of aerosols and the suppressions of PBL caused by the large-scale synoptic forcings should be partly responsible for the poor air quality in Shenyang, in addition to the high pollutant emissions. The present study revealed the physical mechanisms underlying the aerosol pollution in Shenyang, which has important implications for better forecasting and controlling the aerosols pollution.

  9. Enabling All-Access Mobility for Planetary Exploration Vehicles via Transformative Reconfiguration

    Science.gov (United States)

    Ferguson, Scott; Mazzoleni, Andre

    2016-01-01

    Effective large-scale exploration of planetary surfaces requires robotic vehicles capable of mobility across chaotic terrain. Characterized by a combination of ridges, cracks and valleys, the demands of this environment can cause spacecraft to experience significant reductions in operating footprint, performance, or even result in total system loss. Significantly increasing the scientific return of an interplanetary mission is facilitated by architectures capable of real-time configuration changes that go beyond that of active suspensions while concurrently meeting system, mass, power, and cost constraints. This Phase 1 report systematically explores how in-service architecture changes can expand system capabilities and mission opportunities. A foundation for concept generation is supplied by four Martian mission profiles spanning chasms, ice fields, craters and rocky terrain. A fifth mission profile centered on Near Earth Object exploration is also introduced. Concept generation is directed using four transformation principles - a taxonomy developed by the engineering design community to explain the cause of an architecture change and existing brainstorming techniques. This allowed early conceptual sketches of architecture changes to be organized by the principle driving the greatest increase in mission performance capability.

  10. Evolution of the lower planetary boundary layer over strongly contrasting surfaces

    International Nuclear Information System (INIS)

    Coulter, R.L.; Gao, W.; Martin, T.J.; Shannon, J.D.; Doran, J.C.; Hubbe, J.M.; Shaw, W.M.

    1992-01-01

    In a multilaboratory field study held near Boardman in northeastern Oregon in June 1991, various properties of the surface and lower atmospheric boundary layer over heavily irrigated cropland and adjacent desert steppe were investigated in the initial campaign of the Atmospheric Radiation Measurement (ARM) program. The locale was selected because its disparate characteristics over various spatial scales stress the ability of general circulation models (GCMS) to describe lower boundary conditions, particularly across the discontinuity between desert (in which turbulent flux of heat must be primarily as sensible heat) and large irrigated tracts (in which turbulent flux of latent heat should be the larger term). This campaign of ARM seeks to increase knowledge in three critical areas: (1) determination of the relationships between surface heat fluxes measured over multiple scales and the controlling surface parameters within each scale, (2) integration of local and nearly local heat flux estimates to produce estimates appropriate for GCM grid cells of 100-200 km horizontal dimension, and (3) characterization of the growth and development of the atmospheric boundary layer near transitions between surfaces with strongly contrasting moisture availabilities

  11. Two-wavelength Lidar inversion algorithm for determining planetary boundary layer height

    Science.gov (United States)

    Liu, Boming; Ma, Yingying; Gong, Wei; Jian, Yang; Ming, Zhang

    2018-02-01

    This study proposes a two-wavelength Lidar inversion algorithm to determine the boundary layer height (BLH) based on the particles clustering. Color ratio and depolarization ratio are used to analyze the particle distribution, based on which the proposed algorithm can overcome the effects of complex aerosol layers to calculate the BLH. The algorithm is used to determine the top of the boundary layer under different mixing state. Experimental results demonstrate that the proposed algorithm can determine the top of the boundary layer even in a complex case. Moreover, it can better deal with the weak convection conditions. Finally, experimental data from June 2015 to December 2015 were used to verify the reliability of the proposed algorithm. The correlation between the results of the proposed algorithm and the manual method is R2 = 0.89 with a RMSE of 131 m and mean bias of 49 m; the correlation between the results of the ideal profile fitting method and the manual method is R2 = 0.64 with a RMSE of 270 m and a mean bias of 165 m; and the correlation between the results of the wavelet covariance transform method and manual method is R2 = 0.76, with a RMSE of 196 m and mean bias of 23 m. These findings indicate that the proposed algorithm has better reliability and stability than traditional algorithms.

  12. Doctoral research on architecture in Nigeria: Exploring domains, extending boundaries

    Directory of Open Access Journals (Sweden)

    Adetokunbo Oluwole Ilesanmi

    2016-03-01

    Full Text Available This paper explored through a literature review, the domains of research in Architecture and the nature of doctoral research, with a view to contributing to the evolving research agenda in the Nigerian context. The research method involved a descriptive and thematic analysis of the titles and abstracts of completed doctoral theses in Architecture in Nigeria, in the last 26 years (1990–2015, complemented by semi-structured interviews with six key informants. The study revealed an emphasis on Housing-related topics (34% relative to other research modules, such as׳ History and Theory׳ (20% and ׳Design and Production׳ (18%. It also reflected the limited coverage and scope of current research, relative to the global terrain, as evidenced in the article titles and contents of 45 Architecture-related Journals. The results of the interviews indicated the strong influence of supervisors׳ areas of interest in the choices of thesis titles. It highlighted reasons for the perceived focus on Housing, which reflect its unique place and multi-disciplinary nature. It concluded that extending the boundaries of architectural research at the doctoral level could be beneficial to the discipline and profession in Nigeria in order to align with global trends, while keeping cognizance of the local contexts.

  13. Numerical study of the effects of Planetary Boundary Layer structure on the pollutant dispersion within built-up areas.

    Science.gov (United States)

    Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu; Liu, Zhenxin; Zhang, Bihui

    2015-06-01

    The effects of different Planetary Boundary Layer (PBL) structures on pollutant dispersion processes within two idealized street canyon configurations and a realistic urban area were numerically examined by a Computational Fluid Dynamics (CFD) model. The boundary conditions of different PBL structures/conditions were provided by simulations of the Weather Researching and Forecasting model. The simulated results of the idealized 2D and 3D street canyon experiments showed that the increment of PBL instability favored the downward transport of momentum from the upper flow above the roof to the pedestrian level within the street canyon. As a result, the flow and turbulent fields within the street canyon under the more unstable PBL condition are stronger. Therefore, more pollutants within the street canyon would be removed by the stronger advection and turbulent diffusion processes under the unstable PBL condition. On the contrary, more pollutants would be concentrated in the street canyon under the stable PBL condition. In addition, the simulations of the realistic building cluster experiments showed that the density of buildings was a crucial factor determining the dynamic effects of the PBL structure on the flow patterns. The momentum field within a denser building configuration was mostly transported from the upper flow, and was more sensitive to the PBL structures than that of the sparser building configuration. Finally, it was recommended to use the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme, which can explicitly output the needed turbulent variables, to provide the boundary conditions to the CFD simulation. Copyright © 2015. Published by Elsevier B.V.

  14. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    Science.gov (United States)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of

  15. Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration

    Science.gov (United States)

    Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin

    2012-01-01

    NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid

  16. The Interstellar Boundary Explorer (IBEX) - Time to Launch!

    Science.gov (United States)

    McComas, David

    The Interstellar Boundary Explorer (IBEX) mission is scheduled to launch in mid-July 2008, right around the time of this COSPAR meeting. IBEX will make the first global observations of the heliosphere's interaction with the interstellar medium. IBEX achieves these breakthrough observations by traveling outside of the Earth's magnetosphere in a highly elliptical orbit and taking global Energetic Neutral Atoms (ENA) images with two very large aperture single pixel ENA cameras. IBEX-Lo makes measurements in 8 contiguous energy pass bands covering from ˜10 eV to 2 keV; IBEX-Hi similarly covers from ˜300 eV to 6 keV in 6 contiguous pass bands. IBEX's high-apogee (˜50RE ) orbit enables heliospheric ENA measurements by providing viewing from far outside the earth's relatively bright magnetospheric ENA emissions. The IBEX cameras view perpendicular to the spacecraft's sun-pointed spin axis. Each six months, the spacecraft spin and progression of the sun-pointing spin axis as the Earth moves around the Sun lead naturally to global, all-sky images. IBEX is the first mission to achieve a high altitude from a standard Pegasus launch vehicle. We accomplish this by adding the propulsion from an IBEX-supplied solid rocket motor and the spacecraft's hydrazine propulsion system. Additional information on IBEX is available at www.ibex.swri.edu. This talk, on behalf of the IBEX science and engineering teams, will summarize the IBEX science and mission and will provide an up-to-the-minute update on the status of the mission, including any new information on the launch and commissioning status.

  17. Defensible Spaces in Philadelphia: Exploring Neighborhood Boundaries Through Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Rory Kramer

    2017-02-01

    Full Text Available Few spatial scales are as important to individual outcomes as the neighborhood. However, it is nearly impossible to define neighborhoods in a generalizable way. This article proposes that by shifting the focus to measuring neighborhood boundaries rather than neighborhoods, scholars can avoid the problem of the indefinable neighborhood and better approach questions of what predicts racial segregation across areas. By quantifying an externality space theory of neighborhood boundaries, this article introduces a novel form of spatial analysis to test where potential physical markers of neighborhood boundaries (major roads, rivers, railroads, and the like are associated with persistent racial boundaries between 1990 and 2010. Using Philadelphia as a case study, the paper identifies neighborhoods with persistent racial boundaries. It theorizes that local histories of white reactions to black in-migration explain which boundaries persistently resisted racial turnover, unlike the majority of Philadelphia’s neighborhoods, and that those racial boundaries shape the location, progress, and reaction to new residential development in those neighborhoods.

  18. Solar discrepancies: Mars exploration and the curious problem of inter-planetary time

    Science.gov (United States)

    Mirmalek, Zara Lenora

    The inter-planetary work system for the NASA's Mars Exploration Rovers (MER) mission entailed coordinating work between two corporally diverse workgroups, human beings and solar-powered robots, and between two planets with asynchronous axial rotations. The rotation of Mars takes approximately 24 hours and 40 minutes while for Earth the duration is 24 hours, a differential that was synchronized on Earth by setting a clock forward forty minutes every day. The hours of the day during which the solar-powered rovers were operational constituted the central consideration in the relationship between time and work around which the schedule of MER science operations were organized. And, the operational hours for the rovers were precarious for at least two reasons: on the one hand, the possibility of a sudden and inexplicable malfunction was always present; on the other, the rovers were powered by solar-charged batteries that could simply (and would eventually) fail. Thus, the timetable for the inter-planetary work system was scheduled according to the daily cycle of the sun on Mars and a version of clock time called Mars time was used to keep track of the movement of the sun on Mars. While the MER mission was a success, it does not necessarily follow that all aspects of mission operations were successful. One of the central problems that plagued the organization of mission operations was precisely this construct called "Mars time" even while it appeared that the use of Mars time was unproblematic and central to the success of the mission. In this dissertation, Zara Mirmalek looks at the construction of Mars time as a tool and as a social process. Of particular interest are the consequences of certain (ostensibly foundational) assumptions about the relationship between clock time and the conduct of work that contributed to making the relationship between Mars time and work on Earth appear operational. Drawing on specific examples of breakdowns of Mars time as a support

  19. Evaluation of planetary boundary layer schemes in meso-scale simulations above the North and Baltic Sea

    Science.gov (United States)

    Wurps, Hauke; Tambke, Jens; Steinfeld, Gerald; von Bremen, Lueder

    2014-05-01

    The development and design of wind energy converters for offshore wind farms require profound knowledge of the wind profile in the lower atmosphere. Especially an accurate and reliable estimation of turbulence, shear and veer are necessary for the prediction of energy production and loads. Currently existing wind energy turbines in the North Sea have hub heights of around 90 m and upper tip heights around 150 m, which is already higher than the highest measurement masts (e.g. FINO1: 103 m). The next generation of wind turbines will clearly outrange these altitudes, so the interest is to examine the atmosphere's properties above the North Sea up to 300 m. Therefore, besides the Prandtl layer also the Ekman layer has to be taken into account, which implies that changes of the wind direction with height become more relevant. For this investigation we use the Weather Research and Forecasting Model (WRF), a meso-scale numerical weather prediction system. In this study we compare different planetary boundary layer (PBL) schemes (MYJ, MYNN, QNSE) with the same high quality input from ECMWF used as boundary conditions (ERA-Interim). It was found in previous studies that the quality of the boundary conditions is crucially important for the accuracy of comparisons between different PBL schemes. This is due to the fact that the major source of meso-scale simulation errors is introduced by the driving boundary conditions and not by the different schemes of the meso-scale model itself. Hence, small differences in results from different PBL schemes can be distorted arbitrarily by coarse input data. For instance, ERA-Interim data leads to meso-scale RMSE values of 1.4 m/s at 100 m height above sea surface with mean wind speeds around 10 m/s, whereas other Reanalysis products lead to RMSEs larger than 2 m/s. Second, we compare our simulations to operational NWP results from the COSMO model (run by the DWD). In addition to the wind profile, also the turbulent kinetic energy (TKE

  20. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Science.gov (United States)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2017-01-01

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.

  1. Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece

    Directory of Open Access Journals (Sweden)

    G. Tsaknakis

    2011-06-01

    Full Text Available This study presents an inter-comparison of two active remote sensors (lidar and ceilometer to determine the mixing layer height and structure of the Planetary Boundary Layer (PBL and to retrieve tropospheric aerosol vertical profiles over Athens, Greece. This inter-comparison was performed under various strongly different aerosol loads/types (urban air pollution, biomass burning and Saharan dust event, implementing two different lidar systems (one portable Raymetrics S.A. lidar system running at 355 nm and one multi-wavelength Raman lidar system running at 355 nm, 532 nm and 1064 nm and one CL31 Vaisala S.A. ceilometer (running at 910 nm. Spectral conversions of the ceilometer's data were performed using the Ångström exponent estimated by ultraviolet multi-filter radiometer (UV-MFR measurements. The inter-comparison was based on two parameters: the mixing layer height determined by the presence of the suspended aerosols and the attenuated backscatter coefficient. Additionally, radiosonde data were used to derive the PBL height. In general, a good agreement was found between the ceilometer and the lidar techniques in both inter-compared parameters in the height range from 500 m to 5000 m, while the limitations of each instrument are also examined.

  2. An investigation of ozone and planetary boundary layer dynamics over the complex topography of Grenoble combining measurements and modeling

    Directory of Open Access Journals (Sweden)

    O. Couach

    2003-01-01

    Full Text Available This paper concerns an evaluation of ozone (O3 and planetary boundary layer (PBL dynamics over the complex topography of the Grenoble region through a combination of measurements and mesoscale model (METPHOMOD predictions for three days, during July 1999. The measurements of O3 and PBL structure were obtained with a Differential Absorption Lidar (DIAL system, situated 20 km south of Grenoble at Vif (310 m ASL. The combined lidar observations and model calculations are in good agreement with atmospheric measurements obtained with an instrumented aircraft (METAIR. Ozone fluxes were calculated using lidar measurements of ozone vertical profiles concentrations and the horizontal wind speeds measured with a Radar Doppler wind profiler (DEGREANE. The ozone flux patterns indicate that the diurnal cycle of ozone production is controlled by local thermal winds. The convective PBL maximum height was some 2700 m above the land surface while the nighttime residual ozone layer was generally found between 1200 and 2200 m. Finally we evaluate the magnitude of the ozone processes at different altitudes in order to estimate the photochemical ozone production due to the primary pollutants emissions of Grenoble city and the regional network of automobile traffic.

  3. Validation and Spatiotemporal Distribution of GEOS-5-Based Planetary Boundary Layer Height and Relative Humidity in China

    Science.gov (United States)

    Si, Yidan; Li, Shenshen; Chen, Liangfu; Yu, Chao; Wang, Zifeng; Wang, Yang; Wang, Hongmei

    2018-04-01

    Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and surface-level RH data simulated from GEOS-5 between 2004 and 2012, were validated against ground-based observations. Overall, the simulated RH was consistent with the statistical data from meteorological stations, with a correlation coefficient of 0.78 and a slope of 0.9. However, the simulated PBLH was underestimated compared to LIDAR data by a factor of approximately two, which was primarily because of poor simulation in late summer and early autumn. We further examined the spatiotemporal distribution characteristics of two factors in four regions—North China, South China, Northwest China, and the Tibetan Plateau. The results showed that the annual PBLH trends in all regions were fairly moderate but sensitive to solar radiation and precipitation, which explains why the PBLH values were ranked in order from largest to smallest as follows: Tibetan Plateau, Northwest China, North China, and South China. Strong seasonal variation of the PBLH exhibited high values in summer and low values in winter, which was also consistent with the turbulent vertical exchange. Not surprisingly, the highest RH in South China and the lowest RH in desert areas of Northwest China (less than 30%). Seasonally, South China exhibited little variation, whereas Northwest China exhibited its highest humidity in winter and lowest humidity in spring, the maximum values in the other regions were obtained from July to September.

  4. Nanobiomimetic Active Shape Control - Fluidic and Swarm-Intelligence Embodiments for Planetary Exploration

    Science.gov (United States)

    Santoli, S.

    The concepts of Active Shape Control ( ASC ) and of Generalized Quantum Holography ( GQH ), respectively embodying a closer approach to biomimicry than the current macrophysics-based attempts at bioinspired robotic systems, and realizing a non-connectionistic, life-like kind of information processing that allows increasingly depths of mimicking of the biological structure-function solidarity, which have been formulated in physical terms in previous papers, are here further investigated for application to bioinspired flying or swimming robots for planetary exploration. It is shown that nano-to-micro integration would give the deepest level of biomimicry, and that both low and very low Reynolds number ( Re ) fluidics would involve GQH and Fiber Bundle Topology ( FBT ) for processing information at the various levels of ASC bioinspired robotics. While very low Re flows lend themselves to geometrization of microrobot dynamics and to FBT design, the general design problem is geometrized through GQH , i.e. made independent of dynamic considerations, thus allowing possible problems of semantic dyscrasias in highly complex hierarchical dynamical chains of sensing information processing actuating to be overcome. A roadmap to near- and medium-term nanostructured and nano-to-micro integration realizations is suggested.

  5. Design and Dynamics Analysis of a Bio-Inspired Intermittent Hopping Robot for Planetary Surface Exploration

    Directory of Open Access Journals (Sweden)

    Long Bai

    2012-10-01

    Full Text Available A small, bio-inspired and minimally actuated intermittent hopping robot for planetary surface exploration is proposed in this paper. The robot uses a combined-geared six-bar linkage/spring mechanism, which has a possible rich trajectory and metamorphic characteristics and, due to this, the robot is able to recharge, lock/release and jump by using just a micro-power motor as the actuator. Since the robotic system has a closed-chain structure and employs underactuated redundant motion, the constrained multi-body dynamics are derived with time-varying driving parameters and ground unilateral constraint both taken into consideration. In addition, the established dynamics equations, mixed of higher order differential and algebraic expressions, are solved by the immediate integration algorithm. A prototype is implemented and experiments are carried out. The results show that the robot, using a micro-power motor as the actuator and solar cells as the power supply, can achieve a biomimetic multi-body hopping stance and a nonlinearly increasing driving force. Typically, the robot can jump a horizontal distance of about 1 m and a vertical height of about 0.3 m, with its trunk and foot moving stably during takeoff. In addition, the computational and experimental results are consistent as regards the hopping performance of the robot, which suggests that the proposed dynamics model and its solution have general applicability to motion prediction and the performance analysis of intermittent hopping robots.

  6. Compact Neutron Generators for Medical Home Land Security and Planetary Exploration

    International Nuclear Information System (INIS)

    Reijonen, J.

    2005-01-01

    The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0-9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration with a sub-surface material characterization on Mars. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Four main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-compact axial neutron generator for elemental analysis applications. Current status of the neutron generator development with experimental data will be presented

  7. The radiometric performances of the Planetary Fourier Spectrometer for Mars exploration

    Science.gov (United States)

    Palomba, E.; Colangeli, L.; Formisano, V.; Piccioni, G.; Cafaro, N.; Moroz, V.

    1999-04-01

    The Planetary Fourier Spectrometer (PFS) is a Fourier transform interferometer, operating in the range 1.2-45 μm. The instrument, previously included in the payload of the failed mission Mars ‧96, is proposed for the future space mission Mars Express, under study by ESA. The present paper is aimed at presenting the radiometric performances of PFS. The two channels (LW and SW) forming PFS were analysed and characterised in terms of sensitivity and noise equivalent brightness. To cover the wide spectral range of PFS, different blackbodies were used for calibration. The built-in blackbodies, needed for the in-flight calibrations, were also characterised. The results show that the LW channel is comparable with IRIS Mariner 9 in terms of noise equivalent brightness. The SW channel performances, while satisfactorily, could be improved by lowering the sensor operative temperature. A simple model of the Mars radiance is used in order to calculate the signal-to-noise ratio on the spectra in typical observation conditions. The computed signal-to-noise ratio for the LW channel varies between 430 and 40, while for the SW channel it ranges from 150 to 30. The radiometric analyses confirm that PFS performances are compliant with the design requirements of the instrument. PFS is fully validated for future remote exploration of the atmosphere and the surface of Mars.

  8. MOMA and other next-generation ion trap mass spectrometers for planetary exploration

    Science.gov (United States)

    Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Getty, S.; Mahaffy, P. R.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Southard, A. E.; Hovmand, L.; Cottin, H.; Makarov, A.

    2016-12-01

    Since the 1970's, quadrupole mass spectrometer (QMS) systems have served as low-risk, cost-efficient means to explore the inner and outer reaches of the solar system. These legacy instruments have interrogated the compositions of the lunar exosphere (LADEE), surface materials on Mars (MSL), and the atmospheres of Venus (Pioneer Venus), Mars (MAVEN) and outer planets (Galileo and Cassini-Huygens). However, the in situ detection of organic compounds on Mars and Titan, coupled with ground-based measurements of amino acids in meteorites and a variety of organics in comets, has underlined the importance of molecular disambiguation in the characterization of high-priority planetary environments. The Mars Organic Molecule Analyzer (MOMA) flight instrument, centered on a linear ion trap, enables the in situ detection of volatile and non-volatile organics, but also the characterization of molecular structures through SWIFT ion isolation/excitation and tandem mass spectrometry (MSn). Like the SAM instrument on MSL, the MOMA investigation also includes a gas chromatograph (GC), thereby enabling the chemical separation of potential isobaric interferences based on retention times. The Linear Ion Trap Mass Spectrometer (LITMS; PI: William Brinckerhoff), developed to TRL 6 via the ROSES MatISSE Program, augments the core MOMA design and adds: expanded mass range (from 20 - 2000 Da); high-temperature evolved gas analysis (up to 1300°C); and, dual polarity detector assemblies (supporting the measurement of negative ions). The LITMS instrument will be tested in the field in 2017 through the Atacama Rover Astrobiology Drilling Studies (ARADS; PI: Brian Glass) ROSES PSTAR award. Following on these advancements, the Advanced Resolution Organic Molecule Analyzer (AROMA; PI: Ricardo Arevalo Jr.), supported through the ROSES PICASSO Program, combines a highly capable MOMA/LITMS-like linear ion trap and the ultrahigh resolution CosmOrbitrap mass analyzer developed by a consortium of five

  9. The Impact of Microphysics and Planetary Boundary Layer Physics on Model Simulation of U.S. Deep South Summer Convection

    Science.gov (United States)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Medlin, Jeffrey M.; Wood, Lance

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics pararneterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRn Center to select NOAAlNWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boWldary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage oflightuing activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  10. Estimating the planetary boundary layer height from radiosonde and doppler lidar measurements in the city of São Paulo - Brazil

    Science.gov (United States)

    Marques, Márcia T. A.; Moreira, Gregori de A.; Pinero, Maciel; Oliveira, Amauri P.; Landulfo, Eduardo

    2018-04-01

    This study aims to compare the planetary boundary layer height (PBLH) values estimated by radiosonde data through the bulk Richardson number (BRN) method and by Doppler lidar measurements through the Carrier to Noise Ratio (CNR) method, which corresponds to the maximum of the variance of CNR profile. The measurement campaign was carried during the summer of 2015/2016 in the city of São Paulo. Despite the conceptual difference between these methods, the results show great agreement between them.

  11. Analyzing the Concept of Planetary Boundaries from a Strategic Sustainability Perspective: How Does Humanity Avoid Tipping the Planet?

    Directory of Open Access Journals (Sweden)

    Karl-Henrik Robèrt

    2013-06-01

    Full Text Available Recently, an approach for global sustainability, the planetary-boundary approach (PBA, has been proposed, which combines the concept of tipping points with global-scale sustainability indicators. The PBA could represent a significant step forward in monitoring and managing known and suspected global sustainability criteria. However, as the authors of the PBA describe, the approach faces numerous and fundamental challenges that must be addressed, including successful identification of key global sustainability metrics and their tipping points, as well as the coordination of systemic individual and institutional actions that are required to address the sustainability challenges highlighted. We apply a previously published framework for systematic and strategic development toward a robust basic definition of sustainability, i.e., the framework for strategic sustainable development (FSSD, to improve and inform the PBA. The FSSD includes basic principles for sustainability, and logical guidelines for how to approach their fulfillment. It is aimed at preventing unsustainable behavior at both the micro, e.g., individual firm, and macro, i.e., global, levels, even when specific global sustainability symptoms and metrics are not yet well understood or even known. Whereas the PBA seeks to estimate how far the biosphere can be driven away from a "normal" or "natural" state before tipping points are reached, because of ongoing violations of basic sustainability principles, the FSSD allows for individual planners to move systematically toward sustainability before all impacts from not doing so, or their respective tipping points, are known. Critical weaknesses in the PBA can, thus, be overcome by a combined approach, significantly increasing both the applicability and efficacy of the PBA, as well as informing strategies developed in line with the FSSD, e.g., by providing a "global warning system" to help prioritize strategic actions highlighted by the FSSD

  12. Adaptive Bio-Inspired Wireless Network Routing for Planetary Surface Exploration

    Science.gov (United States)

    Alena, Richard I.; Lee, Charles

    2004-01-01

    Wireless mobile networks suffer connectivity loss when used in a terrain that has hills, and valleys when line of sight is interrupted or range is exceeded. To resolve this problem and achieve acceptable network performance, we have designed an adaptive, configurable, hybrid system to automatically route network packets along the best path between multiple geographically dispersed modules. This is very useful in planetary surface exploration, especially for ad-hoc mobile networks, where computational devices take an active part in creating a network infrastructure, and can actually be used to route data dynamically and even store data for later transmission between networks. Using inspiration from biological systems, this research proposes to use ant trail algorithms with multi-layered information maps (topographic maps, RF coverage maps) to determine the best route through ad-hoc network at real time. The determination of best route is a complex one, and requires research into the appropriate metrics, best method to identify the best path, optimizing traffic capacity, network performance, reliability, processing capabilities and cost. Real ants are capable of finding the shortest path from their nest to a food source without visual sensing through the use of pheromones. They are also able to adapt to changes in the environment using subtle clues. To use ant trail algorithms, we need to define the probability function. The artificial ant is, in this case, a software agent that moves from node to node on a network graph. The function to calculate the fitness (evaluate the better path) includes: length of the network edge, the coverage index, topology graph index, and pheromone trail left behind by other ant agents. Each agent modifies the environment in two different ways: 1) Local trail updating: As the ant moves between nodes it updates the amount of pheromone on the edge; and 2) Global trail updating: When all ants have completed a tour the ant that found the

  13. Ensemble using different Planetary Boundary Layer schemes in WRF model for wind speed and direction prediction over Apulia region

    Science.gov (United States)

    Tateo, Andrea; Marcello Miglietta, Mario; Fedele, Francesca; Menegotto, Micaela; Monaco, Alfonso; Bellotti, Roberto

    2017-04-01

    The Weather Research and Forecasting mesoscale model (WRF) was used to simulate hourly 10 m wind speed and direction over the city of Taranto, Apulia region (south-eastern Italy). This area is characterized by a large industrial complex including the largest European steel plant and is subject to a Regional Air Quality Recovery Plan. This plan constrains industries in the area to reduce by 10 % the mean daily emissions by diffuse and point sources during specific meteorological conditions named wind days. According to the Recovery Plan, the Regional Environmental Agency ARPA-PUGLIA is responsible for forecasting these specific meteorological conditions with 72 h in advance and possibly issue the early warning. In particular, an accurate wind simulation is required. Unfortunately, numerical weather prediction models suffer from errors, especially for what concerns near-surface fields. These errors depend primarily on uncertainties in the initial and boundary conditions provided by global models and secondly on the model formulation, in particular the physical parametrizations used to represent processes such as turbulence, radiation exchange, cumulus and microphysics. In our work, we tried to compensate for the latter limitation by using different Planetary Boundary Layer (PBL) parameterization schemes. Five combinations of PBL and Surface Layer (SL) schemes were considered. Simulations are implemented in a real-time configuration since our intention is to analyze the same configuration implemented by ARPA-PUGLIA for operational runs; the validation is focused over a time range extending from 49 to 72 h with hourly time resolution. The assessment of the performance was computed by comparing the WRF model output with ground data measured at a weather monitoring station in Taranto, near the steel plant. After the analysis of the simulations performed with different PBL schemes, both simple (e.g. average) and more complex post-processing methods (e.g. weighted average

  14. Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense

    Science.gov (United States)

    Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Drake, B. G.; Friedensen, V. P.

    2012-12-01

    Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at a NEA with total mission duration limits of 180 days or less. Hence, these missions would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while simultaneously conducting detailed investigations of these primitive objects with instruments and equipment that exceed the mass and power capabilities delivered by robotic spacecraft. All of these activities will be vital for refinement of resource characterization/identification and development of extraction/utilization technologies to be used on airless bodies under low- or micro-gravity conditions. In addition, gaining enhanced understanding of a NEA's geotechnical properties and its gross internal structure will assist the development of hazard mitigation techniques for planetary defense. Conclusions: The scientific, resource utilization, and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted sample return mission to a NEA using NASA's proposed human exploration systems a compelling endeavor.

  15. Exploration of Icy Moons in the Outer Solar System: Updated Planetary Protection Requirements for Missions to Enceladus and Europa

    Science.gov (United States)

    Rummel, J. D.; Race, M. S.

    2016-12-01

    Enceladus and Europa are bodies with icy/watery environments and potential habitable conditions for life, making both of great interest in astrobiological studies of chemical evolution and /or origin of life. They are also of significant planetary protection concern for spacecraft missions because of the potential for harmful contamination during exploration. At a 2015 COSPAR colloquium in Bern Switzerland, international scientists identified an urgent need to establish planetary protection requirements for missions proposing to return samples to Earth from Saturn's moon Enceladus. Deliberations at the meeting resulted in recommended policy updates for both forward and back contamination requirements for missions to Europa and Enceladus, including missions sampling plumes originating from those bodies. These recently recommended COSPAR policy revisions and biological contamination requirements will be applied to future missions to Europa and Encealadus, particularly noticeable in those with plans for in situ life detection and sample return capabilities. Included in the COSPAR policy are requirementsto `break the chain of contact' with Europa or Enceladus, to keep pristine returned materials contained, and to complete required biohazard analyses, testing and/or sterilization upon return to Earth. Subsequent to the Bern meeting, additional discussions of Planetary Protection of Outer Solar System bodies (PPOSS) are underway in a 3-year study coordinated by the European Science Foundation and involving multiple international partners, including Japan, China and Russia, along with a US observer. This presentation will provide science and policy updates for those whose research or activities will involve icy moon missions and exploration.

  16. Exploring the boundaries of corporate social responsibility and innovation

    DEFF Research Database (Denmark)

    Maier, Maximilian; Brem, Alexander; Kauke, Matthias

    2016-01-01

    into the corporate strategy and its linkages to innovation. On the basis of a systematic literature review, a conceptual framework is developed. This framework categorises socio-political stakeholders and identifies other relevant stakeholders on the basis of a theoretical typology. Finally, dialogue strategies...... are examined regarding their fit within the corporate innovation process. In this regard, stakeholder collaboration is suggested as the appropriate strategy of engaging strategically significant stakeholders. The paper concludes with implications, limitations and further research suggestions.......Corporate social responsibility (CSR) and innovation are common keywords in management research and practice. Both of them are understood in different ways. To discover the boundaries of CSR and innovation, this paper sheds light on the traditional view of CSR, with a focus on its (CSR) integration...

  17. Features of Ground Penetrating Radars for the exploration of planetary subsurface

    Science.gov (United States)

    Burghignoli, P.; Cereti, A.; Fiore, E.; Galli, A.; Pajewski, L.; Pettinelli, E.; Pisani, A.; Schettini, G.; Ticconi, F.

    2003-04-01

    Among the various applications of Surface or Ground Penetrating Radars (GPRs), the possibility of achieving useful information about the characterization of planetary soils represents a topic which has deserved particular interest in recent times [1]. The present work intends to analyze various critical aspects related to the GPR capability of properly investigating the subsurface structure, also emphasizing what kind of practical solutions seem to be more suitable to this purpose. Some basic aspects have to be considered, which are peculiar of this type of problem, e.g.: i) the poor information achievable up to now on both the composition and the stratigraphy of planet soils; ii) the typical bulk and weight limitations for instruments when used in onboard rovers for in-situ measurements. As regards the first aspect, additional knowledge should generally be required on the electromagnetic parameters (permittivity, permeability, and conductivity) of the upper subsoil layers in order to extract useful information from the GPR data. The use of different types of sensors, which can be integrated in an overall "sounding package" [1], is a useful way of characterizing more precisely such electromagnetic parameters. Consequently, GPR can primarily be used to get data on the unknown stratigraphy. The second aspect implies fundamental constraints in the design of GPR, involving the choice of the type of radar, the relevant electronic equipment for signal processing, the antenna design, etc. In addition to standard types of "pulsed" GPR, a specific study has been performed on "step-frequency" GPRs, which appear to be attractive due to their low-cost and simple electronic circuitry. As concerns the choice of the radiating elements, the most suitable configurations of GPR antennas have been investigated and compared in terms of dimensions and radiation parameters. New specific antenna configurations have been proposed, designed, and tested. Finally, numerical simulations have

  18. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions

    Science.gov (United States)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpole, M.; Wercinski, R.; Venkatapathy, E.; Fan, W.; Thornton, J; Szalai, C.

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. In addition, recently released NASA Space Technology Roadmaps and Priorities, by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reductions in spacecraft structural mass more efficient, lighter thermal protection systems more efficient lighter propulsion systems and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location(s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of

  19. Screening-level exposure-based prioritization to identify potential POPs, vPvBs and planetary boundary threats among Arctic contaminants

    Directory of Open Access Journals (Sweden)

    Efstathios Reppas-Chrysovitsinos

    2017-06-01

    Full Text Available A report that reviews Arctic contaminants that are not currently regulated as persistent organic pollutants (POPs under international treaties was recently published by the Arctic Monitoring and Assessment Programme (AMAP. We evaluated 464 individual chemicals mentioned in the AMAP report according to hazard profiles for POPs, very persistent and very bioaccumulative (vPvB chemicals, and two novel and distinct hazard profiles we derived from the planetary boundary threat framework. The two planetary boundary threat profiles assign high priority to chemicals that will be mobile and poorly reversible environmental contaminants. Utilizing persistence as a proxy for poor reversibility, we defined two exposure-based hazard profiles; airborne persistent contaminants (APCs and waterborne persistent contaminants (WPCs that are potential planetary boundary threats. We used in silico estimates of physicochemical properties and multimedia models to calculate hazard metrics for persistence, bioaccumulation and long-range transport potential, then we synthesized this information into four exposure-based hazard scores of the potential of each AMAP chemical to fit each of the POP, vPvB, APC and WPC exposure-based hazard profiles. As an alternative to adopting a “bright line” score that represented cause for concern, we scored the AMAP chemicals by benchmarking against a reference set of 148 known and relatively well-studied contaminants and expressed their exposure-based hazard scores as percentile ranks against the scores of the reference set chemicals. Our results show that scores in the four exposure-based hazard profiles provide complementary information about the potential environmental exposure-based hazards of the AMAP chemicals. Our POP, vPvB, APC and WPC exposure-based hazard scores identify high priority chemicals for further study from among the AMAP contaminants.

  20. Solution of the advection-diffusion equation for a nonhomogeneous and nonstationary Planetary Boundary Layer by GILTT (Generalized Integral Laplace Transform Technique)

    International Nuclear Information System (INIS)

    Mello, Kelen Berra de

    2005-02-01

    In this work is shown the solution of the advection-diffusion equation to simulate a pollutant dispersion in the Planetary Boundary Layer. The solution is obtained through of the GILTT (Generalized Integral Laplace Transform Technique) analytic method and of the numerical inversion Gauss Quadrature. The validity of the solution is proved using concentration obtained from the model with concentration obtained for Copenhagen experiment. In this comparison was utilized potential and logarithmic wind profile and eddy diffusivity derived by Degrazia et al (1997) [17] and (2002) [19]. The best results was using the potential wind profile and the eddy diffusivity derived by Degrazia et al (1997). The vertical velocity influence is shown in the plume behavior of the pollutant concentration. Moreover, the vertical and longitudinal velocity provided by Large Eddy Simulation (LES) was stood in the model to simulate the turbulent boundary layer more realistic, the result was satisfactory when compared with contained in the literature. (author)

  1. The Scale of Exploration: Planetary Missions Set in the Context of Tourist Destinations on Earth

    Science.gov (United States)

    Garry, W. B.; Bleacher, L. V.; Bleacher, J. E.; Petro, N. E.; Mest, S. C.; Williams, S. H.

    2012-03-01

    What if the Apollo astronauts explored Washington, DC, or the Mars Exploration Rovers explored Disney World? We present educational versions of the traverse maps for Apollo and MER missions set in the context of popular tourist destinations on Earth.

  2. An IFU-view of Planetary Nebulae: Exploring NGC 6720 (Ring Nebula) with KCWI

    Science.gov (United States)

    Hoadley, Keri; Matuszewski, Matt; Hamden, Erika; Martin, Christopher; Neill, Don; Kyne, Gillian

    2018-01-01

    Studying the interaction between the ejected stellar material and interstellar clouds is important for understanding how stellar deaths influences the pollution of matter that will later form other stars. Planetary nebulae provide ideal laboratories to study such interactions. I will present on a case study of one close-by planetary nebula, the Ring Nebula (M 57, NGC 6720), to infer the abundances, temperatures, structures, and dynamics of important atomic and ionic species in two distinct regions of the nebula using a newly-commissioned integral field spectrograph (IFS) on Keck: the Keck Cosmic Web Imager (KCWI). The advantage of an IFS over traditional filter-imaging techniques is the ability to simultaneously observe the spectrum of any given pixel in the imaging area, which provides crucial information about the dynamics of the observed region. This technique is powerful for diffuse or extended astrophysical objects, and I will demonstrate the different imaging and spectral modes of KCWI used to observe the Ring Nebula.KCWI observations of the Ring Nebula focused mainly on the innermost region of the nebula, with a little coverage of the Inner Ring. We also observed the length of the Ring in one set of observations, for which we will estimate the elemental abundances, temperatures, and dynamics of the region. KCWI observations also capture an inner arc and blob that have distinctly difference characteristics than the Ring itself and may be a direct observation of either the planetary nebula ramming into an interstellar cloud projected onto the sightline or a dense interstellar cloud being illuminated by the stellar continuum from the hot central white dwarf.

  3. Development of a bio-chip dedicated to planetary exploration. First step: resistance studies to space conditions

    International Nuclear Information System (INIS)

    Le Postollec, A.; Dobrijevic, M.; Incerti, S.; Moretto, Ph.; Seznec, H.; Desorgher, L.; Santin, G.; Nieminen, P.; Dartnell, L.; Vandenabeele-Trambouze, O.; Coussot, G.

    2008-02-01

    For upcoming exploration missions, space agencies advocate the development of a new promising technique to search for traces of extent or extinct life: the bio-chip use. A bio-chip is a miniaturized device composed of biological sensitive systems fixed on a solid substrate. As space is a hazardous environment, a main concern relies on the resistance of a bio-chip to a panel of harsh constraints among which the resistance to radiations. Within the framework of the BiOMAS (Bio-chip for Organic Matter Analysis in Space) project, our team is currently developing a bio-chip especially designed for planetary exploration. We present here the methodology adopted and the beginning experiments to select the best constituents, to determine resistance levels and to define well-adapted protection for the bio-chip

  4. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  5. Using art and story to explore how primary school students in rural Tanzania understand planetary health: a qualitative analysis

    Directory of Open Access Journals (Sweden)

    Elizabeth VanWormer, PhD

    2018-05-01

    Full Text Available Background: The global planetary health community increasingly recognises the need to prepare students to investigate and address connections between environmental change and human health. As we strive to support education on planetary health themes for students of all ages, understanding students' concepts of linkages between the health of people and animals, and their shared environments might advance educational approaches. Children living in villages bordering Ruaha National Park in Iringa Region, Tanzania, have direct experience of these connections as they share a water-stressed but biodiverse environment with domestic animals and wildlife. Livelihoods in these villages depend predominantly on crop and livestock production, including extensive pastoralist livestock keeping. Through qualitative research, we aim to explore and describe Tanzanian primary school students' understanding of connections between human health and the environment. Methods: Working with 26 village primary schools in Iringa Rural District, Tanzania, we adapted an art and story outreach activity to explore student perceptions of planetary health concepts. Following a standardised training session, a lead teacher at each primary school helped students aged 12–15 years form small teams to independently develop and illustrate a story centred on themes of how human health depends on water sources, wildlife, livestock, climate, and forest or grassland resources. Students were encouraged to discuss these themes with their teachers, peers, and families while developing their stories to gain broader as well as historical perspectives. The students generated stories that incorporated solutions to challenges within these themes. Written materials and illustrations were collected from each school along with data on sex and tribe of the group members. We translated all stories from Swahili to English for analysis. The primary outcomes of interest in analysing the students

  6. The Phobos Atlas and Geo-portal: geodesy and cartography approach for planetary exploration

    Science.gov (United States)

    Karachevtseva, Irina; Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Zubarev, Anatoliy; Nadezhdina, Irina; Patraty, Vyacheslav; Konopikhin, Anatoliy; Garov, Andrey

    New Phobos mapping. Methods of image processing and modern GIS technologies provide the opportunity for high quality planetary mapping. The new Phobos DTM and global orthomosaic have been used for developing a geodatabase (Karachevtseva et al., 2012) which provides data for various surface spatial analyses: statistics of crater density, as well as studies of gravity field, geomorphology, and photometry. As mapping is the best way to visualize results of research based on spatial context we created the Phobos atlas. The new Phobos atlas includes: control points network which were calculated during photogrammetry processing of SRC images (Zubarev et al., 2012) and fundamental body parameters as a reference basis for Phobos research as well as GIS analyses of surface objects and geomorphologic studies. According to the structure of the atlas we used various scales and projections based on different coordinate system, including three-axial ellipsoid which parameters (a=13.24 km, b=11.49 km, c=9.48 km) derived from new Phobos shape model (Nadezhdina and Zubarev, 2014). The new Phobos atlas includes about 30 thematic original maps that illustrate the surface of the small body based on Mars Express data (Oberst et al., 2008) and illustrates results of various studies of Phobos:, geomorphology parameters of craters (Basilevsky et al., 2014), morphometry studies (Koknanov et al., 2012), statistics of crater size-frequency distributions based on multi-fractal approach (Uchaev Dm. et al., 2012). Phobos Geo-portal. The spatial data products which used for preparing maps for the Phobos atlas are available at the planetary data storage with access via Geo-portal (http://cartsrv.mexlab.ru/geoportal/), based on modern spatial and web-based technologies (Karachevtseva et al., 2013). Now we are developing Geodesy and Cartography node which can integrate various types of information not only for Phobos data, but other planets and their satellites, and it can be used for geo

  7. Topology of sustainable management of dynamical systems with desirable states: from defining planetary boundaries to safe operating spaces in the Earth System

    Science.gov (United States)

    Heitzig, Jobst; Kittel, Tim; Donges, Jonathan; Molkenthin, Nora

    2016-04-01

    To keep the Earth System in a desirable region of its state space, such as defined by the recently suggested "tolerable environment and development window", "guardrails", "planetary boundaries", or "safe (and just) operating space for humanity", one not only needs to understand the quantitative internal dynamics of the system and the available options for influencing it (management), but also the structure of the system's state space with regard to certain qualitative differences. Important questions are: Which state space regions can be reached from which others with or without leaving the desirable region? Which regions are in a variety of senses "safe" to stay in when management options might break away, and which qualitative decision problems may occur as a consequence of this topological structure? In this work, we develop a mathematical theory of the qualitative topology of the state space of a dynamical system with management options and desirable states, as a complement to the existing literature on optimal control which is more focussed on quantitative optimization and is much applied in both the engineering and the integrated assessment literature. We suggest a certain terminology for the various resulting regions of the state space and perform a detailed formal classification of the possible states with respect to the possibility of avoiding or leaving the undesired region. Our results indicate that before performing some form of quantitative optimization such as of indicators of human well-being for achieving certain sustainable development goals, a sustainable and resilient management of the Earth System may require decisions of a more discrete type that come in the form of several dilemmas, e.g., choosing between eventual safety and uninterrupted desirability, or between uninterrupted safety and larger flexibility. We illustrate the concepts and dilemmas drawing on conceptual models from climate science, ecology, coevolutionary Earth System modeling

  8. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Planetary Base Issues for Mercury and Saturn

    Science.gov (United States)

    Palaszewski, Bryan A.

    2017-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.

  9. Exploring Planetary Analogs With an Ultracompact Near-Infrared Reflectance Instrument

    Science.gov (United States)

    Sobron, P.; Wang, A.

    2017-12-01

    Orbital reflectance spectrometers provide unique measurements of mineralogical features globally and repeatedly on planets and moons of our solar system. Mounted on landed spacecraft, reflectance sensors enable fine-scale investigations and can provide ground truth analyses to assess the validity of spectral remote sensing. We have developed a miniaturized, field-ready, active source NIR (1.14-4.76 μm) reflectance spectrometer (WIR) WIR enables in-situ, near real-time identification of water (structural or adsorbed), carbonates, sulfates, hydrated silicates, as well as C-H & N-H bonds in organic species. WIR is suited for lander/rover deployment in two modes: 1) In Traverse Survey Mode WIR is integrated into a rover wheel and performs nonstop synchronized data collection with every revolution of the wheel; large amounts of data points can be collected during a rover traverse that inform the spatial distribution of mineral phases; 2) In Point-Check Mode WIR is mounted on a robotic arm of a rover/lander and deployed on selected targets at planetary surfaces, or installed inside an analytical lab where samples from a drill/scoop are delivered for detailed analysis. Over the past 10 years we have deployed WIR in planetary analog settings, including hydrothermal springs in Svalbard (Norway) and High Andes (Chile); Arctic volcanoes in Svalbard; Arctic springs and permafrost in Axel Heiberg (Canada); Antarctic ice-covered lakes; saline playas in hyperarid deserts in the Tibetan Plateau (China) and the Atacama; high elevation ore deposits in the Andes and the Abitibi gold belt region (Canada); lava tubes in California; and acidic waters in Rio Tinto (Spain). We have recorded in-situ NIR reflectance spectra from these analogues and used improved spectral unmixing algorithms to determine the mineralogical composition at these sites. We have observed minerals consistent with sedimentary, mineralogical, morphological, and geochemical processes, some of which have been

  10. An analytical model for dispersion of material in the atmospheric planetary boundary layer in presence of precipitation

    International Nuclear Information System (INIS)

    Mayhoub, A.B.; Etman, S.M.

    1985-05-01

    An analytical model for the dispersion of particulates and finely divided material released into the atmosphere near the ground is presented. The possible precipitation when the particles are dense enough and large enough to have deposition velocity, is taken into consideration. The model is derived analytically in the mixing layer or Ekman boundary layer where the mixing process is a direct consequence of turbulent and convective motions generated in the boundary layer. (author)

  11. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    Science.gov (United States)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  12. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    Science.gov (United States)

    Sarrazin, P.; Blake, D.; Gailhanou, M.; Marchis, F.; Chalumeau, C.; Webb, S.; Walter, P.; Schyns, E.; Thompson, K.; Bristow, T.

    2018-04-01

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shown that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.

  13. The development of an operational LCIA-methodology with impact categories based on the control variables in the Planetary Boundaries framework

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Hauschild, Michael Zwicky

    2016-01-01

    This study presents a first attempt at an operational LCIA-methodology basing the definition of the impact categories on the control variables as defined in the Planetary Boundaries (PB) framework. The PB-framework introduced a set of biophysical Earth system processes and defined quantitative PBs...... that have to be respected for Earth to remain in the Holocene state. The concept is attracting a strong interest from in dustry as companies seek to assess and communicate the environmental performance of their products relative to the PBs. The PB -framework has previously been attempted included in LCA...... variables in the PB-framework and current LCIA impact categories. The new insights can be used for communicating the product’s environmental performance and to support definitions of absolute reduction targets relative to the PBs....

  14. Low-latency Science Exploration of Planetary Bodies: a Demonstration Using ISS in Support of Mars Human Exploration

    Science.gov (United States)

    Thronson, Harley A.; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We summarize a proposed experiment to use the International Space Station to formally examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." The approach is to develop and propose controlled experiments, which build upon previous field studies and which will assess the effects of different latencies (0 to 500 msec), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  15. The development of a virtual camera system for astronaut-rover planetary exploration.

    Science.gov (United States)

    Platt, Donald W; Boy, Guy A

    2012-01-01

    A virtual assistant is being developed for use by astronauts as they use rovers to explore the surface of other planets. This interactive database, called the Virtual Camera (VC), is an interactive database that allows the user to have better situational awareness for exploration. It can be used for training, data analysis and augmentation of actual surface exploration. This paper describes the development efforts and Human-Computer Interaction considerations for implementing a first-generation VC on a tablet mobile computer device. Scenarios for use will be presented. Evaluation and success criteria such as efficiency in terms of processing time and precision situational awareness, learnability, usability, and robustness will also be presented. Initial testing and the impact of HCI design considerations of manipulation and improvement in situational awareness using a prototype VC will be discussed.

  16. Planetary Society

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  17. Engineering planetary exploration systems : Integrating novel technologies and the human element using work domain analysis

    NARCIS (Netherlands)

    Baker, C.; Naikar, N.; Neerincx, M.

    2008-01-01

    The realisation of sustainable space exploration and utilisation requires not only the development of novel concepts and technologies, but also their successful integration. Hardware, software, and the human element must be integrated effectively to make the dream for which these technologies were

  18. Exploring Sulfur & Argon Abundances in Planetary Nebulae as Metallicity- Indicator Surrogates for Iron in the Interstellar Medium

    Science.gov (United States)

    Kwitter, Karen B.; Henry, Richard C.

    1999-02-01

    Our primary motivation for studying S and Ar distributions in planetary nebulae (PNe) across the Galactic disk is to explore the possibility of a surrogacy between (S+Ar)/O and Fe/O for use as a metallicity indicator in the interstellar medium. The chemical history of the Galaxy is usually studied through O and Fe distributions among objects of different ages. Historically, though, Fe and O have not been measured in the same systems: Fe is easily seen in stars but hard to detect in nebulae; the reverse is true for O. We know that S and Ar abundances are not affected by PN progenitor evolution, and we therefore seek to exploit both their unaltered abundances and ease of detectability in PNe to explore their surrogacy for Fe. If proven valid, this surrogacy carries broad and important ramifications for bridging the gap between stellar and interstellar abundances in the Galaxy, and potentially beyond. Observed S/O and Ar/O gradients will also provide constraints on theoretical stellar yields of S and Ar, since they can be compared with chemical evolution models (which incorporate theoretically-predicted stellar yields, an initial mass function, and rates of star formation and infall) to help place constraints on model parameters.

  19. Application of Intel Many Integrated Core (MIC) architecture to the Yonsei University planetary boundary layer scheme in Weather Research and Forecasting model

    Science.gov (United States)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecasting (WRF) model provided operational services worldwide in many areas and has linked to our daily activity, in particular during severe weather events. The scheme of Yonsei University (YSU) is one of planetary boundary layer (PBL) models in WRF. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transports in the whole atmospheric column, determines the flux profiles within the well-mixed boundary layer and the stable layer, and thus provide atmospheric tendencies of temperature, moisture (including clouds), and horizontal momentum in the entire atmospheric column. The YSU scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. To accelerate the computation process of the YSU scheme, we employ Intel Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.4x. Furthermore, the same CPU-based optimizations improved the performance on Intel Xeon E5-2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  20. Planetary boundary layer model for estimating the radionuclides concentration in accidental liberations; Modelo de camada limite planetaria para estimar a concentracao de radionuclideos em liberacoes acidentais

    Energy Technology Data Exchange (ETDEWEB)

    Molnary, Leslie de [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: molnaryy@net.ipen.br

    2002-07-01

    A two layer bulk model is used to simulate numerically the time and spatial evolution of concentration of radionuclides in the Planetary Boundary Layer (PBL) for convective and stable conditions. In this model, the closure hypothesis are based on the integrated version of the Turbulent Kinetics Energy equation. This type of model was adopted here because it is numerically simple to be applied operationally in routine and emergency support systems of atmospheric releases at nuclear power plants, and the hypothesis of the efficiency of the vertical mixing seems to be physically reasonable to simulate PBL evolution for high wind conditions and stable conditions in subtropical latitudes regions. In order to validate the model, numerical simulations were carried out with initial and boundary conditions based on vertical profiles of temperatures and horizontal wind speed and direction obtained from tethered balloon soundings, synoptic charts at 850 hPa and surface observations. Comparisons between a 24 hour long numerical simulation and observations indicate that the model is capable of reproduce the diurnal evolution of temperature and horizontal wind during the convective regime. During stable conditions, the slab model was able to simulate the intensity of the surface inversion as a difference between the mixed layer and the surface temperature. The simulated mixed layer height matches with observations during the convective and stable regime. (author)

  1. Geodesy and cartography methods of exploration of the outer planetary systems: Galilean satellites and Enceladus

    Science.gov (United States)

    Zubarev, Anatoliy; Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Nadezhdina, Irina; Patraty, Vyacheslav; Karachevtseva, Irina

    elements of external orientation, provides new image processing of previous missions to outer planetary system. Using Photomod software (http://www.racurs.ru/) we have generated a new control point network in 3-D and orthomosaics for Io, Ganymede and Enceladus. Based on improved orbit data for Galileo we have used larger numbers of images than were available before, resulting in a more rigid network for Ganymede. The obtained results will be used for further processing and improvement of the various parameters: body shape parameters and shape modeling, libration, as well as for studying of the surface interesting geomorphological phenomena, for example, distribution of bright and dark surface materials on Ganymede and their correlations with topography and slopes [6]. Acknowledgments: The Ganymede study was partly supported by ROSKOSMOS and Space Research Institute under agreement No. 36/13 “Preliminary assessment of the required coordinate and navigation support for selection of landing sites for lander mission “Laplace” and partly funding by agreement No. 11-05-91323 for “Geodesy, cartography and research satellites Phobos and Deimos” References: [1] Nadezhdina et al. Vol. 14, EGU2012-11210, 2012. [2] Zhukov et al. International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments", Space Research Institute, Moscow, Russia, 4-8 March, 2013. [3] Zubarev et al. International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments", Space Research Institute, Moscow, Russia, 4-8 March, 2013. [4] Lazarev et al. Izvestia VUZov. 2012, No 6, pp. 9-11 http://miigaik.ru/journal.miigaik.ru/2012/20130129120215-2593.pdf (in Russian). [5] Kokhanov et al. Current problems in remote sensing of the Earth from space. 2013. Vol. 10. No 4. pp. 136-153. http://d33.infospace.ru/d33_conf/sb2013t4/136-153.pdf (in Russian). [6] Oberst et al., 2013 International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments", Space

  2. Space Applications of the FLUKA Monte-Carlo Code: Lunar and Planetary Exploration

    International Nuclear Information System (INIS)

    Lee, Kerry; Wilson, Thomas; Zapp, Neal; Pinsky, Lawrence

    2007-01-01

    NASA has recognized the need for making additional heavy-ion collision measurements at the U.S. Brookhaven National Laboratory in order to support further improvement of several particle physics transport-code models for space exploration applications. FLUKA has been identified as one of these codes and we will review the nature and status of this investigation as it relates to high-energy heavy-ion physics

  3. SBME : Exploring boundaries between formal, non-formal, and informal learning

    OpenAIRE

    Shahoumian, Armineh; Parchoma, Gale; Saunders, Murray; Hanson, Jacky; Dickinson, Mike; Pimblett, Mark

    2013-01-01

    In medical education learning extends beyond university settings into practice. Non-formal and informal learning support learners’ efforts to meet externally set and learner-identified objectives. In SBME research, boundaries between formal, non-formal, and informal learning have not been widely explored. Whether SBME fits within or challenges these categories can make a contribution. Formal learning is described in relation to educational settings, planning, assessment, and accreditation. In...

  4. The Explorer's Guide to the Universe: A Reading List for Planetary and Space Science. Revised

    Science.gov (United States)

    French, Bevan M. (Compiler); McDonagh, Mark S. (Compiler)

    1984-01-01

    During the last decade, both scientists and the public have been engulfed by a flood of discoveries and information from outer space. Distant worlds have become familiar landscapes. Instruments in space have shown us a different Sun by the "light" of ultraviolet radiation and X-rays. Beyond the solar system, we have detected a strange universe of unsuspected violence, unexplained objects, and unimaginable energies. We are completely remarking our picture of the universe around us, and scientists and the general public alike are curious and excited about what we see. The public has participated in this period of exploration and discovery to an extent never possible before. In real time, TV screens show moonwalks, the sands of Mars, the volcanoes of Io, and the rings of Saturn. But after the initial excitement, it is hard for the curious non-scientist to learn more details or even to stay in touch with what is going on. Each space mission or new discovery is quickly skimmed over by newspapers and TV and then preserved in technical journals that are neither accessible nor easily read by the average reader. This reading list is an attempt to bridge the gap between the people who make discoveries in space and the people who would like to read about them. The aim has been to provide to many different people--teachers, students, scientists, other professionals, and curious citizens of all kinds--a list of readings where they can find out what the universe is like and what we have learned about it. We have included sections on the objects that seem to be of general interest--the Moon, the planets, the Sun, comets, and the universe beyond. We have also included material on related subjects that people are interested in--the history of space exploration, space habitats, extraterrestrial life, and U F O ' s . The list is intended to be self-contained; it includes both general references to supply background and more specific sources for new discoveries. Although the list can

  5. Mothership - Affordable Exploration of Planetary Bodies through Individual Nano-Sats and Swarms

    Science.gov (United States)

    DiCorcia, James D.; Ernst, Sebastian M.; Grace, J. Mike; Gump, David P.; Lewis, John S.; Foulds, Craig F.; Faber, Daniel R.

    2015-04-01

    One concept to enable broad participation in the scientific exploration of small bodies is the Mothership mission architecture which delivers third-party nano-sats, experiments, and sensors to a near Earth asteroid or comet. Deep Space Industries' Mothership service includes delivery of nano-sats, communication to Earth, and visuals of the asteroid surface and surrounding area. It allows researchers to house their instruments in a low-cost nano-sat platform that does not require the high-performance propulsion or deep space communication capabilities that otherwise would be required for a solo asteroid mission. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. In addition, the Mothership and its deployed nano-sats can offer a platform for instruments which need to be distributed over multiple spacecraft. The Mothership is designed to carry 10 to 12 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accomodates the same volume as a traditional 3U Cubesat. This design was found to be more favorable for deep space due to its thermal characteristics. The CubeSat standard was originally designed with operations in low Earth orbit in mind. By deliberately breaking the standard, Deep Space Nano-Sats offer better performance with less chance of a critical malfunction in the more hostile deep space environment. The first mission can launch as early as Q4 2017, with subsequent, regular launches through the 2020's.

  6. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  7. Field Exploration and Life Detection Sampling for Planetary Analogue Research (FELDSPAR)

    Science.gov (United States)

    Gentry, D.; Stockton, A. M.; Amador, E. S.; Cable, M. L.; Cantrell, T.; Chaudry, N.; Cullen, T.; Duca, Z. A.; Jacobsen, M. B.; Kirby, J.; McCaig, H. C.; Murukesan, G.; Rennie, V.; Rader, E.; Schwieterman, E. W.; Stevens, A. H.; Sutton, S. A.; Tan, G.; Yin, C.; Cullen, D.; Geppert, W.

    2017-12-01

    Extraterrestrial studies are typically conducted on mg samples from cm-scale features, while landing sites are selected based on m to km-scale features. It is therefore critical to understand spatial distribution of organic molecules over scales from cm to the km, particularly in geological features that appear homogenous at m to km scales. This is addressed by FELDSPAR, a NASA-funded project that conducts field operations analogous to Mars sample return in its science, operations, and technology [1]. Here, we present recent findings from a 2016 and a 2017 campaign to multiple Martian analogue sites in Iceland. Icelandic volcanic regions are Mars analogues due to desiccation, low nutrient availability, temperature extremes [2], and are relatively young and isolated from anthropogenic contamination [3]. Operationally, many Icelandic analogue sites are remote enough to require that field expeditions address several sampling constraints that are also faced by robotic exploration [1, 2]. Four field sites were evaluated in this study. The Fimmvörðuháls lava field was formed by a basaltic effusive eruption associated with the 2010 Eyjafjallajökull eruption. Mælifellssandur is a recently deglaciated plain to the north of the Myrdalsjökull glacier. Holuhraun is a basaltic spatter and cinder cone formed by 2014 fissure eruptions just north of the Vatnajökull glacier. Dyngjusandur is a plain kept barren by repeated aeolian mechanical weathering. Samples were collected in nested triangular grids from 10 cm to the 1 km scale. We obtained overhead imagery at 1 m to 200 m elevation to create digital elevation models. In-field reflectance spectroscopy was obtained with an ASD spectrometer and chemical composition was measured by a Bruker handheld XRF. All sites chosen were homogeneous in apparent color, morphology, moisture, grain size, and reflectance spectra at all scales greater than 10 cm. Field lab ATP assays were conducted to monitor microbial habitation, and home

  8. Effects of leaf area index on the coupling between water table, land surface energy fluxes, and planetary boundary layer at the regional scale

    Science.gov (United States)

    Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.

    2013-12-01

    Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.

  9. Assessment of Planetary-Boundary-Layer Schemes in the Weather Research and Forecasting Model Within and Above an Urban Canopy Layer

    Science.gov (United States)

    Ferrero, Enrico; Alessandrini, Stefano; Vandenberghe, Francois

    2018-03-01

    We tested several planetary-boundary-layer (PBL) schemes available in the Weather Research and Forecasting (WRF) model against measured wind speed and direction, temperature and turbulent kinetic energy (TKE) at three levels (5, 9, 25 m). The Urban Turbulence Project dataset, gathered from the outskirts of Turin, Italy and used for the comparison, provides measurements made by sonic anemometers for more than 1 year. In contrast to other similar studies, which have mainly focused on short-time periods, we considered 2 months of measurements (January and July) representing both the seasonal and the daily variabilities. To understand how the WRF-model PBL schemes perform in an urban environment, often characterized by low wind-speed conditions, we first compared six PBL schemes against observations taken by the highest anemometer located in the inertial sub-layer. The availability of the TKE measurements allows us to directly evaluate the performances of the model; results of the model evaluation are presented in terms of quantile versus quantile plots and statistical indices. Secondly, we considered WRF-model PBL schemes that can be coupled to the urban-surface exchange parametrizations and compared the simulation results with measurements from the two lower anemometers located inside the canopy layer. We find that the PBL schemes accounting for TKE are more accurate and the model representation of the roughness sub-layer improves when the urban model is coupled to each PBL scheme.

  10. An iterative procedure for estimating areally averaged heat flux using planetary boundary layer mixed layer height and locally measured heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, R. L.; Gao, W.; Lesht, B. M.

    2000-04-04

    Measurements at the central facility of the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) are intended to verify, improve, and develop parameterizations in radiative flux models that are subsequently used in General Circulation Models (GCMs). The reliability of this approach depends upon the representativeness of the local measurements at the central facility for the site as a whole or on how these measurements can be interpreted so as to accurately represent increasingly large scales. The variation of surface energy budget terms over the SGP CART site is extremely large. Surface layer measurements of the sensible heat flux (H) often vary by a factor of 2 or more at the CART site (Coulter et al. 1996). The Planetary Boundary Layer (PBL) effectively integrates the local inputs across large scales; because the mixed layer height (h) is principally driven by H, it can, in principal, be used for estimates of surface heat flux over scales on the order of tens of kilometers. By combining measurements of h from radiosondes or radar wind profiles with a one-dimensional model of mixed layer height, they are investigating the ability of diagnosing large-scale heat fluxes. The authors have developed a procedure using the model described by Boers et al. (1984) to investigate the effect of changes in surface sensible heat flux on the mixed layer height. The objective of the study is to invert the sense of the model.

  11. Field study of the planetary boundary layer at subtropical regions of Brazil applied to investigate the dispersion conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Oliveira, A.P. de; Degrazia, G.A.; Moraes, O.L.L. de; Goedert, J.

    1993-01-01

    In this paper is shown some observational results of four field campaigns carried out in the last two years, three during summer, in March 1991, 92 and 93, and one during the winter in July 1992. The site is located in the country side of State of Sao Paulo, Brazil, (23 0 C 25'S; 47 0 C 35' W), approximately 120 km far from the Atlantic Ocean. Measurements of vertical velocity, temperature and water vapor density at three levels (3,5, and 9.40 m) and horizontal wind velocity components at one level (11.5 m) with a sample rate of 1-10 Hz were made using a 12 m tower. It was also carried out measurements of net radiation and soil heat flux, and tethered balloon and radiosonde system followed the vertical evolution of the local Planetary Boundary Layer (PBL).During daytime in the summer, the vertical evolution of the PBL is strongly dependent upon the cloud activity, that inhibits its vertical evolution. In the winter, cloud activity is reduced but the vertical extent of the PBL is constraint by the small surface heating. During the nighttime, the PBL is characterized by moderate stable conditions and low level jets observed in both seasons. (author)

  12. Summative Evaluation Findings from the Interstellar Boundary Explorer (IBEX) Education and Public Outreach Program

    Science.gov (United States)

    Bartolone, L.; Nichols-Yehling, M.; Davis, H. B.; Davey, B.

    2014-07-01

    The Interstellar Boundary Explorer mission includes a comprehensive Education and Public Outreach (EPO) program in heliophysics that is overseen and implemented by the Adler Planetarium and evaluated by Technology for Learning Consortium, Inc. Several components of the IBEX EPO program were developed during the prime phase of the mission that were specifically designed for use in informal institutions, especially museums and planetaria. The program included a widely distributed planetarium show with accompanying informal education activities, printed posters, lithographs and other resources, funding for the development of the GEMS Space Science Sequence for Grades 6-8 curriculum materials, development of the IBEX mission website, development of materials for people with special needs, participation in the Heliophysics Educator Ambassador program, and support for the Space Explorers Afterschool Science Club for Chicago Public Schools. In this paper, we present an overview of the IBEX EPO program summative evaluation techniques and results for 2008 through 2012.

  13. Development of miniaturized instrumentation for Planetary Exploration and its application to the Mars MetNet Precursor Mission

    Science.gov (United States)

    Guerrero, Hector

    2010-05-01

    In this communication is presented the current development of some miniaturized instruments developed for Lander and Rovers for Planetary exploration. In particular, we present a magnetometer with resolution below 10 nT and mass in the range of 45 g; a sun irradiance spectral sensor with 10 bands (UV-VIS-near IR) and a mass in the range of 75 g. These are being developed for the Finnish, Russian and Spanish MetNet Mars Precursor Mission, to be launched in 2011 within the Phobos Grunt (Sample Return). The magnetometer (at present at EQM level) has two triaxial magnetometers (based on commercial AMR technologies) that operate in gradiometer configuration. Moreover has inside the box there a triaxial accelerometer to get the gravitational orientation of the magnetometer after its deployment. This unit is being designed to operate under the Mars severe conditions (at night) without any thermal conditioning. The sun irradiance spectral irradiance sensor is composed by individual silicon photodiodes with interference filters on each, and collimators to prevent wavelength shifts due to oblique incidence. In order allow discrimination between direct and diffuse ambient light, the photodiodes are deployed on the top and lateral sides of this unit. The instrument is being optimized for deep UV detection, dust optical depth and Phobos transits. The accuracy for detecting some atmospheric gases traces is under study. Besides, INTA is developing optical wireless link technologies modules for operating on Mars at distances over 1 m, to minimize harness, reduce weight and improve Assembly Integration and Test (AIT) tasks. Actual emitter/receiver modules are below 10 g allowing data transmission rates over 1 Mbps.

  14. Planetary exploration. Chapter 7

    International Nuclear Information System (INIS)

    Hunt, G.E.

    1980-01-01

    Recent knowledge of the planets, particularly that gained through spacecraft missions, is discussed. Sections are headed: Mercury; Venus (atmospheric composition, surface properties, meteorology, atmospheric structure); Mars (atmospheric properties, meteorology, climate change, Phobos and Deimos); Jupiter (magnetosphere and environment, atmospheric properties, meteorology, ring properties, inner satellites). (U.K.)

  15. Environmental Control and Life Support Systems for Mars Exploration: Issues and Concerns for Planetary Protection and the Protection of Science

    Science.gov (United States)

    Barta, Daniel J.; Lange, Kevin; Anderson, Molly; Vonau, Walter

    2016-07-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Forward contamination concerns will affect release of gases and discharge of liquids and solids, including what may be left behind after planetary vehicles are abandoned upon return to Earth. A crew of four using a state of the art ECLSS could generate as much as 4.3 metric tons of gaseous, liquid and solid wastes and trash during a 500-day surface stay. These may present issues and concerns for both planetary protection and planetary science. Certainly, further closure of ECLSS systems will be of benefit by greater reuse of consumable products and reduced generation of waste products. It can be presumed that planetary protection will affect technology development by constraining how technologies can operate: limiting or prohibiting certain kinds of operations or processes (e.g. venting); necessitating that other kinds of operations be performed (e.g. sterilization; filtration of vent lines); prohibiting what can be brought on a mission (e.g. extremophiles); creating needs for new capabilities/ technologies (e.g. containment). Although any planned venting could include filtration to eliminate micro-organisms from inadvertently exiting the spacecraft, it may be impossible to eliminate or filter habitat structural leakage. Filtration will add pressure drops impacting size of lines and ducts, affect fan size and energy requirements, and add consumable mass. Technologies that may be employed to remove biomarkers and microbial contamination from liquid and solid wastes prior to storage or release may include mineralization technologies such as incineration, super critical wet oxidation and pyrolysis. These technologies, however, come with significant penalties for mass, power and consumables. This paper will estimate the nature and amounts of materials generated during Mars

  16. Preparing Graduate Students for Solar System Science and Exploration Careers: Internships and Field Training Courses led by the Lunar and Planetary Institute

    Science.gov (United States)

    Shaner, A. J.; Kring, D. A.

    2015-12-01

    To be competitive in 21st century science and exploration careers, graduate students in planetary science and related disciplines need mentorship and need to develop skills not always available at their home university, including fieldwork, mission planning, and communicating with others in the scientific and engineering communities in the U.S. and internationally. Programs offered by the Lunar and Planetary Institute (LPI) address these needs through summer internships and field training programs. From 2008-2012, LPI hosted the Lunar Exploration Summer Intern Program. This special summer intern program evaluated possible landing sites for robotic and human exploration missions to the lunar surface. By the end of the 2012 program, a series of scientifically-rich landing sites emerged, some of which had never been considered before. Beginning in 2015 and building on the success of the lunar exploration program, a new Exploration Science Summer Intern Program is being implemented with a broader scope that includes both the Moon and near-Earth asteroids. Like its predecessor, the Exploration Science Summer Intern Program offers graduate students a unique opportunity to integrate scientific input with exploration activities in a way that mission architects and spacecraft engineers can use. The program's activities may involve assessments and traverse plans for a particular destination or a more general assessment of a class of possible exploration targets. Details of the results of these programs will be discussed. Since 2010 graduate students have participated in field training and research programs at Barringer (Meteor) Crater and the Sudbury Impact Structure. Skills developed during these programs prepare students for their own thesis studies in impact-cratered terrains, whether they are on the Earth, the Moon, Mars, or other solar system planetary surface. Future field excursions will take place at these sites as well as the Zuni-Bandera Volcanic Field. Skills

  17. Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions

    Science.gov (United States)

    Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing

    2017-03-01

    Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.

  18. Turbulence Dissipation Rates in the Planetary Boundary Layer from Wind Profiling Radars and Mesoscale Numerical Weather Prediction Models during WFIP2

    Science.gov (United States)

    Bianco, L.; McCaffrey, K.; Wilczak, J. M.; Olson, J. B.; Kenyon, J.

    2016-12-01

    When forecasting winds at a wind plant for energy production, the turbulence parameterizations in the forecast models are crucial for understanding wind plant performance. Recent research shows that the turbulence (eddy) dissipation rate in planetary boundary layer (PBL) parameterization schemes introduces significant uncertainty in the Weather Research and Forecasting (WRF) model. Thus, developing the capability to measure dissipation rates in the PBL will allow for identification of weaknesses in, and improvements to the parameterizations. During a preliminary field study at the Boulder Atmospheric Observatory in spring 2015, a 915-MHz wind profiling radar (WPR) measured dissipation rates concurrently with sonic anemometers mounted on a 300-meter tower. WPR set-up parameters (e.g., spectral resolution), post-processing techniques (e.g., filtering for non-atmospheric signals), and spectral averaging were optimized to capture the most accurate Doppler spectra for measuring spectral widths for use in the computation of the eddy dissipation rates. These encouraging results lead to the implementation of the observing strategy on a 915-MHz WPR in Wasco, OR, operating as part of the Wind Forecasting Improvement Project 2 (WFIP2). These observations are compared to dissipation rates calculated from the High-Resolution Rapid Refresh model, a WRF-based mesoscale numerical weather prediction model run for WFIP2 at 3000 m horizontal grid spacing and with a nest, which has 750-meter horizontal grid spacing, in the complex terrain region of the Columbia River Gorge. The observed profiles of dissipation rates are used to evaluate the PBL parameterization schemes used in the HRRR model, which are based on the modeled turbulent kinetic energy and a tunable length scale.

  19. Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses

    Science.gov (United States)

    Hoffman, Stephen J.

    2012-01-01

    The purpose for this workshop can be summed up by the question: Are there relevant analogs to planetary (meaning the Moon and Mars) to be found in polar exploration on Earth? The answer in my opinion is yes or else there would be no reason for this workshop. However, I think some background information would be useful to provide a context for my opinion on this matter. As all of you are probably aware, NASA has been set on a path that, in its current form, will eventually lead to putting human crews on the surface of the Moon and Mars for extended (months to years) in duration. For the past 50 V 60 years, starting not long after the end of World War II, exploration of the Antarctic has accumulated a significant body of experience that is highly analogous to our anticipated activities on the Moon and Mars. This relevant experience base includes: h Long duration (1 year and 2 year) continuous deployments by single crews, h Established a substantial outpost with a single deployment event to support these crews, h Carried out long distance (100 to 1000 kilometer) traverses, with and without intermediate support h Equipment and processes evolved based on lessons learned h International cooperative missions This is not a new or original thought; many people within NASA, including the most recent two NASA Administrators, have commented on the recognizable parallels between exploration in the Antarctic and on the Moon or Mars. But given that level of recognition, relatively little has been done, that I am aware of, to encourage these two exploration communities to collaborate in a significant way. [Slide 4] I will return to NASA s plans and the parallels with Antarctic traverses in a moment, but I want to spend a moment to explain the objective of this workshop and the anticipated products. We have two full days set aside for this workshop. This first day will be taken up with a series of presentations prepared by individuals with experience that extends back as far as the

  20. Exploring telicity and transitivity in primordial thought language and body boundary imagery.

    Science.gov (United States)

    Cariola, Laura A

    2014-12-01

    Linguistics research on 'unconscious knowledge' related to the right brain-hemisphere represents a shift from the prevalent scientific investigation of the linguistic processes of grammatical structures associated with the dominant 'verbal' left brain-hemisphere. This study explores the relationship among primordial thought language, body boundary awareness and syntactic features--i.e., telicity, perfectivity and transitivity-in autobiographical narratives of everyday and dream memories. The results showed that event descriptions with atelic predicates and intransitive structures were more frequent in dream recall than in narratives of everyday memories. Primordial thought language and body boundary awareness, however, decreased with atelic predicates and transitive structures, which might indicate both the tendency of events to describe result states, such as achievements and accomplishments, as a means to bring about an unconscious wish fulfilment and the emphasis on event arguments to be realised without the inclusion of an external object. In narratives of everyday memories, penetration imagery increased with imperfective verb forms and decreased with perfective verb forms, and emotion lexis increased with atelic predicates and transitive structures, but not in dream memories.

  1. Integrating the Teaching of Space Science, Planetary Exploration And Robotics In Elementary And Middle School with Mars Rover Models

    Science.gov (United States)

    Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.

    2005-05-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system

  2. Exploring the boundaries of quantum mechanics: advances in satellite quantum communications.

    Science.gov (United States)

    Agnesi, Costantino; Vedovato, Francesco; Schiavon, Matteo; Dequal, Daniele; Calderaro, Luca; Tomasin, Marco; Marangon, Davide G; Stanco, Andrea; Luceri, Vincenza; Bianco, Giuseppe; Vallone, Giuseppe; Villoresi, Paolo

    2018-07-13

    Recent interest in quantum communications has stimulated great technological progress in satellite quantum technologies. These advances have rendered the aforesaid technologies mature enough to support the realization of experiments that test the foundations of quantum theory at unprecedented scales and in the unexplored space environment. Such experiments, in fact, could explore the boundaries of quantum theory and may provide new insights to investigate phenomena where gravity affects quantum objects. Here, we review recent results in satellite quantum communications and discuss possible phenomena that could be observable with current technologies. Furthermore, stressing the fact that space represents an incredible resource to realize new experiments aimed at highlighting some physical effects, we challenge the community to propose new experiments that unveil the interplay between quantum mechanics and gravity that could be realizable in the near future.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  3. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  4. The interstellar boundary explorer (IBEX): Update at the end of phase B

    International Nuclear Information System (INIS)

    McComas, D. J.; Allegrini, F.; Pope, S.; Scherrer, J.; Bartolone, L.; Knappenberger, P.; Bochsler, P.; Wurz, P.; Bzowski, M.; Collier, M.; Moore, T.; Fahr, H.; Fichtner, H.; Frisch, P.; Funsten, H.; Fuselier, Steve; Gloeckler, G.; Gruntman, M.; Izmodenov, V.; Lee, M.

    2006-01-01

    The Interstellar Boundary Explorer (IBEX) mission will make the first global observations of the heliosphere's interaction with the interstellar medium. IBEX achieves these breakthrough observations by traveling outside of the Earth's magnetosphere in a highly elliptical orbit and taking global Energetic Neutral Atoms (ENA) images over energies from ∼10 eV to 6 keV. IBEX's high-apogee (∼50 RE) orbit enables heliospheric ENA measurements by providing viewing from far above the Earth's relatively bright magnetospheric ENA emissions. This high energy orbit is achieved from a Pegasus XL launch vehicle by adding the propulsion from an IBEX-supplied solid rocket motor and the spacecraft's hydrazine propulsion system. IBEX carries two very large-aperture, single-pixel ENA cameras that view perpendicular to the spacecraft's Sun-pointed spin axis. Each six months, the continuous spinning of the spacecraft and periodic re-pointing to maintain the sun-pointing spin axis naturally lead to global, all-sky images. Over the course of our NASA Phase B program, the IBEX team optimized the designs of all subsystems. In this paper we summarize several significant advances in both IBEX sensors, our expected signal to noise (and background), and our groundbreaking approach to achieve a very high-altitude orbit from a Pegasus launch vehicle for the first time. IBEX is in full scale development and on track for launch in June of 2008

  5. The interstellar boundary explorer (IBEX): Update at the end of phase B

    Science.gov (United States)

    McComas, D. J.; Allegrini, F.; Bartolone, L.; Bochsler, P.; Bzowski, M.; Collier, M.; Fahr, H.; Fichtner, H.; Frisch, P.; Funsten, H.; Fuselier, Steve; Gloeckler, G.; Gruntman, M.; Izmodenov, V.; Knappenberger, P.; Lee, M.; Livi, S.; Mitchell, D.; Möbius, E.; Moore, T.; Pope, S.; Reisenfeld, D.; Roelof, E.; Runge, H.; Scherrer, J.; Schwadron, N.; Tyler, R.; Wieser, M.; Witte, M.; Wurz, P.; Zank, G.

    2006-09-01

    The Interstellar Boundary Explorer (IBEX) mission will make the first global observations of the heliosphere's interaction with the interstellar medium. IBEX achieves these breakthrough observations by traveling outside of the Earth's magnetosphere in a highly elliptical orbit and taking global Energetic Neutral Atoms (ENA) images over energies from ~10 eV to 6 keV. IBEX's high-apogee (~50 RE) orbit enables heliospheric ENA measurements by providing viewing from far above the Earth's relatively bright magnetospheric ENA emissions. This high energy orbit is achieved from a Pegasus XL launch vehicle by adding the propulsion from an IBEX-supplied solid rocket motor and the spacecraft's hydrazine propulsion system. IBEX carries two very large-aperture, single-pixel ENA cameras that view perpendicular to the spacecraft's Sun-pointed spin axis. Each six months, the continuous spinning of the spacecraft and periodic re-pointing to maintain the sun-pointing spin axis naturally lead to global, all-sky images. Over the course of our NASA Phase B program, the IBEX team optimized the designs of all subsystems. In this paper we summarize several significant advances in both IBEX sensors, our expected signal to noise (and background), and our groundbreaking approach to achieve a very high-altitude orbit from a Pegasus launch vehicle for the first time. IBEX is in full scale development and on track for launch in June of 2008.

  6. A New Radio Spectral Line Survey of Planetary Nebulae: Exploring Radiatively Driven Heating and Chemistry of Molecular Gas

    Science.gov (United States)

    Bublitz, Jesse

    Planetary nebulae contain shells of cold gas and dust whose heating and chemistry is likely driven by UV and X-ray emission from their central stars and from wind-collision-generated shocks. We present the results of a survey of molecular line emissions in the 88 - 235 GHz range from nine nearby (Radioastronomie Millimetrique. Rotational transitions of nine molecules, including the well-studied CO isotopologues and chemically important trace species, were observed and the results compared with and augmented by previous studies of molecular gas in PNe. Lines of the molecules HCO+, HNC, HCN, and CN, which were detected in most objects, represent new detections for five planetary nebulae in our study. Flux ratios were analyzed to identify correlations between the central star and/or nebular ultraviolet/X-ray luminosities and the molecular chemistries of the nebulae. Analysis reveals the apparent dependence of the HNC/HCN line ratio on PN central star UV luminosity. There exists no such clear correlation between PN X-rays and various diagnostics of PN molecular chemistry. The correlation between HNC/HCN ratio and central star UV luminosity hints at the potential of molecular emission line studies of PNe for improving our understanding of the role that high-energy radiation plays in the heating and chemistry of photodissociation regions.

  7. Exploration of Venus with the Venera-15 IR Fourier spectrometer and the Venus Express planetary Fourier spectrometer

    Science.gov (United States)

    Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.

    2006-07-01

    The infrared spectrometry of Venus in the range 6-45 μm allows one to sound the middle atmosphere of Venus in the altitude range 55-100 km and its cloud layer. This experiment was carried out onboard the Soviet automatic interplanetary Venera-15 station, where the Fourier spectrometer for this spectral range was installed. The measurements have shown that the main component of the cloud layer at all measured latitudes in the northern hemisphere is concentrated sulfuric acid (75-85%). The vertical profiles of temperature and aerosol were reconstructed in a self-consistent manner: the three-dimensional fields of temperature and zonal wind in the altitude range 55-100 km and aerosol at altitudes 55-70 km have been obtained, as well as vertical SO2 profiles and H2O concentration in the upper cloud layer. The solar-related waves at isobaric levels in the fields of temperature, zonal wind, and aerosol were investigated. This experiment has shown the efficiency of the method for investigation of the Venusian atmosphere. The Planetary Fourier Spectrometer has the spectral interval 0.9-45 μm and a spectral resolution of 1.8 cm-1. It will allow one to sound the middle atmosphere (55-100 km) of Venus and its cloud layer on the dayside, as well as the lower atmosphere and the planetary surface on the night side.

  8. Field Exploration and Life Detection Sampling for Planetary Analogue Research (FELDSPAR): Variability and Correlation in Biomarker and Mineralogy Measurements from Icelandic Mars Analogues

    Science.gov (United States)

    Gentry, D.; Amador, E.; Cable, M. L.; Cantrell, T.; Chaudry, N.; Cullen, T.; Duca, Z.; Jacobsen, M.; Kirby, J.; McCaig, H.; hide

    2018-01-01

    In situ exploration of planetary environments allows biochemical analysis of sub-centimeter-scale samples; however, landing sites are selected a priori based on measurable meter- to kilometer-scale geological features. Optimizing life detection mission science return requires both understanding the expected biomarker distributions across sample sites at different scales and efficiently using first-stage in situ geochemical instruments to justify later-stage biological or chemical analysis. Icelandic volcanic regions have an extensive history as Mars analogue sites due to desiccation, low nutrient availability, and temperature extremes, in addition to the advantages of geological youth and isolation from anthropogenic contamination. Many Icelandic analogue sites are also rugged and remote enough to create the same type of instrumentation and sampling constraints typically faced by robotic exploration.

  9. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  10. A Test of the Interstellar Boundary EXplorer Ribbon Formation in the Outer Heliosheath

    Energy Technology Data Exchange (ETDEWEB)

    Gamayunov, Konstantin V.; Rassoul, Hamid [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Heerikhuisen, Jacob, E-mail: kgamayunov@fit.edu [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-08-10

    NASA’s Interstellar Boundary EXplorer ( IBEX ) mission is imaging energetic neutral atoms (ENAs) propagating to Earth from the outer heliosphere and local interstellar medium (LISM). A dominant feature in all ENA maps is a ribbon of enhanced fluxes that was not predicted before IBEX . While more than a dozen models of the ribbon formation have been proposed, consensus has gathered around the so-called secondary ENA model. Two classes of secondary ENA models have been proposed; the first class assumes weak scattering of the energetic pickup protons in the LISM, and the second class assumes strong but spatially localized scattering. Here we present a numerical test of the “weak scattering” version of the secondary ENA model using our gyro-averaged kinetic model for the evolution of the phase-space distribution of protons in the outer heliosheath. As input for our test, we use distributions of the primary ENAs from our MHD-plasma/kinetic-neutral model of the heliosphere-LISM interaction. The magnetic field spectrum for the large-scale interstellar turbulence and an upper limit for the amplitude of small-scale local turbulence (SSLT) generated by protons are taken from observations by Voyager 1 in the LISM. The hybrid simulations of energetic protons are also used to set the bounding wavenumbers for the spectrum of SSLT. Our test supports the “weak scattering” version. This makes an additional solid step on the way to understanding the origin and formation of the IBEX ribbon and thus to improving our understanding of the interaction between the heliosphere and the LISM.

  11. Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog-haze mixed events in Beijing

    Science.gov (United States)

    Luan, Tian; Guo, Xueliang; Guo, Lijun; Zhang, Tianhang

    2018-01-01

    Air quality and visibility are strongly influenced by aerosol loading, which is driven by meteorological conditions. The quantification of their relationships is critical to understanding the physical and chemical processes and forecasting of the polluted events. We investigated and quantified the relationship between PM2.5 (particulate matter with aerodynamic diameter is 2.5 µm and less) mass concentration, visibility and planetary boundary layer (PBL) height in this study based on the data obtained from four long-lasting haze events and seven fog-haze mixed events from January 2014 to March 2015 in Beijing. The statistical results show that there was a negative exponential function between the visibility and the PM2.5 mass concentration for both haze and fog-haze mixed events (with the same R2 of 0.80). However, the fog-haze events caused a more obvious decrease of visibility than that for haze events due to the formation of fog droplets that could induce higher light extinction. The PM2.5 concentration had an inversely linear correlation with PBL height for haze events and a negative exponential correlation for fog-haze mixed events, indicating that the PM2.5 concentration is more sensitive to PBL height in fog-haze mixed events. The visibility had positively linear correlation with the PBL height with an R2 of 0.35 in haze events and positive exponential correlation with an R2 of 0.56 in fog-haze mixed events. We also investigated the physical mechanism responsible for these relationships between visibility, PM2.5 concentration and PBL height through typical haze and fog-haze mixed event and found that a double inversion layer formed in both typical events and played critical roles in maintaining and enhancing the long-lasting polluted events. The variations of the double inversion layers were closely associated with the processes of long-wave radiation cooling in the nighttime and short-wave solar radiation reduction in the daytime. The upper-level stable

  12. Planetary magnetospheres

    International Nuclear Information System (INIS)

    Hill, T.W.; Michel, F.C.

    1975-01-01

    Recent planetary probes have resulted in the realization of the generality of magnetospheric interactions between the solar wind and the planets. The three categories of planetary magnetospheres are discussed: intrinsic slowly rotating magnetospheres, intrinsic rapidly rotating magnetospheres, and induced magnetospheres. (BJG)

  13. Transcending Organizational Boundaries:Exploring intra- and inter-organizational processes of business model innovation in a port authority

    OpenAIRE

    Kringelum, Louise Tina Brøns

    2017-01-01

    This thesis explores how processes of business model innovation can unfoldin a port authority by transcending organizational boundaries throughinter-organizational collaboration. The findings contribute to two fields ofacademic inquiry: the study of business model innovation and the study ofhow the roles of port authorities evolve. This contribution is made by combiningthe two fields, where the study of business model innovation is usedas an analytical concept for understanding the evolution ...

  14. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  15. Planetary Defense

    Science.gov (United States)

    2016-05-01

    4 Abstract Planetary defense against asteroids should be a major concern for every government in the world . Millions of asteroids and...helps make Planetary Defense viable because defending the Earth against asteroids benefits from all the above technologies. So if our planet security...information about their physical characteristics so we can employ the right strategies. It is a crucial difference if asteroids are made up of metal

  16. Engaging boundary objects in OMS and STS? Exploring the subtleties of layered engagement

    NARCIS (Netherlands)

    Zeiss, R.; Groenewegen, P.

    2009-01-01

    This paper considers STS aspirations to engage with the field of Organization and Management Studies (OMS). It does so by investigating the employability of the concept of boundary object in OMS. Through an extensive literature review, the paper shows that rather than a simple engagement between STS

  17. The International Planetary Data Alliance

    Science.gov (United States)

    Stein, T.; Arviset, C.; Crichton, D. J.

    2017-12-01

    The International Planetary Data Alliance (IPDA) is an association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of projects and coordinates international collaboration. The IPDA conducts a number of focused projects to enable interoperability, construction of compatible archives, and the operation of the IPDA as a whole. These projects have helped to establish the IPDA and to move the collaboration forward. A key project that is currently underway is the implementation of the PDS4 data standard. Given the international focus, it has been critical that the PDS and the IPDA collaborate on its development. Also, other projects have been conducted successfully, including developing the IPDA architecture and corresponding requirements, developing shared registries for data and tools across international boundaries, and common templates for supporting agreements for archiving and sharing data for international missions. Several projects demonstrating interoperability across

  18. Polarimetry of stars and planetary systems

    National Research Council Canada - National Science Library

    Kolokolova, Ludmilla; Hough, James; Levasseur-Regourd, Anny-Chantal

    2015-01-01

    ... fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets and the search for extraterrestrial life -- unique results produced...

  19. Boundary Layer Transition During the Orion Exploration Flight Test 1 (EFT-1)

    Science.gov (United States)

    Kirk, Lindsay C.

    2016-01-01

    Boundary layer transition was observed in the thermocouple data on the windside backshell of the Orion reentry capsule. Sensors along the windside centerline, as well as off-centerline, indicated transition late in the flight at approximately Mach 4 conditions. Transition progressed as expected, beginning at the sensors closest to the forward bay cover (FBC) and moving towards the heatshield. Sensors placed in off-centerline locations did not follow streamlines, so the progression of transition observed in these sensors is less intuitive. Future analysis will include comparisons to pre-flight predictions and expected transitional behavior will be investigated. Sensors located within the centerline and off-centerline launch abort system (LAS) attach well cavities on the FBC also showed indications of boundary layer transition. The transition within the centerline cavity was observed in the temperature traces prior to transition onset on the sensors upstream of the cavity. Transition behavior within the off centerline LAS attach well cavity will also be investigated. Heatshield thermocouples were placed within Avcoat plugs to attempt to capture transitional behavior as well as better understand the aerothermal environments. Thermocouples were placed in stacks of two or five vertically within the plugs, but the temperature data obtained at the sensors closest to the surface did not immediately indicate transitional behavior. Efforts to use the in depth thermocouple temperatures to reconstruct the surface heat flux are ongoing and any results showing the onset of boundary layer transition obtained from those reconstructions will also be included in this paper. Transition on additional features of interest, including compression pad ramps, will be included if it becomes available.

  20. The Use of Terrestrial Analogs in Preparing for Planetary Surface Exploration: Sampling and Radioisotopic Dating of Impactites and Deployment of In Situ Analytical Technologies

    Science.gov (United States)

    Young, Kelsey

    Impact cratering has played a crucial role in the surface development of the inner planets. Constraining the timing of this bombardment history is important in understanding the origins of life and our planet's evolution. Plate tectonics, active volcanism, and vegetation hinder the preservation and identification of existing impact craters on Earth. Providing age constraints on these elusive structures will provide a deeper understanding of our planet's development. To do this, (U-Th)/He thermochronology and in situ 40 Ar/39Ar laser microprobe geochronology are used to provide ages for the Haughton and Mistastin Lake impact structures, both located in northern Canada. While terrestrial impact structures provide accessible laboratories for deciphering Earth's impact history, the ultimate goal for understanding the history of the reachable inner Solar System is to acquire robust, quantitative age constraints for the large lunar impact basins. The oldest of these is the South Pole-Aitken basin (SPA), located on the lunar farside. While it is known that this basin is stratigraphically the oldest on the Moon, its absolute age has yet to be determined. Several reports released in the last decade have highlighted sampling and dating SPA as a top priority for inner Solar System exploration. This is no easy task as the SPA structure has been modified by four billion subsequent years of impact events. Informed by studies at Mistastin---which has target lithologies analogous to those at SPA---sampling strategies are discussed that are designed to optimize the probability of a high science return with regard to robust geochronology of the SPA basin. Planetary surface missions, like one designed to explore and sample SPA, require the integration of engineering constraints with scientific goals and traverse planning. The inclusion of in situ geochemical technology, such as the handheld X-ray fluorescence spectrometer (hXRF), into these missions will provide human crews with the

  1. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    Science.gov (United States)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  2. Planetary Magnetism

    International Nuclear Information System (INIS)

    Russell, C.T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io

  3. Who Reaps the Benefits of Social Change? Exploration and Its Socioecological Boundaries.

    Science.gov (United States)

    Lechner, Clemens M; Obschonka, Martin; Silbereisen, Rainer K

    2017-04-01

    We investigated the interplay between the personality trait exploration and objective socioecological conditions in shaping individual differences in the experience of two individual-level benefits of current social change: new lifestyle options, which arise from the societal trend toward individualization, and new learning opportunities, which accrue from the societal trend toward lifelong learning. We hypothesized that people with higher trait exploration experience a greater increase in lifestyle options and learning opportunities--but more so in social ecologies in which individualization and lifelong learning are stronger, thus offering greater latitude for exploring the benefits of these trends. We employed structural equation modeling in two parallel adult samples from Germany (N = 2,448) and Poland (N = 2,571), using regional divorce rates as a proxy for individualization and Internet domain registration rates as a proxy for lifelong learning. Higher exploration was related to a greater perceived increase in lifestyle options and in learning opportunities over the past 5 years. These associations were stronger in regions in which the trends toward individualization and lifelong learning, respectively, were more prominent. Individuals higher in exploration are better equipped to reap the benefits of current social change--but the effects of exploration are bounded by the conditions in the social ecology. © 2015 Wiley Periodicals, Inc.

  4. Low-Latency Science Exploration of Planetary Bodies: How ISS Might Be Used as Part of a Low-Latency Analog Campaign for Human Exploration

    Science.gov (United States)

    Thronson, Harley; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We suggest that the International Space Station be used to examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." To this end, controlled experiments that build upon and complement ground-based analog field studies will be critical for assessing the effects of different latencies (0 to 500 milliseconds), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  5. Planetary Geomorphology.

    Science.gov (United States)

    Baker, Victor R.

    1984-01-01

    Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…

  6. Exploring the Contribution of Primary Marine Organic Matter to the Arctic Boundary Layer

    Science.gov (United States)

    Collins, D. B.; Chang, R. Y. W.; Boyer, M.; Abbatt, J.

    2016-12-01

    The ocean is a significant source of aerosol to the atmosphere, and contributes significantly to the aerosol population especially in remote locations. Both primary and secondary processes connect the ocean to ambient aerosol loadings, but the extent to which the ocean is a source of organic material to the atmosphere is a current topic of scientific debate. The contribution of primary marine aerosol to atmospheric organic matter may have an influence on the water uptake properties and chemical reactivity of primary marine aerosol particles, influencing their climate-relevant properties. In this study, we characterize the contribution of primary marine aerosol to the arctic marine boundary layer using coincident quantitative measurements of freshly-produced sea spray aerosol and ambient marine aerosol to the arctic boundary layer during an expedition aboard the CCGS Amundsen. Sea spray production experiments were conducted during the cruise using a tank fitted with a plunging waterfall apparatus, a technique which has been recently shown to closely mimic the aerosol production behavior of controlled breaking waves. Comparison of the chemical composition of sea spray particles generated from water samples in various locations throughout the Canadian Archipelago will be presented. A tracer analysis of specific compounds known to be important contributors to primary marine organic material are tracked using GC/MS, along with those known to be tracers of biological aerosol and other organic matter sources. Size-segregated trends in tracer concentrations and ratios with inorganic components will be discussed in the context of understanding the contribution of primary organics to the Arctic atmosphere and in comparison with other sources of organic material observed during the ship-board campaign.

  7. Demonstration of Planet Labs web explorer combined with data from danish field boundaries

    DEFF Research Database (Denmark)

    2018-01-01

    Exploring planet labs satellite data using Land-parcel identification system (LPIS) data from Denmark. The video is intended as a short demo to show how one can manually find the cloud-free satellite images for a specific agricultural field. Afterward, the relevant satellite images can be download...

  8. Martian Surface Boundary Layer Characterization: Enabling Environmental Data for Science, Engineering and Human Exploration

    Science.gov (United States)

    England, C.

    2000-01-01

    For human or large robotic exploration of Mars, engineering devices such as power sources will be utilized that interact closely with the Martian environment. Heat sources for power production, for example, will use the low ambient temperature for efficient heat rejection. The Martian ambient, however, is highly variable, and will have a first order influence on the efficiency and operation of all large-scale equipment. Diurnal changes in temperature, for example, can vary the theoretical efficiency of power production by 15% and affect the choice of equipment, working fluids, and operating parameters. As part of the Mars Exploration program, missions must acquire the environmental data needed for design, operation and maintenance of engineering equipment including the transportation devices. The information should focus on the variability of the environment, and on the differences among locations including latitudes, altitudes, and seasons. This paper outlines some of the WHY's, WHAT's and WHERE's of the needed data, as well as some examples of how this data will be used. Environmental data for engineering design should be considered a priority in Mars Exploration planning. The Mars Thermal Environment Radiator Characterization (MTERC), and Dust Accumulation and Removal Technology (DART) experiments planned for early Mars landers are examples of information needed for even small robotic missions. Large missions will require proportionately more accurate data that encompass larger samples of the Martian surface conditions. In achieving this goal, the Mars Exploration program will also acquire primary data needed for understanding Martian weather, surface evolution, and ground-atmosphere interrelationships.

  9. Thinking beyond the Obvious Boundaries in Mathematics: An Exploration of Joyous Discovery.

    Science.gov (United States)

    de Vries, Marianne E.

    1992-01-01

    Ideas for the development of creative exploration in mathematics are offered, including games to play in class (e.g., card games and tangrams), competitions (sample problems), clubs and math evenings (math relays and treasure hunts), projects (possible topics in patchwork quilting, art, and music), and math camps. (DB)

  10. Boundary issues

    Science.gov (United States)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  11. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions:An Overview of the Technology Maturation Effort

    Science.gov (United States)

    Beck, Robin A S.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Prabhu, Dinesh K.; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2013-01-01

    The Office of Chief Technologist, NASA identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: Mass to Surface, Surface Access, Precision Landing, Surface Hazard Detection and Avoidance, Safety and Mission Assurance, and Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems are manufactured using techniques that require filling of each (38 cell) by hand, and in a limited amount of time all of the cells must be filled and the heatshield must be cured. The tile systems such as PICA pose a different challenge as the low strain-to-failure and manufacturing size limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS. A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials. The high strain-to-failure nature of the conformal ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. By reducing the overall part count, the cost of installation (based on cost comparisons between blanket

  12. Augmented Virtuality: A Real-time Process for Presenting Real-world Visual Sensory Information in an Immersive Virtual Environment for Planetary Exploration

    Science.gov (United States)

    McFadden, D.; Tavakkoli, A.; Regenbrecht, J.; Wilson, B.

    2017-12-01

    Virtual Reality (VR) and Augmented Reality (AR) applications have recently seen an impressive growth, thanks to the advent of commercial Head Mounted Displays (HMDs). This new visualization era has opened the possibility of presenting researchers from multiple disciplines with data visualization techniques not possible via traditional 2D screens. In a purely VR environment researchers are presented with the visual data in a virtual environment, whereas in a purely AR application, a piece of virtual object is projected into the real world with which researchers could interact. There are several limitations to the purely VR or AR application when taken within the context of remote planetary exploration. For example, in a purely VR environment, contents of the planet surface (e.g. rocks, terrain, or other features) should be created off-line from a multitude of images using image processing techniques to generate 3D mesh data that will populate the virtual surface of the planet. This process usually takes a tremendous amount of computational resources and cannot be delivered in real-time. As an alternative, video frames may be superimposed on the virtual environment to save processing time. However, such rendered video frames will lack 3D visual information -i.e. depth information. In this paper, we present a technique to utilize a remotely situated robot's stereoscopic cameras to provide a live visual feed from the real world into the virtual environment in which planetary scientists are immersed. Moreover, the proposed technique will blend the virtual environment with the real world in such a way as to preserve both the depth and visual information from the real world while allowing for the sensation of immersion when the entire sequence is viewed via an HMD such as Oculus Rift. The figure shows the virtual environment with an overlay of the real-world stereoscopic video being presented in real-time into the virtual environment. Notice the preservation of the object

  13. Survey for Life-related Species During a Planetary Surface Exploration; System Type I - UV Stimulated Fluorescent Sensor

    Science.gov (United States)

    Wang, Alian; Haskin, L. A.; Gillis, J. J.

    2003-01-01

    The widely accepted minimum requirements for life on Earth include the presence of water and accessible sources of carbon. We assume that the same criteria must hold for putative life on past or present Mars. The evidence for CO2 and H2O at or near the Martian surface, carbon in Martian meteorites, aqueous alteration, and probable hydrothermal activity suggest that conditions conducive to the origin and evolution of life on Mars may have existed for long periods of time and may still obtain at present. Surface exploration on Mars that enables the direct detection of water in minerals and of organic carbon (including not just organic and biogenic materials but their degradation products such as kerogen-like hydrocarbons and graphitized carbon) that might be products or residues of biologic activity, is crucial. The search for evidence of life, past or present, will nevertheless be difficult. The lack of direct evidence for organic carbon and the low amounts of water found in the soils at the Viking sites demonstrated the difficulties. Recent results of GRS experiment of Odyssey mission indicated the existence of abundant water ice beneath the Mars surface. Mineralogical evidence for the presence of carbonate, sulfates, or clay minerals, products of weathering and aqueous deposition, have not been identified unambiguously on Mars. Rocks such as shales and, more particularly, limestones, which we associate with moist and benign environments on Earth, are evidently not abundant. Presumably, then, neither were the photosynthetic organisms that might have produced them. In addition, the harsh present environment on Mars (e.g., dryness, low temperatures, large temperature cycles, high level of UV light on the surface, frequent dust storms, etc.) can both destroy carbon- and water-bearing materials and hide them. Therefore, directly detecting life-related materials on Mars was likened to seeking and examining proverbial needles in haystacks. We argue that survey type

  14. Inner core boundary topography explored with reflected and diffracted P waves

    Science.gov (United States)

    deSilva, Susini; Cormier, Vernon F.; Zheng, Yingcai

    2018-03-01

    The existence of topography of the inner core boundary (ICB) can affect the amplitude, phase, and coda of body waves incident on the inner core. By applying pseudospectral and boundary element methods to synthesize compressional waves interacting with the ICB, these effects are predicted and compared with waveform observations in pre-critical, critical, post-critical, and diffraction ranges of the PKiKP wave reflected from the ICB. These data sample overlapping regions of the inner core beneath the circum-Pacific belt and the Eurasian, North American, and Australian continents, but exclude large areas beneath the Pacific and Indian Oceans and the poles. In the pre-critical range, PKiKP waveforms require an upper bound of 2 km at 1-20 km wavelength for any ICB topography. Higher topography sharply reduces PKiKP amplitude and produces time-extended coda not observed in PKiKP waveforms. The existence of topography of this scale smooths over minima and zeros in the pre-critical ICB reflection coefficient predicted from standard earth models. In the range surrounding critical incidence (108-130 °), this upper bound of topography does not strongly affect the amplitude and waveform behavior of PKIKP + PKiKP at 1.5 Hz, which is relatively insensitive to 10-20 km wavelength topography height approaching 5 km. These data, however, have a strong overlap in the regions of the ICB sampled by pre-critical PKiKP that require a 2 km upper bound to topography height. In the diffracted range (>152°), topography as high as 5 km attenuates the peak amplitudes of PKIKP and PKPCdiff by similar amounts, leaving the PKPCdiff/PKIKP amplitude ratio unchanged from that predicted by a smooth ICB. The observed decay of PKPCdiff into the inner core shadow and the PKIKP-PKPCdiff differential travel time are consistent with a flattening of the outer core P velocity gradient near the ICB and iron enrichment at the bottom of the outer core.

  15. Mars Technology Program Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  16. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  17. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  18. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: Overview of the Technology Maturation Efforts Funded by NASA's Game Changing Development Program

    Science.gov (United States)

    Beck, Robin A.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Fan, Wendy; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASA's Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASA's exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agency's 2011 strategic goal to "Create the innovative new space technologies for our exploration, science, and economic future." In addition, recently released "NASA space Technology Roadmaps and Priorities," by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reduction in spacecraft structural mass; more efficient, lighter thermal protection systems; more efficient lighter propulsion systems; and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location (s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the

  19. Planetary Sciences and Exploration Programme

    Indian Academy of Sciences (India)

    ture; recent five publications relevant to the proposed work; budget break up including amount required towards fellowship, equipment, consumables, components, travel contingencies. After suitable reviews, selected proposals will be considered for financial support by ISRO. Two copies of the proposals may be submitted ...

  20. Characterization of a Planetary Boundary Layer model to evaluate radionuclides releases in nuclear installations; Caracterizacao de um modelo de camada limite planetaria para avaliar liberacoes de radionuclideos em instalacoes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Molnary, Leslie de

    1993-07-01

    A two layer bulk model is used to simulate numerically the time and spatial evolution of concentration of radionuclides in the Planetary Boundary Layer (PBL) for convective and stable conditions. In this model, the closure hypothesis are based on the integrated version of the Turbulent Kinetics Energy (TKE) equation (Smeda,1979). This type of model was adopted here because it is numerically simple to be applied operationally in routine and emergency support systems of atmospheric releases at nuclear power plants, and the hypothesis of the efficiency of the vertical mixing seems to be physically reasonable to simulated PBL evolution for high wind conditions and stable conditions in Subtropical latitudes regions. In order to validate the model to the nuclear power plants of the Centro Experimental Aramar (CEA), located in Ipero, State of Sao Paulo, Brazil, numerical simulations were carried out with initial and boundary conditions based on vertical profiles of temperature and horizontal wind speed and direction obtained from tethered balloon soundings, synoptic charts at 850 hPa and surface observations. Comparisons between a 24 hour long numerical simulation and observations indicate that the model is capable of reproduce the diurnal evolution of temperature and horizontal wind during the convective regime. During stable conditions, the slab model was able to simulate the intensity of the surface inversion as a difference between the mixed layer and surface temperatures. The simulated mixed layer height matches with observations during the convective and stable regime. A daytime release of radionuclides was simulated for CEA region and the results indicated that the maximum relative concentration reaches a distance about 15 Km in 1 hour, varing from 100 times background at the moment of the release to 15 times the background. For night releases, the maximum concentration reaches the same distance in 45 minutes, varing from 100 to 30 times the background values

  1. Planetary boundary layer height variability over athens, greece, based on the synergy of raman lidar and radiosonde data: Application of the kalman filter and other techniques (2011-2016)

    Science.gov (United States)

    Alexiou, Dimitrios; Kokkalis, Panagiotis; Papayannis, Alexandros; Rocadenbosch, Francesc; Argyrouli, Athina; Tsaknakis, Georgios; Tzanis, Chris G.

    2018-04-01

    In this paper we studied the temporal evolution of the Planetary Boundary Layer height (PBLH) over the basin of Athens, Greece during a 5-year period (2011-2016) using data from the EOLE Raman lidar system. The lidar data (range-corrected lidar signals-RCS) were selected around 12:00 UTC and 00:00 UTC for a total of 332 cases: 165 days and 167 nights. Extended Kalman filtering techniques were used for the determination of the PBLH. Moreover, several well established techniques for the PBLH estimation based on lidar data were also tested for a total of 35 cases. Comparisons with the PBLH values derived from radiosonde data were also performed. The mean PBLH over Athens was found to be of the order of 1617±324 m at 12:00 UTC and of 892±130 m at 00:00 UTC, for the period examined. The mean PBLH growth rate was found to be about 170±64 m h-1 and 90±17 m h-1, during daytime and nighttime, respectively.

  2. Emerging boundaries

    DEFF Research Database (Denmark)

    Løvschal, Mette

    2014-01-01

    of temporal and material variables have been applied as a means of exploring the processes leading to their socioconceptual anchorage. The outcome of this analysis is a series of interrelated, generative boundary principles, including boundaries as markers, articulations, process-related devices, and fixation...

  3. Planetary Habitability

    Science.gov (United States)

    Kasting, James F.

    1997-01-01

    This grant was entitled 'Planetary Habitability' and the work performed under it related to elucidating the conditions that lead to habitable, i.e. Earth-like, planets. Below are listed publications for the past two and a half years that came out of this work. The main thrusts of the research involved: (1) showing under what conditions atmospheric O2 and O3 can be considered as evidence for life on a planet's surface; (2) determining whether CH4 may have played a role in warming early Mars; (3) studying the effect of varying UV levels on Earth-like planets around different types of stars to see whether this would pose a threat to habitability; and (4) studying the effect of chaotic obliquity variations on planetary climates and determining whether planets that experienced such variations might still be habitable. Several of these topics involve ongoing research that has been carried out under a new grant number, but which continues to be funded by NASA's Exobiology program.

  4. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  5. Non-planetary Science from Planetary Missions

    Science.gov (United States)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  6. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  7. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  8. Negotiating boundaries

    DEFF Research Database (Denmark)

    Aarhus, Rikke; Ballegaard, Stinne Aaløkke

    2010-01-01

    to maintain the order of the home when managing disease and adopting new healthcare technology. In our analysis we relate this boundary work to two continuums of visibility-invisibility and integration-segmentation in disease management. We explore five factors that affect the boundary work: objects......, activities, places, character of disease, and collaboration. Furthermore, the processes are explored of how boundary objects move between social worlds pushing and shaping boundaries. From this we discuss design implications for future healthcare technologies for the home.......To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work...

  9. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  10. Interoperability in the Planetary Science Archive (PSA)

    Science.gov (United States)

    Rios Diaz, C.

    2017-09-01

    The protocols and standards currently being supported by the recently released new version of the Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet- Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. We explore these protocols in more detail providing scientifically useful examples of their usage within the PSA.

  11. Electrostatic Phenomena on Planetary Surfaces

    Science.gov (United States)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  12. The International Planetary Data Alliance (IPDA)

    Science.gov (United States)

    Stein, Thomas; Gopala Krishna, Barla; Crichton, Daniel J.

    2016-07-01

    The International Planetary Data Alliance (IPDA) is a close association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA is focused on developing an international standard that allows discovery, query, access, and usage of such data across international planetary data archive systems. While trends in other areas of space science are concentrating on the sharing of science data from diverse standards and collection methods, the IPDA concentrates on promoting governing data standards that drive common methods for collecting and describing planetary science data across the international community. This approach better supports the long term goal of easing data sharing across system and agency boundaries. An initial starting point for developing such a standard will be internationalization of NASA's Planetary Data System's (PDS) PDS4 standard. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. It has grown to a dozen member agencies represented by a number of different groups through the IPDA Steering Committee. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of

  13. GEOMETRY AND CHARACTERISTICS OF THE HELIOSHEATH REVEALED IN THE FIRST FIVE YEARS OF INTERSTELLAR BOUNDARY EXPLORER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zirnstein, E. J.; McComas, D. J.; Schwadron, N. A. [Southwest Research Institute, San Antonio, TX 78228 (United States); Funsten, H. O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Heerikhuisen, J.; Zank, G. P., E-mail: ezirnstein@swri.edu [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2016-07-20

    We investigate and interpret the geometry and characteristics of the inner heliosheath (IHS) plasma and their impact on the heliotail structure as observed in energetic neutral atom (ENA) maps acquired during the first 5 yr of Interstellar Boundary Explorer ( IBEX ) observations. In particular, IBEX observations of the heliotail reveal distinct, localized emission features (lobes) that provide a rich set of information about the properties and evolution of the heliosheath plasma downstream of the termination shock (TS). We analyze the geometry of the heliotail lobes and find that the plane intersecting the port and starboard heliotail lobe centers is ∼6° from the solar equatorial plane, and the plane intersecting the north and south heliotail lobe centers is ∼90° from the solar equatorial plane, both indicating strong correlation with the fast–slow solar wind asymmetry, and thus reflecting the structure of the IHS flow around the Sun. We also analyze the key parameters and processes that form and shape the port and starboard lobes, which are distinctly different from the north and south lobes. By comparing IBEX ENA observations with results from a simplistic flow model of the heliosphere and a multicomponent description for pickup ions (PUIs) in the IHS, we find that the port and starboard lobe formation is driven by a thin IHS, large nose–tail asymmetry of the distance to the TS (and consequently, a large nose–tail asymmetry of the relative abundance of PUIs at the TS) and the energy-dependent removal of PUIs by charge exchange in the IHS.

  14. INTERSTELLAR GAS FLOW PARAMETERS DERIVED FROM INTERSTELLAR BOUNDARY EXPLORER-Lo OBSERVATIONS IN 2009 AND 2010: ANALYTICAL ANALYSIS

    International Nuclear Information System (INIS)

    Möbius, E.; Bochsler, P.; Heirtzler, D.; Kucharek, H.; Lee, M. A.; Leonard, T.; Schwadron, N. A.; Wu, X.; Petersen, L.; Valovcin, D.; Wurz, P.; Bzowski, M.; Kubiak, M. A.; Fuselier, S. A.; Crew, G.; Vanderspek, R.; McComas, D. J.; Saul, L.

    2012-01-01

    Neutral atom imaging of the interstellar gas flow in the inner heliosphere provides the most detailed information on physical conditions of the surrounding interstellar medium (ISM) and its interaction with the heliosphere. The Interstellar Boundary Explorer (IBEX) measured neutral H, He, O, and Ne for three years. We compare the He and combined O+Ne flow distributions for two interstellar flow passages in 2009 and 2010 with an analytical calculation, which is simplified because the IBEX orientation provides observations at almost exactly the perihelion of the gas trajectories. This method allows separate determination of the key ISM parameters: inflow speed, longitude, and latitude, as well as temperature. A combined optimization, as in complementary approaches, is thus not necessary. Based on the observed peak position and width in longitude and latitude, inflow speed, latitude, and temperature are found as a function of inflow longitude. The latter is then constrained by the variation of the observed flow latitude as a function of observer longitude and by the ratio of the widths of the distribution in longitude and latitude. Identical results are found for 2009 and 2010: an He flow vector somewhat outside previous determinations (λ ISM∞ = 79. 0 0+3. 0 0(–3. 0 5), β ISM∞ = –4. 0 9 ± 0. 0 2, V ISM∞ 23.5 + 3.0(–2.0) km s –1 , T He = 5000-8200 K), suggesting a larger inflow longitude and lower speed. The O+Ne temperature range, T O+Ne = 5300-9000 K, is found to be close to the upper range for He and consistent with an isothermal medium for all species within current uncertainties.

  15. Space and Planetary Resources

    Science.gov (United States)

    Abbud-Madrid, Angel

    2018-02-01

    The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward

  16. Boundary Spanning

    DEFF Research Database (Denmark)

    Zølner, Mette

    The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....

  17. Measurements of HOx radicals and the total OH reactivity (kOH) in the planetary boundary layer over southern Finland aboard the Zeppelin NT airship during the PEGASOS field campaign.

    Science.gov (United States)

    Broch, Sebastian; Gomm, Sebastian; Fuchs, Hendrik; Hofzumahaus, Andreas; Holland, Frank; Bachner, Mathias; Bohn, Birger; Häseler, Rolf; Jäger, Julia; Kaiser, Jennifer; Keutsch, Frank; Li, Xin; Lohse, Insa; Rohrer, Franz; Thayer, Mitchell; Tillmann, Ralf; Wegener, Robert; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    The concentration of hydroxyl (OH) and hydroperoxy (HO2) radicals (also named HOx) and the total OH reactivity were measured over southern Finland and during transfer flights over Germany, Denmark and Sweden aboard the Zeppelin NT airship within the framework of the Pan-European Gas-AeroSOls-climate interaction Study (PEGASOS) field campaign in 2013. The measurements were performed with a remotely controlled Laser Induced Fluorescence (LIF) instrument which was installed on top of the airship. Together with a comprehensive set of trace gas (O3, CO, NO, NO2, HCHO, HONO, VOCs), photolysis frequencies and aerosol measurements as well as the measurement of meteorological parameters, these data provide the possibility to test the current understanding of the chemical processes in the planetary boundary layer (PBL) over different landscapes and in different chemical regimes. The unique flight performance of the Zeppelin NT allowed us to measure transects at a constant altitude as well as vertical profiles within the range of 80 m to 1000 m above ground. The transect flights show changes in the HOx distribution and kOH while crossing different chemical regimes on the way from Friedrichshafen, Germany to Jämijärvi, Finland over Germany, Denmark and Sweden. Vertical profile flights over the boreal forest close to Jämijärvi and Hyytiälä (both Finland) gave the opportunity to investigate the layering of the PBL and with that the vertical distribution of HOx and kOH with a high spatial and temporal resolution. Gradients in the HOx concentration and kOH were measured between the different layers during the early morning hours. The maximum radical concentrations found during the campaign were 1.0 x 107 cm-3 for OH and 1.0 x 109 cm-3 for HO2. The total OH reactivity measured in Finland was much lower than what was reported before in the literature from ground based measurements and ranged from 1 s-1 to 6 s-1. Acknowledgement: PEGASOS project funded by the European

  18. Simulating dynamics of {delta}{sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of {delta}{sup 13}C and thus the global {delta}{sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to {delta}{sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of {delta}{sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The {delta}{sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on {delta}{sup 13}C of CO{sub 2} dynamics in PBL

  19. Simulating dynamics of (delta){sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of (delta){sup 13}C and thus the global (delta){sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to (delta){sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of (delta){sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The (delta){sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on (delta){sup 13}C of CO{sub 2} dynamics in PBL

  20. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  1. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  2. New DSH planetary nebulae and candidates from optical and infrared surveys

    International Nuclear Information System (INIS)

    Kronberger, Matthias; Jacoby, George H; Alves, Filipe; Patchick, Dana; Parker, Quentin A; Bojicic, Ivan; Frew, David J; Acker, Agnes; Eigenthaler, Paul; Harmer, Dianne; Reid, Warren; Schedler, Johannes

    2016-01-01

    To date, the planetary nebula (PN) survey of the Deep Sky Hunters collaboration has led to the detection of more than 250 previously unknown candidate planetary nebulae (PNe). About 60% of them were found during the past two years and are expected to be true, likely or possible PNe because careful vetting has already thrown out more doubtful objects. The majority of the new PN candidates are located within the boundaries of the SHS and IPHAS Ha surveys and were discovered by combining MIR data from the WideField Infrared Survey Explorer (WISE) with optical data from the IPHAS, SHS and DSS surveys, and UV data from the Galaxy Evolution Explorer(GALEX). (paper)

  3. Exploring the boundaries of individual and collective land use management: institutional arrangements in the PAE Chico Mendes (Acre, Brazil

    Directory of Open Access Journals (Sweden)

    François-Michel Le Tourneau

    2017-03-01

    Full Text Available The economic modernization of the Amazon fostered by the Brazilian military government during the 1960s and 1970s was largely realized without taking into consideration the presence of local households which lived from the extraction of forest products (mainly non-timber. When they began to be expulsed, a political resistance, often guided by the Catholic Church, appeared as well as the creation of unions based on traditional identities, especially that of rubber tappers. During the 1980s, these unions made a strategic alliance with the ecologist movement which started to consider traditional populations, whose lifestyle depended on the forest, as allies for the protection of the Amazon rainforest. The movement gained a decisive momentum at the end of the decade by putting forward new proposals of land tenure for traditional populations, grounded on collective land rights. This strategy has been very efficient during the 1990s and 2000s, during which about 1,300,000 km2 of rainforest were set apart and reserved for the use of “traditional communities” under a variety of legal status. But it has also led to mix under the same “collective” etiquette and principles a number of different ways of using and managing land and natural resources. This assumption however should be nuanced by a careful analysis of the resource management systems existing in each case, for they are in general complex and mix varying proportions of individual and collective decisions. The aim of this paper is to explore this question using the example of the Chico Mendes agroextractive settlement (PAE-CM, inhabited by about 100 rubber tapper families and symbolic of the political struggle of traditional populations in the Amazon for being the home of the rubber tapper leader Chico Mendes assassinated in 1988. Applying Ostrom “design principles”, we try to catch what are the local institutional arrangements and to see if they suggest

  4. Shifting contours of boundaries: an exploration of inter-agency integration between hospital and community interprofessional diabetes programs.

    Science.gov (United States)

    Wong, Rene; Breiner, Petra; Mylopoulos, Maria

    2014-09-01

    This article reports on research into the relationships that emerged between hospital-based and community-based interprofessional diabetes programs involved in inter-agency care. Using constructivist grounded theory methodology we interviewed a purposive theoretical sample of 21 clinicians and administrators from both types of programs. Emergent themes were identified through a process of constant comparative analysis. Initial boundaries were constructed based on contrasts in beliefs, practices and expertise. In response to bureaucratic and social pressures, boundaries were redefined in a way that created role uncertainty and disempowered community programs, ultimately preventing collaboration. We illustrate the dynamic and multi-dimensional nature of social and symbolic boundaries in inter-agency diabetes care and the tacit ways in which hospitals can maintain a power position at the expense of other actors in the field. As efforts continue in Canada and elsewhere to move knowledge and resources into community sectors, we highlight the importance of hospitals seeing beyond their own interests and adopting more altruistic models of inter-agency integration.

  5. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  6. Quantitative Potassium Measurements with Laser-Induced Breakdown Spectroscopy Using Low-Energy Lasers: Application to In Situ K-Ar Geochronology for Planetary Exploration.

    Science.gov (United States)

    Cho, Yuichiro; Horiuchi, Misa; Shibasaki, Kazuo; Kameda, Shingo; Sugita, Seiji

    2017-08-01

    In situ radiogenic isotope measurements to obtain the absolute age of geologic events on planets are of great scientific value. In particular, K-Ar isochrons are useful because of their relatively high technical readiness and high accuracy. Because this isochron method involves spot-by-spot K measurements using laser-induced breakdown spectroscopy (LIBS) and simultaneous Ar measurements with mass spectrometry, LIBS measurements are conducted under a high vacuum condition in which emission intensity decreases significantly. Furthermore, using a laser power used in previous planetary missions is preferable to examine the technical feasibility of this approach. However, there have been few LIBS measurements for K under such conditions. In this study, we measured K contents in rock samples using 30 mJ and 15 mJ energy lasers under a vacuum condition (10 -3  Pa) to assess the feasibility of in situ K-Ar dating with lasers comparable to those used in NASA's Curiosity and Mars 2020 missions. We obtained various calibration curves for K using internal normalization with the oxygen line at 777 nm and continuum emission from the laser-induced plasma. Experimental results indicate that when K 2 O laser energy, with a detection limit of 88 ppm and 20% of error at 2400 ppm of K 2 O. Futhermore, the calibration curve based on the K 769 nm line intensity normalized with continuum emission yielded the best result for the 15 mJ laser, giving a detection limit of 140 ppm and 20% error at 3400 ppm K 2 O. Error assessments using obtained calibration models indicate that a 4 Ga rock with 3000 ppm K 2 O would be measured with 8% (30 mJ) and 10% (15 mJ) of precision in age when combined with mass spectrometry of 40 Ar with 10% of uncertainty. These results strongly suggest that high precision in situ isochron K-Ar dating is feasible with a laser used in previous and upcoming Mars rover missions.

  7. Conformal Ablative Thermal Protection System for Small and Large Scale Missions: Approaching TRL 6 for Planetary and Human Exploration Missions and TRL 9 for Small Probe Missions

    Science.gov (United States)

    Beck, R. A. S.; Gasch, M. J.; Milos, F. S.; Stackpoole, M. M.; Smith, B. P.; Switzer, M. R.; Venkatapathy, E.; Wilder, M. C.; Boghhozian, T.; Chavez-Garcia, J. F.

    2015-01-01

    In 2011, NASAs Aeronautics Research Mission Directorate (ARMD) funded an effort to develop an ablative thermal protection system (TPS) material that would have improved properties when compared to Phenolic Impregnated Carbon Ablator (PICA) and AVCOAT. Their goal was a conformal material, processed with a flexible reinforcement that would result in similar or better thermal characteristics and higher strain-to-failure characteristics that would allow for easier integration on flight aeroshells than then-current rigid ablative TPS materials. In 2012, NASAs Space Technology Mission Directorate (STMD) began funding the maturation of the best formulation of the game changing conformal ablator, C-PICA. Progress has been reported at IPPW over the past three years, describing C-PICA with a density and recession rates similar to PICA, but with a higher strain-to-failure which allows for direct bonding and no gap fillers, and even more important, with thermal characteristics resulting in half the temperature rise of PICA. Overall, C-PICA should be able to replace PICA with a thinner, lighter weight, less complicated design. These characteristics should be particularly attractive for use as backshell TPS on high energy planetary entry vehicles. At the end of this year, the material should be ready for missions to consider including in their design, in fact, NASAs Science Mission Directorate (SMD) is considering incentivizing the use of C-PICA in the next Discovery Proposal call. This year both scale up of the material to large (1-m) sized pieces and the design and build of small probe heatshields for flight tests will be completed. NASA, with an industry partner, will build a 1-m long manufacturing demonstration unit (MDU) with a shape based on a mid LD lifting body. In addition, in an effort to fly as you test and test as you fly, NASA, with a second industry partner, will build a small probe to test in the Interactive Heating Facility (IHF) arc jet and, using nearly the

  8. Extravehicular Activity and Planetary Protection

    Science.gov (United States)

    Buffington, J. A.; Mary, N. A.

    2015-01-01

    The first human mission to Mars will be the farthest distance that humans have traveled from Earth and the first human boots on Martian soil in the Exploration EVA Suit. The primary functions of the Exploration EVA Suit are to provide a habitable, anthropometric, pressurized environment for up to eight hours that allows crewmembers to perform autonomous and robotically assisted extravehicular exploration, science/research, construction, servicing, and repair operations on the exterior of the vehicle, in hazardous external conditions of the Mars local environment. The Exploration EVA Suit has the capability to structurally interface with exploration vehicles via next generation ingress/egress systems. Operational concepts and requirements are dependent on the mission profile, surface assets, and the Mars environment. This paper will discuss the effects and dependencies of the EVA system design with the local Mars environment and Planetary Protection. Of the three study areas listed for the workshop, EVA identifies most strongly with technology and operations for contamination control.

  9. Planetary Simulation Chambers bring Mars to laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E.

    2016-07-01

    Although space missions provide fundamental and unique knowledge for planetary exploration, they are always costly and extremely time-consuming. Due to the obvious technical and economical limitations of in-situ planetary exploration, laboratory simulations are among the most feasible research options for making advances in planetary exploration. Therefore, laboratory simulations of planetary environments are a necessary and complementary option to expensive space missions. Simulation chambers are economical, more versatile, and allow for a higher number of experiments than space missions. Laboratory-based facilities are able to mimic the conditions found in the atmospheres and on the surfaces of a majority of planetary objects. Number of relevant applications in Mars planetary exploration will be described in order to provide an understanding about the potential and flexibility of planetary simulation chambers systems: mainly, stability and presence of certain minerals on Mars surface; and microorganisms potential habitability under planetary environmental conditions would be studied. Therefore, simulation chambers will be a promising tools and necessary platform to design future planetary space mission and to validate in-situ measurements from orbital or rover observations. (Author)

  10. Precise Chemical Analyses of Planetary Surfaces

    Science.gov (United States)

    Kring, David; Schweitzer, Jeffrey; Meyer, Charles; Trombka, Jacob; Freund, Friedemann; Economou, Thanasis; Yen, Albert; Kim, Soon Sam; Treiman, Allan H.; Blake, David; hide

    1996-01-01

    We identify the chemical elements and element ratios that should be analyzed to address many of the issues identified by the Committee on Planetary and Lunar Exploration (COMPLEX). We determined that most of these issues require two sensitive instruments to analyze the necessary complement of elements. In addition, it is useful in many cases to use one instrument to analyze the outermost planetary surface (e.g. to determine weathering effects), while a second is used to analyze a subsurface volume of material (e.g., to determine the composition of unaltered planetary surface material). This dual approach to chemical analyses will also facilitate the calibration of orbital and/or Earth-based spectral observations of the planetary body. We determined that in many cases the scientific issues defined by COMPLEX can only be fully addressed with combined packages of instruments that would supplement the chemical data with mineralogic or visual information.

  11. An ecological compass for planetary engineering.

    Science.gov (United States)

    Haqq-Misra, Jacob

    2012-10-01

    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  12. Crossing Boundaries: Exploring Black Middle and Upper Class Preservice Teachers' Perceptions of Teaching and Learning in High Poverty Urban Schools

    Science.gov (United States)

    Lewis, Andrea D.

    2012-01-01

    The intent of this study was to explore the perceptions of Black middle and upper class preservice teachers as they relate to teaching and learning in high poverty urban schools. Participants included 11 senior early childhood education preservice teachers at a historically Black college in the southeast region of the United States. The study was…

  13. Using Drawings of the Brain Cell to Exhibit Expertise in Neuroscience: Exploring the Boundaries of Experimental Culture

    Science.gov (United States)

    Hay, David B.; Williams, Darren; Stahl, Daniel; Wingate, Richard J.

    2013-01-01

    This paper explores the research perspective of neuroscience by documenting the brain cell (neuron) drawings of undergraduates, trainee scientists, and leading neuroscience researchers in a single research-intensive university. Qualitative analysis, drawing-sorting exercises, and hierarchical cluster analysis are used to answer two related…

  14. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    Science.gov (United States)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https

  15. Exploring bainite formation kinetics distinguishing grain-boundary and autocatalytic nucleation in high and low-Si steels

    International Nuclear Information System (INIS)

    Ravi, Ashwath M.; Sietsma, Jilt; Santofimia, Maria J.

    2016-01-01

    Bainite formation in steels begins with nucleation of bainitic ferrite at austenite grain boundaries (γ/γ interfaces). This leads to creation of bainitic ferrite/austenite interfaces (α/γ interfaces). Bainite formation continues through autocatalysis with nucleation of bainitic ferrite at these newly created α/γ interfaces. The displacive theory of bainite formation suggests that the formation of bainitic ferrite is accompanied by carbon enrichment of surrounding austenite. This carbon enrichment generally leads to carbide precipitation unless such a reaction is thermodynamically or kinetically unfavourable. Each bainitic ferrite nucleation event is governed by an activation energy. Depending upon the interface at which nucleation occurs, a specific activation energy would be related to a specific nucleation mechanism. On the basis of this concept, a model has been developed to understand the kinetics of bainite formation during isothermal treatments. This model is derived under the assumptions of displacive mechanism of bainite formation. The fitting parameters used in this model are physical entities related to nucleation and microstructural dimensions. The model is designed in such a way that the carbon redistribution during bainite formation is accounted for, leading to prediction of transformation kinetics both with and without of carbide precipitation during bainite formation. Furthermore, the model is validated using two different sets of kinetic data published in the literature.

  16. Working memory capacity and the top-down control of visual search: Exploring the boundaries of "executive attention".

    Science.gov (United States)

    Kane, Michael J; Poole, Bradley J; Tuholski, Stephen W; Engle, Randall W

    2006-07-01

    The executive attention theory of working memory capacity (WMC) proposes that measures of WMC broadly predict higher order cognitive abilities because they tap important and general attention capabilities (R. W. Engle & M. J. Kane, 2004). Previous research demonstrated WMC-related differences in attention tasks that required restraint of habitual responses or constraint of conscious focus. To further specify the executive attention construct, the present experiments sought boundary conditions of the WMC-attention relation. Three experiments correlated individual differences in WMC, as measured by complex span tasks, and executive control of visual search. In feature-absence search, conjunction search, and spatial configuration search, WMC was unrelated to search slopes, although they were large and reliably measured. Even in a search task designed to require the volitional movement of attention (J. M. Wolfe, G. A. Alvarez, & T. S. Horowitz, 2000), WMC was irrelevant to performance. Thus, WMC is not associated with all demanding or controlled attention processes, which poses problems for some general theories of WMC. Copyright 2006 APA, all rights reserved.

  17. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  18. Exploration

    International Nuclear Information System (INIS)

    Lohrenz, J.

    1992-01-01

    Oil and gas exploration is a unique kind of business. Businesses providing a vast and ever-changing panoply of products to markets are a focus of several disciplines' energetic study and analysis. The product inventory problem is robust, pertinent, and meaningful, and it merits the voluminous and protracted attention received from keen business practitioners. Prototypical business practitioners, be they trained by years of business hurly-burly, or sophisticated MBAs with arrays of mathematical algorithms and computers, are not normally prepared, however, to recognize the unique nature of exploration's inventories. Put together such a business practitioner with an explorationist and misunderstandings, hidden and open, are inevitable and predictably rife. The first purpose of this paper is to articulate the inherited inventory handling paradigms of business practitioners in relation to exploration's inventories. To do so, standard pedagogy in business administration is used and a case study of an exploration venture is presented. A second purpose is to show the burdens that the misunderstandings create. The result is not just business plans that go awry, but public policies that have effects opposite from those intended

  19. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  20. Mauna Kea, Hawaii as an Analogue Site for Future Planetary Resource Exploration: Results from the 2010 ILSO-ISRU Field-Testing Campaign

    Science.gov (United States)

    ten Kate, I. L.; Armstrong, R.; Bernhardt, B.; Blummers, M.; Boucher, D.; Caillibot, E.; Captain, J.; Deleuterio, G.; Farmer, J. D.; Glavin, D. P.; hide

    2010-01-01

    Within the framework of the International Lunar Surface Operation - In-Situ Resource Utilization Analogue Test held on January 27 - February 11, 2010 on the Mauna Kea volcano in Hawaii, a number of scientific instrument teams collaborated to characterize the field site and test instrument capabilities outside laboratory environments. In this paper, we provide a geological setting for this new field-test site, a description of the instruments that were tested during the 2010 ILSO-ISRU field campaign, and a short discussion for each instrument about the validity and use of the results obtained during the test. These results will form a catalogue that may serve as reference for future test campaigns. In this paper we provide a description and regional geological setting for a new field analogue test site for lunar resource exploration, and discuss results obtained from the 2010 ILSO-ISRU field campaign as a reference for future field-testing at this site. The following instruments were tested: a multispectral microscopic imager, MMI, a Mossbauer spectrometer, an evolved gas analyzer, VAPoR, and an oxygen and volatile extractor called RESOLVE. Preliminary results show that the sediments change from dry, organic-poor, poorly-sorted volcaniclastic sand on the surface, containing basalt, iron oxides and clays, to more water- and organic-rich, fine grained, well-sorted volcaniclastic sand, primarily consisting of iron oxides and depleted of basalt and clays. Furthermore, drilling experiments showed a very close correlation between drilling on the Moon and drilling at the test site. The ILSO-ISRU test site was an ideal location for testing strategies for in situ resource exploration at the lunar or martian surface.

  1. Do Interactive Globes and Games Help Students Learn Planetary Science?

    Science.gov (United States)

    Coba, Filis; Burgin, Stephen; De Paor, Declan; Georgen, Jennifer

    2016-01-01

    The popularity of animations and interactive visualizations in undergraduate science education might lead one to assume that these teaching aids enhance student learning. We tested this assumption for the case of the Google Earth virtual globe with a comparison of control and treatment student groups in a general education class of over 370 students at a large public university. Earth and Planetary Science course content was developed in two formats: using Keyhole Markup Language (KML) to create interactive tours in Google Earth (the treatment group) and Portable Document Format (PDF) for on-screen reading (the control group). The PDF documents contained identical text and images to the placemark balloons or "tour stops" in the Google Earth version. Some significant differences were noted between the two groups based on the immediate post-questionnaire with the KML students out-performing the PDF students, but not on the delayed measure. In a separate but related project, we undertake preliminary investigations into methods of teaching basic concepts in planetary mantle convection using numerical simulations. The goal of this project is to develop an interface with a two-dimensional finite element model that will allow students to vary parameters such as the temperatures assigned to the boundaries of the model domain, to help them actively explore important variables that control convection.

  2. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  3. Advances in Planetary Protection at the Deep Space Gateway

    Science.gov (United States)

    Spry, J. A.; Siegel, B.; Race, M.; Rummel, J. D.; Pugel, D. E.; Groen, F. J.; Kminek, G.; Conley, C. A.; Carosso, N. J.

    2018-02-01

    Planetary protection knowledge gaps that can be addressed by science performed at the Deep Space Gateway in the areas of human health and performance, space biology, and planetary sciences that enable future exploration in deep space, at Mars, and other targets.

  4. Planetary Landscape Geography

    Science.gov (United States)

    Hargitai, H.

    building Lunar or Martian bases. Factors of this category are the presence of water, 24 h communication oppor- tunity with Earth, radio noise free sky, radiation, temperature etc conditions. Since the emergence of the discipline of astrobiology, potentially habitable niches - and espe- cially the so far undiscovered de facto inhabited niches - make very high value of a given landscape. CONCLUSION As we have closer touch with planetary surfaces other than our, and as human (and manned) exploration of the Solar System will again be in the agenda, in addition to physical geographic or geologic factors, new ones: economical, cultural, aesthetic and geofactors together will determine the value of a certain landscape in a given area. Its study will be more geographic than geologic. The above listed ele- ments can be important when chosing a base or landing site on any planetary body. The landscape values can be merged in a GIS system and this way we can more ea- sity determine not only landcape types but also the optimal landing sites for future missions. References [1] Mezõsi , G.: A földrajzi táj (geographic landscape), in: Általános ter- mészerföldrajz, Budapest, 1993. pp 807-818. [2] Baker, V. R.: Extraterrestrial Geo- morphology: An Introduction. Geomorphology 37 (2001) pp 175-178. [3] Jakucs, L.: A földrajzi burok kozmogén és endogén dinamikája (Endogenic and Cosmogenic Dy- namics of the Geospheres). JATEPress, 1997. 3

  5. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  6. The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model

    Science.gov (United States)

    Hughes, S.; Bernath, A.

    1995-01-01

    The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.

  7. Gazetteer of Planetary Nomenclature

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be...

  8. New NASA Technologies for Space Exploration

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  9. The activities and prospect of planetary protection research in China

    Science.gov (United States)

    Li, Ming

    2016-07-01

    Planetary protection is an important activities and responsibilities for space exploration. In Chinese manned missions, micro-organism research and protection has been developed in Shenzhou-9, Shenzhou-10 and Tiangong-2 missions. In the experiment facility of Lunar Palace-1, the micro-organism pollution and protection/control technology has been studied. In the lunar sample recovery mission and China Mars mission, the planetary protection has become an important issue. This paper introduced the research about planetary protection in China. The planetary protection activities, strategy and procedures have been suggested for future space exploration program to meet the requirement for planetary protection, such as cabin pollution isolation, pollutant detection, and so on.

  10. Life Support and Habitation and Planetary Protection Workshop

    Science.gov (United States)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)

    2006-01-01

    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  11. Planetary Cartography - Activities and Current Challenges

    Science.gov (United States)

    Nass, Andrea; Di, Kaichang; Elgner, Stephan; van Gasselt, Stephan; Hare, Trent; Hargitai, Henrik; Karachevtseva, Irina; Kereszturi, Akos; Kersten, Elke; Kokhanov, Alexander; Manaud, Nicolas; Roatsch, Thomas; Rossi, Angelo Pio; Skinner, James, Jr.; Wählisch, Marita

    2018-05-01

    Maps are one of the most important tools for communicating geospatial information between producers and receivers. Geospatial data, tools, contributions in geospatial sciences, and the communication of information and transmission of knowledge are matter of ongoing cartographic research. This applies to all topics and objects located on Earth or on any other body in our Solar System. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to introduce the community to the field of planetary cartography and its historic foundation, to highlight some of the organizations involved and to emphasize challenges that Planetary Cartography has to face today and in the near future.

  12. Planetary mass function and planetary systems

    Science.gov (United States)

    Dominik, M.

    2011-02-01

    With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows the derivation of all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their respective parent star. While planetary multiplicity in an observed system becomes obvious with the detection of several planets, its quantitative assessment however comes with the challenge to exclude the presence of further planets. Current exoplanet samples begin to give us first hints at the population statistics, whereas pictures of planet parameter space in its full complexity call for samples that are 2-4 orders of magnitude larger. In order to derive meaningful statistics, however, planet detection campaigns need to be designed in such a way that well-defined fully deterministic target selection, monitoring and detection criteria are applied. The probabilistic nature of gravitational microlensing makes this technique an illustrative example of all the encountered challenges and uncertainties.

  13. Improving accessibility and discovery of ESA planetary data through the new planetary science archive

    Science.gov (United States)

    Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.

    2018-01-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at http://psa.esa.int. Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.

  14. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  15. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.

    1978-01-01

    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  16. Planetary Sciences Literature - Access and Discovery

    Science.gov (United States)

    Henneken, Edwin A.; ADS Team

    2017-10-01

    The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (https://ui.adsabs.harvard.edu), it may very well answer questions you didn't know you had! While the classic ADS (http://ads.harvard.edu) focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA

  17. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  18. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina

    1998-01-01

    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  19. Exploring the role of wave drag in the stable stratified oceanic and atmospheric bottom boundary layer in the cnrs-toulouse (cnrm-game) large stratified water flume

    NARCIS (Netherlands)

    Kleczek, M.; Steeneveld, G.J.; Paci, A.; Calmer, R.; Belleudy, A.; Canonici, J.C.; Murguet, F.; Valette, V.

    2014-01-01

    This paper reports on a laboratory experiment in the CNRM-GAME (Toulouse) stratified water flume of a stably stratified boundary layer, in order to quantify the momentum transfer due to orographically induced gravity waves by gently undulating hills in a boundary layer flow. In a stratified fluid, a

  20. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  1. Structure of the Heliotail from Interstellar Boundary Explorer Observations: Implications for the 11-year Solar Cycle and Pickup Ions in the Heliosheath

    Energy Technology Data Exchange (ETDEWEB)

    Zirnstein, E. J.; McComas, D. J. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Heerikhuisen, J.; Zank, G. P.; Pogorelov, N. V. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Funsten, H. O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Reisenfeld, D. B. [Department of Physics and Astronomy, University of Montana, Missoula, MT 59812 (United States); Schwadron, N. A., E-mail: ejz@princeton.edu [Southwest Research Institute, San Antonio, TX 78228 (United States)

    2017-02-20

    Interstellar Boundary Explorer ( IBEX ) measurements of energetic neutral atoms (ENAs) from the heliotail show a multi-lobe structure of ENA fluxes as a function of energy between ∼0.71 and 4.29 keV. Below ∼2 keV, there is a single structure of enhanced ENA fluxes centered near the downwind direction. Above ∼2 keV, this structure separates into two lobes, one north and one south of the solar equatorial plane. ENA flux from these two lobes can be interpreted as originating from the fast solar wind (SW) propagating through the inner heliosheath (IHS). Alternatively, a recently published model of the heliosphere suggests that the heliotail may split into a “croissant-like” shape, and that such a geometry could be responsible for the heliotail ENA feature. Here we present results from a time-dependent simulation of the heliosphere that produces a comet-like heliotail, and show that the 11-year solar cycle leads to the formation of ENA lobes with properties remarkably similar to those observed by IBEX . The ENA energy at which the north and south lobes appear suggests that the pickup ion (PUI) temperature in the slow SW of the IHS is ∼10{sup 7} K. Moreover, we demonstrate that the extinction of PUIs by charge-exchange is an essential process required to create the observed global ENA structure. While the shape and locations of the ENA lobes as a function of energy are well reproduced by PUIs that cross the termination shock, the results appear to be sensitive to the form of the distribution of PUIs injected in the IHS.

  2. Laser Mass Spectrometry in Planetary Science

    International Nuclear Information System (INIS)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-01-01

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  3. Reconfigurable Autonomy for Future Planetary Rovers

    Science.gov (United States)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  4. Formation of planetary systems

    International Nuclear Information System (INIS)

    Brahic, A.

    1982-01-01

    It seemed appropriate to devote the 1980 School to the origin of the solar system and more particularly to the formation of planetary systems (dynamic accretion processes, small bodies, planetary rings, etc...) and to the physics and chemistry of planetary interiors, surface and atmospheres (physical and chemical constraints associated with their formation). This Summer School enabled both young researchers and hard-nosed scientists, gathered together in idyllic surroundings, to hold numerous discussions, to lay the foundations for future cooperation, to acquire an excellent basic understanding, and to make many useful contacts. This volume reflects the lectures and presentations that were delivered in this Summer School setting. It is aimed at both advanced students and research workers wishing to specialize in planetology. Every effort has been made to give an overview of the basic knowledge required in order to gain a better understanding of the origin of the solar system. Each article has been revised by one or two referees whom I would like to thank for their assistance. Between the end of the School in August 1980 and the publication of this volume in 1982, the Voyager probes have returned a wealth of useful information. Some preliminary results have been included for completeness

  5. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  6. Public Outreach with NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Law, E.; Day, B.

    2017-09-01

    NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.

  7. Ultraviolet spectroscopy of planetary nebulae in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Maran, S.P.; Aller, L.H.; Gull, T.R.; Stecher, T.P.

    1982-01-01

    Ultraviolet spectra of three high excitation planetary nebulae in the Magellanic Clouds (LMC P40, SMC N2, SMC N5) were obtained with the International Ultraviolet Explorer. The results are analyzed together with new visual wavelength spectrophotometry of LMC P40 and published data on SMC N2 and SMC N5 to investigate chemical composition and in particular to make the first reliable estimates of the carbon abundance in extragalactic planetary nebulae. Although carbon is at most only slightly less abundant in the LMC and SMC planetary nebulae than in galactic planetaries, it is almost 40 times more abundant in the SMC planetaries than in the SMC interstellar medium, and is about 6 times more abundant in the LMC planetary than in the LMC interstellar medium. According to our limited sample, the net result of carbon synthesis and convective dredgeup in the progenitors of planetary nebulae, as reflected in the nebular carbon abundance, is roughly the same in the Galaxy, the LMC, and the SMC

  8. Lay and Expert Perceptions of Planetary Protection

    Science.gov (United States)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  9. The European standard on planetary protection requirements.

    Science.gov (United States)

    Debus, André

    2006-01-01

    Since the beginning of solar system exploration, numerous spacecrafts have been sent towards others worlds, and one of the main goals of such missions is the search for extraterrestrial forms of life. It is known that, under certain conditions, some terrestrial entities are able to survive during cruises in space and that they may contaminate other planets (forward contamination). At another level, possible extraterrestrial life forms are unknown and their ability to contaminate the Earth's biosphere (back contamination) in the frame of sample return missions cannot be excluded. Article IX of the Outer Space Treaty (London/Washington, January 27, 1967) requires the preservation of planets and the Earth from contamination. All nations taking part in this Treaty must prevent forward and back contamination during missions exploring our solar system. Consequently, the United Nations (UN-COPUOS) has delegated COSPAR (Committee of Space Research) to take charge of planetary protection and, at present, all space-faring nations must comply with COSPAR policy and consequently with COSPAR planetary protection recommendations. Starting from these recommendations and the "CNES Planetary Protection Standard" document, a working group has been set up in the framework of the "European Cooperation for Space Standardization" (ECSS) to establish the main specifications for preventing cross-contamination between target bodies within the solar system and the Earth-moon system.

  10. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  11. Topics in planetary plasmaspheres

    International Nuclear Information System (INIS)

    Chen, C.K.

    1977-01-01

    Contributions to the understanding of two distinct kinds of planetary plasmaspheres: namely the earth-type characterized by an ionospheric source and a convection limited radial extent, and the Jupiter-type characterized by a satellite source and a radial extent determined by flux tube interchange motions. In both cases the central question is the geometry of the plasma distribution in the magnetosphere as it is determined by the appropriate production and loss mechanisms. The contributions contained herein concern the explication and clarification of these production and loss mechanisms

  12. Planetary submillimeter spectroscopy

    Science.gov (United States)

    Klein, M. J.

    1988-01-01

    The aim is to develop a comprehensive observational and analytical program to study solar system physics and meterology by measuring molecular lines in the millimeter and submillimeter spectra of planets and comets. A primary objective is to conduct observations with new JPL and Caltech submillimeter receivers at the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. A secondary objective is to continue to monitor the time variable planetary phenomena (e.g., Jupiter and Uranus) at centimeter wavelength using the NASA antennas of the Deep Space Network (DSN).

  13. The diversity of planetary system architectures: contrasting theory with observations

    Science.gov (United States)

    Miguel, Y.; Guilera, O. M.; Brunini, A.

    2011-10-01

    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the

  14. Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans

    Science.gov (United States)

    Ikoma, M.; Elkins-Tanton, L.; Hamano, K.; Suckale, J.

    2018-06-01

    The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.

  15. Workshop on Advanced Technologies for Planetary Instruments, part 1

    International Nuclear Information System (INIS)

    Appleby, J.F.

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DOD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments

  16. Structure of planetary nebulae

    International Nuclear Information System (INIS)

    Goad, L.E.

    1975-01-01

    Image-tube photographs of planetary nebulae taken through narrow-band interference filters are used to map the surface brightness of these nebulae in their most prominent emission lines. These observations are best understood in terms of a two-component model consisting of a tenuous diffuse nebular medium and a network of dense knots and filaments with neutral cores. The observations of the diffuse component indicate that the inner regions of these nebulae are hollow shells. This suggests that steady stellar winds are the dominant factor in determining the structure of the central regions of planetary nebulae. The observations of the filamentary components of NGC 40 and NGC 6720 show that the observed nebular features can result from the illumination of the inner edges of dense fragmentary neutral filaments by the central stars of these nebulae. From the analysis of the observations of the low-excitation lines in NGC 2392, it is concluded that the rate constant for the N + --H charge transfer reaction is less than 10 -12 cm 3 sec -1

  17. Technology under Planetary Protection Research (PPR)

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary protection involves preventing biological contamination on both outbound and sample return missions to other planetary bodies. Numerous areas of research...

  18. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    pressures and temperatures and through provision of external UV light and or electrical discharge can be used to form the well known Titan Aerosol species, which can subsequently be analysed using one of several analytical techniques (UV-Vis, FTIR and mass spectrometry). Simulated surfaces can be produced (icy surfaces down to 15K) and subjected to a variety of light and particles (electron and ion) sources. Chemical and physical changes in the surface may be explored using remote spectroscopy. Planetary Simulation chamber for low density atmospheres INTA-CAB The planetary simulation chamber-ultra-high vacuum equipment (PSC-UHV) has been designed to study planetary surfaces and low dense atmospheres, space environments or any other hypothetic environment at UHV. Total pressure ranges from 7 mbar (Martian conditions) to 5x10-9 mbar. A residual gas analyzer regulates gas compositions to ppm precision. Temperature ranges from 4K to 325K and most operations are computer controlled. Radiation levels are simulated using a deuterium UV lamp, and ionization sources. 5 KV electron and noble-gas discharge UV allows measurement of IR and UV spectra and chemical compositions are determined by mass spectroscopy. Planetary Simulation chamber for high density planetary atmospheres at INTA-CAB The facility allows experimental study of planetary environments under high pressure, and was designed to include underground, seafloor and dense atmosphere environments. Analytical capabilities include Raman spectra, physicochemical properties of materials, e.a. thermal conductivity. P-T can be controlled as independent variables to allow monitoring of the tolerance of microorganisms and the stability of materials and their phase changes. Planetary Simulation chamber for icy surfaces at INTA-CAB This chamber is being developed to the growth of ice samples to simulate the chemical and physical properties of ices found on both planetary bodies and their moons. The goal is to allow measurement of the

  19. Changing Boundaries

    DEFF Research Database (Denmark)

    Brodkin, Evelyn; Larsen, Flemming

    2013-01-01

    project that is altering the boundary between the democratic welfare state and the market economy. We see workfare policies as boundary-changing with potentially profound implications both for individuals disadvantaged by market arrangements and for societies seeking to grapple with the increasing...

  20. Turbulent exchange processes of the planetary boundary layer - TUAREG

    International Nuclear Information System (INIS)

    Beier, N.; Weber, M.

    1992-11-01

    A mobile groundstation with associated sovftware has been developed to measure fluxes of properties and constituents, and the vertical distribution of chemically reactive trace gases. The significance and accuracy of the derived fluxes have been investigated. Within the validity of the meteorological assumptions used, the error is less than 10%. The turbulent vertical transport has been investigated over homogeneous areas in mixed heterogeneous terrain during four field experiments. The following results were obtained: characteristics of the structure of the turbulence - diurnal variations of the fluxes of momentum and energy - the vertical distribution of NO, NO 2 and O 3 -diurnal variations of their flux and deposition velocity - balance of ozone and exchange processes in the convective PBL. Correlation and profile measurements at a fixed point in mixed heterogeneous terrain are representative of the surface type, if the upwind dimension of the homogeneous areas is at least 500 m. If this is not the case, anisotropic and organized turbulence develops. Then the formally calculated fluxes arise, in part, due to random numbers and cannot be attributed to a local site. A definitive conclusion would require measurements of the three dimensional structure of turbulence. There are no counter-gradient fluxes in the nondivergent PBL. They arise from the use of inadequate integration intervals in correlation and profile calculations. In contrast, they do occur in regions of divergence. Since the similarity theory is not valid in this case, fluxes can be neither measured nor calculated. Airborne measurements were carried out by the ''Institut fuer Physik der Atmosphaere'', DLR. The following results are attached: the mean structure of the PBL - the turbulent fluxes of meteorological variables - the horizontal variability of the fluxes near the ground - the turbulent flux of ozone and the ozone balance. Comparisons with model calculations show good agreement. (orig./KW). 116 refs., 2 tabs., 136 figs

  1. Expanded algal cultivation can reverse key planetary boundary transgressions

    Directory of Open Access Journals (Sweden)

    Dean Calahan

    2018-02-01

    Full Text Available Humanity is degrading multiple ecosystem services, potentially irreversibly. Two of the most important human impacts are excess agricultural nutrient loading in our fresh and estuarine waters and excess carbon dioxide in our oceans and atmosphere. Large-scale global intervention is required to slow, halt, and eventually reverse these stresses. Cultivating attached polyculture algae within controlled open-field photobioreactors is a practical technique for exploiting the ubiquity and high primary productivity of algae to capture and recycle the pollutants driving humanity into unsafe regimes of biogeochemical cycling, ocean acidification, and global warming. Expanded globally and appropriately distributed, algal cultivation is capable of removing excess nutrients from global environments, while additionally sequestering appreciable excess carbon. While obviously a major capital and operational investment, such a project is comparable in magnitude to the construction and maintenance of the global road transportation network. Beyond direct amelioration of critical threats, expanded algal cultivation would produce a major new commodity flow of biomass, potentially useful either as a valuable organic commodity itself, or used to reduce the scale of the problem by improving soils, slowing or reversing the loss of arable land. A 100 year project to expand algal cultivation to completely recycle excess global agricultural N and P would, when fully operational, require gross global expenses no greater than $2.3 × 1012 yr−1, (3.0% of the 2016 global domestic product and less than 1.9 × 107 ha (4.7 × 107 ac, 0.38% of the land area used globally to grow food. The biomass generated embodies renewable energy equivalent to 2.8% of global primary energy production.

  2. The National Weather Service Ceilometer Planetary Boundary Layer Project

    Directory of Open Access Journals (Sweden)

    Hicks M.

    2016-01-01

    Full Text Available The National Weather Service (NWS is investigating the potential of utilizing the Automatic Surface Observing System’s (ASOS cloud base height indicator, the Vaisala CL31 ceilometer, to profile aerosols in the atmosphere. Field test sites of stand-alone CL31 ceilometers have been established, primarily, around the Washington DC metropolitan area, with additional systems in southwest USA and Puerto Rico. The CL31 PBL project examines the CL31 data collected for data quality, mixing height retrieval applicability, and its compliment to satellite data. This paper reviews the topics of the CL31 data quality and mixing height retrieval applicability.

  3. Velocity Spectra in the Unstable Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Højstrup, Jørgen

    1982-01-01

    Models for velocity spectra of all three components in the lower half of the unstable PBL are presented. The model spectra are written as a sum of two parts, nS(n) = A(fi, z/zi)w*2 + B(f, z/zi)u*02, a mixed layer part with a stability dependence, and a surface layer part without stability...

  4. Evaluation of Current Planetary Boundary Layer Retrieval Capabilities from Space

    Science.gov (United States)

    Santanello, Joseph A., Jr.; Schaefer, Alexander J.; Blaisdell, John; Yorks, John

    2016-01-01

    The PBL over land remains a significant gap in our water and energy cycle understanding from space. This work combines unique NASA satellite and model products to demonstrate the ability of current sensors (advanced IR sounding and lidar) to retrieve PBL properties and in turn their potential to be used globally to evaluate and improve weather and climate prediction models. While incremental progress has been made in recent AIRS retrieval versions, insufficient vertical resolution remains in terms of detecting PBL properties. Lidar shows promise in terms of detecting vertical gradients (and PBLh) in the lower troposphere, but daytime conditions over land remain a challenge due to noise, and their coverage is limited to approximately 2 weeks or longer return times.

  5. Rheology of planetary ices

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. [Lawrence Livermore National Lab., CA (United States); Kirby, S.H.; Stern, L.A. [Geological Survey, Menlo Park, CA (United States)

    1996-04-24

    The brittle and ductile rheology of ices of water, ammonia, methane, and other volatiles, in combination with rock particles and each other, have a primary influence of the evolution and ongoing tectonics of icy moons of the outer solar system. Laboratory experiments help constrain the rheology of solar system ices. Standard experimental techniques can be used because the physical conditions under which most solar system ices exist are within reach of conventional rock mechanics testing machines, adapted to the low subsolidus temperatures of the materials in question. The purpose of this review is to summarize the results of a decade-long experimental deformation program and to provide some background in deformation physics in order to lend some appreciation to the application of these measurements to the planetary setting.

  6. Extrasolar Planetary Imaging Coronagraph

    Science.gov (United States)

    Clampin, M.

    2007-06-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F type stars which cannot be found with RV techniques, and observe the inner spatial structure and colors of debris disks. The robust mission design is simple and flexible ensuring mission success while minimizing cost and risk. The science payload consists of a heritage optical telescope assembly (OTA), and visible nulling coronagraph (VNC) instrument.

  7. Photochemistry of Planetary Atmospheres

    Science.gov (United States)

    Yung, Y. L.

    2005-12-01

    The Space Age started half a century ago. Today, with the completion of a fairly detailed study of the planets of the Solar System, we have begun studying exoplanets (or extrasolar planets). The overriding question in is to ask whether an exoplanet is habitable and harbors life, and if so, what the biosignatures ought to be. This forces us to confront the fundamental question of what controls the composition of an atmosphere. The composition of a planetary atmosphere reflects a balance between thermodynamic equilibrium chemistry (as in the interior of giant planets) and photochemistry (as in the atmosphere of Mars). The terrestrial atmosphere has additional influence from life (biochemistry). The bulk of photochemistry in planetary atmospheres is driven by UV radiation. Photosynthesis may be considered an extension of photochemistry by inventing a molecule (chlorophyll) that can harvest visible light. Perhaps the most remarkable feature of photochemistry is catalytic chemistry, the ability of trace amounts of gases to profoundly affect the composition of the atmosphere. Notable examples include HOx (H, OH and HO2) chemistry on Mars and chlorine chemistry on Earth and Venus. Another remarkable feature of photochemistry is organic synthesis in the outer solar system. The best example is the atmosphere of Titan. Photolysis of methane results in the synthesis of more complex hydrocarbons. The hydrocarbon chemistry inevitably leads to the formation of high molecular weight products, giving rise to aerosols when the ambient atmosphere is cool enough for them to condense. These results are supported by the findings of the recent Cassini mission. Lastly, photochemistry leaves a distinctive isotopic signature that can be used to trace back the evolutionary history of the atmosphere. Examples include nitrogen isotopes on Mars and sulfur isotopes on Earth. Returning to the question of biosignatures on an exoplanet, our Solar System experience tells us to look for speciation

  8. Time-dependent simulations of disk-embedded planetary atmospheres

    Science.gov (United States)

    Stökl, A.; Dorfi, E. A.

    2014-03-01

    At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.

  9. Solar planetary systems stardust to terrestrial and extraterrestrial planetary sciences

    CERN Document Server

    Bhattacharya, Asit B

    2017-01-01

    The authors have put forth great efforts in gathering present day knowledge about different objects within our solar system and universe. This book features the most current information on the subject with information acquired from noted scientists in this area. The main objective is to convey the importance of the subject and provide detailed information on the physical makeup of our planetary system and technologies used for research. Information on educational projects has also been included in the Radio Astronomy chapters.This information is a real plus for students and educators considering a career in Planetary Science or for increasing their knowledge about our planetary system

  10. The Solar Connections Observatory for Planetary Environments

    Science.gov (United States)

    Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the

  11. A bibliography of planetary geology principal investigators and their associates, 1982 - 1983

    Science.gov (United States)

    Plescia, J. B.

    1984-01-01

    This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.

  12. Boundaries of the universe

    CERN Document Server

    Glasby, John S

    2013-01-01

    The boundaries of space exploration are being pushed back constantly, but the realm of the partially understood and the totally unknown is as great as ever. Among other things this book deals with astronomical instruments and their application, recent discoveries in the solar system, stellar evolution, the exploding starts, the galaxies, quasars, pulsars, the possibilities of extraterrestrial life and relativity.

  13. A decision model for planetary missions

    Science.gov (United States)

    Hazelrigg, G. A., Jr.; Brigadier, W. L.

    1976-01-01

    Many techniques developed for the solution of problems in economics and operations research are directly applicable to problems involving engineering trade-offs. This paper investigates the use of utility theory for decision making in planetary exploration space missions. A decision model is derived that accounts for the objectives of the mission - science - the cost of flying the mission and the risk of mission failure. A simulation methodology for obtaining the probability distribution of science value and costs as a function spacecraft and mission design is presented and an example application of the decision methodology is given for various potential alternatives in a comet Encke mission.

  14. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    Science.gov (United States)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  15. Characterization of the Wolf 1061 Planetary System

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R.; Waters, Miranda A. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Von Braun, Kaspar [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 (United States); Boyajian, Tabetha S. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Mann, Andrew W., E-mail: skane@sfsu.edu [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2017-02-01

    A critical component of exoplanetary studies is an exhaustive characterization of the host star, from which the planetary properties are frequently derived. Of particular value are the radius, temperature, and luminosity, which are key stellar parameters for studies of transit and habitability science. Here we present the results of new observations of Wolf 1061, known to host three super-Earths. Our observations from the Center for High Angular Resolution Astronomy interferometric array provide a direct stellar radius measurement of 0.3207±0.0088 R{sub ⊙}, from which we calculate the effective temperature and luminosity using spectral energy distribution models. We obtained 7 yr of precise, automated photometry that reveals the correct stellar rotation period of 89.3±1.8 days, finds no evidence of photometric transits, and confirms that the radial velocity signals are not due to stellar activity. Finally, our stellar properties are used to calculate the extent of the Habitable Zone (HZ) for the Wolf 1061 system, for which the optimistic boundaries are 0.09–0.23 au. Our simulations of the planetary orbital dynamics show that the eccentricity of the HZ planet oscillates to values as high as ∼0.15 as it exchanges angular momentum with the other planets in the system.

  16. To See the Unseen: A History of Planetary Radar Astronomy

    Science.gov (United States)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  17. Vision and Voyages: Lessons Learned from the Planetary Decadal Survey

    Science.gov (United States)

    Squyres, S. W.

    2015-12-01

    The most recent planetary decadal survey, entitled Vision and Voyages for Planetary Science in the Decade 2013-2022, provided a detailed set of priorities for solar system exploration. Those priorities drew on broad input from the U.S. and international planetary science community. Using white papers, town hall meetings, and open meetings of the decadal committees, community views were solicited and a consensus began to emerge. The final report summarized that consensus. Like many past decadal reports, the centerpiece of Vision and Voyages was a set of priorities for future space flight projects. Two things distinguished this report from some previous decadals. First, conservative and independent cost estimates were obtained for all of the projects that were considered. These independent cost estimates, rather than estimates generated by project advocates, were used to judge each project's expected science return per dollar. Second, rather than simply accepting NASA's ten-year projection of expected funding for planetary exploration, decision rules were provided to guide program adjustments if actual funding did not follow projections. To date, NASA has closely followed decadal recommendations. In particular, the two highest priority "flagship" missions, a Mars rover to collect samples for return to Earth and a mission to investigate a possible ocean on Europa, are both underway. The talk will describe the planetary decadal process in detail, and provide a more comprehensive assessment of NASA's response to it.

  18. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.

    1979-01-01

    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  19. Calcium signals in planetary embryos

    Science.gov (United States)

    Morbidelli, Alessandro

    2018-03-01

    The calcium-isotope composition of planetary bodies in the inner Solar System correlates with the masses of such objects. This finding could have implications for our understanding of how the Solar System formed.

  20. Planetary Vital Signs

    Science.gov (United States)

    Kennel, Charles; Briggs, Stephen; Victor, David

    2016-07-01

    The climate is beginning to behave in unusual ways. The global temperature reached unprecedented highs in 2015 and 2016, which led climatologists to predict an enormous El Nino that would cure California's record drought. It did not happen the way they expected. That tells us just how unreliable temperature has become as an indicator of important aspects of climate change. The world needs to go beyond global temperature to a set of planetary vital signs. Politicians should not over focus policy on one indicator. They need to look at the balance of evidence. A coalition of scientists and policy makers should start to develop vital signs at once, since they should be ready at the entry into force of the Paris Agreement in 2020. But vital signs are only the beginning. The world needs to learn how to use the vast knowledge we will be acquiring about climate change and its impacts. Is it not time to use all the tools at hand- observations from space and ground networks; demographic, economic and societal measures; big data statistical techniques; and numerical models-to inform politicians, managers, and the public of the evolving risks of climate change at global, regional, and local scales? Should we not think in advance of an always-on social and information network that provides decision-ready knowledge to those who hold the responsibility to act, wherever they are, at times of their choosing?

  1. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  2. Pristine Igneous Rocks and the Genesis of Early Planetary Crusts

    Science.gov (United States)

    Warren, Paul H.; Lindstrom, David (Technical Monitor)

    2002-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. The compositional diversity that we explore is the residue of process diversity, which has strong relevance for comparative planetology.

  3. NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  4. Risk to civilization: A planetary science perspective

    International Nuclear Information System (INIS)

    Chapman, C.R.; Morrison, D.

    1988-01-01

    One of the most profound changes in our perspective of the solar system resulting from the first quarter century of planetary exploration by spacecraft is the recognition that planets, including Earth, were bombarded by cosmic projectiles for 4.5 aeons and continue to be bombarded today. Although the planetary cratering rate is much lower now than it was during the first 0.5 aeons, sizeable Earth-approaching asteroids and comets continue to hit the Earth at a rate that poses a finite risk to civilization. The evolution of this planetary perspective on impact cratering is gradual over the last two decades. It took explorations of Mars and Mercury by early Mariner spacecraft and of the outer solar system by the Voyagers to reveal the significance of asteroidal and cometary impacts in shaping the morphologies and even chemical compositions of the planets. An unsettling implication of the new perspective is addressed: the risk to human civilization. Serious scientific attention was given to this issue in July 1981 at a NASA-sponsored Spacewatch Workshop in Snowmass, Colorado. The basic conclusion of the 1981 NASA sponsored workshop still stands: the risk that civilization might be destroyed by impact with an as-yet-undiscovered asteroid or comet exceeds risk levels that are sometimes deemed unacceptable by modern societies in other contexts. Yet these impact risks have gone almost undiscussed and undebated. The tentative quantitative assessment by some members of the 1981 workshop was that each year, civilization is threatened with destruction with a probability of about 1 in 100,000. The enormous spread in risk levels deemed by the public to be at the threshold of acceptability derives from a host of psychological factors that were widely discussed in the risk assessment literature

  5. Exploring the boundary of a specialist service for adults with intellectual disabilities using a Delphi study: a quantification of stakeholder participation.

    Science.gov (United States)

    Hempe, Eva-Maria; Morrison, Cecily; Holland, Anthony

    2015-10-01

    There are arguments that a specialist service for adults with intellectual disabilities is needed to address the health inequalities that this group experiences. The boundary of such a specialist service however is unclear, and definition is difficult, given the varying experiences of the multiple stakeholder groups. The study reported here quantitatively investigates divergence in stakeholders' views of what constitutes a good specialist service for people with intellectual disabilities. It is the first step of a larger project that aims to investigate the purpose, function and design of such a specialist service. The results are intended to support policy and service development. A Delphi study was carried out to elicit the requirements of this new specialist service from stakeholder groups. It consisted of three panels (carers, frontline health professionals, researchers and policymakers) and had three rounds. The quantification of stakeholder participation covers the number of unique ideas per panel, the value of these ideas as determined by the other panels and the level of agreement within and between panels. There is some overlap of ideas about of what should constitute this specialist service, but both carers and frontline health professionals contributed unique ideas. Many of these were valued by the researchers and policymakers. Interestingly, carers generated more ideas regarding how to deliver services than what services to deliver. Regarding whether ideas are considered appropriate, the variation both within and between groups is small. On the other hand, the feasibility of solutions is much more contested, with large variations among carers. This study provides a quantified representation of the diversity of ideas among stakeholder groups regarding where the boundary of a specialist service for adults with learning disabilities should sit. The results can be used as a starting point for the design process. The study also offers one way to measure the

  6. Get Involved in Planetary Discoveries through New Worlds, New Discoveries

    Science.gov (United States)

    Shupla, Christine; Shipp, S. S.; Halligan, E.; Dalton, H.; Boonstra, D.; Buxner, S.; SMD Planetary Forum, NASA

    2013-01-01

    "New Worlds, New Discoveries" is a synthesis of NASA’s 50-year exploration history which provides an integrated picture of our new understanding of our solar system. As NASA spacecraft head to and arrive at key locations in our solar system, "New Worlds, New Discoveries" provides an integrated picture of our new understanding of the solar system to educators and the general public! The site combines the amazing discoveries of past NASA planetary missions with the most recent findings of ongoing missions, and connects them to the related planetary science topics. "New Worlds, New Discoveries," which includes the "Year of the Solar System" and the ongoing celebration of the "50 Years of Exploration," includes 20 topics that share thematic solar system educational resources and activities, tied to the national science standards. This online site and ongoing event offers numerous opportunities for the science community - including researchers and education and public outreach professionals - to raise awareness, build excitement, and make connections with educators, students, and the public about planetary science. Visitors to the site will find valuable hands-on science activities, resources and educational materials, as well as the latest news, to engage audiences in planetary science topics and their related mission discoveries. The topics are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved? How did life begin and evolve on Earth, and has it evolved elsewhere in our solar system? Scientists and educators are encouraged to get involved either directly or by sharing "New Worlds, New Discoveries" and its resources with educators, by conducting presentations and events, sharing their resources and events to add to the site, and adding their own public events to the site’s event calendar! Visit to find quality resources and ideas. Connect with educators, students and the public to

  7. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

    NARCIS (Netherlands)

    Lothon, M.; Lohou, F.; Pino, D.; Vilà-Guerau De Arellano, J.; Hartogensis, O.K.; Boer, van de A.; Coster, de O.; Moene, A.F.; Steeneveld, G.J.

    2014-01-01

    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary

  8. Planetary Transmission Diagnostics

    Science.gov (United States)

    Lewicki, David G. (Technical Monitor); Samuel, Paul D.; Conroy, Joseph K.; Pines, Darryll J.

    2004-01-01

    This report presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting algorithm. The lifting scheme, developed by Wim Sweldens of Bell Labs, is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Classic lifting analyzes a given signal using wavelets derived from a single fundamental basis function. A number of researchers have proposed techniques for adding adaptivity to the lifting scheme, allowing the transform to choose from a set of fundamental bases the basis that best fits the signal. This characteristic is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation (synchronous signal-averaging) algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local wave-form changes associated with certain types of gear damage are poorly adapted, causing a significant change in the

  9. Planetary Missions of the 20th Century*

    Science.gov (United States)

    Moroz, V. I.; Huntress, W. T.; Shevalev, I. L.

    2002-09-01

    Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.

  10. Planetary protection policy overview and application to future missions

    Science.gov (United States)

    Rummel, John D.

    1989-01-01

    The current status of planetary protection (quarantine) policy within NASA is discussed, together with the issues of planetary protection and back-contamination as related to future missions. The policy adopted by COSPAR in 1984 (and recently reaffirmed by the NASA Administrator) for application to all unmanned missions to other solar system bodies and all manned and unmanned sample return missions is examined. Special attention is given to the implementation of the policy and to the specific quarantine-related constraints on spacecraft involved in solar system exploration that depend on the nature of the mission and the identity of the target body.

  11. Design and Simulation Tools for Planetary Atmospheric Entry Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric entry is one of the most critical phases of flight during planetary exploration missions. During the design of an entry vehicle, experimental and...

  12. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... and distributive justice at national level....

  13. Planetary Data Systems (PDS) Imaging Node Atlas II

    Science.gov (United States)

    Stanboli, Alice; McAuley, James M.

    2013-01-01

    The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.

  14. Influence of Planetary Protection Guidelines on Waste Management Operations

    Science.gov (United States)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  15. Alien skies planetary atmospheres from earth to exoplanets

    CERN Document Server

    Pont, Frédéric J

    2014-01-01

    Planetary atmospheres are complex and evolving entities, as mankind is rapidly coming to realise whilst attempting to understand, forecast and mitigate human-induced climate change. In the Solar System, our neighbours Venus and Mars provide striking examples of two endpoints of planetary evolution, runaway greenhouse and loss of atmosphere to space. The variety of extra-solar planets brings a wider angle to the issue: from scorching "hot jupiters'' to ocean worlds, exo-atmospheres explore many configurations unknown in the Solar System, such as iron clouds, silicate rains, extreme plate tectonics, and steam volcanoes. Exoplanetary atmospheres have recently become accessible to observations. This book puts our own climate in the wider context of the trials and tribulations of planetary atmospheres. Based on cutting-edge research, it uses a grand tour of the atmospheres of other planets to shine a new light on our own atmosphere, and its relation with life.

  16. Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems

    Science.gov (United States)

    Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...

  17. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    Science.gov (United States)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  18. An Ion-Propelled Cubesat for Planetary Defense and Planetary Science

    Science.gov (United States)

    Russell, Christopher T.; Wirz, Richard; Lai, Hairong; Li, Jian-Yang; Connors, Martin

    2017-04-01

    Small satellites can reduce the cost of launch by riding along with other payloads on a large rocket or being launched on a small rocket, but are perceived as having limited capabilities. This perception can be at least partially overcome by innovative design, including ample in-flight propulsion. This allows achieving multiple targets and adaptive exploration. Ion propulsion has been pioneered on Deep Space 1 and honed on the long-duration, multiple-planetary body mission Dawn. Most importantly, the operation of such a mission is now well- understood, including navigation, communication, and science operations for remote sensing. We examined different mission concepts that can be used for both planetary defense and planetary science near 1 AU. Such a spacecraft would travel in the region between Venus and Mars, allowing a complete inventory of material above, including objects down to about 10m diameter to be inventoried. The ion engines could be used to approach these bodies slowly and carefully and allow the spacecraft to map debris and follow its collisional evolution throughout its orbit around the Sun, if so desired. The heritage of Dawn operations experience enables the mission to be operated inexpensively, and the engineering heritage will allow it to be operated for many trips around the Sun.

  19. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    Science.gov (United States)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  20. VARIATIONAL PRINCIPLE FOR PLANETARY INTERIORS

    International Nuclear Information System (INIS)

    Zeng, Li; Jacobsen, Stein B.

    2016-01-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  1. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  2. Grain Boundary Complexions

    Science.gov (United States)

    2014-05-01

    Cantwell et al. / Acta Materialia 62 (2014) 1–48 challenging from a scientific perspective, but it can also be very technologically rewarding , given the...energy) is a competing explanation that remains to be explored. Strategies to drive the grain boundary energy toward zero have produced some success...Thompson AM, Soni KK, Chan HM, Harmer MP, Williams DB, Chabala JM, et al. J Am Ceram Soc 1997;80:373. [172] Behera SK. PhD dissertation, Materials Science

  3. Planetary Dynamos: Investigations of Saturn and Ancient Mars

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Sabine [University of Toronto

    2012-04-18

    Magnetic field observations by spacecraft missions have provided vital information on planetary dynamos. The four giant planets as well as Earth, Mercury and Ganymede have observable magnetic fields generated by active dynamos. In contrast, Moon and Mars only have remanent crustal fields from dynamo action in their early histories. A variety of magnetic field morphologies and intensities can be found in the solar system. We have found that some of the differences between planetary magnetic fields can be explained as the result of the presence of boundary thermal variations or stably-stratified layers. In this talk, I will discuss how dynamos are affected by these complications and discuss the implications for Mars’ magnetic dichotomy and Saturn’s extremely axisymmetric magnetic field.

  4. The problem of scale in planetary geomorphology

    Science.gov (United States)

    Rossbacher, L. A.

    1985-01-01

    Recent planetary exploration has shown that specific landforms exhibit a significant range in size between planets. Similar features on Earth and Mars offer some of the best examples of this scale difference. The difference in heights of volcanic features between the two planets has been cited often; the Martian volcano Olympus Mons stands approximately 26 km high, but Mauna Loa rises only 11 km above the Pacific Ocean floor. Polygonally fractured ground in the northern plains of Mars has diameters up to 20 km across; the largest terrestrial polygons are only 500 m in diameter. Mars also has landslides, aeolian features, and apparent rift valleys larger than any known on Earth. No single factor can explain the variations in landform size between planets. Controls on variation on Earth, related to climate, lithology, or elevation, have seldom been considered in detail. The size differences between features on Earth and other planets seem to be caused by a complex group of interacting relationships. The major planetary parameters that may affect landform size are discussed.

  5. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  6. Instrumented Moles for Planetary Subsurface Regolith Studies

    Science.gov (United States)

    Richter, L. O.; Coste, P. A.; Grzesik, A.; Knollenberg, J.; Magnani, P.; Nadalini, R.; Re, E.; Romstedt, J.; Sohl, F.; Spohn, T.

    2006-12-01

    Soil-like materials, or regolith, on solar system objects provide a record of physical and/or chemical weathering processes on the object in question and as such possess significant scientific relevance for study by landed planetary missions. In the case of Mars, a complex interplay has been at work between impact gardening, aeolian as well as possibly fluvial processes. This resulted in regolith that is texturally as well as compositionally layered as hinted at by results from the Mars Exploration Rover (MER) missions which are capable of accessing shallow subsurface soils by wheel trenching. Significant subsurface soil access on Mars, i.e. to depths of a meter or more, remains to be accomplished on future missions. This has been one of the objectives of the unsuccessful Beagle 2 landed element of the ESA Mars Express mission having been equipped with the Planetary Underground Tool (PLUTO) subsurface soil sampling Mole system capable of self-penetration into regolith due to an internal electro-mechanical hammering mechanism. This lightweight device of less than 900 g mass was designed to repeatedly obtain and deliver to the lander regolith samples from depths down to 2 m which would have been analysed for organic matter and, specifically, organic carbon from potential extinct microbial activity. With funding from the ESA technology programme, an evolved Mole system - the Instrumented Mole System (IMS) - has now been developed to a readiness level of TRL 6. The IMS is to serve as a carrier for in situ instruments for measurements in planetary subsurface soils. This could complement or even eliminate the need to recover samples to the surface. The Engineering Model hardware having been developed within this effort is designed for accommodating a geophysical instrument package (Heat Flow and Physical Properties Package, HP3) that would be capable of measuring regolith physical properties and planetary heat flow. The chosen design encompasses a two-body Mole

  7. Small reactor power systems for manned planetary surface bases

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  8. Planetary protection issues linked to human missions to Mars

    Science.gov (United States)

    Debus, A.

    According to United Nations Treaties and handled presently by the Committee of Space Research COSPAR the exploration of the Solar System has to comply with planetary protection requirements The goal of planetary protection is to protect celestial bodies from terrestrial contamination and also to protect the Earth environment from an eventual biocontamination carried by return samples or by space systems returning to the Earth Mars is presently one of the main target at exobiology point of view and a lot of missions are operating on travel or scheduled for its exploration Some of them include payload dedicated to the search of life or traces of life and one of the goals of these missions is also to prepare sample return missions with the ultimate objective to walk on Mars Robotic missions to Mars have to comply with planetary protection specifications well known presently and planetary protection programs are implemented with a very good reliability taking into account an experience of 40 years now For sample return missions a set of stringent requirements have been approved by the COSPAR and technical challenges have now to be won in order to preserve Earth biosphere from an eventual contamination risk Sending astronauts on Mars will gather all these constraints added with the human dimension of the mission The fact that the astronauts are huge contamination sources for Mars and that they are also potential carrier of a contamination risk back to Earth add also ethical considerations to be considered For the preparation of a such

  9. Intelligence for Human-Assistant Planetary Surface Robots

    Science.gov (United States)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  10. Small reactor power systems for manned planetary surface bases

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options

  11. Planetary protection issues related to human missions to Mars

    Science.gov (United States)

    Debus, A.; Arnould, J.

    2008-09-01

    In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of

  12. Number of planetary nebulae in our galaxy

    International Nuclear Information System (INIS)

    Alloin, D.; Cruz-Gonzalez, C.; Peimbert, M.

    1976-01-01

    It is found that the contribution to the ionization of the interstellar medium due to planetary nebulae is from one or two orders of magnitude smaller than that due to O stars. The mass return to the interstellar medium due to planetary nebulae is investigated, and the birth rate of white dwarfs and planetary nebulae are compared. Several arguments are given against the possibility that the infrared sources detected by Becklin and Neugebauer in the direction of the galactic center are planetary nebulae

  13. Planetary optical and infrared imaging

    International Nuclear Information System (INIS)

    Terrile, R.J.

    1988-01-01

    The purpose of this investigation is to obtain and analyze high spatial resolution charge coupled device (CCD) coronagraphic images of extra-solar planetary material and solar system objects. These data will provide information on the distribution of planetary and proto-planetary material around nearby stars leading to a better understanding of the origin and evolution of the solar system. Imaging within our solar system will provide information on the current cloud configurations on the outer planets, search for new objects around the outer planets, and provide direct support for Voyager, Galileo, and CRAF by imaging material around asteroids and clouds on Neptune. Over the last year this program acquired multispectral and polarization images of the disk of material around the nearby star Beta Pictoris. This material is believed to be associated with the formation of planets and provides a first look at a planetary system much younger than our own. Preliminary color and polarization data suggest that the material is very low albedo and similar to dark outer solar system carbon rich material. A coronagraphic search for other systems is underway and has already examined over 100 nearby stars. Coronagraphic imaging provided the first clear look at the rings of Uranus and albedo limits for the ring arcs around Neptune

  14. Lunar and Planetary Science XXXII

    Science.gov (United States)

    2001-01-01

    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 32nd Lunar and Planetary Science Conference held at Houston, TX, March 12-16, 2001. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  15. Vertical transport of water in the Martian boundary layer

    Science.gov (United States)

    Zent, Aaron P.; Haberle, R. M.; Houben, Howard C.

    1993-01-01

    We are continuing our examination of the transport of H2O through the martian boundary layer, and we have written a one-dimensional numerical model of the exchange of H2O between the atmosphere and subsurface of Mars through the planetary boundary layer (PBL). Our goal is to explore the mechanisms of H2O exchange, and to elucidate the role played by the regolith in the local H2O budget. The atmospheric model includes effects of Coriolis, pressure gradient, and frictional forces for momentum, as well as radiation, sensible heat flux, and advection for heat. The model differs from Flasar and Goody by use of appropriate Viking-based physical constants and inclusion of the radiative effects of atmospheric dust. We specify the pressure gradient force or compute it from a simple slope model. The subsurface model accounts for conduction of heat and diffusion of H2O through a porous adsorbing medium in response to diurnal forcing. The model is initialized with depth-independent H2O concentrations (2 kg M(exp -3)) in the regolith, and a dry atmosphere. The model terminates when the atmospheric H2O column abundance stabilizes at 0.1 percent per sol.

  16. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  17. Planetary nebulae and their central stars

    International Nuclear Information System (INIS)

    Kaler, J.B.

    1985-01-01

    The present review is devoted primarily to galactic planetaries, while Ford (1983) provides an extensive review of the rapidly expanding study of the extragalactic type. Nebular parameters and observations are discussed, taking into account discovery, distance, motion, structure, spectrophotometry, and nebular properties. It is pointed out that post-AGB, or prewhite dwarf, stars are not as well known as their nebular progeny. Of the fundamental data regarding the central stars, the magnitudes are particularly important. They are used for both temperature and luminosity determinations. Attention is also given to temperatures and luminosities, and the characteristics of the spectra. Questions concerning the evolutionary process are also explored and aspects of observed distribution and evolution are considered. 259 references

  18. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    Science.gov (United States)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  19. An enhanced Planetary Radar Operating Centre (PROC)

    Science.gov (United States)

    Catallo, C.

    2010-12-01

    Planetary exploration by means of radar systems, mainly using GPRs is an important role of Italy and numerous scientific international space programs are carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three experiments under Italian leadership ( designed and manufactured by the Italian industry) provided by ASI within a NASA/ESA/ASI joint venture framework are successfully operating: MARSIS on-board MEX, SHARAD on-board MRO and CASSINI Radar on-board Cassini spacecraft: the missions have been further extended . Three dedicated operational centers, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD are operating from the missions beginning to support all the scientific communities, institutional customers and experiment teams operation Each center is dedicated to a single instrument management and control, data processing and distribution and even if they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). In order to harmonize operations either from logistics point of view and from HW/SW capabilities point of view PROC is designed and developed for offering improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. PROC is, therefore, conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs, such as Europa-Jupiter System Mission (EJSM) The paper describes how the new PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation aiding scientists to increase their knowledge in the field of surface

  20. In-situ Planetary Subsurface Imaging System

    Science.gov (United States)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  1. A drilling tool design and in situ identification of planetary regolith mechanical parameters

    Science.gov (United States)

    Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei

    2018-05-01

    The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.

  2. Planetary Protection Bioburden Analysis Program

    Science.gov (United States)

    Beaudet, Robert A.

    2013-01-01

    This program is a Microsoft Access program that performed statistical analysis of the colony counts from assays performed on the Mars Science Laboratory (MSL) spacecraft to determine the bioburden density, 3-sigma biodensity, and the total bioburdens required for the MSL prelaunch reports. It also contains numerous tools that report the data in various ways to simplify the reports required. The program performs all the calculations directly in the MS Access program. Prior to this development, the data was exported to large Excel files that had to be cut and pasted to provide the desired results. The program contains a main menu and a number of submenus. Analyses can be performed by using either all the assays, or only the accountable assays that will be used in the final analysis. There are three options on the first menu: either calculate using (1) the old MER (Mars Exploration Rover) statistics, (2) the MSL statistics for all the assays, or This software implements penetration limit equations for common micrometeoroid and orbital debris (MMOD) shield configurations, windows, and thermal protection systems. Allowable MMOD risk is formulated in terms of the probability of penetration (PNP) of the spacecraft pressure hull. For calculating the risk, spacecraft geometry models, mission profiles, debris environment models, and penetration limit equations for installed shielding configurations are required. Risk assessment software such as NASA's BUMPERII is used to calculate mission PNP; however, they are unsuitable for use in shield design and preliminary analysis studies. The software defines a single equation for the design and performance evaluation of common MMOD shielding configurations, windows, and thermal protection systems, along with a description of their validity range and guidelines for their application. Recommendations are based on preliminary reviews of fundamental assumptions, and accuracy in predicting experimental impact test results. The software

  3. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  4. The four hundred years of planetary science since Galileo and Kepler.

    Science.gov (United States)

    Burns, Joseph A

    2010-07-29

    For 350 years after Galileo's discoveries, ground-based telescopes and theoretical modelling furnished everything we knew about the Sun's planetary retinue. Over the past five decades, however, spacecraft visits to many targets transformed these early notions, revealing the diversity of Solar System bodies and displaying active planetary processes at work. Violent events have punctuated the histories of many planets and satellites, changing them substantially since their birth. Contemporary knowledge has finally allowed testable models of the Solar System's origin to be developed and potential abodes for extraterrestrial life to be explored. Future planetary research should involve focused studies of selected targets, including exoplanets.

  5. Distributed Tuning of Boundary Resources

    DEFF Research Database (Denmark)

    Eaton, Ben; Elaluf-Calderwood, Silvia; Sørensen, Carsten

    2015-01-01

    in the context of a paradoxical tension between the logic of generative and democratic innovations and the logic of infrastructural control. Boundary resources play a critical role in managing the tension as a firm that owns the infrastructure can secure its control over the service system while independent...... firms can participate in the service system. In this study, we explore the evolution of boundary resources. Drawing on Pickering’s (1993) and Barrett et al.’s (2012) conceptualizations of tuning, the paper seeks to forward our understanding of how heterogeneous actors engage in the tuning of boundary...

  6. Solar system exploration

    International Nuclear Information System (INIS)

    Briggs, G.A.; Quaide, W.L.

    1986-01-01

    Two fundamental goals lie at the heart of U.S. solar system exploration efforts: first, to characterize the evolution of the solar system; second, to understand the processes which produced life. Progress in planetary science is traced from Newton's definition of the principles of gravitation through a variety of NASA planetary probes in orbit, on other planets and traveling beyond the solar system. It is noted that most of the planetary data collected by space probes are always eventually applied to improving the understanding of the earth, moon, Venus and Mars, the planets of greatest interest to humans. Significant data gathered by the Mariner, Viking, Apollo, Pioneer, and Voyager spacecraft are summarized, along with the required mission support capabilities and mission profiles. Proposed and planned future missions to Jupiter, Saturn, Titan, the asteroids and for a comet rendzvous are described

  7. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  8. Precession effects on a liquid planetary core

    Science.gov (United States)

    Liu, Min; Li, Li-Gang

    2018-02-01

    Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a rotating cylindrical annulus, which simultaneously possesses slow precession. The same problemhas been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincaré number Po and the radius-height aspect ratio Γ. While in an annulus, there is another parameter, the inner-radius-height aspect ratio ϒ, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction between the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u 111, followed by u 113 or u 112, always dominates the precessing flow when 0.001 ≤ Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.

  9. Planetary Data Archiving Activities of ISRO

    Science.gov (United States)

    Gopala Krishna, Barla; D, Rao J.; Thakkar, Navita; Prashar, Ajay; Manthira Moorthi, S.

    composition & mineralogy of mars, Mars Exospheric Neutral Composition Analyser (MENCA) to study the composition and density of the Martian neutral atmosphere and Lyman Alpha Photometer (LAP) to investigate the loss process of water in Martian atmosphere, towards fulfilling the mission objectives. Active archive created in PDS for some of the instrument data during the earth phase of the mission is being analysed by the PIs. The Mars science data from the onboard instruments is expected during September 2014. The next planetary mission planned to moon is Chandrayaan-2 which consists of an orbiter having five instruments (http://www.isro.org) viz, (i) Imaging IR Spectrometer (IIRS) for mineral mapping, (ii) TMC-2 for topographic mapping, (iii) MiniSAR to detect water ice in the permanently shadowed regions on the Lunar poles, up to a depth of a few meters, (iv) Large Area Soft X-ray spectrometer (CLASS) & Solar X-ray Monitor (XSM) for mapping the major elements present on the lunar surface and (v)Neutral Mass Spectrometer (ChACE2) to carry out a detailed study of the lunar exosphere towards moon exploration; a rover for some specific experiments and a Lander for technology experiment and demonstration. The data is planned to be archived in PDS standards.

  10. INPOP17a planetary ephemerides

    Science.gov (United States)

    Viswanathan, V.; Fienga, A.; Gastineau, M.; Laskar, J.

    2017-08-01

    Based on the use of Cassini radio tracking data and the introduction of LLR data obtained at 1064 nm, a new planetary ephemerides INPOP17a was built including improvements for the planet orbits as well as for Moon ephemerides. Besides new asteroid masses, new parameters related to the inner structure of the Moon were obtained and presented here. Comparisons with values found in the literature are also discussed. LLR Residuals reach the centimeter level for the new INPOP17a ephemerides.

  11. Numerical models of planetary dynamos

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.; Roberts, P.H.

    1992-01-01

    We describe a nonlinear, axisymmetric, spherical-shell model of planetary dynamos. This intermediate-type dynamo model requires a prescribed helicity field (the alpha effect) and a prescribed buoyancy force or thermal wind (the omega effect) and solves for the axisymmetric time-dependent magnetic and velocity fields. Three very different time dependent solutions are obtained from different prescribed sets of alpha and omega fields

  12. Stream Lifetimes Against Planetary Encounters

    Science.gov (United States)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  13. Planetary Surface-Atmosphere Interactions

    Science.gov (United States)

    Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.

    2013-09-01

    Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.

  14. Planetary vistas the landscapes of other worlds

    CERN Document Server

    Murdin, Paul

    2015-01-01

    The word “landscape” can mean picture as well as natural scenery. Recent advances in space exploration imaging have allowed us to now have landscapes never before possible, and this book collects some of the greatest views and vistas of Mars, Venus’s Titan, Io and more in their full glory, with background information to put into context the foreign landforms of our Solar System. Here, literally, are 'other-worldly' visions of strange new scenes, all captured by the latest technology by landing and roving vehicles or by very low-flying spacecraft.   There is more than scientific interest in these views. They are also aesthetically beautiful and intriguing, and Dr. Murdin in a final chapter compares them to terrestrial landscapes in fine art.   Planetary Vistas is a science book and a travel book across the planets and moons of the Solar System for armchair space explorers who want to be amazed and informed. This book shows what future space explorers will experience, because these are the landscapes th...

  15. Planet gaps in the dust layer of 3D proto-planetary disks: Observability with ALMA

    OpenAIRE

    Gonzalez, Jean-François; Pinte, Christophe; Maddison, Sarah T.; Ménard, François

    2013-01-01

    2 pages, 2 figures, to appear in the Proceedings of IAU Symp. 299: Exploring the Formation and Evolution of Planetary Systems (Victoria, Canada); International audience; Among the numerous known extrasolar planets, only a handful have been imaged directly so far, at large orbital radii and in rather evolved systems. The Atacama Large Millimeter/submillimeter Array (ALMA) will have the capacity to observe these wide planetary systems at a younger age, thus bringing a better understanding of th...

  16. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1985-01-01

    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented

  17. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  18. A Planetary Park system for the Moon and beyond

    Science.gov (United States)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  19. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  20. Optimal boundary control and boundary stabilization of hyperbolic systems

    CERN Document Server

    Gugat, Martin

    2015-01-01

    This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.  The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization.  Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples.  To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled.  Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.

  1. Brain response to prosodic boundary cues depends on boundary position

    Directory of Open Access Journals (Sweden)

    Julia eHolzgrefe

    2013-07-01

    Full Text Available Prosodic information is crucial for spoken language comprehension and especially for syntactic parsing, because prosodic cues guide the hearer’s syntactic analysis. The time course and mechanisms of this interplay of prosody and syntax are not yet well understood. In particular, there is an ongoing debate whether local prosodic cues are taken into account automatically or whether they are processed in relation to the global prosodic context in which they appear. The present study explores whether the perception of a prosodic boundary is affected by its position within an utterance. In an event-related potential (ERP study we tested if the brain response evoked by the prosodic boundary differs when the boundary occurs early in a list of three names connected by conjunctions (i.e., after the first name as compared to later in the utterance (i.e., after the second name. A closure positive shift (CPS — marking the processing of a prosodic phrase boundary — was elicited only for stimuli with a late boundary, but not for stimuli with an early boundary. This result is further evidence for an immediate integration of prosodic information into the parsing of an utterance. In addition, it shows that the processing of prosodic boundary cues depends on the previously processed information from the preceding prosodic context.

  2. Detection limits for close eclipsing and transiting sub-stellar and planetary companions to white dwarfs in the WASP survey

    OpenAIRE

    Faedi, F.; West, R. G.; Burleigh, M. R.; Goad, M. R.; Hebb, L.

    2010-01-01

    We have performed extensive simulations to explore the possibility of detecting eclipses and transits of close, sub-stellar and planetary companions to white dwarfs in WASP light-curves. Our simulations cover companions $\\sim0.3\\Re

  3. Hybrid Powder - Single Crystal X-Ray Diffraction Instrument for Planetary Mineralogical Analysis of Unprepared Samples, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a planetary exploration XRD/XRF instrument based on a hybrid diffraction approach that complements powder XRD analysis, similar to that of the...

  4. Autonomous Trans-Antartic expeditions: an initiative for advancing planetary mobility system technology while addressing Earth science objectives in Antartica

    Science.gov (United States)

    Carsey, F.; Schenker, P.; Blamont, J.

    2001-01-01

    A workshop on Antartic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society in February to discuss scientific objectives and benefits of the use of rovers such as are being developed for use in planetary exploration.

  5. Technology Readiness Level Elevation of the Enceladus Organic Analyzer (EOA) for Outer-Planetary in situ Organic Analysis

    Data.gov (United States)

    National Aeronautics and Space Administration — Outer-planetary icy moons like Enceladus and Europa have become enticing targets for future space exploration due to their subsurface oceans and hydrothermal vent...

  6. PLANET-PLANET SCATTERING LEADS TO TIGHTLY PACKED PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Barnes, Rory; Veras, Dimitri; Armitage, Philip J.; Gorelick, Noel; Greenberg, Richard

    2009-01-01

    The known extrasolar multiple-planet systems share a surprising dynamical attribute: they cluster just beyond the Hill stability boundary. Here we show that the planet-planet scattering model, which naturally explains the observed exoplanet eccentricity distribution, can reproduce the observed distribution of dynamical configurations. We calculated how each of our scattered systems would appear over an appropriate range of viewing geometries; as Hill stability is weakly dependent on the masses, the mass-inclination degeneracy does not significantly affect our results. We consider a wide range of initial planetary mass distributions and find that some are poor fits to the observed systems. In fact, many of our scattering experiments overproduce systems very close to the stability boundary. The distribution of dynamical configurations of two-planet systems may provide better discrimination between scattering models than the distribution of eccentricity. Our results imply that, at least in their inner regions which are weakly affected by gas or planetesimal disks, planetary systems should be 'packed', with no large gaps between planets.

  7. The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community

    Science.gov (United States)

    Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.

    2014-11-01

    NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge

  8. PC 11: Symbiotic star or planetary nebulae?

    International Nuclear Information System (INIS)

    Gutierrez-Moreno, A.; Moreno, H.; Cortes, G.

    1987-01-01

    PC 11 is an object listed in Perek and Kohoutek (1967) Catalogue of Galactic Planetary Nebulae as PK 331 -5 0 1. Some authors suggest that it is not a planetary nebula, but that it has some characteristics (though not all) of symbiotic stars. We have made photographic, spectrophotometric and spectroscopic observations of PC 11. The analysis of the results suggests that it is a young planetary nebula. (Author)

  9. Planetary Environments: Scientific Issues and Perspectives

    Directory of Open Access Journals (Sweden)

    Encrenaz Th.

    2014-02-01

    Full Text Available What are the planetary environments where conditions are best suited for habitability? A first constraint is provided by the presence of liquid water. This condition allows us to define two kinds of media: (1 the atmospheres of solid (exoplanets with a temperature typically ranging between 0°C and 100°C, and (2 the interiors of icy bodies (outer satellites or possibly exosatellites where the pressure and temperature would fit the liquid phase region of the water phase diagram. In the case of Mars, significant progress has been achieved about our understanding of the history of liquid water in the past, thanks to the findings of recent space missions. The study of the outer satellites is also benefiting from the on-going operation of the Cassini mission. In the case of exopl nets, new discoveries are continuously reported, especially with the Kepler mission, in operation since 2009. With the emergence of transit spectroscopy, a new phase of exoplanets’ exploration has started, their characterization, opening the new field of exoplanetology. In the future, new perspectives appear regarding the exploration of Mars, the giant planets and exoplanets, with the ultimate goal of characterizing the atmospheres of temperate exoplanets.

  10. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  11. Sealed Planetary Return Canister (SPRC), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  12. Investments by NASA to build planetary protection capability

    Science.gov (United States)

    Buxbaum, Karen; Conley, Catharine; Lin, Ying; Hayati, Samad

    NASA continues to invest in capabilities that will enable or enhance planetary protection planning and implementation for future missions. These investments are critical to the Mars Exploration Program and will be increasingly important as missions are planned for exploration of the outer planets and their icy moons. Since the last COSPAR Congress, there has been an opportunity to respond to the advice of NRC-PREVCOM and the analysis of the MEPAG Special Regions Science Analysis Group. This stimulated research into such things as expanded bioburden reduction options, modern molecular assays and genetic inventory capability, and approaches to understand or avoid recontamination of spacecraft parts and samples. Within NASA, a portfolio of PP research efforts has been supported through the NASA Office of Planetary Protection, the Mars Technology Program, and the Mars Program Office. The investment strategy focuses on technology investments designed to enable future missions and reduce their costs. In this presentation we will provide an update on research and development supported by NASA to enhance planetary protection capability. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

  13. PSUP: A Planetary SUrface Portal

    Science.gov (United States)

    Poulet, F.; Quantin-Nataf, C.; Ballans, H.; Dassas, K.; Audouard, J.; Carter, J.; Gondet, B.; Lozac'h, L.; Malapert, J.-C.; Marmo, C.; Riu, L.; Séjourné, A.

    2018-01-01

    The large size and complexity of planetary data acquired by spacecraft during the last two decades create a demand within the planetary community for access to the archives of raw and high level data and for the tools necessary to analyze these data. Among the different targets of the Solar System, Mars is unique as the combined datasets from the Viking, Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions provide a tremendous wealth of information that can be used to study the surface of Mars. The number and the size of the datasets require an information system to process, manage and distribute data. The Observatories of Paris Sud (OSUPS) and Lyon (OSUL) have developed a portal, called PSUP (Planetary SUrface Portal), for providing users with efficient and easy access to data products dedicated to the Martian surface. The objectives of the portal are: 1) to allow processing and downloading of data via a specific application called MarsSI (Martian surface data processing Information System); 2) to provide the visualization and merging of high level (image, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu), and 3) to distribute some of these specific high level data with an emphasis on products issued by the science teams of OSUPS and OSUL. As the MarsSI service is extensively described in a companion paper (Quantin-Nataf et al., companion paper, submitted to this special issue), the present paper focus on the general architecture and the functionalities of the web-based user interface MarsVisu. This service provides access to many data products for Mars: albedo, mineral and thermal inertia global maps from spectrometers; mosaics from imagers; image footprints and rasters from the MarsSI tool; high level specific products (defined as catalogs or vectors). MarsVisu can be used to quickly assess the visualized processed data and maps as well as identify areas that have not been mapped yet

  14. Technology for Boundaries

    DEFF Research Database (Denmark)

    Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina

    2003-01-01

    .After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies......This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries...... seem a core issue when dealing with technology for boundaries....

  15. An ultrasonic corer for planetary rock sample retrieval

    International Nuclear Information System (INIS)

    Harkness, P; Cardoni, A; Lucas, M

    2009-01-01

    Several recent and planned space projects have been focussed on surface rovers for planetary missions, such as the U.S. Mars Exploration Rovers and the European ExoMars. The main functions of similar extraterrestrial vehicles in the future will be moving across planetary surfaces and retrieving rock samples. This paper presents a novel ultrasonic rock sampling tool tuned in a longitudinal-torsional mode along with the conceptual design of a full coring apparatus for preload delivery and core removal. Drilling and coring bits have been designed so that a portion of the longitudinal motion supplied by the ultrasonic transducer is converted into torsional motion. Results of drilling/coring trials are also presented.

  16. Pushing Boundaries while Maintaining Stability

    DEFF Research Database (Denmark)

    Lippke, Lena; Wegener, Charlotte

    at the same time. The exploration of transforming practices shows how disturbances in relation to the ‘normal’ practices are created and thus makes invisible conventions which are taken for granted visible. Thus, this paper addresses two types of invisibility: the unnoticed boundary-pushing practices...

  17. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  18. Energetic Techniques For Planetary Defense

    Science.gov (United States)

    Barbee, B.; Bambacus, M.; Bruck Syal, M.; Greenaugh, K. C.; Leung, R. Y.; Plesko, C. S.

    2017-12-01

    Near-Earth Objects (NEOs) are asteroids and comets whose heliocentric orbits tend to approach or cross Earth's heliocentric orbit. NEOs of various sizes periodically collide with Earth, and efforts are currently underway to discover, track, and characterize NEOs so that those on Earth-impacting trajectories are discovered far enough in advance that we would have opportunities to deflect or destroy them prior to Earth impact, if warranted. We will describe current efforts by the National Aeronautics and Space Administration (NASA) and the National Nuclear Security Administration (NNSA) to assess options for energetic methods of deflecting or destroying hazardous NEOs. These methods include kinetic impactors, which are spacecraft designed to collide with an NEO and thereby alter the NEO's trajectory, and nuclear engineering devices, which are used to rapidly vaporize a layer of NEO surface material. Depending on the amount of energy imparted, this can result in either deflection of the NEO via alteration of its trajectory, or robust disruption of the NEO and dispersal of the remaining fragments. We have studied the efficacies and limitations of these techniques in simulations, and have combined the techniques with corresponding spacecraft designs and mission designs. From those results we have generalized planetary defense mission design strategies and drawn conclusions that are applicable to a range of plausible scenarios. We will present and summarize our research efforts to date, and describe approaches to carrying out planetary defense missions with energetic NEO deflection or disruption techniques.

  19. Interactive investigations into planetary interiors

    Science.gov (United States)

    Rose, I.

    2015-12-01

    Many processes in Earth science are difficult to observe or visualize due to the large timescales and lengthscales over which they operate. The dynamics of planetary mantles are particularly challenging as we cannot even look at the rocks involved. As a result, much teaching material on mantle dynamics relies on static images and cartoons, many of which are decades old. Recent improvements in computing power and technology (largely driven by game and web development) have allowed for advances in real-time physics simulations and visualizations, but these have been slow to affect Earth science education.Here I demonstrate a teaching tool for mantle convection and seismology which solves the equations for conservation of mass, momentum, and energy in real time, allowing users make changes to the simulation and immediately see the effects. The user can ask and answer questions about what happens when they add heat in one place, or take it away from another place, or increase the temperature at the base of the mantle. They can also pause the simulation, and while it is paused, create and visualize seismic waves traveling through the mantle. These allow for investigations into and discussions about plate tectonics, earthquakes, hot spot volcanism, and planetary cooling.The simulation is rendered to the screen using OpenGL, and is cross-platform. It can be run as a native application for maximum performance, but it can also be embedded in a web browser for easy deployment and portability.

  20. Equations of State: Gateway to Planetary Origin and Evolution (Invited)

    Science.gov (United States)

    Melosh, J.

    2013-12-01

    illustrated by the impact origin of our Moon. Computer simulations that do not take account of the liquid/vapor phase change are unable to retain any material in orbit around the Earth after a planetary impact. A purely gaseous disk around the Earth is wracked by gravitational instabilities and soon collapses back onto the Earth. Only if the silicate EoS also includes a liquid phase can a disk remain stable long enough to condense into a moon. The implications of this new-found ease of vaporization have yet to be fully explored, but it seems clear that current ideas must undergo extensive revision. More melt and vapor production in impacts implies much larger volume changes of the impacted materials and hence more energetic post-impact expansion. EoSs are thus of vital importance to our understanding of the evolution of planetary systems. Computer simulations can (and must!) substitute for experiments for many aspects of large planetary collisions, but so far experiments are leading theory in accurate determination of equations of state. Yet, the fidelity of the computer simulations to Nature can be only as good as the accuracy of the inputs, making further experimental study of EoS a central task in the exploration and elucidation of our solar system and of planetary systems in general.

  1. Multi-Robot Planetary Exploration Command and Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences, The MIT Manned Vehicle Laboratory (MVL), and the MIT Humans and Automation Laboratory (HAL) together propose to adapt existing software,...

  2. Multi-Robot Planetary Exploration Architectures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space policy direction is shifting, particularly with respect to human goals. Given the uncertainty of future missions to the moon, Mars, and other bodies, a tool...

  3. MarsVac: Pneumatic Sampling System for Planetary Exploration

    Science.gov (United States)

    Zacny, K.; Mungas, G.; Chu, P.; Craft, J.; Davis, K.

    2008-12-01

    We are proposing a Mars Sample Return scheme whereby a sample of regolith is acquired directly into a Mars Ascent Vehicle using a pneumatic system. Unlike prior developments that used suction to collect fines, the proposed system uses positive pressure to move the regolith. We envisage 3 pneumatic tubes to be embedded inside the 3 legs of the lander. Upon landing, the legs will burry themselves into the regolith and the tubes will fill up with regolith. With one puff of gas, the regolith can be lifted into a sampling chamber onboard of the Mars Ascent Vehicle. An additional chamber can be opened to acquire atmospheric gas and dust. The entire MSR will require 1) an actuator to open/close sampling chamber and 2) a valve to open gas cylinder. In the most recent study related to lunar excavation and funded under the NASA SBIR program we have shown that it is possible lift over 3000 grams of soil with only 1 gram of gas at 1atm. Tests conducted under Mars atmospheric pressure conditions (5 torr). In September of 2008, we will be performing tests at 1/6thg (Moon) and 1/3g (Mars) to determine mass lifting efficiencies in reduced gravities.

  4. Sample Acquisition for Materials in Planetary Exploration (SAMPLE), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to analyze, design, and develop a device for autonomous lunar surface/subsurface sampling and processing applications. The Sample Acquisition for...

  5. An Automated Sample Processing System for Planetary Exploration

    Science.gov (United States)

    Soto, Juancarlos; Lasnik, James; Roark, Shane; Beegle, Luther

    2012-01-01

    An Automated Sample Processing System (ASPS) for wet chemistry processing of organic materials on the surface of Mars has been jointly developed by Ball Aerospace and the Jet Propulsion Laboratory. The mechanism has been built and tested to demonstrate TRL level 4. This paper describes the function of the system, mechanism design, lessons learned, and several challenges that were overcome.

  6. One-Meter Class Drilling for Planetary Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the proposed effort is to understand and characterize the fundamental limitations of drilling one to three meters into challenging materials which may...

  7. Surface Systems R&D in NASA's Planetary Exploration Program

    Science.gov (United States)

    Weisbin, C.; Rodriguez, G.

    2000-01-01

    This paper reports on activities being supported by the Surface Systems Thrust of the NASA Cross Enterprise Technology Development Program, a research program whithin the NASA office of Space Science.

  8. Optical observations of southern planetary nebula candidates

    NARCIS (Netherlands)

    VandeSteene, GC; Sahu, KC; Pottasch, [No Value

    1996-01-01

    We present H alpha+[NII] images and low resolution spectra of 16 IRAS-selected, southern planetary nebula candidates previously detected in the radio continuum. The H alpha+[NII] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images

  9. The Formation of a Planetary Nebula.

    Science.gov (United States)

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  10. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  11. Visualization of Kepler's Laws of Planetary Motion

    Science.gov (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-01-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  12. Integrating Information Networks for Collective Planetary Stewardship

    Science.gov (United States)

    Tiwari, A.

    2016-12-01

    Responsible behaviour resulting from climate literacy in global environmental movement is limited to policy and planning institutions in the Global South, while remaining absent for ends-user. Thus, planetary stewardship exists only at earth system boundaries where pressures sink to the local scale while ethics remains afloat. Existing citizen participation is restricted within policy spheres, appearing synonymous to enforcements in social psychology. Much, accounted reason is that existing information mechanisms operate mostly through linear exchanges between institutions and users, therefore reinforcing only hierarchical relationships. This study discloses such relationships that contribute to broad networking gaps through information demand assessment of stakeholders in a dozen development projects based in South Asia. Two parameters widely used for this purpose are: a. Feedback: Ends-user feedback to improve consumption literacy of climate sensitive resources (through consumption displays, billing, advisory services ecolabelling, sensors) and, b. Institutional Policy: Rewarding punishing to enforce desired behaviour (subsidies, taxation). Research answered: 1. Who gets the information (Equity in Information Distribution)? As existing information publishing mechanisms are designed by and for analysts, 2. How information translates to climate action Transparency of Execution)? Findings suggested that climate goals manifested in economic policy, than environmental policy, have potential clear short-term benefits and costs, and coincide with people's economic goals Also grassroots roles for responsible behaviour are empowered with presence of end user information. Barier free climate communication process and decision making is ensured among multiplicity of stakeholders with often conflicting perspectives. Research finds significance where collaboration among information networks can better translate regional policies into local action for climate adaptation and

  13. Luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies

    International Nuclear Information System (INIS)

    Jacoby, G.H.

    1980-01-01

    Identifications of 19 and 34 faint planetary nebulae have been made in the central regions of the SMC and LMC, respectively, using on-line/off-line filter photography at [O III] and Hα. The previously known brighter planetary nebulae in these fields, eight in both the SMC and the LMC, were also identified. On the basis of the ratio of the numbers of faint to bright planetary nebulae in these fields and the numbers of bright planetary nebulae in the surrounding fields, the total numbers of planetary nebulae in the SMC and LMC are estimated to be 285 +- 78 and 996 +- 253, respectively. Corrections have been applied to account for omissions due to crowding confusion in previous surveys, spatial and detectability incompleteness, and obscuration by dust.Equatorial coordinates and finding charts are presented for all the identified planetary nebulae. The coordinates have uncertainties smaller than 0.''6 relative to nearby bright stars, thereby allowing acquisition of the planetary nebulae by bling offsetting.Monochromatic fluxes are derived photographically and used to determine the luminosity function for Magellanic Cloud planetary nebulae as faint as 6 mag below the brightest. The luminosity function is used to estimate the total numbers of planetary nebulae in eight Local Group galaxies in which only bright planetary nebulae have been identified. The dervied luminosity specific number of planetary nebulae per unit luminosity is nearly constant for all eight galaxies, having a value of 6.1 x 10 -7 planetary nebulae L -1 /sub sun/. The mass specific number, based on the three galaxies with well-determined masses, is 2.1 x 10 -7 planetary nebulae M -1 /sub sun/. With estimates for the luminosity and mass of our Galaxy, its total number of planetary nebulae is calculated to be 10,000 +- 4000, in support of the Cudworth distance scale

  14. Boundary Layer Depth In Coastal Regions

    Science.gov (United States)

    Porson, A.; Schayes, G.

    The results of earlier studies performed about sea breezes simulations have shown that this is a relevant feature of the Planetary Boundary Layer that still requires effort to be diagnosed properly by atmospheric models. Based on the observations made during the ESCOMPTE campaign, over the Mediterranean Sea, different CBL and SBL height estimation processes have been tested with a meso-scale model, TVM. The aim was to compare the critical points of the BL height determination computed using turbulent kinetic energy profile with some other standard evaluations. Moreover, these results have been analysed with different mixing length formulation. The sensitivity of formulation is also analysed with a simple coastal configuration.

  15. PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Christopher R.; Boley, Aaron C. [Department of Physics and Astronomy University of British Columbia Vancouver, BC V6T 1Z1 (Canada); Morris, Melissa A. [Physics Department State University of New York at Cortland Cortland, NY 13045 (United States)

    2016-02-20

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  16. Observability during planetary approach navigation

    Science.gov (United States)

    Bishop, Robert H.; Burkhart, P. Daniel; Thurman, Sam W.

    1993-01-01

    The objective of the research is to develop an analytic technique to predict the relative navigation capability of different Earth-based radio navigation measurements. In particular, the problem is to determine the relative ability of geocentric range and Doppler measurements to detect the effects of the target planet gravitational attraction on the spacecraft during the planetary approach and near-encounter mission phases. A complete solution to the two-dimensional problem has been developed. Relatively simple analytic formulas are obtained for range and Doppler measurements which describe the observability content of the measurement data along the approach trajectories. An observability measure is defined which is based on the observability matrix for nonlinear systems. The results show good agreement between the analytic observability analysis and the computational batch processing method.

  17. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  18. The NASA Planetary Data System Roadmap Study for 2017 - 2026

    Science.gov (United States)

    McNutt, R. L., Jr.; Gaddis, L. R.; Law, E.; Beyer, R. A.; Crombie, M. K.; Ebel, D. S. S.; Ghosh, A.; Grayzeck, E.; Morgan, T. H.; Paganelli, F.; Raugh, A.; Stein, T.; Tiscareno, M. S.; Weber, R. C.; Banks, M.; Powell, K.

    2017-12-01

    NASA's Planetary Data System (PDS) is the formal archive of >1.2 petabytes of data from planetary exploration, science, and research. Initiated in 1989 to address an overall lack of attention to mission data documentation, access, and archiving, the PDS has evolved into an online collection of digital data managed and served by a federation of six science discipline nodes and two technical support nodes. Several ad hoc mission-oriented data nodes also provide complex data interfaces and access for the duration of their missions. The recent Planetary Data System Roadmap Study for 2017 to 2026 involved 15 planetary science community members who collectively prepared a report summarizing the results of an intensive examination of the current state of the PDS and its organization, management, practices, and data holdings (https://pds.jpl.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). The report summarizes the history of the PDS, its functions and characteristics, and how it has evolved to its present form; also included are extensive references and documentary appendices. The report recognizes that as a complex, evolving, archive system, the PDS must constantly respond to new pressures and opportunities. The report provides details on the challenges now facing the PDS, 19 detailed findings, suggested remediations, and a summary of what the future may hold for planetary data archiving. The findings cover topics such as user needs and expectations, data usability and discoverability (i.e., metadata, data access, documentation, and training), tools and file formats, use of current information technologies, and responses to increases in data volume, variety, complexity, and number of data providers. In addition, the study addresses the possibility of archiving software, laboratory data, and measurements of physical samples. Finally, the report discusses the current structure and governance of the PDS and its impact on how archive growth, technology, and new

  19. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  20. A New Model of the Fractional Order Dynamics of the Planetary Gears

    Directory of Open Access Journals (Sweden)

    Vera Nikolic-Stanojevic

    2013-01-01

    Full Text Available A theoretical model of planetary gears dynamics is presented. Planetary gears are parametrically excited by the time-varying mesh stiffness that fluctuates as the number of gear tooth pairs in contact changes during gear rotation. In the paper, it has been indicated that even the small disturbance in design realizations of this gear cause nonlinear properties of dynamics which are the source of vibrations and noise in the gear transmission. Dynamic model of the planetary gears with four degrees of freedom is used. Applying the basic principles of analytical mechanics and taking the initial and boundary conditions into consideration, it is possible to obtain the system of equations representing physical meshing process between the two or more gears. This investigation was focused to a new model of the fractional order dynamics of the planetary gear. For this model analytical expressions for the corresponding fractional order modes like one frequency eigen vibrational modes are obtained. For one planetary gear, eigen fractional modes are obtained, and a visualization is presented. By using MathCAD the solution is obtained.

  1. Understanding Microbial Contributions to Planetary Atmosphere

    Science.gov (United States)

    DesMarais, David J.

    2000-01-01

    signatures of life. Remarkably little is known about the composition of our own earlier atmosphere, particularly prior to the rise of oxygen levels some 2.0 to 2.2 billion years ago. Thus, field and laboratory observations and theoretical simulations should be conducted to examine the relationships between the structure and function of microbial ecosystems and their gaseous products. Ecosystems that are analogs of our ancient biosphere (e.g., based upon chemosynthesis or non-oxygenic photosynthesis, thermophilic and subsurface communities, etc.) should be included. Because key environmental parameters such as temperature and levels of hydrogen, carbon dioxide and oxygen varied during planetary evolution, their consequences for microbial ecosystems should be explored.

  2. Planetary Data Archiving Plan at JAXA

    Science.gov (United States)

    Shinohara, Iku; Kasaba, Yasumasa; Yamamoto, Yukio; Abe, Masanao; Okada, Tatsuaki; Imamura, Takeshi; Sobue, Shinichi; Takashima, Takeshi; Terazono, Jun-Ya

    After the successful rendezvous of Hayabusa with the small-body planet Itokawa, and the successful launch of Kaguya to the moon, Japanese planetary community has gotten their own and full-scale data. However, at this moment, these datasets are only available from the data sites managed by each mission team. The databases are individually constructed in the different formats, and the user interface of these data sites is not compatible with foreign databases. To improve the usability of the planetary archives at JAXA and to enable the international data exchange smooth, we are investigating to make a new planetary database. Within a coming decade, Japan will have fruitful datasets in the planetary science field, Venus (Planet-C), Mercury (BepiColombo), and several missions in planning phase (small-bodies). In order to strongly assist the international scientific collaboration using these mission archive data, the planned planetary data archive at JAXA should be managed in an unified manner and the database should be constructed in the international planetary database standard style. In this presentation, we will show the current status and future plans of the planetary data archiving at JAXA.

  3. Challenging the Boundaries

    DEFF Research Database (Denmark)

    Nørgaard, Nina

    2004-01-01

    To many people, challenging the boundaries between the traditional disciplines in foreign language studies means doing cultural studies. The aim of this article is to pull in a different direction by suggesting how the interface between linguistics and literature may be another fertile field...... to explore in the study and teaching of foreign languages. Not only may linguistics and literature be employed to shed light on each other, the insights gained may furthermore prove useful in a broader context in our foreign language studies. The article begins with a brief introduction to literary...... linguistics in general and to Hallidayan linguistics in particular. The theoretical framework thus laid out, it is exemplified how Halliday's theory of language may be employed in the analysis of literature. The article concludes by considering the possible status of literary linguistics in a broader...

  4. Transcending Organizational Boundaries

    DEFF Research Database (Denmark)

    Kringelum, Louise Tina Brøns

    by applying the engaged scholarship approach, thereby providing a methodological contribution to both port and business model research. Emphasizing the interplay of intra- and inter-organizational business model innovation, the thesis adds insight into the roles of port authorities, business model trends......This thesis explores how processes of business model innovation can unfold in a port authority by transcending organizational boundaries through inter-organizational collaboration. The findings contribute to two fields of academic inquiry: the study of business model innovation and the study of how...... the roles of port authorities evolve. This contribution is made by combining the two fields, where the study of business model innovation is used as an analytical concept for understanding the evolution of port authorities, and where the study of port authorities is used as a contextual setting...

  5. Public Engagement with the Lunar and Planetary Institute

    Science.gov (United States)

    Shaner, Andrew; Shupla, Christine; Smith Hackler, Amanda; Buxner, Sanlyn; Wenger, Matthew; Joseph, Emily C. S.

    2016-10-01

    The Lunar and Planetary Institute's (LPI) public engagement programs target audiences of all ages and backgrounds; in 2016 LPI has expanded its programs to reach wider, more diverse audiences. The status, resources, and findings of these programs, including evaluation results, will be discussed in this poster. LPI's Cosmic Explorations Speaker Series (CESS) is an annual public speaker series to engage the public in space science and exploration. Each thematic series includes four to five presentations held between September and May. Past series' titles have included "Science" on the Silver Screen, The Universe is Out to Get Us and What We Can (or Can't) Do About It, and A User's Guide to the Universe: You Live Here. Here's What You Need to Know. While the presentations are available online after the event, they are now being livestreamed to be accessible to a broader national, and international, audience. Sky Fest events, held four to five times a year, have science content themes and include several activities for children and their parents, night sky viewing through telescopes, and scientist presentations. Themes include both planetary and astronomy topics as well as planetary exploration topics (e.g., celebrating the launch or landing of a spacecraft). Elements of the Sky Fest program are being conducted in public libraries serving audiences underrepresented in STEM near LPI. These programs take place as part of existing hour-long programs in the library. During this hour, young people, typically 6-12 years old, move through three stations where they participate in hands-on activities. Like Sky Fest, these programs are thematic, centered on one over-arching topic such as the Moon or Mars. Beginning in Fall 2016, LPI will present programs at a revitalized park in downtown Houston. Facilities at this park will enable LPI to bring both the Sky Fest and CESS programs into the heart of Houston, which is one of the most diverse cities in the US and the world.

  6. Mars Technology Program: Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  7. Planetary climates (princeton primers in climate)

    CERN Document Server

    Ingersoll, Andrew

    2013-01-01

    This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

  8. Rigid supersymmetry with boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics

    2008-01-15

    We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)

  9. Planetary Drilling and Resources at the Moon and Mars

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    Drilling on the Moon and Mars is an important capability for both scientific and resource exploration. The unique requirements of spaceflight and planetary environments drive drills to different design approaches than established terrestrial technologies. A partnership between NASA and Baker Hughes Inc. developed a novel approach for a dry rotary coring wireline drill capable of acquiring continuous core samples at multi-meter depths for low power and mass. The 8.5 kg Bottom Hole Assembly operated at 100 We and without need for traditional drilling mud or pipe. The technology was field tested in the Canadian Arctic in sandstone, ice and frozen gumbo. Planetary resources could play an important role in future space exploration. Lunar regolith contains oxygen and metals, and water ice has recently been confirmed in a shadowed crater at the Moon.s south pole. Mars possesses a CO2 atmosphere, frozen water ice at the poles, and indications of subsurface aquifers. Such resources could provide water, oxygen and propellants that could greatly simplify the cost and complexity of exploration and survival. NASA/JSC/EP/JAG

  10. Exploring quadrangulations

    KAUST Repository

    Peng, Chi-Han; Barton, Michael; Jiang, Caigui; Wonka, Peter

    2014-01-01

    Here we presented a framework to explore quad mesh topologies. The core of our work is a systematic enumeration algorithm that can generate all possible quadrangular meshes inside a defined boundary with an upper limit of v3-v5 pairs. The algorithm is orders of magnitude more efficient than previous work. The combination of topological enumeration and shape-space exploration demonstrates that mesh topology has a powerful influence on geometry. The Fig. 18. A gallery of different quadrilateral meshes for a Shuriken. The quadrilaterals of the model were colored in a postprocess. Topological variations have distinctive, interesting patterns of mesh lines. © 2014 ACM 0730-0301/2014/01-ART3 15.00.

  11. Exploring quadrangulations

    KAUST Repository

    Peng, Chi-Han

    2014-02-04

    Here we presented a framework to explore quad mesh topologies. The core of our work is a systematic enumeration algorithm that can generate all possible quadrangular meshes inside a defined boundary with an upper limit of v3-v5 pairs. The algorithm is orders of magnitude more efficient than previous work. The combination of topological enumeration and shape-space exploration demonstrates that mesh topology has a powerful influence on geometry. The Fig. 18. A gallery of different quadrilateral meshes for a Shuriken. The quadrilaterals of the model were colored in a postprocess. Topological variations have distinctive, interesting patterns of mesh lines. © 2014 ACM 0730-0301/2014/01-ART3 15.00.

  12. Journal Bearing Analysis Suite Released for Planetary Gear System Evaluation

    Science.gov (United States)

    Brewe, David E.; Clark, David A.

    2005-01-01

    Planetary gear systems are an efficient means of achieving high reduction ratios with minimum space and weight. They are used in helicopter, aerospace, automobile, and many industrial applications. High-speed planetary gear systems will have significant dynamic loading and high heat generation. Hence, they need jet lubrication and associated cooling systems. For units operating in critical applications that necessitate high reliability and long life, that have very large torque loading, and that have downtime costs that are significantly greater than the initial cost, hydrodynamic journal bearings are a must. Computational and analytical tools are needed for sufficiently accurate modeling to facilitate optimal design of these systems. Sufficient physics is needed in the model to facilitate parametric studies of design conditions that enable optimal designs. The first transient journal bearing code to implement the Jacobsson-Floberg-Olsson boundary conditions, using a mass-conserving algorithm devised by Professor Emeritus Harold Elrod of Columbia University, was written by David E. Brewe of the U.S. Army at the NASA Lewis Research Center1 in 1983. Since then, new features and improved modifications have been built into the code by several contributors supported through Army and NASA funding via cooperative agreements with the University of Toledo (Professor Ted Keith, Jr., and Dr. Desikakary Vijayaraghavan) and National Research Council Programs (Dr. Vijayaraghavan). All this was conducted with the close consultation of Professor Elrod and the project management of David Brewe.

  13. Exploring the solar system

    CERN Document Server

    Bond, Peter

    2012-01-01

    The exploration of our solar system is one of humanity's greatest scientific achievements. The last fifty years in particular have seen huge steps forward in our understanding of the planets, the sun, and other objects in the solar system. Whilst planetary science is now a mature discipline - involving geoscientists, astronomers, physicists, and others - many profound mysteries remain, and there is indeed still the tantalizing possibility that we may find evidence of life on another planet in our system.Drawing upon the latest results from the second golden age of Solar System exploration, aut

  14. Hydrodynamic escape from planetary atmospheres

    Science.gov (United States)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early

  15. Quantum walk with one variable absorbing boundary

    International Nuclear Information System (INIS)

    Wang, Feiran; Zhang, Pei; Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli

    2017-01-01

    Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks. - Highlights: • A novel scheme about quantum walk with variable boundary is proposed. • The analytical results of the survival probability from the absorbing boundary. • The behavior of survival probability under different boundary conditions. • The influence of different initial coin states on the survival probability.

  16. Do planetary seasons play a role in attaining stable climates?

    Science.gov (United States)

    Olsen, Kasper Wibeck; Bohr, Jakob

    2018-05-01

    A simple phenomenological account for planetary climate instabilities is presented. The description is based on the standard model where the balance of incoming stellar radiation and outward thermal radiation is described by the effective planet temperature. Often, it is found to have three different points, or temperatures, where the influx of radiation is balanced with the out-flux, even with conserved boundary conditions. Two of these points are relatively long-term stable, namely the point corresponding to a cold climate and the point corresponding to a hot climate. In a classical sense these points are equilibrium balance points. The hypothesis promoted in this paper is the possibility that the intermediate third point can become long-term stable by being driven dynamically. The initially unstable point is made relatively stable over a long period by the presence of seasonal climate variations.

  17. A conceptual framework to quantify the influence of convective boundary layer development on carbon dioxide mixing ratios

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.; Peters, W.; Schröter, J.; van Heerwaarden, C. C.; Krol, M. C.

    2012-01-01

    Interpretation of observed diurnal carbon dioxide (CO2) mixing ratios near the surface requires knowledge of the local dynamics of the planetary boundary layer. In this paper, we study the relationship between the boundary layer dynamics and the CO2 budget in convective conditions through a newly

  18. Event boundaries and anaphoric reference.

    Science.gov (United States)

    Thompson, Alexis N; Radvansky, Gabriel A

    2016-06-01

    The current study explored the finding that parsing a narrative into separate events impairs anaphor resolution. According to the Event Horizon Model, when a narrative event boundary is encountered, a new event model is created. Information associated with the prior event model is removed from working memory. So long as the event model containing the anaphor referent is currently being processed, this information should still be available when there is no narrative event boundary, even if reading has been disrupted by a working-memory-clearing distractor task. In those cases, readers may reactivate their prior event model, and anaphor resolution would not be affected. Alternatively, comprehension may not be as event oriented as this account suggests. Instead, any disruption of the contents of working memory during comprehension, event related or not, may be sufficient to disrupt anaphor resolution. In this case, reading comprehension would be more strongly guided by other, more basic language processing mechanisms and the event structure of the described events would play a more minor role. In the current experiments, participants were given stories to read in which we included, between the anaphor and its referent, either the presence of a narrative event boundary (Experiment 1) or a narrative event boundary along with a working-memory-clearing distractor task (Experiment 2). The results showed that anaphor resolution was affected by narrative event boundaries but not by a working-memory-clearing distractor task. This is interpreted as being consistent with the Event Horizon Model of event cognition.

  19. Planning for planetary protection : challenges beyond Mars

    Science.gov (United States)

    Belz, Andrea P.; Cutts, James A.

    2006-01-01

    This document summarizes the technical challenges to planetary protection for these targets of interest and outlines some of the considerations, particularly at the system level, in designing an appropriate technology investment strategy for targets beyond Mars.

  20. Soft x-ray Planetary Imager

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is to prototype a soft X-ray Imager for planetary applications that has the sensitivity to observe solar system sources of soft  X-ray emission. A strong...