WorldWideScience

Sample records for planet search surveys

  1. Search for giant planets in M 67. IV. Survey results

    Science.gov (United States)

    Brucalassi, A.; Koppenhoefer, J.; Saglia, R.; Pasquini, L.; Ruiz, M. T.; Bonifacio, P.; Bedin, L. R.; Libralato, M.; Biazzo, K.; Melo, C.; Lovis, C.; Randich, S.

    2017-07-01

    Context. We present the results of a seven-year-long radial velocity survey of a sample of 88 main-sequence and evolved stars to reveal signatures of Jupiter-mass planets in the solar-age and solar-metallicity open cluster M 67. Aims: We aim at studying the frequency of giant planets in this cluster with respect to the field stars. In addition, our sample is also ideal to perform a long-term study to compare the chemical composition of stars with and without giant planets in detail. Methods: We analyzed precise radial velocity (RV) measurements obtained with the HARPS spectrograph at the European Southern Observatory (La Silla), the SOPHIE spectrograph at the Observatoire de Haute-Provence (France), the HRS spectrograph at the Hobby Eberly Telescope (Texas), and the HARPS-N spectrograph at the Telescopio Nazionale Galileo (La Palma). Additional RV data come from the CORALIE spectrograph at the Euler Swiss Telescope (La Silla). We conducted Monte Carlo simulations to estimate the occurrence rate of giant planets in our radial velocity survey. We considered orbital periods between 1.0 day and 1000 days and planet masses between 0.2 MJ and 10.0 MJ. We used a measure of the observational detection efficiency to determine the frequency of planets for each star. Results: All the planets previously announced in this RV campaign with their properties are summarized here: 3 hot Jupiters around the main-sequence stars YBP1194, YBP1514, and YBP401, and 1 giant planet around the evolved star S364. Two additional planet candidates around the stars YBP778 and S978 are also analyzed in the present work. We discuss stars that exhibit large RV variability or trends individually. For 2 additional stars, long-term trends are compatible with new binary candidates or substellar objects, which increases the total number of binary candidates detected in our campaign to 14. Based on the Doppler-detected planets discovered in this survey, we find an occurrence of giant planets of 18

  2. Red Optical Planet Survey: A radial velocity search for low mass M dwarf planets

    Science.gov (United States)

    Barnes, J. R.; Jenkins, J. S.; Jones, H. R. A.; Rojo, P.; Arriagada, P.; Jordán, A.; Minniti, D.; Tuomi, M.; Jeffers, S. V.; Pinfield, D.

    2013-04-01

    We present radial velocity results from our Red Optical Planet Survey (ROPS), aimed at detecting low-mass planets orbiting mid-late M dwarfs. The ˜10 ms-1 precision achieved over 2 consecutive nights with the MIKE spectrograph at Magellan Clay is also found on week long timescales with UVES at VLT. Since we find that UVES is expected to attain photon limited precision of order 2 ms-1 using our novel deconvolution technique, we are limited only by the (≤10 ms-1) stability of atmospheric lines. Rocky planet frequencies of η⊕ = 0.3-0.7 lead us to expect high planet yields, enabling determination of η⊕ for the uncharted mid-late M dwarfs with modest surveys.

  3. Red Optical Planet Survey: A radial velocity search for low mass M dwarf planets

    Directory of Open Access Journals (Sweden)

    Minniti D.

    2013-04-01

    Full Text Available We present radial velocity results from our Red Optical Planet Survey (ROPS, aimed at detecting low-mass planets orbiting mid-late M dwarfs. The ∼10 ms−1 precision achieved over 2 consecutive nights with the MIKE spectrograph at Magellan Clay is also found on week long timescales with UVES at VLT. Since we find that UVES is expected to attain photon limited precision of order 2 ms−1 using our novel deconvolution technique, we are limited only by the (≤10 ms−1 stability of atmospheric lines. Rocky planet frequencies of η⊕ = 0.3−0.7 lead us to expect high planet yields, enabling determination of η⊕ for the uncharted mid-late M dwarfs with modest surveys.

  4. Search for 150 MHz radio emission from extrasolar planets in the TIFR GMRT Sky Survey

    Science.gov (United States)

    Sirothia, S. K.; Lecavelier des Etangs, A.; Gopal-Krishna; Kantharia, N. G.; Ishwar-Chandra, C. H.

    2014-02-01

    The ongoing radio continuum TIFR GMRT Sky Survey (TGSS) using the Giant Metrewave Radio Telescope (GMRT) at 150 MHz offers an unprecedented opportunity to undertake a fairly deep search for low-frequency radio emission from nearby extrasolar planets. Currently TGSS images are available for a little over a steradian, encompassing 175 confirmed exoplanetary systems. We have searched for their radio counterparts in the TGSS (150 MHz), supplemented with a search in the NRAO VLA Sky Survey (NVSS) and the VLA FIRST survey at 1.4 GHz. For 171 planetary systems, we find no evidence of radio emission in the TGSS maps, placing a 3σ upper limit between 8.7 mJy and 136 mJy (median ~24.8 mJy) at 150 MHz. These non-detections include the 55 Cnc system for which we place a 3σ upper limit of 28 mJy at 150 MHz. Nonetheless, for four of the extrasolar planetary systems, we find TGSS radio sources coinciding with or located very close to their coordinates. One of these is 61 Vir: for this system a large radio flux density was predicted in the scenario involving magnetosphere-ionosphere coupling and rotation-induced radio emission. We also found 150 MHz emissions toward HD 86226 and HD 164509, where strong radio emission can be produced by the presence of a massive satellite orbiting a rapidly rotating planet. We also detected 150 MHz emission within a synthesized beam from 1RXS1609 b, a pre-main-sequence star harboring a ~14 Jupiter mass planet (or a brown dwarf). With a bright X-ray-UV star and a high mass, the planet 1RXS1609 b presents the best characteristics for rotation-induced emissions with high radio power. Deeper high-resolution observations toward these planetary systems are needed to discriminate between the possibilities of background radio-source and radio-loud planets. At 1.4 GHz, radio emission toward the planet-harboring pulsar PSR B1620-26 is detected in the NVSS. Emissions at 1.4 GHz are also detected toward the very-hot-Jupiter WASP-77A b (in the FIRST survey

  5. Searching for Planets in the Hyades. I The Keck Radial Velocity Survey

    CERN Document Server

    Cochran, W D; Paulson, D B; Cochran, William D.; Hatzes, Artie P.; Paulson, Diane B.

    2002-01-01

    We describe a high-precision radial velocity search for jovian-mass companions to main sequence stars in the Hyades star cluster. The Hyades provides an extremely well controlled sample of stars of the same age, the same metallicity, and a common birth and early dynamical environment. This sample allows us to explore the dependence of the process of planet formation on only a single independent variable: the stellar mass. In this paper we describe the survey and summarize results for the first five years.

  6. The Search for Planet Nine

    Science.gov (United States)

    Brown, Michael E.; Batygin, Konstantin

    2016-10-01

    We use an extensive suite of numerical simulations to constrain the mass and orbit of Planet Nine, and we use these constraints to begin the search for this newly proposed planet in new and in archival data. Here, we compare our simulations to the observed population of aligned eccentric high semimajor axis Kuiper belt objects and determine which simulation parameters are statistically compatible with the observations. We find that only a narrow range of orbital elements can reproduce the observations. In particular, the combination of semimajor axis, eccentricity, and mass of Planet Nine strongly dictates the semimajor axis range of the orbital confinement of the distant eccentric Kuiper belt objects. Allowed orbits, which confine Kuiper belt objects with semimajor axis beyond 380 AU, have perihelia roughly between 150 and 350 AU, semimajor axes between 380 and 980 AU, and masses between 5 and 20 Earth masses. Orbitally confined objects also generally have orbital planes similar to that of the planet, suggesting that the planet is inclined approximately 30 degrees to the ecliptic. We compare the allowed orbital positions and estimated brightness of Planet Nine to previous and ongoing surveys which would be sensitive to the planet's detection and use these surveys to rule out approximately two-thirds of the planet's orbit. Planet Nine is likely near aphelion with an approximate brightness of 22hours. We discuss the state of our current and archival searches for this newly predicted planet.

  7. Advances in the Kepler Transit Search Engine and Automated Approaches to Identifying Likely Planet Candidates in Transit Surveys

    Science.gov (United States)

    Jenkins, Jon Michael

    2015-08-01

    Twenty years ago, no planets were known outside our own solar system. Since then, the discoveries of ~1500 exoplanets have radically altered our views of planets and planetary systems. This revolution is due in no small part to the Kepler Mission, which has discovered >1000 of these planets and >4000 planet candidates. While Kepler has shown that small rocky planets and planetary systems are quite common, the quest to find Earth’s closest cousins and characterize their atmospheres presses forward with missions such as NASA Explorer Program’s Transiting Exoplanet Survey Satellite (TESS) slated for launch in 2017 and ESA’s PLATO mission scheduled for launch in 2024.These future missions pose daunting data processing challenges in terms of the number of stars, the amount of data, and the difficulties in detecting weak signatures of transiting small planets against a roaring background. These complications include instrument noise and systematic effects as well as the intrinsic stellar variability of the subjects under scrutiny. In this paper we review recent developments in the Kepler transit search pipeline improving both the yield and reliability of detected transit signatures.Many of the phenomena in light curves that represent noise can also trigger transit detection algorithms. The Kepler Mission has expended great effort in suppressing false positives from its planetary candidate catalogs. While over 18,000 transit-like signatures can be identified for a search across 4 years of data, most of these signatures are artifacts, not planets. Vetting all such signatures historically takes several months’ effort by many individuals. We describe the application of machine learning approaches for the automated vetting and production of planet candidate catalogs. These algorithms can improve the efficiency of the human vetting effort as well as quantifying the likelihood that each candidate is truly a planet. This information is crucial for obtaining valid planet

  8. A High Contrast Imaging Survey of SIM Lite Planet Search Targets

    CERN Document Server

    Tanner, Angelle M; Law, Nicholas M

    2010-01-01

    With the development of extreme high contrast ground-based adaptive optics instruments and space missions aimed at detecting and characterizing Jupiter- and terrestrial-mass planets, it is critical that each target star be thoroughly vetted to determine whether it is a viable target given both the instrumental design and scientific goals of the program. With this in mind, we have conducted a high contrast imaging survey of mature AFGKM stars with the PALAO/PHARO instrument on the Palomar 200 inch telescope. The survey reached sensitivities sufficient to detect brown dwarf companions at separations of > 50 AU. The results of this survey will be utilized both by future direct imaging projects such as GPI, SPHERE and P1640 and indirect detection missions such as SIM Lite. Out of 84 targets, all but one have no close-in (0.45-1") companions and 64 (76%) have no stars at all within the 25" field-of-view. The sensitivity contrasts in the Ks passband ranged from 4.5 to 10 for this set of observations. These stars we...

  9. The Rocky Planet Survey

    Science.gov (United States)

    Fischer, Debra

    In direct support of the NASA Origins program, we propose the Rocky Planet Survey, a high cadence exoplanet search of sixty late G and K dwarf stars using the CHIRON spectrometer, which we built and commissioned at CTIO. CHIRON operates in two high- resolution modes (R=90,000 and R=120,000) and has a demonstrated precision of better than 1 m s-1. We are contributing 200 nights of telescope time for the next three years, for the excellent phase coverage needed to carry out this work. We have developed simulation software to optimize scheduling of observations to suppress aliases and quickly extract dynamical signals. Our science objectives are to (1) provide a statistical assessment of planet occurrence as a function of decreasing mass in the range of parameter space 3 objectives, we intend to push the frontiers of extreme precision Doppler measurements to keep the U.S. competitive with the next generation of European Doppler spectroscopy (ESPRESSO on the VLT). Our team has significant expertise in optical design, fiber coupling, raw extraction, barycentric velocity corrections, and Doppler analysis. The proposed work includes a new optimal extraction algorithm, with the optical designers and software engineers working together on the 2-D PSF description needed for a proper row-by-row extraction and calibration. We will also develop and test upgrades to the barycentric correction code and improvements in the Doppler code that take advantage of stability in the dispersion solution, afforded by a new vacuum-enclosed grating upgrade (scheduled for November 2011). We will test use of emission wavelength calibrations to extend the iodine (absorption) wavelength calibration that we currently use to prepare for eventual use of stabilized etalons or laser frequency combs. Radial velocity measurements play a fundamental role, both in the detection of exoplanets and in support of NASA missions. This program will train postdoctoral fellows, grad students and undergrads, while

  10. The Anglo-Australian Planet Search Legacy

    Science.gov (United States)

    Wittenmyer, Robert A.; Tinney, Christopher G.; Butler, Paul; Horner, Jonathan; Carter, Brad; Wright, Duncan; Jones, H. R. A.

    2017-01-01

    Radial velocity searches for exoplanets have undergone a revolution in recent years: now precisions of 1 m/s or better are being demonstrated by many instruments, and new purpose-built spectrographs hold the promise of bringing Earth-mass planets into the realm of secure detectability. In the "race to the bottom," it is critical not to overlook the impact of long-running planet search programs that continue to hold the advantage of time. We highlight the continuing impact of the 18-year Anglo-Australian Planet Search: the characterisation of long-period giant planets, and the insights into the occurrence rate of Jupiter and Saturn analogs. To fully understand the origins of planetary systems and the fundamental question of how common (or rare) the architecture of the Solar system is in the Galaxy, we must continue these "legacy" surveys to probe ever-larger orbital separations.

  11. Burrell-Optical-Kepler Survey (BOKS): Exo-planet Search In Cygnus

    Science.gov (United States)

    Proctor, Amanda; Howell, S.; Sherry, W.; Everett, M.; von Braun, K.; Feldmeier, J.; BOKS Consortium

    2007-12-01

    We present the results of >20; continuous days of time series photometric observations of a 1.0 sq. deg field in Cygnus centered on the NASA Kepler Mission field of view. Using the Case Western Burrell Schmidt telescope located at Kitt Peak National Observatory we gathered a dataset containing light curves of roughly 30000 stars between 14planet occultations. We present a summary of our photometric project including many examples of eclipsing binaries and characterization the level and content of stellar variability in this portion of the Kepler field. We will also discuss our potential exo-planet candidates.

  12. Microlensing Searches for Planets: Results and Future Prospects

    CERN Document Server

    Gaudi, B Scott

    2007-01-01

    Microlensing is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury, as well as to free floating planets. I review the landscape of microlensing planet searches, beginning with an outline of the method itself, and continuing with an overview of the results that have been obtained to date. Four planets have been detected with microlensing. I discuss what these detections have taught us about the frequency of terrestrial and giant planets with separations beyond the ``snow line.'' I then discuss the near and long-term prospects for microlensing planet searches, and in particular speculate on the expected returns of next-generation microlensing experiments both from the ground and from space. When combined with the results from other complementary surveys, next generation microlensing surveys can yield an accurate and complete census of the frequency and properties of essentially all planets with masses greater than that of Mars.

  13. ESPRI: Astrometric planet search with PRIMA at the VLTI

    Directory of Open Access Journals (Sweden)

    Ségransan D.

    2011-07-01

    Full Text Available The ESPRI consortium will conduct an astrometric survey for extrasolar planets, using the PRIMA facility at the Very Large Telescope Interferometer. Our scientific goals include determining orbital inclinations and masses for planets already known from radial-velocity surveys, searches for planets around nearby stars of all masses, and around young stars. The consortium has built the PRIMA differential delay lines, developed an astrometric operation and calibration plan, and will deliver astrometric data reduction software.

  14. The CORALIE survey for Southern extra-solar planets. IV. Intrinsic stellar limitations to planet searches with radial-velocity techniques

    Science.gov (United States)

    Santos, N. C.; Mayor, M.; Naef, D.; Pepe, F.; Queloz, D.; Udry, S.; Blecha, A.

    2000-09-01

    Activity related phenomena can induce radial-velocity variations, which can be very important when dealing with extra-solar planet search programmes requiring high-precision radial-velocity measurements. In this paper we present a new chromospheric activity index, SCOR, based on the Ca Ii H line central reemission, and constructed using CORALIE spectra. After one year of measurements, values of SCOR are available for a sub-sample of stars of the Geneva extra-solar planet search programme. After transforming the SCOR values into the Mount-Wilson ``S'' scale we obtained values of the Ca Ii H and K flux corrected from photospheric emission (R'HK) for the stars. The first results are presented, and in particular we focus on the study of the relation between the observed radial-velocity scatter and the chromospheric activity index R'HK, for F, G and K dwarfs. Based on observations collected at the La Silla Observatory, ESO (Chile), with the echelle spectrograph CORALIE at the 1.2-m Euler Swiss telescope

  15. Searching for gas giant planets on Solar System scales - A NACO/APP L'-band survey of A- and F-type Main Sequence stars

    CERN Document Server

    Meshkat, T; Reggiani, M; Quanz, S P; Mamajek, E E; Meyer, M R

    2015-01-01

    We report the results of a direct imaging survey of A- and F-type main sequence stars searching for giant planets. A/F stars are often the targets of surveys, as they are thought to have more massive giant planets relative to solar-type stars. However, most imaging is only sensitive to orbital separations $>$30 AU, where it has been demonstrated that giant planets are rare. In this survey, we take advantage of the high-contrast capabilities of the Apodizing Phase Plate coronagraph on NACO at the Very Large Telescope. Combined with optimized principal component analysis post-processing, we are sensitive to planetary-mass companions (2 to 12 $M_{\\rm Jup}$) at Solar System scales ($\\leq$30 AU). We obtained data on 13 stars in L'-band and detected one new companion as part of this survey: an M$6.0\\pm0.5$ dwarf companion around HD 984. We re-detect low-mass companions around HD 12894 and HD 20385, both reported shortly after the completion of this survey. We use Monte Carlo simulations to determine new constraints...

  16. Space based microlensing planet searches

    Directory of Open Access Journals (Sweden)

    Tisserand Patrick

    2013-04-01

    Full Text Available The discovery of extra-solar planets is arguably the most exciting development in astrophysics during the past 15 years, rivalled only by the detection of dark energy. Two projects unite the communities of exoplanet scientists and cosmologists: the proposed ESA M class mission EUCLID and the large space mission WFIRST, top ranked by the Astronomy 2010 Decadal Survey report. The later states that: “Space-based microlensing is the optimal approach to providing a true statistical census of planetary systems in the Galaxy, over a range of likely semi-major axes”. They also add: “This census, combined with that made by the Kepler mission, will determine how common Earth-like planets are over a wide range of orbital parameters”. We will present a status report of the results obtained by microlensing on exoplanets and the new objectives of the next generation of ground based wide field imager networks. We will finally discuss the fantastic prospect offered by space based microlensing at the horizon 2020–2025.

  17. NACO-SDI imaging of known companion host stars from the AAPS and Keck planet search surveys

    CERN Document Server

    Jenkins, J S; Biller, B; O'Toole, S J; Pinfield, D J; Close, L; Tinney, C G; Butler, R P; Wittenmyer, R; Carter, B; Day-Jones, A C

    2010-01-01

    Direct imaging of brown dwarfs as companions to solar-type stars can provide a wealth of well-constrained data to "benchmark" the physics of such objects, since quantities like metallicity and age can be determined from their well-studied primaries. We present results from an adaptive optics imaging program on stars drawn from the Anglo-Australian and Keck Planet Search projects, with the aim of directly imaging known cool companions. Simulations have modeled the expected contrast ratios and separations of known companions using estimates of orbital parameters available from current radial-velocity data and then a selection of the best case objects were followed-up with high contrast imaging to attempt to directly image these companions. These simulations suggest that only a very small number of radial-velocity detected exoplanets with consistent velocity fits and age estimates could potentially be directly imaged using the VLT's Simultaneous Differential Imaging system and only under favorable conditions. We...

  18. Selection functions in doppler planet searches

    Science.gov (United States)

    O'Toole, S. J.; Tinney, C. G.; Jones, H. R. A.; Butler, R. P.; Marcy, G. W.; Carter, B.; Bailey, J.

    2009-01-01

    We present a preliminary analysis of the sensitivity of Anglo-Australian Planet Search data to the orbital parameters of extrasolar planets. To do so, we have developed new tools for the automatic analysis of large-scale simulations of Doppler velocity planet search data. One of these tools is the two-dimensional Keplerian Lomb-Scargle (LS) periodogram that enables the straightforward detection of exoplanets with high eccentricities (something the standard LS periodogram routinely fails to do). We used this technique to redetermine the orbital parameters of HD20782b, with one of the highest known exoplanet eccentricities (e = 0.97 +/- 0.01). We also derive a set of detection criteria that do not depend on the distribution functions of fitted Keplerian orbital parameters (which we show are non-Gaussian with pronounced, extended wings). Using these tools, we examine the selection functions in orbital period, eccentricity and planet mass of Anglo-Australian Planet Search data for three planets with large-scale Monte Carlo like simulations. We find that the detectability of exoplanets declines at high eccentricities. However, we also find that exoplanet detectability is a strong function of epoch-to-epoch data quality, number of observations and period sampling. This strongly suggests that simple parametrizations of the detectability of exoplanets based on `whole-of-survey' metrics may not be accurate. We have derived empirical relationships between the uncertainty estimates for orbital parameters that are derived from least-squares Keplerian fits to our simulations and the true 99 per cent limits for the errors in those parameters, which are larger than equivalent Gaussian limits by the factors of 5-10. We quantify the rate at which false positives are made by our detection criteria, and find that they do not significantly affect our final conclusions. And finally, we find that there is a bias against measuring near-zero eccentricities, which becomes more significant

  19. The Impact of Transiting Planet Science on the Next Generation of Direct-Imaging Planet Searches

    CERN Document Server

    Carson, Joseph C

    2008-01-01

    Within the next five years, a number of direct-imaging planet search instruments, like the VLT SPHERE instrument, will be coming online. To successfully carry out their programs, these instruments will rely heavily on a-priori information on planet composition, atmosphere, and evolution. Transiting planet surveys, while covering a different semi-major axis regime, have the potential to provide critical foundations for these next-generation surveys. For example, improved information on planetary evolutionary tracks may significantly impact the insights that can be drawn from direct-imaging statistical data. Other high-impact results from transiting planet science include information on mass-to-radius relationships as well as atmospheric absorption bands. The marriage of transiting planet and direct-imaging results may eventually give us the first complete picture of planet migration, multiplicity, and general evolution.

  20. The Impact of Transiting Planet Science on the Next Generation of Direct-Imaging Planet Searches

    Science.gov (United States)

    Carson, Joseph C.

    2009-02-01

    Within the next five years, a number of direct-imaging planet search instruments, like the VLT SPHERE instrument, will be coming online. To successfully carry out their programs, these instruments will rely heavily on a-priori information on planet composition, atmosphere, and evolution. Transiting planet surveys, while covering a different semi-major axis regime, have the potential to provide critical foundations for these next-generation surveys. For example, improved information on planetary evolutionary tracks may significantly impact the insights that can be drawn from direct-imaging statistical data. Other high-impact results from transiting planet science include information on mass-to-radius relationships as well as atmospheric absorption bands. The marriage of transiting planet and direct-imaging results may eventually give us the first complete picture of planet migration, multiplicity, and general evolution.

  1. Discovering Extrasolar Planets with Microlensing Surveys

    Science.gov (United States)

    Wambsganss, J.

    2016-06-01

    An astronomical survey is commonly understood as a mapping of a large region of the sky, either photometrically (possibly in various filters/wavelength ranges) or spectroscopically. Often, catalogs of objects are produced/provided as the main product or a by-product. However, with the advent of large CCD cameras and dedicated telescopes with wide-field imaging capabilities, it became possible in the early 1990s, to map the same region of the sky over and over again. In principle, such data sets could be combined to get very deep stacked images of the regions of interest. However, I will report on a completely different use of such repeated maps: Exploring the time domain for particular kinds of stellar variability, namely microlens-induced magnifications in search of exoplanets. Such a time-domain microlensing survey was originally proposed by Bohdan Paczynski in 1986 in order to search for dark matter objects in the Galactic halo. Only a few years later three teams started this endeavour. I will report on the history and current state of gravitational microlensing surveys. By now, routinely 100 million stars in the Galactic Bulge are monitored a few times per week by so-called survey teams. All stars with constant apparent brightness and those following known variability patterns are filtered out in order to detect the roughly 2000 microlensing events per year which are produced by stellar lenses. These microlensing events are identified "online" while still in their early phases and then monitored with much higher cadence by so-called follow-up teams. The most interesting of such events are those produced by a star-plus-planet lens. By now of order 30 exoplanets have been discovered by these combined microlensing surveys. Microlensing searches for extrasolar planets are complementary to other exoplanet search techniques. There are two particular advantages: The microlensing method is sensitive down to Earth-mass planets even with ground-based telecopes, and it

  2. Radio Search For Extrasolar Planets

    Science.gov (United States)

    Zarka, P.

    Theoretical justification and ongoing observational efforts in view of detecting radio emissions from extrasolar planets will be presented. On the "prediction" side, a heuris- tic scaling law has been established relating the radio output of any magnetized flow- obstacle system to the incident magnetic energy flux on the obstacle. Its confirmation by the observation of radio emission from extrasolar planets would help to understand the energy budget of such a system. On the "detection" side, specific procedures have been developed for interference mitigation and weak burst detection.

  3. A search for rocky planets transiting brown dwarfs

    CERN Document Server

    Triaud, Amaury H M J; Selsis, Franck; Winn, Joshua N; Demory, Brice-Olivier; Artigau, Etienne; Laughlin, Gregory P; Seager, Sara; Helling, Christiane; Mayor, Michel; Albert, Loic; Anderson, Richard I; Bolmont, Emeline; Doyon, Rene; Forveille, Thierry; Hagelberg, Janis; Leconte, Jeremy; Lendl, Monika; Littlefair, Stuart; Raymond, Sean; Sahlmann, Johannes

    2013-01-01

    Exoplanetary science has reached a historic moment. The James Webb Space Telescope will be capable of probing the atmospheres of rocky planets, and perhaps even search for biologically produced gases. However this is contingent on identifying suitable targets before the end of the mission. A race therefore, is on, to find transiting planets with the most favorable properties, in time for the launch. Here, we describe a realistic opportunity to discover extremely favorable targets - rocky planets transiting nearby brown dwarfs - using the Spitzer Space Telescope as a survey instrument. Harnessing the continuous time coverage and the exquisite precision of Spitzer in a 5,400 hour campaign monitoring nearby brown dwarfs, we will detect a handful of planetary systems with planets as small as Mars. The survey we envision is a logical extension of the immense progress that has been realized in the field of exoplanets and a natural outcome of the exploration of the solar neighborhood to map where the nearest habitab...

  4. Extrasolar Planet Inferometric Survey (EPIcS)

    Science.gov (United States)

    Shao, Michael; Baliunas, Sallie; Boden, Andrew; Kulkarni, Shrinivas; Lin, Douglas N. C.; Loredo, Tom; Queloz, Didier; Shaklan, Stuart; Tremaine, Scott; Wolszczan, Alexander

    2004-01-01

    The discovery of the nature of the solar system was a crowning achievement of Renaissance science. The quest to evaluate the properties of extrasolar planetary systems is central to both the intellectual understanding of our origins and the cultural understanding of humanity's place in the Universe; thus it is appropriate that the goals and objectives of NASA's breakthrough Origins program emphasize the study of planetary systems, with a focus on the search for habitable planets. We propose an ambitious research program that will use SIM - the first major mission of the Origins program - to explore planetary systems in our Galactic neighborhood. Our program is a novel two-tiered SIM survey of nearby stars that exploits the capabilities of SIM to achieve two scientific objectives: (i) to identify Earth-like planets in habitable regions around nearby Sunlike stars: and (ii) to explore the nature and evolution of planetary systems in their full variety. The first of these objectives was recently recommended by the Astronomy and Astrophysics Survey Committee (the McKee-Taylor Committee) as a prerequisite for the development of the Terrestrial Planet Finder mission later in the decade. Our program combines this two-part survey with preparatory and contemporaneous research designed to maximize the scientific return from the limited and thus precious observing resources of SIM.

  5. Expectations from a Microlensing Search for Planets

    CERN Document Server

    Peale, S J

    1996-01-01

    The statistical distribution of the masses of planets about stars between the Sun and the center of the galaxy is constrained to within a factor of three by an intensive search for planets during microlensing events. Projected separations in terms of the lens Einstein ring radius yield a rough estimate of the distribution of planetary semimajor axes with planetary mass. The search consists of following ongoing stellar microlensing events involving sources in the center of the galaxy lensed by intervening stars with high time resolution, 1% photometry in two colors in an attempt to catch any short time scale planetary perturbations of the otherwise smooth light curve. It is assumed that 3000 events are followed over an 8 year period, but with half of the lenses, those that are members of binary systems, devoid of planets. The remaining 1500 lenses have solar-system-like distributions of 4 or 5 planets. The expectations from the microlensing search are extremely assumption dependent with 56, 138, and 81 planets...

  6. The Gemini Deep Planet Survey - GDPS

    Energy Technology Data Exchange (ETDEWEB)

    Lafreniere, D; Doyon, R; Marois, C; Nadeau, D; Oppenheimer, B R; Roche, P F; Rigaut, F; Graham, J R; Jayawardhana, R; Johnstone, D; Kalas, P G; Macintosh, B; Racine, R

    2007-06-01

    We present the results of the Gemini Deep Planet Survey, a near-infrared adaptive optics search for giant planets and brown dwarfs around nearby young stars. The observations were obtained with the Altair adaptive optics system at the Gemini North telescope and angular differential imaging was used to suppress the speckle noise of the central star. Detection limits for the 85 stars observed are presented, along with a list of all faint point sources detected around them. Typically, the observations are sensitive to angular separations beyond 0.5-inch with 5{sigma} contrast sensitivities in magnitude difference at 1.6 {micro}m of 9.6 at 0.5-inch, 12.9 at 1-inch, 15 at 2-inch, and 16.6 at 5-inch. For the typical target of the survey, a 100 Myr old K0 star located 22 pc from the Sun, the observations are sensitive enough to detect planets more massive than 2 M{sub Jup} with a projected separation in the range 40-200 AU. Depending on the age, spectral type, and distance of the target stars, the minimum mass that could be detected with our observations can be {approx}1 M{sub Jup}. Second epoch observations of 48 stars with candidates (out of 54) have confirmed that all candidates are unrelated background stars. A detailed statistical analysis of the survey results, which provide upper limits on the fractions of stars with giant planet or low mass brown dwarf companions, is presented. Assuming a planet mass distribution dn/dm {proportional_to} m{sup -1.2} and a semi-major axis distribution dn/da {proportional_to} a{sup -1}, the upper limits on the fraction of stars with at least one planet of mass 0.5-13 M{sub Jup} are 0.29 for the range 10-25 AU, 0.13 for 25-50 AU, and 0.09 for 50-250 AU, with a 95% confidence level; this result is weakly dependent on the semi-major axis distribution power-law index. Without making any assumption on the mass and semi-major axis distributions, the fraction of stars with at least one brown dwarf companion having a semi-major axis in the

  7. The Twenty-Five Year Lick Planet Search

    CERN Document Server

    Fischer, Debra A; Spronck, Julien F P

    2013-01-01

    The Lick planet search program began in 1987 when the first spectrum of $\\tau$ Ceti was taken with an iodine cell and the Hamilton Spectrograph. Upgrades to the instrument improved the Doppler precision from about 10 m/s in 1992 to about 3 m/s in 1995. The project detected dozens of exoplanets with orbital periods ranging from a few days to several years. The Lick survey identified the first planet in an eccentric orbit (70 Virginis) and the first multi-planet system around a normal main sequence star (Upsilon Andromedae). These discoveries advanced our understanding of planet formation and orbital migration. Data from this project helped to quantify a correlation between host star metallicity and the occurrence rate of gas giant planets. The program also served as a test bed for innovation with testing of a tip-tilt system at the coud{\\'e} focus and fiber scrambler designs to stabilize illumination of the spectrometer optics. The Lick planet search with the Hamilton spectrograph effectively ended when a heat...

  8. The HARPS-N Rocky Planet Search

    DEFF Research Database (Denmark)

    Motalebi, F.; Udry, S.; Gillon, M.

    2015-01-01

    We know now from radial velocity surveys and transit space missions that planets only a few times more massive than our Earth are frequent around solar-type stars. Fundamental questions about their formation history, physical properties, internal structure, and atmosphere composition are, however...

  9. Optimizing the search for transiting planets in long time series

    Science.gov (United States)

    Ofir, Aviv

    2014-01-01

    Context. Transit surveys, both ground- and space-based, have already accumulated a large number of light curves that span several years. Aims: The search for transiting planets in these long time series is computationally intensive. We wish to optimize the search for both detection and computational efficiencies. Methods: We assume that the searched systems can be described well by Keplerian orbits. We then propagate the effects of different system parameters to the detection parameters. Results: We show that the frequency information content of the light curve is primarily determined by the duty cycle of the transit signal, and thus the optimal frequency sampling is found to be cubic and not linear. Further optimization is achieved by considering duty-cycle dependent binning of the phased light curve. By using the (standard) BLS, one is either fairly insensitive to long-period planets or less sensitive to short-period planets and computationally slower by a significant factor of ~330 (for a 3 yr long dataset). We also show how the physical system parameters, such as the host star's size and mass, directly affect transit detection. This understanding can then be used to optimize the search for every star individually. Conclusions: By considering Keplerian dynamics explicitly rather than implicitly one can optimally search the BLS parameter space. The presented Optimal BLS enhances the detectability of both very short and very long period planets, while allowing such searches to be done with much reduced resources and time. The Matlab/Octave source code for Optimal BLS is made available. The MATLAB code is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A138

  10. A Photometric Search for Extrasolar Planets

    Science.gov (United States)

    Howell, S. B.; Everett, M.; Davis, D. R.; Weidenschilling, S. J.; McGruder, C. H., III; Gelderman, R.

    2000-10-01

    We describe a new program for the photometric detection of extrasolar planets using the 1.3 m telescope on Kitt Peak, which will be operated by a consortium of universities headed by Western Kentucky Univ. and including South Carolina State Univ., Planetary Science Institute, Boston Univ., and UC-Berkeley (SSL). This approach will complement the existing, highly successful, spectroscopic searches. The theory of photometric transit detection has been discussed by a number of authors (e.g. Borucki & Summers 1984; Howell & Merline 1995; Howell et al. 1996) and shown to be well within the capabilities of both photomultiplier and CCD observations. The first photometric transit detection was recently accomplished for the spectroscopically discovered planet orbiting HD209458 (Henry et al. 2000). The detection of extrasolar planet transits requires high photometric precision rather than accuracy. The necessary photometric precision to detect Jupiter-, Neptune-, and Earth-sized planets in orbit around F-M dwarfs is 1%, 0.1% and 0.00001%, respectively. The required precision to observe transits by Jupiter-sized extrasolar planets is easily obtained with modern CCD detectors and the differential ensemble photometric techniques pioneered by Howell et al. (1988). The use of such a technique for ultra-high precision photometry has been described in numerous papers (Charbonneau et al. 2000, Howell 2000, plus many others). Everett and Howell recently used the Kitt Peak NOAO 0.9 m telescope with the wide-field MOSAIC camera to search for extrasolar planet transits. During this run, they achieved a photometric precision of 0.024% for this dataset. With the 1.3 m telescope, we expect to reach a photometric precision of ~ 0.01% (10-4 mag). Our consortium has recently begun to refurbish and automate the 1.3 m telescope, which will be known as the Remote-Controlled Telescope (RCT). The primary instrument will be a CCD camera with a SITe 2048 x 2048 CCD having pixel well depths of 363

  11. The Carnegie Astrometric Planet Search Program

    CERN Document Server

    Boss, Alan P; Anglada-Escude, Guillem; Thompson, Ian B; Burley, Gregory; Birk, Christoph; Pravdo, Steven H; Shaklan, Stuart B; Gatewood, George D; Majewski, Steven R; Patterson, Richard J

    2009-01-01

    We are undertaking an astrometric search for gas giant planets and brown dwarfs orbiting nearby low mass dwarf stars with the 2.5-m du Pont telescope at the Las Campanas Observatory in Chile. We have built two specialized astrometric cameras, the Carnegie Astrometric Planet Search Cameras (CAPSCam-S and CAPSCam-N), using two Teledyne Hawaii-2RG HyViSI arrays, with the cameras' design having been optimized for high accuracy astrometry of M dwarf stars. We describe two independent CAPSCam data reduction approaches and present a detailed analysis of the observations to date of one of our target stars, NLTT 48256. Observations of NLTT 48256 taken since July 2007 with CAPSCam-S imply that astrometric accuracies of around 0.3 milliarcsec per hour are achievable, sufficient to detect a Jupiter-mass companion orbiting 1 AU from a late M dwarf 10 pc away with a signal-to-noise ratio of about 4. We plan to follow about 100 nearby (primarily within about 10 pc) low mass stars, principally late M, L, and T dwarfs, for 10...

  12. The Anglo-Australian Planet Search. XXII. Two New Multi-Planet Systems

    CERN Document Server

    Wittenyer, Robert A; Tuomi, M; Salter, G S; Tinney, C G; Butler, R P; Jones, H R A; O'Toole, S J; Bailey, J; Carter, B D; Jenkins, J S; Zhang, Z; Vogt, S S; Rivera, E J

    2012-01-01

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005\\pm427 days, and a minimum mass of 5.3M_Jup. HD142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 \\pm 0.07). The second planet in the HD 159868 system has a period of 352.3\\pm1.3 days, and m sin i=0.73\\pm0.05 M_Jup. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.

  13. THE ANGLO-AUSTRALIAN PLANET SEARCH. XXII. TWO NEW MULTI-PLANET SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Horner, J.; Salter, G. S.; Tinney, C. G.; Bailey, J. [Department of Astrophysics, School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Tuomi, Mikko; Zhang, Z. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Butler, R. P. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Jones, H. R. A. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); O' Toole, S. J. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Carter, B. D. [Faculty of Sciences, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Jenkins, J. S. [Departamento de Astronomia, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Vogt, S. S.; Rivera, Eugenio J., E-mail: rob@phys.unsw.edu.au [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States)

    2012-07-10

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 {+-} 427 days, and a minimum mass of 5.3 M{sub Jup}. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 {+-} 0.07). The second planet in the HD 159868 system has a period of 352.3 {+-} 1.3 days and m sin i = 0.73 {+-} 0.05 M{sub Jup}. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.

  14. Optimizing the search for transiting planets in long time series

    CERN Document Server

    Ofir, Aviv

    2013-01-01

    Context: Transit surveys, both ground- and space- based, have already accumulated a large number of light curves that span several years. Aims: The search for transiting planets in these long time series is computationally intensive. We wish to optimize the search for both detection and computational efficiencies. Methods: We assume that the searched systems can be well described by Keplerian orbits. We then propagate the effects of different system parameters to the detection parameters. Results: We show that the frequency information content of the light curve is primarily determined by the duty cycle of the transit signal, and thus the optimal frequency sampling is found to be cubic and not linear. Further optimization is achieved by considering duty-cycle dependent binning of the phased light curve. By using the (standard) BLS one is either rather insensitive to long-period planets, or less sensitive to short-period planets and computationally slower by a significant factor of ~330 (for a 3yr long dataset...

  15. YETI – search for young transiting planets******

    Directory of Open Access Journals (Sweden)

    Neuhäuser Ralph

    2013-04-01

    Full Text Available We present our search for young transiting planets at ages of 2 to 20 Myr. Towards this goal, we monitor a number of young open clusters with the YETI network. YETI consists of 0.4-2 m-sized telescopes at different longitudes that observe continuously over timescales much longer than a night. In our first cluster Trumpler 37 we found more than 350 variable stars. Also two transiting candidates were found so far, for which follow-up is partly done. The first candidate turned out to be an eclipsing binary with an M-type companion. We describe the research done on these two transiting candidates.

  16. Hot Big Planets Kepler Survey: Measuring the Repopulation Rate of the Shortest-Period Planets

    OpenAIRE

    Taylor, Stuart F.

    2013-01-01

    By surveying new fields for the shortest-period "big" planets, the Kepler spacecraft could provide the statistics to more clearly measure the occurrence distributions of giant and medium planets. This would allow separate determinations for giant and medium planets of the relationship between the inward rate of tidal migration of planets and the strength of the stellar tidal dissipation (as expressed by the tidal quality factor Q). We propose a "Hot Big Planets Survey" to find new big planets...

  17. A search for circumbinary planets in CoRoT eclipsing binary light curves

    Directory of Open Access Journals (Sweden)

    Klagyivik Peter

    2015-01-01

    Full Text Available Several transiting circumbinary planets have been found in data of the Kepler mission [1–5]. Both CoRoT and Kepler have surveyed similar numbers of stars, and the photometric precision of CoRoT is sufficient that it could detect most of the known circumbinary planets; the main draw-back by CoRoT is the much shorter coverage. Still, there is a high chance that some circumbinary planets may be found in its sample of eclipsing binaries (hereafter EBs. Here we report on an ongoing search for circumbinary planets in the full CoRoT data set.

  18. The Search for Extrasolar Earth-like planets

    CERN Document Server

    Seager, S

    2003-01-01

    The search for extrasolar Earth-like planets is underway. Over 100 extrasolar giant planets are known to orbit nearby sun-like stars, including several in multiple-planet systems. These planetary systems are stepping stones for the search for Earth-like planets; the technology development, observational strategies, and science results can all be applied to Earth-like planets. Stars much less massive than the sun the most common stars in our Galaxy are being monitored for the gravitational influence of Earth-like planets. Although Earth-like planets orbiting sun-like stars are much more difficult to detect, space missions are being built to detect them indirectly due to their effects on the parent star and to quantify fundamental factors such as terrestrial planet frequency, size distribution, and mass distribution. Extremely ambitious space programs are being developed to directly detect Earth-like planets orbiting sun-like stars, and must tackle the immense technological challenge of blocking out the light o...

  19. A Metric and Optimisation Scheme for Microlens Planet Searches

    CERN Document Server

    Horne, Keith; Tsapras, Yianni

    2009-01-01

    OGLE III and MOA II are discovering 600-1000 Galactic Bulge microlens events each year. This stretches the resources available for intensive follow-up monitoring of the lightcurves in search of anomalies caused by planets near the lens stars. We advocate optimizing microlens planet searches by using an automatic prioritization algorithm based on the planet detection zone area probed by each new data point. This optimization scheme takes account of the telescope and detector characteristics, observing overheads, sky conditions, and the time available for observing on each night. The predicted brightness and magnification of each microlens target is estimated by fitting to available data points. The optimisation scheme then yields a decision on which targets to observe and which to skip, and a recommended exposure time for each target, designed to maximize the planet detection capability of the observations. The optimal strategy maximizes detection of planet anomalies, and must be coupled with rapid data reduct...

  20. Search and investigation of extra-solar planets with polarimetry

    Science.gov (United States)

    Schmid, H. M.; Beuzit, J.-L.; Feldt, M.; Gisler, D.; Gratton, R.; Henning, Th.; Joos, F.; Kasper, M.; Lenzen, R.; Mouillet, D.; Moutou, C.; Quirrenbach, A.; Stam, D. M.; Thalmann, C.; Tinbergen, J.; Verinaud, C.; Waters, R.; Wolstencroft, R.

    Light reflected from planets is polarized. This basic property of planets provides the possibility for detecting and characterizing extra-solar planets using polarimetry. The expected polarization properties of extra-solar planets are discussed that can be inferred from polarimetry of "our" solar system planets. They show a large variety of characteristics depending on the atmospheric and/or surface properties. Best candidates for a polarimetric detection are extra-solar planets with an optically thick Rayleigh scattering layer.Even the detection of highly polarized extra-solar planets requires a very sophisticated instrument. We present the results from a phase A (feasibility) study for a polarimetric arm in the ESO VLT planet finder instrument. It is shown that giant planets around nearby stars can be searched and investigated with an imaging polarimeter, combined with a powerful AO system and a coronagraph at an 8 m class telescope.A similar type of polarimeter is also considered for the direct detection of terrestrial planets using an AO system on one of the future Extremely Large Telescopes.

  1. Searching for Planets using Particle Swarm Optimization

    Science.gov (United States)

    Chambers, John E.

    2008-05-01

    The Doppler radial velocity technique has been highly successful in discovering planetary-mass companions in orbit around nearby stars. A typical data set contains around one hundred instantaneous velocities for the star, spread over a period of several years,with each observation measuring only the radial component of velocity. From this data set, one would like to determine the masses and orbital parameters of the system of planets responsible for the star's reflex motion. Assuming coplanar orbits, each planet is characterized by five parameters, with an additional parameter for each telescope used to make observations, representing the instrument's velocity offset. The large number of free parameters and the relatively sparse data sets make the fitting process challenging when multiple planets are present, especially if some of these objects have low masses. Conventional approaches using periodograms often perform poorly when the orbital periods are not separated by large amounts or the longest period is comparable to the length of the data set. Here, I will describe a new approach to fitting Doppler radial velocity sets using particle swarm optimization (PSO). I will describe how the PSO method works, and show examples of PSO fits to existing radial velocity data sets, with comparisons to published solutions and those submitted to the Systemic website (http://www.oklo.org).

  2. The Calan-Hertfordshire extrasolar planet search

    Directory of Open Access Journals (Sweden)

    Pinfield D.J.

    2011-07-01

    Full Text Available The detailed study of the exoplanetary systems HD189733 and HD209458 has given rise to a wealth of exciting information on the physics of exoplanetary atmospheres. To further our understanding of the make-up and processes within these atmospheres we require a larger sample of bright transiting planets. We have began a project to detect more bright transiting planets in the southern hemisphere by utilising precision radial-velocity measurements. We have observed a constrained sample of bright, inactive and metal-rich stars using the HARPS instrument and here we present the current status of this project, along with our first discoveries which include a brown dwarf/extreme-Jovian exoplanet found in the brown dwarf desert region around the star HD191760 and improved orbits for three other exoplanetary systems HD48265, HD143361 and HD154672. Finally, we briefly discuss the future of this project and the current prospects we have for discovering more bright transiting planets.

  3. Status of the Calan-Hertfordshire Extrasolar Planet Search

    Directory of Open Access Journals (Sweden)

    Jordán Andres

    2013-04-01

    Full Text Available In these proceedings we give a status update of the Calan-Hertfordshire Extrasolar Planet Search, an international collaboration led from Chile that aims to discover more planets around super metal-rich and Sun-like stars, and then follow these up with precision photometry to hunt for new bright transit planets. We highlight some results from this program, including exoplanet and brown dwarf discoveries, and a possible correlation between metallicity and planetary minimum mass at the lowest planetary masses detectable. Finally we discuss the short-term and long-term future pathways this program can take.

  4. The HARPS search for southern extra-solar planets XL. Searching for Neptunes around metal-poor stars

    CERN Document Server

    Faria, J P; Figueira, P; Mortier, A; Dumusque, X; Boisse, I; Curto, G Lo; Lovis, C; Mayor, M; Melo, C; Pepe, F; Queloz, D; Santerne, A; Ségransan, D; Sousa, S G; Sozzetti, A; Udry, S

    2016-01-01

    Stellar metallicity -- as a probe of the metallicity of proto-planetary disks -- is an important ingredient for giant planet formation, likely through its effect on the timescales in which rocky/icy planet cores can form. Giant planets have been found to be more frequent around metal-rich stars, in agreement with predictions based on the core-accretion theory. In the metal-poor regime, however, the frequency of planets, especially low-mass planets, and how it depends on metallicity are still largely unknown. As part of a planet search programme focused on metal-poor stars, we study the targets from this survey that were observed with HARPS on more than 75 nights. The main goals are to assess the presence of low-mass planets and provide a first estimate of the frequency of Neptunes and super-Earths around metal-poor stars. We perform a systematic search for planetary companions, both by analysing the periodograms of the radial-velocities and by comparing, in a statistically-meaningful way, models with an incre...

  5. The Pan-Pacific Planet Search III: Five companions orbiting giant stars

    CERN Document Server

    Wittenmyer, R A; Wang, L; Bergmann, C; Salter, G S; Tinney, C G; Johnson, John Asher

    2015-01-01

    We report a new giant planet orbiting the K giant HD 155233, as well as four stellar-mass companions from the Pan-Pacific Planet Search, a southern hemisphere radial velocity survey for planets orbiting nearby giants and subgiants. We also present updated velocities and a refined orbit for HD 47205b (7 CMa b), the first planet discovered by this survey. HD 155233b has a period of 885$\\pm$63 days, eccentricity e=0.03$\\pm$0.20, and m sin i=2.0$\\pm$0.5 M_jup. The stellar-mass companions range in m sin i from 0.066 M_sun to 0.33 M_sun. Whilst HD 104358B falls slightly below the traditional 0.08 M_sun hydrogen-burning mass limit, and is hence a brown dwarf candidate, we estimate only a 50% a priori probability of a truly substellar mass.

  6. Detecting circumbinary planets: A new quasi-periodic search algorithm

    Directory of Open Access Journals (Sweden)

    Pollacco D.

    2013-04-01

    Full Text Available We present a search method based around the grouping of data residuals, suitable for the detection of many quasi-periodic signals. Combined with an efficient and easily implemented method to predict the maximum transit timing variations of a transiting circumbinary exoplanet, we form a fast search algorithm for such planets. We here target the Kepler dataset in particular, where all the transiting examples of circumbinary planets have been found to date. The method is presented and demonstrated on two known systems in the Kepler data.

  7. A new search for planet transits in NGC 6791

    CERN Document Server

    Montalto, M; Desidera, S; De Marchi, F; Bruntt, H; Stetson, P B; Ferro, A Arellano; Momany, Y; Gratton, R G; Poretti, E; Aparicio, A; Barbieri, M; Claudi, R U; Grundahl, G; Rosenberg, A L

    2007-01-01

    Context. Searching for planets in open clusters allows us to study the effects of dynamical environment on planet formation and evolution. Aims. Considering the strong dependence of planet frequency on stellar metallicity, we studied the metal rich old open cluster NGC 6791 and searched for close-in planets using the transit technique. Methods. A ten-night observational campaign was performed using the Canada-France-Hawaii Telescope (3.6m), the San Pedro M\\'artir telescope (2.1m), and the Loiano telescope (1.5m). To increase the transit detection probability we also made use of the Bruntt et al. (2003) eight-nights observational campaign. Adequate photometric precision for the detection of planetary transits was achieved. Results. Should the frequency and properties of close-in planets in NGC 6791 be similar to those orbiting field stars of similar metallicity, then detailed simulations foresee the presence of 2-3 transiting planets. Instead, we do not confirm the transit candidates proposed by Bruntt et al. ...

  8. A Search for Short-period Rocky Planets around WDs with the Cosmic Origins Spectrograph (COS)

    Science.gov (United States)

    Sandhaus, Phoebe H.; Debes, John H.; Ely, Justin; Hines, Dean C.; Bourque, Matthew

    2016-05-01

    The search for transiting habitable exoplanets has broadened to include several types of stars that are smaller than the Sun in an attempt to increase the observed transit depth and hence the atmospheric signal of the planet. Of all spectral types, white dwarfs (WDs) are the most favorable for this type of investigation. The fraction of WDs that possess close-in rocky planets is unknown, but several large angle stellar surveys have the photometric precision and cadence to discover at least one if they are common. Ultraviolet observations of WDs may allow for detection of molecular oxygen or ozone in the atmosphere of a terrestrial planet. We use archival Hubble Space Telescope data from the Cosmic Origins Spectrograph to search for transiting rocky planets around UV-bright WDs. In the process, we discovered unusual variability in the pulsating WD GD 133, which shows slow sinusoidal variations in the UV. While we detect no planets around our small sample of targets, we do place stringent limits on the possibility of transiting planets, down to sub-lunar radii. We also point out that non-transiting small planets in thermal equilibrium are detectable around hotter WDs through infrared excesses, and identify two candidates. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  9. A Search for Rocky Planets in Close Orbits around White Dwarfs

    Science.gov (United States)

    Debes, John; Sandhaus, Phoebe; Ely, Justin

    2015-12-01

    The search for transiting habitable exoplanets has broadened to include several types of stars that are smaller than the Sun in order to increase the observed transit depth and hence the atmospheric signal of the planet. Of all current spectral types, white dwarfs are the most favorable for this type of investigation. The fraction of white dwarfs that possess close-in rocky planets is unknown, but several large angle surveys of stars have the photometric precision and cadence to discover at least one if they are common. Ultraviolet observations of white dwarfs may allow for detection of molecular oxygen or ozone in the atmosphere of a terrestrial planet. We use archival Hubble Space Telescope data from the Cosmic Origins Spectrograph to search for transiting rocky planets around UV-bright white dwarfs. In the process, we discovered unusual variability in the pulsating white dwarf GD~133, which shows slow sinusoidal variations in the UV. While we detect no planets around our small sample of targets, we do place stringent limits on the possibility of transiting planets, down to sub-lunar radii. We also point out that non-transiting small planets in thermal equilibrium are detectable around hotter white dwarfs through infrared excesses, and identify two candidates.

  10. The Pan-Pacific Planet Search. VI. Giant Planets Orbiting HD 86950 and HD 222076

    Science.gov (United States)

    Wittenmyer, Robert A.; Jones, M. I.; Zhao, Jinglin; Marshall, J. P.; Butler, R. P.; Tinney, C. G.; Wang, Liang; Johnson, John Asher

    2017-02-01

    We report the detection of two new planets orbiting the K giants HD 86950 and HD 222076, based on precise radial velocities obtained with three instruments: AAT/UCLES, FEROS, and CHIRON. HD 86950b has a period of 1270 ± 57 days at a=2.72+/- 0.08 au, and m sin i=3.6+/- 0.7 {M}{Jup}. HD 222076b has P=871+/- 19 days at a=1.83+/- 0.03 au, and m sin i=1.56+/- 0.11 {M}{Jup}. These two giant planets are typical of the population of planets known to orbit evolved stars. In addition, we find a high-amplitude periodic velocity signal (K∼ 50 m s‑1) in HD 29399 and show that it is due to stellar variability rather than Keplerian reflex motion. We also investigate the relation between planet occurrence and host-star metallicity for the 164-star Pan-Pacific Planet Search (PPPS) sample of evolved stars. In spite of the small sample of PPPS detections, we confirm the trend of increasing planet occurrence as a function of metallicity found by other studies of planets orbiting evolved stars.

  11. The Pan-Pacific Planet Search VI: Giant planets orbiting HD 86950 and HD 222076

    CERN Document Server

    Wittenmyer, Robert A; Zhao, Jinglin; Marshall, J P; Butler, R P; Tinney, C G; Wang, Liang; Johnson, John Asher

    2016-01-01

    We report the detection of two new planets orbiting the K giants HD 86950 and HD 222076, based on precise radial velocities obtained with three instruments: AAT/UCLES, FEROS, and CHIRON. HD 86950b has a period of 1270$\\pm$57 days at $a=2.72\\pm$0.08 AU, and m sin $i=3.6\\pm$0.7 Mjup. HD 222076b has $P=871\\pm$19 days at $a=1.83\\pm$0.03 AU, and m sin $i=1.56\\pm$0.11 Mjup. These two giant planets are typical of the population of planets known to orbit evolved stars. In addition, we find a high-amplitude periodic velocity signal ($K\\sim$50 m/s) in HD 29399, and show that it is due to stellar variability rather than Keplerian reflex motion. We also investigate the relation between planet occurrence and host-star metallicity for the 164-star Pan-Pacific Planet Search sample of evolved stars. In spite of the small sample of PPPS detections, we confirm the trend of increasing planet occurrence as a function of metallicity found by other studies of planets orbiting evolved stars.

  12. Direct imaging searches for planets around white dwarf stars

    Science.gov (United States)

    Burleigh, Matt; Hogan, Emma; Clarke, Fraser

    White dwarfs are excellent targets for direct imaging searches for extra-solar planets, since they are up to 10^4 times fainter than their main sequence progenitors, providing a huge gain in the contrast problem. In addition, the orbits of planetary companions that lie beyond the maximum extent of the Red Giant envelope are expected to widen considerably, improving resolution and further encouraging direct detection. We discuss current searches for planetary companions to white dwarfs, including our own “DODO” programme. At the time of writing, no planetary companion to a white dwarf has been detected. The most sensitive searches have been capable of detecting companions ≳5M_{Jup}, and their non-detection is consistent with the conclusions of McCarthy & Zuckerman (2004), that no more than 3% of stars harbour 5-10M_{Jup} planets at orbits between 75-300AU. Extremely Large Telescopes are required to enable deeper searches sensitive to lower mass planets, and to provide larger target samples including more distant and older white dwarfs. ELTs will also enable spectroscopic follow-up for any resolved planets, and follow-up of any planetary companions discovered astrometrically by GAIA and SIM.

  13. In search of planets and life around other stars.

    Science.gov (United States)

    Lunine, J I

    1999-05-11

    The discovery of over a dozen low-mass companions to nearby stars has intensified scientific and public interest in a longer term search for habitable planets like our own. However, the nature of the detected companions, and in particular whether they resemble Jupiter in properties and origin, remains undetermined.

  14. Pan-Planets: Searching for hot Jupiters around cool dwarfs

    CERN Document Server

    Obermeier, C; Saglia, R P; Henning, Th; Bender, R; Kodric, M; Deacon, N; Riffeser, A; Burgett, W; Chambers, K C; Draper, P W; Flewelling, H; Hodapp, K W; Kaiser, N; Kudritzki, R -P; Magnier, E A; Metcalfe, N; Price, P A; Sweeney, W; Wainscoat, R J; Waters, C

    2015-01-01

    The Pan-Planets survey observed an area of 42 sq deg. in the galactic disk for about 165 hours. The main scientific goal of the project is the detection of transiting planets around M dwarfs. We establish an efficient procedure for determining the stellar parameters $T_{eff}$ and log$g$ of all sources using a method based on SED fitting, utilizing a three-dimensional dust map and proper motion information. In this way we identify more than 60000 M dwarfs, which is by far the largest sample of low-mass stars observed in a transit survey to date. We present several planet candidates around M dwarfs and hotter stars that are currently being followed up. Using Monte-Carlo simulations we calculate the detection efficiency of the Pan-Planets survey for different stellar and planetary populations. We expect to find $3.0^{+3.3}_{-1.6}$ hot Jupiters around F, G, and K dwarfs with periods lower than 10 days based on the planet occurrence rates derived in previous surveys. For M dwarfs, the percentage of stars with a ho...

  15. Korean-Japanese Planet Search Program: Substellar Companions around Intermediate-Mass Giants

    CERN Document Server

    Omiya, Masashi; Izumiura, Hideyuki; Lee, Byeong-Cheol; Sato, Bun'ei; Kim, Kang-Min; Yoon, Tae Seog; Kambe, Eiji; Yoshida, Michitoshi; Masuda, Seiji; Toyota, Eri; Urakawa, Seitaro; Takada-Hidai, Masahide

    2011-01-01

    A Korean-Japanese planet search program has been carried out using the 1.8m telescope at Bohyunsan Optical Astronomy Observatory (BOAO) in Korea, and the 1.88m telescope at Okayama Astrophysical Observatory (OAO) in Japan to search for planets around intermediate-mass giant stars. The program aims to show the properties of planetary systems around such stars by precise Doppler survey of about 190 G or K type giants together with collaborative surveys of the East-Asian Planet Search Network. So far, we detected two substellar companions around massive intermediate-mass giants in the Korean-Japanese planet search program. One is a brown dwarf-mass companion with 37.6 $M_{\\mathrm{J}}$ orbiting a giant HD 119445 with 3.9 $M_{\\odot}$, which is the most massive brown dwarf companion among those found around intermediate-mass giants. The other is a planetary companion with 1.8 $M_{\\mathrm{J}}$ orbiting a giant star with 2.4 $M_{\\odot}$, which is the lowest-mass planetary companion among those detected around giant s...

  16. Planets in Spin-Orbit Misalignment and the Search for Stellar Companions

    CERN Document Server

    Addison, Brett C; Wright, Duncan J; Salter, Graeme; Bayliss, Daniel; Zhou, George

    2014-01-01

    The discovery of giant planets orbiting close to their host stars was one of the most unexpected results of early exoplanetary science. Astronomers have since found that a significant fraction of these 'Hot Jupiters' move on orbits substantially misaligned with the rotation axis of their host star. We recently reported the measurement of the spin-orbit misalignment for WASP-79b by using data from the 3.9 m Anglo-Australian Telescope. Contemporary models of planetary formation produce planets on nearly coplanar orbits with respect to their host star's equator. We discuss the mechanisms which could drive planets into spin-orbit misalignment. The most commonly proposed being the Kozai mechanism, which requires the presence of a distant, massive companion to the star-planet system. We therefore describe a volume-limited direct-imaging survey of Hot Jupiter systems with measured spin-orbit angles, to search for the presence of stellar companions and test the Kozai hypothesis.

  17. The Anglo-Australian Planet Search XXIV: The Frequency of Jupiter Analogs

    CERN Document Server

    Wittenmyer, Robert A; Tinney, C G; Horner, Jonathan; Carter, B D; Wright, D J; Jones, H R A; Bailey, J; O'Toole, Simon J

    2016-01-01

    We present updated simulations of the detectability of Jupiter analogs by the 17-year Anglo-Australian Planet Search. The occurrence rate of Jupiter-like planets that have remained near their formation locations beyond the ice line is a critical datum necessary to constrain the details of planet formation. It is also vital in our quest to fully understand how common (or rare) planetary systems like our own are in the Galaxy. From a sample of 202 solar-type stars, and correcting for imperfect detectability on a star-by-star basis, we derive a frequency of $6.2^{+2.8}_{-1.6}$% for giant planets in orbits from 3-7 AU. When a consistent definition of "Jupiter analog" is used, our results are in agreement with those from other legacy radial velocity surveys.

  18. A Search for Rocky Planets in Close Orbits around White Dwarfs with COS

    Science.gov (United States)

    Sandhaus, Phoebe; Debes, John H.; Ely, Justin; Hines, Dean C.

    2016-01-01

    The search for transiting habitable exoplanets has broadened to include several types of stars that are smaller than the Sun in order to increase the observed transit depth and hence the atmospheric signal of the planet. Of all current spectral types, white dwarfs are the most favorable for this type of investigation. The fraction of white dwarfs that possess close-in rocky planets is unknown, but several large angle surveys of stars have the photometric precision and cadence to discover at least one if they are common. Ultraviolet observations of white dwarfs may allow for detection of molecular oxygen or ozone in the atmosphere of a terrestrial planet. We use archival Hubble Space Telescope data from the Cosmic Origins Spectrograph to search for transiting rocky planets around UV-bright white dwarfs. In the process, we discovered unusual variability in the pulsating white dwarf GD~133, which shows slow sinusoidal variations in the UV. While we detect no planets around our small sample of targets, we do place stringent limits on the possibility of transiting planets, down to sub-lunar radii.

  19. Direct Imaging Search for Extrasolar Planets in the Pleiades

    NARCIS (Netherlands)

    Yamamoto, K.; et al., [Unknown; Thalmann, C.

    2013-01-01

    We carried out an imaging survey for extrasolar planets around stars in the Pleiades (125 Myr, 135 pc) in the H and KS bands using HiCIAO combined with adaptive optics, AO188, on the Subaru telescope. We found 13 companion candidates fainter than 14.5 mag in the H band around 9 stars. Five of these

  20. Pan-Planets: Searching for hot Jupiters around cool dwarfs

    Science.gov (United States)

    Obermeier, C.; Koppenhoefer, J.; Saglia, R. P.; Henning, Th.; Bender, R.; Kodric, M.; Deacon, N.; Riffeser, A.; Burgett, W.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.; Waters, C.

    2016-03-01

    The Pan-Planets survey observed an area of 42 sq deg. in the galactic disk for about 165 h. The main scientific goal of the project is the detection of transiting planets around M dwarfs. We establish an efficient procedure for determining the stellar parameters Teff and log g of all sources using a method based on SED fitting, utilizing a three-dimensional dust map and proper motion information. In this way we identify more than 60 000 M dwarfs, which is by far the largest sample of low-mass stars observed in a transit survey to date. We present several planet candidates around M dwarfs and hotter stars that are currently being followed up. Using Monte Carlo simulations we calculate the detection efficiency of the Pan-Planets survey for different stellar and planetary populations. We expect to find 3.0+3.3-1.6 hot Jupiters around F, G, and K dwarfs with periods lower than 10 days based on the planet occurrence rates derived in previous surveys. For M dwarfs, the percentage of stars with a hot Jupiter is under debate. Theoretical models expect a lower occurrence rate than for larger main sequence stars. However, radial velocity surveys find upper limits of about 1% due to their small sample, while the Kepler survey finds a occurrence rate that we estimate to be at least 0.17b(+0.67-0.04) %, making it even higher than the determined fraction from OGLE-III for F, G and K stellar types, 0.14 (+0.15-0.076) %. With the large sample size of Pan-Planets, we are able to determine an occurrence rate of 0.11 (+0.37-0.02) % in case one of our candidates turns out to be a real detection. If, however, none of our candidates turn out to be true planets, we are able to put an upper limit of 0.34% with a 95% confidence on the hot Jupiter occurrence rate of M dwarfs. This limit is a significant improvement over previous estimates where the lowest limit published so far is 1.1% found in the WFCAM Transit Survey. Therefore we cannot yet confirm the theoretical prediction of a lower

  1. A SYSTEMATIC SEARCH FOR TROJAN PLANETS IN THE KEPLER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Janson, Markus, E-mail: janson@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2013-09-10

    Trojans are circumstellar bodies that reside in characteristic 1:1 orbital resonances with planets. While all the trojans in our solar system are small ({approx}<100 km), stable planet-size trojans may exist in extrasolar planetary systems, and the Kepler telescope constitutes a formidable tool to search for them. Here we report on a systematic search for extrasolar trojan companions to 2244 known Kepler Objects of Interest (KOIs), with epicyclic orbital characteristics similar to those of the Jovian trojan families. No convincing trojan candidates are found, despite a typical sensitivity down to Earth-size objects. This fact, however, cannot be used to stringently exclude the existence of trojans in this size range, since stable trojans need not necessarily share the same orbital plane as the planet, and thus may not transit. Following this reasoning, we note that if Earth-sized trojans exist at all, they are almost certainly both present and in principle detectable in the full set of Kepler data, although a very substantial computational effort would be required to detect them. Additionally, we also note that some of the existing KOIs could in principle be trojans themselves, with a primary planet orbiting outside of the transiting plane. A few examples are given for which this is a readily testable scenario.

  2. Latest Results from the DODO Survey: Imaging Planets around White Dwarfs

    Science.gov (United States)

    Hogan, Emma; Burleigh, Matt R.; Clarke, Fraser J.

    2011-03-01

    The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures lower (DODO survey has the ability to directly image planets in post-main sequence analogues of these systems. These proceedings present the latest results of our multi-epoch J band common proper motion survey of nearby white dwarfs.

  3. LGS-AO Imaging of Every Kepler Planet Candidate: the Robo-AO KOI Survey

    Science.gov (United States)

    Baranec, Christoph; Law, Nicholas; Morton, Timothy; Ziegler, Carl; Nofi, Larissa; Atkinson, Dani; Riddle, Reed

    2015-12-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging, to search for blended nearby stars which may be physically associated companions and/or responsible for transit false positives. We will present the results from searching for companions around over 3,000 Kepler planet hosts in 2012-2015. We will describe our first data release covering 715 planet candidate hosts, and give a preview of ongoing results including improved statistics on the likelihood of false positive planet detections in the Kepler dataset, many new planets in multiple star systems, and new exotic multiple star systems containing Kepler planets. We will also describe the automated Robo-AO survey data reduction methods, including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for extremely large adaptive optics surveys. Our first data release covered 715 objects, searching for companions from 0.15” to 2.5” separation with contrast up to 6 magnitudes. We measured the overall nearby-star-probability for Kepler planet candidates to be 7.4+/-1.0%, and we will detail the variations in this number with stellar host parameters. We will also discuss plans to extend the survey to other transiting planet missions such as K2 and TESS as Robo-AO is in the process of being re-deployed to the 2.1-m telescope at Kitt Peak for 3 years and a higher-contrast Robo-AO system is being developed for the 2.2-m UH telescope on Maunakea.

  4. A Search for short-period Rocky Planets around WDs with the Cosmic Origins Spectrograph (COS)

    CERN Document Server

    Sandhaus, P H; Ely, J; Hines, D C; Bourque, M

    2016-01-01

    The search for transiting habitable exoplanets has broadened to include several types of stars that are smaller than the Sun in an attempt to increase the observed transit depth and hence the atmospheric signal of the planet. Of all spectral types, white dwarfs are the most favorable for this type of investigation. The fraction of white dwarfs that possess close-in rocky planets is unknown, but several large angle stellar surveys have the photometric precision and cadence to discover at least one if they are common. Ultraviolet observations of white dwarfs may allow for detection of molecular oxygen or ozone in the atmosphere of a terrestrial planet. We use archival Hubble Space Telescope data from the Cosmic Origins Spectrograph to search for transiting rocky planets around UV-bright white dwarfs. In the process, we discovered unusual variability in the pulsating white dwarf GD 133, which shows slow sinusoidal variations in the UV. While we detect no planets around our small sample of targets, we do place st...

  5. TRAPPIST-UCDTS: A prototype search for habitable planets transiting ultra-cool stars

    Directory of Open Access Journals (Sweden)

    Magain P.

    2013-04-01

    Full Text Available The ∼1000 nearest ultra-cool stars (spectral type M6 and latter represent a unique opportunity for the search for life outside solar system. Due to their small luminosity, their habitable zone is 30–100 times closer than for the Sun, the corresponding orbital periods ranging from one to a few days. Thanks to this proximity, the transits of a habitable planet are much more probable and frequent than for an Earth-Sun analog, while their tiny size (∼1 Jupiter radius leads to transits deep enough for a ground-based detection, even for sub-Earth size planets. Furthermore, a habitable planet transiting one of these nearby ultra-cool star would be amenable for a thorough atmospheric characterization, including the detection of possible biosignatures, notably with the near-to-come JWST. Motivated by these reasons, we have set up the concept of a ground-based survey optimized for detecting planets of Earth-size and below transiting the nearest Southern ultra-cool stars. To assess thoroughly the actual potential of this future survey, we are currently conducting a prototype mini-survey using the TRAPPIST robotic 60cm telescope located at La Silla ESO Observatory (Chile. We summarize here the preliminary results of this mini-survey that fully validate our concept.

  6. TRAPPIST-UCDTS: A prototype search for habitable planets transiting ultra-cool stars

    Science.gov (United States)

    Gillon, M.; Jehin, E.; Fumel, A.; Magain, P.; Queloz, D.

    2013-04-01

    The ˜1000 nearest ultra-cool stars (spectral type M6 and latter) represent a unique opportunity for the search for life outside solar system. Due to their small luminosity, their habitable zone is 30-100 times closer than for the Sun, the corresponding orbital periods ranging from one to a few days. Thanks to this proximity, the transits of a habitable planet are much more probable and frequent than for an Earth-Sun analog, while their tiny size (˜1 Jupiter radius) leads to transits deep enough for a ground-based detection, even for sub-Earth size planets. Furthermore, a habitable planet transiting one of these nearby ultra-cool star would be amenable for a thorough atmospheric characterization, including the detection of possible biosignatures, notably with the near-to-come JWST. Motivated by these reasons, we have set up the concept of a ground-based survey optimized for detecting planets of Earth-size and below transiting the nearest Southern ultra-cool stars. To assess thoroughly the actual potential of this future survey, we are currently conducting a prototype mini-survey using the TRAPPIST robotic 60cm telescope located at La Silla ESO Observatory (Chile). We summarize here the preliminary results of this mini-survey that fully validate our concept.

  7. Direct Imaging Search for Extrasolar Planets in the Pleiades

    Science.gov (United States)

    Yamamoto, Kodai; Matsuo, Taro; Shibai, Hiroshi; Itoh, Yoichi; Konishi, Mihokko; Sudo, Jun; Tanii, Ryoko; Fukagawa, Misato; Sumi, Takahiro; Kudo, Tomoyuki; Hashimoto, Jun; Kusakabe, Nobuhiko; Abe, Lyn; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Currie, Thayne; Egner, Sebastian E,; Feldt, Markus; Goto, Miwa; Grady, Carol; Guyon, Olivier; Hayano, Yutaka; McElwain, Mike; Serabyn, Eugene

    2013-01-01

    We carried out an imaging survey for extrasolar planets around stars in the Pleiades (125 Myr, 135 pc) in the H and K(sub S) bands using HiCIAO combined with adaptive optics, AO188, on the Subaru telescope. We found 13 companion candidates fainter than 14.5 mag in the H band around 9 stars. Five of these 13 were confirmed to be background stars by measurement of their proper motion. One was not found in the second epoch observation, and thus was not a background or companion object. One had multi-epoch images, but the precision of its proper motion was not sufficient to conclude whether it was a background object. Four other candidates are waiting for second-epoch observations to determine their proper motion. Finally, the remaining two were confirmed to be 60 M(sub J) brown dwarf companions orbiting around HD 23514 (G0) and HII 1348 (K5), respectively, as had been reported in previous studies. In our observations, the average detection limit for a point source was 20.3 mag in the H band beyond 1.'' 5 from the central star. On the basis of this detection limit, we calculated the detection efficiency to be 90% for a planet with 6 to 12 Jovian masses and a semi-major axis of 50–1000 AU. For this reason we extrapolated the distribution of the planet mass and the semi-major axis derived from radial velocity observations, and adopted the planet evolution model Baraffe et al. (2003, A&A, 402, 701). Since there was no detection of a planet, we estimated the frequency of such planets to be less than 17.9% (2 sigma) around one star of the Pleiades cluster.

  8. Searching for Planet Nine with Coadded WISE and NEOWISE-Reactivation Images

    Science.gov (United States)

    Meisner, Aaron M.; Bromley, Benjamin C.; Nugent, Peter E.; Schlegel, David J.; Kenyon, Scott J.; Schlafly, Edward F.; Dawson, Kyle S.

    2017-02-01

    A distant, as yet unseen ninth planet has been invoked to explain various observations of the outer solar system. While such a “Planet Nine,” if it exists, is most likely to be discovered via reflected light in the optical, it may emit much more strongly at 3‑5 μm than simple blackbody predictions would suggest, depending on its atmospheric properties. As a result, Planet Nine may be detectable at 3.4 μm with the Wide-field Infrared Survey Explorer, but single exposures are too shallow except at relatively small distances ({d}9≲ 430 au). We develop a method to search for Planet Nine far beyond the W1 single-exposure sensitivity, to distances as large as 800 au, using inertial coadds of W1 exposures binned into ∼1 day intervals. We apply our methodology to a ∼2000 square degree testbed sky region which overlaps a southern segment of Planet Nine’s anticipated orbital path. We do not detect a plausible Planet Nine candidate, but are able to derive a detailed completeness curve, ruling out its presence within the parameter space searched at W1 < 16.66 (90% completeness). Our method uses all publicly available W1 imaging, spanning 2010 January to 2015 December, and will become more sensitive with future NEOWISE-Reactivation releases of additional W1 exposures. We anticipate that our method will be applicable to the entire high Galactic latitude sky, and we will extend our search to that full footprint in the near future.

  9. Searching for Life on Habitable Planets and Moons

    CERN Document Server

    Lal, Ashwini Kumar

    2010-01-01

    Earth is the only known inhabited planet in the universe to date. However, advancements in the fields of astrobiology and observational astronomy, and the discovery of large varieties of extremophiles with extraordinary capablities to thrive in harshest environments on Earth, have led to speculation that life may be thriving on many of the extraterrestrial bodies in the universe. Coupled with the growing number of exoplanets detected over the past decade, the search for the possibility of life on other planets and satellites within the solar system and beyond has become a passion as well as a challenge for scientists in a variety of fields. This paper examines such possibility of finding life, in the light of findings of the numerous space probes and theoretical research undertaken in this field over the past few decades.

  10. A Search for Planet 9 at the Thacher Observatory

    Science.gov (United States)

    Edwards, Nick; Kirkpatrick, Liam; O'Neill, Kathleen; Yin, Yao; Wood, Asher; Swift, Jonathan

    2017-01-01

    The recent inference that there may be a massive planet in the outer solar system has sparked much excitement and debate. A dedicated program, at the newly renovated Thacher Observatory, is designed to cover approximately 36 square degrees of sky where it is most likely to be found during the 2016-2017 observing season. The depth of the survey will reach 23rd magnitude in V band, and we will use an observing cadence in accord with its expected proper motion. Here we present the detailed parameters and first images from the survey.

  11. Kepler AutoRegressive Planet Search: Motivation & Methodology

    Science.gov (United States)

    Caceres, Gabriel; Feigelson, Eric; Jogesh Babu, G.; Bahamonde, Natalia; Bertin, Karine; Christen, Alejandra; Curé, Michel; Meza, Cristian

    2015-08-01

    The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Auto-Regressive Moving-Average (ARMA) models, Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH), and related models are flexible, phenomenological methods used with great success to model stochastic temporal behaviors in many fields of study, particularly econometrics. Powerful statistical methods are implemented in the public statistical software environment R and its many packages. Modeling involves maximum likelihood fitting, model selection, and residual analysis. These techniques provide a useful framework to model stellar variability and are used in KARPS with the objective of reducing stellar noise to enhance opportunities to find as-yet-undiscovered planets. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; ARMA-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. We apply the procedures to simulated Kepler-like time series with known stellar and planetary signals to evaluate the effectiveness of the KARPS procedures. The ARMA-type modeling is effective at reducing stellar noise, but also reduces and transforms the transit signal into ingress/egress spikes. A periodogram based on the TCF is constructed to concentrate the signal

  12. Early Giant Planet Candidates from the SDSS-III MARVELS Planet Survey

    Science.gov (United States)

    Thomas, Neil; Ge, J.; Li, R.; Sithajan, S.; Chen, Y.; Shi, J.; Ma, B.; Liu, J.

    2014-01-01

    We report the first discoveries of giant planet candidates from the SDSS-III MARVELS survey. These candidates are found using the new MARVELS data pipeline developed at UF from scratch over the past two years. Unlike the old data pipeline, this pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile). The result is long-term RV precisions that approach the photon limits in many cases and has yielded four giant planet candidates of ~1-6 Jupiter mass from only the initial fraction of data processed with the new techniques. More survey data is being processed which will likely lead to discoveries of additional giant planet candidates that will be verified and characterized with follow-up observations by the MARVELS team. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with well defined cadence 27 RV measurements over 2 years). The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity ([Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the “planet desert” within 0.6 AU in the planet orbital distribution of intermediate-mass stars real?

  13. Development of highly sensitive monolithic interferometer for infrared planet search

    Directory of Open Access Journals (Sweden)

    Jiang P.

    2011-07-01

    Full Text Available We present the design, fabrication and testing of a highly sensitive monolithic interferometer for InfraRed Exoplanet Tracker (IR-ET. This interferometer is field-compensated, thermal-stable for working in the wavelength range between 0.8 and 1.35 μm. Two arms of the interferometer creates a fixed delay of 18.0 mm, which is optimized to have the best sensitivity for radial velocity measurements of slow-rotating M dwarfs for planet detection. IR-ET is aiming to reach 3–20 m/s Doppler precision for J<10 M dwarfs in less than 15 min exposures. We plan to conduct a planet survey around hundreds of nearby M dwarfs through collaborations with Astrophysical Research Consortium scientists in 2011–2014.

  14. Searching for circumbinary planets with CB-BLS

    Science.gov (United States)

    Ofir, Aviv

    2015-08-01

    Transiting circumbinary planets (CBP) produce transit signals that are neither periodic not constant in duration or depth. These complications contribute to the low number of detected transiting CBP (nine in total so far), and limited detection to systems that exhibit transits that are relatively deep, i.e. individually-significant transit events. Planets around single stars taught us that small planets far outnumber larger ones, consequently the ability to detect small CBP is of the essence in order to correctly describe CBP demographics. Unfortunately, all currently known transiting CBP were detected either by eye or by some ad-hoc technique that has nothing to do with the 3-body dynamics of CBP (e.g. QATS, Carter & Agol 2013) -- limiting their detection power. CB-BLS (Ofir 2008) is an algorithm for the detection of transiting CBP that was proposed well before the first transiting CBP was detected (Doyle et al 2011). CB-BLS is tailored for CBP dynamics and is optimally sensitive and general. Here we present further evolution and the Matlab source code of CB-BLS that allows it to detect all currently known transiting CBP, including in eccentric and/or inclined orbits. We then describe our preliminary results on searching for transiting CBP in a small subset of the Kepler eclipsing binaries.

  15. A Survey for Very Short-Period Planets in the Kepler Data

    CERN Document Server

    Jackson, Brian; Adams, Elisabeth R; Chambers, John; Deming, Drake

    2013-01-01

    We conducted a search for very short-period transiting objects in the publicly available Kepler dataset. Our preliminary survey has revealed thirteen planetary candidates, with periods ranging from 3.3 to 10 hours. We have analyzed the data for these candidates using photometric models that include transit light curves, ellipsoidal variations, and secondary eclipses, to constrain the candidates' radii, masses, and effective temperatures. Even with masses of only a few Earth masses, the candidates' short periods mean they may induce stellar radial velocity signals (about 10 m/s), detectable by currently operating facilities. The origins of such short-period planets are unclear, but we discuss the possibility that they may be the remnants of disrupted hot Jupiters. Whatever their origins, if confirmed as planets, these candidates would be among the shortest-period planets ever discovered, and if common, such planets would be particularly amenable to discovery by the planned TESS mission, which is specifically d...

  16. A survey for very short-period planets in the Kepler data

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Brian; Stark, Christopher C.; Chambers, John [Carnegie Institution for Science, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Adams, Elisabeth R. [Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719 (United States); Deming, Drake, E-mail: bjackson@dtm.ciw.edu [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States)

    2013-12-20

    We conducted a search for very short-period transiting objects in the publicly available Kepler data set. Our preliminary survey has revealed four planetary candidates, all with orbital periods less than 12 hr. We have analyzed the data for these candidates using photometric models that include transit light curves, ellipsoidal variations, and secondary eclipses to constrain the candidates' radii, masses, and effective temperatures. Even with masses of only a few Earth masses, the candidates' short periods mean that they may induce stellar radial velocity signals (a few m s{sup –1}) detectable by currently operating facilities. The origins of such short-period planets are unclear, but we discuss the possibility that they may be the remnants of disrupted hot Jupiters. Whatever their origins, if confirmed as planets, these candidates would be among the shortest-period planets ever discovered. Such planets would be particularly amenable to discovery by the planned TESS mission.

  17. A New Channel to Search for Extra-solar Systems with Multiple Planets via Gravitational Microlensing

    CERN Document Server

    Han, C; Han, Cheongho; Park, Myeong-Gu

    2002-01-01

    Gaudi, Naber & Sackett pointed out that if an event is caused by a lens system containing more than two planets, all planets will affect the central region of the magnification pattern, and thus the existence of the multiple planets can be inferred by detecting additionally deformed anomalies from intensive monitoring of high magnification events. Unfortunately, this method has important limitations in identifying the existence of multiple planets and determining their parameters due to the degeneracy of the resulting light curve anomalies from those induced by a single planet and the complexity of multiple planet lensing models. In this paper, we propose a new channel to search for multiple planets via microlensing. The method is based on the fact that the anomalies induced by multiple planets are well approximated by the superposition of those of the single planet systems where the individual planet-primary pairs act as independent lens systems. Then, if the source trajectory passes both of the outer de...

  18. Light Curves as Predictors of Good Radial Velocity Planet Search Targets in New Stellar Domains

    Science.gov (United States)

    Bastien, Fabienne A.; Wright, Jason; Sigurdsson, Steinn; Dumusque, Xavier; Luhn, Jacob K.; Howard, Andrew

    2017-01-01

    As Kepler and K2 have collectively found thousands of exoplanet candidates, their discoveries have strained ground-based radial velocity (RV) follow-up resources, which are unable to simultaneously keep up with the pace of transit discoveries by measuring masses for all of the candidates and maintain vigorous RV searches for planets that do not transit their parent star. The burden to the RV community is expected to worsen with the upcoming TESS mission, even as new RV instruments are slated to come online in the coming years. Observations that can enable the RV community to prioritize targets on the basis of their stellar RV variability in advance and, ideally, independently of the RV instruments themselves, can therefore permit us to reserve our RV resources for the stars most likely to yield the highest payoff. We show that the light curves from space-based transit surveys may not only be used as predictors of good RV search targets for the stars predominantly targeted by the exoplanet community but also for stars usually avoided by both RV and transit surveys due to their high intrinsic levels of stellar variability. We also briefly present recommendations to the RV planet search community on how to improve prospects for finding Earth analogs from the recent workshop at the Aspen Center for Physics, “Approaching the Stellar Astrophysical Limits of Exoplanet Detection: Getting to 10cm/s.”

  19. The HARPS search for southern extra-solar planets XXXV. The interesting case of HD41248: stellar activity, no planets?

    CERN Document Server

    Santos, N C; Faria, J P; Dumusque, X; Adibekyan, V Zh; Delgado-Mena, E; Figueira, P; Benamati, L; Boisse, I; Cunha, D; da Silva, J Gomes; Curto, G Lo; Lovis, C; Martins, J H C; Mayor, M; Melo, C; Oshagh, M; Pepe, F; Queloz, D; Santerne, A; Segransan, D; Sozzetti, A; Sousa, S G; Udry, S

    2014-01-01

    The search for planets orbiting metal-poor stars is of uttermost importance for our understanding of the planet formation models. However, no dedicated searches have been conducted so far for very low mass planets orbiting such objects. Only a few cases of low mass planets orbiting metal-poor stars are thus known. Amongst these, HD41248 is a metal-poor, solar-type star on which a resonant pair of super-Earth like planets has In the present paper we present a new planet search program that is using the HARPS spectrograph to search for Neptunes and Super-Earths orbiting a sample of metal-poor FGK dwarfs. We then present a detailed analysis of an additional 162 radial velocity measurements of HD41248, obtained within this program, with the goal of confirming the existence of the proposed planetary system. We analyzed the precise radial velocities, obtained with the HARPS spectrograph, together with several stellar activity diagnostics and line profile indicators. A careful analysis shows no evidence for the plan...

  20. The Anglo-Australian Planet Search. XXIII. Two New Jupiter Analogs

    CERN Document Server

    Wittenmyer, Robert A; Tinney, C G; Butler, R P; Jones, H R A; Tuomi, Mikko; Salter, G S; Carter, B D; Koch, F Elliott; O'Toole, S J; Bailey, J; Wright, D

    2014-01-01

    We report the discovery of two long-period giant planets from the Anglo-Australian Planet Search. HD 154857c is in a multiple-planet system, while HD 114613b appears to be solitary. HD 114613b has an orbital period P=10.5 years, and a minimum mass m sin i of 0.48 Jupiter masses; HD 154857c has P=9.5 years and m sin i=2.6 Jupiter masses. These new data confirm the planetary nature of the previously unconstrained long-period object in the HD 154857 system. We have performed detailed dynamical stability simulations which show that the HD 154857 two-planet system is stable on timescales of at least 100 million years. These results highlight the continued importance of "legacy" surveys with long observational baselines; these ongoing campaigns are critical for determining the population of Jupiter analogs, and hence of those planetary systems with architectures most like our own Solar system.

  1. The anglo-australian planet search. XXIII. Two new Jupiter analogs

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.; Salter, G. S.; Bailey, J.; Wright, D. [School of Physics, University of New South Wales, Sydney 2052 (Australia); Butler, R. P. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Jones, H. R. A.; Tuomi, Mikko [University of Hertfordshire, Centre for Astrophysics Research, Science and Technology Research Institute, College Lane, AL10 9AB Hatfield (United Kingdom); Carter, B. D. [Computational Engineering and Science Research Centre, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Koch, F. Elliott [San Diego State University, Physics Department, 5500 Campanile Drive, San Diego, CA 92182-1233 (United States); O' Toole, S. J., E-mail: rob@phys.unsw.edu.au [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia)

    2014-03-10

    We report the discovery of two long-period giant planets from the Anglo-Australian Planet Search. HD 154857c is in a multiple-planet system, while HD 114613b appears to be solitary. HD 114613b has an orbital period P = 10.5 yr, and a minimum mass msin i of 0.48 M {sub Jup}; HD 154857c has P = 9.5 yr and msin i = 2.6 M {sub Jup}. These new data confirm the planetary nature of the previously unconstrained long-period object in the HD 154857 system. We have performed detailed dynamical stability simulations which show that the HD 154857 two-planet system is stable on timescales of at least 10{sup 8} yr. These results highlight the continued importance of 'legacy' surveys with long observational baselines; these ongoing campaigns are critical for determining the population of Jupiter analogs, and hence of those planetary systems with architectures most like our own solar system.

  2. The (Historical) Search for Planets Orbiting Proxima Centauri

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    The European Southern Observatory (ESO) is widely expected to address the reportsofthe discovery of a planet orbiting our nearest stellar neighbor, Proxima Centauri, today. Due to its proximity 4.25 light-years away this red dwarf star has been a prime target for exoplanet searches throughout the last couple decades.Hubble image of Proxima Centauri, our nearest stellar neighbor. [ESA/Hubble]In anticipation of ESOspress conference this afternoon, lets take a look at someof the past work in the search for planetary companions around Proxima Centauri.The Early Years of Exploring Proxima CentauriProxima Centauri was discovered by astronomer Robert Innes in 1915. Studies of this star over the next eighty years primarily focused on better understanding its orbital motion (is it part of the Alpha Centauri star system?) and its flaring nature. But in the 1990s, after the detection of the first exoplanets, Proxima Centauri became a target for its potential to host planet-mass companions.Top: Images of Proxima Centauri on two different days from Hubbles FOS instrument. The bar across the center is an occulter that partially blocks the light from Proxima Centauri. Middle: Reconstructed images allowing a closer look at a moving feature identified by the authors as a possible companion. Bottom: diagram of the position of the planet candidate (box) relative to Proxima Centauri (star) in the two frames. [Schultz et al. 1998]1990s: A Possible Planet Detected With Hubble?In January 1998, a paper led by A.B. Schultz (STScI) reported the possible visual detection of a planetary companion to Proxima Centauri. Observations from Hubbles Faint Object Spectrograph, which was being used as a coronagraphic camera, revealed excess light that could be interpreted as a substellar object located ~0.5 AU from Proxima Centauri, a small separation that could imply either a short (~1 yr) period or a highly eccentric orbit.But follow-up observations led by David Golimowski (Johns Hopkins University

  3. Priming the Solar Neighborhood M dwarfs for Future Planet Searches

    Science.gov (United States)

    Dittmann, Jason

    2016-01-01

    The nearby low-mass stars are the best candidate hosts for searching for transiting exoplanets to enable atmospheric characterization. Unfortunately, our understanding of exoplanets is most often limited by our ability to characterize the host star. My thesis has focused on this stellar characterization problem. MEarth consists of 2 arrays of 8 telescopes each, one located at Mt. Hopkins, Arizona, and the other at Cerro Tololo, Chile. First, I used data from the Northern array to measure the trigonometric parallax of 1500 northern M dwarfs with a precision of 3 mas. With these distances we better characterized the MEarth M dwarfs and selected a volume-limited sample from which to search for planets. Second, I calibrated the MEarth photometric system using observations of Landolt standard fields. We measured the red-optical MEarth magnitude for 1800 M dwarfs with 1.5% precision. Combined with trigonometric parallaxes and spectroscopic metallicity estimates, I created a color-magnitude-metallicity relation for the mid-to-late M dwarfs capable of reproducing spectral metallicities with 0.1 dex precision. With these metallicities, we plan to measure any potential planet-metallicity correlation at the low-mass end of the stellar sequence once future missions uncover the planets orbiting these stars. Third, I present MEarth-South's discovery of a low mass eclipsing binary system. The system has an orbital period of 4.7 days, possesses zero eccentricity but is non-synchronously rotating. We obtained high precision radial velocity measurements from the TRES spectrograph, allowing us to measure the mass of each component with 1% precision. Both components are slightly inflated compared to the most recent stellar models, in keeping with previous precise mass-radius determinations for low mass stars. Fourth, I am currently gathering sloan photometry for M dwarfs to calibrate a color-color metallicity relation in the sloan bandpass. My thesis has focused on characterizing the

  4. Microlensing Search for Planets with Two Simultaneously Rising Suns

    CERN Document Server

    Han, Cheongho

    2008-01-01

    Among more than 200 extrasolar planet candidates discovered to date, there is no known planet orbiting around normal binary stars. In this paper, we demonstrate that microlensing is a technique that can detect such planets. Microlensing discoveries of these planets are possible because the planet and host binary stars produce perturbations at a common region around center of mass of the binary stars and thus the signatures of both planet and binary can be detected in the light curves of high-magnification microlensing events. The ranges of the planetary and binary separations of systems for optimal detection vary depending on the planet mass. For a Jupiter-mass planet, we find that high detection efficiency is expected for planets located in the range of $\\sim$ 1 AU -- 5 AU from the binary stars which are separated by $\\sim$ 0.15 AU -- 0.5 AU

  5. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    Science.gov (United States)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  6. The California Planet Survey I. Four New Giant Exoplanets

    CERN Document Server

    Howard, Andrew W; Marcy, Geoffrey W; Fischer, Debra A; Wright, Jason T; Bernat, David; Henry, Gregory W; Peek, Kathryn M G; Isaacson, Howard; Apps, Kevin; Endl, Michael; Cochran, William D; Valenti, Jeff A; Anderson, Jay; Piskunov, Nikolai E

    2010-01-01

    We present precise Doppler measurements of four stars obtained during the past decade at Keck Observatory by the California Planet Survey (CPS). These stars, namely, HD 34445, HD 126614, HD 13931, and Gl 179, all show evidence for a single planet in Keplerian motion. We also present Doppler measurements from the Hobby-Eberly Telescope (HET) for two of the stars, HD 34445 and Gl 179, that confirm the Keck detections and significantly refine the orbital parameters. These planets add to the statistical properties of giant planets orbiting near or beyond the ice line, and merit follow-up by astrometry, imaging, and space-borne spectroscopy. Their orbital parameters span wide ranges of planetary minimum mass (M sin i = 0.38-1.9 M_Jup), orbital period (P = 2.87-11.5 yr), semi-major axis (a = 2.1-5.2 AU), and eccentricity (e = 0.02-0.41). HD 34445b (P = 2.87 yr, M sin i = 0.79 M_Jup, e = 0.27) is a massive planet orbiting an old, G-type star. We announce a planet, HD 126614Ab, and an M dwarf, HD 126614B, orbiting th...

  7. An ALMA Survey of Planet Forming Disks in Rho Ophiuchus

    Science.gov (United States)

    Guilfoil Cox, Erin; Looney, Leslie; Harris, Robert J.; Dong, Jiayin; Segura-Cox, Dominique; Tobin, John J.; Sadavoy, Sarah; Li, Zhi-Yun; Dunham, Michael; Perez, Laura M.; Chandler, Claire J.; Kratter, Kaitlin M.; Melis, Carl; Chiang, Hsin-Fang

    2017-01-01

    Relatively evolved (~ 1 Myr old) protostars with little residual natal envelope, but massive disks, are commonly assumed to be the sites of ongoing planet formation. Critical to our study of these objects is information about the available mass reservior and dust structure, as they directly tie in to how much mass is available for planets as well as the modes of planet formation that occur (i.e., core-accretion vs. gravitational instability). Millimeter-wave observations provide this critical information as continuum emission is relatively optically thin, allowing for mass estimates, and the availability of high-resolution interferometry, allowing structure constraints. We present high-resolution observations of the population of Class II protostars in the Rho-Ophiuchus cloud (d ~ 130 pc). Our survey observed ~50 of these older protostars at 870µm, using the Atacama Large Millimeter/submillimeter Array (ALMA). Out of these sources, there are ~10 transition disks, where we see a ring of dust emission surrounding the central protostar -- indicative of ongoing planet formation -- as well as many binary systems. Both of these stages have implications for star and planet formation. We present results from both 1-D and 2-D disk modeling, where we try to understand disk substructure that might indicate on-going planet formation, in particular, transition disk cavities, disk gaps, and asymmetries in the dust emission.

  8. DARWIN - A Mission to Detect, and Search for Life on, Extrasolar Planets

    CERN Document Server

    Cockell, C S; Fridlund, M; Herbst, T; Kaltenegger, L; Absil, O; Beichman, C; Benz, W; Blanc, M; Brack, A; Chelli, A; Colangeli, L; Cottin, H; Foresto, V Coude du; Danchi, W; Defrere, D; Herder, J -W den; Eiroa, C; Greaves, J; Henning, T; Johnston, K; Jones, H; Labadie, L; Lammer, H; Launhardt, R; Lawson, P; Lay, O P; LeDuigou, J -M; Liseau, R; Malbet, F; Martin, S R; Mawet, D; Mourard, D; Moutou, C; Mugnier, L; Paresce, F; Quirrenbach, Andreas G; Rabbia, Y; Raven, J A; Röttgering, H J A; Rouan, D; Santos, N; Selsis, F; Serabyn, E; Shibai, H; Tamura, M; Thiebaut, E; Westall, F; White,; Glenn, J

    2008-01-01

    The discovery of extra-solar planets is one of the greatest achievements of modern astronomy. The detection of planets with a wide range of masses demonstrates that extra-solar planets of low mass exist. In this paper we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines including astrophysics, planetary sciences, chemistry and microbiology. Darwin is designed to detect and perform spectroscopic analysis of rocky planets similar to the Earth at mid-infrared wavelengths (6 - 20 micron), where an advantageous contrast ratio between star and planet occurs. The baseline mission lasts 5 years and consists of approximately 200 individual target stars. Among these, 25 to 50 planetary systems can be studied spectroscopically, searching for gases such as CO2, H2O, CH4 and O3. Many of the key technologies required for the constr...

  9. The Weihai Observatory search for close-in planets orbiting giant stars

    CERN Document Server

    Wittenmyer, Robert A; Hu, Shao Ming; Villaver, Eva; Endl, Michael; Wright, Duncan

    2015-01-01

    Planets are known to orbit giant stars, yet there is a shortage of planets orbiting within ~0.5 AU (P<100 days). First-ascent giants have not expanded enough to engulf such planets, but tidal forces can bring planets to the surface of the star far beyond the stellar radius. So the question remains: are tidal forces strong enough in these stars to engulf all the missing planets? We describe a high-cadence observational program to obtain precise radial velocities of bright giants from Weihai Observatory of Shandong University. We present data on the planet host Beta Gem (HD 62509), confirming our ability to derive accurate and precise velocities; our data achieve an rms of 7.3 m/s about the Keplerian orbit fit. This planet-search programme currently receives ~100 nights per year, allowing us to aggressively pursue short-period planets to determine whether they are truly absent.

  10. Direct Imaging Search for Extrasolar Planets in the Pleiades

    CERN Document Server

    Yamamoto, Kodai; Shibai, Hiroshi; Itoh, Yoichi; Konishi, Mihoko; Sudo, Jun; Tanii, Ryoko; Fukagawa, Misato; Sumi, Takahiro; Kudo, Tomoyuki; Hashimoto, Jun; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D; Carson, Joseph; Currie, Thayne; Egner, Sebastian E; Feldt, Markus; Goto, Miwa; Grady, Carol; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko; Henning, Thomas; Hodapp, Klaus; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R; Kuzuhara, Masayuki; Kwon, Jungmi; McElwain, Mike; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishikawa, June; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suto, Hiroshi; Suzuki, Ryuji; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L; Wisniewski, John; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2013-01-01

    We carried out an imaging survey for extrasolar planets around stars in the Pleiades (125 Myr, 135 pc) in the $H$ and $K_{S}$ bands using HiCIAO combined with the adaptive optics, AO188, on the Subaru telescope. We found 13 companion candidates fainter than 14.5 mag in the $H$ band around 9 stars. Five of these 13 were confirmed to be background stars by measurement of their proper motion. One was not found in the second epoch observation, and thus was not a background or companion object. One had multi-epoch image, but the precision of its proper motion was not sufficient to conclude whether it was background object. Four other candidates are waiting for second epoch observations to determine their proper motion. Finally, the remaining 2 were confirmed to be 60 $M_{J}$ brown dwarf companions orbiting around HD 23514 (G0) and HII 1348 (K5) respectively, as had been reported in previous studies. In our observations, the average detection limit for a point source was 20.3 mag in the $H$ band beyond 1''.5 from t...

  11. Large collaboration in observational astronomy: the Gemini Planet Imager exoplanet survey case

    CERN Document Server

    Marchis, Franck; Perrin, Marshall D; Konopacky, Quinn M; Savransky, Dmitry; Macintosh, Bruce; Marois, Christian; Graham, James R

    2016-01-01

    The Gemini Planet Imager (GPI) is a next-generation high-contrast imager built for the Gemini Observatory. The GPI exoplanet survey (GPIES) consortium is made up of 102 researchers from 28 institutions in North and South America and Europe. In November 2014, we launched a search for young Jovian planets and debris disks. In this paper, we discuss how we have coordinated the work done by this large team to improve the technical and scientific productivity of the campaign, and describe lessons we have learned that could be useful for future instrumentation-based astronomical surveys. The success of GPIES lies mostly on its decentralized structure, clear definition of policies that are signed by each member, and the heavy use of modern tools for communicating, exchanging information, and processing data.

  12. Large collaboration in observational astronomy: the Gemini Planet Imager exoplanet survey case

    Science.gov (United States)

    Marchis, Franck; Kalas, Paul G.; Perrin, Marshall D.; Konopacky, Quinn M.; Savransky, Dmitry; Macintosh, Bruce; Marois, Christian; Graham, James R.

    2016-08-01

    The Gemini Planet Imager (GPI) is a next-generation high-contrast imager built for the Gemini Observatory. The GPI exoplanet survey (GPIES) consortium is made up of 102 researchers from 28 institutions in North and South America and Europe. In November 2014, we launched a search for young Jovian planets and debris disks. In this paper, we discuss how we have coordinated the work done by this large team to improve the technical and scientific productivity of the campaign, and describe lessons we have learned that could be useful for future instrumentation-based astronomical surveys. The success of GPIES lies mostly on its decentralized structure, clear definition of policies that are signed by each member, and the heavy use of modern tools for communicating, exchanging information, and processing data.

  13. Searching for signatures of planet formation in stars with circumstellar debris discs

    CERN Document Server

    Maldonado, J; Villaver, E; Montesinos, B; Mora, A

    2015-01-01

    (Abridged) Tentative correlations between the presence of dusty debris discs and low-mass planets have been presented. In parallel, detailed chemical abundance studies have reported different trends between samples of planet and non-planet hosts. We determine in a homogeneous way the metallicity, and abundances of a sample of 251 stars including stars with known debris discs, with debris discs and planets, and only with planets. Stars with debris discs and planets have the same [Fe/H] behaviour as stars hosting planets, and they also show a similar -Tc trend. Different behaviour in the -Tc trend is found between the samples of stars without planets and the samples of planet hosts. In particular, when considering only refractory elements, negative slopes are shown in cool giant planet hosts, whilst positive ones are shown in stars hosting low-mass planets. Stars hosting exclusively close-in giant planets show higher metallicities and positive -Tc slope. A search for correlations between the -Tc slopes and the ...

  14. Searching for the signatures of terrestial planets in solar analogs

    CERN Document Server

    Hernandez, J I Gonzalez; Santos, N C; Sousa, S; Delgado-Mena, E; Neves, V; Udry, S

    2010-01-01

    We present a fully differential chemical abundance analysis using very high-resolution (R >~ 85,000) and very high signal-to-noise (S/N~800 on average) HARPS and UVES spectra of 7 solar twins and 95 solar analogs, 24 are planet hosts and 71 are stars without detected planets. The whole sample of solar analogs provide very accurate Galactic chemical evolution trends in the metalliciy range -0.3<[Fe/H]<0.5. Solar twins with and without planets show similar mean abundance ratios. We have also analysed a sub-sample of 28 solar analogs, 14 planet hosts and 14 stars without known planets, with spectra at S/N~850 on average, in the metallicity range 0.14<[Fe/H]<0.36 and find the same abundance pattern for both samples of stars with and without planets. This result does not depend on either the planet mass, from 7 Earth masses to 17.4 Jupiter masses, or the orbital period of the planets, from 3 to 4300 days. In addition, we have derived the slope of the abundance ratios as a function of the condensation t...

  15. The DODO Survey: Imaging Planets around White Dwarfs

    Science.gov (United States)

    Hogan, E.; Burleigh, M. R.; Clarke, F. J.

    2007-09-01

    The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to directly image very low mass (⪆2 MJup) common proper motion companions in wide orbits around nearby white dwarfs. These proceedings contribution presents detailed results for three interesting white dwarfs from this survey and briefly describes the results from 19 other northern hemisphere and equatorial white dwarfs. So far, these results are consistent with the conclusions of tet{t40_mz2004}, that no more than ˜3% of stars harbour 5 - 10 MJup planets in wide orbits.

  16. The Dharma Planet Survey of Low-mass and Habitable Rocky Planets around Nearby Solar-type Stars

    Science.gov (United States)

    Ge, Jian; Ma, Bo; Jeram, Sarik; Sithajan, Sirinrat; Singer, Michael; Muterspaugh, Matthew W.; Varosi, Frank; Schofield, Sidney; Liu, Jian; Kimock, Benjamin; Powell, Scott; Williamson, Michael W.; Herczeg, Aleczander; Grantham, Jim; Stafford, Greg; Hille, Bruce; Rosenbaum, Gary; Savage, David; Bland, Steve; Hoscheidt, Joseph; Swindle, Scott; Waidanz, Melanie; Petersen, Robert; Grieves, Nolan; Zhao, Bo; Cassette, Anthony; Chun, Andrew; Avner, Louis; Barnes, Rory; Tan, Jonathan C.; Lopez, Eric; Dai, Ruijia

    2017-01-01

    The Dharma Planet Survey (DPS) aims to monitor ~150 nearby very bright FGK dwarfs (most of them brighter than V=7) during 2016-2019 using the TOU optical very high resolution spectrograph (R~100,000, 380-900nm) at the dedicated 50-inch Robotic Telescope on Mt. Lemmon. Operated in high vacuum (measurement precision for bright survey targets. With very high RV precision and high cadence (~100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The discovery of a Neptune mass planet and early survey results will be announced.

  17. The International Deep Planet Survey. II. The frequency of directly imaged giant exoplanets with stellar mass

    Science.gov (United States)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Barman, T.; Konopacky, Q.; Song, I.; Patience, J.; Lafrenière, D.; Doyon, R.; Nielsen, E. L.

    2016-10-01

    Context. Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. Aims: We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. Methods: We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 yr. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. Results: The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05+2.80-0.70% of stars harbor at least one giant planet between 0.5 and 14 MJ and between 20 and 300 AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30+5.95-1.55%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. Conclusions: The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works. Tables 11-15 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  18. Pursuing the planet-debris disk connection: Analysis of upper limits from the Anglo-Australian planet search

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Marshall, Jonathan P., E-mail: rob@phys.unsw.edu.au [School of Physics, UNSW Australia, Sydney 2052 (Australia)

    2015-02-01

    Solid material in protoplanetary disks will suffer one of two fates after the epoch of planet formation; either being bound up into planetary bodies, or remaining in smaller planetesimals to be ground into dust. These end states are identified through detection of sub-stellar companions by periodic radial velocity (or transit) variations of the star, and excess emission at mid- and far-infrared wavelengths, respectively. Since the material that goes into producing the observable outcomes of planet formation is the same, we might expect these components to be related both to each other and their host star. Heretofore, our knowledge of planetary systems around other stars has been strongly limited by instrumental sensitivity. In this work, we combine observations at far-infrared wavelengths by IRAS, Spitzer, and Herschel with limits on planetary companions derived from non-detections in the 16 year Anglo-Australian Planet Search to clarify the architectures of these (potential) planetary systems and search for evidence of correlations between their constituent parts. We find no convincing evidence of such correlations, possibly owing to the dynamical history of the disk systems, or the greater distance of the planet-search targets. Our results place robust limits on the presence of Jupiter analogs which, in concert with the debris disk observations, provides insights on the small-body dynamics of these nearby systems.

  19. Latest Results from the DODO Survey: Imaging Planets around White Dwarfs

    CERN Document Server

    Hogan, E; Clarke, F J

    2011-01-01

    The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures lower (< 500 K) than the coolest brown dwarfs currently observed. The discovery of planets around white dwarfs would prove that such objects can survive the final stages of stellar evolution and place constraints on the frequency of planetary systems around their progenitors (with masses between 1.5 - 8 M*, i.e., early B to mid-F). An increasing number of planetary mass companions have been directly imaged in wide orbits around young main sequence stars. For example, the planets around HR 8799 and 1RXS J160929.1 - 210524 are in wide orbits of 24 - 68 AU and 330 AU, respectively. The DODO survey has the ability to directly image planets in post-main sequence analogues of these systems. These proceedings ...

  20. Worlds beyond our own the search for habitable planets

    CERN Document Server

    Sengupta, Sujan

    2015-01-01

    This is a book on planets: Solar system planets and dwarf planets. And planets outside our solar system – exoplanets. How did they form? What types of planets are there and what do they have in common? How do they differ? What do we know about their atmospheres – if they have one? What are the conditions for life and on which planets may they be met? And what’s the origin of life on Earth and how did it form? You will understand how rare the solar system, the Earth and hence life is. This is also a book on stars. The first and second generation of stars in the Universe. But in particular also on the link between planets and stars – brown dwarfs. Their atmospheric properties and similarities with giant exoplanets. All these fascinating questions will be answered in a non-technical manner. But those of you who want to know a bit more may look up the relevant mathematical relationships in appendices.

  1. Educated search for transiting habitable planets. Targetting M dwarfs with known transiting planets

    CERN Document Server

    Gillon, M; Demory, B -O; Seager, S; Deming, D

    2010-01-01

    Because the planets of a system form in a flattened disk, they are expected to share similar orbital inclinations at the end of their formation. The photometric monitoring of stars known to host a transiting planet could thus reveal the transits of one or more other planets. Depending on several parameters, significantly enhanced transit probability could be expected for habitable planets. This approach is especially interesting for M dwarfs because these stars have close-in habitable zones and because their small radii make possible the detection of terrestrial planets down to Mars size. We investigate the potential of this approach for the two M dwarfs known to host a transiting planet, GJ 436 and GJ 1214. Contrary to GJ 436, GJ 1214 reveals to be a very promising target for the considered approach. Assuming a distribution of orbital inclinations similar to our solar system, a habitable planet orbiting around GJ 1214 would have a mean transit probability of ~25%, much better than the probability of 1.5% exp...

  2. The search for life on Earth and other planets.

    Science.gov (United States)

    Gross, Michael

    2012-04-10

    As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored.

  3. SEARCHING FOR THE SIGNATURES OF TERRESTRIAL PLANETS IN SOLAR ANALOGS

    OpenAIRE

    Hernandez, J. I. Gonzalez; Israelian, G.; Santos,N.C.; Sousa, S.; Delgado-Mena, E.; Neves, V.; Udry, S.

    2010-01-01

    We present a fully differential chemical abundance analysis using very high-resolution (R >~ 85,000) and very high signal-to-noise (S/N~800 on average) HARPS and UVES spectra of 7 solar twins and 95 solar analogs, 24 are planet hosts and 71 are stars without detected planets. The whole sample of solar analogs provide very accurate Galactic chemical evolution trends in the metalliciy range -0.3

  4. The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system

    CERN Document Server

    Maire, A -L; Hinz, P M; Desidera, S; Esposito, S; Gratton, R; Marzari, F; Skrutskie, M F; Biller, B A; Defrère, D; Bailey, V P; Leisenring, J M; Apai, D; Bonnefoy, M; Brandner, W; Buenzli, E; Claudi, R U; Close, L M; Crepp, J R; De Rosa, R J; Eisner, J A; Fortney, J J; Henning, T; Hofmann, K -H; Kopytova, T G; Males, J R; Mesa, D; Morzinski, K M; Oza, A; Patience, J; Pinna, E; Rajan, A; Schertl, D; Schlieder, J E; Su, K Y L; Vaz, A; Ward-Duong, K; Weigelt, G; Woodward, C E

    2014-01-01

    Context. Astrometric monitoring of directly-imaged exoplanets allows the study of their orbital parameters and system architectures. Because most directly-imaged planets have long orbital periods (>20 AU), accurate astrometry is challenging when based on data acquired on timescales of a few years and usually with different instruments. The LMIRCam camera on the LBT is being used for the LEECH survey to search for and characterize young and adolescent exoplanets in L' band, including their system architectures. Aims. We first aim to provide a good astrometric calibration of LMIRCam. Then, we derive new astrometry, test the predictions of the orbital model of 8:4:2:1 mean motion resonance proposed by Go\\'zdziewski & Migaszewski, and perform new orbital fitting of the HR 8799 bcde planets. We also present deep limits on a putative fifth planet interior to the known planets. Methods. We use observations of HR 8799 and the Theta1 Ori C field obtained during the same run in October 2013. Results. We first chara...

  5. The impact of red noise in radial velocity planet searches: only three planets orbiting GJ 581?

    Science.gov (United States)

    Baluev, Roman V.

    2013-03-01

    We perform a detailed analysis of the latest HARPS and Keck radial velocity data for the planet-hosting red dwarf GJ 581, which attracted a lot of attention in recent time. We show that these data contain important correlated noise component (`red noise') with the correlation time-scale of the order of 10 d. This red noise imposes a lot of misleading effects while we work in the traditional white-noise model. To eliminate these misleading effects, we propose a maximum-likelihood algorithm equipped by an extended model of the noise structure. We treat the red noise as a Gaussian random process with an exponentially decaying correlation function. Using this method we prove that (i) planets b and c do exist in this system, since they can be independently detected in the HARPS and Keck data, and regardless of the assumed noise models; (ii) planet e can also be confirmed independently by both the data sets, although to reveal it in the Keck data it is mandatory to take the red noise into account; (iii) the recently announced putative planets f and g are likely just illusions of the red noise; (iv) the reality of the planet candidate GJ 581 d is questionable, because it cannot be detected from the Keck data, and its statistical significance in the HARPS data (as well as in the combined data set) drops to a marginal level of ˜2σ, when the red noise is taken into account. Therefore, the current data for GJ 581 really support the existence of no more than four (or maybe even only three) orbiting exoplanets. The planet candidate GJ 581 d requests serious observational verification.

  6. The SOPHIE search for northern extrasolar planets IX. Populating the brown dwarf desert

    CERN Document Server

    Wilson, P A; Santos, N C; Sahlmann, J; Montagnier, G; Astudillo-Defru, N; Boisse, I; Bouchy, F; Rey, J; Arnold, L; Bonfils, X; Bourrier, V; Courcol, B; Deleuil, M; Delfosse, X; Díaz, R F; Ehrenreich, D; Forveille, T; Moutou, C; Pepe, F; Santerne, A; Ségransan, D; Udry, S

    2016-01-01

    Radial velocity planet search surveys of nearby Solar-type stars have shown a strong deficit of brown dwarf companions within $\\sim5\\,\\mathrm{AU}$. There is presently no comprehensive explanation of this lack of brown dwarf companions, therefore, increasing the sample of such objects is crucial to understand their formation and evolution. Based on precise radial velocities obtained using the SOPHIE spectrograph at Observatoire de Haute-Provence we characterise the orbital parameters of $15$ companions to solar-type stars and constrain their true mass using astrometric data from the Hipparcos space mission. The nine companions not shown to be stellar in nature have minimum masses ranging from ~$13$ to $70\\,\\mathrm{M}_{\\mathrm{Jup}}$, and are well distributed across the planet/brown dwarf mass regime, making them an important contribution to the known population of massive companions around solar-type stars. We characterise six companions as stellar in nature with masses ranging from a minimum mass of $76 \\pm 4...

  7. The Solar Twin Planet Search. I. Fundamental parameters of the stellar sample

    CERN Document Server

    Ramirez, I; Bean, J; Asplund, M; Bedell, M; Monroe, T; Casagrande, L; Schirbel, L; Dreizler, S; Teske, J; Maia, M Tucci; Alves-Brito, A; Baumann, P

    2014-01-01

    We are carrying out a search for planets around a sample of solar twin stars using the HARPS spectrograph. The goal of this project is to exploit the advantage offered by solar twins to obtain chemical abundances of unmatched precision. This survey will enable new studies of the stellar composition -- planet connection. Here we used the MIKE spectrograph on the Magellan Clay Telescope to acquire high resolution, high signal-to-noise ratio spectra of our sample stars. We measured the equivalent widths of iron lines and used strict differential excitation/ionization balance analysis to determine atmospheric parameters of unprecedented internal precision (DTeff=7K, Dlogg=0.019, D[Fe/H]=0.006dex, Dvt=0.016km/s). Reliable relative ages and highly precise masses were then estimated using theoretical isochrones. The spectroscopic parameters we derived are in good agreement with those measured using other independent techniques. The root-mean-square scatter of the differences seen is fully compatible with the observa...

  8. Deep Space Detectives: Searching for Planets Suitable for Life

    Science.gov (United States)

    Pallant, Amy; Damelin, Daniel; Pryputniewicz, Sarah

    2013-01-01

    This article describes the High-Adventure Science curriculum unit "Is There Life in Space?" This free online investigation, developed by The Concord Consortium, helps students see how scientists use modern tools to locate planets around distant stars and explore the probability of finding extraterrestrial life. This innovative curriculum…

  9. Deep Space Detectives: Searching for Planets Suitable for Life

    Science.gov (United States)

    Pallant, Amy; Damelin, Daniel; Pryputniewicz, Sarah

    2013-01-01

    This article describes the High-Adventure Science curriculum unit "Is There Life in Space?" This free online investigation, developed by The Concord Consortium, helps students see how scientists use modern tools to locate planets around distant stars and explore the probability of finding extraterrestrial life. This innovative curriculum…

  10. HD 80606: searching for the chemical signature of planet formation

    Science.gov (United States)

    Saffe, C.; Flores, M.; Buccino, A.

    2015-10-01

    Context. Binary systems with similar components are ideal laboratories that allow several physical processes to be tested, such as the possible chemical pattern imprinted by the planet formation process. Aims: We explore the probable chemical signature of planet formation in the remarkable binary system HD 80606-HD 80607. The star HD 80606 hosts a giant planet with ~4 MJup detected by both transit and radial velocity techniques, which is one of the most eccentric planets detected to date. We study condensation temperature Tc trends of volatile and refractory element abundances to determine whether there is a depletion of refractories, which could be related to the terrestrial planet formation. Methods: We carried out a high-precision abundance determination in both components of the binary system via a line-by-line, strictly differential approach. First, we used the Sun as a reference and then we used HD 80606. The stellar parameters Teff, log g, [Fe/H] and vturb were determined by imposing differential ionization and excitation equilibrium of Fe I and Fe II lines, with an updated version of the program FUNDPAR, together with plane-parallel local thermodynamic equilibrium (LTE) ATLAS9 model atmospheres and the MOOG code. Then, we derived detailed abundances of 24 different species with equivalent widths and spectral synthesis with the program MOOG. The chemical patterns were compared with the solar-twins Tc trends of Meléndez et al. (2009, AJ, 704, L66) and with a sample of solar-analogue stars with [Fe/H] ~ +0.2 dex from Neves et al. (2009, A&A, 497, 563). The Tc trends were also compared mutually between both stars of the binary system. Results: From the study of Tc trends, we concluded that the stars HD 80606 and HD 80607 do not seem to be depleted in refractory elements, which is different for the case of the Sun. Then, following the interpretation of Meléndez et al. (2009), the terrestrial planet formation would have been less efficient in the components of

  11. The SOPHIE search for northern extrasolar planets. II. A multiple planet system around HD 9446

    Science.gov (United States)

    Hébrard, G.; Bonfils, X.; Ségransan, D.; Moutou, C.; Delfosse, X.; Bouchy, F.; Boisse, I.; Arnold, L.; Desort, M.; Díaz, R. F.; Eggenberger, A.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Lovis, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Udry, S.; Vidal-Madjar, A.

    2010-04-01

    We report the discovery of a planetary system around HD 9446, performed from radial velocity measurements secured with the spectrograph SOPHIE at the 193-cm telescope of the Haute-Provence Observatory for more than two years. At least two planets orbit this G5V, active star: HD 9446b has a minimum mass of 0.7 MJup and a slightly eccentric orbit with a period of 30 days, whereas HD 9446c has a minimum mass of 1.8 MJup and a circular orbit with a period of 193 days. As for most of the known multiple planet systems, the HD 9446-system presents a hierarchical disposition with a massive outer planet and a lighter inner planet. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium (program 07A.PNP.CONS). The full version of Table 1 (SOPHIE measurements of HD 9446) is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/513/A69

  12. The International Deep Planet Survey II: The frequency of directly imaged giant exoplanets with stellar mass

    CERN Document Server

    Galicher, Raphael; Macintosh, Bruce; Zuckerman, Ben; Barman, Travis; Konopacky, Quinn; Song, Inseok; Patience, Jenny; Lafreniere, David; Doyon, Rene; Nielsen, Eric L

    2016-01-01

    Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 years. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2,279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05[+2.80-0.70]% of stars harbor at least one giant planet between 0.5 and 14...

  13. Near-infrared colors of minor planets recovered from VISTA - VHS survey (MOVIS)

    CERN Document Server

    Popescu, M; Morate, D; de Leon, J; Nedelcu, D A; Rebolo, R; McMahon, R G; Gonzalez-Solares, E; Irwin, M

    2016-01-01

    The Sloan Digital Sky Survey (SDSS) and Wide-field Infrared Survey Explorer (WISE) provide information about the surface composition of about 100,000 minor planets. The resulting visible colors and albedos enabled us to group them in several major classes, which are a simplified view of the diversity shown by the few existing spectra. We performed a serendipitous search in VISTA-VHS observations using a pipeline developed to retrieve and process the data that corresponds to solar system objects (SSo). The colors and the magnitudes of the minor planets observed by the VISTA survey are compiled into three catalogs that are available online: the detections catalog (MOVIS-D), the magnitudes catalog (MOVIS-M), and the colors catalog (MOVIS-C). They were built using the third data release of the survey (VISTA VHS-DR3). A total of 39,947 objects were detected, including 52 NEAs, 325 Mars Crossers, 515 Hungaria asteroids, 38,428 main-belt asteroids, 146 Cybele asteroids, 147 Hilda asteroids, 270 Trojans, 13 comets, 1...

  14. The impact of red noise in radial velocity planet searches: Only three planets orbiting GJ581?

    CERN Document Server

    Baluev, Roman V

    2012-01-01

    We perform a detailed analysis of the latest HARPS and Keck radial velocity data for the planet-hosting red dwarf GJ581, which attracted a lot of attention in recent time. We show that these data contain important correlated noise component ("red noise") with the correlation timescale of the order of 10 days. This red noise imposes a lot of misleading effects while we work in the traditional white-noise model. To eliminate these misleading effects, we propose a maximum-likelihood algorithm equipped by an extended model of the noise structure. We treat the red noise as a Gaussian random process with exponentially decaying correlation function. Using this method we prove that: (i) planets b and c do exist in this system, since they can be independently detected in the HARPS and Keck data, and regardless of the assumed noise models; (ii) planet e can also be confirmed independently by the both datasets, although to reveal it in the Keck data it is mandatory to take the red noise into account; (iii) the recently ...

  15. Darwin--a mission to detect and search for life on extrasolar planets.

    Science.gov (United States)

    Cockell, C S; Léger, A; Fridlund, M; Herbst, T M; Kaltenegger, L; Absil, O; Beichman, C; Benz, W; Blanc, M; Brack, A; Chelli, A; Colangeli, L; Cottin, H; Coudé du Foresto, F; Danchi, W C; Defrère, D; den Herder, J-W; Eiroa, C; Greaves, J; Henning, T; Johnston, K J; Jones, H; Labadie, L; Lammer, H; Launhardt, R; Lawson, P; Lay, O P; LeDuigou, J-M; Liseau, R; Malbet, F; Martin, S R; Mawet, D; Mourard, D; Moutou, C; Mugnier, L M; Ollivier, M; Paresce, F; Quirrenbach, A; Rabbia, Y D; Raven, J A; Rottgering, H J A; Rouan, D; Santos, N C; Selsis, F; Serabyn, E; Shibai, H; Tamura, M; Thiébaut, E; Westall, F; White, G J

    2009-01-01

    The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.

  16. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    Science.gov (United States)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  17. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    Science.gov (United States)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  18. The Search for other Earths: limits on the giant planet orbits that allow habitable terrestrial planets to form

    OpenAIRE

    Raymond, Sean N.

    2006-01-01

    Gas giant planets are far easier than terrestrial planets to detect around other stars, and are thought to form much more quickly than terrestrial planets. Thus, in systems with giant planets, the late stages of terrestrial planet formation are strongly affected by the giant planets' dynamical presence. Observations of giant planet orbits may therefore constrain the systems that can harbor potentially habitable, Earth-like planets. We present results of 460 N-body simulations of terrestrial a...

  19. A Search for Additional Planets in the NASA EPOXI Observations of the Exoplanet System GJ 436

    CERN Document Server

    Ballard, Sarah; Charbonneau, David; Deming, Drake; Holman, Matthew J; Fabrycky, Daniel; A'Hearn, Michael F; Wellnitz, Dennis D; Barry, Richard K; Kuchner, Marc J; Livengood, Timothy A; Hewagama, Tilak; Sunshine, Jessica M; Hampton, Don L; Lisse, Carey M; Seager, Sara; Veverka, Joseph F

    2009-01-01

    We present time series photometry of the M dwarf transiting exoplanet system GJ 436 obtained with the the EPOCh (Extrasolar Planet Observation and Characterization) component of the NASA EPOXI mission. We conduct a search of the high-precision time series for additional planets around GJ 436, which could be revealed either directly through their photometric transits, or indirectly through the variations these second planets induce on the transits of the previously known planet. In the case of GJ 436, the presence of a second planet is perhaps indicated by the residual orbital eccentricity of the known hot Neptune companion. We find no candidate transits with significance higher than our detection limit. From Monte Carlo tests of the time series, we rule out transiting planets larger than 1.0 R_Earth interior to GJ 436b with 95% confidence. Assuming coplanarity of additional planets with the orbit of GJ 436b, we cannot expect that putative planets with orbital periods longer than about 3.4 days will transit. H...

  20. The Solar Neighborhood. 34. A Search for Planets Orbiting Nearby M Dwarfs Using Astrometry

    Science.gov (United States)

    2014-11-01

    REPORT DATE NOV 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE The Solar Neighborhood, XXXIV. A Search...data. The lower panel indicates that for the best case targets (stars at close distances and of low mass). We are most sensitive to Jovian- type planets...THE SOLAR NEIGHBORHOOD. XXXIV. A SEARCH FOR PLANETS ORBITING NEARBY M DWARFS USING ASTROMETRY John C. Lurie1,7, Todd J. Henry2,7, Wei-Chun Jao3,7

  1. The CRIRES Search for Planets Around the Lowest-Mass Stars. II. No Giant Planet Orbiting VB10

    CERN Document Server

    Bean, Jacob L; Hartman, Henrik; Nilsson, Hampus; Reiners, Ansgar; Dreizler, Stefan; Henry, Todd J; Wiedemann, Guenter

    2009-01-01

    We present radial velocities of the very low-mass star VB10 obtained over a time span of 0.61 yr as part of an ongoing search for planets around stars at the end of the main sequence. The radial velocities were measured from high-resolution near-infrared spectra obtained using the CRIRES instrument on the VLT with an ammonia gas cell. The typical internal precision of the measurements is 10 m/s. These data do not exhibit significant variability and are essentially constant at a level consistent with the measurement uncertainties. Therefore, we do not detect the radial velocity variations of VB10 expected due to the presence of an orbiting giant planet similar to that recently proposed by Pravdo and Shaklan based on apparent astrometric perturbations. In addition, we do not confirm the ~1 km/s radial velocity variability of the star tentatively detected by Zapatero Osorio and colleagues with lower precision measurements. Our measurements rule out planets with M > 3 M_Jup and the orbital period and inclination ...

  2. The Penn State - Toruń Centre for Astronomy Planet Search stars

    Science.gov (United States)

    Niedzielski, A.; Deka-Szymankiewicz, B.; Adamczyk, M.; Adamów, M.; Nowak, G.; Wolszczan, A.

    2016-01-01

    Aims: We present the complete spectroscopic analysis of 455 stars observed within the Penn State - Toruń Centre for Astronomy Planet Search (PTPS) with the High Resolution Spectrograph of the 9.2 m Hobby-Eberly Telescope. We also present the total sample of 744 evolved stars of the PTPS and discuss masses of stellar hosts in our and other surveys devoted to evolved planetary systems. Methods: Stellar atmospheric parameters were determined through a strictly spectroscopic LTE analysis of equivalent widths of Fe I and Fe II lines. Rotational velocities were obtained from fitting synthetic spectra. Radial velocities were obtained from fitting a Gaussian function to the cross-correlation function. We determined stellar masses, ages, and luminosities with a Bayesian analysis of theoretical isochrones. The radii were calculated either from derived masses and log g or from Teff and luminosities. Results: We present basic atmospheric parameters (Teff, log g, vt and [Fe/H]), rotation velocities, and absolute radial velocities as well as luminosities, masses, ages and radii for 402 stars (including 11 single-line spectroscopic binaries) that are mostly subgiants and giants. For 272 of them we present parameters for the first time. For another 53 stars we present estimates of Teff and log g based on photometric calibrations. More than half of the objects were found to be subgiants, but there is also a large group of giants, and a few stars appear to be dwarfs. The results show that the sample is composed of stars with masses ranging from 0.52 to 3.21 M⊙, 17 of which have masses ≥2.0 M⊙. The stellar radii range from 0.66 to 36.04 R⊙, with the vast majority having radii between 2.0 and 4.0 R⊙. They are generally less metal abundant than the Sun with a median [ Fe/H ] = -0.07. For 62 stars that we have in common with other planet searches, the stellar atmospheric parameters we found agree very well. We also present basic properties of the complete list of 744 stars

  3. A Survey on Semantic Web Search Engine

    Directory of Open Access Journals (Sweden)

    G.Sudeepthi

    2012-03-01

    Full Text Available The tremendous growth in the volume of data and with the terrific growth of number of web pages, traditional search engines now a days are not appropriate and not suitable anymore. Search engine is the most important tool to discover any information in World Wide Web. Semantic Search Engine is born of traditional search engine to overcome the above problem. The Semantic Web is an extension of the current web in which information is given well-defined meaning. Semantic web technologies are playing a crucial role in enhancing traditional web search, as it is working to create machine readable data. but it will not replace traditional search engine. In this paper we made a brief survey on various promising features of some of the best semantic search engines developed so far and we have discussed the various approaches to semantic search. We have summarized the techniques, advantages of some important semantic web search engines that are developed so far.The most prominent part is that how the semantic search engines differ from the traditional searches and their results are shown by giving a sample query as input

  4. The detection and exploration of planets from the Trans-atlantic Exoplanet Survey

    Science.gov (United States)

    O'Donovan, Francis Thomas

    I present the discovery of three transiting planets (TrES-2, TrES-3, and TrES-4) of nearby bright stars made with the ten-centimeter telescope Sleuth as part of the Trans-atlantic Exoplanet Survey (TrES). TrES-2 is the first transiting exoplanet detected in the field of view of NASA’s Kepler mission. Of the 20 known transiting exoplanets, TrES-3 has the second shortest period, facilitating the study of orbital decay and atmospheric evaporation. Its visible/infrared brightness makes TrES-3 an ideal target for observations to determine the atmospheric composition. TrES-4 has the largest radius and lowest density of the known transiting planets. These three planets have radii larger than that of Jupiter, and the radius of TrES-4 significantly exceeds predictions from models of hot Jupiters, indicating a possible lack of an energy source in these models. I present the results of Spitzer observations of TrES-2. I reject tidal dissipation of eccentricity as an explanation for the inflated radius, and examine the spectrum for evidence of atmospheric absorption.I have monitored 19 fields each containing 6,000-36,000 stars for evidence of transits. I discuss the rejection of six of my candidate transiting systems from an early field that represent examples of the 67 astrophysical false positives that I encountered in Sleuth data. These six false positives highlight the benefit of a multisite survey such as TrES, and also of comprehensive follow-up of transit candidates. As a further example, I present the candidate GSC 03885-00829 from Sleuth data that was revealed to be a blend of a bright F dwarf and a fainter K-dwarf eclipsing binary. This candidate proved nontrivial to reject, requiring multicolor follow-up photometry to produce evidence of the true binary nature of this candidate.The yield of planets from transit surveys is not yet well constrained or understood. There are numerous factors that affect the predictions such as the amount of correlated photometric noise

  5. Scientists Plot Search For Earth--Like Planets

    Institute of Scientific and Technical Information of China (English)

    Andrew; Quinn; 金月芹

    1999-01-01

    1999年5月22日清晨,在Internet上读到此文,兴奋异常。遥望那无垠的、群星闪烁的夜空,人类很早就在思考:Are we alone in the universe?许多科幻小说中描写的外星人,更点燃了人类的想象。人们在无法解开金字塔的建造之谜时,仰望太空,猜测那是外星人在地球上留下的杰作;人们在惊叹UFO的神秘行踪时,也翘首天际,设想那是外星人在向我们暗递的“秋波”!今天,人类的科技终于驶入了一个新时代,能够更精确更清晰更自信地去探求茫茫宇宙里的奥秘。这篇报道的第一句就足以让我们欣喜: Somewhere,in a star system porhaps not so far away,lies a″ pale bluedot″which could be a planet much like Earth. 在这个淡蓝色的小点(pale blue dot)上也许就生活着人类的邻居。美国的一群科学家们上周就聚首在位于加州的NASA(国家航空和航天局)researchcenter,这次科学聚会就被称为The″Pale Blue Dot″Conference!再过10年,一个名为Terrestrial Planet Finder的宇宙望远镜将投入使用,届时,它将提供比目前的哈勃望远镜清晰100倍的图象。 美国亚利桑那州的的一位天文学家这样断言: Life on earth is by no means the only kind of life that can exist. 在即将过去的20世纪,人类登上了月球,失望地发现,那里除了环形山?

  6. The Space Stellar Photometry Mission COROT: Asteroseismology and Search for Extrasolar Planets

    Indian Academy of Sciences (India)

    Annie Baglin; Gerard Vauclair; Corot team

    2000-09-01

    The main scientific objectives, asteroseismology and search for extrasolar planets for the COROT photometric mission are presented, and its interest in terms of stellar variability. A description of the payload, details of the scientific program, the ground based preparatory observations and bibliography can be found at http://www.astrsp-mrs.fr/corot/pagecorot.html.

  7. THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Law, Nicholas M. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON M5S 3H4 (Canada); Kraus, Adam L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Street, Rachel; Fulton, Benjamin J.; Shporer, Avi; Lister, Tim [Las Cumbres Observatory Global Telescope Network, Inc., 6740 Cortona Dr. Suite 102, Santa Barbara, CA 93117 (United States); Hillenbrand, Lynne A.; Baranec, Christoph; Bui, Khanh; Davis, Jack T. C.; Dekany, Richard G.; Kulkarni, S. R.; Ofek, Eran O. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Burse, Mahesh P.; Das, H. K. [Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune-411007 (India); Kasliwal, Mansi M. [Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Nugent, Peter [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2012-10-01

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at

  8. The Solar Twin Planet Search II. A Jupiter twin around a solar twin

    CERN Document Server

    Bedell, M; Bean, J L; Ramirez, I; Asplund, M; Alves-Brito, A; Casagrande, L; Dreizler, S; Monroe, T; Spina, L; Maia, M Tucci

    2015-01-01

    Through our HARPS radial velocity survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activity. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3600-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of RV and activity index data. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.

  9. By Inferno's Light: Characterizing TESS Object of Interest Host Stars for Prioritizing Our Search for Habitable Planets

    Science.gov (United States)

    Unterborn, C. T.; Desch, S. J.; Johnson, J. A.; Panero, W. R.; Teske, J. K.; Hinkel, N. R.

    2016-12-01

    The Earth is unique in our Solar System. It is the only planet known to undergo plate tectonics. It has a magnetic field as result of an outer liquid iron core that protects the surface from Solar radiation. What is not known, however, is whether the Earth is unique among all terrestrial planets outside our Solar System. The population of potentially Earth-like planets will only continue to grow. The TESS mission, launching in 2017, is designed to identify rocky planets around bright, nearby stars across the whole sky. Of the 5,000 potential transit-like signals detected, only 100 will be selected for follow-up spectroscopy. From this subsample, only 50 planets are expected to have both mass and radius measurements, thus allowing for detailed modeling of the planetary interior and potential surface processes. As we search for habitable worlds within this sample, then, understanding which TESS objects of interest (TOI) warrant detailed and time-intensive follow-up observations is of paramount importance. Recent surveys of dwarf planetary host and non-host stars find variations in the major terrestrial planet element abundances (Mg, Fe, Si) of between 10% and 400% of Solar. Additionally, the terrestrial exoplanet record shows planets ranging in size from sub-Mercury to super-Earth. How this stellar compositional diversity is translated into resultant exoplanet physical properties including its mineralogy and structure is not known. Here, we present results of models blending equilibrium condensation sequence computations for determining initial planetesimal composition with geophysical interior calculations for multiple stellar abundance catalogues. This benchmarked and generalized approach allows us to predict the mineralogy and structure of an "average" exoplanet in these planetary systems, thus informing their potential to be "Earth-like." This combination of astro- and geophysical models provides us with a self-consistent method with which to compare planetary

  10. Types of Information Expected from a Photometric Search for Extra-Solar Planets

    Science.gov (United States)

    Borucki, William; Koch, David; Bell, James, III; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    The current theory postulates that planets are a consequence of the formation of stars from viscous accretion disks. Condensation from the hotter, inner portion of the accretion disk favors the formation of small rocky planets in the inner portion and the formation of gas giants in the cuter, cooler part. Consequently, terrestrial-type planets in inner orbits must be commonplace (Wetheril 1991). From the geometry of the situation (Borucki and Summers 1984), it can be shown that 1% of those planetary systems that resemble our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large CCD array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To verify that regularly recurring transits are occurring rather than statistical fluctuations of the stellar flux, demands observations that extend over several orbital periods so that the constancy of the orbital period, signal amplitude, and duration can be measured. Therefore, to examine the region from Mercury's orbit to that of the Earth requires a duration of three years whereas a search out to the orbit of mars requires about six years. The results of the observations should provide estimates of the distributions of planetary size and orbital radius, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbit ' ing either one or both of the stars can also be determined. Furthermore, the complexity of the photometric signature of a planet transiting a pair of stars provides enough information to estimate the eccentricities of the planetary orbits. In summary, the statistical evidence from a photometric search of solar-like stars should be able to either confirm or deny the applicability of the current theory of planet formation and provide new

  11. Searching for Planet Nine with Coadded WISE and NEOWISE-Reactivation Images

    CERN Document Server

    Meisner, Aaron M; Nugent, Peter E; Schlegel, David J; Kenyon, Scott J; Schlafly, Edward F; Dawson, Kyle S

    2016-01-01

    A distant, as yet unseen ninth planet has been invoked to explain various observations of the outer solar system. While such a 'Planet Nine', if it exists, is most likely to be discovered via reflected light in the optical, it may emit much more strongly at 3$-$5$\\mu$m than simple blackbody predictions would suggest, depending on its atmospheric properties (Fortney et al. 2016). As a result, Planet Nine may be detectable at 3.4$\\mu$m with WISE, but single exposures are too shallow except at relatively small distances ($d_9 \\lesssim 430$ AU). We develop a method to search for Planet Nine far beyond the W1 single-exposure sensitivity, to distances as large as 800 AU, using inertial coadds of W1 exposures binned into $\\sim$1 day intervals. We apply our methodology to $\\sim$2000 square degrees of sky identified by Holman & Payne (2016) as a potentially likely Planet Nine location, based on the Fienga et al. (2016) Cassini ranging analysis. We do not detect a plausible Planet Nine candidate, but are able to de...

  12. SuperWASP Wide Angle Search for Planets

    CERN Document Server

    Street, R A; Fitzsimmons, A; Keenan, F P; Horne, K; Kane, S; Cameron, A C; Lister, T A; Haswell, C; Norton, A J; Jones, B W; Skillen, I; Hodgkin, S T; Wheatley, P; West, R; Brett, D; Horne, Keith

    2002-01-01

    SuperWASP is a fully robotic, ultra-wide angle survey for planetary transits. Currently under construction, it will consist of 5 cameras, each monitoring a 9.5 x 9.5 deg field of view. The Torus mount and enclosure will be fully automated and linked to a built-in weather station. We aim to begin observations at the beginning of 2003.

  13. EXOTIME: searching for planets around pulsating subdwarf B stars

    CERN Document Server

    Schuh, Sonja; Lutz, Ronny; Loeptien, Bjoern; Green, Elizabeth M; Ostensen, Roy H; Leccia, Silvio; Kim, Seung-Lee; Fontaine, Gilles; Charpinet, Stephane; Francoeur, Myriam; Randall, Suzanna; Rodriguez-Lopez, Cristina; van Grootel, Valerie; Odell, Andrew P; Paparo, Margit; Bognar, Zsofia; Papics, Peter; Nagel, Thorsten; Beeck, Benjamin; Hundertmark, Markus; Stahn, Thorsten; Dreizler, Stefan; Hessman, Frederic V; Dall'Ora, Massimo; Mancini, Dario; Cortecchia, Fausto; Benatti, Serena; Claudi, Riccardo; Janulis, Rimvydas; 10.1007/s10509-010-0356-4

    2010-01-01

    In 2007, a companion with planetary mass was found around the pulsating subdwarf B star V391 Pegasi with the timing method, indicating that a previously undiscovered population of substellar companions to apparently single subdwarf B stars might exist. Following this serendipitous discovery, the EXOTIME (http://www.na.astro.it/~silvotti/exotime/) monitoring program has been set up to follow the pulsations of a number of selected rapidly pulsating subdwarf B stars on time-scales of several years with two immediate observational goals: 1) determine Pdot of the pulsational periods P 2) search for signatures of substellar companions in O-C residuals due to periodic light travel time variations, which would be tracking the central star's companion-induced wobble around the center of mass. These sets of data should therefore at the same time: on the one hand be useful to provide extra constraints for classical asteroseismological exercises from the Pdot (comparison with "local" evolutionary models), and on the othe...

  14. Search for a habitable terrestrial planet transiting the nearby red dwarf GJ 1214

    CERN Document Server

    Gillon, M; Madhusudhan, N; Deming, D; Seager, S; Knutson, H A; Lanotte, A; Bonfils, X; Desert, J -M; Delrez, L; Jehin, E; Fraine, J D; Magain, P; Triaud, A H M J

    2013-01-01

    High-precision eclipse spectrophotometry of transiting terrestrial exoplanets represents a promising path for the first atmospheric characterizations of habitable worlds and the search for life outside our solar system. The detection of terrestrial planets transiting nearby late-type M-dwarfs could make this approach applicable within the next decade, with near-to-come general facilities. In this context, we previously identified GJ 1214 as a high-priority target for a transit search, as the transit probability of a habitable planet orbiting this nearby M4.5 dwarf would be significantly enhanced by the transiting nature of GJ 1214 b, the super-Earth already known to orbit the star. Basing on this observation, we have set-up an ambitious high-precision photometric monitoring of GJ 1214 with the Spitzer Space Telescope to probe its entire habitable zone in search of a transiting planet as small as Mars. We present here the results of this transit search. Unfortunately, we did not detect any second transiting pl...

  15. Minor Planet Science with the VISTA Hemisphere Survey

    Science.gov (United States)

    Popescu, M.; Licandro, J.; Morate, D.; de León, J.; Nedelcu, D. A.

    2017-03-01

    We have carried out a serendipitous search for Solar System objects imaged by the VISTA Hemisphere Survey (VHS) and have identified 230 375 valid detections for 39 947 objects. This information is available in three catalogues, entitled MOVIS. The distributions of the data in colour-colour plots show clusters identified with the different taxonomic asteroid types. Diagrams that use (Y–J) colour separate the spectral classes more effectively than any other method based on colours. In particular, the end-class members A-, D-, R-, and V-types occupy well-defined regions and can be easily identified. About 10 000 asteroids were classified taxonomically using a probabilistic approach. The distribution of basaltic asteroids across the Main Belt was characterised using the MOVIS colours: 477 V-type candidates were found, of which 244 are outside the Vesta dynamical family.

  16. On the Search For Transits of the Planets Orbiting Gl 876

    CERN Document Server

    Shankland, P D; Laughlin, G; Blank, D L; Price, A; Gary, B; Bissinger, R; Ringwald, F; White, G; Henry, G W; McGee, P; Wolf, A S; Carter, B; Lee, S; Biggs, J; Monard, B; Ashley, M C B

    2006-01-01

    We report the results of a globally coordinated photometric campaign to search for transits by the P ~ 30 d and P ~ 60 d outer planets of the 3-planet system orbiting the nearby M-dwarf Gl 876. These two planets experience strong mutual perturbations, which necessitate use of a dynamical (four-body) model to compute transit ephemerides for the system. Our photometric data have been collected from published archival sources, as well as from our photometric campaigns that were targeted to specific transit predictions. Our analysis indicates that transits by planet "c" (P ~ 30 d) do not currently occur, in concordance with the best-fit i = 50 degree co-planar configuration obtained by dynamical fits to the most recent radial velocity data for the system. Transits by planet "b" (P ~ 60 d) are not entirely ruled out by our observations, but our data indicate that it is very unlikely that they occur. Our experience with the Gl 876 system suggests that a distributed ground-based network of small telescopes can be us...

  17. An Extrasolar Planet Census with a Space-based Microlensing Survey

    CERN Document Server

    Bennett, D P; Beaulieu, J -P; Bond, I; Cheng, E; Cook, K; Friedman, S; Gaudi, B S; Gould, A; Jenkins, J; Kimble, R; Lin, D; Rich, M; Sahu, K; Tenerelli, D; Udalski, A; Yock, P

    2007-01-01

    A space-based gravitational microlensing exoplanet survey will provide a statistical census of exoplanets with masses down to 0.1 Earth-masses and orbital separations ranging from 0.5AU to infinity. This includes analogs to all the Solar System's planets except for Mercury, as well as most types of planets predicted by planet formation theories. Such a survey will provide results on the frequency of planets around all types of stars except those with short lifetimes. Close-in planets with separations < 0.5 AU are invisible to a space-based microlensing survey, but these can be found by Kepler. Other methods, including ground-based microlensing, cannot approach the comprehensive statistics on the mass and semi-major axis distribution of extrasolar planets that a space-based microlensing survey will provide. The terrestrial planet sensitivity of a ground-based microlensing survey is limited to the vicinity of the Einstein radius at 2-3 AU, and space-based imaging is needed to identify and determine the mass ...

  18. A systematic search for transiting planets in the K2 data

    CERN Document Server

    Foreman-Mackey, Daniel; Hogg, David W; Morton, Timothy D; Wang, Dun; Schölkopf, Bernhard

    2015-01-01

    Photometry of stars from the K2 extension of NASA's Kepler mission is afflicted by systematic effects caused by small (few-pixel) drifts in the telescope pointing and other spacecraft issues. We present a method for searching K2 light curves for evidence of exoplanets by simultaneously fitting for these systematics and the transit signals of interest. This method is more computationally expensive than standard search algorithms but we demonstrate that it can be efficiently implemented and used to discover transit signals. We apply this method to the full Campaign 1 dataset and report a list of 36 planet candidates transiting 31 stars, along with an analysis of the pipeline performance and detection efficiency based on artificial signal injections and recoveries. For all planet candidates, we present posterior distributions on the properties of each system based strictly on the transit observables.

  19. Habitable Worlds Around M Dwarf Stars: The CAPSCam Astrometric Planet Search

    Science.gov (United States)

    Boss, Alan P.; Weinberger, Alycia J.; Anglada-Escudé, Guillem; Thompson, Ian B.; Brahm, Rafael

    2014-04-01

    M dwarf stars are attractive targets in the search for habitable worlds as a result of their relative abundance and proximity, making them likely targets for future direct detection efforts. Hot super-Earths as well as gas giants have already been detected around a number of early M dwarfs, and the former appear to be the high-mass end of the population of rocky, terrestrial exoplanets. The Carnegie Astrometric Planet Search (CAPS) program has been underway since March 2007, searching ~ 100 nearby late M, L, and T dwarfs for gas giant planets on orbits wide enough for habitable worlds to orbit interior to them. The CAPSCam-N camera on the 2.5-m du Pont telescope at the Las Campanas Observatory has demonstrated the ability to detect planets as low in mass as Saturn orbiting at several AU around late M dwarfs within 15 pc. Over the next decade, the CAPS program will provide new constraints on the planetary census around late M dwarf stars, and hence on the suitability of these nearby planetary systems for supporting life.

  20. Search and study of lightnings on planets of the Solar System

    Science.gov (United States)

    Zakharenko, V.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Grissmeier, J.-M.; Mylostna, K.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.; Fisher, G.

    2012-04-01

    Following the recent successful identification of lightning on Saturn recorded by ground-based radio telescope UTR-2 and spasecraft Cassini, we continued to study and search for electrostatic discharges on other planets of the Solar System. With the help of the receiving equipment with high frequency and time resolution the dispersion delay of short powerful discharges was fixed in the frequency band 16.5...33.0 MHz, that uniquely allows as to distinguish the lightnings and terrestrial broadband interference. We also defined other parameters of their radio emission. Uranus, Jupiter and Venus were selected as the following objects for searching. Observations were carried out and are currently under processing.

  1. A Survey on Web Search Results Personalization

    Directory of Open Access Journals (Sweden)

    Blessy Thomas

    2015-10-01

    Full Text Available  Web is a huge information repository covering almost every topic, in which a human user could be interested. As the size and richness of information on the web increases, diversity and complexity of the tasks users tries to perform also increases. With the overwhelming volume of information on the web, the task of finding relevant information related to a specific query or topic is becoming increasingly difficult. Now a day’s commonly used task on internet is web search. User gets variety of related information for their queries. To provide more relevant and effective results to user, Personalization technique is used. Personalized web search refer to search information that is tailored specifically to a person’s interests by incorporating information about query provided. Two general types of approaches to personalizing search results are modifying user’s query and re-ranking search results. Several personalized web search techniques based on web contents, web link structure, browsing history, user profiles and user queries. This paper is to represent survey on various techniques of personalization

  2. The planet search programme at the ESO CES and HARPS. IV. The search for Jupiter analogues around solar-like stars

    CERN Document Server

    Zechmeister, M; Endl, M; Curto, G Lo; Hartman, H; Nilsson, H; Henning, T; Hatzes, A P; Cochran, W D

    2012-01-01

    In 1992 we began a precision radial velocity (RV) survey for planets around solar-like stars with the Coude Echelle Spectrograph and the Long Camera (CES LC) at the 1.4 m telescope in La Silla (Chile). We have continued the survey with the upgraded CES Very Long Camera (VLC) and HARPS, both at the 3.6 m telescope, until 2007. The observations for 31 stars cover a time span of up to 15 years and the RV precision permit a search for Jupiter analogues. We perform a joint analysis for variability, trends, periodicities, and Keplerian orbits and compute detection limits. Moreover, the HARPS RVs are analysed for correlations with activity indicators (CaII H&K and CCF shape). We achieve a long-term RV precision of 15 m/s (CES+LC, 1992-1998), 9 m/s (CES+VLC, 1999-2006), and 2.8 m/s (HARPS, 2003-2009, including archive data), resp. This enables us to confirm the known planets around Iota Hor, HR 506, and HR 3259. A steady RV trend for Eps Ind A can be explained by a planetary companion. On the other hand, we find ...

  3. Search for Close-in Planets around Evolved Stars with Phase-curve variations and Radial Velocity Measurements

    Science.gov (United States)

    Hirano, Teruyuki; Sato, Bun'ei; Masuda, Kento; Benomar, Othman Michel; Takeda, Yoichi; Omiya, Masashi; Harakawa, Hiroki

    2016-10-01

    Tidal interactions are a key process to understand the evolution history of close-in exoplanets. But tidals still have a large uncertainty in their prediction for the damping timescales of stellar obliquity and semi-major axis. We have worked on a search for transiting giant planets around evolved stars, for which few close-in planets were discovered. It has been reported that evolved stars lack close-in planets, which is often attributed to the tidal evolution and/or engulfment of close-in planets by the hosts. Meanwhile, Kepler has detected a certain fraction of transiting planet candidates around evolved stars. Confirming the planetary nature for these candidates is especially important since the comparison between the occurrence rates of close-in planets around main sequence stars and evolved stars provides a unique opportunity to discuss the final stage of close-in planets. With the aim of confirming KOI planet candidates around evolved stars, we measured precision radial velocities (RVs) for evolved stars with transiting planet candidates using Subaru/HDS. We also developed a new code which simultaneously models and fits the observed RVs and phase-curve variations in the Kepler data (e.g., transits, stellar ellipsoidal variations, and planet emission/reflected light). As a result of applying the global fit to KOI giants/subgiants, we confirmed two giant planets around evolved stars (Kepler-91 and KOI-1894), as well as revealed that KOI-977 is more likely a false positive.

  4. Planets around stars in young nearby associations *** radial Velocity searches: a feasibility study, and first results

    CERN Document Server

    Lagrange, A -M; Chauvin, G; Sterzik, M; Galland, F; Curto, G Lo; Rameau, J; Sosnowska, D

    2013-01-01

    Stars in young nearby associations are the only targets allowing giant planet searches at all separations in the near future, by coupling indirect techniques such as radial velocity and deep imaging. These stars are first priorities targets for the forthcoming planets imagers on 10-m class telescopes. Young stars rotate more rapidly and are more active than their older counterparts. Both effects can limit the capability to detect planets using RV. We wish to explore the planet detection capabilities of a representative sample of stars in close and young associations with radial velocity data and explore the complementarity between this technique and direct imaging. We observed 26 such targets with spectral types from A to K and ages from 8 to 300 Myr with HARPS. We compute the detection limits. We also attempt to improve the detection limits in a few cases by correcting for the stellar activity. Our A-type stars RV show high frequency variations due to pulsations, while our F-K stars clearly show activity wit...

  5. SPOTS: The Search for Planets Orbiting Two Stars. II. First constraints on the frequency of sub-stellar companions on wide circumbinary orbits

    Science.gov (United States)

    Bonavita, M.; Desidera, S.; Thalmann, C.; Janson, M.; Vigan, A.; Chauvin, G.; Lannier, J.

    2016-09-01

    A large number of direct imaging surveys for exoplanets have been performed in recent years, yielding the first directly imaged planets and providing constraints on the prevalence and distribution of wide planetary systems. However, like most of the radial velocity ones, these generally focus on single stars, hence binaries and higher-order multiples have not been studied to the same level of scrutiny. This motivated the Search for Planets Orbiting Two Stars (SPOTS) survey, which is an ongoing direct imaging study of a large sample of close binaries, started with VLT/NACO and now continuing with VLT/SPHERE. To complement this survey, we have identified the close binary targets in 24 published direct imaging surveys. Here we present our statistical analysis of this combined body of data. We analysed a sample of 117 tight binary systems, using a combined Monte Carlo and Bayesian approach to derive the expected values of the frequency of companions, for different values of the companion's semi-major axis. Our analysis suggest that the frequency of sub-stellar companions in wide orbit is moderately low (≲ 13% with a best value of 6% at 95% confidence level) and not significantly different between single stars and tight binaries. One implication of this result is that the very high frequency of circumbinary planets in wide orbits around post-common envelope binaries, implied by eclipse timing, cannot be uniquely due to planets formed before the common-envelope phase (first generation planets), supporting instead the second generation planet formation or a non-Keplerian origin of the timing variations.

  6. Near-infrared colors of minor planets recovered from VISTA-VHS survey (MOVIS)

    Science.gov (United States)

    Popescu, M.; Licandro, J.; Morate, D.; de León, J.; Nedelcu, D. A.; Rebolo, R.; McMahon, R. G.; Gonzalez-Solares, E.; Irwin, M.

    2016-06-01

    Context. The Sloan Digital Sky Survey (SDSS) and Wide-field Infrared Survey Explorer (WISE) provide information about the surface composition of about 100 000 minor planets. The resulting visible colors and albedos enabled us to group them in several major classes, which are a simplified view of the diversity shown by the few existing spectra. A large set of data in the 0.8-2.5 μm, where wide spectral features are expected, is required to refine and complement the global picture of these small bodies of the solar system. Aims: We aim to obtain the near-infrared colors for a large sample of solar system objects using the observations made during the VISTA-VHS survey. Methods: We performed a serendipitous search in VISTA-VHS observations using a pipeline developed to retrieve and process the data that corresponds to solar system objects (SSo). The resulting photometric data is analyzed using color-color plots and by comparison with the known spectral properties of asteroids. Results: The colors and the magnitudes of the minor planets observed by the VISTA survey are compiled into three catalogs that are available online: the detections catalog (MOVIS-D), the magnitudes catalog (MOVIS-M), and the colors catalog (MOVIS-C). They were built using the third data release of the survey (VISTA VHS-DR3). A total of 39 947 objects were detected, including 52 NEAs, 325 Mars Crossers, 515 Hungaria asteroids, 38 428 main-belt asteroids, 146 Cybele asteroids, 147 Hilda asteroids, 270 Trojans, 13 comets, 12 Kuiper Belt objects and Neptune with its four satellites. The colors found for asteroids with known spectral properties reveal well-defined patterns corresponding to different mineralogies. The distributions of MOVIS-C data in color-color plots shows clusters identified with different taxonomic types. All the diagrams that use (Y - J) color separate the spectral classes more effectively than the (J - H) and (H - Ks) plots used until now: even for large color errors (types

  7. The SOPHIE search for northern extrasolar planets. IV. Massive companions in the planet-brown dwarf boundary

    Science.gov (United States)

    Díaz, R. F.; Santerne, A.; Sahlmann, J.; Hébrard, G.; Eggenberger, A.; Santos, N. C.; Moutou, C.; Arnold, L.; Boisse, I.; Bonfils, X.; Bouchy, F.; Delfosse, X.; Desort, M.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Lovis, C.; Pepe, F.; Perrier, C.; Queloz, D.; Ségransan, D.; Udry, S.; Vidal-Madjar, A.

    2012-02-01

    Context. The mass domain where massive extrasolar planets and brown dwarfs lie is still poorly understood. Indeed, not even a clear dividing line between massive planets and brown dwarfs has been established yet. This is partly because these objects are very scarce in close orbits around solar-type stars, the so-called brown dwarf desert. Owing to this, it has proven difficult to set up a strong observational base with which to compare models and theories of formation and evolution. Aims: We search to increase the current sample of massive sub-stellar objects with precise orbital parameters, and to constrain the true mass of detected sub-stellar candidates. Methods: The initial identification of sub-stellar candidates was made using precise radial velocity measurements obtained with the SOPHIE spectrograph at the 1.93-m telescope of the Haute-Provence Observatory. Subsequent characterisation of these candidates, with the principal aim of identifying stellar companions in low-inclination orbits, was made by means of different spectroscopic diagnostics such as the measurement of the bisector velocity span and the study of the correlation mask effect. With this objective, we also employed astrometric data from the Hipparcos mission, and a novel method of simulating stellar cross-correlation functions. Results: Seven new objects with minimum masses between ~10 MJup and ~90 MJup are detected. Out of these, two are identified as low-mass stars in low-inclination orbits, and two others have masses below the theoretical deuterium-burning limit, and are therefore planetary candidates. The remaining three are brown dwarf candidates; the current upper limits for their the masses do not allow us to conclude on their nature. Additionally, we have improved the parameters of an already-known brown dwarf (HD 137510b), confirmed by astrometry. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by

  8. A BCool survey of the magnetic fields of planet-hosting solar-type stars

    Science.gov (United States)

    Mengel, M. W.; Marsden, S. C.; Carter, B. D.; Horner, J.; King, R.; Fares, R.; Jeffers, S. V.; Petit, P.; Vidotto, A. A.; Morin, J.; BCool Collaboration

    2017-03-01

    We present a spectropolarimetric snapshot survey of solar-type planet-hosting stars. In addition to 14 planet-hosting stars observed as part of the BCool magnetic snapshot survey, we obtained magnetic observations of a further 19 planet-hosting solar-type stars in order to see if the presence of close-in planets had an effect on the measured surface magnetic field (|Bℓ|). Our results indicate that the magnetic activity of this sample is congruent with that of the overall BCool sample. The effects of the planetary systems on the magnetic activity of the parent star, if any, are too subtle to detect compared to the intrinsic dispersion and correlations with rotation, age and stellar activity proxies in our sample. Four of the 19 newly observed stars, two of which are subgiants, have unambiguously detected magnetic fields and are future targets for Zeeman-Doppler mapping.

  9. A BCool survey of the magnetic fields of planet-hosting solar-type stars

    CERN Document Server

    Mengel, M W; Carter, B D; Horner, J; King, R; Fares, R; Jeffers, S V; Petit, P; Vidotto, A A; Morin, J

    2016-01-01

    We present a spectropolarimetric snapshot survey of solar-type planet hosting stars. In addition to 14 planet-hosting stars observed as part of the BCool magnetic snapshot survey, we obtained magnetic observations of a further 19 planet-hosting solar-type stars in order to see if the presence of close-in planets had an effect on the measured surface magnetic field (|B$_{\\ell}$|). Our results indicate that the magnetic activity of this sample is congruent with that of the overall BCool sample. The effects of the planetary systems on the magnetic activity of the parent star, if any, are too subtle to detect compared to the intrinsic dispersion and correlations with rotation, age and stellar activity proxies in our sample. Four of the 19 newly observed stars, two of which are subgiants, have unambiguously detected magnetic fields and are future targets for Zeeman Doppler Mapping.

  10. The Transiting Exoplanet Survey Satellite: Simulations of planet detections and astrophysical false positives

    CERN Document Server

    Sullivan, Peter W; Berta-Thompson, Zachory K; Charbonneau, David; Deming, Drake; Dressing, Courtney D; Latham, David W; Levine, Alan M; McCullough, Peter R; Morton, Timothy; Ricker, George R; Vanderspek, Roland; Woods, Deborah

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a NASA-sponsored Explorer mission that will perform a wide-field survey for planets that transit bright host stars. Here, we predict the properties of the transiting planets that TESS will detect along with the eclipsing binary stars that produce false-positive photometric signals. The predictions are based on Monte Carlo simulations of the nearby population of stars, occurrence rates of planets derived from Kepler, and models for the photometric performance and sky coverage of the TESS cameras. We expect that TESS will find approximately 1700 transiting planets from 200,000 pre-selected target stars. This includes 556 planets smaller than twice the size of Earth, of which 419 are hosted by M dwarf stars and 137 are hosted by FGK dwarfs. Approximately 130 of the R < 2 R_Earth planets will have host stars brighter than K = 9. Approximately 48 of the planets with R < 2 R_Earth lie within or near the habitable zone (0.2 < S/S_Earth < 2), and between...

  11. VizieR Online Data Catalog: Final Kepler transiting planet search (DR25) (Twicken+, 2016)

    Science.gov (United States)

    Twicken, J. D.; Jenkins, J. M.; Seader, S. E.; Tenenbaum, P.; Smith, J. C.; Brownston, L. S.; Burke, C. J.; Catanzarite, J. H.; Clarke, B. D.; Cote, M. T.; Girouard, F. R.; Klaus, T. C.; Li, J.; McCauliff, S. D.; Morris, R. L.; Wohler, B.; Campbell, J. R.; Uddin, A. K.; Zamudio, K. A.; Sabale, A.; Bryson, S. T.; Caldwell, D. A.; Christiansen, J. L.; Coughlin, J. L.; Haas, M. R.; Henze, C. E.; Sanderfer, D. T.; Thompson, S. E.

    2017-01-01

    The Kepler spacecraft is in an Earth-trailing heliocentric orbit and maintained a boresight pointing centered on α=19h22m40s, δ=+44.5° during the primary mission. The Kepler photometer acquired data on a 115-square-degree region of the sky. The data were acquired on 29.4-minute intervals, colloquially known as "long cadences". Long-cadence pixel values were obtained by accumulating 270 consecutive 6.02s exposures. Science acquisition of Q1 data began at 2009-05-13 00:01:07Z, and acquisition of Q17 data concluded at 2013-05-11 12:16:22Z. This time period contains 71427 long-cadence intervals. A total of 198709 targets observed by Kepler were searched for evidence of transiting planets in the final Q1-Q17 pipeline run (see Table1). The results of past Kepler Mission transiting planet searches have been presented in Tenenbaum et al. 2012 (Cat. J/ApJS/199/24) for Quarter 1 through Quarter 3 (i.e., Q1-Q3), Tenenbaum et al. 2013ApJS..206....5T for Q1-Q12, Tenenbaum et al. 2014ApJS..211....6T for Q1-Q16, and Seader et al. 2015 (Cat. J/ApJS/217/18) for Q1-Q17. We now present results of the final Kepler transiting planet search encompassing the complete 17-quarter primary mission. The data release for the final Q1-Q17 pipeline processing is referred to as Data Release 25 (DR25). (3 data files).

  12. The HARPS search for southern extra-solar planets. X. A m sin i = 11 Mearth planet around the nearby spotted M dwarf GJ 674

    CERN Document Server

    Bonfils, X; Delfosse, X; Forveille, T; Gillon, M; Perrier, C; Udry, S; Bouchy, F; Lovis, C; Pepe, F; Queloz, D; Santos, N C; Bertaux, J -L

    2007-01-01

    Context: How planet properties depend on stellar mass is a key diagnostic of planetary formation mechanisms. Aims: This motivates planet searches around stars which are significantly more massive or less massive than the Sun, and in particular our radial velocity search for planets around very-low mass stars. Methods: As part of that program, we obtained measurements of GJ 674, an M2.5 dwarf at d=4.5 pc, which have a dispersion much in excess of their internal errors. An intensive observing campaign demonstrates that the excess dispersion is due to two superimposed coherent signals, with periods of 4.69 and 35 days. Results: These data are well described by a 2-planet Keplerian model where each planet has a ~11 Mearth minimum mass. A careful analysis of the (low level) magnetic activity of GJ 674 however demonstrates that the 35-day period coincides with the stellar rotation period. This signal therefore originates in a spot inhomogeneity modulated by stellar rotation. The 4.69-day signal on the other hand is...

  13. The Pan-Pacific Planet Search. II. Confirmation of a two-planet system around HD 121056

    CERN Document Server

    Wittenmyer, Robert A; Liu, Fan; Horner, Jonathan; Endl, Michael; Johnson, John Asher; Tinney, C G; Carter, B D

    2014-01-01

    Precise radial velocities from the Anglo-Australian Telescope confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P=89.1+/-0.1 days, and m sin i=1.35+/-0.17 Mjup. These data also confirm the planetary nature of the outer companion, with m sin i=3.9+/-0.6 Mjup and a=2.96+/-0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet.

  14. THE PAN-PACIFIC PLANET SEARCH. II. CONFIRMATION OF A TWO-PLANET SYSTEM AROUND HD 121056

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Tinney, C. G. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Liang [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Fan [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Horner, Jonathan [Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW 2052 (Australia); Endl, Michael [McDonald Observatory, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Johnson, John Asher [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Carter, B. D., E-mail: rob@unsw.edu.au [Computational Engineering and Science Research Centre, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia)

    2015-02-10

    Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 M{sub Jup}. These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 M{sub Jup} and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet.

  15. Gemini Planet Imager Exoplanet Survey: Key Results Two Years Into The Survey

    Science.gov (United States)

    Marchis, Franck; Rameau, Julien; Nielsen, Eric L.; De Rosa, Robert J.; Esposito, Thomas; Draper, Zachary H.; Macintosh, Bruce; Graham, James R.; GPIES

    2016-10-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is targeting 600 young, nearby stars using the GPI instrument. We report here on recent results obtained with this instrument from our team.Rameau et al. (ApJL, 822 2, L2, 2016) presented astrometric monitoring of the young exoplanet HD 95086 b obtained with GPI between 2013 and 2016. Efficient Monte Carlo techniques place preliminary constraints on the orbital parameters of HD 95086 b. Under the assumption of a coplanar planet-disk system, the periastron of HD 95086 b is beyond 51 AU. Therefore, HD 95086 b cannot carve the entire gap inferred from the measured infrared excess in the SED of HD 95086. Additional photometric and spectroscopic measurements reported by de Rosa et al. (2016, apJ, in press) showed that the spectral energy distribution of HD 95086 b is best fit by low temperature (T~800-1300 K), low surface gravity spectra from models which simulate high photospheric dust content. Its temperature is typical to L/T transition objects, but the spectral type is poorly constrained. HD 95086 b is an important exoplanet to test our models of atmospheric properties of young extrasolar planets.Direct detections of debris disk are keys to infer the collisional past and understand the formation of planetary systems. Two debris disks were recently studied with GPI:- Draper et al. (submitted to ApJ, 2016) show the resolved circumstellar debris disk around HD 111520 at a projected range of ~30-100 AU using both total and polarized H-band intensity. Structures in the disks such as a large brightness asymmetry and symmetric polarization fraction are seen. Additional data would confirm if a large disruption event from a stellar fly-by or planetary perturbations altered the disk density- Esposito et al. (submitted to ApJ, 2016) combined Keck NIRC2 data taken at 1.2-2.3 microns and GPI 1.6 micron total intensity and polarized light detections that probes down to projected separations less than 10 AU to show that the HD

  16. The solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, John C. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Henry, Todd J.; Ianna, Philip A. [RECONS Institute, Chambersburg, PA 17201 (United States); Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Koerner, David W. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011 (United States); Riedel, Adric R. [Department of Astrophysics, American Museum of Natural History, New York, NY 10034 (United States); Subasavage, John P., E-mail: lurie@uw.edu [United States Naval Observatory, Flagstaff, AZ 86001 (United States)

    2014-11-01

    Astrometric measurements are presented for seven nearby stars with previously detected planets: six M dwarfs (GJ 317, GJ 667C, GJ 581, GJ 849, GJ 876, and GJ 1214) and one K dwarf (BD-10 -3166). Measurements are also presented for six additional nearby M dwarfs without known planets, but which are more favorable to astrometric detections of low mass companions, as well as three binary systems for which we provide astrometric orbit solutions. Observations have baselines of 3 to 13 years, and were made as part of the RECONS long-term astrometry and photometry program at the CTIO/SMARTS 0.9 m telescope. We provide trigonometric parallaxes and proper motions for all 16 systems, and perform an extensive analysis of the astrometric residuals to determine the minimum detectable companion mass for the 12 M dwarfs not having close stellar secondaries. For the six M dwarfs with known planets, we are not sensitive to planets, but can rule out the presence of all but the least massive brown dwarfs at periods of 2–12 years. For the six more astrometrically favorable M dwarfs, we conclude that none have brown dwarf companions, and are sensitive to companions with masses as low as 1 M{sub Jup} for periods longer than two years. In particular, we conclude that Proxima Centauri has no Jovian companions at orbital periods of 2–12 years. These results complement previously published M dwarf planet occurrence rates by providing astrometrically determined upper mass limits on potential super-Jupiter companions at orbits of two years and longer. As part of a continuing survey, these results are consistent with the paucity of super-Jupiter and brown dwarf companions we find among the over 250 red dwarfs within 25 pc observed longer than five years in our astrometric program.

  17. A Search for Lost Planets in the Kepler Multi-planet Systems and the Discovery of the Long-period, Neptune-sized Exoplanet Kepler-150 f

    Science.gov (United States)

    Schmitt, Joseph R.; Jenkins, Jon M.; Fischer, Debra A.

    2017-04-01

    The vast majority of the 4700 confirmed planets (CPs) and planet candidates discovered by the Kepler mission were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a “Swiss cheese”-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or “lost”). We examine a sample of 114 stars with 3+ CPs to evaluate the effect of this “Swiss cheesing.” A simulation determines that the probability that a transiting planet is lost due to the transit masking is low, but non-negligible, reaching a plateau at ˜3.3% lost in the period range of P = 400-500 days. We then model all planet transits and subtract out the transit signals for each star, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipeline’s choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet (Kepler-150 f) and a potential single transit of a likely false positive (FP) (Kepler-208). Kepler-150 f (P = 637.2 days, {R}{{P}}={3.64}-0.39+0.52 R⊕) is confirmed with >99.998% confidence using a combination of the planet multiplicity argument, an FP probability analysis, and a transit duration analysis.

  18. A mid-infrared search for substellar companions of nearby planet-host stars

    Energy Technology Data Exchange (ETDEWEB)

    Hulsebus, A.; Marengo, M. [Department of Physics and Astronomy, 12 Physics Hall, Iowa State University, Ames, IA 50010 (United States); Carson, J. [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Stapelfeldt, K. [Exoplanets and Stellar Astrophysics Laboratory, Code 667, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-03-20

    Determining the presence of widely separated substellar-mass companion is crucial to understand the dynamics of inner planets in extrasolar planetary systems (e.g., to explain their high mean eccentricity as inner planets are perturbed by the Kozai mechanism). We report the results of our Spitzer/Infrared Array Camera (IRAC) imaging search for widely separated (10''-25'') substellar-mass companions for 14 planet-host stars within 15 pc of the Sun. Using deep 3.6 and 4.5 μm observations in subarray mode, we found one object in the field of 47 UMa with [3.6]–[4.5] color similar to a T5 dwarf, which is, however, unlikely to share common proper motion with 47 UMa. We also found three objects with brown-dwarf-like [3.6]–[4.5] color limits in the fields of GJ 86, HD 160691, and GJ 581, as well as another in the field of HD 69830 for which we have excluded common proper motion. We provide model-based upper mass limits for unseen objects around all stars in our sample, with typical sensitivity to 10 M {sub J} objects from a projected separation of 50-300 AU from the parent star. We also discuss our data analysis methods for point-spread-function subtraction, image co-alignment, and artifact subtraction of IRAC subarray images.

  19. A Mid-Infrared Search for Substellar Companions of Nearby Planet-Host Stars

    CERN Document Server

    Hulsebus, Alan; Carson, Joe; Stapelfeldt, Karl

    2014-01-01

    Determining the presence of widely separated substellar-mass companion is crucial to understand the dynamics of inner planets in extrasolar planetary systems (e.g. to explain their high mean eccentricity as inner planets are perturbed by the Kozai mechanism). We report the results of our $\\textit{Spitzer}$/Infrared Array Camera (IRAC) imaging search for widely separated (10 to 25$^{\\prime\\prime}$) substellar-mass companions for 14 planet-host stars within 15 pc of the Sun. Using deep 3.6 and 4.5 $\\mu$m observations in subarray mode, we found one object in the field of 47 UMa with [3.6]$-$[4.5] color similar to a T5 dwarf, which is, however, unlikely to share common proper motion with 47 UMa. We also found three objects with brown-dwarf-like [3.6]$-$[4.5] color limits in the fields of GJ 86, HD 160691, and GJ 581, as well as another in the field of HD 69830 for which we have excluded common proper motion. We provide model-based upper mass limits for unseen objects around all stars in our sample, with typical s...

  20. MINING PLANET SEARCH DATA FOR BINARY STARS: THE ψ{sup 1} DRACONIS SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Gullikson, Kevin; Endl, Michael; Cochran, William D.; MacQueen, Phillip J., E-mail: kgulliks@astro.as.utexas.edu [University of Texas, Astronomy Department, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States)

    2015-12-10

    Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to ψ{sup 1} Draconis A, which has a known roughly equal-mass companion at ∼680 AU. We measure the mass of ψ{sup 1} Draconis C as M{sub 2} = 0.70 ± 0.07M{sub ⊙}, with an orbital period of ∼20 years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.

  1. Mining Planet Search Data for Binary Stars: The $\\psi^1$ Draconis system

    CERN Document Server

    Gullikson, Kevin; Cochran, William D; MacQueen, Phillip J

    2015-01-01

    Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to $\\psi^1$ Draconis A, which has a known roughly equal-mass companion at ${\\sim}680$ AU. We measure the mass of $\\psi^1$ Draconis C as $M_2 = 0.70 \\pm 0.07 M_{\\odot}$, with an orbital period of ${\\sim}20$ years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.

  2. Mining Planet Search Data for Binary Stars: The ψ1 Draconis system

    Science.gov (United States)

    Gullikson, Kevin; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.

    2015-12-01

    Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to ψ1 Draconis A, which has a known roughly equal-mass companion at ∼680 AU. We measure the mass of ψ1 Draconis C as M2 = 0.70 ± 0.07M⊙, with an orbital period of ∼20 years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.

  3. Planets across the HR diagram with the Transiting Exoplanet Survey Satellite Full Frame Images

    Science.gov (United States)

    Huang, Xu; Pal, Andras; Wall, Matthew; Liang, Yu; Levine, Alan M.; Owens, Martin; Kraft Vanderspek, Roland; Seager, Sara; Ricker, George R.; TESS Science Team

    2017-06-01

    Discoveries from the Kepler Mission have revealed that planets close to their host stars are common, despite none in our solar system. The Transiting Exoplanet Survey Satellite (TESS) will perform a wide-field survey for planets over ~75%of the sky for the first time. The 30 min cadence TESS Full Frame Images (FFI) will provide observations of more than 10 million stars brighter than magnitude I=16. The FFI targets include stars from all spectral classes, with ages spanning the range ~10 Myr to ~10 Gyr and with metallicities ranging over more than 1 dex.The FFIs will provide an all-sky magnitude limited sample of short period planetary systems. The precision of TESS will enable planet to be discovered around stars ranging from M-dwarfs, to B-dwarfs. In contrast, the Kepler sample is restricted primarily to main-sequence FGK systems, while the TESS short cadence (2 min) stamps will be centered about cooler stars. We present the current status of the TESS full frame image (FFI) photometry and candidate detection pipeline. We update the predicted detection rates of sub-Neptunes, super-Neptunes and giant planets using simulated TESS images with realistic noise characteristics. We expect that TESS will find more than 20000 planets with sizes larger than 2 Earth radius around stars with very diverse properties. We discuss how these findings will help resolve many long standing questions, including the planet occurrence rateas a function of stellar mass, metallicity, and age. Many of these TESS planets will be suitable for ground-based follow up observations that willestablish masses, orbital obliquities and eccentricities, which will help improve our understanding of the formation channels of theseclose-in planets.

  4. Search for giant planets in M67. III. Excess of hot Jupiters in dense open clusters

    Science.gov (United States)

    Brucalassi, A.; Pasquini, L.; Saglia, R.; Ruiz, M. T.; Bonifacio, P.; Leão, I.; Canto Martins, B. L.; de Medeiros, J. R.; Bedin, L. R.; Biazzo, K.; Melo, C.; Lovis, C.; Randich, S.

    2016-07-01

    Since 2008 we used high-precision radial velocity (RV) measurements obtained with different telescopes to detect signatures of massive planets around main-sequence and evolved stars of the open cluster (OC) M67. We aimed to perform a long-term study on giant planet formation in open clusters and determine how this formation depends on stellar mass and chemical composition. A new hot Jupiter (HJ) around the main-sequence star YBP401 is reported in this work. An update of the RV measurements for the two HJ host-stars YBP1194 and YBP1514 is also discussed. Our sample of 66 main-sequence and turnoff stars includes 3 HJs, which indicates a high rate of HJs in this cluster (5.6% for single stars and 4.5%% for the full sample). This rate is much higher than what has been discovered in the field, either with RV surveys or by transits. High metallicity is not a cause for the excess of HJs in M67, nor can the excess be attributed to high stellar masses. When combining this rate with the non-zero eccentricity of the orbits, our results are qualitatively consistent with a HJ formation scenario dominated by strong encounters with other stars or binary companions and subsequent planet-planet scattering, as predicted by N-body simulations. Based on observations collected at the ESO 3.6 m telescope (La Silla), at the 1.93 m telescope of the Observatoire de Haute-Provence (OHP), at the Hobby Eberly Telescope (HET), at the Telescopio Nazionale Galileo (TNG, La Palma) and at the Euler Swiss Telescope.

  5. THE McDONALD OBSERVATORY PLANET SEARCH: NEW LONG-PERIOD GIANT PLANETS AND TWO INTERACTING JUPITERS IN THE HD 155358 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Brugamyer, Erik J.; Barnes, Stuart I.; Caldwell, Caroline [Department of Astronomy and McDonald Observatory, University of Texas at Austin, Austin, TX 78712 (United States); Wittenmyer, Robert A.; Horner, J. [Department of Astrophysics and Optics, School of Physics, University of New South Wales, Sydney NSW 2052 (Australia); Simon, Attila E., E-mail: paul@astro.as.utexas.edu [Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary)

    2012-04-10

    We present high-precision radial velocity (RV) observations of four solar-type (F7-G5) stars-HD 79498, HD 155358, HD 197037, and HD 220773-taken as part of the McDonald Observatory Planet Search Program. For each of these stars, we see evidence of Keplerian motion caused by the presence of one or more gas giant planets in long-period orbits. We derive orbital parameters for each system and note the properties (composition, activity, etc.) of the host stars. While we have previously announced the two-gas-giant HD 155358 system, we now report a shorter period for planet c. This new period is consistent with the planets being trapped in mutual 2:1 mean-motion resonance. We therefore perform an in-depth stability analysis, placing additional constraints on the orbital parameters of the planets. These results demonstrate the excellent long-term RV stability of the spectrometers on both the Harlan J. Smith 2.7 m telescope and the Hobby-Eberly telescope.

  6. New Planetary Systems from the Calan-Hertfordshire Extrasolar Planet Search and the Core Accretion Mass Limit

    CERN Document Server

    Jenkins, J S; Tuomi, M; Díaz, M; Cordero, J P; Aguayo, A; Pantoja, B; Arriagada, P; Mahu, R; Brahm, R; Rojo, P; Soto, M G; Ivanyuk, O; Yoma, N Becerra; Day-Jones, A C; Ruiz, M T; Pavlenko, Y V; Barnes, J R; Murgas, F; Pinfield, D J; Jones, M I; López-Morales, M; Shectman, S; Butler, R P; Minniti, D

    2016-01-01

    We report the discovery of eight new giant planets, and updated orbits for four known planets, orbiting dwarf and subgiant stars, using the CORALIE, HARPS, and MIKE instruments as part of the Calan-Hertfordshire Extrasolar Planet Search. We include radial velocity data prior- and post-2014 CORALIE upgrade and our Bayesian updating method returned a systematic offset of 19.2$\\pm$4.8 m/s between the two velocity sets for our stars. The planets have masses in the range 1.1-5.4M$_{\\rm{J}}$s, orbital periods from 40-2900 days, and eccentricities from 0.0-0.6. They include a double-planet system orbiting the most massive star in our sample (HD147873), two eccentric giant planets (HD128356$b$ and HD154672$b$), and a rare 14~Herculis analogue (HD224538$b$). We find that there is an over-abundance of Jupiter-mass objects compared to a simple power law fit to the mass function, with a steep increase in the planet frequency around 3M$_{\\rm{J}}$, reflecting the increased efficiency of planet formation towards lower masse...

  7. New Uses for the Kepler Telescope: A Survey of the Ecliptic Plane For Transiting Planets and Star Formation

    CERN Document Server

    Beichman, Charles; Akeson, Rachel; Plavchan, Peter; Howell, Steve; Christiansen, Jesse; Kane, Stephen; Cody, Ann Marie; Stauffer, John; Vasisht, Gautam; Covey, Kevin

    2013-01-01

    With the loss of two reaction wheels, the period of Kepler's ultra-high precision photometric performance is at an end. Yet Kepler retains unique capabilities impossible to replicate from the ground or with existing or future space missions. This White Paper calls for the use of Kepler to conduct a survey in the ecliptic plane to search for planet transits around stars at high galactic latitudes and to study star forming regions to investigate physics of very young stars not studied by Kepler in its prime mission. Even with reduced photometric precision, Kepler's 1 m aperture will enable it to survey faint M stars to find ice giants and Super Earths in Habitable Zone orbits.

  8. Objects in Kepler's Mirror May be Larger Than They Appear: Bias and Selection Effects in Transiting Planet Surveys

    CERN Document Server

    Gaidos, Eric

    2012-01-01

    Statistical analyses of large surveys for transiting planets such as the Kepler mission must account for systematic errors and biases. Transit detection depends not only on the planet's radius and orbital period, but also on host star properties. Thus, a sample of stars with transiting planets may not accurately represent the target population. Moreover, targets are selected using criteria such as a limiting apparent magnitude. These selection effects, combined with uncertainties in stellar radius, lead to biases in the properties of transiting planets and their host stars. We quantify possible biases in the Kepler survey. First, Eddington bias produced by a steep planet radius distribution and uncertainties in stellar radius results in a 15-20% overestimate of planet occurrence. Second, the magnitude limit of the Kepler target catalog induces Malmquist bias towards large, more luminous stars and underestimation of the radii of about one third of candidate planets, especially those larger than Neptune. Third,...

  9. OPUS - Outer Planets Unified Search with Enhanced Surface Geometry Parameters - Not Just for Rings

    Science.gov (United States)

    Gordon, Mitchell; Showalter, Mark Robert; Ballard, Lisa; Tiscareno, Matthew S.; Heather, Neil

    2016-10-01

    In recent years, with the massive influx of data into the PDS from a wide array of missions and instruments, finding the precise data you need has been an ongoing challenge. For remote sensing data obtained from Jupiter to Pluto, that challenge is being addressed by the Outer Planets Unified Search, more commonly known as OPUS.OPUS is a powerful search tool available at the PDS Ring-Moon Systems Node (RMS) - formerly the PDS Rings Node. While OPUS was originally designed with ring data in mind, its capabilities have been extended to include all of the targets within an instrument's field of view. OPUS provides preview images of search results, and produces a zip file for easy download of selected products, including a table of user specified metadata. For Cassini ISS and Voyager ISS we have generated and include calibrated versions of every image.Currently OPUS supports data returned by Cassini ISS, UVIS, VIMS, and CIRS (Saturn data through June 2010), New Horizons Jupiter LORRI, Galileo SSI, Voyager ISS and IRIS, and Hubble (ACS, WFC3 and WFPC2).At the RMS Node, we have developed and incorporated into OPUS detailed geometric metadata, based on the most recent SPICE kernels, for all of the bodies in the Cassini Saturn observations. This extensive set of geometric metadata is unique to the RMS Node and enables search constraints such as latitudes and longitudes (Saturn, Titan, and icy satellites), viewing and illumination geometry (phase, incidence and emission angles), and distances and resolution.Our near term plans include adding the full set of Cassini CIRS Saturn data (with enhanced geometry), New Horizons MVIC Jupiter encounter images, New Horizons LORRI and MVIC Pluto data, HST STIS observations, and Cassini and Voyager ring occultations. We also plan to develop enhanced geometric metadata for the New Horizons LORRI and MVIC instruments for both the Jupiter and the Pluto encounters.OPUS: http://pds-rings.seti.org/search/

  10. A Deep Search for Additional Satellites around the Dwarf Planet Haumea

    CERN Document Server

    Burkhart, Luke D; Brown, Michael E

    2016-01-01

    Haumea is a dwarf planet with two known satellites, an unusually high spin rate, and a large collisional family, making it one of the most interesting objects in the outer solar system. A fully self-consistent formation scenario responsible for the satellite and family formation is still elusive, but some processes predict the initial formation of many small moons, similar to the small moons recently discovered around Pluto. Deep searches for regular satellites around KBOs are difficult due to observational limitations, but Haumea is one of the few for which sufficient data exist. We analyze Hubble Space Telescope (HST) observations, focusing on a ten-consecutive-orbit sequence obtained in July 2010, to search for new very small satellites. To maximize the search depth, we implement and validate a non-linear shift-and-stack method. No additional satellites of Haumea are found, but by implanting and recovering artificial sources, we characterize our sensitivity. At distances between $\\sim$10,000 km and $\\sim$3...

  11. ASTEP South: An Antarctic Search for Transiting Planets around the celestial South pole

    CERN Document Server

    Crouzet, Nicolas; Blazit, Alain; Bonhomme, Serge; Fanteï-Caujolle, Yan; Fressin, François; Guillot, Tristan; Schmider, François-Xavier; Valbousquet, Franck; Bondoux, Erick; Challita, Zalpha; Abe, Lyu; Daban, Jean-Baptiste; Gouvret, Carole

    2008-01-01

    ASTEP South is the first phase of the ASTEP project that aims to determine the quality of Dome C as a site for future photometric searches for transiting exoplanets and discover extrasolar planets from the Concordia base in Antarctica. ASTEP South consists of a front-illuminated 4k x 4k CCD camera, a 10 cm refractor, and a simple mount in a thermalized enclosure. A double-glass window is used to reduce temperature variations and its accompanying turbulence on the optical path. The telescope is fixed and observes a 4 x 4 square degrees field of view centered on the celestial South pole. With this design, A STEP South is very stable and observes with low and constant airmass, both being important issues for photometric precision. We present the project, we show that enough stars are present in our field of view to allow the detection of one to a few transiting giant planets, and that the photometric precision of the instrument should be a few mmag for stars brighter than magnitude 12 and better than 10 mmag for...

  12. The Pan-Pacific Planet Search V. Fundamental Parameters for 164 Evolved Stars

    CERN Document Server

    Wittenmyer, Robert A; Wang, Liang; Casagrande, Luca; Johnson, John Asher; Tinney, C G

    2016-01-01

    We present spectroscopic stellar parameters for the complete target list of 164 evolved stars from the Pan-Pacific Planet Search, a five-year radial velocity campaign using the 3.9m Anglo-Australian Telescope. For 87 of these bright giants, our work represents the first determination of their fundamental parameters. Our results carry typical uncertainties of 100 K, 0.15 dex, and 0.1 dex in $T_{\\rm eff}$, $\\log g$, and [Fe/H] and are consistent with literature values where available. The derived stellar masses have a mean of $1.31^{+0.28}_{-0.25}$ Msun, with a tail extending to $\\sim$2 Msun, consistent with the interpretation of these targets as "retired" A-F type stars.

  13. The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen

    CERN Document Server

    Hebrard, G; Forveille, T; Correia, A C M; Laskar, J; Bonfils, X; Boisse, I; Diaz, R F; Hagelberg, J; Sahlmann, J; Santos, N C; Astudillo-Defru, N; Borgniet, S; Bouchy, F; Bourrier, V; Courcol, B; Delfosse, X; Deleuil, M; Demangeon, O; Ehrenreich, D; Gregorio, J; Jovanovic, N; Labrevoir, O; Lagrange, A -M; Lovis, C; Lozi, J; Moutou, C; Montagnier, G; Pepe, F; Rey, J; Santerne, A; Segransan, D; Udry, S; Vanhuysse, M; Vigan, A; Wilson, P A

    2016-01-01

    We present new radial velocity measurements of eight stars secured with the spectrograph SOPHIE at the 193-cm telescope of the Haute-Provence Observatory allowing the detection and characterization of new giant extrasolar planets. The host stars are dwarfs of spectral types between F5 and K0 and magnitudes between 6.7 and 9.6; the planets have minimum masses M_p sin i between 0.4 to 3.8 M_Jup and orbital periods of several days to several months. The data allow only single planets to be discovered around the first six stars (HD143105, HIP109600, HD35759, HIP109384, HD220842, and HD12484), but one of them shows the signature of an additional substellar companion in the system. The seventh star, HIP65407, allows the discovery of two giant planets, just outside the 12:5 resonance in weak mutual interaction. The last star, HD141399, was already known to host a four-planetary system; our additional data and analyses allow new constraints to be put on it. We present Keplerian orbits of all systems, together with dy...

  14. The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen

    Science.gov (United States)

    Hébrard, G.; Arnold, L.; Forveille, T.; Correia, A. C. M.; Laskar, J.; Bonfils, X.; Boisse, I.; Díaz, R. F.; Hagelberg, J.; Sahlmann, J.; Santos, N. C.; Astudillo-Defru, N.; Borgniet, S.; Bouchy, F.; Bourrier, V.; Courcol, B.; Delfosse, X.; Deleuil, M.; Demangeon, O.; Ehrenreich, D.; Gregorio, J.; Jovanovic, N.; Labrevoir, O.; Lagrange, A.-M.; Lovis, C.; Lozi, J.; Moutou, C.; Montagnier, G.; Pepe, F.; Rey, J.; Santerne, A.; Ségransan, D.; Udry, S.; Vanhuysse, M.; Vigan, A.; Wilson, P. A.

    2016-04-01

    We present new radial velocity measurements of eight stars that were secured with the spectrograph SOPHIE at the 193 cm telescope of the Haute-Provence Observatory. The measurements allow detecting and characterizing new giant extrasolar planets. The host stars are dwarfs of spectral types between F5 and K0 and magnitudes of between 6.7 and 9.6; the planets have minimum masses Mp sin i of between 0.4 to 3.8 MJup and orbitalperiods of several days to several months. The data allow only single planets to be discovered around the first six stars (HD 143105, HIP 109600, HD 35759, HIP 109384, HD 220842, and HD 12484), but one of them shows the signature of an additional substellar companion in the system. The seventh star, HIP 65407, allows the discovery of two giant planets that orbit just outside the 12:5 resonance in weak mutual interaction. The last star, HD 141399, was already known to host a four-planet system; our additional data and analyses allow new constraints to be set on it. We present Keplerian orbits of all systems, together with dynamical analyses of the two multi-planet systems. HD 143105 is one of the brightest stars known to host a hot Jupiter, which could allow numerous follow-up studies to be conducted even though this is not a transiting system. The giant planets HIP 109600b, HIP 109384b, and HD 141399c are located in the habitable zone of their host star. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium (programs 07A.PNP.CONS to 15A.PNP.CONS).Full version of the SOPHIE measurements (Table 1) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A145

  15. The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems

    CERN Document Server

    Janson, Markus; Moro-Martin, Amaya; Usuda, Tomonori; Thalmann, Christian; Carson, Joseph C; Goto, Miwa; Currie, Thayne; McElwain, M W; Itoh, Yoichi; Fukagawa, Misato; Crepp, Justin; Kuzuhara, Masayuki; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Egner, Sebastian; Feldt, Markus; Grady, Carol A; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiro; Hayashi, Saeko; Henning, Thomas; Hodapp, Klaus W; Ishii, Miki; Iye, Masanori; Kandori, Ryo; Knapp, Gillian R; Kwon, Jungmi; Matsuo, Taro; Miyama, Shoken; Morino, Jun-Ichi; Nishimura, Tetsuro; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Tomono, Daego; Turner, Edwin L; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Tamura, Motohide

    2013-01-01

    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets t...

  16. Intelligent Semantic Web Search Engines: A Brief Survey

    CERN Document Server

    Madhu, G; Rajinikanth, Dr T V

    2011-01-01

    The World Wide Web (WWW) allows the people to share the information (data) from the large database repositories globally. The amount of information grows billions of databases. We need to search the information will specialize tools known generically search engine. There are many of search engines available today, retrieving meaningful information is difficult. However to overcome this problem in search engines to retrieve meaningful information intelligently, semantic web technologies are playing a major role. In this paper we present survey on the search engine generations and the role of search engines in intelligent web and semantic search technologies.

  17. SPOTS: The Search for Planets Orbiting Two Stars: II. First constraints on the frequency of sub-stellar companions on wide circumbinary orbits

    CERN Document Server

    Bonavita, Mariangela; Thalmann, Christian; Janson, Markus; Vigan, Arthur; Chauvin, Gael; Lannier, Justine

    2016-01-01

    A large number of direct imaging surveys for exoplanets have been performed in recent years, yielding the first directly imaged planets and providing constraints on the prevalence and distribution of wide planetary systems. However, like most of the radial velocity ones, these surveys generally focus on single stars, hence binaries and higher-order multiples have not been studied to the same level of scrutiny. This motivated the SPOTS (Search for Planets Orbiting Two Stars) survey, which is an ongoing direct imaging study of a large sample of close binaries, started with VLT/NACO and now continuing with VLT/SPHERE. To complement this survey, we have identified the close binary targets in 24 published direct imaging surveys. Here we present our statistical analysis of this combined body of data. We analysed a sample of 117 tight binary systems, using a combined Monte Carlo and Bayesian approach to derive the expected values of the frequency of companions, for different values of the companion's semi-major axis...

  18. Three New Eclipsing White-dwarf - M-dwarf Binaries Discovered in a Search for Transiting Planets Around M-dwarfs

    CERN Document Server

    Law, Nicholas M; Street, Rachel; Fulton, Benjamin J; Hillenbrand, Lynne A; Shporer, Avi; Lister, Tim; Baranec, Christoph; Bloom, Joshua S; Bui, Khanh; Burse, Mahesh P; Cenko, S Bradley; Das, H K; Davis, Jack T C; Dekany, Richard G; Filippenko, Alexei V; Kasliwal, Mansi M; Kulkarni, S R; Nugent, Peter; Ofek, Eran O; Poznanski, Dovi; Quimby, Robert M; Ramaprakash, A N; Riddle, Reed; Silverman, Jeffrey M; Sivanandam, Suresh; Tendulkar, Shriharsh

    2011-01-01

    We present three new eclipsing white-dwarf / M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a Graphics Processing Unit (GPU)-based box-least-squares search for transits that runs approximately 8X faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 solar radi...

  19. The HARPS search for southern extra-solar planets. XLII. A system of Earth-mass planets around the nearby M dwarf YZ Ceti

    Science.gov (United States)

    Astudillo-Defru, N.; Díaz, R. F.; Bonfils, X.; Almenara, J. M.; Delisle, J.-B.; Bouchy, F.; Delfosse, X.; Forveille, T.; Lovis, C.; Mayor, M.; Murgas, F.; Pepe, F.; Santos, N. C.; Ségransan, D.; Udry, S.; Wünsche, A.

    2017-09-01

    Exoplanet surveys have shown that systems with multiple low-mass planets on compact orbits are common. Except for a few cases, however, the masses of these planets are generally unknown. At the very end of the main sequence, host stars have the lowest mass and hence offer the largest reflect motion for a given planet. In this context, we monitored the low-mass (0.13 M⊙) M dwarf YZ Cet (GJ 54.1, HIP 5643) intensively and obtained radial velocities and stellar-activity indicators derived from spectroscopy and photometry, respectively. We find strong evidence that it is orbited by at least three planets in compact orbits (POrb = 1.97, 3.06, 4.66 days), with the inner two near a 2:3 mean-motion resonance. The minimum masses are comparable to the mass of Earth (M sin i = 0.75 ± 0.13, 0.98 ± 0.14, and 1.14 ± 0.17 M⊕), and they are also the lowest masses measured by radial velocity so far. We note the possibility for a fourth planet with an even lower mass of M sin i = 0.472 ± 0.096 M⊕ at POrb = 1.04 days. An n-body dynamical model is used to place further constraints on the system parameters. At 3.6 parsecs, YZ Cet is the nearest multi-planet system detected to date. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope under the program IDs 180.C-0886(A), 183.C-0437(A), and 191.C-0873(A) at Cerro La Silla (Chile).Radial velocity data (Table B.4) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/L11

  20. Search for giant planets in M67 III: excess of hot Jupiters in dense open clusters

    CERN Document Server

    Brucalassi, A; Saglia, R; Ruiz, M T; Bonifacio, P; Leao, I; Martins, B L Canto; de Medeiros, J R; Bedin, L R; Biazzo, K; Melo, C; Lovis, C; Randich, S

    2016-01-01

    Since 2008 we used high-precision radial velocity (RV) measurements obtained with different telescopes to detect signatures of massive planets around main-sequence and evolved stars of the open cluster (OC) M67. We aimed to perform a long-term study on giant planet formation in open clusters and determine how this formation depends on stellar mass and chemical composition. A new hot Jupiter (HJ) around the main-sequence star YBP401 is reported in this work. An update of the RV measurements for the two HJ host-stars YBP1194 and YBP1514 is also discussed. Our sample of 66 main-sequence and turnoff stars includes 3 HJs, which indicates a high rate of HJs in this cluster (~5.6% for single stars and ~4.5% for the full sample ). This rate is much higher than what has been discovered in the field, either with RV surveys or by transits. High metallicity is not a cause for the excess of HJs in M67, nor can the excess be attributed to high stellar masses. When combining this rate with the non-zero eccentricity of the o...

  1. Inferring statistics of planet populations by means of automated microlensing searches

    CERN Document Server

    Dominik, M; Horne, K; Tsapras, Y; Street, R A; Wyrzykowski, L; Hessman, F V; Hundertmark, M; Rahvar, S; Wambsganss, J; Scarpetta, G; Bozza, V; Novati, S Calchi; Mancini, L; Masi, G; Teuber, J; Hinse, T C; Steele, I A; Burgdorf, M J; Kane, S

    2008-01-01

    (abridged) The study of other worlds is key to understanding our own, and not only provides clues to the origin of our civilization, but also looks into its future. Rather than in identifying nearby systems and learning about their individual properties, the main value of the technique of gravitational microlensing is in obtaining the statistics of planetary populations within the Milky Way and beyond. Only the complementarity of different techniques currently employed promises to yield a complete picture of planet formation that has sufficient predictive power to let us understand how habitable worlds like ours evolve, and how abundant such systems are in the Universe. A cooperative three-step strategy of survey, follow-up, and anomaly monitoring of microlensing targets, realized by means of an automated expert system and a network of ground-based telescopes is ready right now to be used to obtain a first census of cool planets with masses reaching even below that of Earth orbiting K and M dwarfs in two dist...

  2. THE CALIFORNIA PLANET SURVEY IV: A PLANET ORBITING THE GIANT STAR HD 145934 AND UPDATES TO SEVEN SYSTEMS WITH LONG-PERIOD PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Katherina Feng, Y.; Wright, Jason T.; Nelson, Benjamin; Wang, Sharon X.; Ford, Eric B. [Center for Exoplanets and Habitable Worlds, Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Howard, Andrew W., E-mail: astrowright@gmail.com [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2015-02-10

    We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative of an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a 1 M {sub Jup} planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a 2 M {sub Jup} planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period greater than 5 yr, and with no evidence of giant planets in between. Our enlargement and improvement of long-period planet parameters will aid future analysis of origins, diversity, and evolution of planetary systems.

  3. The Galactic Exoplanet Survey Telescope A Proposed Space-Based Microlensing Survey for Terrestrial Extra-Solar Planets

    CERN Document Server

    Bennett, D P; Bennett, David P.; Rhie, Sun Hong

    2000-01-01

    We present a conceptual design for a space based Galactic Exoplanet SurveyTelescope (GEST) which will use the gravitational microlensing technique todetect extra solar planets with masses as low as that of Mars at allseparations >~ 1 AU. The microlensing data would be collected by a diffractionlimited, wide field imaging telescope of ~ 1.5m aperture equipped with a largearray of red-optimized CCD detectors. Such a system would be able to monitor$\\sim 2\\times 10^8$ stars in $\\sim 6$ square degrees of the Galactic bulge atintervals of 20-30 minutes, and it would observe $\\sim 12000$ microlensingevents in three bulge seasons. If planetary systems like our own are common,GEST should be able to detect $\\sim 5000$ planets over a 2.5 year lifetime. Ifgas giants like Jupiter and Saturn are rare, then GEST would detect $\\sim 1300$planets in a 2.5 year mission if we assume that most planetary systems aredominated by planets of about Neptune's' mass. Such a mission would alsodiscover $\\sim 100$ planets of an Earth mass ...

  4. The Solar Twin Planet Search. V. Close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468

    CERN Document Server

    Melendez, Jorge; Bean, Jacob L; Ramirez, Ivan; Asplund, Martin; Dreizler, Stefan; Yan, Hong-Liang; Shi, Jian-Rong; Lind, Karin; Ferraz-Mello, Sylvio; Galarza, Jhon Yana; Santos, Leonardo dos; Spina, Lorenzo; Maia, Marcelo Tucci; Alves-Brito, Alan; Monroe, TalaWanda; Casagrande, Luca

    2016-01-01

    [Methods]. We obtained high-precision radial velocities with HARPS on the ESO 3.6 m telescope and determined precise stellar elemental abundances (~0.01 dex) using MIKE spectra on the Magellan 6.5m telescope. [Results]. Our data indicate the presence of a planet with a minimum mass of 26 Earth masses around the solar twin HIP 68468. The planet is a super-Neptune, but unlike the distant Neptune in our solar system (30 AU), HIP 68468c is close-in, with a semi-major axis of 0.66 AU, similar to that of Venus. The data also suggest the presence of a super-Earth with a minimum mass of 2.9 Earth masses at 0.03 AU; if the planet is confirmed, it will be the fifth least massive radial velocity planet discovery to date and the first super-Earth around a solar twin. Both isochrones (5.9 Gyr) and the abundance ratio [Y/Mg] (6.4 Gyr) indicate an age of about 6 billion years. The star is enhanced in refractory elements when compared to the Sun, and the refractory enrichment is even stronger after corrections for Galactic c...

  5. The Solar Twin Planet Search. V. Close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468

    Science.gov (United States)

    Meléndez, Jorge; Bedell, Megan; Bean, Jacob L.; Ramírez, Iván; Asplund, Martin; Dreizler, Stefan; Yan, Hong-Liang; Shi, Jian-Rong; Lind, Karin; Ferraz-Mello, Sylvio; Galarza, Jhon Yana; dos Santos, Leonardo; Spina, Lorenzo; Maia, Marcelo Tucci; Alves-Brito, Alan; Monroe, TalaWanda; Casagrande, Luca

    2017-01-01

    Context. More than two thousand exoplanets have been discovered to date. Of these, only a small fraction have been detected around solar twins, which are key stars because we can obtain accurate elemental abundances especially for them, which is crucial for studying the planet-star chemical connection with the highest precision. Aims: We aim to use solar twins to characterise the relationship between planet architecture and stellar chemical composition. Methods: We obtained high-precision (1 m s-1) radial velocities with the HARPS spectrograph on the ESO 3.6 m telescope at La Silla Observatory and determined precise stellar elemental abundances ( 0.01 dex) using spectra obtained with the MIKE spectrograph on the Magellan 6.5 m telescope. Results: Our data indicate the presence of a planet with a minimum mass of 26 ± 4 Earth masses around the solar twin HIP 68468. The planet is more massive than Neptune (17 Earth masses), but unlike the distant Neptune in our solar system (30 AU), HIP 68468c is close-in, with a semi-major axis of 0.66 AU, similar to that of Venus. The data also suggest the presence of a super-Earth with a minimum mass of 2.9 ± 0.8 Earth masses at 0.03 AU; if the planet is confirmed, it will be the fifth least massive radial velocity planet candidate discovery to date and the first super-Earth around a solar twin. Both isochrones (5.9 ± 0.4 Gyr) and the abundance ratio [Y/Mg] (6.4 ± 0.8 Gyr) indicate an age of about 6 billion years. The star is enhanced in refractory elements when compared to the Sun, and the refractory enrichment is even stronger after corrections for Galactic chemical evolution. We determined a nonlocal thermodynamic equilibrium Li abundance of 1.52 ± 0.03 dex, which is four times higher than what would be expected for the age of HIP 68468. The older age is also supported by the low log () (-5.05) and low jitter (existence of the planets that are indicated by our data and to better constrain the nature of the planetary system

  6. Present and Near-Future Reflected Light Searches for Close-In Planets

    CERN Document Server

    Charbonneau, D; Charbonneau, David; Noyes, Robert W.

    2000-01-01

    Close-in extrasolar giant planets may be directly detectable by theirreflected light, due to the proximity of the planet to the illuminating star.The spectrum of the system will contain a reflected light component that variesin amplitude and Doppler shift as the planet orbits the star. Intensivesearches for this effect have been carried out for only one extrasolar planetsystem, tau Boo. There exist several other attractive targets, including thetransiting planet system HD 209458.

  7. Planets or Pretense?: The Search for Substellar Objects around Post Common Envelope Binaries

    Science.gov (United States)

    Hardy, Adam; Schreiber, Matthias R.; Parsons, Steven; Caceres, Claudio; Canovas, Hector

    2015-12-01

    Many believe post-common envelope binary systems (PCEBs), consisting of a white dwarf and a close main-sequence companion, host a unique class of planetary system. Given the well known age and history of the host binary stars, these systems have the potential to provide new insights into the evolution of planetary systems. However, the existence of the planets should be treated with some skepticism as their presence has so far been inferred only by the indirect method of eclipse timing variations. This method has proved somewhat flawed, as many of the claimed planetary systems have been found dynamically unstable, and others have dramatically failed when confronted with more recent high-precision times. It is therefore of the utmost importance that complementary observations be performed to test the planetary hypothesis, and we have recently performed two such pioneering observations:1. We use SPHERE on the VLT to image the PCEB V471 Tau. A circumbinary companion to this PCEB has been predicted for more than 30 years with eclipse timings, but only recently has a direct detection become technically possible.2. We use ALMA to search for dusty material around the young PCEB NN Ser. The planetary model for NN Ser is one of the most convincing, and these planets would likely be present alongside considerable dusty material, now detectable thanks to the sensitivity of ALMA.I will present the results of these two important observations and discuss their far-reaching implications for the existence and charactistics of planetary systems around PCEBs.

  8. Objects in Kepler's Mirror May be Larger Than They Appear: Bias and Selection Effects in Transiting Planet Surveys

    Science.gov (United States)

    Gaidos, Eric; Mann, Andrew W.

    2013-01-01

    Statistical analyses of large surveys for transiting planets such as the Kepler mission must account for systematic errors and biases. Transit detection depends not only on the planet's radius and orbital period, but also on host star properties. Thus, a sample of stars with transiting planets may not accurately represent the target population. Moreover, targets are selected using criteria such as a limiting apparent magnitude. These selection effects, combined with uncertainties in stellar radius, lead to biases in the properties of transiting planets and their host stars. We quantify possible biases in the Kepler survey. First, Eddington bias produced by a steep planet radius distribution and uncertainties in stellar radius results in a 15%-20% overestimate of planet occurrence. Second, the magnitude limit of the Kepler target catalog induces Malmquist bias toward large, more luminous stars and underestimation of the radii of about one-third of candidate planets, especially those larger than Neptune. Third, because metal-poor stars are smaller, stars with detected planets will be very slightly (target average. Fourth, uncertainties in stellar radii produce correlated errors in planet radius and stellar irradiation. A previous finding, that highly irradiated giants are more likely to have "inflated" radii, remains significant, even accounting for this effect. In contrast, transit depth is negatively correlated with stellar metallicity even in the absence of any intrinsic correlation, and a previous claim of a negative correlation between giant planet transit depth and stellar metallicity is probably an artifact.

  9. The Earth as a Distant Planet A Rosetta Stone for the Search of Earth-Like Worlds

    CERN Document Server

    Vázquez, M; Montañés Rodríguez, P

    2010-01-01

    Is the Earth, in some way, special? Or is our planet but one of the millions of other inhabited planets within our galaxy? This is an exciting time to be asking this old question, because for the first time in history, the answer is within reach. In The Earth as a Distant Planet, the authors set themselves as external observers of our Solar System from an astronomical distance. From that perspective, the authors describe how the Earth, the third planet in distance to the central star, can be catalogued as having its own unique features and as capable of sustaining life. The knowledge gained from this original perspective is then applied to the ongoing search for planets outside the solar system, or exoplanets. Since the discovery in 1992 of the first exoplanet, the number of known planets has increased exponentially. Ambitious space missions are already being designed for the characterization of their atmospheres and to explore the possibility that they host life. The exploration of Earth and the rest of the ...

  10. The HARPS search for southern extra-solar planets. XVII. Super-Earth and Neptune-mass planets in multiple planet systems HD47186 and HD181433

    CERN Document Server

    Bouchy, F; Lovis, C; Udry, S; Benz, W; Bertaux, J-L; Delfosse, X; Mordasini, C; Pepe, F; Queloz, D; Ségransan, D

    2008-01-01

    This paper reports on the detection of two new multiple planet systems around solar-like stars HD47186 and HD181433. The first system includes a hot Neptune of 22.78 M_Earth at 4.08-days period and a Saturn of 0.35 M_Jup at 3.7-years period. The second system includes a Super-Earth of 7.5 M_Earth at 9.4-days period, a 0.64 M$_Jup at 2.6-years period as well as a third companion of 0.54 M_Jup with a period of about 6 years. These detections increase to 20 the number of close-in low-mass exoplanets (below 0.1 M_Jup) and strengthen the fact that 80% of these planets are in a multiple planetary systems.

  11. The HARPS search for southern extra-solar planets. XXVII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems

    CERN Document Server

    Lovis, C; Mayor, M; Udry, S; Benz, W; Bertaux, J -L; Bouchy, F; Correia, A C M; Laskar, J; Curto, G Lo; Mordasini, C; Pepe, F; Queloz, D; Santos, N C

    2010-01-01

    Context. Low-mass extrasolar planets are presently being discovered at an increased pace by radial velocity and transit surveys, opening a new window on planetary systems. Aims. We are conducting a high-precision radial velocity survey with the HARPS spectrograph which aims at characterizing the population of ice giants and super-Earths around nearby solar-type stars. This will lead to a better understanding of their formation and evolution, and yield a global picture of planetary systems from gas giants down to telluric planets. Methods. Progress has been possible in this field thanks in particular to the sub-m/s radial velocity precision achieved by HARPS. We present here new high-quality measurements from this instrument. Results. We report the discovery of a planetary system comprising at least five Neptune-like planets with minimum masses ranging from 12 to 25 M_Earth, orbiting the solar-type star HD 10180 at separations between 0.06 and 1.4 AU. A sixth radial velocity signal is present at a longer perio...

  12. The California Planet Survey IV: A Planet Orbiting the Giant Star HD 145934 and Updates to Seven Systems with Long-Period Planets

    CERN Document Server

    Feng, Y Katherina; Nelson, Benjamin; Wang, Sharon X; Ford, Eric B; Marcy, Geoffrey W; Isaacson, Howard; Howard, Andrew W

    2015-01-01

    We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative on an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a $1 M_{\\rm Jup}$ planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a $2 M_{\\rm Jup}$ planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet...

  13. The SOPHIE search for northern extrasolar planets. VI. Three new hot Jupiters in multi-planet extrasolar systems

    Science.gov (United States)

    Moutou, C.; Hébrard, G.; Bouchy, F.; Arnold, L.; Santos, N. C.; Astudillo-Defru, N.; Boisse, I.; Bonfils, X.; Borgniet, S.; Delfosse, X.; Díaz, R. F.; Ehrenreich, D.; Forveille, T.; Gregorio, J.; Labrevoir, O.; Lagrange, A.-M.; Montagnier, G.; Montalto, M.; Pepe, F.; Sahlmann, J.; Santerne, A.; Ségransan, D.; Udry, S.; Vanhuysse, M.

    2014-03-01

    We present high-precision radial-velocity measurements of three solar-type stars: HD 13908, HD 159243, and HIP 91258. The observations were made with the SOPHIE spectrograph at the 1.93 m telescope of the Observatoire de Haute-Provence (France). They show that these three bright stars host exoplanetary systems composed of at least two companions. HD 13908 b is a planet with a minimum mass of 0.865 ± 0.035MJup on a circular orbit with a period of 19.382 ± 0.006 days. There is an outer massive companion in the system with a period of 931 ± 17 days, e = 0.12 ± 0.02, and a minimum mass of 5.13 ± 0.25MJup . The star HD 159243 also has two detected companions with respective masses, periods, and eccentricities of Mp= 1.13 ± 0.05 and 1.9 ± 0.13MJup , P = 12.620 ± 0.004 and 248.4 ± 4.9 days, and e = 0.02 ± 0.02 and 0.075 ± 0.05. Finally, the star HIP 91258 has a planetary companion with a minimum mass of 1.068 ± 0.038MJup , an orbital period of 5.0505 ± 0.0015 days, and a quadratic trend indicating an outer planetary or stellar companion that is as yet uncharacterized. The planet-hosting stars HD 13908, HD 159243, and HIP 91258 are main-sequence stars of spectral types F8V, G0V, and G5V, respectively, with moderate activity levels. HIP 91258 is slightly over-metallic, while the other two stars have solar-like metallicity. The three systems are discussed in the frame of formation and dynamical evolution models of systems composed of several giant planets. Tables 5-8 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A22Tables 5-7 are also available in electronic form at http://www.aanda.orgBased on observations collected with the SOPHIE spectrograph on the 1.93 m telescope at the Observatoire de Haute-Provence (CNRS), France, by the SOPHIE RPE Consortium (program PNP.CONS).

  14. On the Feasibility of Characterizing Free-floating Planets with Current and Future Space-based Microlensing Surveys

    CERN Document Server

    Henderson, Calen B

    2016-01-01

    Simultaneous space- and ground-based microlensing surveys, such as K2's Campaign 9 (K2C9) and $WFIRST$, facilitate measuring the masses and distances of free-floating planet (FFP) candidates. FFPs are identified as single-lens events with a short timescale, of-order 1 day. Measuring the mass of the lensing object requires determining the finite size of the source star $\\rho$, as well as the microlens parallax $\\pi_{\\rm E}$. A planet that is bound to but widely separated from a host star can produce a light curve similar to that of an FFP. This tension can be resolved with high-resolution imaging of the microlensing target to search for the lens flux $F_l$ from a possible host star. Here we investigate the accessible parameter space for each of these components --- $\\pi_{\\rm E}$, $\\rho$, and $F_l$ --- considering different satellites for a range of FFP masses, Galactic distances, and source star properties. We find that at the beginning of K2C9, when its projected separation from the Earth (as viewed from the ...

  15. ASTEP South: An Antarctic Search for Transiting ExoPlanets around the celestial South pole

    CERN Document Server

    Crouzet, Nicolas; Agabi, Karim; Rivet, Jean-Pierre; Bondoux, Erick; Challita, Zalpha; Fanteï-Caujolle, Yan; Fressin, François; Mékarnia, Djamel; Schmider, François-Xavier; Valbousquet, Franck; Blazit, Alain; Bonhomme, Serge; Abe, Lyu; Daban, Jean-Baptiste; Gouvret, Carole; Fruth, Thomas; Rauer, Heike; Erikson, Anders; Barbieri, Mauro; Aigrain, Suzanne; Pont, Frédéric

    2009-01-01

    ASTEP South is the first phase of the ASTEP project (Antarctic Search for Transiting ExoPlanets). The instrument is a fixed 10 cm refractor with a 4kx4k CCD camera in a thermalized box, pointing continuously a 3.88 degree x 3.88 degree field of view centered on the celestial South pole. ASTEP South became fully functional in June 2008 and obtained 1592 hours of data during the 2008 Antarctic winter. The data are of good quality but the analysis has to account for changes in the point spread function due to rapid ground seeing variations and instrumental effects. The pointing direction is stable within 10 arcseconds on a daily timescale and drifts by only 34 arcseconds in 50 days. A truly continuous photometry of bright stars is possible in June (the noon sky background peaks at a magnitude R=15 arcsec-2 on June 22), but becomes challenging in July (the noon sky background magnitude is R=12.5 arcsec?2 on July 20). The weather conditions are estimated from the number of stars detected in the field. For the 2008...

  16. Characterizing Habitable Extrasolar Planets using Spectral Fingerprints

    CERN Document Server

    Kaltenegger, L

    2009-01-01

    The detection and characterization of Earth-like planet is approaching rapidly thanks to radial velocity surveys (HARPS), transit searches (Corot, Kepler) and space observatories dedicated to their characterization are already in development phase (James Webb Space Telescope), large ground based telescopes (ELT, TNT, GMT), and dedicated space-based missions like Darwin, Terrestrial Planet Finder, New World Observer). In this paper we discuss how we can read a planets spectrum to assess its habitability and search for the signatures of a biosphere. Identifying signs of life implies understanding how the observed atmosphere physically and chemically works and thus to gather information on the planet in addition to the observing its spectral fingerprint.

  17. Spectroscopic characterization of a sample of metal-poor solar-type stars from the HARPS planet search program

    CERN Document Server

    Sousa, Sérgio G; Israelian, Garik; Lovis, C; Mayor, Michel; Silva, Pedro B; Udry, Stephane

    2010-01-01

    Stellar metallicity strongly correlates with the presence of planets and their properties. To check for new correlations between stars and the existence of an orbiting planet, we determine precise stellar parameters for a sample of metal-poor solar-type stars. This sample was observed with the HARPS spectrograph and is part of a program to search for new extrasolar planets. The stellar parameters were determined using an LTE analysis based on equivalent widths (EW) of iron lines and by imposing excitation and ionization equilibrium. The ARES code was used to allow automatic and systematic derivation of the stellar parameters. Precise stellar parameters and metallicities were obtained for 97 low metal-content stars. We also present the derived masses, luminosities, and new parallaxes estimations based on the derived parameters, and compare our spectroscopic parameters with an infra-red flux method calibration to check the consistency of our method in metal poor stars. Both methods seems to give the same effect...

  18. The HARPS search for southern extra-solar planets. XXXIX. HD175607 b, the most metal-poor G dwarf with an orbiting sub-Neptune

    CERN Document Server

    Mortier, A; Santos, N C; Rajpaul, V; Figueira, P; Boisse, I; Cameron, A Collier; Dumusque, X; Curto, G Lo; Lovis, C; Mayor, M; Melo, C; Pepe, F; Queloz, D; Santerne, A; Ségransan, D; Sousa, S G; Sozzetti, A; Udry, S

    2016-01-01

    Context. The presence of a small-mass planet (M$_p<$0.1\\,M$_{Jup}$) seems, to date, not to depend on metallicity, however, theoretical simulations have shown that stars with subsolar metallicities may be favoured for harbouring smaller planets. A large, dedicated survey of metal-poor stars with the HARPS spectrograph has thus been carried out to search for Neptunes and super-Earths. Aims. In this paper, we present the analysis of \\object{HD175607}, an old G6 star with metallicity [Fe/H] = -0.62. We gathered 119 radial velocity measurements in 110 nights over a time span of more than nine years. Methods. The radial velocities were analysed using Lomb-Scargle periodograms, a genetic algorithm, a Markov chain Monte Carlo analysis, and a Gaussian processes analysis. The spectra were also used to derive stellar properties. Several activity indicators were analysed to study the effect of stellar activity on the radial velocities. Results. We find evidence for the presence of a small Neptune-mass planet (M$_{p}\\s...

  19. The Solaris project. A timing survey for circumbinary planets around eclipsing binary stars.

    Science.gov (United States)

    Konacki, M.

    2014-03-01

    The SOLARIS project aims to detect from the ground circumbinary planets with the timing of eclipses of eclipsing binary stars. For the SOLARIS project, we were granted 2.5 million Euro to establish a network of four robotic 0.5-m telescopes on three continents (Australia, Africa and South America) to carry out high cadence, high precision photometry of a sample of eclipsing binary stars. Three of the telescopes are already installed and the fourth one will become operational in early 2014. The project's web site is www.projectsolaris.eu/. This effort is accompanied by our radial velocity (RV) survey for circumbinary planets which employs our novel iodine cell based technique tailored to provide very high precision RVs of double-lined binaries. Altogether these two efforts, targeting about 300 eclipsing binary stars, constitute the biggest ground based survey for circumbinary planets. Moreover, we expect that both these efforts will have a significant impact on the observational stellar astronomy. In particular for at least half of our sample we expect to deliver masses of the stars with an accuracy 10-1000 times better than the current state of the art.

  20. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    Science.gov (United States)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Wang, Jason J.; Pueyo, Laurent; Nielsen, Eric L.; De Rosa, Robert J.; Czekala, Ian; Marley, Mark S.; Arriaga, Pauline; Bailey, Vanessa P.; Barman, Travis; Bulger, Joanna; Chilcote, Jeffrey; Cotten, Tara; Doyon, Rene; Duchêne, Gaspard; Fitzgerald, Michael P.; Follette, Katherine B.; Gerard, Benjamin L.; Goodsell, Stephen J.; Graham, James R.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Marois, Christian; Metchev, Stanimir; Millar-Blanchaer, Maxwell A.; Morzinski, Katie M.; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall; Poyneer, Lisa; Rajan, Abhijith; Rameau, Julien; Rantakyrö, Fredrik T.; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane; Wolff, Schuyler

    2017-06-01

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.

  1. A Search for Planets and Brown Dwarfs around Post Main Sequence Stars

    Science.gov (United States)

    Otani, Tomomi; Oswalt, Terry D.

    2016-06-01

    The most promising current theory for the origin of subdwarf B (sdB) stars is that they were formed during binary star evolution. This project was conducted to test this hypothesis by searching for companions around six sdB pulsators using the Observed-minus-Calculated (O-C) method. A star’s position in space will wobble due to the gravitational forces of any companion. If it is emitting a periodic signal, the orbital motion of the star around the system’s center of mass causes periodic changes in the light pulse arrival times. O-C diagrams for six sdB pulsators were constructed from several years’ observations, providing useful limits on suspected companions’ minimum masses and semimajor axes. The results were constrained by “period vs. amplitude” and “mass vs. semimajor axis” models to quantify companion masses and semimajor axes that are consistent with the observational data, if any. Two of our targets, V391 Peg and HS0702+6043, are noted in previous publications to have substellar companions. These were used to validate the method used in this research. The results of this study yielded the same masses and semimajor axes for these two stars as the published values, within the uncertainties. Another of the targets, EC20117-4014, is noted in the literature as a binary system containing an sdB and F5V star, however the orbital period and separation were unknown. The new data obtained in this study contain the signal of a companion candidate with a period of 158.01 days. Several possible mass and semimajor axis combinations for the companion are consistent with the observations. One of the other targets in this study displayed preliminary evidence for a companion that will require further observation. Though still a small sample, these results suggest that planets often survive the post-main-sequence evolution of their parent stars.

  2. Limits of Life, Early Evolution and the Search for Habitable Planets

    Science.gov (United States)

    Baross, J.

    2014-03-01

    There are very few natural environments on Earth where life is absent. Microbial life on Earth has proliferated into habitats that span nearly every imaginable physical-chemical variable. Only the availability of liquid water and temperature are known to prevent growth and survival of organisms. The other physical and chemical variables that are thought of as extreme conditions, such as pH, pressure, high concentrations of solutes, damaging radiation, and toxic metals, are life-prohibiting factors for most organisms but not for all. Life has adapted to survive and in some cases grow over the entire terrestrial ranges of these variables. Even under conditions where the availability of water and high temperatures render an environment incapable of supporting active life, these conditions do not necessarily render the environment sterile. Many organisms have adapted mechanisms for long-term survival at temperatures well above their maximum growth temperature, or in a desiccated state. However, there are some combination of physical and chemical conditions, such as high salt and low temperatures, and high salt and high temperatures, for which no known organisms have been found to grow. The first-order priority in the search for extraterrestrial life is the identification of planetary bodies that have measurable characteristics that resemble Earth and meet the habitable conditions that allow the growth of carbon-based life, as we know it. The basic requirements of Earth-life are liquid water, light or chemical energy, and sources of carbon, nitrogen, phosphorus and other micronutrients including more than 20 elements. Does all life resemble Earth life or is it possible that there exists extra-solar Earth-like planets that have evolve successful ecosystems and perhaps even highly complex organisms that bare no resemblance to Earth life at the biochemical level or in the way the biosphere modulates atmospheric conditions?

  3. Reconciling the Difference of Hot Jupiter Occurrence Rates From the Doppler and Transiting Planet Surveys

    Science.gov (United States)

    Wang, Ji; Fischer, Debra

    2015-08-01

    Many hot Jupiters (HJs) are detected by the Doppler and transit techniques. From surveys using these two techniques, however, the measured HJ occurrence rates differ by a factor of two or more. Using the California Planet Survey sample and the Kepler sample, we investigate the causes for this difference in the HJ occurrence rate. We find that 12.8% ± 0.24% of HJs are misidentified in the Kepler mission because of photometric dilution and subgiant contamination. We explore the differences between the Doppler sample and the Kepler sample that can account for the different HJ occurrence rate. We discuss how to measure the fundamental HJ occurrence rates by synthesizing the results from the Doppler and Kepler surveys. The fundamental HJ occurrence rates are measures of the HJ occurrence rate as a function of stellar multiplicity and evolutionary stage, e.g., the HJ occurrence rate for single and multiple stars or for main-sequence and subgiant stars.

  4. A Search for Additional Planets in Five of the Exoplanetary Systems Studied by the NASA EPOXI Mission

    CERN Document Server

    Ballard, Sarah; Charbonneau, David; Deming, Drake; Holman, Matthew J; A'Hearn, Michael F; Wellnitz, Dennis D; Barry, Richard K; Kuchner, Marc J; Livengood, Timothy A; Hewagama, Tilak; Sunshine, Jessica M; Hampton, Don L; Lisse, Carey M; Seager, Sara; Veverka, Joseph F

    2011-01-01

    We present time series photometry and constraints on additional planets in five of the exoplanetary systems studied by the EPOCh (Extrasolar Planet Observation and Characterization) component of the NASA EPOXI mission: HAT-P-4, TrES-3, TrES-2, WASP-3, and HAT-P-7. We conduct a search of the high-precision time series for photometric transits of additional planets. We find no candidate transits with significance higher than our detection limit. From Monte Carlo tests of the time series using putative periods from 0.5 days to 7 days, we demonstrate the sensitivity to detect Neptune-sized companions around TrES-2, sub-Saturn-sized companions in the HAT-P-4, TrES-3, and WASP-3 systems, and Saturn-sized companions around HAT-P-7. We investigate in particular our sensitivity to additional transits in the dynamically favorable 3:2 and 2:1 exterior resonances with the known exoplanets: if we assume coplanar orbits with the known planets, then companions in these resonances with HAT-P-4b, WASP-3b, and HAT-P-7b would b...

  5. Life Beyond the Planet of Origin and Implications for the Search for Life on Mars

    Science.gov (United States)

    Mancinelli, Rocco L.

    2015-01-01

    Outer space is vast, cold, devoid of matter, radiation filled with essentially no gravity. These factors present an environmental challenge for any form of life. Earth's biosphere has evolved for more than 3 billion years shielded from the hostile environment of outer space by the protective blanket of the atmosphere and magnetosphere. Space is a nutritional wasteland with no liquid water and readily available organic carbon. Moving beyond a life's planet of origin requires a means for transport, the ability to withstand transport, and the ability to colonize, thrive and ultimately evolve in the new environment. Can life survive beyond its home planet? The key to answering this question is to identify organisms that first have the ability to withstand space radiation, space vacuum desiccation and time in transit, and second the ability to grow in an alien environment. Within the last 60 years space technology allowed us to transport life beyond Earth's protective shield so we may study, in situ, their responses to selected conditions of space. To date a variety of microbes ranging from viruses, to Bacteria, to Archaea, to Eukarya have been tested in the space environment. Most died instantly, but not all. These studies revealed that ultraviolet radiation is the near-term lethal agent, while hard radiation is the long-term lethal agent when the organism is shielded from ultraviolet radiation. In fact, bacterial spores, halophilic cyanobacteria and Archaea as well as some lichens survive very well if protected from ultraviolet radiation [1]. Some microbes, then, may be able to survive the trip in outer space to Mars on a spacecraft or in a meteorite. Once on Mars can a terrestrial microbe survive? Although the conditions on Mars are not as harsh as those in space, they are not hospitable for a terrestrial microbe. Studies, however, have shown that certain microbes that can survive in space for several years may also be able to survive on Mars if protected from

  6. The Hunt for Exomoons with Kepler (HEK): III. The First Search for an Exomoon around a Habitable-Zone Planet

    CERN Document Server

    Kipping, David M; Hartman, Joel; Nesvorny, David; Bakos, Gáspár Á; Schmitt, Allan R; Buchhave, Lars A

    2013-01-01

    Kepler-22b is the first transiting planet to have been detected in the habitable-zone of its host star. At 2.4 Earth radii, Kepler-22b is too large to be considered an Earth-analog, but should the planet host a moon large enough to maintain an atmosphere, then the Kepler-22 system may yet possess a telluric world. Aside from being within the habitable-zone, the target is attractive due to the availability of previously measured precise radial velocities and low intrinsic photometric noise, which has also enabled asteroseismology studies of the star. For these reasons, Kepler-22b was selected as a target-of-opportunity by the 'Hunt for Exomoons with Kepler' (HEK) project. In this work, we conduct a photodynamical search for an exomoon around Kepler-22b leveraging the transits, radial velocities and asteroseismology plus several new tools developed by the HEK project to improve exomoon searches. We find no evidence for an exomoon around the planet and exclude moons of mass >0.5 Earth masses to 95% confidence. B...

  7. The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b

    CERN Document Server

    Gillon, M; Fortney, J J; Demory, B -O; Jehin, E; Lendl, M; Magain, P; Kabath, P; Queloz, D; Alonso, R; Anderson, D R; Cameron, A Collier; Fumel, A; Hebb, L; Hellier, C; Lanotte, A; Maxted, P F L; Mowlavi, N; Smalley, B

    2012-01-01

    We present twenty-three transit light curves and seven occultation light curves for the ultra-short period planet WASP-43 b, in addition to eight new measurements of the radial velocity of the star. Thanks to this extensive data set, we improve significantly the parameters of the system. Notably, the largely improved precision on the stellar density (2.41+-0.08 rho_sun) combined with constraining the age to be younger than a Hubble time allows us to break the degeneracy of the stellar solution mentioned in the discovery paper. The resulting stellar mass and size are 0.717+-0.025 M_sun and 0.667+-0.011 R_sun. Our deduced physical parameters for the planet are 2.034+-0.052 M_jup and 1.036+-0.019 R_jup. Taking into account its level of irradiation, the high density of the planet favors an old age and a massive core. Our deduced orbital eccentricity, 0.0035(-0.0025,+0.0060), is consistent with a fully circularized orbit. We detect the emission of the planet at 2.09 microns at better than 11-sigma, the deduced occ...

  8. The APOGEE Spectroscopic Survey of Kepler Planet Hosts: Feasibility, Efficiency, and First Results

    CERN Document Server

    Fleming, Scott W; Deshpande, Rohit; Bender, Chad F; Terrien, Ryan C; Marchwinski, Robert C; Wang, Ji; Roy, Arpita; Stassun, Keivan G; Prieto, Carlos Allende; Cunha, Katia; Smith, Verne V; Agol, Eric; Ak, Hasan; Bastien, Fabienne A; Bizyaev, Dmitry; Crepp, Justin R; Ford, Eric B; Frinchaboy, Peter M; García-Hernández, Domingo Aníbal; Pérez, Ana Elia García; Gaudi, B Scott; Ge, Jian; Hearty, Fred; Ma, Bo; Majewski, Steve R; Mészáros, Szabolcs; Nidever, David L; Pan, Kaike; Pepper, Joshua; Pinsonneault, Marc H; Schiavon, Ricardo P; Schneider, Donald P; Wilson, John C; Zamora, Olga; Zasowski, Gail

    2015-01-01

    The Kepler mission has yielded a large number of planet candidates from among the Kepler Objects of Interest (KOIs), but spectroscopic follow-up of these relatively faint stars is a serious bottleneck in confirming and characterizing these systems. We present motivation and survey design for an ongoing project with the SDSS-III multiplexed APOGEE near-infrared spectrograph to monitor hundreds of KOI host stars. We report some of our first results using representative targets from our sample, which include current planet candidates that we find to be false positives, as well as candidates listed as false positives that we do not find to be spectroscopic binaries. With this survey, KOI hosts are observed over ~20 epochs at a radial velocity precision of 100-200 m/s. These observations can easily identify a majority of false positives caused by physically-associated stellar or substellar binaries, and in many cases, fully characterize their orbits. We demonstrate that APOGEE is capable of achieving RV precision ...

  9. Update on the KELT Transit Survey: Hot Planets around Hot, Bright Stars

    Science.gov (United States)

    Gaudi, B. Scott; KELT Collaboration

    2017-01-01

    The KELT Transit Survey consists of a pair of small-aperture, wide-angle automated telescope located at Winer Observatory in Sonoita, Arizona and the South African Astronomical Observatory (SAAO) in Sutherland, South Africa. Together, they are surveying roughly 60% of the sky for transiting planets. By virtue of their small apertures (42 mm) and large fields-of-view (26 degrees x 26 degrees), KELT is most sensitive to hot Jupiters transiting relatively bright (V~8-11), and thus relatively hot stars. Roughly half of the dwarf stars targeted by KELT are hotter than 6250K; such stars pose novel challenges, but also provide unique opportunities. I will provide an update on the most recent companions discovered by KELT, focusing in detail on a few particularly interesting systems. KELT is a joint collaboration between the Ohio State University, Vanderbilt University, and Lehigh University. This work was partially supported by NSF CAREER grant AST-1056524.

  10. First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields

    CERN Document Server

    Burdanov, Artem Y; Krushinsky, Vadim V; Popov, Alexander A; Sokov, Evgenii N; Sokova, Iraida A; Rusov, Sergei A; Lyashenko, Artem Yu; Ivanov, Kirill I; Moiseev, Alexei V; Rastegaev, Denis A; Dyachenko, Vladimir V; Balega, Yuri Yu; Baştürk, Özgür; Özavcı, Ibrahim; Puchalski, Damian; Marchini, Alessandro; Naves, Ramon; Shadick, Stan; Bretton, Marc

    2016-01-01

    We present the first results of our search for transiting exoplanet candidates as part of the Kourovka Planet Search (KPS) project. The primary objective of the project is to search for new hot Jupiters which transit their host stars, mainly in the Galactic plane, in the $R_c$ magnitude range of 11 to 14 mag. Our observations were performed with the telescope of the MASTER robotic network, installed at the Kourovka astronomical observatory of the Ural Federal University (Russia), and the Rowe-Ackermann Schmidt Astrograph, installed at the private Acton Sky Portal Observatory (USA). As test observations, we observed three celestial fields of size $2\\times2$ deg$^2$ during the period from 2012 to 2015. As a result, we discovered four transiting exoplanet candidates among the 39000 stars of the input catalogue. In this paper, we provide the description of the project and analyse additional photometric, spectral, and speckle interferometric observations of the discovered transiting exoplanet candidates. Three of ...

  11. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys, II: The Frequency of Planets Orbiting M Dwarfs

    CERN Document Server

    Clanton, Christian

    2014-01-01

    In contrast to radial velocity surveys, results from microlensing surveys indicate that giant planets with masses greater than the critical mass for core accretion ($\\sim 0.1~M_{\\rm Jup}$) are relatively common around low-mass stars. Using the methodology developed in the first paper, we predict the sensitivity of M-dwarf radial velocity (RV) surveys to analogs of the population of planets inferred by microlensing. We find that RV surveys should detect a handful of super-Jovian ($>M_{\\rm Jup}$) planets at the longest periods being probed. These planets are indeed found by RV surveys, implying that the demographic constraints inferred from these two methods are consistent. We combine the results from both methods to estimate planet frequencies spanning wide regions of parameter space. We find that the frequency of Jupiters and super-Jupiters ($1\\lesssim m_p\\sin{i}/M_{\\rm Jup}\\lesssim 13$) with periods $1\\leq P/{\\rm days}\\leq 10^4$ is $f_{\\rm J}=0.029^{+0.013}_{-0.015}$, a median factor of 4.3 ($1.5-14$ at 95% ...

  12. An Imaging Survey for Extrasolar Planets around 45 Close, Young Stars with SDI at the VLT and MMT

    CERN Document Server

    Biller, Beth A; Masciadri, Elena; Nielsen, Eric; Lenzen, Rainer; Brandner, Wolfgang; McCarthy, Donald; Hartung, Markus; Kellner, Stephan; Mamajek, Eric; Henning, Thomas; Miller, Douglas; Kenworthy, Matthew; Kulesa, Craig

    2007-01-01

    We present the results of a survey of 45 young ( 10 mag (5 sigma) at a separation of 0.5" from the primary star on 45% of our targets and H band contrasts of > 9 mag at a separation of 0.5'' on 80% of our targets. With this degree of attenuation, we should be able to image (5sigma detection) a 5 M_{Jup} planet 15 AU from a 70 Myr K1 star at 15 pc or a 5 M_{Jup} planet at 2 AU from a 12 Myr M star at 10 pc. We believe that our SDI images are the highest contrast astronomical images ever made from ground or space for methane rich companions <1'' from their star. For the best 20 of our survey stars, we attained 50% 5 sigma completeness for 6-10 M_Jup planets at semi-major axes of 20-40 AU. Thus, our completeness levels are sufficient to signif icantly test theoretical planet distributions. From our survey null result, we can rule out (at the 98% confidence/2.0sigma level) a model planet population using a planet distribution where N(a) $\\propto$ constant out to a distance of 45 AU (further model assumptions d...

  13. Magnetospheric Emissions from the Planet Orbiting tau Boo: A Multi-Epoch Search

    CERN Document Server

    Lazio, T Joseph W

    2007-01-01

    All of the solar system gas giants produce electron cyclotron masers, driven by the solar wind impinging on their magnetospheres. Extrapolating to the planet orbiting tau Boo, various authors have predicted that it may be within the detection limits of the 4-meter wavelength (74 MHz) system on the Very Large Array. This paper reports three epochs of observations of tau Boo. In no epoch do we detect the planet; various means of determining the upper limit to the emission yield single-epoch limits ranging from 135 to 300 mJy. We develop a likelihood method for multi-epoch observations and use it to constrain various radiation properties of the planet. Assuming that the planet does radiate at our observation wavelength, its typical luminosity must be less than about 10^{16} W, unless its radiation is highly beamed into a solid angle Omega << 1 sr. While within the range of luminosities predicted by various authors for this planet, this value is lower than recent estimates which attempt to take into account...

  14. Mapping the Region in the Nearest Star System to Search for Habitable Planets

    Science.gov (United States)

    Lissauer, Jack J.; Quarles, B.

    2015-01-01

    Circumstellar planets within the alpha Centauri AB star system have been suggested through formation models and recent observations, and ACESat (Belikov et al. AAS Meeting #225, #311.01, 2015) is a proposed space mission designed to directly image Earth-sized planets in the habitable zones of both of these stars. The alpha Centauri system is billions of years old, so planets are only expected to be found in regions where their orbits are long-lived. We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales and we map the positions in the sky plane where planets on stable orbits about either stellar component may appear. We confirm the qualitative results of Wiegert & Holman (Astron. J. 113, 1445, 1997) regarding the approximate size of the regions of stable orbits, which are larger for retrograde orbits relative to the binary than for prograde orbits. Additionally, we find that mean motion resonances with the binary orbit leave an imprint on the limits of orbital stability, and the effects of the Lidov-Kozai mechanism are also readily apparent. Overall, orbits in the habitable zones near the plane of the binary are stable, whereas high-inclination orbits are short-lived.

  15. OGLE-2016-BLG-0596Lb: High-Mass Planet From High-Magnification Pure-Survey Microlensing Event

    CERN Document Server

    Mróz, P; Udalski, A; Poleski, R; Skowron, J; Szymański, M K; Soszyński, I; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Wyrzykowski, Ł; Pawlak, M; Albrow, M D; Cha, S -M; Chung, S -J; Jung, Y K; Kim, D -J; Kim, S -L; Lee, C -U; Lee, Y; Park, B -G; Pogge, R W; Ryu, Y -H; Shin, I -G; Yee, J C; Zhu, W; Gould, A

    2016-01-01

    We report the discovery of a high mass-ratio planet $q=0.012$, i.e., 13 times higher than the Jupiter/Sun ratio. The host mass is not presently measured but can be determined or strongly constrained from adaptive optics imaging. The planet was discovered in a small archival study of high-magnification events in pure-survey microlensing data, which was unbiased by the presence of anomalies. The fact that it was previously unnoticed may indicate that more such planets lie in archival data and could be discovered by similar systematic study. In order to understand the transition from predominantly survey+followup to predominately survey-only planet detections, we conduct the first analysis of these detections in the observational $(s,q)$ plane. Here $s$ is projected separation in units of the Einstein radius. We find some evidence that survey+followup is relatively more sensitive to planets near the Einstein ring, but that there is no statistical difference in sensitivity by mass ratio.

  16. Searching for Earth-like planets in this solar system and beyond

    Science.gov (United States)

    Stofan, E. R.

    2014-12-01

    Earth sits in a narrow habitable zone, and its future habitability depends on the actions of those who inhabit the planet today. Earth's complex climate reflects interactions between its interior, surface, oceans, biosphere, atmosphere and its star - our sun. Studying the climates of other planets around our sun - Mars, Venus and Titan - can help us better understand the processes that control climate here on Earth. These three bodies provide compelling targets for future study as we explore beyond our solar system to find Earth-like worlds around other stars.

  17. The Blue Dot Workshop: Spectroscopic Search for Life on Extrasolar Planets

    Science.gov (United States)

    Des Marais, David J. (Editor)

    1997-01-01

    This workshop explored the key questions and challenges associated with detecting life on an extrasolar planet. The final product will be a NASA Conference Publication which includes the abstracts from 21 talks, summaries of key findings, and recommendations for future research. The workshop included sessions on three related topics: the biogeochemistry of biogenic gases in the atmosphere, the chemistry and spectroscopy of planetary atmospheres, and the remote sensing of planetary atmospheres and surfaces. With the observation that planetary formation is probably a common phenomenon, together with the advent of the technical capability to locate and describe extrasolar planets, this research area indeed has an exciting future.

  18. The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b

    Science.gov (United States)

    Gillon, M.; Triaud, A. H. M. J.; Fortney, J. J.; Demory, B.-O.; Jehin, E.; Lendl, M.; Magain, P.; Kabath, P.; Queloz, D.; Alonso, R.; Anderson, D. R.; Collier Cameron, A.; Fumel, A.; Hebb, L.; Hellier, C.; Lanotte, A.; Maxted, P. F. L.; Mowlavi, N.; Smalley, B.

    2012-06-01

    We present twenty-three transit light curves and seven occultation light curves for the ultra-short period planet WASP-43 b, in addition to eight new measurements of the radial velocity of the star. Thanks to this extensive data set, we improve significantly the parameters of the system. Notably, the largely improved precision on the stellar density (2.41 ± 0.08 ρ⊙) combined with constraining the age to be younger than a Hubble time allows us to break the degeneracy of the stellar solution mentioned in the discovery paper. The resulting stellar mass and size are 0.717 ± 0.025 M⊙ and 0.667 ± 0.011 R⊙. Our deduced physical parameters for the planet are 2.034 ± 0.052 MJup and 1.036 ± 0.019 RJup. Taking into account its level of irradiation, the high density of the planet favors an old age and a massive core. Our deduced orbital eccentricity, 0.0035-0.0025+0.0060, is consistent with a fully circularized orbit. We detect the emission of the planet at 2.09 μm at better than 11-σ, the deduced occultation depth being 1560 ± 140 ppm. Our detection of the occultation at 1.19 μm is marginal (790 ± 320 ppm) and more observations are needed to confirm it. We place a 3-σ upper limit of 850 ppm on the depth of the occultation at ~0.9 μm. Together, these results strongly favor a poor redistribution of the heat to the night-side of the planet, and marginally favor a model with no day-side temperature inversion. Based on data collected with the TRAPPIST and Euler telescopes at ESO La Silla Observatory, Chile, and with the VLT/HAWK-I instrument at ESO Paranal Observatory, Chile (program 086.C-0222).Tables 1 and 4 are available in electronic form at http://www.aanda.orgPhotometry is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/542/A4

  19. ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) - A possible expert-system based cooperative effort to hunt for planets of Earth mass and below

    CERN Document Server

    Dominik, M; Allan, A; Rattenbury, N J; Tsapras, Y; Snodgrass, C; Bode, M F; Burgdorf, M J; Fraser, S N; Kerins, E; Mottram, C J; Steele, I A; Street, R A; Wheatley, P J; Wyrzykowski, L

    2008-01-01

    (abridged) The technique of gravitational microlensing is currently unique in its ability to provide a sample of terrestrial exoplanets around both Galactic disk and bulge stars, allowing to measure their abundance and determine their distribution with respect to mass and orbital separation. In order to achieve these goals in reasonable time, a well-coordinated effort involving a network of either 2m or 4 x 1m telescopes at each site is required. It could lead to the first detection of an Earth-mass planet outside the Solar system, and even planets less massive than Earth could be discovered. From April 2008, ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) is planned to provide a platform for a three-step strategy of survey, follow-up, and anomaly monitoring. As an expert system embedded in eSTAR (e-Science Telescopes for Astronomical Research), ARTEMiS will give advice on the optimal targets to be observed at any given time, and will also alert on deviations from ordinary microlensing l...

  20. Precise Infrared Radial Velocities from Keck/NIRSPEC and the Search for Young Planets

    CERN Document Server

    Bailey, John I; Blake, Cullen H; Charbonneau, Dave; Barman, Travis S; Tanner, Angelle M; Torres, Guillermo

    2012-01-01

    We present a high-precision infrared radial velocity study of late-type stars using spectra obtained with NIRSPEC at the W. M. Keck Observatory. Radial velocity precisions of 50 m/s are achieved for old field mid-M dwarfs using telluric features for precise wavelength calibration. Using this technique, 20 young stars in the {\\beta} Pic (age ~12 Myr) and TW Hya (age ~8 Myr) Associations were monitored over several years to search for low mass companions; we also included the chromospherically active field star GJ 873 (EV Lac) in this survey. Based on comparisons with previous optical observations of these young active stars, radial velocity measurements at infrared wavelengths mitigate the radial velocity noise caused by star spots by a factor of ~3. Nevertheless, star spot noise is still the dominant source of measurement error for young stars at 2.3 {\\mu}m, and limits the precision to ~77 m/s for the slowest rotating stars (v sin i 12 km/s). The observations reveal both GJ 3305 and TWA 23 to be single-lined...

  1. Searching for medical information online: a survey of Canadian nephrologists.

    Science.gov (United States)

    Shariff, Salimah Z; Bejaimal, Shayna A D; Sontrop, Jessica M; Iansavichus, Arthur V; Weir, Matthew A; Haynes, R Brian; Speechley, Mark R; Thind, Amardeep; Garg, Amit X

    2011-01-01

    Physicians often search for information to improve patient care. We evaluated how nephrologists use online information sources for this purpose. In this cross-sectional study (2008 to 2010), a random sample of Canadian nephrologists completed a survey of their online search practices. We queried respondents on their searching preferences, practices and use of 9 online information sources. Respondents (n=115; 75% response rate) comprised both academic (59%) and community-based (41%) nephrologists. Respondents were an average of 48 years old and were in practice for an average of 15 years. Nephrologists used a variety of online sources to retrieve information on patient treatment including UpToDate (92%), PubMed (89%), Google (76%) and Ovid MEDLINE (55%). Community-based nephrologists were more likely to consult UpToDate first (91%), while academic nephrologists were divided between UpToDate (58%) and PubMed (41%). When searching bibliographic resources such as PubMed, 80% of nephrologists scan a maximum of 40 citations (the equivalent of 2 search pages in PubMed). Searching practices did not differ by age, sex or years in practice. Nephrologists routinely use a variety of online resources to search for information for patient care. These include bibliographic databases, general search engines and specialized medical resources.

  2. Searching for galaxy clusters in the Kilo-Degree Survey

    NARCIS (Netherlands)

    Radovich, M.; Puddu, E.; Bellagamba, F.; Roncarelli, M.; Moscardini, L.; Bardelli, S.; Grado, A.; Getman, F.; Maturi, M.; Huang, Z.; Napolitano, N.; McFarland, J.; Valentijn, E.; Bilicki, M.

    2017-01-01

    In this paper, we present the tools used to search for galaxy clusters in the Kilo Degree Survey (KiDS), and our first results. The cluster detection is based on an implementation of the optimal filtering technique that enables us to identify clusters as over-densities in the distribution of galaxie

  3. The Solar Neighborhood. XXXIV. A Search for Planets Orbiting Nearby M Dwarfs using Astrometry

    CERN Document Server

    Lurie, John C; Jao, Wei-Chun; Quinn, Samuel N; Winters, Jennifer G; Ianna, Philip A; Koerner, David W; Riedel, Adric R; Subasavage, John P

    2014-01-01

    Astrometric measurements are presented for seven nearby stars with previously detected planets: six M dwarfs (GJ 317, GJ 667C, GJ 581, GJ 849, GJ 876, and GJ 1214) and one K dwarf (BD $-$10 3166). Measurements are also presented for six additional nearby M dwarfs without known planets, but which are more favorable to astrometric detections of low mass companions, as well as three binary systems for which we provide astrometric orbit solutions. Observations have baselines of three to thirteen years, and were made as part of the RECONS long-term astrometry and photometry program at the CTIO/SMARTS 0.9m telescope. We provide trigonometric parallaxes and proper motions for all 16 systems, and perform an extensive analysis of the astrometric residuals to determine the minimum detectable companion mass for the 12 M dwarfs not having close stellar secondaries. For the six M dwarfs with known planets, we are not sensitive to planets, but can rule out the presence of all but the least massive brown dwarfs at periods o...

  4. Photometric transit search for planets around cool stars from the western Italian Alps: A pilot study

    CERN Document Server

    Giacobbe, P; Sozzetti, A; Toso, G; Perdoncin, M; Calcidese, P; Bernagozzi, A; Bertolini, E; Lattanzi, M G; Smart, R L

    2012-01-01

    [ABRIDGED] In this study, we set out to a) demonstrate the sensitivity to 50% we would have had >80% chances of detecting planets with P0.5%, corresponding to minimum detectable radii in the range 1.0-2.2 R_E. [ABRIDGED

  5. GMRT search for 150 MHz radio emission from the transiting extrasolar planets HD 189733 b and HD 209458 b

    Science.gov (United States)

    Lecavelier Des Etangs, A.; Sirothia, S. K.; Gopal-Krishna; Zarka, P.

    2011-09-01

    We report a sensitive search for meter-wavelength emission at 150 MHz from two prominent transiting extrasolar planets, HD 189733 b and HD 209458 b. To distinguish any planetary emission from possible stellar or background contributions, we monitored these systems just prior to, during, and after the planet's eclipse behind the host star. No emission was detected from HD 209458 b with a 3σ upper limit of 3.6 mJy. For HD 189733 b we obtain a 3σ upper limit of 2.1 mJy and a marginal 2.7σ detection of ~1900 ± 700 μJy from a direction just 13″ from the star's coordinates (i.e., within the beam), but its association with the planet remains unconfirmed. Thus, the present GMRT observations provide unprecedentedly tight upper limits for meter wavelength emissions from these nearest two transiting-type exoplanets. We point out possible explanations of the non-detections and briefly discuss the resulting constraints on these systems. Data for this observations can be retrieved electronically on the GMRT archive server http://ncra.tifr.res.in/~gmrtarchive and upon request to archive@gmrt.ncra.tifr.res.in.

  6. Search for Cosmic Strings in the COSMOS Survey

    CERN Document Server

    Christiansen, J L; Goldman, J; Teng, I P W; Foley, M; Smoot, G F

    2010-01-01

    We search the COSMOS survey for pairs of galaxies consistent with the gravitational lensing signature of a cosmic string. The COSMOS survey imaged 1.64 square degrees using the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST). Our technique includes estimates of the efficiency for finding the lensed galaxy pair. We find no evidence for cosmic strings with a mass per unit length of G\\mu/c^2 < 3.0E-7 out to redshifts greater than 0.6 at 95% confidence. This corresponds to a global limit on Omega_string<0.0017.

  7. The HARPS search for southern extra-solar planets XI. Super-Earths (5 & 8 M_Earth) in a 3-planet system

    CERN Document Server

    Udry, S; Delfosse, X; Forveille, T; Mayor, M; Perrier, C; Bouchy, F; Lovis, C; Pepe, F; Queloz, D; Bertaux, J -L

    2007-01-01

    This Letter reports on the detection of two super-Earth planets in the Gl581 system, already known to harbour a hot Neptune. One of the planets has a mass of 5 M_Earth and resides at the ``warm'' edge of the habitable zone of the star. It is thus the known exoplanet which most resembles our own Earth. The other planet has a 7.7 M_Earth mass and orbits at 0.25 AU from the star, close to the ``cold'' edge of the habitable zone. These two new light planets around an M3 dwarf further confirm the formerly tentative statistical trend for i) many more very low-mass planets being found around M dwarfs than around solar-type stars and ii) low-mass planets outnumbering Jovian planets around M dwarfs.

  8. Constraining the Frequency of Free-Floating Planets from a Synthesis of Microlensing, Radial Velocity, and Direct Imaging Survey Results

    CERN Document Server

    Clanton, Christian

    2016-01-01

    A microlensing survey by Sumi et al. (2011) exhibits an overabundance of short-timescale events (STEs; t_E~10 AU) and free-floating planets. Assuming these STEs are indeed due to planetary-mass objects, we aim to constrain the fraction of these events that can be explained by bound but wide-separation planets. We fit the observed timescale distribution with a lens mass function comprised of brown dwarfs, main-sequence stars, and stellar remnants, finding and thus corroborating the initial identification of an excess of STEs. We then include a population of bound planets that are expected not to show signatures of the primary lens (host) in their microlensing light curves and that are also consistent with results from representative microlensing, radial velocity, and direct imaging surveys. We find that bound planets alone cannot explain the entire STE excess without violating the constraints from the surveys we consider and thus some fraction of these events must be due to free-floating planets, if our model ...

  9. WTS1 b: The first planet detected in the WFCAM Transit Survey

    Directory of Open Access Journals (Sweden)

    Cruz P.

    2013-04-01

    Full Text Available We report the discovery of WTS1 b, the first extrasolar planet found by the WFCAM Transit Survey. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope (HET allowed us to estimate the spectroscopic parameters of the host star, a late-F main sequence dwarf (V = 16.13, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the companion of 3.35 days, a planetary mass of 4.01 ± 0.35 MJ, and a planetary radius of 1.49 +0.16-0.18 RJ. WTS1 b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3–5 MJ.

  10. A New Yield Simulator for Transiting Planets and False Positives: Application to the Next Generation Transit Survey

    CERN Document Server

    Günther, Maximilian N; Demory, Brice-Olivier; Bouchy, Francois

    2016-01-01

    We present a yield simulator to predict the number and characteristics of planets, false positives and false alarms in transit surveys. The simulator is based on a galactic model and the planet occurrence rates measured by the Kepler mission. It takes into account the observation window function and measured noise levels of the investigated survey. Additionally, it includes vetting criteria to identify false positives. We apply this simulator to the Next Generation Transit Survey (NGTS), a wide-field survey designed to detect transiting Neptune-sized exoplanets. We find that red noise is the main limitation of NGTS up to 14th magnitude, and that its obtained level determines the expected yield. Assuming a red noise level of 1 mmag, the simulation predicts the following for a four-year survey: 4+-3 Super-Earths, 19+-5 Small Neptunes, 16+-4 Large Neptunes, 55+-8 Saturn-sized planets and 150+-10 Jupiter-sized planets, along with 4688+-45 eclipsing binaries and 843+-75 background eclipsing binaries. We characteri...

  11. A new yield simulator for transiting planets and false positives: application to the Next Generation Transit Survey

    Science.gov (United States)

    Günther, Maximilian N.; Queloz, Didier; Demory, Brice-Olivier; Bouchy, Francois

    2017-03-01

    We present a yield simulator to predict the number and characteristics of planets, false positives and false alarms in transit surveys. The simulator is based on a galactic model and the planet occurrence rates measured by the Kepler mission. It takes into account the observation window function and measured noise levels of the investigated survey. Additionally, it includes vetting criteria to identify false positives. We apply this simulator to the Next Generation Transit Survey (NGTS), a wide-field survey designed to detect transiting Neptune-sized exoplanets. We find that red noise is the main limitation of NGTS up to 14 mag, and that its obtained level determines the expected yield. Assuming a red noise level of 1 mmag, the simulation predicts the following for a 4-yr survey: 4 ± 3 Super-Earths, 19 ± 5 Small Neptunes, 16 ± 4 Large Neptunes, 55 ± 8 Saturn-sized planets and 150 ± 10 Jupiter-sized planets, along with 4688 ± 45 eclipsing binaries and 843 ± 75 background eclipsing binaries. We characterize the properties of these objects to enhance the early identification of false positives and discuss follow-up strategies for transiting candidates.

  12. Constraining the Frequency of Free-floating Planets from a Synthesis of Microlensing, Radial Velocity, and Direct Imaging Survey Results

    Science.gov (United States)

    Clanton, Christian; Gaudi, B. Scott

    2017-01-01

    A microlensing survey by Sumi et al. exhibits an overabundance of short-timescale events (STEs; tE < 2 days) relative to what is expected from known stellar populations and a smooth power-law extrapolation down to the brown dwarf regime. This excess has been interpreted as a population of approximately Jupiter-mass objects that outnumber main-sequence stars nearly twofold; however the microlensing data alone cannot distinguish between events due to wide-separation (a ≳ 10 au) and free-floating planets. Assuming these STEs are indeed due to planetary-mass objects, we aim to constrain the fraction of these events that can be explained by bound but wide-separation planets. We fit the observed timescale distribution with a lens mass function comprised of brown dwarfs, main-sequence stars, and stellar remnants, finding and thus corroborating the initial identification of an excess of STEs. We then include a population of bound planets that are expected not to show signatures of the primary lens (host) in their microlensing light curves and that are also consistent with results from representative microlensing, radial velocity, and direct imaging surveys. We find that bound planets alone cannot explain the entire STE excess without violating the constraints from the surveys we consider and thus some fraction of these events must be due to free-floating planets, if our model for bound planets holds. We estimate a median fraction of STEs due to free-floating planets to be f = 0.67 (0.23 ≤ f ≤ 0.85 at 95% confidence) when assuming “hot-start” planet evolutionary models and f = 0.58 (0.14 ≤ f ≤ 0.83 at 95% confidence) for “cold-start” models. Assuming a delta-function distribution of free-floating planets of mass {m}p=2 {M}{Jup} yields a number of free-floating planets per main-sequence star of N = 1.4 (0.48 ≤ N ≤ 1.8 at 95% confidence) in the “hot-start” case and N = 1.2 (0.29 ≤ N ≤ 1.8 at 95% confidence) in the “cold-start” case.

  13. Search for Cosmic Strings in the GOODS Survey

    CERN Document Server

    Christiansen, J L; James, K A; Goldman, J; Maruyama, D; Smoot, G F

    2008-01-01

    We search Hubble Space Telescope Treasury Program images collected as part of the Great Observatories Origins Deep Survey for pairs of galaxies consistent with the gravitational lensing signature of a cosmic string. Our technique includes estimates of the efficiency for finding the lensed galaxy pair. In the North (South) survey field we find no evidence out to a redshift of greater than 1 (0.5) for cosmic strings to a mass per unit length limit of $G\\mu<3.0x10^{-7}$ at 95% CL. In the combined 314.9 arcmin$^2$ of the North and South survey fields this corresponds to a limit on $\\Omega_{strings}<0.0056$. Our global limit on $G\\mu$ is more than an order of magnitude lower than searches for individual strings in CMB data. Our limit is higher than other CMB and gravitational wave searches, however we note that it is less model dependent than these other searches.

  14. Search for Extra-Terrestrial planets: The DARWIN mission - Target Stars and Array Architectures

    CERN Document Server

    Kaltenegger, L

    2005-01-01

    The DARWIN mission is an Infrared free flying interferometer mission based on the new technique of nulling interferometry. Its main objective is to detect and characterize other Earth-like planets, analyze the composition of their atmospheres and their capability to sustain life, as we know it. DARWIN is currently in definition phase. This PhD work that has been undertaken within the DARWIN team at the European Space Agency (ESA) addresses two crucial aspects of the mission. Firstly, a DARWIN target star list has been established that includes characteristics of the target star sample that will be critical for final mission design, such as, luminosity, distance, spectral classification, stellar variability, multiplicity, location and radius of the star. Constrains were applied as set by planet evolution theory and mission architecture. Secondly, a number of alternative mission architectures have been evaluated on the basis of interferometer response as a function of wavelength, achievable modulation efficienc...

  15. A near infrared laser frequency comb for high precision Doppler planet surveys

    Directory of Open Access Journals (Sweden)

    Bally J.

    2011-07-01

    Full Text Available Perhaps the most exciting area of astronomical research today is the study of exoplanets and exoplanetary systems, engaging the imagination not just of the astronomical community, but of the general population. Astronomical instrumentation has matured to the level where it is possible to detect terrestrial planets orbiting distant stars via radial velocity (RV measurements, with the most stable visible light spectrographs reporting RV results the order of 1 m/s. This, however, is an order of magnitude away from the precision needed to detect an Earth analog orbiting a star such as our sun, the Holy Grail of these efforts. By performing these observations in near infrared (NIR there is the potential to simplify the search for distant terrestrial planets by studying cooler, less massive, much more numerous class M stars, with a tighter habitable zone and correspondingly larger RV signal. This NIR advantage is undone by the lack of a suitable high precision, high stability wavelength standard, limiting NIR RV measurements to tens or hundreds of m/s [1, 2]. With the improved spectroscopic precision provided by a laser frequency comb based wavelength reference producing a set of bright, densely and uniformly spaced lines, it will be possible to achieve up to two orders of magnitude improvement in RV precision, limited only by the precision and sensitivity of existing spectrographs, enabling the observation of Earth analogs through RV measurements. We discuss the laser frequency comb as an astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.

  16. Cosmologists in Search of Planet Nine: the Case for CMB Experiments

    CERN Document Server

    Cowan, Nicolas B; Kaib, Nathan A

    2016-01-01

    Cosmology experiments at mm-wavelengths may be able to detect Planet Nine if it is the size of Neptune, has an effective temperature of 40 K, and is 700 AU from the Sun. It would appear as a ~30 mJy source at 1 mm (or ~8 mJy at 150 GHz) with a parallax of ~5 arcmin. The challenge will be to distinguish it from the ~4000 foreground asteroids brighter than 30 mJy. Fortunately, asteroids can by identified by looking for sources that move across a resolution element in a matter of hours, orders of magnitude faster than Planet Nine. If Planet Nine is smaller, colder, and/or more distant than expected, then it could be as faint as 1 mJy at 1 mm. There are approximately 1E6 asteroids this bright, making many cosmology experiments confusion limited for moving sources. Nonetheless, it may still be possible to find the proverbial needle in the haystack using a matched filter. This would require mm telescopes with high angular resolution and high sensitivity in order to alleviate confusion and to enable the identificati...

  17. The SOPHIE search for northern extrasolar planets. III. A Jupiter-mass companion around HD 109246

    Science.gov (United States)

    Boisse, I.; Eggenberger, A.; Santos, N. C.; Lovis, C.; Bouchy, F.; Hébrard, G.; Arnold, L.; Bonfils, X.; Delfosse, X.; Desort, M.; Díaz, R. F.; Ehrenreich, D.; Forveille, T.; Gallenne, A.; Lagrange, A. M.; Moutou, C.; Udry, S.; Pepe, F.; Perrier, C.; Perruchot, S.; Pont, F.; Queloz, D.; Santerne, A.; Ségransan, D.; Vidal-Madjar, A.

    2010-11-01

    We report the detection of a Jupiter-mass planet discovered with the SOPHIE spectrograph mounted on the 1.93-m telescope at the Haute-Provence Observatory. The new planet orbits HD 109246, a G0V star slightly more metallic than the Sun. HD 109246b has a minimum mass of 0.77 MJup, an orbital period of 68 days, and an eccentricity of 0.12. It is placed in a sparsely populated region of the period distribution of extrasolar planets. We also present a correction method for the so-called seeing effect that affects the SOPHIE radial velocities. We complement this discovery announcement with a description of some calibrations that are implemented in the SOPHIE automatic reduction pipeline. These calibrations allow the derivation of the photon-noise radial velocity uncertainty and some useful stellar properties (v sin i, [Fe/H], log R’HK) directly from the SOPHIE data. Based on observations made with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS/OAMP), France (program 07A.PNP.CONS).RV tables (Tables C.1 and C.2) are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/523/A88

  18. Taboo search by successive confinement: Surveying a potential energy surface

    Science.gov (United States)

    Chekmarev, Sergei F.

    2001-09-01

    A taboo search for minima on a potential energy surface (PES) is performed by means of confinement molecular dynamics: the molecular dynamics trajectory of the system is successively confined to various basins on the PES that have not been sampled yet. The approach is illustrated for a 13-atom Lennard-Jones cluster. It is shown that the taboo search radically accelerates the process of surveying the PES, with the probability of finding a new minimum defined by a propagating Fermi-like distribution.

  19. Search for Kilonovae in Dark Energy Survey Supernova Fields

    Science.gov (United States)

    Doctor, Zoheyr; DES-GW Team; DES-SN Team

    2016-03-01

    The Dark Energy Camera on the Blanco 4-m Telescope is an ideal instrument for identifying rapid optical transients with its large field of view and four optical filters. We utilize two seasons of data from the Dark Energy Survey to search for kilonovae, an optical counterpart to gravitational waves from binary neutron star mergers. Kilonova lightcurves from Barnes and Kasen inform our analysis for removing background signals such as supernovae. We simulate DES observations of kilonovae with the SNANA software package to estimate our search efficiency and optimize cuts. Finally, we report rate limits for binary neutron star mergers and compare to existing rate estimates.

  20. On the Feasibility of Characterizing Free-floating Planets with Current and Future Space-based Microlensing Surveys

    Science.gov (United States)

    Henderson, Calen B.; Shvartzvald, Yossi

    2016-10-01

    Simultaneous space- and ground-based microlensing surveys, such as K2's Campaign 9 (K2C9) and WFIRST, facilitate measuring the masses and distances of free-floating planet (FFP) candidates, which are identified as single-lens events with timescales that are of the order of 1 day. Measuring the mass and distance of an FFP lens requires determining the size of the source star ρ, measuring the microlens parallax {π }{{E}}, and using high-resolution imaging to search for the lens flux {F}{\\ell } from a possible host star. Here we investigate the accessible parameter space for each of these components considering different satellites for a range of FFP masses, Galactic distances, and source star properties. We find that at the beginning of K2C9, when its projected separation {D}\\perp from the Earth is ≲0.2 au, it will be able to measure {π }{{E}} for Jupiter-mass FFP candidates at distances larger than ∼2 kpc and to Earth-mass lenses at ∼8 kpc. At the end of K2C9, when {D}\\perp = 0.81 au, it is sensitive to planetary-mass lenses for distances ≳3.5 kpc, and even then only to those with mass ≳M Jup. From lens flux constraints we find that it will be possible to exclude hosts down to the deuterium-burning limit for events within ∼2 kpc. This indicates that the ability to characterize FFPs detected during K2C9 is optimized for events occurring toward the beginning of the campaign. WFIRST, on the other hand, will be able to detect and characterize FFP masses down to or below super-Earths throughout the Galaxy during its entire microlensing survey.

  1. A small survey of the magnetic fields of planet-host stars

    CERN Document Server

    Fares, Rim; Donati, Jean-François; Catala, Claude; Shkolnik, Evgenya; Jardine, Moira; Cameron, Andrew; Deleuil, Magali

    2013-01-01

    Using spectropolarimetry, we investigate the large-scale magnetic topologies of stars hosting close-in exoplanets. A small survey of ten stars has been done with the twin instruments TBL/NARVAL and CFHT/ESPaDOnS between 2006 and 2011. Each target consists of circular-polarization observations covering 7 to 22 days. For each of the 7 targets in which a magnetic field was detected, we reconstructed the magnetic field topology using Zeeman-Doppler imaging. Otherwise, a detection limit has been estimated. Three new epochs of observations of Tau Boo are presented, which confirm magnetic polarity reversal. We estimate that the cycle period is 2 years, but recall that a shorter period of 240 days can not still be ruled out. The result of our survey is compared to the global picture of stellar magnetic field properties in the mass-rotation diagram. The comparison shows that these giant planet-host stars tend to have similar magnetic field topologies to stars without detected hot-Jupiters. This needs to be confirmed w...

  2. Numerical search for a potential planet sculpting the young disc of HD 115600

    Science.gov (United States)

    Thilliez, E.; Maddison, S. T.

    2017-01-01

    Radial and azimuthal features (such as disc offsets and eccentric rings) seen in high-resolution images of debris discs provide us with the unique opportunity of finding potential planetary companions that betray their presence by gravitationally sculpting such asymmetric features. The young debris disc around HD 115600, imaged recently by the Gemini Planet Imager, is such a disc with an eccentricity e ˜ 0.1-0.2 and a projected offset from the star of ˜4 au. Using our modified N-body code that incorporates radiation forces, we first aim to determine the orbit of a hidden planetary companion potentially responsible for shaping the disc. We run a suite of simulations covering a broad range of planetary parameters using a Monte Carlo Markov Chain sampling method and create synthetic images from which we extract the geometric disc parameters to be compared with the observed and model-derived quantities. We then repeat the study using a traditional grid to explore the planetary parameter space and then aim to compare the efficiency of both sampling methods. We find a planet of 7.8 MJ orbiting at 30 au with an eccentricity of e = 0.2 to be the best fit to the observations of HD 115600. Technically, such planet has a contrast detectable by direct imaging, however the system's orientation does not favour such detection. In this study, at equal number of explored planetary configurations, the Monte Carlo Markov Chain not only converges faster but provides a better fit than a traditional grid.

  3. Two New Long-Period Giant Planets from the McDonald Observatory Planet Search and Two Stars with Long-Period Radial Velocity Signals Related to Stellar Activity Cycles

    CERN Document Server

    Endl, Michael; Cochran, William D; MacQueen, Phillip J; Robertson, Paul; Meschiari, Stefano; Ramirez, Ivan; Shetrone, Matthew; Gullikson, Kevin; Johnson, Marshall C; Wittenmyer, Robert; Horner, Jonathan; Ciardi, David R; Horch, Elliott; Simon, Attila E; Howell, Steve B; Everett, Mark; Caldwell, Caroline; Castanheira, Barbara G

    2015-01-01

    We report the detection of two new long-period giant planets orbiting the stars HD 95872 and HD 162004 (psi1 Draconis B) by the McDonald Observatory planet search. The planet HD 95872b has a minimum mass of 4.6 M_Jup and an orbital semi-major axis of 5.2 AU. The giant planet psi1 Dra Bb has a minimum mass of 1.5 M_Jup and an orbital semi-major axis of 4.4 AU. Both of these planets qualify as Jupiter analogs. These results are based on over one and a half decades of precise radial velocity measurements collected by our program using the McDonald Observatory Tull Coude spectrograph at the 2.7 m Harlan J. Smith telescope. In the case of psi1 Draconis B we also detect a long-term non-linear trend in our data that indicates the presence of an additional giant planet, similar to the Jupiter-Saturn pair. The primary of the binary star system, psi1 Dra A, exhibits a very large amplitude radial velocity variation due to another stellar companion. We detect this additional member using speckle imaging. We also report t...

  4. The SOPHIE search for northern extrasolar planets. XI. Three new companions and an orbit update: Giant planets in the habitable zone

    Science.gov (United States)

    Díaz, R. F.; Rey, J.; Demangeon, O.; Hébrard, G.; Boisse, I.; Arnold, L.; Astudillo-Defru, N.; Beuzit, J.-L.; Bonfils, X.; Borgniet, S.; Bouchy, F.; Bourrier, V.; Courcol, B.; Deleuil, M.; Delfosse, X.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Mayor, M.; Moutou, C.; Pepe, F.; Queloz, D.; Santerne, A.; Santos, N. C.; Sahlmann, J.; Ségransan, D.; Udry, S.; Wilson, P. A.

    2016-07-01

    We report the discovery of three new substellar companions to solar-type stars, HD 191806, HD 214823, and HD 221585, based on radial velocity measurements obtained at the Haute-Provence Observatory. Data from the SOPHIE spectrograph are combined with observations acquired with its predecessor, ELODIE, to detect and characterise the orbital parameters of three new gaseous giant and brown dwarf candidates. Additionally, we combine SOPHIE data with velocities obtained at the Lick Observatory to improve the parameters of an already known giant planet companion, HD 16175 b. Thanks to the use of different instruments, the data sets of all four targets span more than ten years. Zero-point offsets between instruments are dealt with using Bayesian priors to incorporate the information we possess on the SOPHIE/ELODIE offset based on previous studies. The reported companions have orbital periods between three and five years and minimum masses between 1.6 MJup and 19 MJup. Additionally, we find that the star HD 191806 is experiencing a secular acceleration of over 11 m s-1 per year, potentially due to an additional stellar or substellar companion. A search for the astrometric signature of these companions was carried out using Hipparcos data. No orbit was detected, but a significant upper limit to the companion mass can be set for HD 221585, whose companion must be substellar. With the exception of HD 191806 b, the companions are located within the habitable zone of their host star. Therefore, satellites orbiting these objects could be a propitious place for life to develop. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France by the SOPHIE Consortium (programme 07A.PNP.CONS to 15A.PNP.CONS).

  5. High Ph, Ammonia Toxicity, and the Search for Life on the Jovian Planets

    Science.gov (United States)

    Deal, P. H.; Souza, K. A.; Mack, H. M.

    1975-01-01

    The effects of pH and ammonia concentration were studied separately, where possible, on a variety of organisms, including some isolated from natural environments of high pH and/or ammonia concentration. Escherichia coli and Bacillus subtilis are both extremely sensitive to ammonia. An aerobic organism (growth up to pH 11.4) from an alkaline spring is more resistant, but exhibits a toxic response to ammonia at a pH much lower than its maximum for growth. The greatest ammonia resistance has been found in an unidentified organism growing at near neutral pH. Even in this case, however, urvival at ammonia concentrations reasonably expected on the Jovian planets is measured in hours. This is two to three orders of magnitude longer than for E. coli. Results support the tentative conclusion that contamination of the Jovian planets with terrestrial organisms that can grow is unlikely. However, the range of toxic response noted, coupled with the observation that terrestrial life has not been exposed to high ammonia concentrations for millions of years, suggests that adaptation to greater ammonia tolerance may be possible.

  6. Searching for Star-Planet interactions within the magnetosphere of HD 189733

    CERN Document Server

    Fares, R; Moutou, C; Jardine, M M; Griessmeier, J -M; Zarka, P; Shkolnik, E L; Bohlender, D; Catala, C; Cameron, A C

    2010-01-01

    HD 189733 is a K2 dwarf, orbited by a giant planet at 8.8 stellar radii. In order to study magnetospheric interactions between the star and the planet, we explore the large-scale magnetic field and activity of the host star. We collected spectra using the ESPaDOnS and the NARVAL spectropolarimeters, installed at the 3.6-m Canada-France-Hawaii telescope and the 2-m Telescope Bernard Lyot at Pic du Midi, during two monitoring campaigns (June 2007 and July 2008). HD 189733 has a mainly toroidal surface magnetic field, having a strength that reaches up to 40 G. The star is differentially rotating, with latitudinal angular velocity shear of domega = 0.146 +- 0.049 rad/d, corresponding to equatorial and polar periods of 11.94 +- 0.16 d and 16.53 +- 2.43 d respectively. The study of the stellar activity shows that it is modulated mainly by the stellar rotation (rather than by the orbital period or the beat period between the stellar rotation and the orbital periods). We report no clear evidence of magnetospheric int...

  7. Searching for Earth-mass planets around $\\alpha$ Centauri: precise radial velocities from contaminated spectra

    CERN Document Server

    Bergmann, Christoph; Hearnshaw, John B; Wittenmyer, Robert A; Wright, Duncan J

    2014-01-01

    This work is part of an ongoing project which aims to detect terrestrial planets in our neighbouring star system $\\alpha$ Centauri using the Doppler method. Owing to the small angular separation between the two components of the $\\alpha$ Cen AB binary system, the observations will to some extent be contaminated with light coming from the other star. We are accurately determining the amount of contamination for every observation by measuring the relative strengths of the H-$\\alpha$ and NaD lines. Furthermore, we have developed a modified version of a well established Doppler code that is modelling the observations using two stellar templates simultaneously. With this method we can significantly reduce the scatter of the radial velocity measurements due to spectral cross-contamination and hence increase our chances of detecting the tiny signature caused by potential Earth-mass planets. After correcting for the contamination we achieve radial velocity precision of $\\sim 2.5\\,\\mathrm{m\\,s^{-1}}$ for a given night...

  8. Removing Activity-Related Radial Velocity Noise to Improve Extrasolar Planet Searches

    Science.gov (United States)

    Saar, Steven; Lindstrom, David M. (Technical Monitor)

    2004-01-01

    We have made significant progress towards the proposal goals of understanding the causes and effects of magnetic activity-induced radial velocity (v_r) jitter and developing methods for correcting it. In the process, we have also made some significant discoveries in the fields of planet-induced stellar activity, planet detection methods, M dwarf convection, starspot properties, and magnetic dynamo cycles. We have obtained super high resolution (R approximately 200,000), high S / N (greater than 300) echelle study of joint line bisector and radial velocity variations using the McDonald 2-D coude. A long observing run in October 2002 in particular was quite successful (8 clear nights). We now have close to three years of data, which begins to sample a good fraction of the magnetic cycle timescales for some of our targets (e.g., kappa Ceti; P_cyc = 5.6 yrs). This will be very helpful in unraveling the complex relationships between plage and radial velocity (v-r) changes which we have uncovered. Preliminary analysis (Saar et al. 2003) of the data in hand, reveals correlations between median line bisector displacement and v_r. The correlation appears to be specific the the particular star being considered, probably since it is a function of both spectral type and rotation rate. Further analysis and interpretation will be in the context of evolving plage models and is in progress.

  9. Results of a Hubble Space Telescope Search for Natural Satellites of Dwarf Planet 1 Ceres

    Science.gov (United States)

    DeMario, Benjamin; Schmidt, Britney E.; Mutchler, Maximilian J.; Li, Jian-Yang; McFadden, Lucy Ann; McLean, Brian; Russell, Christopher T.

    2016-10-01

    In order to prepare for the arrival of the Dawn spacecraft at Ceres, a search for satellites was undertaken by the Hubble Space Telescope (HST) to enhance the mission science return and to ensure spacecraft safety. Previous satellite searches from ground-based telescopes have detected no satellites within Ceres' Hill sphere down to a size of 3 km (Gehrels et al. 1987) and early HST investigations searched to a limit of 1-2 km (Bieryla et al. 2011). The Wide Field Camera 3 (WFC3) on board the HST was used to image Ceres between 14 April - 28 April 2014. These images cover approximately the inner third of Ceres' Hill sphere, where the Hill sphere is the region surrounding Ceres where stable satellite orbits are possible. We performed a deep search for possible companions orbiting Ceres. No natural companions were located down to a diameter of 48 meters, over most of the Hill sphere to a distance of 205,000 km (434 Ceres radii) from the surface of Ceres. It was impossible to search all the way to the surface of Ceres because of scattered light, but at a distance of 2865 km (five Ceres radii), the search limit was determined to be 925 meters. The absence of a satellite around Ceres could, in the future, support more refined theories about satellite formation or capture mechanisms in the solar system.

  10. Transit Detection in the MEarth Survey of Nearby M Dwarfs: Bridging the Clean-First, Search-Later Divide

    CERN Document Server

    Berta, Zachory K; Charbonneau, David; Burke, Christopher J; Falco, Emilio E

    2012-01-01

    In the effort to characterize the masses, radii, and atmospheres of potentially habitable exoplanets, there is an urgent need to find examples of such planets transiting nearby M dwarfs. The MEarth Project is an ongoing effort to do so, as a ground-based photometric survey designed to detect exoplanets as small as 2 Earth radii transiting mid-to-late M dwarfs within 33 pc of the Sun. Unfortunately, identifying transits of such planets in photometric monitoring is complicated both by the intrinsic stellar variability that is common among these stars and by the nocturnal cadence, atmospheric variations, and instrumental systematics that often plague Earth-bound observatories. Here we summarize the challenges MEarth faces, and address them with a new framework to detect shallow exoplanet transits in wiggly and irregularly-spaced light curves. In contrast to previous methods that clean trends from light curves before searching for transits, this framework assesses the significance of individual transits simultane...

  11. First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields

    Science.gov (United States)

    Burdanov, Artem Y.; Benni, Paul; Krushinsky, Vadim V.; Popov, Alexander A.; Sokov, Evgenii N.; Sokova, Iraida A.; Rusov, Sergei A.; Lyashenko, Artem Yu.; Ivanov, Kirill I.; Moiseev, Alexei V.; Rastegaev, Denis A.; Dyachenko, Vladimir V.; Balega, Yuri Yu.; Baştürk, Özgür; Özavcı, Ibrahim; Puchalski, Damian; Marchini, Alessandro; Naves, Ramon; Shadick, Stan; Bretton, Marc

    2016-10-01

    We present the first results of our search for transiting exoplanet candidates as part of the Kourovka Planet Search (KPS) project. The primary objective of the project is to search for new hot Jupiters which transit their host stars, mainly in the Galactic plane, in the Rc magnitude range of 11-14 mag. Our observations were performed with the telescope of the MASTER robotic network, installed at the Kourovka astronomical observatory of the Ural Federal University (Russia), and the Rowe-Ackermann Schmidt Astrograph, installed at the private Acton Sky Portal Observatory (USA). As test observations, we observed three celestial fields of size 2 × 2 deg2 during the period from 2012 to 2015. As a result, we discovered four transiting exoplanet candidates among the 39 000 stars of the input catalogue. In this paper, we provide the description of the project and analyse additional photometric, spectral, and speckle interferometric observations of the discovered transiting exoplanet candidates. Three of the four transiting exoplanet candidates are most likely astrophysical false positives, while the nature of the fourth (most promising) candidate remains to be ascertained. Also, we propose an alternative observing strategy that could increase the project's exoplanet haul.

  12. The SOPHIE search for northern extrasolar planets. V. Follow-up of ELODIE candidates: Jupiter-analogs around Sun-like stars

    Science.gov (United States)

    Boisse, I.; Pepe, F.; Perrier, C.; Queloz, D.; Bonfils, X.; Bouchy, F.; Santos, N. C.; Arnold, L.; Beuzit, J.-L.; Díaz, R. F.; Delfosse, X.; Eggenberger, A.; Ehrenreich, D.; Forveille, T.; Hébrard, G.; Lagrange, A.-M.; Lovis, C.; Mayor, M.; Moutou, C.; Naef, D.; Santerne, A.; Ségransan, D.; Sivan, J.-P.; Udry, S.

    2012-09-01

    We present radial-velocity measurements obtained in one of a number of programs underway to search for extrasolar planets with the spectrograph SOPHIE at the 1.93-m telescope of the Haute-Provence Observatory. Targets were selected from catalogs observed with ELODIE, which had been mounted previously at the telescope, in order to detect long-period planets with an extended database close to 15 years. Two new Jupiter-analog candidates are reported to orbit the bright stars HD 150706 and HD 222155 in 16.1 yr and 10.9 yr at 6.7-1.4+4.0 AU and 5.1-0.7+0.6 AU, and to have minimum masses of 2.71-0.66+1.14 MJup and 1.90-0.53+0.67 MJup, respectively. Using the measurements from ELODIE and SOPHIE, we refine the parameters of the long-period planets HD 154345b and HD 89307b, and publish the first reliable orbit for HD 24040b. This last companion has a minimum mass of 4.01 ± 0.49 MJup orbiting its star in 10.0 yr at 4.92 ± 0.38 AU. Moreover, the data provide evidence of a third bound object in the HD 24040 system. With a surrounding dust debris disk, HD 150706 is an active G0 dwarf for which we partially corrected the effect of the stellar spot on the SOPHIE radial-velocities. In contrast, HD 222155 is an inactive G2V star. In the SOPHIE measurements, an instrumental effect could be characterized and partly corrected. On the basis of the previous findings of Lovis and collaborators and since no significant correlation between the radial-velocity variations and the activity index are found in the SOPHIE data, these variations are not expected to be only due to stellar magnetic cycles. Finally, we discuss the main properties of this new population of long-period Jupiter-mass planets, which for the moment consists of fewer than 20 candidates. These stars are preferential targets either for direct-imaging or astrometry follow-up surveys to constrain the system parameters and for higher-precision radial-velocity searches for lower mass planets, aiming to find a solar system twin

  13. VizieR Online Data Catalog: Pan-Pacific Planet Search (PPPS). V. 164 stars (Wittenmyer+, 2016)

    Science.gov (United States)

    Wittenmyer, R. A.; Liu, F.; Wang, L.; Casagrande, L.; Johnson, J. A.; Tinney, C. G.

    2016-09-01

    The Pan-Pacific Planet Search (PPPS) operated at the 3.9m Anglo-Australian Telescope (AAT) from 2009 to 2014, targeting 164 southern hemisphere evolved stars (see Paper I, Wittenmyer et al. 2011, Cat. J/ApJ/743/184). All observations were carried out at the AAT using its UCLES echelle spectrograph. The PPPS program uses the Doppler technique for measuring precise radial velocities, with an iodine absorption cell to calibrate the spectrograph point-spread function. An iodine-free "template" observation is acquired for each target at a resolution R~60000 and a signal-to-noise of 100-300pixel-1. In this work, we use the iodine-free templates to determine spectroscopic stellar atmospheric parameters. (5 data files).

  14. A Search for Kilonovae in the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, Z.; Kessler, R.; Chen, H. Y.; Farr, B.; Finley, D. A.; Foley, R. J.; Goldstein, D. A.; Holz, D. E.; Kim, A. G.; Morganson, E.; Sako, M.; Scolnic, D.; Smith, M.; Soares-Santos, M.; Spinka, H.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; Costa, L. N. da; DePoy, D. L.; Desai, S.; Diehl, H. T.; Drlica-Wagner, A.; Eifler, T. F.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.; Wester, W.

    2017-03-01

    The coalescence of a binary neutron star pair is expected to produce gravitational waves (GW) and electromagnetic radiation, both of which may be detectable with currently available instruments. We describe a search for a predicted r-process optical transient from these mergers, dubbed the “kilonova” (KN), using griz broadband data from the Dark Energy Survey Supernova Program (DES-SN). Some models predict KNe to be redder, shorter-lived, and dimmer than supernovae (SNe), but the event rate of KNe is poorly constrained. We simulate KN and SN light curves with the Monte-Carlo simulation code SNANA to optimize selection requirements, determine search efficiency, and predict SN backgrounds. Our analysis of the first two seasons of DES-SN data results in 0 events, and is consistent with our prediction of 1.1 ± 0.2 background events based on simulations of SNe. From our prediction, there is a 33% chance of finding 0 events in the data. Assuming no underlying galaxy flux, our search sets 90% upper limits on the KN volumetric rate of 1.0 x10$^{7}$ Gpc$-$3 yr$-$1 for the dimmest KN model we consider (peak i-band absolute magnitude ${M}_{i}=-11.4$ mag) and 2.4x10$^{4}$ Gpc$-$3 yr$-$1 for the brightest (${M}_{i}=-16.2$ mag). Accounting for anomalous subtraction artifacts on bright galaxies, these limits are ~3 times higher. This analysis is the first untriggered optical KN search and informs selection requirements and strategies for future KN searches. Our upper limits on the KN rate are consistent with those measured by GW and gamma-ray burst searches.

  15. A Search for Kilonovae in the Dark Energy Survey

    Science.gov (United States)

    Doctor, Z.; Kessler, R.; Chen, H. Y.; Farr, B.; Finley, D. A.; Foley, R. J.; Goldstein, D. A.; Holz, D. E.; Kim, A. G.; Morganson, E.; Sako, M.; Scolnic, D.; Smith, M.; Soares-Santos, M.; Spinka, H.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Drlica-Wagner, A.; Eifler, T. F.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.; Wester, W.; DES Collaboration

    2017-03-01

    The coalescence of a binary neutron star pair is expected to produce gravitational waves (GW) and electromagnetic radiation, both of which may be detectable with currently available instruments. We describe a search for a predicted r-process optical transient from these mergers, dubbed the “kilonova” (KN), using griz broadband data from the Dark Energy Survey Supernova Program (DES-SN). Some models predict KNe to be redder, shorter-lived, and dimmer than supernovae (SNe), but the event rate of KNe is poorly constrained. We simulate KN and SN light curves with the Monte-Carlo simulation code SNANA to optimize selection requirements, determine search efficiency, and predict SN backgrounds. Our analysis of the first two seasons of DES-SN data results in 0 events, and is consistent with our prediction of 1.1 ± 0.2 background events based on simulations of SNe. From our prediction, there is a 33% chance of finding 0 events in the data. Assuming no underlying galaxy flux, our search sets 90% upper limits on the KN volumetric rate of 1.0 × {10}7 Gpc‑3 yr‑1 for the dimmest KN model we consider (peak i-band absolute magnitude {M}i=-11.4 mag) and 2.4 × {10}4 Gpc‑3 yr‑1 for the brightest ({M}i=-16.2 mag). Accounting for anomalous subtraction artifacts on bright galaxies, these limits are ∼3 times higher. This analysis is the first untriggered optical KN search and informs selection requirements and strategies for future KN searches. Our upper limits on the KN rate are consistent with those measured by GW and gamma-ray burst searches.

  16. Hide and Seek: Radial-velocity searches for planets around active stars

    Science.gov (United States)

    Haywood, Raphaelle

    2017-01-01

    The ultimate obstacle to determining the masses of small, rocky exoplanets through radial-velocity (RV) monitoring is the intrinsic variability of the host stars themselves. For my PhD, I developed an intuitive and robust data analysis framework in which the activity-induced variations are modelled with a Gaussian process that has the frequency structure of the stellar magnetic activity. This allowed me to determine precise and accurate masses of the planets in the CoRoT-7, Kepler-78 and Kepler-10 systems. In parallel, I explored the physical origin of activity-induced RV variations of our best-known star: the Sun. I conducted the first systematic RV campaign of the Sun seen as an exoplanet host star using the 3.6m/HARPS spectrograph, by observing sunlight reflected off the bright asteroid 4/Vesta. I used images from the Solar Dynamics Observatory to reconstruct the RV signals incurred by individual surface features such as sunspots, faculae and granulation. I found that the activity-induced RV variations are driven by the suppression of convective blueshift arising dominantly from the presence of faculae. I also identified the full-disc magnetic flux as an excellent proxy for activity-induced RV variations.I am now pursuing my solar investigations using Sun-as-a-star RV observations acquired with the new solar telescope feed at HARPS-N. In particular, I am investigating the impact of magnetic surface features on the shapes of the spectral line profiles, rather than on the RVs themselves (which are a single moment of these lines). This work is key to developing physically-driven, better-tailored models for activity-induced RV variations, in preparation for the potentially habitable, Earth-like planets to be discovered and characterised in the coming years with TESS and GMT/G-CLEF.This work was funded by the Science and Technology Facilities Council in the United Kingdom and the John Templeton Foundation.

  17. SEARCHING FOR PLANETS IN HOLEY DEBRIS DISKS WITH THE APODIZING PHASE PLATE

    Energy Technology Data Exchange (ETDEWEB)

    Meshkat, Tiffany; Kenworthy, Matthew A. [Sterrewacht Leiden, P.O. Box 9513, Niels Bohrweg 2, 2300 RA Leiden (Netherlands); Bailey, Vanessa P.; Su, Kate Y. L.; Hinz, Philip M.; Smith, Paul S. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2015-02-10

    We present our first results from a high-contrast imaging search for planetary mass companions around stars with gapped debris disks, as inferred from the stars' bright infrared excesses. For the six considered stars, we model the disks' unresolved infrared spectral energy distributions in order to derive the temperature and location of the disk components. With VLT/NaCo Apodizing Phase Plate coronagraphic L'-band imaging, we search for planetary mass companions that may be sculpting the disks. We detect neither disks nor companions in this sample, confirmed by comparing plausible point sources with archival data. In order to calculate our mass sensitivity limit, we revisit the stellar age estimates. One target, HD 17848, at 540 ± 100 Myr old is significantly older than previously estimated. We then discuss our high-contrast imaging results with respect to the disk properties.

  18. Searching for Planets in Holey Debris Disks with the Apodizing Phase Plate

    CERN Document Server

    Meshkat, Tiffany; Su, Kate Y L; Kenworthy, Matthew A; Mamajek, Eric E; Hinz, Philip M; Smith, Paul S

    2014-01-01

    We present our first results from a high-contrast imaging search for planetary mass companions around stars with gapped debris disks, as inferred from the stars' bright infrared excesses. For the six considered stars, we model the disks' unresolved infrared spectral energy distributions (SEDs) in order to derive the temperature and location of the disk components. With VLT/NaCo Apodizing Phase Plate coronagraphic L'-band imaging, we search for planetary mass companions that may be sculpting the disks. We detect neither disks nor companions in this sample, confirmed by comparing plausible point sources with archival data. In order to calculate our mass sensitivity limit, we revisit the stellar age estimates. One target, HD 17848, at 540$\\pm$100 Myr old is significantly older than previously estimated. We then discuss our high-contrast imaging results with respect to the disk properties.

  19. Students Discover Unique Planet

    Science.gov (United States)

    2008-12-01

    Three undergraduate students, from Leiden University in the Netherlands, have discovered an extrasolar planet. The extraordinary find, which turned up during their research project, is about five times as massive as Jupiter. This is also the first planet discovered orbiting a fast-rotating hot star. Omega Centauri ESO PR Photo 45a/08 A planet around a hot star The students were testing a method of investigating the light fluctuations of thousands of stars in the OGLE database in an automated way. The brightness of one of the stars was found to decrease for two hours every 2.5 days by about one percent. Follow-up observations, taken with ESO's Very Large Telescope in Chile, confirmed that this phenomenon is caused by a planet passing in front of the star, blocking part of the starlight at regular intervals. According to Ignas Snellen, supervisor of the research project, the discovery was a complete surprise. "The project was actually meant to teach the students how to develop search algorithms. But they did so well that there was time to test their algorithm on a so far unexplored database. At some point they came into my office and showed me this light curve. I was completely taken aback!" The students, Meta de Hoon, Remco van der Burg, and Francis Vuijsje, are very enthusiastic. "It is exciting not just to find a planet, but to find one as unusual as this one; it turns out to be the first planet discovered around a fast rotating star, and it's also the hottest star found with a planet," says Meta. "The computer needed more than a thousand hours to do all the calculations," continues Remco. The planet is given the prosaic name OGLE2-TR-L9b. "But amongst ourselves we call it ReMeFra-1, after Remco, Meta, and myself," says Francis. The planet was discovered by looking at the brightness variations of about 15 700 stars, which had been observed by the OGLE survey once or twice per night for about four years between 1997 and 2000. Because the data had been made public

  20. The Penn State - Torun Centre for Astronomy Planet Search stars. II. Lithium abundance analysis of the Red Giant Clump sample

    CERN Document Server

    Adamow, M; Villaver, E; Wolszczan, A; Nowak, G

    2014-01-01

    Using the sample of 348 stars from the PennState-Torun Centre for Astronomy Planet Search, for which uniformly determined atmospheric parameters are available, with chemical abundances and rotational velocities presented here, we investigate various channels of Li enrichment in giants. Our work is based on the HET/HRS spectra. The A(Li) was determined from the 670.8nm line, while we use a more extended set of lines for alpha-elements abundances. In a series of K-S tests, we compare Li-rich giants with other stars in the sample. We also use available IR photometric and kinematical data in search for evidence of mass-loss. We investigate properties of the most Li-abundant giants in more detail by using multi-epoch precise radial velocities. We present Li and alpha-elements abundances, as well as vsini for 348 stars. We detected Li in 92 stars, of which 82 are giants. 11 of them show significant Li abundance A(Li)>1.4 and 7 of them are Li-overabundant objects, according to criterion of A(Li)>1.5 and their locati...

  1. Numerical search for a potential planet sculpting the young disc of HD 115600

    CERN Document Server

    Thilliez, E

    2016-01-01

    Radial and azimuthal features (such as disc offsets and eccentric rings) seen in high resolution images of debris discs, provide us with the unique opportunity of finding potential planetary companions which betray their presence by gravitationally sculpting such asymmetric features. The young debris disc around HD 115600, imaged recently by the Gemini Planet Imager, is such a disc with an eccentricity 0.1

  2. Search for exoplanet around northern circumpolar stars - Four planets around HD 11755, HD 12648, HD 24064, and 8 Ursae Minoris

    CERN Document Server

    Lee, B -C; Lee, S -M; Jeong, G; Oh, H -I; Han, I; Lee, J W; Lee, C -U; Kim, S -L; Kim, K -M

    2015-01-01

    Aims. This program originated as the north pole region extension of the established exoplanet survey using 1.8 m telescope at Bohyunsan Optical Astronomy Observatory (BOAO). The aim of our paper is to find exoplanets in northern circumpolar stars with a precise radial velocity (RV) survey. Methods. We have selected about 200 northern circumpolar stars with the following criteria: Dec. > 70 degree, 0.6 < B-V < 1.6, HIPPARCOS_scat < 0.05 magnitude, and 5.0 < mv < 7.0. The high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) was used for the RV survey. Chromospheric activities, the HIPPARCOS photometry, and line bisectors were analyzed to exclude other causes for the RV variations. Results. In 2010, we started to monitor the candidates and have completed initial screening for all stars for the last five years. We present the detection of four new exoplanets. Stars HD 11755, HD 12648, HD 24064, and 8 UMi all show evidence for giant planets in Keplerian motion. The companion ...

  3. Optimal survey strategies and predicted planet yields for the Korean microlensing telescope network

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Calen B.; Gaudi, B. Scott; Skowron, Jan; Penny, Matthew T.; Gould, Andrew P. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Han, Cheongho [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Nataf, David, E-mail: henderson@astronomy.ohio-state.edu [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia)

    2014-10-10

    The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6 m telescopes each with a 4 deg{sup 2} field of view (FoV) and will be dedicated to monitoring the Galactic Bulge to detect exoplanets via gravitational microlensing. KMTNet's combination of aperture size, FoV, cadence, and longitudinal coverage will provide a unique opportunity to probe exoplanet demographics in an unbiased way. Here we present simulations that optimize the observing strategy for and predict the planetary yields of KMTNet. We find preferences for four target fields located in the central Bulge and an exposure time of t {sub exp} = 120 s, leading to the detection of ∼2200 microlensing events per year. We estimate the planet detection rates for planets with mass and separation across the ranges 0.1 ≤ M{sub p} /M {sub ⊕} ≤ 1000 and 0.4 ≤ a/AU ≤ 16, respectively. Normalizing these rates to the cool-planet mass function of Cassan et al., we predict KMTNet will be approximately uniformly sensitive to planets with mass 5 ≤ M{sub p} /M {sub ⊕} ≤ 1000 and will detect ∼20 planets per year per dex in mass across that range. For lower-mass planets with mass 0.1 ≤ M{sub p} /M {sub ⊕} < 5, we predict KMTNet will detect ∼10 planets per year. We also compute the yields KMTNet will obtain for free-floating planets (FFPs) and predict KMTNet will detect ∼1 Earth-mass FFP per year, assuming an underlying population of one such planet per star in the Galaxy. Lastly, we investigate the dependence of these detection rates on the number of observatories, the photometric precision limit, and optimistic assumptions regarding seeing, throughput, and flux measurement uncertainties.

  4. A CO survey in planet-forming disks: characterizing the gas content in the epoch of planet formation

    CERN Document Server

    Hales, A S; Montesinos, B; Casassus, S; Dent, W F R; Dougados, C; Eiroa, C; Hughes, A M; Garay, G; Mardones, D; Ménard, F; Palau, Aina; Pérez, S; Phillips, N; Torrelles, J M; Wilner, D

    2014-01-01

    We carried out a 12CO(3-2) survey of 52 southern stars with a wide range of IR excesses (LIR/L*) using the single dish telescopes APEX and ASTE. The main aims were (1) to characterize the evolution of molecular gas in circumstellar disks using LIR/L* values as a proxy of disk dust evolution, and (2) to identify new gas-rich disk systems suitable for detailed study with ALMA. About 60% of the sample (31 systems) have LIR/L* > 0.01 typical of T-Tauri or Herbig AeBe stars, and the rest (21 systems) have LIR/L* 0.01. However, the spectra of only four of the newly detected systems appear free of contamination from background or foreground emission from molecular clouds. These include the early-type stars HD 104237 (A4/5V, 116 pc) and HD 98922 (A2 III, 507 pc, as determined in this work), where our observations reveal the presence of CO-rich circumstellar disks for the first time. Of the other detected sources, many could harbor gaseous circumstellar disks, but our data are inconclusive. For these two newly discov...

  5. A CO survey in planet-forming disks: Characterizing the gas content in the epoch of planet formation

    Energy Technology Data Exchange (ETDEWEB)

    Hales, A. S.; De Gregorio-Monsalvo, I.; Dent, W. F. R.; Phillips, N. [Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355 Santiago (Chile); Montesinos, B. [Department of Astrophysics, Centre for Astrobiology (CAB, CSIC-INTA), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Casassus, S.; Garay, G.; Mardones, D.; Pérez, S. [Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Dougados, C.; Ménard, F. [UMI-FCA, CNRS/INSU, France (UMI 3386) (France); Eiroa, C. [Departamento de Física Teórica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Hughes, A. M. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Palau, Aina [Institut de Ciéncies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciéncies, Torre C5-parell 2, E-08193 Bellaterra, Catalunya (Spain); Torrelles, J. M. [Institut de Ciències de l' Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Wilner, D., E-mail: ahales@alma.cl [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2014-09-01

    We carried out a {sup 12}CO(3-2) survey of 52 southern stars with a wide range of IR excesses (L {sub IR}/L {sub *}) using the single-dish telescopes APEX and ASTE. The main aims were (1) to characterize the evolution of molecular gas in circumstellar disks using L {sub IR}/L {sub *} values as a proxy of disk dust evolution, and (2) to identify new gas-rich disk systems suitable for detailed study with ALMA. About 60% of the sample (31 systems) have L {sub IR}/L {sub *} > 0.01, typical of T Tauri or Herbig AeBe stars, and the rest (21 systems) have L {sub IR}/L {sub *} < 0.01, typical of debris disks. We detect CO(3-2) emission from 20 systems, and 18 (90%) of these have L {sub IR}/L {sub *} > 0.01. However, the spectra of only four of the newly detected systems appear free of contamination from background or foreground emission from molecular clouds. These include the early-type stars HD 104237 (A4/5V, 116 pc) and HD 98922 (A2 III, 507 pc, as determined in this work), where our observations reveal the presence of CO-rich circumstellar disks for the first time. Of the other detected sources, many could harbor gaseous circumstellar disks, but our data are inconclusive. For these two newly discovered gas-rich disks, we present radiative transfer models that simultaneously reproduce their spectral energy distributions and the {sup 12}CO(3-2) line profiles. For both of these systems, the data are fit well by geometrically flat disks, placing them in the small class of non-flaring disks with significant molecular gas reservoirs.

  6. Detection of Potential Transit Signals in 17 Quarters of Kepler Data: Results of the Final Kepler Mission Transiting Planet Search (DR25)

    CERN Document Server

    Twicken, Joseph D; Seader, Shawn E; Tenenbaum, Peter; Smith, Jeffrey C; Brownston, Lee S; Burke, Christopher J; Catanzarite, Joseph H; Clarke, Bruce D; Cote, Miles T; Girouard, Forrest R; Klaus, Todd C; Li, Jie; McCauliff, Sean D; Morris, Robert L; Wohler, Bill; Campbell, Jennifer R; Uddin, Akm Kamal; Zamudio, Khadeejah A; Sabale, Anima; Bryson, Steven T; Caldwell, Douglas A; Christiansen, Jessie L; Coughlin, Jeffrey L; Haas, Michael R; Henze, Christopher E; Sanderfer, Dwight T; Thompson, Susan E

    2016-01-01

    We present results of the final Kepler Data Processing Pipeline search for transiting planet signals in the full 17-quarter primary mission dataset. The search includes a total of 198,709 stellar targets of which 112,046 were observed in all 17 quarters and 86,663 in fewer than 17 quarters. We report on 17,230 targets for which at least one transit signature is identified that meets the specified detection criteria: periodicity, minimum of three observed transit events, detection statistic (i.e., signal to noise ratio) in excess of the search threshold, and passing grade on three statistical transit consistency tests. Light curves for which a transit signal is identified are iteratively searched for additional signatures after a limb-darkened transiting planet model is fitted to the data and transit events are removed. The search for additional planets adds 16,802 transit signals for a total of 34,032; this far exceeds the number of transit signatures identified in prior pipeline runs. There was a strategic e...

  7. The Lick-Carnegie Exoplanet Survey: Gliese 687 b—A Neptune-mass Planet Orbiting a Nearby Red Dwarf

    Science.gov (United States)

    Burt, Jennifer; Vogt, Steven S.; Butler, R. Paul; Hanson, Russell; Meschiari, Stefano; Rivera, Eugenio J.; Henry, Gregory W.; Laughlin, Gregory

    2014-07-01

    Precision radial velocities from the Automated Planet Finder (APF) and Keck/HIRES reveal an Msin (i) = 18 ± 2 M ⊕ planet orbiting the nearby M3V star GJ 687. This planet has an orbital period P = 38.14 days and a low orbital eccentricity. Our Strömgren b and y photometry of the host star suggests a stellar rotation signature with a period of P = 60 days. The star is somewhat chromospherically active, with a spot filling factor estimated to be several percent. The rotationally induced 60 day signal, however, is well separated from the period of the radial velocity variations, instilling confidence in the interpretation of a Keplerian origin for the observed velocity variations. Although GJ 687 b produces relatively little specific interest in connection with its individual properties, a compelling case can be argued that it is worthy of remark as an eminently typical, yet at a distance of 4.52 pc, a very nearby representative of the galactic planetary census. The detection of GJ 687 b indicates that the APF telescope is well suited to the discovery of low-mass planets orbiting low-mass stars in the as yet relatively un-surveyed region of the sky near the north celestial pole.

  8. The California-Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars

    Science.gov (United States)

    Johnson, John Asher; Petigura, Erik A.; Fulton, Benjamin J.; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard; Hebb, Leslie; Cargile, Phillip A.; Morton, Timothy D.; Weiss, Lauren M.; Winn, Joshua N.; Rogers, Leslie A.; Sinukoff, Evan; Hirsch, Lea A.

    2017-09-01

    We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California-Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetary radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by the University of California, and California Institute of Technology, the University of Hawaii, and NASA.

  9. THE LICK-CARNEGIE SURVEY: A NEW TWO-PLANET SYSTEM AROUND THE STAR HD 207832

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Butler, R. Paul [Department of Terrestrial Magnetism, Carnegie Institute of Washington, Washington, DC 20015 (United States); Rivera, Eugenio J.; Vogt, Steven S. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, Nashville, TN 37209 (United States)

    2012-09-01

    Keck/HIRES precision radial velocities of HD 207832 indicate the presence of two Jovian-type planetary companions in Keplerian orbits around this G star. The planets have minimum masses of Msin i = 0.56 M{sub Jup} and 0.73 M{sub Jup}, with orbital periods of {approx}162 and {approx}1156 days, and eccentricities of 0.13 and 0.27, respectively. Stroemgren b and y photometry reveals a clear stellar rotation signature of the host star with a period of 17.8 days, well separated from the period of the radial velocity variations, reinforcing their Keplerian origin. The values of the semimajor axes of the planets suggest that these objects have migrated from the region of giant planet formation to closer orbits. In order to examine the possibility of the existence of additional (small) planets in the system, we studied the orbital stability of hypothetical terrestrial-sized objects in the region between the two planets and interior to the orbit of the inner body. Results indicated that stable orbits exist only in a small region interior to planet b. However, the current observational data offer no evidence for the existence of additional objects in this system.

  10. The Lick-Carnegie Survey: A New Two-Planet System Around the Star HD 207832

    CERN Document Server

    Haghighipour, Nader; Rivera, Eugenio J; Henry, Gregory W; Vogt, Steven S

    2012-01-01

    Keck/HIRES precision radial velocities of HD 207832 indicate the presence of two Jovian-type planetary companions in Keplerian orbits around this G star. The planets have minimum masses of 0.56 and 0.73 Jupiter-masses with orbital periods of ~162 and ~1156 days, and eccentricities of 0.13 and 0.27, respectively. Stromgren b and y photometry reveals a clear stellar rotation signature of the host star with a period of 17.8 days, well separated from the period of the radial velocity variations, reinforcing their Keplerian origin. The values of the semimajor axes of the planets suggest that these objects have migrated from the region of giant planet formation to closer orbits. In order to examine the possibility of the existence of additional (small) planets in the system, we studied the orbital stability of hypothetical terrestrial-sized objects in the region between the two planets and interior to the orbit of the inner body. Results indicated that stable orbits exist only in a small region interior to planet b...

  11. Looking for Very Short-Period Planets with Re-Purposed Kepler

    CERN Document Server

    Jackson, Brian

    2013-01-01

    A re-purposed Kepler mission could continue the search for nearly Earth-sized planets in very short-period (< 1 day) orbits. Recent surveys of the Kepler data already available have revealed at least a dozen such planetary candidates, and a more complete and focused survey is likely to reveal more. Given the planets' short orbital periods, building the requisite signal-to-noise to detect the candidates by stacking multiple transits requires a much shorter observational baseline than for longer-period planets, and the transits are likely more robust against the much larger instrumental variations anticipated for the modified Kepler pointing capabilities. Searching for these unusual planets will also leverage the Kepler mission's already considerable expertise in planetary transit detection and analysis. These candidates may represent an entirely new class of planet. They may also provide unprecedented insights into planet formation and evolution and sensitive probes for planet-star interactions and the stel...

  12. Development of lower Triassic wrinkle structures: implications for the search for life on other planets.

    Science.gov (United States)

    Mata, Scott A; Bottjer, David J

    2009-11-01

    Wrinkle structures are microbially mediated sedimentary structures that are a common feature of Proterozoic and earliest Phanerozoic siliciclastic seafloors on Earth and occur only rarely in post-Cambrian strata. These macroscopic microbially induced sedimentary structures are readily identifiable at the outcrop scale, and their recognition on other planetary bodies by landed missions may suggest the presence of past microbial life. Wrinkle structures of the Lower Triassic (Spathian) Virgin Limestone Member of the Moenkopi Formation in the western United States record an occurrence of widespread microbialite formation in the wake of the end-Permian mass extinction, the largest biotic crisis of the Phanerozoic. Wrinkle structures occur on proximal sandy tempestites deposited within the offshore transition. Storm layers appear to have been rapidly colonized by microbial mats and were subsequently buried by mud during fair-weather conditions. Wrinkle structures exhibit flat-topped crests and sinuous troughs, with associated mica grains oriented parallel to bedding, suggestive of trapping and binding activity. Although Lower Triassic wrinkle structures postdate the widespread occurrence of these features during the Proterozoic and Cambrian, they exhibit many of the same characteristics and environmental trends, which suggests a conservation of microbial formational and preservational processes in subtidal siliciclastic settings on Earth from the Precambrian into the Phanerozoic. In the search for extraterrestrial life, it may be these conservative characteristics that prove to be the most useful and robust for recognizing microbial features on other planetary bodies, and may add to an ever-growing foundation of knowledge for directing future explorations aimed at seeking out macroscopic microbial signatures.

  13. A Simple Depth-of-Search Metric for Exoplanet Imaging Surveys

    Science.gov (United States)

    Garrett, Daniel; Savransky, Dmitry; Macintosh, Bruce

    2017-08-01

    We present a procedure for calculating expected exoplanet imaging yields that explicitly separates the effects of instrument performance from assumptions of planet distributions. This “depth-of-search” approach allows for fast recalculation of yield values for variations in instrument parameters. We also describe a new target star selection metric with no dependence on an assumed planet population that can be used as a proxy for single-visit completeness. This approach allows for the recovery of the total mission completeness via convolution of the depth-of-search grid with an equivalent grid of assumed occurrence rates and summation over the part of the grid representing the population of interest (e.g., Earth-like planets on habitable zone orbits, etc.). In this work, we discuss the practical details of calculating the depth-of-search and present results of such calculations for one design iteration of the WFIRST coronagraphs.

  14. Starspot distributions on fully convective M dwarfs: implications for radial velocity planet searches

    CERN Document Server

    Barnes, J R; Jones, H R A; Pavlenko, Ya V; Jenkins, J S; Haswell, C A; Lohr, M E

    2015-01-01

    Since M4.5 - M9 dwarfs exhibit equatorial rotation velocities of order 10 km/s on average, radial velocity surveys targeting this stellar population will likely need to find methods to effectively remove starspot jitter. We present the first high resolution Doppler images of the M4.5 dwarf, GJ 791.2A, and the M9 dwarf, LP 944-20. The time series spectra of both objects reveal numerous line profile distortions over the rotation period of each star which we interpret as starspots. The transient distortions are modelled with spot/photosphere contrast ratios that correspond to model atmosphere temperature differences of Tphot-Tspot = 200 and 300 K. GJ 791.2A is a fully convective star with vsini = 35.1 km/s. Although we find more starspot structure at high latitudes, we reconstruct spots at a range of phases and latitudes with a mean spot filling of ~3%. LP 944-20 is one of the brightest known late-M dwarfs, with spectral type M9V and vsini = 30.8 km/s. Its spectral time series exhibits two dominant transient lin...

  15. HATS-1b: The First Transiting Planet Discovered by the HATSouth Survey

    CERN Document Server

    Penev, K; Bayliss, D; Jordán, A; Mohler, M; Zhou, G; Suc, V; Rabus, M; Hartman, J D; Mancini, L; Béky, B; Csubry, Z; Buchhave, L; Henning, T; Nikolov, N; Csák, B; Brahm, R; Espinoza, N; Conroy, P; Noyes, R W; Sasselov, D D; Schmidt, B; Wright, D J; Tinney, C G; Addison, B C; Lázár, J; Papp, I; Sári, P

    2012-01-01

    We report the discovery of HATS-1b, a transiting extrasolar planet orbiting the moderately bright V=12.05 G dwarf star GSC 6652-00186, and the first planet discovered by HATSouth, a global network of autonomous wide-field telescopes. HATS-1b has a period P~3.4465 d, mass Mp~1.86MJ, and radius Rp~1.30RJ. The host star has a mass of 0.99Msun, and radius of 1.04Rsun. The discovery light curve of HATS-1b has near continuous coverage over several multi-day periods, demonstrating the power of using a global network of telescopes to discover transiting planets.

  16. HATS-1b: THE FIRST TRANSITING PLANET DISCOVERED BY THE HATSouth SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Penev, K.; Bakos, G. A.; Hartman, J. D.; Csubry, Z. [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States); Bayliss, D.; Zhou, G.; Conroy, P. [Australian National University, Canberra (Australia); Jordan, A.; Suc, V.; Rabus, M.; Brahm, R.; Espinoza, N. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, 7820436 Macul, Santiago (Chile); Mohler, M.; Mancini, L.; Henning, T.; Nikolov, N.; Csak, B. [Max Planck Institute for Astronomy, Heidelberg (Germany); Beky, B.; Noyes, R. W. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Buchhave, L., E-mail: kpenev@astro.princeton.edu [Niels Bohr Institute, Copenhagen University (Denmark); and others

    2013-01-01

    We report the discovery of HATS-1b, a transiting extrasolar planet orbiting the moderately bright V = 12.05 G dwarf star GSC 6652-00186, and the first planet discovered by HATSouth, a global network of autonomous wide-field telescopes. HATS-1b has a period of P Almost-Equal-To 3.4465 days, mass of M{sub p} Almost-Equal-To 1.86 M{sub J}, and radius of R{sub p} Almost-Equal-To 1.30 R{sub J}. The host star has a mass of 0.99 M{sub Sun} and radius of 1.04 R{sub Sun }. The discovery light curve of HATS-1b has near-continuous coverage over several multi-day timespans, demonstrating the power of using a global network of telescopes to discover transiting planets.

  17. A Search for Kilonovae in the Dark Energy Survey

    CERN Document Server

    Doctor, Z; Chen, H Y; Farr, B; Finley, D A; Foley, R J; Goldstein, D A; Holz, D E; Kim, A G; Morganson, E; Sako, M; Scolnic, D; Smith, M; Soares-Santos, M; Spinka, H; Abbott, T M C; Abdalla, F B; Allam, S; Annis, J; Bechtol, K; Benoit-Levy, A; Bertin, E; Brooks, D; Buckley-Geer, E; Burke, D L; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Cunha, C E; DAndrea, C B; da Costa, L N; DePoy, D L; Desai, S; Diehl, H T; Drlica-Wagner, A; Eifler, T F; Frieman, J; Garcia-Bellido, J; Gaztanaga, E; Gerdes, D W; Gruendl, R A; Gschwend, J; Gutierrez, G; James, D J; Krause, E; Kuehn, K; Kuropatkin, N; Lahav, O; Li, T S; Lima, M; Maia, M A G; March, M; Marshall, J L; Menanteau, F; Miquel, R; Neilsen, E; Nichol, R C; Nord, B; Plazas, A A; Romer, A K; Sanchez, E; Scarpine, V; Schubnell, M; Sevilla-Noarbe, I; Smith, R C; Sobreira, F; Suchyta, E; Swanson, M E C; Tarle, G; Walker, A R; Wester, W

    2016-01-01

    The coalescence of a binary neutron star (BNS) pair is expected to produce gravitational waves (GW) and electromagnetic (EM) radiation, both of which may be detectable with currently available instruments. We describe a search for a theoretically predicted r-process optical transient from these mergers, dubbed the kilonova (KN), using griz broadband data from the Dark Energy Survey Supernova Program (DES-SN). Some models predict KNe to be redder, shorter-lived, and dimmer than supernovae (SNe), but at present the event rate of KNe is poorly constrained. We simulate observations of KN and SN light curves with the Monte-Carlo simulation code SNANA to optimize selection requirements, determine search efficiency, and predict SN backgrounds. We also perform an analysis using fake point sources on images to account for anomalous efficiency losses from difference-imaging on bright low-redshift galaxies. Our analysis of the first two seasons of DES-SN data results in 0 events, and is consistent with our prediction of...

  18. An Update on Planet Nine

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Whats the news coming from the research world on the search for Planet Nine? Read on for an update from a few of the latest studies.Artists illustration of Planet Nine, a hypothesized Neptune-sized planet orbiting in the distant reaches of our solar system. [Caltech/Robert Hurt]What is Planet Nine?In January of this year, Caltech researchers Konstantin Batygin and Mike Brown presented evidence of a distant ninth planet in our solar system. They predicted this planet to be of a mass and volume consistent with a super-Earth, orbiting on a highly eccentric pathwith a period of tens of thousands of years.Since Batygin and Browns prediction, scientists have been hunting for further signs of Planet Nine. Though we havent yet discovered an object matching its description, we have come up with new strategies for finding it, we set some constraints on where it might be, and we made some interesting theoretical predictions about its properties.Visualizations of the resonant orbits of the four longest-period Kuiper belt objects, depicted in a frame rotating with the mean angular velocity of Planet Nine. Planet Nines position is on the right (with the trace of possible eccentric orbits e=0.17 and e=0.4 indicated in red). [Malhotra et al 2016]Here are some of the newest constraints on Planet Nine from studies published just within the past two weeks.Resonant OrbitsRenu Malhotra (University of Arizonas Lunar and Planetary Laboratory) and collaborators present further evidence of the shaping of solar system orbits by the hypothetical Planet Nine. The authors point out that the four longest-period Kuiper belt objects (KBOs) have orbital periods close to integer ratios with each other. Could it be that these outer KBOs have become locked into resonant orbits with a distant, massive body?The authors find that a distant planet orbiting with a period of ~17,117 years and a semimajor axis ~665 AU would have N/1 and N/2 period ratios with these four objects. If this is correct, it

  19. Does the presence of planets affect the frequency and properties of extrasolar Kuiper Belts? Results from the Herschel DEBRIS and DUNES surveys

    CERN Document Server

    Moro-Martin, A; Kennedy, G; Sibthorpe, B; Matthews, B C; Eiroa, C; Wyatt, M C; Lestrade, J -F; Maldonado, J; Rodriguez, D; Greaves, J S; Montesinos, B; Mora, A; Booth, M; Duchene, G; Wilner, D; Horner, J

    2015-01-01

    The study of the planet-debris disk connection can shed light on the formation and evolution of planetary systems, and may help predict the presence of planets around stars with certain disk characteristics. In preliminary analyses of the Herschel DEBRIS and DUNES surveys, Wyatt et al. (2012) and Marshall et al. (2014) identified a tentative correlation between debris and low-mass planets. Here we use the cleanest possible sample out these surveys to assess the presence of such a correlation, discarding stars without known ages, with ages < 1 Gyr and with binary companions <100 AU, to rule out possible correlations due to effects other than planet presence. In our sample of 204 FGK stars, we do not find evidence that debris disks are more common or more dusty around stars harboring high-mass or low-mass planets compared to a control sample without identified planets, nor that debris disks are more or less common (or more or less dusty) around stars harboring multiple planets compared to single-planet sy...

  20. A low-frequency radio survey of the planets with RAE-2

    Science.gov (United States)

    Kaiser, M. L.

    1976-01-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025 to 13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE-2.

  1. A low-frequency radio survey of the planets with RAE 2

    Science.gov (United States)

    Kaiser, M. L.

    1977-01-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer 2 (RAE 2) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025-13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE 2.

  2. The HARPS search for southern extra-solar planets XXXV. Super-Earths around the M-dwarf neighbors Gl433 and Gl667C

    CERN Document Server

    Delfosse, X; Forveille, T; Udry, S; Mayor, M; Bouchy, F; Gillon, M; Lovis, C; Neves, V; Pepe, F; Perrier, C; Queloz, D; Santos, N C; Ségransan, D

    2012-01-01

    M dwarfs have been found to often have super-Earth planets with short orbital periods. Such stars are thus preferential targets in searches for rocky or ocean planets in the solar neighbourhood. In a recent paper (Bonfils et al. 2011), we announced the discovery of respectively 1 and 2 low mass planets around the M1.5V stars Gl433 and Gl667C. We found those planets with the HARPS spectrograph on the ESO~3.6-m telescope at La Silla Observatory, from observations obtained during the Guaranteed Time Observing program of that instrument. We have obtained additional HARPS observations of those two stars, for a total of respectively 67 and 179 Radial Velocity measurements for Gl433 and Gl667C, and present here an orbital analysis of those extended data sets and our main conclusion about both planetary systems. One of the three planets, Gl667Cc, has a mass of only M2.sin(i)~4.25 M_earth and orbits in the central habitable zone of its host star. It receives just 10% less stellar energy from Gl667C than the Earth rece...

  3. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    Science.gov (United States)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  4. Optimal Survey Strategies and Predicted Planet Yields for the Korean Microlensing Telescope Network

    CERN Document Server

    Henderson, Calen B; Han, Cheongho; Skowron, Jan; Penny, Matthew T; Nataf, David; Gould, Andrew P

    2014-01-01

    The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6m telescopes each with a 4 deg^{2} field of view (FoV) and will be dedicated to monitoring the Galactic Bulge to detect exoplanets via gravitational microlensing. KMTNet's combination of aperture size, FoV, cadence, and longitudinal coverage will provide a unique opportunity to probe exoplanet demographics in an unbiased way. Here we present simulations that optimize the observing strategy for, and predict the planetary yields of, KMTNet. We find preferences for four target fields located in the central Bulge and an exposure time of t_{exp} = 120s, leading to the detection of ~2,200 microlensing events per year. We estimate the planet detection rates for planets with mass and separation across the ranges 0.1 <= M_{p}/M_{Earth} <= 1000 and 0.4 <= a/AU <= 16, respectively. Normalizing these rates to the cool-planet mass function of Cassan (2012), we predict KMTNet will be approximately uniformly sensitive to planets with mas...

  5. An Exploratory Survey of Student Perspectives Regarding Search Engines

    Science.gov (United States)

    Alshare, Khaled; Miller, Don; Wenger, James

    2005-01-01

    This study explored college students' perceptions regarding their use of search engines. The main objective was to determine how frequently students used various search engines, whether advanced search features were used, and how many search engines were used. Various factors that might influence student responses were examined. Results showed…

  6. An Exploratory Survey of Student Perspectives Regarding Search Engines

    Science.gov (United States)

    Alshare, Khaled; Miller, Don; Wenger, James

    2005-01-01

    This study explored college students' perceptions regarding their use of search engines. The main objective was to determine how frequently students used various search engines, whether advanced search features were used, and how many search engines were used. Various factors that might influence student responses were examined. Results showed…

  7. Planet Hunters X: Searching for Nearby Neighbors of 75 Planet and Eclipsing Binary Candidates from the K2 Kepler extended mission

    CERN Document Server

    Schmitt, Joseph R; Wang, Ji; Fischer, Debra A; Kristiansen, Martti H; LaCourse, Daryll M; Gagliano, Robert; Tan, Arvin Joseff V; Schwengeler, Hans Martin; Omohundro, Mark R; Venner, Alexander; Terentev, Ivan; Schmitt, Allan R; Jacobs, Thomas L; Winarski, Troy; Sejpka, Johann; Jek, Kian J; Boyajian, Tabetha S; Brewer, John M; Ishikawa, Sascha T; Lintott, Chris; Lynn, Stuart; Schawinski, Kevin; Weiksnar, Alex

    2016-01-01

    We present high resolution observations of a sample of 75 K2 targets from Campaigns 1-3 using speckle interferometry on the Southern Astrophysical Research (SOAR) telescope and adaptive optics (AO) imaging at the Keck II telescope. The median SOAR $I$-band and Keck $K_s$-band detection limits at 1'' were $\\Delta m_{I}=4.4$ mag and $\\Delta m_{K_s}=6.1$ mag, respectively. This sample includes 37 stars likely to host planets, 32 targets likely to be EBs, and 6 other targets previously labeled as likely planetary false positives. We find nine likely physically bound companion stars within 3'' of three candidate transiting exoplanet host stars and six likely eclipsing binaries (EB). Six of the nine detected companions are new discoveries, one of them associated with a planet candidate (EPIC 206061524). Among the EB candidates, companions were only found near the shortest period ones ($P<3$ days), which is in line with previous results showing high multiplicity near short-period binary stars. This high resolutio...

  8. The SOPHIE search for northern extrasolar planets . I. A companion around HD 16760 with mass close to the planet/brown-dwarf transition

    Science.gov (United States)

    Bouchy, F.; Hébrard, G.; Udry, S.; Delfosse, X.; Boisse, I.; Desort, M.; Bonfils, X.; Eggenberger, A.; Ehrenreich, D.; Forveille, T.; Lagrange, A. M.; Le Coroller, H.; Lovis, C.; Moutou, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Ségransan, D.; Vidal-Madjar, A.

    2009-10-01

    We report on the discovery of a substellar companion or a massive Jupiter orbiting the G5V star HD 16760 using the spectrograph SOPHIE installed on the OHP 1.93-m telescope. Characteristics and performances of the spectrograph are presented, as well as the SOPHIE exoplanet consortium program. With a minimum mass of 14.3 {M}_Jup, an orbital period of 465 days and an eccentricity of 0.067, HD 16760b seems to be located just at the end of the mass distribution of giant planets, close to the planet/brown-dwarf transition. Its quite circular orbit supports a formation in a gaseous protoplanetary disk. Based on observations made with SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS/OAMP), France (program 07A.PNP.CONS). Table 2 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/853

  9. The sloan digital sky Survey-II supernova survey: search algorithm and follow-up observations

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Bassett, Bruce [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Becker, Andrew; Hogan, Craig J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Cinabro, David [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); DeJongh, Fritz; Frieman, Joshua A.; Marriner, John; Miknaitis, Gajus [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Depoy, D. L.; Prieto, Jose Luis [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210-1173 (United States); Dilday, Ben; Kessler, Richard [Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue Chicago, IL 60637 (United States); Doi, Mamoru [Institute of Astronomy, Graduate School of Science, University of Tokyo 2-21-1, Osawa, Mitaka, Tokyo 181-0015 (Japan); Garnavich, Peter M. [University of Notre Dame, 225 Nieuwland Science, Notre Dame, IN 46556-5670 (United States); Holtzman, Jon [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Jha, Saurabh [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, P.O. Box 20450, MS29, Stanford, CA 94309 (United States); Konishi, Kohki [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan); Lampeitl, Hubert [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Nichol, Robert C. [Institute of Cosmology and Gravitation, Mercantile House, Hampshire Terrace, University of Portsmouth, Portsmouth PO1 2EG (United Kingdom); and others

    2008-01-01

    The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 deg{sup 2} region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the type Ia SNe, the main driver for the survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.

  10. A Survey of Meta Search Engine%元搜索引擎研究

    Institute of Scientific and Technical Information of China (English)

    张卫丰; 徐宝文; 周晓宇; 李东; 许蕾

    2001-01-01

    With the explosive increase of the network information,it is more and more difficult for people to look up information. The occurrence of the Web search engines overcomes this problem in some degree. However, because different search engines use different mechanisms, scope and algorithms, the repetition of the search results for the same query is no more than 34 %. If wish to get relativly fullscale ,accurate search results,multi-search engines should be used and the meta search engines occur. In this paper ,the meta search engines are surveyed. At first ,the history ,the principles and the elements of the meta search engines are discussed. Then,the related creteria of the meta search engines are analyzed and several typical meta search engines are compared. Finally,on this base,the trend of the meta search engine is introduced.

  11. THE GEMINI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF GIANT PLANETS AROUND DEBRIS DISK STARS

    Energy Technology Data Exchange (ETDEWEB)

    Wahhaj, Zahed [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago (Chile); Liu, Michael C.; Nielsen, Eric L.; Ftaclas, Christ; Chun, Mark [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Biller, Beth A. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Hayward, Thomas L. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Close, Laird M.; Males, Jared R.; Skemer, Andrew [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Thatte, Niranjan; Tecza, Matthias [Department of Astronomy, University of Oxford, DWB, Keble Road, Oxford OX1 3RH (United Kingdom); Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Kuchner, Marc [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Greenbelt, MD 20771 (United States); Reid, I. Neill [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); De Gouveia Dal Pino, Elisabete M.; Gregorio-Hetem, Jane [Departamento de Astronomia, Universidade de Sao Paulo, IAG/USP, Rua do Matao 1226, 05508-900 Sao Paulo, SP (Brazil); Alencar, Silvia H. P. [Departamento de Fisica-ICEx-UFMG, Av. Antonio Carlos 6627, 30270-901 Belo Horizonte, MG (Brazil); Boss, Alan [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Lin, Douglas N. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States); and others

    2013-08-20

    We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.''5 and 14.1 mag at 1'' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known {beta} Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a {>=}5 M{sub Jup} planet beyond 80 AU, and <21% of debris disk stars have a {>=}3 M{sub Jup} planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d {sup 2} N/dMda{proportional_to}m {sup {alpha}} a {sup {beta}}, where m is planet mass and a is orbital semi-major axis (with a maximum value of a{sub max}). We find that {beta} < -0.8 and/or {alpha} > 1.7. Likewise, we find that {beta} < -0.8 and/or a{sub max} < 200 AU. For the case where the planet frequency rises sharply with mass ({alpha} > 1.7), this occurs because all the planets detected to date have masses above 5 M{sub Jup}, but planets of lower mass could easily have been detected by our search. If we ignore the {beta} Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a {>=}3 M{sub Jup} planet beyond 10 AU, and {beta} < -0.8 and/or {alpha} < -1.5. Likewise, {beta} < -0.8 and/or a{sub max} < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence

  12. Sparse aperture masking interferometry survey of transitional discs. Search for substellar-mass companions and asymmetries in their parent discs

    Science.gov (United States)

    Willson, M.; Kraus, S.; Kluska, J.; Monnier, J. D.; Ireland, M.; Aarnio, A.; Sitko, M. L.; Calvet, N.; Espaillat, C.; Wilner, D. J.

    2016-10-01

    Context. Transitional discs are a class of circumstellar discs around young stars with extensive clearing of dusty material within their inner regions on 10s of au scales. One of the primary candidates for this kind of clearing is the formation of planet(s) within the disc that then accrete or clear their immediate area as they migrate through the disc. Aims: The goal of this survey was to search for asymmetries in the brightness distribution around a selection of transitional disc targets. We then aimed to determine whether these asymmetries trace dynamically-induced structures in the disc or the gap-opening planets themselves. Methods: Our sample included eight transitional discs. Using the Keck/NIRC2 instrument we utilised the Sparse Aperture Masking (SAM) interferometry technique to search for asymmetries indicative of ongoing planet formation. We searched for close-in companions using both model fitting and interferometric image reconstruction techniques. Using simulated data, we derived diagnostics that helped us to distinguish between point sources and extended asymmetric disc emission. In addition, we investigated the degeneracy between the contrast and separation that appear for marginally resolved companions. Results: We found FP Tau to contain a previously unseen disc wall, and DM Tau, LkHα330, and TW Hya to contain an asymmetric signal indicative of point source-like emission. We placed upper limits on the contrast of a companion in RXJ 1842.9-3532 and V2246 Oph. We ruled the asymmetry signal in RXJ 1615.3-3255 and V2062 Oph to be false positives. In the cases where our data indicated a potential companion we computed estimates for the value of McṀc and found values in the range of . Conclusions: We found significant asymmetries in four targets. Of these, three were consistent with companions. We resolved a previously unseen gap in the disc of FP Tau extending inwards from approximately 10 au. Based on observations made with the Keck observatory

  13. The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around HD 20794, HD 85512, and HD 192310

    Science.gov (United States)

    Pepe, F.; Lovis, C.; Ségransan, D.; Benz, W.; Bouchy, F.; Dumusque, X.; Mayor, M.; Queloz, D.; Santos, N. C.; Udry, S.

    2011-10-01

    Context. In 2009 we started an intense radial-velocity monitoring of a few nearby, slowly-rotating and quiet solar-type stars within the dedicated HARPS-Upgrade GTO program. Aims: The goal of this campaign is to gather very-precise radial-velocity data with high cadence and continuity to detect tiny signatures of very-low-mass stars that are potentially present in the habitable zone of their parent stars. Methods: Ten stars were selected among the most stable stars of the original HARPS high-precision program that are uniformly spread in hour angle, such that three to four of them are observable at any time of the year. For each star we recorded 50 data points spread over the observing season. The data points consist of three nightly observations with a total integration time of 10 min each and are separated by two hours. This is an observational strategy adopted to minimize stellar pulsation and granulation noise. Results: We present the first results of this ambitious program. The radial-velocity data and the orbital parameters of five new and one confirmed low-mass planets around the stars HD 20794, HD 85512, and HD 192310 are reported and discussed, among which is a system of three super-Earths and one that harbors a 3.6 M⊕-planet at the inner edge of the habitable zone. Conclusions: This result already confirms previous indications that low-mass planets seem to be very frequent around solar-type stars and that this may occur with a frequency higher than 30%. Based on observations made with the HARPS instrument on ESO's 3.6 m telescope at the La Silla Observatory in the frame of the HARPS-Upgrade GTO program ID 086.C-0230.Tables 7-9 (RV data) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A58

  14. Searching for galaxy clusters in the Kilo-Degree Survey

    Science.gov (United States)

    Radovich, M.; Puddu, E.; Bellagamba, F.; Roncarelli, M.; Moscardini, L.; Bardelli, S.; Grado, A.; Getman, F.; Maturi, M.; Huang, Z.; Napolitano, N.; McFarland, J.; Valentijn, E.; Bilicki, M.

    2017-02-01

    Aims: In this paper, we present the tools used to search for galaxy clusters in the Kilo Degree Survey (KiDS), and our first results. Methods: The cluster detection is based on an implementation of the optimal filtering technique that enables us to identify clusters as over-densities in the distribution of galaxies using their positions on the sky, magnitudes, and photometric redshifts. The contamination and completeness of the cluster catalog are derived using mock catalogs based on the data themselves. The optimal signal to noise threshold for the cluster detection is obtained by randomizing the galaxy positions and selecting the value that produces a contamination of less than 20%. Starting from a subset of clusters detected with high significance at low redshifts, we shift them to higher redshifts to estimate the completeness as a function of redshift: the average completeness is 85%. An estimate of the mass of the clusters is derived using the richness as a proxy. Results: We obtained 1858 candidate clusters with redshift 0 http://kids.strw.leidenuniv.nl/DR2 and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A107

  15. What Are Students Hearing about Online Searching? A Survey of Faculty.

    Science.gov (United States)

    Clark, Juleigh Muirhead; Silverman, Susan

    1989-01-01

    Student requests for online searching often show that faculty members have suggested inappropriate searches. A survey of faculty that examined their use of online searching in research and their communications to students about this research method is described, and ways in which librarians might improve the situation are suggested. The…

  16. A coordinated optical and X-ray spectroscopic campaign on HD179949: searching for planet-induced chromospheric and coronal activity

    CERN Document Server

    Scandariato, G; Lanza, A F; Pagano, I; Fares, R; Shkolnik, E L; Bohlender, D; Cameron, A C; Dieters, S; Donati, J -F; Fiorenzano, A F Martìnez; Jardine, M; Moutou, C

    2013-01-01

    HD179949 is an F8V star, orbited by a close-in giant planet with a period of ~3 days. Previous studies suggested that the planet enhances the magnetic activity of the parent star, producing a chromospheric hot spot which rotates in phase with the planet orbit. However, this phenomenon is intermittent since it was observed in several but not all seasons. A long-term monitoring of the magnetic activity of HD179949 is required to study the amplitude and time scales of star-planet interactions. In 2009 we performed a simultaneous optical and X-ray spectroscopic campaign to monitor the magnetic activity of HD179949 during ~5 orbital periods and ~2 stellar rotations. We analyzed the CaII H&K lines as a proxy for chromospheric activity, and we studied the X-ray emission in search of flux modulations and to determine basic properties of the coronal plasma. A detailed analysis of the flux in the cores of the CaII H&K lines and a similar study of the X-ray photometry shows evidence of source variability, includ...

  17. The HARPS search for southern extra-solar planets XXXV. Planetary systems and stellar activity of the M dwarfs GJ 3293, GJ 3341, and GJ 3543

    CERN Document Server

    Astudillo-Defru, N; Delfosse, X; Segransan, D; Forveille, T; Bouchy, F; Gillon, M; Lovis, C; Mayor, M; Neves, V; Pepe, F; Perrier, C; Queloz, D; Rojo, P; Santos, N C; Udry, S

    2014-01-01

    Context. Planetary companions of a fixed mass induce larger amplitude reflex motions around lower-mass stars, which helps make M dwarfs excellent targets for extra-solar planet searches. State of the art velocimeters with $\\sim$1m/s stability can detect very low-mass planets out to the habitable zone of these stars. Low-mass, small, planets are abundant around M dwarfs, and most known potentially habitable planets orbit one of these cool stars. Aims. Our M-dwarf radial velocity monitoring with HARPS on the ESO 3.6m telescope at La Silla observatory makes a major contribution to this sample. Methods. We present here dense radial velocity (RV) time series for three M dwarfs observed over $\\sim5$ years: GJ 3293 (0.42M$_\\odot$), GJ 3341 (0.47M$_\\odot$), and GJ 3543 (0.45M$_\\odot$). We extract those RVs through minimum $\\chi^2$ matching of each spectrum against a high S/N ratio stack of all observed spectra for the same star. We then vet potential orbital signals against several stellar activity indicators, to dis...

  18. A comprehensive examination of the Eps Eri system -- Verification of a 4 micron narrow-band high-contrast imaging approach for planet searches

    CERN Document Server

    Janson, Markus; Brandner, Wolfgang; Henning, Thomas; Lenzen, Rainer; Hippler, Stefan

    2008-01-01

    Due to its proximity, youth, and solar-like characteristics with a spectral type of K2V, Eps Eri is one of the most extensively studied systems in an extrasolar planet context. Based on radial velocity, astrometry, and studies of the structure of its circumstellar debris disk, at least two planetary companion candidates to Eps Eri have been inferred in the literature (Eps Eri b, Eps Eri c). Some of these methods also hint at additional companions residing in the system. Here we present a new adaptive optics assisted high-contrast imaging approach that takes advantage of the favourable planet spectral energy distribution at 4 microns, using narrow-band angular differential imaging to provide an improved contrast at small and intermediate separations from the star. We use this method to search for planets at orbits intermediate between Eps Eri b (3.4 AU) and Eps Eri c (40 AU). The method is described in detail, and important issues related to the detectability of planets such as the age of Eps Eri and constrain...

  19. A search for a distant companion to the sun with the wide-field infrared survey explorer

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, K. L., E-mail: kluhman@astro.psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-01-20

    I have used multi-epoch astrometry from the Wide-field Infrared Survey Explorer to perform a search for a distant companion to the Sun via its parallactic motion. I have not found an object of this kind down to W2 = 14.5. This limit corresponds to analogs of Saturn and Jupiter at 28,000 and 82,000 AU, respectively, according to models of the Jovian planets by Fortney and coworkers. Models of brown dwarfs by Burrows and coworkers predict fainter fluxes at a given mass for the age of the solar system, producing a closer distance limit of 26,000 AU for a Jupiter-mass brown dwarf. These constraints exclude most combinations of mass and separation at which a solar companion has been suggested to exist by various studies over the years.

  20. A relook on using the Earth Similarity Index for searching habitable zones around solar and extrasolar planets

    Science.gov (United States)

    Biswas, S.; Shome, A.; Raha, B.; Bhattacharya, A. B.

    2017-01-01

    To study the distribution of Earth-like planets and to locate the habitable zone around extrasolar planets and their known satellites, we have emphasized in this paper the consideration of Earth similarity index (ESI) as a multi parameter quick assessment of Earth-likeness with a value between zero and one. Weight exponent values for four planetary properties have been taken into account to determine the ESI. A plot of surface ESI against the interior ESI exhibits some interesting results which provide further information when confirmed planets are examined. From the analysis of the available catalog and existing theory, none of the solar planets achieves an ESI value greater than 0.8. Though the planet Mercury has a value of 0.6, Mars exhibits a value between 0.6 and 0.8 and the planet Venus shows a value near 0.5. Finally, the locations of the habitable zone around different type of stars are critically examined and discussed.

  1. The HARPS search for southern extra-solar planets XIX. Characterization and dynamics of the GJ876 planetary system

    CERN Document Server

    Correia, A C M; Laskar, J; Bonfils, X; Mayor, M; Bertaux, J -L; Bouchy, F; Delfosse, X; Forveille, T; Lovis, C; Pepe, F; Perrier, C; Queloz, D; Udry, S; 10.1051/0004-6361/200912700

    2010-01-01

    Precise radial-velocity measurements for data acquired with the HARPS spectrograph infer that three planets orbit the M4 dwarf star GJ876. In particular, we confirm the existence of planet "d", which orbits every 1.93785 days. We find that its orbit may have significant eccentricity (e=0.14), and deduce a more accurate estimate of its minimum mass of 6.3 Earth masses. Dynamical modeling of the HARPS measurements combined with literature velocities from the Keck Observatory strongly constrain the orbital inclinations of the "b" and "c" planets. We find that i_b = 48.9 degrees and i_c = 48.1 degrees, which infers the true planet masses of M_b = 2.64 Jupiter masses and M_c = 0.83 Jupiter masses, respectively. Radial velocities alone, in this favorable case, can therefore fully determine the orbital architecture of a multi-planet system, without the input from astrometry or transits. The orbits of the two giant planets are nearly coplanar, and their 2:1 mean motion resonance ensures stability over at least 5 Gyr....

  2. The High Time Resolution Universe Survey - III. Single-pulse searches and preliminary analysis

    CERN Document Server

    Burke-Spolaor, S; Johnston, S; Bates, S D; Bhat, N D R; Burgay, M; D'Amico, N; Jameson, A; Keith, M J; Kramer, M; Levin, L; Milia, S; Possenti, A; Stappers, B; van Straten, W

    2011-01-01

    We present the search methods and initial results for transient radio signals in the High Time Resolution Universe (HTRU) Survey. The HTRU survey's single-pulse search, the software designed to perform the search, and a determination of the HTRU survey's sensitivity to single pulses are described. Initial processing of a small fraction of the survey has produced 11 discoveries, all of which are sparsely-emitting neutron stars, as well as provided confirmation of two previously unconfirmed neutron stars. Most of the newly discovered objects lie in regions surveyed previously, indicating both the improved sensitivity of the HTRU survey observing system and the dynamic nature of the radio sky. The cycles of active and null states in nulling pulsars, rotating radio transients (RRATs), and long-term intermittent pulsars are explored in the context of determining the relationship between these populations, and of the sensitivity of a search to the various radio-intermittent neutron star populations. This analysis s...

  3. Approximate search for Big Data with applications in information security – A survey

    OpenAIRE

    Slobodan Petrović

    2015-01-01

    This paper is a survey of approximate search techniques in very large data sets (so-called Big Data). After a short introduction, some techniques for speeding up approximate search in such data sets based on exploitation of inherent bit-parallelism in computers are described. It then reviews the applications in search related to information security problems (digital forensics, malware detection, intrusion detection) are reviewed. Finally, the need for constraints in approximate search regard...

  4. The SOPHIE search for northern extrasolar planets. XI. Three new companions and an orbit update: Giant planets in the habitable zone

    CERN Document Server

    Díaz, R F; Demangeon, O; Hébrard, G; Boisse, I; Arnold, L; Astudillo-Defru, N; Beuzit, J -L; Bonfils, X; Borgniet, S; Bouchy, F; Bourrier, V; Courcol, B; Deleuil, M; Delfosse, X; Ehrenreich, D; Forveille, T; Lagrange, A -M; Mayor, M; Moutou, C; Pepe, F; Queloz, D; Santerne, A; Santos, N C; Sahlmann, J; Ségransan, D; Udry, S; Wilson, P A

    2016-01-01

    We report the discovery of three new substellar companions to solar-type stars, HD191806, HD214823, and HD221585, based on radial velocity measurements obtained at the Haute-Provence Observatory. Data from the SOPHIE spectrograph are combined with observations acquired with its predecessor, ELODIE, to detect and characterise the orbital parameters of three new gaseous giant and brown dwarf candidates. Additionally, we combine SOPHIE data with velocities obtained at the Lick Observatory to improve the parameters of an already known giant planet companion, HD16175 b. Thanks to the use of different instruments, the data sets of all four targets span more than ten years. Zero-point offsets between instruments are dealt with using Bayesian priors to incorporate the information we possess on the SOPHIE/ELODIE offset based on previous studies. The reported companions have orbital periods between three and five years and minimum masses between 1.6 Mjup and 19 Mjup. Additionally, we find that the star HD191806 is expe...

  5. Planets transiting non-eclipsing binaries

    Science.gov (United States)

    Martin, David V.; Triaud, Amaury H. M. J.

    2014-10-01

    The majority of binary stars do not eclipse. Current searches for transiting circumbinary planets concentrate on eclipsing binaries, and are therefore restricted to a small fraction of potential hosts. We investigate the concept of finding planets transiting non-eclipsing binaries, whose geometry would require mutually inclined planes. Using an N-body code we explore how the number and sequence of transits vary as functions of observing time and orbital parameters. The concept is then generalised thanks to a suite of simulated circumbinary systems. Binaries are constructed from radial-velocity surveys of the solar neighbourhood. They are then populated with orbiting gas giants, drawn from a range of distributions. The binary population is shown to be compatible with the Kepler eclipsing binary catalogue, indicating that the properties of binaries may be as universal as the initial mass function. These synthetic systems produce transiting circumbinary planets occurring on both eclipsing and non-eclipsing binaries. Simulated planets transiting eclipsing binaries are compared with published Kepler detections. We find 1) that planets transiting non-eclipsing binaries are probably present in the Kepler data; 2) that observational biases alone cannot account for the observed over-density of circumbinary planets near the stability limit, which implies a physical pile-up; and 3) that the distributions of gas giants orbiting single and binary stars are likely different. Estimating the frequency of circumbinary planets is degenerate with the spread in mutual inclination. Only a minimum occurrence rate can be produced, which we find to be compatible with 9%. Searching for inclined circumbinary planets may significantly increase the population of known objects and will test our conclusions. Their presence, or absence, will reveal the true occurrence rate and help develop circumbinary planet formation theories.

  6. First Results from the Disk Eclipse Search with KELT (DESK) Survey

    CERN Document Server

    Rodriguez, Joseph E; Stassun, Keivan G

    2015-01-01

    Using time-series photometry from the Kilodegree Extremely Little Telescope (KELT) exoplanet survey, we are looking for eclipses of stars by their protoplanetary disks, specifically in young stellar associations. To date, we have discovered two previously unknown, large dimming events around the young stars RW Aurigae and V409 Tau. We attribute the dimming of RW Aurigae to an occultation by its tidally disrupted disk, with the disruption perhaps resulting from a recent flyby of its binary companion. Even with the dynamical environment of RW Aurigae, the distorted disk material remains very compact and presumably capable of forming planets. This system also shows that strong binary interactions with disks can also influence planet and core composition by stirring up and mixing materials during planet formation. We interpret the dimming of V409 Tau to be due to a feature, possibly a warp or perturbation, lying at least 10 AU from the host star in its nearly edge-on circumstellar disk.

  7. Search effort and imperfect detection: Influence on timed-search mussel (Bivalvia: Unionidae surveys in Canadian rivers

    Directory of Open Access Journals (Sweden)

    Reid S. M.

    2016-01-01

    Full Text Available Inventories and population monitoring are essential activities supporting the conservation of freshwater mussel diversity in Canadian rivers. Despite widespread use of timed-search methods to survey river mussels, the relationship between species detection and search effort has received limited study. In this study, repeat-sampling data from 54 Ontario river sites were used to estimate: (1 species detection probabilities; (2 the number of sampling events required to confidently detect species; and, (3 the power of timed-search surveys to detect future distribution declines. Mussels were collected using visual and tactile methods, and collection data were recorded separately for each 1.5 h of search time (up to 4.5 h. Thirteen species were collected; including two endangered species (Rainbow Villosa iris and Eastern Pondmussel Ligumia nasuta. In all cases, species detection was imperfect. However, detection probabilities (p for most species were high (>0.69. Two repeat 4.5 h surveys are required to confidently assess whether most (83% species are present at a site. Search effort had a positive effect on estimates of species richness, detection probability and site occupancy, and the power to detect future distribution declines. At all levels of sampling effort, detection probability and site occupancy estimates were positively correlated to mussel abundance.

  8. Search Result Merging and Ranking Strategies in Meta-Search Engines: A Survey

    Directory of Open Access Journals (Sweden)

    Hossein Jadidoleslamy

    2012-07-01

    Full Text Available MetaSearch is utilizing multiple other search systems to perform simultaneous search. A MetaSearch Engine (MSE is a search system that enables MetaSearch. To perform a MetaSearch, user query is sent to multiple search engines; once the search results returned, they are received by the MSE, then merged into a single ranked list and the ranked list is presented to the user. When a query is submitted to a MSE, decisions are made with respect to the underlying search engines to be used, what modifications will be made to the query and how to score the results. These decisions are typically made by considering only the user€™s keyword query, neglecting the larger information need. The cornerstone of their technology is their rank aggregation method. In other words, Result merging is a key component in a MSE. The effectiveness of a MSE is closely related to the result merging algorithm it employs. In this paper, we want to investigate a variety of result merging methods based on a wide range of available information about the retrieved results, from their local ranks, their titles and snippets, to the full documents of these results.

  9. The Mt John University Observatory Search For Earth-mass Planets In The Habitable Zone Of Alpha Centauri

    CERN Document Server

    Endl, M; Hearnshaw, J; Barnes, S I; Wittenmyer, R A; Ramm, D; Kilmartin, P; Gunn, F; Brogt, E

    2014-01-01

    The "holy grail" in planet hunting is the detection of an Earth-analog: a planet with similar mass as the Earth and an orbit inside the habitable zone. If we can find such an Earth-analog around one of the stars in the immediate solar neighborhood, we could potentially even study it in such great detail to address the question of its potential habitability. Several groups have focused their planet detection efforts on the nearest stars. Our team is currently performing an intensive observing campaign on the alpha Centauri system using the Hercules spectrograph at the 1-m McLellan telescope at Mt John University Observatory (MJUO) in New Zealand. The goal of our project is to obtain such a large number of radial velocity measurements with sufficiently high temporal sampling to become sensitive to signals of Earth-mass planets in the habitable zones of the two stars in this binary system. Over the past years, we have collected more than 45,000 spectra for both stars combined. These data are currently processed ...

  10. ELODIE metallicity-biased search for transiting Hot Jupiters. IV. Intermediate period planets orbiting the stars HD 43691 and HD 132406

    Science.gov (United States)

    da Silva, R.; Udry, S.; Bouchy, F.; Moutou, C.; Mayor, M.; Beuzit, J.-L.; Bonfils, X.; Delfosse, X.; Desort, M.; Forveille, T.; Galland, F.; Hébrard, G.; Lagrange, A.-M.; Loeillet, B.; Lovis, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Ségransan, D.; Sivan, J.-P.; Vidal-Madjar, A.; Zucker, S.

    2007-10-01

    We report here the discovery of two planet candidates as a result of our planet-search programme biased in favour of high-metallicity stars, using the ELODIE spectrograph at the Observatoire de Haute Provence. One candidate has a minimum mass m_2 sin i = 2.5 M_Jup and is orbiting the metal-rich star HD 43691 with period P = 40 days and eccentricity e=0.14. The other planet has a minimum mass m_2 sin{i} = 5.6 M_Jup and orbits the slightly metal-rich star HD 132406 with period P=974 days and eccentricity e = 0.34. Additional observations for both stars were performed using the new SOPHIE spectrograph that replaces the ELODIE instrument, allowing an improved orbital solution for the systems. Based on radial velocities collected with the ELODIE spectrograph mounted on the 193-cm telescope at the Observatoire de Haute Provence, France. Additional observations were made using the new SOPHIE spectrograph (run 06B.PNP.CONS) that replaces ELODIE.

  11. OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: a Giant Planet Orbiting a Low-mass Bulge Star Discovered by High-cadence Microlensing Surveys

    CERN Document Server

    Han, C; Gould, A; Bozza, V; Jung, Y K; Albrow, M D; Kim, S -L; Lee, C -U; Cha, S -M; Kim, D -J; Lee, Y; Park, B -G; Shin, I -G; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Wyrzykowski, Ł; Pawlak, M

    2016-01-01

    We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, matter and velocity distributions combined with the information of the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass $0.72_{-0.07}^{+0.65}\\ M_{\\rm J}$ and it is orbiting a low-mass M-dwarf host with a projected separation $d_\\perp=0.73 \\pm 0.08$ AU. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.

  12. OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: A Giant Planet Orbiting a Low-mass Bulge Star Discovered by High-cadence Microlensing Surveys

    Science.gov (United States)

    Han, C.; Udalski, A.; Gould, A.; Bozza, V.; Jung, Y. K.; Albrow, M. D.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; Park, B.-G.; Shin, I.-G.; KMTNet Collaboration; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Pawlak, M.; OGLE Collaboration

    2016-10-01

    We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite the fact that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, and matter and velocity distributions, combined with information on the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass {0.72}-0.07+0.65 {M}{{J}} and it is orbiting a low-mass M-dwarf host with a projected separation {d}\\perp =0.73+/- 0.08 {{au}}. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.

  13. A Survey on the Performance Evaluation of Various Meta Search Engines

    Directory of Open Access Journals (Sweden)

    K. Srinivas

    2011-05-01

    Full Text Available Though a Search Engine (SE helps in the process of retrieving the information required to the user, a Meta Search Engine (MSEs on the other hand uses new methodologies or fusion schemes for the information retrieval from the Web, and helps the user to collect more, relevant documents from the Web. This paper proposes a survey on various Meta Search Engines and the various parameters on which the efficiency of a MSE lies.

  14. VizieR Online Data Catalog: SPOTS II. Planets Orbiting Two Stars (Bonavita+, 2016)

    Science.gov (United States)

    Bonavita, M.; Desidera, S.; Thalmann, C.; Janson, M.; Vigan, A.; Chauvin, G.; Lannier, J.

    2016-11-01

    We present a statistical analysis of the combined body of existing high-contrast imaging constraints on circumbinary planets, to complement our ongoing SPOTS direct imaging survey dedicated to such planets. The sample of stars considered includes 117 objects and comes from a search for tight binaries within the target lists of 23 published direct imaging surveys, including some of the deepest ones performed to data. (2 data files).

  15. A Direct Path to Finding Earth-Like Planets

    Science.gov (United States)

    Heap, Sara R.; Linder, Don J.

    2009-01-01

    As envisaged by the 2000 astrophysics decadal survey panel: The main goal of Terrestrial Planet Finder (TPF) is nothing less than to search for evidence of life on terrestrial planets around nearby stars . Here, we consider how an optical telescope paired with a free-flying occulter blocking light from the star can reach this goal directly, without knowledge of results from prior astrometric, doppler, or transit exoplanet observations. Using design reference missions and other simulations, we explore the potential of TPF-O to find planets in the habitable zone around their central stars, to spectrally characterize the atmospheres of detected planets, and to obtain rudimentary information about their orbits. We emphasize the importance of ozone absorption in the UV spectrum of a planet as a marker of photosynthesis by plants, algae, and cyanobacteria.

  16. A Direct Path to Finding Earth-Like Planets

    Science.gov (United States)

    Heap, Sara R.; Linder, Don J.

    2009-01-01

    As envisaged by the 2000 astrophysics decadal survey panel: The main goal of Terrestrial Planet Finder (TPF) is nothing less than to search for evidence of life on terrestrial planets around nearby stars . Here, we consider how an optical telescope paired with a free-flying occulter blocking light from the star can reach this goal directly, without knowledge of results from prior astrometric, doppler, or transit exoplanet observations. Using design reference missions and other simulations, we explore the potential of TPF-O to find planets in the habitable zone around their central stars, to spectrally characterize the atmospheres of detected planets, and to obtain rudimentary information about their orbits. We emphasize the importance of ozone absorption in the UV spectrum of a planet as a marker of photosynthesis by plants, algae, and cyanobacteria.

  17. Map-A-Planet

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Map-A-Planet website allows users to create and download custom image maps of planets and satellites from a variety of missions in an easy to use web interface

  18. In Search of Motivation for the Business Survey Response Task

    Directory of Open Access Journals (Sweden)

    Torres van Grinsven Vanessa

    2014-12-01

    Full Text Available Increasing reluctance of businesses to participate in surveys often leads to declining or low response rates, poor data quality and burden complaints, and suggests that a driving force, that is, the motivation for participation and accurate and timely response, is insufficient or lacking. Inspiration for ways to remedy this situation has already been sought in the psychological theory of self-determination; previous research has favored enhancement of intrinsic motivation compared to extrinsic motivation. Traditionally however, enhancing extrinsic motivation has been pervasive in business surveys. We therefore review this theory in the context of business surveys using empirical data from the Netherlands and Slovenia, and suggest that extrinsic motivation calls for at least as much attention as intrinsic motivation, that other sources of motivation may be relevant besides those stemming from the three fundamental psychological needs (competence, autonomy and relatedness, and that other approaches may have the potential to better explain some aspects of motivation in business surveys (e.g., implicit motives. We conclude with suggestions that survey organizations can consider when attempting to improve business survey response behavior.

  19. Planet X - Fact or fiction?

    Science.gov (United States)

    Anderson, John

    1988-01-01

    The search for a possible tenth planet in our solar system is examined. The history of the discoveries of Uranus, Neptune, and Pluto are reviewed. Searches of the sky with telescopes and theoretical studies of the gravitational influences on the orbits of known objects in the solar system are discussed. Information obtained during the Pioneer 10 and 11 missions which could suggest the presence of an undiscovered planet and computer simulations of the possible orbit of a tenth planet are presented.

  20. Survey of formal and informal citation in Google search engine

    Directory of Open Access Journals (Sweden)

    Afsaneh Teymourikhani

    2016-03-01

    Full Text Available Aim: Informal citations is bibliographic information (title or Internet address, citing sources of information resources for informal scholarly communication and always neglected in traditional citation databases. This study is done, in order to answer the question of whether informal citations in the web environment are traceable. The present research aims to determine what proportion of web citations of Google search engine is related to formal and informal citation. Research method: Webometrics is the method used. The study is done on 1344 research articles of 98 open access journal, and the method that is used to extract the web citation from Google search engine is “Web / URL citation extraction". Findings: The findings showed that ten percent of the web citations of Google search engine are formal and informal citations. The highest formal citation in the Google search engine with 19/27% is in the field of library and information science and the lowest official citation by 1/54% is devoted to the field of civil engineering. The highest percentage of informal citations with 3/57% is devoted to sociology and the lowest percentage of informal citations by 0/39% is devoted to the field of civil engineering. Journal Citation is highest with 94/12% in the surgical field and lowest with 5/26 percent in the philosophy filed. Result: Due to formal and informal citations in the Google search engine which is about 10 percent and the reduction of this amount compared to previous research, it seems that track citations by this engine should be treated with more caution. We see that the amount of formal citation is variable in different disciplines. Cited journals in the field of surgery, is highest and in the filed of philosophy is lowest, this indicates that in the filed of philosophy, that is a subset of the social sciences, journals in scientific communication do not play a significant role. On the other hand, book has a key role in this filed

  1. In Search of Motivation for the Business Survey Response Task

    NARCIS (Netherlands)

    Torres van Grinsven, Vanessa; Bolko, Irena; Bavdaz, Mojca

    2014-01-01

    Increasing reluctance of businesses to participate in surveys often leads to declining or low response rates, poor data quality and burden complaints, and suggests that a driving force, that is, the motivation for participation and accurate and timely response, is insufficient or lacking. Inspiratio

  2. In Search of Motivation for the Business Survey Response Task

    NARCIS (Netherlands)

    Torres van Grinsven, Vanessa; Bolko, Irena; Bavdaz, Mojca

    2014-01-01

    Increasing reluctance of businesses to participate in surveys often leads to declining or low response rates, poor data quality and burden complaints, and suggests that a driving force, that is, the motivation for participation and accurate and timely response, is insufficient or lacking.

  3. Does the Galactic Bulge Have Fewer Planets?

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    distribution of host distances from a simulated microlensing survey, correcting for dominant selection effects. They then compared the distribution of distances in this model sample to the distribution of distances measured for the actual, observed systems.Histogram and cumulative distribution (black lines) of distance estimates for microlensing planet hosts. Red lines show the distributions predicted by the model if the disk and bulge abundances were the same. [Penny et al. 2016]Intriguingly, the two distributions dont match when you assume that the planet abundances in the disk and the bulge are the same. The relative abundances appear to be higher in the disk than in the bulge, according to the teams results: the observations agree with a model in which the bulge/disk abundance ratio is less than 0.54.Whats to Blame?There are a few ways to interpret this result: 1) distance measurements for the sample of planets discovered by microlensing have errors, 2) the model is too simplified; it needs to also include dependence of planet abundance and detection sensitivity on properties like host mass and metallicity, or 3) the galactic bulge actually has fewer planets than the disk.Penny and collaboratorssuspect some combination of the first two interpretations is most likely, but an actual paucity of planets in the galactic bulge cant be ruled out. Performing similar analysis on a larger sample of microlensing planets expected from upcoming, second-generation microlensing searches and obtaining more accurate distance measurements will help us to address this puzzlemore definitively in the future.CitationMatthew T. Penny et al 2016 ApJ 830 150. doi:10.3847/0004-637X/830/2/150

  4. Searching for Faint Planetary Nebulae Using the Digital Sky Survey

    CERN Document Server

    Jacoby, George H; Patchick, Dana; Teutsch, Philipp; Saloranta, Jaakko; Howell, Michael; Crisp, Richard; Riddle, Dave; Acker, Agnés; Frew, David J; Parker, Quentin

    2009-01-01

    Recent Halpha surveys such as SHS and IPHAS have improved the completeness of the Galactic planetary nebula (PN) census. We now know of ~3,000 PNe in the Galaxy, but this is far short of most estimates, typically ~25,000 or more for the total population. The size of the Galactic PN population is required to derive an accurate estimate of the chemical enrichment rates of nitrogen, carbon, and helium. In addition, a high PN count (~20,000) is strong evidence that most 1-8 Msun main sequence stars will go through a PN phase, while a low count (<10,000) argues that special conditions (e.g., a close binary interaction) are required to form a PN. We describe a technique for finding hundreds more PNe using the existing data collections of the digital sky surveys, thereby improving the census of Galactic PNe.

  5. Discovery of abundant cellulose microfibers encased in 250 Ma Permian halite: a macromolecular target in the search for life on other planets.

    Science.gov (United States)

    Griffith, Jack D; Willcox, Smaranda; Powers, Dennis W; Nelson, Roger; Baxter, Bonnie K

    2008-04-01

    In this study, we utilized transmission electron microscopy to examine the contents of fluid inclusions in halite (NaCl) and solid halite crystals collected 650 m below the surface from the Late Permian Salado Formation in southeastern New Mexico (USA). The halite has been isolated from contaminating groundwater since deposition approximately 250 Ma ago. We show that abundant cellulose microfibers are present in the halite and appear remarkably intact. The cellulose is in the form of 5 nm microfibers as well as composite ropes and mats, and was identified by resistance to 0.5 N NaOH treatment and susceptibility to cellulase enzyme treatment. These cellulose microfibers represent the oldest native biological macromolecules to have been directly isolated, examined biochemically, and visualized (without growth or replication) to date. This discovery points to cellulose as an ideal macromolecular target in the search for life on other planets in our Solar System.

  6. A Search for H-alpha Absorption in the Exosphere of the Transiting Extrasolar Planet HD 209458b

    CERN Document Server

    Winn, J N; Turner, E L; Narita, N; Frye, B L; Aoki, W; Sato, B; Yamada, T; Winn, Joshua N.; Suto, Yasushi; Turner, Edwin L.; Narita, Norio; Frye, Brenda L.; Aoki, Wako; Sato, Bunei; Yamada, Toru

    2004-01-01

    There is evidence that the transiting planet HD 209458b has a large exosphere of neutral hydrogen, based on a 15% decrement in Lyman-alpha flux that was observed by Vidal-Madjar et al. during transits. Here we report upper limits on Balmer-alpha (H-alpha) absorption by the exosphere. The results are based on optical spectra of the parent star obtained with the Subaru High Dispersion Spectrograph. Comparison of the spectra taken inside and outside of transit reveals no exospheric H-alpha signal greater than 0.1% within a 5.1AA band (chosen to have the same Dlambda/lambda as the 15% Ly-alpha absorption). The corresponding limit on the column density of n=2 neutral hydrogen is N_2 <~ 10^9 cm^{-2}. This limit constrains proposed models involving a hot (~10^4 K) and hydrodynamically escaping exosphere.

  7. Observed properties of extrasolar planets.

    Science.gov (United States)

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  8. A Search for Highly Dispersed Fast Radio Bursts in Three Parkes Multibeam Surveys

    CERN Document Server

    Crawford, F; Tran, L; Rolph, K; Lorimer, D R; Ridley, J P

    2016-01-01

    We have searched three Parkes multibeam 1.4 GHz surveys for the presence of fast radio bursts (FRBs) out to a dispersion measure (DM) of 5000 pc cm$^{-3}$. These surveys originally targeted the Magellanic Clouds (in two cases) and unidentified gamma-ray sources at mid-Galactic latitudes (in the third case) for new radio pulsars. In previous processing, none of these surveys were searched to such a high DM limit. The surveys had a combined total of 719 hr of Parkes multibeam on-sky time. One known FRB, 010724, was present in our data and was detected in our analysis but no new FRBs were found. After adding in the on-sky Parkes time from these three surveys to the on-sky time (7512 hr) from the five Parkes surveys analysed by Rane et al., all of which have now been searched to high DM limits, we improve the constraint on the all-sky rate of FRBs above a fluence level of 3.8 Jy ms at 1.4 GHz to $R = 3.3^{+3.7}_{-2.2} \\times 10^{3}$ events per day per sky (at the 99% confidence level). Future Parkes surveys that ...

  9. Dropout Rates and Response Times of an Occupation Search Tree in a Web Survey

    Directory of Open Access Journals (Sweden)

    Tijdens Kea

    2014-03-01

    Full Text Available Occupation is key in socioeconomic research. As in other survey modes, most web surveys use an open-ended question for occupation, though the absence of interviewers elicits unidentifiable or aggregated responses. Unlike other modes, web surveys can use a search tree with an occupation database. They are hardly ever used, but this may change due to technical advancements. This article evaluates a three-step search tree with 1,700 occupational titles, used in the 2010 multilingual WageIndicator web survey for UK, Belgium and Netherlands (22,990 observations. Dropout rates are high; in Step 1 due to unemployed respondents judging the question not to be adequate, and in Step 3 due to search tree item length. Median response times are substantial due to search tree item length, dropout in the next step and invalid occupations ticked. Overall the validity of the occupation data is rather good, 1.7-7.5% of the respondents completing the search tree have ticked an invalid occupation.

  10. Trigonometric Parallaxes and Proper Motions of 134 Southern Late M, L, and T Dwarfs from the Carnegie Astrometric Planet Search Program

    CERN Document Server

    Weinberger, A J; Keiser, S A; Anglada-Escudé, G; Thompson, I B; Burley, G

    2016-01-01

    We report trigonometric parallaxes for 134 low mass stars and brown dwarfs, of which 38 have no previously published measurement and 79 more have improved uncertainties. Our survey targeted nearby targets, so 119 are closer than 30 pc. Of the 38 stars with new parallaxes, 14 are within 20 pc and seven are likely brown dwarfs (spectral types later than L0). These parallaxes are useful for studies of kinematics, multiplicity, and spectrophotometric calibration. Two objects with new parallaxes are confirmed as young stars with membership in nearby young moving groups: LP 870-65 in AB Doradus and G 161-71 in Argus. We also report the first parallax for the planet-hosting star GJ 3470; this allows us to refine the density of its Neptune-mass planet. One T-dwarf, 2MASS J12590470-4336243, previously thought to lie within 4 pc, is found to be at 7.8 pc, and the M-type star 2MASS J01392170-3936088 joins the ranks of nearby stars as it is found to be within 10 pc. Five stars that are over-luminous and/or too red for th...

  11. Trigonometric Parallaxes and Proper Motions of 134 Southern Late M, L, and T Dwarfs from the Carnegie Astrometric Planet Search Program

    Science.gov (United States)

    Weinberger, Alycia J.; Boss, Alan P.; Keiser, Sandra A.; Anglada-Escudé, Guillem; Thompson, Ian B.; Burley, Gregory

    2016-07-01

    We report trigonometric parallaxes for 134 low-mass stars and brown dwarfs, of which 38 have no previously published measurement and 79 more have improved uncertainties. Our survey focused on nearby targets, so 119 are closer than 30 pc. Of the 38 stars with new parallaxes, 14 are within 20 pc and seven are likely brown dwarfs (spectral types later than L0). These parallaxes are useful for studies of kinematics, multiplicity, and spectrophotometric calibration. Two objects with new parallaxes are confirmed as young stars with membership in nearby young moving groups: LP 870-65 in AB Doradus and G 161-71 in Argus. We also report the first parallax for the planet-hosting star GJ 3470; this allows us to refine the density of its Neptune-mass planet. T-dwarf 2MASS J12590470-4336243, previously thought to lie within 4 pc, is found to be at 7.8 pc, and the M-type star 2MASS J01392170-3936088 joins the ranks of nearby stars as it is found to be within 10 pc. Five stars that are overluminous and/or too red for their spectral types are identified and deserve further study as possible young stars.

  12. Ground-based search for the brightest transiting planets with the Multi-site All-Sky CAmeRA - MASCARA

    CERN Document Server

    Snellen, Ignas; Navarro, Ramon; Bettonvil, Felix; Kenworthy, Matthew; de Mooij, Ernst; Otten, Gilles; ter Horst, Rik; Poole, Rudolf le

    2012-01-01

    The Multi-site All-sky CAmeRA MASCARA is an instrument concept consisting of several stations across the globe, with each station containing a battery of low-cost cameras to monitor the near-entire sky at each location. Once all stations have been installed, MASCARA will be able to provide a nearly 24-hr coverage of the complete dark sky, down to magnitude 8, at sub-minute cadence. Its purpose is to find the brightest transiting exoplanet systems, expected in the V=4-8 magnitude range - currently not probed by space- or ground-based surveys. The bright/nearby transiting planet systems, which MASCARA will discover, will be the key targets for detailed planet atmosphere observations. We present studies on the initial design of a MASCARA station, including the camera housing, domes, and computer equipment, and on the photometric stability of low-cost cameras showing that a precision of 0.3-1% per hour can be readily achieved. We plan to roll out the first MASCARA station before the end of 2013. A 5-station MASCA...

  13. Survey of Search and Replication Schemes in Unstructured P2P Networks

    CERN Document Server

    Thampi, Sabu M

    2010-01-01

    P2P computing lifts taxing issues in various areas of computer science. The largely used decentralized unstructured P2P systems are ad hoc in nature and present a number of research challenges. In this paper, we provide a comprehensive theoretical survey of various state-of-the-art search and replication schemes in unstructured P2P networks for file-sharing applications. The classifications of search and replication techniques and their advantages and disadvantages are briefly explained. Finally, the various issues on searching and replication for unstructured P2P networks are discussed.

  14. Approximate search for Big Data with applications in information security – A survey

    Directory of Open Access Journals (Sweden)

    Slobodan Petrović

    2015-04-01

    Full Text Available This paper is a survey of approximate search techniques in very large data sets (so-called Big Data. After a short introduction, some techniques for speeding up approximate search in such data sets based on exploitation of inherent bit-parallelism in computers are described. It then reviews the applications in search related to information security problems (digital forensics, malware detection, intrusion detection are reviewed. Finally, the need for constraints in approximate search regarding the number of so-called elementary edit operations and the run lengths of particular elementary edit operations is explained and the status of on-going research on efficient implementation of approximate search algorithms with various constraints is given.

  15. Photometric Survey to Search for Field sdO Pulsators

    CERN Document Server

    Johnson, Christopher B; Wallace, S; O'Malley, C J; Amaya, H; Biddle, L; Fontaine, G

    2013-01-01

    We present the results of a campaign to search for subdwarf O (sdO) star pulsators among bright field stars. The motivation for this project is the recent discovery by Randall et al. (2011), of four rapidly pulsating sdO stars in the globular cluster Omega Cen, with Teff near 50,000 K, 5.4 -0.1 and similar temperatures and gravities. To date, we have found no detectable pulsations at amplitudes above 0.08% (4 times the mean noise level) in any of the 36 field sdO stars that we observed. The presence of pulsations in Omega Cen sdO stars and their apparent absence in seemingly comparable field sdO stars is perplexing. While very suggestive, the significance of this result is difficult to assess more completely right now due to remaining uncertainties about the temperature width and purity of the Omega Cen instability strip and the existence of any sdO pulsators with weaker amplitudes than the current detection limit in globular clusters.

  16. Searching for Cataclysmic Variables in the J-PLUS Survey

    Science.gov (United States)

    Abril, J.; Ederoclite, A.

    2017-03-01

    Cataclysmic Variables (CVs) are binary systems made of a white dwarf which is accreting mass from a less evolved companion. Depending on the physical properties of the system, the observational characteristics of CVs can be very diverse. Nevertheless, as we learned from projects like the Sloan Digital Sky Survey, CVs occupy the same locus of quasars in color- color diagrams, hence their discovery can be quite challenging. In this paper, we expose how the filter set of the J-PLUS project can help to efficiently separate CVs from other objects (mostly quasars) and even get their type. Through simulations and real data, we explain how accurate the method is and identify the following steps to finally get the first complete unbiased magnitude-limited sample of Cataclysmic Variables to date, a fundamental data set to be able to study the evolution of this type of objects.

  17. The Evryscope and extrasolar planets

    Science.gov (United States)

    Fors, Octavi; Law, Nicholas Michael; Ratzloff, Jeffrey; del Ser, Daniel; Wulfken, Philip J.; Kavanaugh, Dustin

    2015-08-01

    The Evryscope (Law et al. 2015) is a 24-camera hemispherical all-sky gigapixel telescope (8,000 sq.deg. FoV) with rapid cadence (2mins exposure, 4sec readout) installed at CTIO. Ground-based single-station transiting surveys typically suffer from light curve sparsity and suboptimal efficiency because of their limited field of view (FoV), resulting in incomplete and biased detections. In contrast, the Evryscope offers 97% survey efficiency and one of the single-station most continuous and simultaneous monitoring of millions of stars (only limited by the day-night window).This unique facility is capable of addressing new and more extensive planetary populations, including: 1) for the first time, continuously monitor every 2mins a set of ~1000 bright white dwarfs (WDs). This will allow us to put constraints on the habitable planet fraction of Ceres-size planetesimals at the level of 30%, only in a survey timescales of a few weeks, as well as first-time testing planetary evolution models beyond the AGB phase. 2) search for rocky planets in the habitable zone around ~5,000 bright, nearby M-dwarfs. 3) synergies between Evryscope and upcoming exoplanets missions (e.g. TESS, PLATO) are also promising for target pre-imaging characterization, and increasing the giant planet yield by recovering multiple transits from planets seen as single transit events from space. 4) all-sky 2-min cadence of rare microlensing events of nearby stars. 5) all-sky continuous survey of microlensing events of nearby stars at 2mins cadence. 6) increase the census of giant planets around ~70,000 nearby, bright (g<10) solar-type stars, whose atmospheres can be characterized by follow-up observations. We are developing new data analysis algorithms to address the above scientific goals: from detecting the extremely short and faint transits around WDs, to disentangle planetary signals from very bright stars, and to combine space-based light curves with the Evryscope's ones. We will present the first

  18. Criteria for Sample Selection to Maximize Planet Sensitivity and Yield from Space-Based Microlens Parallax Surveys

    CERN Document Server

    Yee, Jennifer C; Beichman, Charles; Novati, Sebastiano Calchi; Carey, Sean; Gaudi, B Scott; Henderson, Calen; Nataf, David; Penny, Matthew; Shvartzvald, Yossi; Zhu, Wei

    2015-01-01

    Space-based microlens parallax measurements are a powerful tool for understanding planet populations, especially their distribution throughout the Galaxy. However, if space-based observations of the microlensing events must be specifically targeted, it is crucial that microlensing events enter the parallax sample without reference to the known presence or absence of planets. Hence, it is vital to define objective criteria for selecting events where possible and to carefully consider and minimize the selection biases where not possible so that the final sample represents a controlled experiment. We present objective criteria for initiating observations and determining their cadence for a subset of events, and we define procedures for isolating subjective decision making from information about detected planets for the remainder of events. We also define procedures to resolve conflicts between subjective and objective selections. These procedures maximize planet sensitivity of the sample as a whole by allowing f...

  19. Searching for Large Scale Structure in Deep Radio Surveys

    CERN Document Server

    Baleisis, A; Loan, A J; Wall, J V; Baleisis, Audra; Lahav, Ofer; Loan, Andrew J.; Wall, Jasper V.

    1997-01-01

    (Abridged Abstract) We calculate the expected amplitude of the dipole and higher spherical harmonics in the angular distribution of radio galaxies. The median redshift of radio sources in existing catalogues is z=1, which allows us to study large scale structure on scales between those accessible to present optical and infrared surveys, and that of the Cosmic Microwave Background (CMB). The dipole is due to 2 effects which turn out to be of comparable magnitude: (i) our motion with respect to the CMB, and (ii) large scale structure, parameterised here by a family of Cold Dark Matter power-spectra. We make specific predictions for the Green Bank (87GB) and Parkes-MIT-NRAO (PMN) catalogues. For these relatively sparse catalogues both the motion and large scale structure dipole effects are expected to be smaller than the Poisson shot-noise. However, we detect dipole and higher harmonics in the combined 87GB-PMN catalogue which are far larger than expected. We attribute this to a 2 % flux mismatch between the two...

  20. Prevalence of Earth-size Planets Orbiting Sun-like Stars

    Science.gov (United States)

    Petigura, Erik Ardeshir

    2015-04-01

    In this thesis, I explore two topics in exoplanet science. The first is the prevalence of Earth-size planets in the Milky Way Galaxy. To determine the occurrence of planets having different sizes, orbital periods, and other properties, I conducted a survey of extrasolar planets using data collected by NASA's Kepler Space Telescope. This project involved writing new algorithms to analyze Kepler data, finding planets, and conducting follow-up work using ground-based telescopes. I found that most stars have at least one planet at or within Earth's orbit and that 26% of Sun-like stars have an Earth-size planet with an orbital period of 100 days or less. The second topic is the connection between the properties of planets and their host stars. The precise characterization of exoplanet hosts helps to bring planet properties like mass, size, and equilibrium temperature into sharper focus and probes the physical processes that form planets. I studied the abundance of carbon and oxygen in over 1000 nearby stars using optical spectra taken by the California Planet Search. I found a large range in the relative abundance of carbon and oxygen in this sample, including a handful of carbon-rich stars. I also developed a new technique called SpecMatch for extracting fundamental stellar parameters from optical spectra. SpecMatch is particularly applicable to the relatively faint planet-hosting stars discovered by Kepler.

  1. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    masses on the properties of the disks. Szulgyi specifically examines a range of planetary temperatures between 10,000 K and 1,000 K for the 1 MJ planet. Since the planet cools as it radiates away its formation heat, the different temperatures represent an evolutionary sequence over time.Predicted CharacteristicsSzulgyis work produced a number of intriguing observations, including the following:For the 1 MJ planet, a spherical circumplanetary envelope forms at high temperatures, flattening into a disk as the planet cools. Higher-mass planets form disks even at high temperatures.The disk has a steep temperature profile from inside to outside, and the whole disk is too hot for water to remain frozen. This suggests that satellites couldnt form in the disk earlier than 1 Myr after the planet birth. The outskirts of the disk cool first as the planet cools, indicating that satellites may eventually form in these outer parts and then migrate inward.The planets open gaps in the circumstellar disk as they orbit. As a planet radiates away its formation heat, the gap it opens becomes deeper and wider (though this is a small effect). For high-mass planets (5 MJ), the gap eccentricity increases, which creates a hostile environment for satellite formation.Szulgyi discusses a number of features of these disks that we can plan to search for in the future with our increasing telescope power including signatures in direct imaging and observations of their kinematics. The results from these simulations will help us both to detect these circumplanetary disks and to understand our observations when we do. These future observations will then allow us to learn about late-stage giant-planet formation as well as the formation of their satellites.CitationJ. Szulgyi 2017 ApJ 842 103. doi:10.3847/1538-4357/aa7515

  2. Compression and Encryption of Search Survey Gamma Spectra using Compressive Sensing

    CERN Document Server

    Heifetz, Alexander

    2014-01-01

    We have investigated the application of Compressive Sensing (CS) computational method to simultaneous compression and encryption of gamma spectra measured with NaI(Tl) detector during wide area search survey applications. Our numerical experiments have demonstrated secure encryption and nearly lossless recovery of gamma spectra coded and decoded with CS routines.

  3. The DODO Survey II: A Gemini Direct Imaging Search for Substellar and Planetary Mass Companions around Nearby Equatorial and Northern Hemisphere White Dwarfs

    CERN Document Server

    Hogan, E; Clarke, F J

    2009-01-01

    The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures much lower ( T8.5 and so could belong to the proposed Y dwarf spectral sequence. The detection of a planet around a white dwarf would prove that such objects can survive the final stages of stellar evolution and place constraints on the frequency of planetary systems around their progenitors (with masses between 1.5 - 8 solar masses, i.e., early B to mid F). This paper presents the results of a multi-epoch J band common proper motion survey of 23 nearby equatorial and northern hemisphere white dwarfs. We rule out the presence of any common proper motion companions, with limiting masses determined from the completeness limit of each observation, to 18 white dwarfs. For the remaining five targets, the motion...

  4. The DODO survey - II. A Gemini direct imaging search for substellar and planetary mass companions around nearby equatorial and Northern hemisphere white dwarfs

    Science.gov (United States)

    Hogan, E.; Burleigh, M. R.; Clarke, F. J.

    2009-07-01

    The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low-mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures much lower (T8.5, and so could belong to the proposed Y dwarf spectral sequence. The detection of a planet around a white dwarf would prove that such objects can survive the final stages of stellar evolution and place constraints on the frequency of planetary systems around their progenitors (with masses between 1.5 and 8Msolar, i.e. early B to mid-F). This paper presents the results of a multi epoch J band common proper motion survey of 23 nearby equatorial and Northern hemisphere white dwarfs. We rule out the presence of any common proper motion companions, with limiting masses determined from the completeness limit of each observation, to 18 white dwarfs. For the remaining five targets, the motion of the white dwarf is not sufficiently separated from the non-moving background objects in each field. These targets require additional observations to conclusively rule out the presence of any common proper motion companions. From our completeness limits, we tentatively suggest that ~ 500 K between projected physical separations of 60-200 au.

  5. A Portrait of the Audience for Instruction in Web Searching: Results of a Survey Conducted at Two Canadian Universities.

    Science.gov (United States)

    Tillotson, Joy

    2003-01-01

    Describes a survey that was conducted involving participants in the library instruction program at two Canadian universities in order to describe the characteristics of students receiving instruction in Web searching. Examines criteria for evaluating Web sites, search strategies, use of search engines, and frequency of use. Questionnaire is…

  6. MARVELS-1b: A Short-Period, Brown Dwarf Desert Candidate from the SDSS-III MARVELS Planet Search

    CERN Document Server

    Lee, Brian L; Fleming, Scott W; Stassun, Keivan G; Gaudi, B Scott; Barnes, Rory; Mahadevan, Suvrath; Eastman, Jason D; Wright, Jason; Siverd, Robert J; Gary, Bruce; Ghezzi, Luan; Laws, Chris; Wisniewski, John P; de Mello, G F Porto; Ogando, Ricardo L C; Maia, Marcio A G; da Costa, Luiz Nicolaci; Sivarani, Thirupathi; Pepper, Joshua; Nguyen, Duy Cuong; Hebb, Leslie; De Lee, Nathan; Wang, Ji; Wan, Xiaoke; Zhao, Bo; Chang, Liang; Groot, John; Varosi, Frank; Hearty, Fred; Hanna, Kevin; van Eyken, J C; Kane, Stephen R; Agol, Eric; Bizyaev, Dmitry; Bochanski, John J; Brewington, Howard; Chen, Zhiping; Costello, Erin; Dou, Liming; Eisenstein, Daniel J; Fletcher, Adam; Ford, Eric B; Guo, Pengcheng; Holtzman, Jon A; Jiang, Peng; Leger, R French; Liu, Jian; Long, Daniel C; Malanushenko, Elena; Malanushenko, Viktor; Malik, Mohit; Oravetz, Daniel; Pan, Kaike; Rohan, Pais; Schneider, Donald P; Shelden, Alaina; Snedden, Stephanie A; Simmons, Audrey; Weaver, B A; Weinberg, David H; Xie, Ji-Wei

    2010-01-01

    We present a new short-period brown dwarf candidate around the star TYC 1240-00945-1. This candidate was discovered in the first year of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the third phase of the Sloan Digital Sky Survey (SDSS-III), and we designate the brown dwarf as MARVELS-1b. MARVELS uses the technique of dispersed fixed-delay interferometery to simultaneously obtain radial velocity measurements for 60 objects per field using a single, custom-built instrument that is fiber fed from the SDSS 2.5-m telescope. From our 20 radial velocity measurements spread over a ~370 d time baseline, we derive a Keplerian orbital fit with semi-amplitude K=2.533+/-0.025 km/s, period P=5.8953+/-0.0004 d, and eccentricity consistent with circular. Independent follow-up radial velocity data confirm the orbit. Adopting a mass of 1.37+/-0.11 M_Sun for the slightly evolved F9 host star, we infer that the companion has a minimum mass of 28.0+/-1.5 M_Jup, a semimajor axis 0....

  7. Search for extraterrestrial intelligence/High Resolution Microwave Survey team member

    Science.gov (United States)

    Steffes, Paul G.

    1994-01-01

    This final report summarizes activities conducted during the three years of the NASA High Resolution Microwave Survey (HRMS). With primary interest in the Sky Survey activity, the principal investigator attended nine Working Group meetings and traveled independently to conduct experiments or present results at other meetings. The major activity involved evaluating the effects of spaceborne radio frequency interference (RFI) on both the SETI sky survey and targeted search. The development of a database of all unclassified earth or biting and deep space transmitters, along with accompanying search software, was a key accomplishment. The software provides information about potential sources of interference and gives complete information regarding the frequencies, positions and levels of interference generated by the spacecraft. A complete description of this search system (called HRS, or HRMS RFI Search) is provided. Other accomplishments include development of a 32,000 channel Fast-Fourier-Transform Spectrum analyzer for use in studies of interference from satellites and in a 1.4 mm SETI observational study. The latest revision of HRS has now been distributed to the extended radio astronomy and SETI community.

  8. MARVELS-1b: A Short-period, Brown Dwarf Desert Candidate from the SDSS-III Marvels Planet Search

    Science.gov (United States)

    Lee, Brian L.; Ge, Jian; Fleming, Scott W.; Stassun, Keivan G.; Gaudi, B. Scott; Barnes, Rory; Mahadevan, Suvrath; Eastman, Jason D.; Wright, Jason; Siverd, Robert J.; Gary, Bruce; Ghezzi, Luan; Laws, Chris; Wisniewski, John P.; Porto de Mello, G. F.; Ogando, Ricardo L. C.; Maia, Marcio A. G.; Nicolaci da Costa, Luiz; Sivarani, Thirupathi; Pepper, Joshua; Nguyen, Duy Cuong; Hebb, Leslie; De Lee, Nathan; Wang, Ji; Wan, Xiaoke; Zhao, Bo; Chang, Liang; Groot, John; Varosi, Frank; Hearty, Fred; Hanna, Kevin; van Eyken, J. C.; Kane, Stephen R.; Agol, Eric; Bizyaev, Dmitry; Bochanski, John J.; Brewington, Howard; Chen, Zhiping; Costello, Erin; Dou, Liming; Eisenstein, Daniel J.; Fletcher, Adam; Ford, Eric B.; Guo, Pengcheng; Holtzman, Jon A.; Jiang, Peng; French Leger, R.; Liu, Jian; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; Malik, Mohit; Oravetz, Daniel; Pan, Kaike; Rohan, Pais; Schneider, Donald P.; Shelden, Alaina; Snedden, Stephanie A.; Simmons, Audrey; Weaver, B. A.; Weinberg, David H.; Xie, Ji-Wei

    2011-02-01

    We present a new short-period brown dwarf (BD) candidate around the star TYC 1240-00945-1. This candidate was discovered in the first year of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III, and we designate the BD as MARVELS-1b. MARVELS uses the technique of dispersed fixed-delay interferometery to simultaneously obtain radial velocity (RV) measurements for 60 objects per field using a single, custom-built instrument that is fiber fed from the SDSS 2.5 m telescope. From our 20 RV measurements spread over a ~370 day time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 2.533 ± 0.025 km s-1, period P = 5.8953 ± 0.0004 days, and eccentricity consistent with circular. Independent follow-up RV data confirm the orbit. Adopting a mass of 1.37 ± 0.11 M sun for the slightly evolved F9 host star, we infer that the companion has a minimum mass of 28.0 ± 1.5 M Jup, a semimajor axis 0.071 ± 0.002 AU assuming an edge-on orbit, and is probably tidally synchronized. We find no evidence for coherent intrinsic variability of the host star at the period of the companion at levels greater than a few millimagnitudes. The companion has an a priori transit probability of ~14%. Although we find no evidence for transits, we cannot definitively rule them out for companion radii lsim1 R Jup.

  9. The CRIRES Search for Planets Around the Lowest-Mass Stars. I. High-Precision Near-Infrared Radial Velocities with an Ammonia Gas Cell

    CERN Document Server

    Bean, Jacob L; Hartman, Henrik; Nilsson, Hampus; Wiedemann, Guenter; Reiners, Ansgar; Dreizler, Stefan; Henry, Todd J

    2009-01-01

    Radial velocities measured from near-infrared spectra are a potentially powerful tool to search for planets around cool stars and sub-stellar objects. However, no technique currently exists that yields near-infrared radial velocity precision comparable to that which is routinely obtained in the visible. We describe a method for measuring high-precision relative radial velocities of cool stars from K-band spectra. The method makes use of a glass cell filled with ammonia gas to calibrate the spectrograph response similar to the iodine cell technique that has been used so successfully in the visible. Stellar spectra are obtained through the ammonia cell and modeled as the product of a Doppler-shifted template spectrum of the object and a spectrum of the cell, convolved with a variable instrumental profile model. A complicating factor is that a significant number of telluric absorption lines are present in the spectral regions containing useful stellar and ammonia lines. The telluric lines are modeled simultaneou...

  10. MARVELS-1: A face-on double-lined binary star masquerading as a resonant planetary system; and consideration of rare false positives in radial velocity planet searches

    CERN Document Server

    Wright, Jason T; Mahadevan, Suvrath; Wang, Sharon X; Ford, Eric B; Payne, Matt; Lee, Brian L; Wang, Ji; Crepp, Justin R; Gaudi, B Scott; Eastman, Jason; Pepper, Joshua; Ge, Jian; Fleming, Scott W; Ghezzi, Luan; Gonzalez-Hernandez, Jonay I; Cargile, Phillip; Stassun, Keivan G; Wisniewski, John; Dutra-Ferreira, Leticia; de Mello, Gustavo F Porto; Maia, Marcio A G; da Costa, Luiz Nicolaci; Ogando, Ricardo L C; Santiago, Basilio X; Schneider, Donald P; Hearty, Fred R

    2013-01-01

    We have analyzed new and previously published radial velocity observations of MARVELS-1, known to have an ostensibly substellar companion in a ~6- day orbit. We find significant (~100 m/s) residuals to the best-fit model for the companion, and these residuals are naively consistent with an interior giant planet with a P = 1.965d in a nearly perfect 3:1 period commensuribility (|Pb/Pc - 3| < 10^{-4}). We have performed several tests for the reality of such a companion, including a dynamical analysis, a search for photometric variability, and a hunt for contaminating stellar spectra. We find many reasons to be critical of a planetary interpretation, including the fact that most of the three-body dynamical solutions are unstable. We find no evidence for transits, and no evidence of stellar photometric variability. We have discovered two apparent companions to MARVELS-1 with adaptive optics imaging at Keck; both are M dwarfs, one is likely bound, and the other is likely a foreground object. We explore false-al...

  11. Giant Planet Occurrence in the Stellar Mass-Metallicity Plane

    CERN Document Server

    Johnson, John Asher; Howard, Andrew W; Crepp, Justin R

    2010-01-01

    Correlations between stellar properties and the occurrence rate of exoplanets can be used to inform the target selection of future planet search efforts and provide valuable clues about the planet formation process. We analyze a sample of 1194 stars drawn from the California Planet Survey targets to determine the empirical functional form describing the likelihood of a star harboring a giant planet as a function of its mass and metallicity. Our stellar sample ranges from M dwarfs with masses as low as 0.2 Msun to intermediate-mass subgiants with masses as high as 1.9 Msun. In agreement with previous studies, our sample exhibits a planet-metallicity correlation at all stellar masses; the fraction of stars that harbor giant planets scales as f \\propto 10^{1.2 [Fe/H]}. We can rule out a flat metallicity relationship among our evolved stars (at 98% confidence), which argues that the high metallicities of stars with planets is not likely due to convective envelope ``pollution.'' Our data also rule out a constant p...

  12. Online health information search: what struggles and empowers the users? Results of an online survey.

    Science.gov (United States)

    Pletneva, Natalia; Vargas, Alejandro; Kalogianni, Konstantina; Boyer, Célia

    2012-01-01

    The most popular mean of searching for online health content is a general search engine for all domains of interest. Being general implies on one hand that the search engine is not tailored to the needs which are particular to the medical and on another hand that health domain and health-specific queries may not always return adequate and adapted results. The aim of our study was to identify difficulties and preferences in online health information search encountered by members of the general public. The survey in four languages was online from the 9th of March until the 27th of April, 2011. 385 answers were collected, representing mostly the opinions of highly educated users, mostly from France and Spain. The most important characteristics of a search engine are relevance and trustworthiness of results. The results currently retrieved do not fulfil these requirements. The ideal representation of the information will be a categorization of the results into different groups. Medical dictionaries/thesauruses, suggested relevant topics, image searches and spelling corrections are regarded as helpful tools. There is a need to work towards better customized solutions which provide users with the trustworthy information of high quality specific to his/her case in a user-friendly environment which would eventually lead to making appropriate health decisions.

  13. The Sloan Digital Sky Survey-II Supernova Survey:Search Algorithm and Follow-up Observations

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao; /Pennsylvania U. /KIPAC, Menlo Park; Bassett, Bruce; /Cape Town U. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Cinabro, David; /Wayne State U.; DeJongh, Don Frederic; /Fermilab; Depoy, D.L.; /Ohio State U.; Doi, Mamoru; /Tokyo U.; Garnavich, Peter M.; /Notre Dame U.; Craig, Hogan, J.; /Washington U., Seattle, Astron. Dept.; Holtzman, Jon; /New Mexico State U.; Jha, Saurabh; /Stanford U., Phys. Dept.; Konishi, Kohki; /Tokyo U.; Lampeitl, Hubert; /Baltimore, Space; Marriner, John; /Fermilab; Miknaitis, Gajus; /Fermilab; Nichol, Robert C.; /Portsmouth U.; Prieto, Jose Luis; /Ohio State U.; Richmond, Michael W.; /Rochester Inst.; Schneider, Donald P.; /Penn State U., Astron. Astrophys.; Smith, Mathew; /Portsmouth U.; SubbaRao, Mark; /Chicago U. /Tokyo U. /Tokyo U. /South African Astron. Observ. /Tokyo

    2007-09-14

    The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 deg2 region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, Galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the Type Ia SNe, the main driver for the Survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.

  14. Extrasolar planets.

    Science.gov (United States)

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-07

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.

  15. The Dependence of Signal-To-Noise Ratio (S/N) Between Star Brightness and Background on the Filter Used in Images Taken by the Vulcan Photometric Planet Search Camera

    Science.gov (United States)

    Mena-Werth, Jose

    1998-01-01

    The Vulcan Photometric Planet Search is the ground-based counterpart of Kepler Mission Proposal. The Kepler Proposal calls for the launch of telescope to look intently at a small patch of sky for four year. The mission is designed to look for extra-solar planets that transit sun-like stars. The Kepler Mission should be able to detect Earth-size planets. This goal requires an instrument and software capable of detecting photometric changes of several parts per hundred thousand in the flux of a star. The goal also requires the continuous monitoring of about a hundred thousand stars. The Kepler Mission is a NASA Discovery Class proposal similar in cost to the Lunar Prospector. The Vulcan Search is also a NASA project but based at Lick Observatory. A small wide-field telescope monitors various star fields successively during the year. Dozens of images, each containing tens of thousands of stars, are taken any night that weather permits. The images are then monitored for photometric changes of the order of one part in a thousand. These changes would reveal the transit of an inner-orbit Jupiter-size planet similar to those discovered recently in spectroscopic searches. In order to achieve a one part in one thousand photometric precision even the choice of a filter used in taking an exposure can be critical. The ultimate purpose of an filter is to increase the signal-to-noise ratio (S/N) of one's observation. Ideally, filters reduce the sky glow cause by street lights and, thereby, make the star images more distinct. The higher the S/N, the higher is the chance to observe a transit signal that indicates the presence of a new planet. It is, therefore, important to select the filter that maximizes the S/N.

  16. Developing optimal search strategies for detecting clinically sound prognostic studies in MEDLINE: an analytic survey

    Directory of Open Access Journals (Sweden)

    Haynes R Brian

    2004-06-01

    Full Text Available Abstract Background Clinical end users of MEDLINE have a difficult time retrieving articles that are both scientifically sound and directly relevant to clinical practice. Search filters have been developed to assist end users in increasing the success of their searches. Many filters have been developed for the literature on therapy and reviews but little has been done in the area of prognosis. The objective of this study is to determine how well various methodologic textwords, Medical Subject Headings, and their Boolean combinations retrieve methodologically sound literature on the prognosis of health disorders in MEDLINE. Methods An analytic survey was conducted, comparing hand searches of journals with retrievals from MEDLINE for candidate search terms and combinations. Six research assistants read all issues of 161 journals for the publishing year 2000. All articles were rated using purpose and quality indicators and categorized into clinically relevant original studies, review articles, general papers, or case reports. The original and review articles were then categorized as 'pass' or 'fail' for methodologic rigor in the areas of prognosis and other clinical topics. Candidate search strategies were developed for prognosis and run in MEDLINE – the retrievals being compared with the hand search data. The sensitivity, specificity, precision, and accuracy of the search strategies were calculated. Results 12% of studies classified as prognosis met basic criteria for scientific merit for testing clinical applications. Combinations of terms reached peak sensitivities of 90%. Compared with the best single term, multiple terms increased sensitivity for sound studies by 25.2% (absolute increase, and increased specificity, but by a much smaller amount (1.1% when sensitivity was maximized. Combining terms to optimize both sensitivity and specificity achieved sensitivities and specificities of approximately 83% for each. Conclusion Empirically derived

  17. A search for dispersed radio bursts in archival Parkes Multibeam Pulsar Survey data

    CERN Document Server

    Bagchi, Manjari; McLaughlin, Maura

    2012-01-01

    A number of different classes of potentially extra-terrestrial bursts of radio emission have been observed in surveys with the Parkes 64m radio telescope, including "Rotating Radio Transients", the "Lorimer burst" and "perytons". Rotating Radio Transients are radio pulsars which are best detectable in single-pulse searches. The Lorimer burst is a highly dispersed isolated radio burst with properties suggestive of extragalactic origin. Perytons share the frequency-swept nature of the Rotating Radio Transients and Lorimer burst, but unlike these events appear in all thirteen beams of the Parkes Multibeam receiver and are probably a form of peculiar radio frequency interference. In order to constrain these and other radio source populations further, we searched the archival Parkes Multibeam Pulsar Survey data for events similar to any of these. We did not find any new Rotating Radio Transients or bursts like the Lorimer burst. We did, however, discover four peryton-like events. Similar to the perytons, these fou...

  18. A Survey of Data Management System for Cloud Computing: Models and Searching Methods

    Directory of Open Access Journals (Sweden)

    Linhua Zhou

    2013-06-01

    Full Text Available At present, the research of data storage and management in cloud computing mainly focuses on dealing with data expression and search. This study gives a comprehensive survey of numerous models and approaches of data-intensive applications in cloud computing in both academic and industrial communities. We review various approaches and their ideas of design. And then, we attempt to summarize and appraise the open issues.

  19. The Nainital–Cape Survey: A Search for Variability in Ap and Am Stars

    Indian Academy of Sciences (India)

    Santosh Joshi

    2005-06-01

    The ``Nainital–Cape Survey” program for searching photometric variability in chemically peculiar (CP) stars was initiated in 1997 at ARIES, Nainital. We present here the results obtained to date. The Am stars HD 98851, HD 102480, HD 13079 and HD 113878 were discovered to exhibit Scuti type variability. Photometric variability was also discovered in HD 13038, for which the type of peculiarity and variability is not fully explained. The null results of this survey are also presented and discussed.

  20. A search for IRSL-Active dosimeters with enhanced sensitivity : a spectroscopic survey

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Johnson, O.

    1997-01-01

    The spectral and radiation dose characteristics of a range of previously uninvestigated alumine-silicate materials are surveyed, with the intention of searching for alternative, high sensitivity materials that could potentially be used as InfraRed Stimulated Luminescence (IRSL) dosemeters for the...... in the IRSL process, but rather they act as catalysts in the creation of native lattice defects. (C) 1997 Elsevier Science Ltd....

  1. Population mixtures and searches of lensed and extended quasars across photometric surveys

    Science.gov (United States)

    Williams, Peter; Agnello, Adriano; Treu, Tommaso

    2017-04-01

    Wide-field photometric surveys enable searches of rare yet interesting objects, such as strongly lensed quasars or quasars with a bright host galaxy. Past searches for lensed quasars based on their optical and near-infrared properties have relied on photometric cuts and spectroscopic preselection (as in the Sloan Quasar Lens Search), or neural networks applied to photometric samples. These methods rely on cuts in morphology and colours, with the risk of losing many interesting objects due to scatter in their population properties, restrictive training sets, systematic uncertainties in catalogue-based magnitudes and survey-to-survey photometric variations. Here, we explore the performance of a Gaussian mixture model to separate point-like quasars, quasars with an extended host and strongly lensed quasars using griz psf and model magnitudes and WISE W1, W2. The choice of optical magnitudes is due to their presence in all current and upcoming releases of wide-field surveys, whereas UV information is not always available. We then assess the contamination from blue galaxies and the role of additional features such as W3 magnitudes or psf-model terms as morphological information. As a demonstration, we conduct a search in a random 10 per cent of the SDSS footprint, and provide the catalogue of the 43 SDSS object with the highest 'lens' score in our selection that survive visual inspection, and are spectroscopically confirmed to host active nuclei. We inspect archival data and find images of 5/43 objects in the Hubble Legacy Archive, including two known lenses. The code and materials are available to facilitate follow-up.

  2. Is the sky falling? Searching for stellar streams in the local Milky Way disc in the CORAVEL and RAVE surveys

    NARCIS (Netherlands)

    Seabroke, G. M.; Gilmore, G.; Siebert, A.; Bienayme, O.; Binney, J.; Bland-Hawthorn, J.; Campbell, R.; Freeman, K. C.; Gibson, B.; Grebel, E. K.; Helmi, A.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Siviero, A.; Steinmetz, M.; Watson, F. G.; Wyse, R. F. G.; Zwitter, T.; Penarrubia, J.; Smith, M. C.; Williams, A.

    2008-01-01

    We have searched for in-failing stellar streams on to the local Milky Way disc in the COR-relation RAdial VELocities (CORAVEL) and RAdial Velocity Experiment (RAVE) surveys. The CORAVEL survey consists of local dwarf stars (Nordstrom et al. Geneva-Copenhagen survey) and local Famaey et al. giant

  3. Limits on Planetary Companions from Doppler Surveys of Nearby Stars

    CERN Document Server

    Howard, Andrew W

    2016-01-01

    Most of our knowledge of planets orbiting nearby stars comes from Doppler surveys. For spaced-based, high-contrast imaging missions, nearby stars with Doppler-discovered planets are attractive targets. The known orbits tell imaging missions where and when to observe, and the dynamically-determined masses provide important constraints for the interpretation of planetary spectra. Quantifying the set of planet masses and orbits that could have been detected will enable more efficient planet discovery and characterization. We analyzed Doppler measurements from Lick and Keck Observatories collected by the California Planet Survey. We focused on stars that are likely targets for three space-based planet imaging mission concepts studied by NASA--WFIRST-AFTA, Exo-C, and Exo-S. The Doppler targets are primarily F8 and later main sequence stars, with observations spanning 1987-2014. We identified 76 stars with Doppler measurements from the prospective mission target lists. We developed an automated planet search and a ...

  4. The Lick-Carnegie Exoplanet Survey: Gliese 687b: A Neptune-Mass Planet Orbiting a Nearby Red Dwarf

    CERN Document Server

    Burt, Jennifer; Butler, R Paul; Hanson, Russell; Meschiari, Stefano; Rivera, Eugenio J; Henry, Gregory W; Laughlin, Gregory

    2014-01-01

    Precision radial velocities from the Automated Planet Finder and Keck/HIRES reveal an M*sin(i) =18 +/- 2 Earth mass planet orbiting the nearby M3V star GJ 687. This planet has an orbital period, P = 38.14 days, and a low orbital eccentricity. Our Stromgren b and y photometry of the host star suggests a stellar rotation signature with a period of P = 60 days. The star is somewhat chromospherically active, with a spot filling factor estimated to be several percent. The rotationally{induced 60-day signal, however, is well-separated from the period of the radial velocity variations, instilling confidence in the interpretation of a Keplerian origin for the observed velocity variations. Although GJ 687b produces relatively little specific interest in connection with its individual properties, a compelling case can be argued that it is worthy of remark as an eminently typical, yet at a distance of 4.52 pc, a very nearby representative of the galactic planetary census. The detection of GJ 687b indicates that the APF...

  5. Magic Planet

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland

    2009-01-01

    Med den digitale globe som omdrejningspunkt bestemmer publikum, hvilken planet, der er i fokus. Vores solsystem udforskes interaktivt. Udgivelsesdato: november......Med den digitale globe som omdrejningspunkt bestemmer publikum, hvilken planet, der er i fokus. Vores solsystem udforskes interaktivt. Udgivelsesdato: november...

  6. Stabilizing Cloud Feedback Dramatically Expands the Habitable Zone of Tidally Locked Planets

    CERN Document Server

    Yang, Jun; Abbot, Dorian S

    2013-01-01

    The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phen...

  7. The Frequency of Habitable Planets Around Small Stars and the Characterization of Planets Orbiting Bright Kepler Targets

    Science.gov (United States)

    Dressing, Courtney D.

    2015-01-01

    My thesis focuses on the frequency, detectability, and composition of small planets. I revised the parameters of the smallest Kepler main-sequence dwarf stars using Dartmouth Stellar Models and wrote a pipeline to search for planets in the full four-year Kepler data set. I characterized the completeness of my pipeline by injecting transiting planets and recording the fraction recovered. I refined the planet candidate sample by inspecting follow-up observations of planet host stars and correcting for transit depth dilution due to nearby stars. Accounting for possible false positive contamination, I estimated an occurrence rate of 0.2-0.8 potentially habitable planets per M dwarf; the variation in this estimated is dominated by the choice of habitable zone boundaries. For orbital periods conducted an adaptive optics imaging survey of 87 bright Kepler target stars with ARIES at the MMT to search for nearby stars that might be diluting the depths of the planetary transits. I identified visual companions within 1' for 5 targets, between 1' and 2' for 7 targets, and between 2' and 4' for 15 stars. For all stars observed, we placed limits on the presence of undetected nearby stars.Finally, I collaborated with the HARPS-N consortium to conduct an intensive observing campaign with the HARPS-N spectrograph at the Telescopio Nazionale Galileo in La Palma, Spain. We studied the Kepler-93 system, which contains a 1.4-Earth-radius planet in a 4.7-day orbit. Kepler-93b is a valuable addition to the exoplanet mass-radius diagram, as the physical parameters of the star have been accurately determined from asteroseismology. As a result, the size of the 1.4-Earth-radius transiting planet has been measured to an unprecedented precision of 120km (1.3%).

  8. Using Disk Eclipsing Systems to Understand Planet Formation and Evolution

    Science.gov (United States)

    Rodriguez, Joseph E.; Osborn, Hugh P.; Shappee, Benjamin John; KELT Collaboration

    2017-01-01

    The circumstellar environments of young stellar objects (YSOs) involve complex dynamical interactions between dust and gas that directly influence the formation of planets. However, our understanding of the evolution from the material in the circumstellar disk to the thousands of planetary systems discovered to date, is limited. One means to better constrain the size, mass, and composition of this planet-forming material is to observe a YSO being eclipsed by its circumstellar disk. Unfortunately, such events are rare but have already led to such insights as dense planet-forming structures within the tidally disrupted disk of a young binary star system, Saturn-like rings and gaps in the disk surrounding a young planet, stratified dust coagulation within a young protoplanetary disk, and an evolved binary star system with remnant planet-building material. Fortunately, the advent of wide-field time domain surveys provides a ideal tool to search for rare eclipse events. Using time-series photometry from the KELT project we are conducting the Disk Eclipse Search with KELT (DESK) survey to look for disk eclipsing events, specifically in young stellar associations. In addition, we are collaborating with the SuperWASP and ASAS-SN surveys which have already led to additional discoveries. This survey has already doubled the number of “disk eclipsing” systems known and will provide a framework for discovering such systems in future surveys such as LSST. I will describe a few of our recent discoveries and their impact on our understanding of circumstellar evolution.KELT is a joint collaboration between the Ohio State University, Vanderbilt University, and Lehigh University. This work was partially supported by NSF CAREER grant AST-1056524. J.E.R. is supported by a Harvard Future Faculty Leaders Postdoctoral Fellowship.

  9. MARVELS-1: A FACE-ON DOUBLE-LINED BINARY STAR MASQUERADING AS A RESONANT PLANETARY SYSTEM AND CONSIDERATION OF RARE FALSE POSITIVES IN RADIAL VELOCITY PLANET SEARCHES

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Jason T.; Roy, Arpita; Mahadevan, Suvrath; Wang, Sharon X.; Fleming, Scott W. [Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Ford, Eric B.; Payne, Matt; Lee, Brian L.; Ge, Jian [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Wang, Ji [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Gaudi, B. Scott; Eastman, Jason [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Pepper, Joshua; Cargile, Phillip; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Ghezzi, Luan [Observatorio Nacional, Rua General Jose Cristino, 77, Rio de Janeiro, RJ 20921-400 (Brazil); Gonzalez-Hernandez, Jonay I. [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Wisniewski, John [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St, Norman, OK 73019 (United States); Dutra-Ferreira, Leticia, E-mail: jtwright@astro.psu.edu [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rua General Jose Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); and others

    2013-06-20

    We have analyzed new and previously published radial velocity (RV) observations of MARVELS-1, known to have an ostensibly substellar companion in a {approx}6 day orbit. We find significant ({approx}100 m s{sup -1}) residuals to the best-fit model for the companion, and these residuals are naievely consistent with an interior giant planet with a P = 1.965 days in a nearly perfect 3:1 period commensurability (|P{sub b} /P{sub c} - 3| < 10{sup -4}). We have performed several tests for the reality of such a companion, including a dynamical analysis, a search for photometric variability, and a hunt for contaminating stellar spectra. We find many reasons to be critical of a planetary interpretation, including the fact that most of the three-body dynamical solutions are unstable. We find no evidence for transits, and no evidence of stellar photometric variability. We have discovered two apparent companions to MARVELS-1 with adaptive optics imaging at Keck; both are M dwarfs, one is likely bound, and the other is likely a foreground object. We explore false-alarm scenarios inspired by various curiosities in the data. Ultimately, a line profile and bisector analysis lead us to conclude that the {approx}100 m s{sup -1} residuals are an artifact of spectral contamination from a stellar companion contributing {approx}15%-30% of the optical light in the system. We conclude that origin of this contamination is the previously detected RV companion to MARVELS-1, which is not, as previously reported, a brown dwarf, but in fact a G dwarf in a face-on orbit.

  10. Habitable Planets Around White Dwarfs: an Alternate Mission for the Kepler Spacecraft

    CERN Document Server

    Kilic, Mukremin; Loeb, Abraham; Maoz, Dan; Munn, Jeffrey A; Gianninas, Alexandros; Canton, Paul; Barber, Sara D

    2013-01-01

    A large fraction of white dwarfs (WDs) may host planets in their habitable zones. These planets may provide our best chance to detect bio-markers on a transiting exoplanet, thanks to the diminished contrast ratio between the Earth-sized WD and its Earth-sized planets. The JWST is capable of obtaining the first spectroscopic measurements of such planets, yet there are no known planets around WDs. Here we propose to take advantage of the unique capability of the Kepler spacecraft in the 2-Wheels mode to perform a transit survey that is capable of identifying the first planets in the habitable zone of a WD. We propose to obtain Kepler time-series photometry of 10,000 WDs in the SDSS imaging area to search for planets in the habitable zone. Thanks to the large field of view of Kepler, for the first time in history, a large number of WDs can be observed at the same time, which is essential for discovering transits. Our proposed survey requires a total of 200 days of observing time, and will find up to 100 planets ...

  11. Information-searching behaviors of main and allied health professionals: a nationwide survey in Taiwan.

    Science.gov (United States)

    Weng, Yi-Hao; Kuo, Ken N; Yang, Chun-Yuh; Lo, Heng-Lien; Shih, Ya-Hui; Chiu, Ya-Wen

    2013-10-01

    There are a variety of resources to obtain health information, but few studies have examined if main and allied health professionals prefer different methods. The current study was to investigate their information-searching behaviours. A constructed questionnaire survey was conducted from January through April 2011 in nationwide regional hospitals of Taiwan. Questionnaires were mailed to main professionals (physicians and nurses) and allied professionals (pharmacists, physical therapists, technicians and others), with 6160 valid returns collected. Among all professional groups, the most commonly used resource for seeking health information was a Web portal, followed by colleague consultations and continuing education. Physicians more often accessed Internet-based professional resources (online databases, electronic journals and electronic books) than the other groups (P < 0.05). In contrast, physical therapists more often accessed printed resources (printed journals and textbooks) than the other specialists (P < 0.05). And nurses, physical therapists and technicians more often asked colleagues and used continuing education than the other groups (P < 0.01). The most commonly used online database was Micromedex for pharmacists and MEDLINE for physicians, technicians and physical therapists. Nurses more often accessed Chinese-language databases rather than English-language databases (P < 0.001). This national survey depicts the information-searching pattern of various health professionals. There were significant differences between and within main and allied health professionals in their information searching. The data provide clinical implications for strategies to promote the accessing of evidence-based information. © 2012 John Wiley & Sons Ltd.

  12. The APACHE survey hardware and software design: Tools for an automatic search of small-size transiting exoplanets

    Directory of Open Access Journals (Sweden)

    Lattanzi M.G.

    2013-04-01

    Full Text Available Small-size ground-based telescopes can effectively be used to look for transiting rocky planets around nearby low-mass M stars using the photometric transit method, as recently demonstrated for example by the MEarth project. Since 2008 at the Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA, we have been preparing for the long-term photometric survey APACHE, aimed at finding transiting small-size planets around thousands of nearby early and mid-M dwarfs. APACHE (A PAthway toward the Characterization of Habitable Earths is designed to use an array of five dedicated and identical 40-cm Ritchey-Chretien telescopes and its observations started at the beginning of summer 2012. The main characteristics of the survey final set up and the preliminary results from the first weeks of observations will be discussed.

  13. Search Techniques for the Web of Things: A Taxonomy and Survey

    Directory of Open Access Journals (Sweden)

    Yuchao Zhou

    2016-04-01

    Full Text Available The Web of Things aims to make physical world objects and their data accessible through standard Web technologies to enable intelligent applications and sophisticated data analytics. Due to the amount and heterogeneity of the data, it is challenging to perform data analysis directly; especially when the data is captured from a large number of distributed sources. However, the size and scope of the data can be reduced and narrowed down with search techniques, so that only the most relevant and useful data items are selected according to the application requirements. Search is fundamental to the Web of Things while challenging by nature in this context, e.g., mobility of the objects, opportunistic presence and sensing, continuous data streams with changing spatial and temporal properties, efficient indexing for historical and real time data. The research community has developed numerous techniques and methods to tackle these problems as reported by a large body of literature in the last few years. A comprehensive investigation of the current and past studies is necessary to gain a clear view of the research landscape and to identify promising future directions. This survey reviews the state-of-the-art search methods for the Web of Things, which are classified according to three different viewpoints: basic principles, data/knowledge representation, and contents being searched. Experiences and lessons learned from the existing work and some EU research projects related to Web of Things are discussed, and an outlook to the future research is presented.

  14. Searching for Planetary Transits in Star Clusters

    CERN Document Server

    Weldrake, David T F

    2007-01-01

    Star clusters provide an excellent opportunity to study the role of environment on determining the frequencies of short period planets. They provide a large sample of stars which can be imaged simultaneously, with a common distance, age and pre-determined physical parameters. This allows the search to be tailor-made for each specific cluster. Several groups are attempting to detect transiting planets in open clusters. Three previous surveys have also targeted the two brightest globular clusters. No cluster survey has yet detected a planet. This contribution presents a brief overview of the field, highlighting the pros and cons of performing such a search, and presents the expected and current results, with implications for planetary frequencies in regions of high stellar density and low metallicity.

  15. Imaging Extrasolar Giant Planets

    Science.gov (United States)

    Bowler, Brendan P.

    2016-10-01

    High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, planets spanning a broad range of masses and ages.

  16. Strong lens search in the ESO public Survey KiDS

    CERN Document Server

    Napolitano, N R; Roy, N; Tortora, C; La Barbera, F; Radovich, M; Getman, F; Capaccioli, M; Colonna, A; Paolillo, M; Kleijn, G A Verdoes; Koopmans, L V E

    2015-01-01

    We have started a systematic search of strong lens candidates in the ESO public survey KiDS based on the visual inspection of massive galaxies in the redshift range $0.1

  17. Adaptive search techniques for problems in vehicle routing, part I: A survey

    Directory of Open Access Journals (Sweden)

    Kritzinger Stefanie

    2015-01-01

    Full Text Available Research in the field of vehicle routing often focused on finding new ideas and concepts in the development of fast and efficient algorithms for an improved solution process. Early studies introduce static tailor-made strategies, but trends show that algorithms with generic adaptive policies - which emerged in the past years - are more efficient to solve complex vehicle routing problems. In this first part of the survey, we present an overview of recent literature dealing with adaptive or guided search techniques for problems in vehicle routing.

  18. 太阳系外行星系统轨道参数的统计研究%A Statistical Survey of Orbital Parameters of Extra-Solar Planets System

    Institute of Scientific and Technical Information of China (English)

    赵佳; 赵刚

    2012-01-01

    Since the first extra-solar planet around a Sun-like star was detected in 1995,the number of known extra-solar planets has been growing,which makes statistical surveys of characteristics of extra-solar planets and their host stars very important. By February 18 of 2011,527 planets had been discovered. In this paper, major techniques used for detections of extra-solar planets are introduced.Based on the physical and orbital parameters of these extra-solar planets, a statistical analysis has been carried out to investigate their properties, obtaining a number of meaningful conclusions.(1) The minimum mass of planets ranges from 0 to 25 Mjup, with a peak around 1 Mjup. There are very few planets beyond 12 Mjup.(2) A bimodality is shown in the period of extra-solar planets with peaks at 3 days and 300 days and a " flat" distribution in between.(3) There are very few large-mass planets beyond 0.03 AU and the proportion of large-mass planets become larger as the orbital semi-major axis increases.(4) The orbital semi-major axis and planet mass are two key factors that affect the orbital eccentricity of the planet. The orbital eccentricity decreases as the orbital semi-major axis and planet mass decreases.(5) For F-G-K stars, planets tend to be detected around metal-rich stars. When the star is more massive than the Sun, the mass of its planet is in direct proportion to the star's mass.(6) We have discussed the properties of low-mass ( M < 20 M⊕ ) planets and found that their orbital eccentricities are lower than 0.4.In this paper, we briefly introduce current models of planet formation and evolution and test the models with the derived statistical properties of planets. It therefore provides a reference for future detections of extra-solar planets.%自1995年第一颗类太阳恒星周围的系外行星发现以来,随着已发现的系外行星数目的增多,对系外行星性质的统计分析变得重要和有意义.截至2011年6月9日,共发现系外行星555

  19. SuperLupus: A Deep, Long Duration Transit Survey

    CERN Document Server

    Bayliss, Daniel D R; Weldrake, David T F

    2008-01-01

    SuperLupus is a deep transit survey monitoring a Galactic Plane field in the Southern hemisphere. The project is building on the successful Lupus Survey, and will double the number of images of the field from 1700 to 3400, making it one of the longest duration deep transit surveys. The immediate motivation for this expansion is to search for longer period transiting planets (5-8 days) and smaller radii planets. It will also provide near complete recovery for the shorter period planets (1-3 days). In March, April, and May 2008 we obtained the new images and work is currently in progress reducing these new data.

  20. Deciphering Spectral Fingerprints of Habitable Extrasolar Planets

    CERN Document Server

    Kaltenegger, L; Fridlund, M; Lammer, H; Beichman, Ch; Danchi, W; Eiroa, C; Henning, T; Herbst, T; Léger, A; Liseau, R; Lunine, J; Paresce, F; Penny, A; Quirrenbach, A; Roettgering, H; Schneider, J; Stam, D; Tinetti, G; White, G J

    2009-01-01

    In this paper we discuss how we can read a planets spectrum to assess its habitability and search for the signatures of a biosphere. After a decade rich in giant exoplanet detections, observation techniques have now reached the ability to find planets of less than 10 MEarth (so called Super-Earths) that may potentially be habitable. How can we characterize those planets and assess if they are habitable? The new field of extrasolar planet search has shown an extraordinary ability to combine research by astrophysics, chemistry, biology and geophysics into a new and exciting interdisciplinary approach to understand our place in the universe. The results of a first generation mission will most likely result in an amazing scope of diverse planets that will set planet formation, evolution as well as our planet in an overall context.

  1. The Nainital-Cape Survey-III : A Search for Pulsational Variability in Chemically Peculiar Stars

    CERN Document Server

    Joshi, S; Chakradhari, N K; Tiwari, S K; Billaud, C

    2009-01-01

    The Nainital-Cape survey is a dedicated research programme to search and study pulsational variability in chemically peculiar stars in the Northern Hemisphere. The aim of the survey is to search such chemically peculiar stars which are pulsationally unstable. The observations of the sample stars were carried out in high-speed photometric mode using a three-channel fast photometer attached to the 1.04-m Sampurnanand telescope at ARIES. The new photometric observations confirmed that the pulsational period of star HD25515 is 2.78-hrs. The repeated time-series observations of HD113878 and HD118660 revealed that previously known frequencies are indeed present in the new data sets. We have estimated the distances, absolute magnitudes, effective temperatures and luminosities of these stars. Their positions in the H-R diagram indicate that HD25515 and HD118660 lie near the main-sequence while HD113878 is an evolved star. We also present a catalogue of 61 stars classified as null results, along with the corresponding...

  2. The Search for RR Lyrae Variables in the Dark Energy Survey

    Science.gov (United States)

    Nielsen, Chandler; Marshall, Jennifer L.; Long, James

    2017-01-01

    RR Lyrae variables are stars with a characteristic relationship between magnitude and phase and whose distances can be easily determined, making them extremely valuable in mapping and analyzing galactic substructure. We present our method of searching for RR Lyrae variable stars using data extracted from the Dark Energy Survey (DES). The DES probes for stars as faint as i = 24.3. Finding such distant RR Lyrae allows for the discovery of objects such as dwarf spheroidal tidal streams and dwarf galaxies; in fact, at least one RR Lyrae has been discovered in each of the probed dwarf spheroidal galaxies orbiting the Milky Way (Baker & Willman 2015). In turn, these discoveries may ultimately resolve the well-known missing satellite problem, in which theoretical simulations predict many more dwarf satellites than are observed in the local Universe. Using the Lomb-Scargle periodogram to determine the period of the star being analyzed, we could display the relationship between magnitude and phase and visually determine if the star being analyzed was an RR Lyrae. We began the search in frequently observed regions of the DES footprint, known as the supernova fields. We then moved our search to known dwarf galaxies found during the second year of the DES. Unfortunately, we did not discover RR Lyrae in the probed dwarf galaxies; this method should be tried again once more observations are taken in the DES.

  3. Search filters can find some but not all knowledge translation articles in MEDLINE: an analytic survey.

    Science.gov (United States)

    McKibbon, K Ann; Lokker, Cynthia; Wilczynski, Nancy L; Haynes, R Brian; Ciliska, Donna; Dobbins, Maureen; Davis, David A; Straus, Sharon E

    2012-06-01

    Advances from health research are not well applied giving rise to over- and underuse of resources and inferior care. Knowledge translation (KT), actions and processes of getting research findings used in practice, can improve research application. The KT literature is difficult to find because of nonstandardized terminology, rapid evolution of the field, and it is spread across several domains. We created multiple search filters to retrieve KT articles from MEDLINE. Analytic survey using articles from 12 journals tagged as having KT content and also as describing a KT application or containing a KT theory. Of 2,594 articles, 579 were KT articles of which 201 were about KT applications and 152 about KT theory. Search filter sensitivity (retrieval efficiency) maximized at 83%-94% with specificity (no retrieval of irrelevant material) approximately 50%. Filter performances were enhanced with multiple terms, but these filters often had reduced specificity. Performance was higher for KT applications and KT theory articles. These filters can select KT material although many irrelevant articles also will be retrieved. KT search filters were developed and tested, with good sensitivity but suboptimal specificity. Further research must improve their performance. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. A Search for Narrow Vertical Structures in the Canadian Galactic Plane Survey

    CERN Document Server

    Asgekar, A; Safi-Harb, S; Kothes, R; Asgekar, Ashish; English, Jayanne; Safi-Harb, Samar; Kothes, Roland

    2004-01-01

    Worms are defined to be dusty, atomic hydrogen (HI) structures which are observed in low resolution data to rise perpendicular to the Galactic plane. Data from the 1'-resolution Canadian Galactic Plane Survey (CGPS) were systematically searched for narrow vertical HI structures which could be resolved worms. Another motivation for the search was to explore the scenario that mushroom-shaped worms like GW123.4-1.5, studied by English and collaborators, could be generated by a single supernova. However no other vertical structures of mushroom-shape morphology were found. We also examined objects previously classified as worm candidates by Koo and collaborators; only 7 have a significant portion of their structure falling in the CGPS range of l=74 deg to 147 deg, -3.5 deg ~ 500 pc tall, thus extending from the Galactic plane into the halo. We provide details about these narrow vertical structures, including comparisons between HI, radio continuum, IR, and CO observations. Our search was conducted by visual inspec...

  5. Planet Hunters: A Status Report

    Science.gov (United States)

    Schwamb, Megan E.; Orosz, J. A.; Carter, J. A.; Fischer, D. A.; Howard, A. W.; Crepp, J. R.; Welsh, W. F.; Kaib, N. A.; Lintott, C. J.; Terrell, D.; Jek, K. J.; Gagliano, R.; Parrish, M.; Smith, A. M.; Lynn, S.; Brewer, J. M.; Giguere, M. J.; Schawinski, K.; Simpson, R. J.

    2012-10-01

    The Planet Hunters (http://www.planethunters.org) citizen science project uses the power of human pattern recognition via the World Wide Web to identify transits in the Kepler public data. Planet Hunters uses the Zooniverse (http://www.zooniverse.org) platform to present visitors to the Planet Hunters website with a randomly selected 30-day light curve segment from one of Kepler's 160,000 target stars. Volunteers are asked to draw boxes to mark the locations of visible transits with multiple independent classifiers reviewing each 30-day light curve segment. Since December 2010, more than 170,000 members of the general public have participated in Planet Hunters contributing over 12.5 million classifications searching the 1 1/2 years of publicly released Kepler observations. Planet Hunters is a novel and complementary technique to the automated transit detection algorithms, providing an independent assessment of the completeness of the Kepler exoplanet inventory. We report the latest results from Planet Hunters, highlighting in particular our latest efforts to search for circumbinary planets (planets orbiting a binary star) and single transit events in the first 1.5 years of public Kepler data. We will present a status report of our search of the first 6 Quarters of Kepler data, introducing our new planet candidates and sharing the results of our observational follow-up campaign to characterize these planetary systems. Acknowledgements: MES is supported by a NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1003258. This is research is supported in part by an American Philosophical Society Franklin Grant.

  6. The Magellan PFS Planet Search Program: Radial Velocity and Stellar Abundance Analyses of the 360 au, Metal-poor Binary “Twins” HD 133131A & B

    Science.gov (United States)

    Teske, Johanna K.; Shectman, Stephen A.; Vogt, Steve S.; Díaz, Matías; Butler, R. Paul; Crane, Jeffrey D.; Thompson, Ian B.; Arriagada, Pamela

    2016-12-01

    We present a new precision radial velocity (RV) data set that reveals multiple planets orbiting the stars in the ˜360 au, G2+G2 “twin” binary HD 133131AB. Our six years of high-resolution echelle observations from MIKE and five years from the Planet Finder Spectrograph (PFS) on the Magellan telescopes indicate the presence of two eccentric planets around HD 133131A with minimum masses of 1.43 ± 0.03 and 0.63 ± 0.15 {{ M }}{{J}} at 1.44 ± 0.005 and 4.79 ± 0.92 au, respectively. Additional PFS observations of HD 133131B spanning five years indicate the presence of one eccentric planet of minimum mass 2.50 ± 0.05 {{ M }}{{J}} at 6.40 ± 0.59 au, making it one of the longest-period planets detected with RV to date. These planets are the first to be reported primarily based on data taken with the PFS on Magellan, demonstrating the instrument’s precision and the advantage of long-baseline RV observations. We perform a differential analysis between the Sun and each star, and between the stars themselves, to derive stellar parameters and measure a suite of 21 abundances across a wide range of condensation temperatures. The host stars are old (likely ˜9.5 Gyr) and metal-poor ([Fe/H] ˜ -0.30), and we detect a ˜0.03 dex depletion in refractory elements in HD 133131A versus B (with standard errors ˜0.017). This detection and analysis adds to a small but growing sample of binary “twin” exoplanet host stars with precise abundances measured, and represents the most metal-poor and likely oldest in that sample. Overall, the planets around HD 133131A and B fall in an unexpected regime in planet mass-host star metallicity space and will serve as an important benchmark for the study of long-period giant planets. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  7. The Magellan PFS Planet Search Program: Radial Velocity and Stellar Abundance Analyses of the 360 AU, Metal-Poor Binary "Twins" HD 133131A & B

    CERN Document Server

    Teske, Johanna K; Vogt, Steve S; Díaz, Matías; Butler, R Paul; Crane, Jeffrey D; Thompson, Ian B; Arriagada, Pamela

    2016-01-01

    We present a new precision radial velocity (RV) dataset that reveals multiple planets orbiting the stars in the $\\sim$360 AU, G2$+$G2 "twin" binary HD 133131AB. Our 6 years of high-resolution echelle observations from MIKE and 5 years from PFS on the Magellan telescopes indicate the presence of two eccentric planets around HD 133131A with minimum masses of 1.43$\\pm$0.03 and 0.63$\\pm$0.15 $\\mathcal{M}_{\\rm J}$ at 1.44$\\pm$0.005 and 4.79$\\pm$0.92 AU, respectively. Additional PFS observations of HD 133131B spanning 5 years indicate the presence of one eccentric planet of minimum mass 2.50$\\pm$0.05 $\\mathcal{M}_{\\rm J}$ at 6.40$\\pm$0.59 AU, making it one of the longest period planets detected with RV to date. These planets are the first to be reported primarily based on data taken with PFS on Magellan, demonstrating the instrument's precision and the advantage of long-baseline RV observations. We perform a differential analysis between the Sun and each star, and between the stars themselves, to derive stellar par...

  8. Advances in the Kepler Transit Search Engine

    Science.gov (United States)

    Jenkins, Jon M.

    2016-10-01

    Twenty years ago, no planets were known outside our own solar system. Since then, the discoveries of ~1500 exoplanets have radically altered our views of planets and planetary systems. This revolution is due in no small part to the Kepler Mission, which has discovered >1000 of these planets and >4000 planet candidates. While Kepler has shown that small rocky planets and planetary systems are quite common, the quest to find Earth's closest cousins and characterize their atmospheres presses forward with missions such as NASA Explorer Program's Transiting Exoplanet Survey Satellite (TESS) slated for launch in 2017 and ESA's PLATO mission scheduled for launch in 2024. These future missions pose daunting data processing challenges in terms of the number of stars, the amount of data, and the difficulties in detecting weak signatures of transiting small planets against a roaring background. These complications include instrument noise and systematic effects as well as the intrinsic stellar variability of the subjects under scrutiny. In this paper we review recent developments in the Kepler transit search pipeline improving both the yield and reliability of detected transit signatures. Many of the phenomena in light curves that represent noise can also trigger transit detection algorithms. The Kepler Mission has expended great effort in suppressing false positives from its planetary candidate catalogs. Over 18,000 transit-like signatures can be identified for a search across 4 years of data. Most of these signatures are artifacts, not planets. Vetting all such signatures historically takes several months' effort by many individuals. We describe the application of machine learning approaches for the automated vetting and production of planet candidate catalogs. These algorithms can improve the efficiency of the human vetting effort as well as quantifying the likelihood that each candidate is truly a planet. This information is crucial for obtaining valid planet occurrence

  9. The Planet in the HR 7162 Binary System Discovered by PHASES Astrometry

    Science.gov (United States)

    Muterspaugh, Matthew W.; Lane, B. F.; Konacki, M.; Burke, B. F.; Colavita, M. M.; Shao, M.; Hartkopf, W. I.; Boss, A. P.; O'Connell, J.; Fekel, F. C.; Wiktorowicz, S. J.

    2011-01-01

    The now-completed Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) used phase-referenced long-baseline interferometry to monitor 51 binary systems with 35 micro-arcsecond measurement precision, resulting in the high-confidence detection of a planet in the HR 7162 system. The 1.5 Jupiter mass planet is in a 2 AU orbit around one of the stars, whereas the binary itself has a separation of only 19 AU. Despite the close stellar companion, this configuration is expected to be stable, based on dynamic simulations. In the context of our solar system, this is analogous to a Jovian planet just outside of Mars' orbit, with a second star at the distance of Uranus. If this configuration were present during the period of planet formation, the complex gravitational environment created by the stars would seem to disrupt planet formation mechanisms that require long times to complete (thousands of years or more). While it is possible the arrangement resulted from the planet being formed in another environment (a single star or wider binary) after which the system reached its current state via dynamic interactions (star-planet exchange with a binary, or the binary orbit shrinking by interacting with a passing star), the frequency of such interactions is very low. Because the PHASES search only had the sensitivity to rule out Jovian mass companions in 11 of our 51 systems, yet one such system was found, the result indicates either extreme luck or that there is a high frequency of 20 AU binaries hosting planets. The latter interpretation is supported by previous detections of planets in 5-6 additional 20 AU binaries in other surveys (though with less control over the statistics for determining frequency of occurrence). Thus, there is observational support suggesting that a mechanism for rapid Jovian planet formation occurs in nature.

  10. The Pan-Pacific Planet Search. IV. Two super-Jupiters in a 3:5 resonance orbiting the giant star HD33844

    CERN Document Server

    Wittenmyer, Robert A; Butler, R P; Horner, Jonathan; Wang, Liang; Robertson, Paul; Jones, M I; Jenkins, J S; Brahm, R; Tinney, C G; Mengel, M W; Clark, J

    2015-01-01

    We report the discovery of two giant planets orbiting the K giant HD 33844 based on radial velocity data from three independent campaigns. The planets move on nearly circular orbits with semimajor axes $a_b=1.60\\pm$0.02 AU and $a_c=2.24\\pm$0.05 AU, and have minimum masses (m sin $i$) of $M_b=1.96\\pm$0.12 Mjup and $M_c=1.76\\pm$0.18 Mjup. Detailed N-body dynamical simulations show that the two planets remain on stable orbits for more than $10^6$ years for low eccentricities, and are most likely trapped in a mutual 3:5 mean-motion resonance.

  11. Gravitational Microlensing: A Tool for Detecting and Characterizing Free-Floating Planets

    CERN Document Server

    Han, C; Kim, D; Park, B G; Ryu, Y H; Kang, S; Lee, D W; Han, Cheongho; Chung, Sun-Ju; Kim, Doeon; Park, Byeong-Gon; Ryu, Yoon-Hyun; Kang, Sangjun; Lee, Dong Wook

    2004-01-01

    Various methods have been proposed to search for extrasolar planets. Compared to the other methods, microlensing has unique applicabilities to the detections of Earth-mass and free-floating planets. However, the microlensing method is seriously flawed by the fact that the masses of the detected planets cannot be uniquely determined. Recently, Gould, Gaudi, & Han introduced an observational setup that enables one to resolve the mass degeneracy of the Earth-mass planets. The setup requires a modest adjustment to the orbit of an already proposed Microlensing planet-finder satellite combined with ground-based observations. In this paper, we show that a similar observational setup can also be used for the mass determinations of free-floating planets with masses ranging from ~0.1 M_J to several Jupiter masses. If the proposed observational setup is realized, the future lensing surveys will play important roles in the studies of Earth-mass and free-floating planets, which are the populations of planets that have...

  12. On the Survivability and Metamorphism of Tidally Disrupted Giant Planets: the Role of Dense Cores

    CERN Document Server

    Liu, Shang-Fei; Lin, Douglas N C; Ramirez-Ruiz, Enrico

    2012-01-01

    A large population of planetary candidates in short-period orbits have been found through transit searches. Radial velocity surveys have also revealed several Jupiter-mass planets with highly eccentric orbits. Measurements of the Rossiter-McLaughlin effect indicate some misaligned planetary systems. This diversity could be induced by post-formation dynamical processes such as planet-planet scattering, the Kozai effect, or secular chaos which brings planets to the vicinity of their host stars. In this work, we propose a novel mechanism to form close-in super-Earths and Neptune-like planets through the tidal disruption of giant planets as a consequence of these dynamical processes. We model the core-envelope structure of giant planets with composite polytropes. Using three-dimensional hydrodynamical simulations of close encounters between planets and their host stars, we find that the presence of a core with a mass more than ten Earth masses can significantly increase the fraction of envelope which remains boun...

  13. Estimating Finite Source Effects in Microlensing Events due to Free-Floating Planets with the Euclid Survey

    Directory of Open Access Journals (Sweden)

    Lindita Hamolli

    2015-01-01

    Full Text Available In recent years free-floating planets (FFPs have drawn a great interest among astrophysicists. Gravitational microlensing is a unique and exclusive method for their investigation which may allow obtaining precious information about their mass and spatial distribution. The planned Euclid space-based observatory will be able to detect a substantial number of microlensing events caused by FFPs towards the Galactic bulge. Making use of a synthetic population algorithm, we investigate the possibility of detecting finite source effects in simulated microlensing events due to FFPs. We find a significant efficiency for finite source effect detection that turns out to be between 20% and 40% for a FFP power law mass function index in the range [0.9, 1.6]. For many of such events it will also be possible to measure the angular Einstein radius and therefore constrain the lens physical parameters. These kinds of observations will also offer a unique possibility to investigate the photosphere and atmosphere of Galactic bulge stars.

  14. Estimating Finite Source Effects in Microlensing Events due to Free-Floating Planets with the Euclid Survey

    CERN Document Server

    Hamolli, Lindita; De Paolis, Francesco; Nucita, Achille A

    2015-01-01

    In recent years free-loating planets (FFPs) have drawn a great interest among astrophysicists. Gravitational microlensing is a unique and exclusive method for their investigation which may allow obtaining precious information about their mass and spatial distribution. The planned Euclid space-based observatory will be able to detect a substantial number of microlensing events caused by FFPs towards the Galactic bulge. Making use of a synthetic population algorithm, we investigate the possibility of detecting finite source effects in simulated microlensing events due to FFPs. We find a significant efficiency for finite source effect detection that turns out to be between 20% and 40% for a FFP power law mass function index in the range [0.9, 1.6]. For many of such events it will also be possible to measure the angular Einstein radius and therefore constrain the lens physical parameters. These kinds of observations will also offer a unique possibility to investigate the photosphere and atmosphere of Galactic bul...

  15. An Analysis of the SEEDS High-Contrast Exoplanet Survey: Massive Planets or Low-Mass Brown Dwarfs?

    CERN Document Server

    Brandt, Timothy D; Turner, Edwin L; Mede, Kyle; Spiegel, David S; Kuzuhara, Masayuki; Schlieder, Joshua E; Wisniewski, John P; Abe, L; Brandner, W; Carson, J; Currie, T; Egner, S; Feldt, M; Golota, T; Goto, M; Grady, C A; Guyon, O; Hashimoto, J; Hayano, Y; Hayashi, M; Hayashi, S; Henning, T; Hodapp, K W; Inutsuka, S; Ishii, M; Iye, M; Janson, M; Kandori, R; Knapp, G R; Kudo, T; Kusakabe, N; Kwon, J; Matsuo, T; Miyama, S; Morino, J -I; Moro-Martín, A; Nishimura, T; Pyo, T -S; Serabyn, E; Suto, H; Suzuki, R; Takami, M; Takato, N; Terada, H; Thalmann, C; Tomono, D; Watanabe, M; Yamada, T; Takami, H; Usuda, T; Tamura, M

    2014-01-01

    We conduct a statistical analysis of a combined sample of direct imaging data, totalling nearly 250 stars observed by HiCIAO on the Subaru Telescope, NIRI on Gemini North, and NICI on Gemini South. The stars cover a wide range of ages and spectral types, and include five detections (kap And b, two ~60 M_J brown dwarf companions in the Pleiades, PZ Tel B, and CD-35 2722 B). We conduct a uniform, Bayesian analysis of the ages of our entire sample, using both membership in a kinematic moving group and activity/rotation age indicators, to obtain posterior age distributions. We then present a new statistical method for computing the likelihood of a substellar distribution function. By performing most integrals analytically, we achieve an enormous speedup over brute-force Monte Carlo. We use this method to place upper limits on the maximum semimajor axis beyond which the distribution function for radial-velocity planets cannot extend, finding model-dependent values of ~30--100 AU. Finally, we treat our entire subst...

  16. Giant Planets

    CERN Document Server

    Guillot, Tristan

    2014-01-01

    We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion of the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.

  17. Extrasolar planets detections and statistics through gravitational microlensing

    Science.gov (United States)

    Cassan, A.

    2014-10-01

    Gravitational microlensing was proposed thirty years ago as a promising method to probe the existence and properties of compact objects in the Galaxy and its surroundings. The particularity and strength of the technique is based on the fact that the detection does not rely on the detection of the photon emission of the object itself, but on the way its mass affects the path of light of a background, almost aligned source. Detections thus include not only bright, but also dark objects. Today, the many successes of gravitational microlensing have largely exceeded the original promises. Microlensing contributed important results and breakthroughs in several astrophysical fields as it was used as a powerful tool to probe the Galactic structure (proper motions, extinction maps), to search for dark and compact massive objects in the halo and disk of the Milky Way, to probe the atmospheres of bulge red giant stars, to search for low-mass stars and brown dwarfs and to hunt for extrasolar planets. As an extrasolar planet detection method, microlensing nowadays stands in the top five of the successful observational techniques. Compared to other (complementary) detection methods, microlensing provides unique information on the population of exoplanets, because it allows the detection of very low-mass planets (down to the mass of the Earth) at large orbital distances from their star (0.5 to 10 AU). It is also the only technique that allows the discovery of planets at distances from Earth greater than a few kiloparsecs, up to the bulge of the Galaxy. Microlensing discoveries include the first ever detection of a cool super-Earth around an M-dwarf star, the detection of several cool Neptunes, Jupiters and super-Jupiters, as well as multi-planetary systems and brown dwarfs. So far, the least massive planet detected by microlensing has only three times the mass of the Earth and orbits a very low mass star at the edge of the brown dwarf regime. Several free-floating planetary

  18. The SOPHIE search for northern extrasolar planets VIII. Follow-up of ELODIE candidates: long-period brown-dwarf companions

    CERN Document Server

    Bouchy, F; Díaz, R F; Forveille, T; Boisse, I; Arnold, L; Astudillo-Defru, N; Beuzit, J -L; Bonfils, X; Borgniet, S; Bourrier, V; Courcol, B; Delfosse, X; Demangeon, O; Delorme, P; Ehrenreich, D; Hébrard, G; Lagrange, A -M; Mayor, M; Montagnier, G; Moutou, C; Naef, D; Pepe, F; Perrier, C; Queloz, D; Rey, J; Sahlmann, J; Santerne, A; Santos, N C; Sivan, J -P; Udry, S; Wilson, P A

    2015-01-01

    Long-period brown dwarf companions detected in radial velocity surveys are important targets for direct imaging and astrometry to calibrate the mass-luminosity relation of substellar objects. Through a 20-year radial velocity monitoring of solar-type stars that began with ELODIE and was extended with SOPHIE spectrographs, giant exoplanets and brown dwarfs with orbital periods longer than ten years are discovered. We report the detection of five new potential brown dwarfs with minimum masses between 32 and 83 Jupiter mass orbiting solar-type stars with periods longer than ten years. An upper mass limit of these companions is provided using astrometric Hipparcos data, high-angular resolution imaging made with PUEO, and a deep analysis of the cross-correlation function of the main stellar spectra to search for blend effects or faint secondary components. These objects double the number of known brown dwarf companions with orbital periods longer than ten years and reinforce the conclusion that the occurrence of s...

  19. The Penn State - Toruń Centre for Astronomy Planet Search stars. II. Lithium abundance analysis of the red giant clump sample

    Science.gov (United States)

    Adamów, M.; Niedzielski, A.; Villaver, E.; Wolszczan, A.; Nowak, G.

    2014-09-01

    Context. Standard stellar evolution theory does not predict existence of Li-rich giant stars. Several mechanisms for Li-enrichment have been proposed to operate at certain locations inside some stars. The actual mechanism operating in real stars is still unknown. Aims: Using the sample of 348 stars from the Penn State - Toruń Centre for Astronomy Planet Search, for which uniformly determined atmospheric parameters are available, with chemical abundances and rotational velocities presented here, we investigate various channels of Li enrichment in giants. We also study Li-overabundant giants in more detail in search for origin of their peculiarities. Methods: Our work is based on the Hobby-Eberly Telescope spectra obtained with the High Resolution Spectrograph, which we use for determination of abundances and rotational velocities. The Li abundance was determined from the 7Li λ670.8 nm line, while we use a more extended set of lines for α-elements abundances. In a series of Kolmogorov-Smirnov tests, we compare Li-overabundant giants with other stars in the sample. We also use available IR photometric and kinematical data in search for evidence of mass-loss. We investigate properties of the most Li-abundant giants in more detail by using multi-epoch precise radial velocities. Results: We present Li and α-elements abundances, as well as rotational velocities for 348 stars. We detected Li in 92 stars, of which 82 are giants. Eleven of them show significant Li abundance A(Li)NLTE> 1.4 and seven of them are Li-overabundant objects, according to common criterion of A(Li) > 1.5 and their location on HR diagram, including TYC 0684-00553-1 and TYC 3105-00152-1, which are two giants with Li abundances close to meteoritic level. For another 271 stars, upper limits of Li abundance are presented. We confirmed three objects with increased stellar rotation. We show that Li-overabundant giants are among the most massive stars from our sample and show larger than average

  20. A statistical analysis of seeds and other high-contrast exoplanet surveys: massive planets or low-mass brown dwarfs?

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Timothy D.; Spiegel, David S. [Institute for Advanced Study, Princeton, NJ (United States); McElwain, Michael W.; Grady, C. A. [Exoplanets and Stellar Astrophysics Laboratory, Goddard Space Flight Center, Greenbelt, MD (United States); Turner, Edwin L. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Mede, Kyle; Kuzuhara, Masayuki [University of Tokyo, Tokyo (Japan); Schlieder, Joshua E.; Brandner, W.; Feldt, M. [Max Planck Institute for Astronomy, Heidelberg (Germany); Wisniewski, John P. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK (United States); Abe, L. [Laboratoire Hippolyte Fizeau, Nice (France); Biller, B. [University of Edinburgh, Edinburgh, Scotland (United Kingdom); Carson, J. [College of Charleston, Charleston, SC (United States); Currie, T. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON (Canada); Egner, S.; Golota, T.; Guyon, O. [Subaru Telescope, Hilo, Hawai' i (United States); Goto, M. [Universitäts-Sternwarte München, Munich (Germany); Hashimoto, J. [National Astronomical Observatory of Japan, Tokyo (Japan); and others

    2014-10-20

    We conduct a statistical analysis of a combined sample of direct imaging data, totalling nearly 250 stars. The stars cover a wide range of ages and spectral types, and include five detections (κ And b, two ∼60 M {sub J} brown dwarf companions in the Pleiades, PZ Tel B, and CD–35 2722B). For some analyses we add a currently unpublished set of SEEDS observations, including the detections GJ 504b and GJ 758B. We conduct a uniform, Bayesian analysis of all stellar ages using both membership in a kinematic moving group and activity/rotation age indicators. We then present a new statistical method for computing the likelihood of a substellar distribution function. By performing most of the integrals analytically, we achieve an enormous speedup over brute-force Monte Carlo. We use this method to place upper limits on the maximum semimajor axis of the distribution function derived from radial-velocity planets, finding model-dependent values of ∼30-100 AU. Finally, we model the entire substellar sample, from massive brown dwarfs to a theoretically motivated cutoff at ∼5 M {sub J}, with a single power-law distribution. We find that p(M, a)∝M {sup –0.65} {sup ±} {sup 0.60} a {sup –0.85} {sup ±} {sup 0.39} (1σ errors) provides an adequate fit to our data, with 1.0%-3.1% (68% confidence) of stars hosting 5-70 M {sub J} companions between 10 and 100 AU. This suggests that many of the directly imaged exoplanets known, including most (if not all) of the low-mass companions in our sample, formed by fragmentation in a cloud or disk, and represent the low-mass tail of the brown dwarfs.

  1. Pluto: Planet or "Dwarf Planet"?

    Science.gov (United States)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  2. H-alpha as a Probe of Very Low-mass Planets: The GAPplanetS Survey With the MagAO System

    Science.gov (United States)

    Close, L.; MagAO Team

    2014-03-01

    We utilized the new high-order 585 actuator Magellan Adaptive Optics system (MagAO) to obtain very high-resolution visible light images of young Transitional Disk with MagAO's VisAO science camera. In the median seeing conditions of the 6.5m Magellan telescope (0.5 - 0.7''), we find MagAO delivers 24-19% Strehl at Ha (0.656 mm). We detect a faint companion embedded in this young transitional disk system at just 86.3±1.9 mas (~12 AU) from the star. The companion is detected in both Ha and a continuum filter (Dmag=6.33±0.20 mag at Ha and 7.50±0.25 mag in the continuum filter). The Ha emission from the ~0.25 solar mass companion (EW=180 Angstroms) implies a mass accretion rate of ~5.9x10-10 Msun/yr, and a total accretion luminosity of 1.2% Lsun. Assuming a similar accretion rate, we estimate that a 1 Jupiter mass gas giant could have considerably better (50-1,000x) planet/star contrasts at Ha than at H band (COND models) for a range of optical extinctions (3.4-0 mag). We suggest that ~0.5-5 Mjup extrasolar planets in their gas accretion phase could be much more luminous at Ha than in the NIR. This is the motivation for our new MagAO GAPplanetS survey for directly imaging lowmass exoplanets in the gaps of transitional disks in the light of H-alpha with MagAO's unique SDI AO camera.

  3. A search for iron features in the EXOSAT spectral survey sources

    Science.gov (United States)

    Leighly, K. M.; Pounds, K. A.; Turner, T. J.

    1989-01-01

    The results of the search for iron features performed on 40 of the 48 EXOSAT spectral survey sources are discussed. In thrirteen of the sources the spectral fit was improved by the inclusion of an iron emission line at approximately 6.5 keV. In three of these, an ionized absorption edge improved the spectral fit. In one source, the spectral fit was improved by the addition of a cold iron absorption edge at approximately 7.1 keV. Line equivalent widths are not well determined. A statistical analysis of the line fits suggest an inverse correlation between line equivalent width and intrinsic source luminosity. Comparison of the host galaxy axial ratio with the line equivalent width suggests that larger equivalent widths occur in sources with more nearly face on host galaxies.

  4. High-resolution marine magnetic surveys for searching underwater cultural resources

    Directory of Open Access Journals (Sweden)

    S. Monti

    2006-06-01

    Full Text Available Recently two marine magnetic surveys, combined with the use of a multi-beam sonar (Kongsberg Marittime EM 300 multibeam: 30 KHz frequency echosounder for hydrographic purposes; acoustic lobe composed of 128 beams able to cover a 150° sector a side-scan sonar (Simrad MS 992 dual-frequency sidescan sonar with echo sounder transducers 150 Hz and 330 KHz and a Remote Operated Vehicle (ROV – a mobile tools used in environments which are too dangerous for humans, were executed in two sites respectively in the Ligurian Sea and the Asinara Gulf. The aim of these investigations was to test modern instrumentations and set new working procedures for searching underwater cultural resources. The collected and processed magnetic data yielded very satisfactory results: we detected submerged and buried features of cultural interest at both sites, at depths of 40 m and 400 m respectively.

  5. Polyphase-discrete Fourier transform spectrum analysis for the Search for Extraterrestrial Intelligence sky survey

    Science.gov (United States)

    Zimmerman, G. A.; Gulkis, S.

    1991-01-01

    The sensitivity of a matched filter-detection system to a finite-duration continuous wave (CW) tone is compared with the sensitivities of a windowed discrete Fourier transform (DFT) system and an ideal bandpass filter-bank system. These comparisons are made in the context of the NASA Search for Extraterrestrial Intelligence (SETI) microwave observing project (MOP) sky survey. A review of the theory of polyphase-DFT filter banks and its relationship to the well-known windowed-DFT process is presented. The polyphase-DFT system approximates the ideal bandpass filter bank by using as few as eight filter taps per polyphase branch. An improvement in sensitivity of approx. 3 dB over a windowed-DFT system can be obtained by using the polyphase-DFT approach. Sidelobe rejection of the polyphase-DFT system is vastly superior to the windowed-DFT system, thereby improving its performance in the presence of radio frequency interference (RFI).

  6. The search of radio transients in the RATAN-600 radio telescope surveys

    Science.gov (United States)

    Zhelenkova, Olga P.; Majorova, Elena K.

    2017-06-01

    We present the results of the search of variable sources and transient events in the archive data of the sky surveys conducted on 3.9 GHz on the RATAN-600 radio telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) in 1980-1994. 17% of the total studied sources can be attributed to the variables in radio range. About half of them has significant variations in optical brightness according to the data of the catalogs. At the level of 3-5 r.m.s. we found three transient events. Two weak events probably associated with AGN activities or with cataclysmic events such as GRB and a supernova flash. The nature of the third event has not been established. According to our estimation the surface density of radio transients is 0.03 on one square angular degree with the detection level 8-11 mJy on 3.94 GHz.

  7. Habitable Planets Eclipsing Brown Dwarfs: Strategies for Detection and Characterization

    CERN Document Server

    Belu, Adrian R; Raymond, Sean N; Pallé, Enric; Street, Rachel; Sahu, D K; Von Braun, Kaspar; Bolmont, Emeline; Figueira, Pedro; Anupama, G C; Ribas, Ignasi

    2013-01-01

    Given the very close proximity of their habitable zones, brown dwarfs represent high-value targets in the search for nearby transiting habitable planets that may be suitable for follow-up occultation spectroscopy. In this paper we develop search strategies to find habitable planets transiting brown dwarfs depending on their maximum habitable orbital period (PHZ out). Habitable planets with PHZ out shorter than the useful duration of a night (e.g. 8-10 hrs) can be screened with 100 percent completeness from a single location and in a single night (near-IR). More luminous brown dwarfs require continuous monitoring for longer duration, e.g. from space or from a longitude-distributed network (one test scheduling achieved - 3 telescopes, 13.5 contiguous hours). Using a simulated survey of the 21 closest known brown dwarfs (within 7 pc) we find that the probability of detecting at least one transiting habitable planet is between 4.5 +5.6-1.4 and 56 +31-13 percent, depending on our assumptions. We calculate that bro...

  8. Habitable Planets Eclipsing Brown Dwarfs: Strategies for Detection and Characterization

    Science.gov (United States)

    Belu, Adrian R.; Selsis, Franck; Raymond, Sean N.; Pallé, Enric; Street, Rachel; Sahu, D. K.; von Braun, Kaspar; Bolmont, Emeline; Figueira, Pedro; Anupama, G. C.; Ribas, Ignasi

    2013-05-01

    Given the very close proximity of their habitable zones, brown dwarfs (BDs) represent high-value targets in the search for nearby transiting habitable planets that may be suitable for follow-up occultation spectroscopy. In this paper, we develop search strategies to find habitable planets transiting BDs depending on their maximum habitable orbital period (P HZ out). Habitable planets with P HZ out shorter than the useful duration of a night (e.g., 8-10 hr) can be screened with 100% completeness from a single location and in a single night (near-IR). More luminous BDs require continuous monitoring for longer duration, e.g., from space or from a longitude-distributed network (one test scheduling achieved three telescopes, 13.5 contiguous hours). Using a simulated survey of the 21 closest known BDs (within 7 pc) we find that the probability of detecting at least one transiting habitable planet is between 4.5^{+5.6}_{-1.4}% and 56^{+31}_{-13}%, depending on our assumptions. We calculate that BDs within 5-10 pc are characterizable for potential biosignatures with a 6.5 m space telescope using ~1% of a five-year mission's lifetime spread over a contiguous segment only one-fifth to one-tenth of this duration.

  9. HABITABLE PLANETS ECLIPSING BROWN DWARFS: STRATEGIES FOR DETECTION AND CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Belu, Adrian R.; Selsis, Franck; Raymond, Sean N.; Bolmont, Emeline [Universite de Bordeaux, LAB, UMR 5804, F-33270, Floirac (France); Palle, Enric [Instituto de Astrofisica de Canarias, E-38205 La Laguna (Spain); Street, Rachel [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Sahu, D. K.; Anupama, G. C. [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Von Braun, Kaspar [NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Figueira, Pedro [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ribas, Ignasi, E-mail: belu@obs.u-bordeaux1.fr [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5, parell, 2a pl., E-08193 Bellaterra (Spain)

    2013-05-10

    Given the very close proximity of their habitable zones, brown dwarfs (BDs) represent high-value targets in the search for nearby transiting habitable planets that may be suitable for follow-up occultation spectroscopy. In this paper, we develop search strategies to find habitable planets transiting BDs depending on their maximum habitable orbital period (P{sub HZ{sub out}}). Habitable planets with P{sub HZ{sub out}} shorter than the useful duration of a night (e.g., 8-10 hr) can be screened with 100% completeness from a single location and in a single night (near-IR). More luminous BDs require continuous monitoring for longer duration, e.g., from space or from a longitude-distributed network (one test scheduling achieved three telescopes, 13.5 contiguous hours). Using a simulated survey of the 21 closest known BDs (within 7 pc) we find that the probability of detecting at least one transiting habitable planet is between 4.5{sup +5.6}{sub -1.4}% and 56{sup +31}{sub -13}%, depending on our assumptions. We calculate that BDs within 5-10 pc are characterizable for potential biosignatures with a 6.5 m space telescope using {approx}1% of a five-year mission's lifetime spread over a contiguous segment only one-fifth to one-tenth of this duration.

  10. NEW DISCOVERIES FROM THE ARECIBO 327 MHz DRIFT PULSAR SURVEY RADIO TRANSIENT SEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Stovall, K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); McLaughlin, M. A.; Bagchi, M.; Garver-Daniels, N. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Bates, S. D. [The Institute of Mathematical Sciences, Chennai, 600113 (India); Freire, P. C. C.; Martinez, J. G. [Max-Planck-Institut für Radioastronomie, Bonn (Germany); Jenet, F. [Center for Advanced Radio Astronomy, Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States)

    2016-04-10

    We present Clusterrank, a new algorithm for identifying dispersed astrophysical pulses. Such pulses are commonly detected from Galactic pulsars and rotating radio transients (RRATs), which are neutron stars with sporadic radio emission. More recently, isolated, highly dispersed pulses dubbed fast radio bursts (FRBs) have been identified as the potential signature of an extragalactic cataclysmic radio source distinct from pulsars and RRATs. Clusterrank helped us discover 14 pulsars and 8 RRATs in data from the Arecibo 327 MHz Drift Pulsar Survey (AO327). The new RRATs have DMs in the range 23.5–86.6 pc cm{sup −3} and periods in the range 0.172–3.901 s. The new pulsars have DMs in the range 23.6–133.3 pc cm{sup −3} and periods in the range 1.249–5.012 s, and include two nullers and a mode-switching object. We estimate an upper limit on the all-sky FRB rate of 10{sup 5} day{sup −1} for bursts with a width of 10 ms and flux density ≳83 mJy. The DMs of all new discoveries are consistent with a Galactic origin. In comparing statistics of the new RRATs with sources from the RRATalog, we find that both sets are drawn from the same period distribution. In contrast, we find that the period distribution of the new pulsars is different from the period distributions of canonical pulsars in the ATNF catalog or pulsars found in AO327 data by a periodicity search. This indicates that Clusterrank is a powerful complement to periodicity searches and uncovers a subset of the pulsar population that has so far been underrepresented in survey results and therefore in Galactic pulsar population models.

  11. The Difference Imaging Pipeline for the Transient Search in the Dark Energy Survey

    CERN Document Server

    Kessler, R; Childress, M; Covarrubias, R; D'Andrea, C B; Finley, D A; Fischer, J; Foley, R J; Goldstein, D; Gupta, R R; Kuehn, K; Marcha, M; Nichol, R C; Papadopoulos, A; Sako, M; Scolnic, D; Smith, M; Sullivan, M; Wester, W; Yuan, F; Abbott, T; Abdalla, F B; Allam, S; Benoit-Levy, A; Bernstein, G M; Bertin, E; Brooks, D; Rosell, A Carnero; Kind, M Carrasco; Castander, F J; Crocce, M; da Costa, L N; Desai, S; Diehl, H T; Eifler, T F; Neto, A Fausti; Flaugher, B; Frieman, J; Gruen, D; Gruendl, R A; Honscheid, K; James, D J; Kuropatkin, N; Li, T S; Maia, M A G; Marshall, J L; Martini, P; Miller, C J; Miquel, R; Ogando, R; Plazas, A A; Romer, A K; Roodman, A; Sanchez, E; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Tarle, G; Thaler, J; Thomas, R C; Tucker, D; Walker, A R

    2015-01-01

    We describe the difference imaging pipeline (DiffImg) used to detect transients in deep images from the Dark Energy Survey Supernova program (DES-SN) in its first observing season from Aug 2013 through Feb 2014. DES-SN is a search for transients in which ten 3-deg^2 fields are repeatedly observed in the g,r,i,z passbands with a cadence of about 1 week. The observing strategy has been optimized to measure high-quality light curves and redshifts for thousands of Type Ia supernova (SN Ia) with the goal of measuring dark energy parameters. The essential DiffImg functions are to align each search image to a deep reference image, do a pixel-by-pixel subtraction, and then examine the subtracted image for significant positive detections of point-source objects. The vast majority of detections are subtraction artifacts, but after selection requirements and image filtering with an automated scanning program, there are 130 detections per deg^2 per observation in each band, of which only 25% are artifacts. Of the 7500 tr...

  12. A near-infrared interferometric survey of debris-disc stars. V. PIONIER search for variability

    CERN Document Server

    Ertel, S; Absil, O; Bouquin, J -B Le; Augereau, J -C; Berger, J -P; Blind, N; Bonsor, A; Lagrange, A -M; Lebreton, J; Marion, L; Milli, J; Olofsson, J

    2016-01-01

    Context: Extended circumstellar emission has been detected within a few 100 milli-arcsec around > 10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other techniques, should they yield similar results or non-detections, can provide strong constraints on the origin of the emission. They can also reveal the variability of the phenomenon. Aims: We aim to demonstrate the persistence of the phenomenon over time scales of a few years and to search for variability of our previously detected excesses. Methods: Using VLTI/PIONIER in H band we have carried out multi-epoch observations of the stars for which a near-infrared excess was previously detected with the same observing technique and instrument. The detection rates and distribution of the excesses from our original survey and the follow-up observations are compared statistically. A search for variability of the excesses in our time series is carried out based on the level of the broadband excesses. Results: In 12 o...

  13. New quasar surveys with WIRO: Searching for high redshift (z~6) quasar candidates

    Science.gov (United States)

    Haze Nunez, Evan; Bassett, Neil; Deam, Sophie; Dixon, Don; Griffith, Emily; Harvey, William Bradford; Lee, Daniel; Lyke, Bradley; Parziale, Ryan; Witherspoon, Catherine; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.

    2017-01-01

    High redshift quasars (z~6) are of great interest to fundamental astronomy due to the information they hold about the early universe. With their low number density in the sky, however, they are elusive objects. Reported here is our search for these high redshift quasars using the Wyoming Infrared Observatory (WIRO) 2.3m telescope. We search for potential candidates that have been detected by surveys such as WISE, which have been mostly redshifted out of the optical. The main emission feature of these quasars (the Lyman-Alpha line at ~1216 Angstroms rest-frame) would be redshifted to the z-band or beyond. This means that the quasars should have very low levels of i-band flux. These objects are known as i-dropouts. By imaging the quasars in the i-band and running photometric analysis on our fields, candidates can be identified or rejected by whether or not they appear in our fields. We also provide an analysis of the colors of our candidate high-redshift quasars.This work is supported by the National Science Foundation under REU grant AST1560461

  14. A New Family of Planets ? "Ocean Planets"

    OpenAIRE

    Leger, A.; Selsis, F.; Sotin, C.; Guillot, T.; Despois, D.; Lammer, H.; Ollivier, M.; Brachet, F.; Labeque, A.; Valette, C.

    2003-01-01

    A new family of planets is considered which is between rochy terrestrial planets and gaseous giant ones: "Ocean-Planets". We present the possible formation, composition and internal models of these putative planets, including that of their ocean, as well as their possible Exobiology interest. These planets should be detectable by planet detection missions such as Eddington and Kepler, and possibly COROT (lauch scheduled in 2006). They would be ideal targets for spectroscopic missions such as ...

  15. Planet Hunters: Assessing the Kepler Inventory of Short Period Planets

    CERN Document Server

    Schwamb, Megan E; Fischer, Debra A; Giguere, Matthew J; Lynn, Stuart; Smith, Arfon M; Brewer, John M; Parrish, Michael; Schawinski, Kevin; Simpson, Robert J

    2012-01-01

    We present the results from a search of data from the first 33.5 days of the Kepler science mission (Quarter 1) for exoplanet transits by the Planet Hunters citizen science project. Planet Hunters enlists members of the general public to visually identify transits in the publicly released Kepler light curves via the World Wide Web. Over 24,000 volunteers reviewed the Kepler Quarter 1 data set. We examine the abundance of \\geq 2 R\\oplus planets on short period (< 15 days) orbits based on Planet Hunters detections. We present these results along with an analysis of the detection efficiency of human classifiers to identify planetary transits including a comparison to the Kepler inventory of planet candidates. Although performance drops rapidly for smaller radii, \\geq 4 R\\oplus Planet Hunters \\geq 85% efficient at identifying transit signals for planets with periods less than 15 days for the Kepler sample of target stars. Our high efficiency rate for simulated transits along with recovery of the majority of Ke...

  16. A multiyear dust devil vortex survey using an automated search of pressure time series

    Science.gov (United States)

    Jackson, Brian; Lorenz, Ralph

    2015-03-01

    Dust devils occur in arid climates on the Earth and ubiquitously on Mars, where they likely dominate the supply of atmospheric dust and influence climate. Martian dust devils have been studied with a combination of orbiting and landed spacecraft, while most studies of terrestrial dust devils have involved manned monitoring of field sites, which can be costly both in time and personnel. As an alternative approach, we describe a multiyear in situ survey of terrestrial dust devils using pressure loggers deployed at El Dorado Playa in Nevada, USA, a site known for dust devil activity. Analogous to previous surveys for Martian dust devils, we conduct a posthoc analysis of the barometric data to search for putative dust devil pressure dips using a new automated detection algorithm. We investigate the completeness and false positive rates of our new algorithm and conduct several statistically robust analyses of the resulting population of dips. We also investigate possible seasonal, annual, and spatial variability of the putative dust devil dips, possible correlations with precipitation, and the influence of sample size on the derived population statistics. Our results suggest that large numbers of dips (>1000) collected over multiple seasons are probably required for accurate assessment of the underlying dust devil population. Correlating long-term barometric time series with other data streams (e.g., solar flux measurements from photovoltaic cells) can uniquely elucidate the natures and origins of dust devils, and accurately assessing their influence requires consideration of the full distribution of dust devil properties, rather than average values.

  17. Main-belt comets in the Palomar Transient Factory survey: I. The search for extendedness

    CERN Document Server

    Waszczak, Adam; Aharonson, Oded; Kulkarni, Shrinivas; Polishook, David; Bauer, James M; Levitan, David; Sesar, Branimir; Laher, Russ; Surace, Jason

    2013-01-01

    Cometary activity in main-belt asteroids probes the ice content of these objects and provides clues to the history of volatiles in the inner solar system. We search the Palomar Transient Factory (PTF) survey to derive upper limits on the population size of active main-belt comets (MBCs). From data collected March 2009 through July 2012, we extracted 2 million observations of 220 thousand known main-belt objects (40% of the known population, down to 1-km diameter) and discovered 626 new objects in multi-night linked detections. We formally quantify the extendedness of a small-body observation, account for systematic variation in this metric (e.g., due to on-sky motion) and evaluate this method's robustness in identifying cometary activity using observations of 115 comets, including two known candidate MBCs and six newly-discovered non-main-belt comets (two of which were originally designated as asteroids by other surveys). We demonstrate a 66% detection efficiency with respect to the extendedness distribution ...

  18. High throughput interferometric Doppler technique for planet detection

    Science.gov (United States)

    Mahadevan, Suvrath

    We have developed a novel instrument called the Exoplanet Tracker (ET) that can measure precise differential radial velocities, as well as barycentric radial velocities. ET is installed at the Kitt Peak 2.1 meter telescope and uses a Michelson interferometer in series with a medium resolution spectrograph. This instrument allows stellar radial velocities to be measured precisely without the use of a high resolution spectrograph. This allows the instrument to be very efficient in collecting light from the telescope. ET can achieve a radial velocity precision of 5-10 m s-1 over a 10 day observing run. A survey for extrasolar planets using the ET instrument has led to the detection of radial velocity variability for the star HD102195. Using photometry, CaII HK measurements, and precision radial velocities we demonstrate that these radial velocity variations are caused by a giant planet in a 4.11 day orbit around HD102195. A prototype monolithic interferometer has also been built for the ET instrument and is capable of delivering precise radial velocities. A large multi-object radial velocity instrument based on the ET instrument has been built and installed at the wide field Sloan 2.5 m telescope. This instrument, called the W. M. Keck Exoplanet Tracker, is capable of obtaining precise radial velocities for 59 stars simultaneously. Over the next few years this multi-object instrument will be used to conduct an All Sky ExoPlanet Survey capable of efficiently searching thousands of stars for planets.

  19. Towards the Rosetta Stone of planet formation

    Directory of Open Access Journals (Sweden)

    Schmidt T.O.B.

    2011-02-01

    Full Text Available Transiting exoplanets (TEPs observed just ~10 Myrs after formation of their host systems may serve as the Rosetta Stone for planet formation theories. They would give strong constraints on several aspects of planet formation, e.g. time-scales (planet formation would then be possible within 10 Myrs, the radius of the planet could indicate whether planets form by gravitational collapse (being larger when young or accretion growth (being smaller when young. We present a survey, the main goal of which is to find and then characterise TEPs in very young open clusters.

  20. The HARPS search for southern extra-solar planets. XXX. Planetary systems around stars with solar-like magnetic cycles and short-term activity variation

    Science.gov (United States)

    Dumusque, X.; Lovis, C.; Ségransan, D.; Mayor, M.; Udry, S.; Benz, W.; Bouchy, F.; Lo Curto, G.; Mordasini, C.; Pepe, F.; Queloz, D.; Santos, N. C.; Naef, D.

    2011-11-01

    We present the discovery of four new long-period planets within the HARPS high-precision sample: HD 137388b (Msini = 0.22 MJ), HD 204941b (Msini = 0.27 MJ), HD 7199b (Msini = 0.29 MJ), HD 7449b (Msini = 1.04 MJ). A long-period companion, probably a second planet, is also found orbiting HD 7449. Planets around HD 137388, HD 204941, and HD 7199 have rather low eccentricities (less than 0.4) relative to the 0.82 eccentricity of HD 7449b. All these planets were discovered even though their hosting stars have clear signs of activity. Solar-like magnetic cycles, characterized by long-term activity variations, can be seen for HD 137388, HD 204941 and HD 7199, whereas the measurements of HD 7449 reveal a short-term activity variation, most probably induced by magnetic features on the stellar surface. We confirm that magnetic cycles induce a long-term radial velocity variation and propose a method to reduce considerably the associated noise. The procedure consists of fitting the activity index and applying the same solution to the radial velocities because a linear correlation between the activity index and the radial velocity is found. Tested on HD 137388, HD 204941, and HD 7199, this correction reduces considerably the stellar noise induced by magnetic cycles and allows us to derive precisely the orbital parameters of planetary companions. Based on observations made with the HARPS instrument on the ESO 3.6-m telescope at La Silla Observatory (Chile), under programme IDs 072.C-0488 and 183.C-0972.Radial velocities (Tables 4-7) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/535/A55

  1. The HARPS search for southern extra-solar planets. XXXVII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles

    CERN Document Server

    Díaz, R F; Udry, S; Lovis, C; Pepe, F; Dumusque, X; Marmier, M; Alonso, R; Benz, W; Bouchy, F; Coffinet, A; Cameron, A Collier; Deleuil, M; Figueira, P; Gillon, M; Curto, G Lo; Mayor, M; Mordasini, C; Motalebi, F; Moutou, C; Pollacco, D; Pompei, E; Queloz, D; Santos, N; Wyttenbach, A

    2016-01-01

    We present the analysis of the entire HARPS observations of three stars that host planetary systems: HD1461, HD40307, and HD204313. The data set spans eight years and contains more than 200 nightly averaged velocity measurements for each star. This means that it is sensitive to both long-period and low-mass planets and also to the effects induced by stellar activity cycles. We modelled the data using Keplerian functions that correspond to planetary candidates and included the short- and long-term effects of magnetic activity. A Bayesian approach was taken both for the data modelling, which allowed us to include information from activity proxies such as $\\log{(R'_{\\rm HK})}$ in the velocity modelling, and for the model selection, which permitted determining the number of significant signals in the system. The Bayesian model comparison overcomes the limitations inherent to the traditional periodogram analysis. We report an additional super-Earth planet in the HD1461 system. Four out of the six planets previousl...

  2. The HARPS search for southern extra-solar planets: XIV. Gl 176b, a super-Earth rather than a Neptune, and at a different period

    CERN Document Server

    Forveille, T; Delfosse, X; Gillon, M; Udry, S; Bouchy, F; Lovis, C; Mayor, M; Pepe, F; Perrier, C; Queloz, D; Santos, N; Bertaux, J -L

    2008-01-01

    A 10.24 days Neptune-mass planet was recently announced to orbit the nearby M2 dwarf Gl 176, based on 28 radial velocities measured with the HRS spectrograph on the Hobby-Heberly Telescope (HET). We obtained 57 radial velocities of Gl 176 with the ESO 3.6m telescope and the HARPS spectrograph, which is known for its sub-m/s stability. The median photon-noise standard error of our measurements is 1.1 m/s, significantly lower than the 4.7 m/s of the HET velocities, and the 4 years period over which they were obtained has much overlap with the epochs of the HET measurements. The HARPS measurements show no evidence for a signal at the period of the putative HET planet, suggesting that its detection was spurious. We do find, on the other hand, strong evidence for a lower mass 8.4 Mearth planet, in a quasi-circular orbit and at the different period of 8.78 days. The host star has moderate magnetic activity and rotates on a 39-days period, which we confirm through modulation of both contemporaneous photometry and ch...

  3. Limits on Planetary Companions from Doppler Surveys of Nearby Stars

    Science.gov (United States)

    Howard, Andrew W.; Fulton, Benjamin J.

    2016-11-01

    Most of our knowledge of planets orbiting nearby stars comes from Doppler surveys. For spaced-based, high-contrast imaging missions, nearby stars with Doppler-discovered planets are attractive targets. The known orbits tell imaging missions where and when to observe, and the dynamically determined masses provide important constraints for the interpretation of planetary spectra. Quantifying the set of planet masses and orbits that could have been detected will enable more efficient planet discovery and characterization. We analyzed Doppler measurements from Lick and Keck Observatories by the California Planet Survey. We focused on stars that are likely targets for three space-based planet imaging mission concepts studied by NASA—WFIRST-AFTA, Exo-C, and Exo-S. The Doppler targets are primarily F8 and later main sequence stars, with observations spanning 1987-2014. We identified 76 stars with Doppler measurements from the prospective mission target lists. We developed an automated planet search and a methodology to estimate the pipeline completeness using injection and recovery tests. We applied this machinery to the Doppler data and computed planet detection limits for each star as a function of planet minimum mass and semimajor axis. For typical stars in the survey, we are sensitive to approximately Saturn-mass planets inside of 1 au, Jupiter-mass planets inside of ˜3 au, and our sensitivity declines out to ˜10 au. For the best Doppler targets, we are sensitive to Neptune-mass planets in 3 au orbits. Using an idealized model of Doppler survey completeness, we forecast the precision of future surveys of non-ideal Doppler targets that are likely targets of imaging missions. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by NASA, the University of California, and the University of Hawaii.

  4. Formation, Survival, and Detectability of Planets Beyond 100 AU

    CERN Document Server

    Veras, Dimitri; Ford, Eric B

    2009-01-01

    Direct imaging searches have begun to detect planetary and brown dwarf companions and to place constraints on the presence of giant planets at large separations from their host star. This work helps to motivate such planet searches by predicting a population of young giant planets that could be detectable by direct imaging campaigns. Both the classical core accretion and the gravitational instability model for planet formation are hard-pressed to form long-period planets in situ. Here, we show that dynamical instabilities among planetary systems that originally formed multiple giant planets much closer to the host star could produce a population of giant planets at large (~100 AU - 100000 AU) separations. We estimate the limits within which these planets may survive, quantify the efficiency of gravitational scattering into both stable and unstable wide orbits, and demonstrate that population analyses must take into account the age of the system. We predict that planet scattering creates a population of detect...

  5. The MUSCLES Treasury Survey. III. X-Ray to Infrared Spectra of 11 M and K Stars Hosting Planets

    Science.gov (United States)

    Loyd, R. O. P.; France, Kevin; Youngblood, Allison; Schneider, Christian; Brown, Alexander; Hu, Renyu; Linsky, Jeffrey; Froning, Cynthia S.; Redfield, Seth; Rugheimer, Sarah; Tian, Feng

    2016-06-01

    We present a catalog of panchromatic spectral energy distributions (SEDs) for 7 M and 4 K dwarf stars that span X-ray to infrared wavelengths (5 Å -5.5 μm). These SEDs are composites of Chandra or XMM-Newton data from 5-˜50 Å, a plasma emission model from ˜50-100 Å, broadband empirical estimates from 100-1170 Å, Hubble Space Telescope data from 1170-5700 Å, including a reconstruction of stellar Lyα emission at 1215.67 Å, and a PHOENIX model spectrum from 5700-55000 Å. Using these SEDs, we computed the photodissociation rates of several molecules prevalent in planetary atmospheres when exposed to each star’s unattenuated flux (“unshielded” photodissociation rates) and found that rates differ among stars by over an order of magnitude for most molecules. In general, the same spectral regions drive unshielded photodissociations both for the minimally and maximally FUV active stars. However, for O3 visible flux drives dissociation for the M stars whereas near-UV flux drives dissociation for the K stars. We also searched for an far-UV continuum in the assembled SEDs and detected it in 5/11 stars, where it contributes around 10% of the flux in the range spanned by the continuum bands. An ultraviolet continuum shape is resolved for the star ɛ Eri that shows an edge likely attributable to Si ii recombination. The 11 SEDs presented in this paper, available online through the Mikulski Archive for Space Telescopes, will be valuable for vetting stellar upper-atmosphere emission models and simulating photochemistry in exoplanet atmospheres.

  6. Exoplanets search and characterization with the SOPHIE spectrograph at OHP

    Directory of Open Access Journals (Sweden)

    Hébrard G.

    2011-02-01

    Full Text Available Several programs of exoplanets search and characterization have been started with SOPHIE at the 1.93-m telescope of Haute-Provence Observatory, France. SOPHIE is an environmentally stabilized echelle spectrograph dedicated to high-precision radial velocity measurements. The objectives of these programs include systematic searches for exoplanets around different types of stars, characterizations of planet-host stars, studies of transiting planets through RossiterMcLaughlin effect, follow-up observations of photometric surveys. The instrument SOPHIE and a review of its latest results are presented here.

  7. A near-infrared interferometric survey of debris-disc stars. V. PIONIER search for variability

    Science.gov (United States)

    Ertel, S.; Defrère, D.; Absil, O.; Le Bouquin, J.-B.; Augereau, J.-C.; Berger, J.-P.; Blind, N.; Bonsor, A.; Lagrange, A.-M.; Lebreton, J.; Marion, L.; Milli, J.; Olofsson, J.

    2016-10-01

    Context. Extended circumstellar emission has been detected within a few 100 milli-arcsec around ≳10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other techniques, should they yield similar results or non-detections, can provide strong constraints on the origin of the emission. They can also reveal the variability of the phenomenon. Aims: We aim to demonstrate the persistence of the phenomenon over the timescale of a few years and to search for variability of our previously detected excesses. Methods: Using Very Large Telescope Interferometer (VLTI)/Precision Integrated Optics Near Infrared ExpeRiment (PIONIER) in H band we have carried out multi-epoch observations of the stars for which a near-infrared excess was previously detected using the same observation technique and instrument. The detection rates and distribution of the excesses from our original survey and the follow-up observations are compared statistically. A search for variability of the excesses in our time series is carried out based on the level of the broadband excesses. Results: In 12 of 16 follow-up observations, an excess is re-detected with a significance of > 2σ, and in 7 of 16 follow-up observations significant excess (> 3σ) is re-detected. We statistically demonstrate with very high confidence that the phenomenon persists for the majority of the systems. We also present the first detection of potential variability in two sources. Conclusions: We conclude that the phenomenon responsible for the excesses persists over the timescale of a few years for the majority of the systems. However, we also find that variability intrinsic to a target can cause it to have no significant excess at the time of a specific observation. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 088.C-0266, 089.C-0365, 090.C-0526, 091.C-0576, 091.C-0597, 094.C-0232, and commissioning data.

  8. The Effect of Giant Planets on Habitable Planet Formation

    Science.gov (United States)

    Quintana, Elisa V.; Barclay, Thomas

    2016-06-01

    The giant planets in the Solar System likely played a large role in shaping the properties of the Earth during its formation. To explore their effects, we numerically model the growth of Earth-like planets around Sun-like stars with and without Jupiter and Saturn analog companions. Employing state-of-the-art dynamical formation models that allow both accretion and collisional fragmentation, we perform hundreds of simulations and quantify the specific impact energies of all collisions that lead to the formation of an Earth-analog. Our model tracks the bulk compositions and water abundances in the cores and mantles of the growing protoplanets to constrain the types of giant planet configurations that allow the formation of habitable planets. We find significant differences in the collisional histories and bulk compositions of the final planets formed in the presence of different giant planet configurations. Exoplanet surveys like Kepler hint at a paucity of Jupiter analogs, thus these analyses have important implications for determining the frequency of habitable planets and also support target selection for future exoplanet characterization missions.

  9. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  10. A Search for Radio Gravitational Lenses, Using the Sloan Digital Sky Survey and the Very Large Array

    CERN Document Server

    Boyce, E R; Bolton, A S; Hewitt, J N; Burles, S; Boyce, Edward R.; Bowman, Judd D.; Bolton, Adam S.; Hewitt, Jacqueline N.; Burles, Scott

    2006-01-01

    We report on a novel search for radio gravitational lenses. Using the Very Large Array, we imaged ten candidates with both dual redshifts in Sloan Digital Sky Survey spectra and 1.4 GHz radio flux >2 mJy in the FIRST survey. The VLA maps show that in each case the radio emission is associated with the foreground galaxy rather than being lensed emission from the background galaxy, although at least four of our targets are strong lenses at optical wavelengths. These SDSS dual-redshift systems do not have lensed radio emission at the sensitivity of current radio surveys.

  11. OPUS: A Comprehensive Search Tool for Remote Sensing Observations of the Outer Planets. Now with Enhanced Geometric Metadata for Cassini and New Horizons Optical Remote Sensing Instruments.

    Science.gov (United States)

    Gordon, M. K.; Showalter, M. R.; Ballard, L.; Tiscareno, M.; French, R. S.; Olson, D.

    2017-06-01

    The PDS RMS Node hosts OPUS - an accurate, comprehensive search tool for spacecraft remote sensing observations. OPUS supports Cassini: CIRS, ISS, UVIS, VIMS; New Horizons: LORRI, MVIC; Galileo SSI; Voyager ISS; and Hubble: ACS, STIS, WFC3, WFPC2.

  12. The Magellanic Satellites Survey: Searching for Hierarchical Structure Formation within the Local Group

    Science.gov (United States)

    Bechtol, Keith; Magellanic Satellites Survey (MagLiteS)

    2017-01-01

    A generic prediction of galaxy formation in the standard cosmological model with cold dark matter is the hierarchical assembly of structure on mass scales ranging from ultra-faint galaxies to galaxy clusters. In the Local Group, dozens of galaxies have been found orbiting the Milky Way and Andromeda. The question of whether the largest Milky Way satellites, the Large and Small Magellanic Clouds, brought in their own entourage of satellites has been a long standing puzzle, and has garnered renewed interest following the recent discovery of more than a dozen ultra-faint galaxy candidates in the southern hemisphere. The on-going Magellanic Satellites Survey (MagLiteS) aims to complete an annulus of contiguous deep optical imaging with Blanco/DECam around the periphery of the Magellanic Clouds, enabling a systematic search for ultra-faint galaxies and other low-surface-brightness stellar substructures associated with the Magellanic system. I will report on the progress of MagLiteS and discuss science highlights from the first observing season, including a new ultra-faint galaxy candidate located ~11 kpc from the Large Magellanic Cloud.

  13. Proposed searches for candidate sources of gravitational waves in a nearby core-collapse supernova survey

    CERN Document Server

    Heo, Jeon-Eun; Lee, Dae-Sub; Kong, In-Taek; Lee, Sang-Hoon; van Putten, Maurice H P M; Della Valle, Massimo

    2015-01-01

    Gravitational wave bursts in the formation of neutron stars and black holes in energetic core-collapse supernovae (CC-SNe) are of potential interest to LIGO-Virgo and KAGRA. Events nearby are readily discovered using moderately sized telescopes. CC-SNe are competitive with mergers of neutron stars and black holes, if the fraction producing an energetic output in gravitational waves exceeds about 1\\%. This opportunity motivates the design of a novel Sejong University Core-CollapsE Supernova Survey (SUCCESS), to provide triggers for follow-up searches for gravitational waves. It is based on the 76 cm Sejong University Telescope (SUT) for weekly monitoring of nearby star-forming galaxies, i.e., M51, M81-M82 and Blue Dwarf Galaxies from the Unified Nearby Galaxy Catalog with an expected yield of a few hundred per year. Optical light curves will be resolved for the true time-of-onset for probes of gravitational waves by broadband time-sliced matched filtering.

  14. Teen smoking cessation help via the Internet: a survey of search engines.

    Science.gov (United States)

    Edwards, Christine C; Elliott, Sean P; Conway, Terry L; Woodruff, Susan I

    2003-07-01

    The objective of this study was to assess Web sites related to teen smoking cessation on the Internet. Seven Internet search engines were searched using the keywords teen quit smoking. The top 20 hits from each search engine were reviewed and categorized. The keywords teen quit smoking produced between 35 and 400,000 hits depending on the search engine. Of 140 potential hits, 62% were active, unique sites; 85% were listed by only one search engine; and 40% focused on cessation. Findings suggest that legitimate on-line smoking cessation help for teens is constrained by search engine choice and the amount of time teens spend looking through potential sites. Resource listings should be updated regularly. Smoking cessation Web sites need to be picked up on multiple search engine searches. Further evaluation of smoking cessation Web sites need to be conducted to identify the most effective help for teens.

  15. Planet Ocean

    Science.gov (United States)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  16. K2's First Five-Planet System

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    Whats the latest from the Kepler K2 mission? K2 has found its first planetary system containing more than three planets an exciting five-planet system located ~380 light-years from Earth!Opportunities From K2Raw K2 light curve (blue, top) and systematic corrected light curve (orange, bottom) for HIP 41378. The three deepest transits are single transits from the three outermost planet candidates. [Vanderburg et al. 2016]The original Kepler mission was enormously successful, discovering thousands of planet candidates. But one side effect of Keplers original observing technique, in which it studied the same field for four years, is that it was very good at detecting extremely faint systems systems that were often too faint to be followed up with other techniques.After Keplers mechanical failure in 2013, the K2 mission was launched, in which the spacecraft uses solar pressure to stabilize it long enough to perform an 80-day searches of each region it examines. Over the course of the K2 mission, Kepler could potentially survey up to 20 times the sky area of the original mission, providing ample opportunity to find planetary systems around bright stars. These stars may be bright enough to be followed up with other techniques.Multi-Planet SystemsTheres a catch to the 80-day observing program: the K2 mission is less likely to detect multiple planets orbiting the same star, due to the short time spent observing the system. While the original Kepler mission detected systems with up to seven planets, K2 had yet to detect systems with more than three candidates until now.Led by Andrew Vanderburg (NSF Graduate Research Fellow at the Harvard-Smithsonian Center for Astrophysics), a team of scientists recentlyanalyzed K2 observations ofthe bright star HIP 41378. Theteamfound that this F-type star hosts five potential planetary candidates!Phase-folded light curve for each of the five transiting planets in the HIP 41378 system. The outermost planet (bottom panel) may provide an

  17. THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, R.; Scolnic, D. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Marriner, J.; Finley, D. A.; Wester, W. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Childress, M.; Yuan, F. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Australian National University, Canberra ACT 2611 (Canada); Covarrubias, R. [National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801 (United States); D’Andrea, C. B.; Nichol, R. C.; Papadopoulos, A. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Fischer, J.; Sako, M. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Foley, R. J. [Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801 (United States); Goldstein, D. [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall, Berkeley, CA 94720 (United States); Gupta, R. R. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kuehn, K. [Australian Astronomical Observatory, North Ryde, NSW 2113 (Australia); Marcha, M. [Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Smith, M.; Sullivan, M., E-mail: kessler@kicp.uchicago.edu [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Collaboration: DES Collaboration; and others

    2015-12-15

    We describe the operation and performance of the difference imaging pipeline (DiffImg) used to detect transients in deep images from the Dark Energy Survey Supernova program (DES-SN) in its first observing season from 2013 August through 2014 February. DES-SN is a search for transients in which ten 3 deg{sup 2} fields are repeatedly observed in the g, r, i, z passbands with a cadence of about 1 week. The observing strategy has been optimized to measure high-quality light curves and redshifts for thousands of Type Ia supernovae (SNe Ia) with the goal of measuring dark energy parameters. The essential DiffImg functions are to align each search image to a deep reference image, do a pixel-by-pixel subtraction, and then examine the subtracted image for significant positive detections of point-source objects. The vast majority of detections are subtraction artifacts, but after selection requirements and image filtering with an automated scanning program, there are ∼130 detections per deg{sup 2} per observation in each band, of which only ∼25% are artifacts. Of the ∼7500 transients discovered by DES-SN in its first observing season, each requiring a detection on at least two separate nights, Monte Carlo (MC) simulations predict that 27% are expected to be SNe Ia or core-collapse SNe. Another ∼30% of the transients are artifacts in which a small number of observations satisfy the selection criteria for a single-epoch detection. Spectroscopic analysis shows that most of the remaining transients are AGNs and variable stars. Fake SNe Ia are overlaid onto the images to rigorously evaluate detection efficiencies and to understand the DiffImg performance. The DiffImg efficiency measured with fake SNe agrees well with expectations from a MC simulation that uses analytical calculations of the fluxes and their uncertainties. In our 8 “shallow” fields with single-epoch 50% completeness depth ∼23.5, the SN Ia efficiency falls to 1/2 at redshift z ≈ 0.7; in our 2

  18. Imaging Extrasolar Giant Planets

    CERN Document Server

    Bowler, Brendan P

    2016-01-01

    High-contrast adaptive optics imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order adaptive optics systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young ($\\approx$5--300~Myr) stars spanning stellar masses between 0.1--3.0~\\Msun, the overall occurrence rate of 5--13~\\Mjup \\ companions at orbital distances ...

  19. A cloaking device for transiting planets

    Science.gov (United States)

    Kipping, David M.; Teachey, Alex

    2016-06-01

    The transit method is presently the most successful planet discovery and characterization tool at our disposal. Other advanced civilizations would surely be aware of this technique and appreciate that their home planet's existence and habitability is essentially broadcast to all stars lying along their ecliptic plane. We suggest that advanced civilizations could cloak their presence, or deliberately broadcast it, through controlled laser emission. Such emission could distort the apparent shape of their transit light curves with relatively little energy, due to the collimated beam and relatively infrequent nature of transits. We estimate that humanity could cloak the Earth from Kepler-like broad-band surveys using an optical monochromatic laser array emitting a peak power of ˜30 MW for ˜10 hours per year. A chromatic cloak, effective at all wavelengths, is more challenging requiring a large array of tunable lasers with a total power of ˜250 MW. Alternatively, a civilization could cloak only the atmospheric signatures associated with biological activity on their world, such as oxygen, which is achievable with a peak laser power of just ˜160 kW per transit. Finally, we suggest that the time of transit for optical Search for Extraterrestrial Intelligence (SETI) is analogous to the water-hole in radio SETI, providing a clear window in which observers may expect to communicate. Accordingly, we propose that a civilization may deliberately broadcast their technological capabilities by distorting their transit to an artificial shape, which serves as both a SETI beacon and a medium for data transmission. Such signatures could be readily searched in the archival data of transit surveys.

  20. Planet Hunters: Assessing the Kepler Inventory of Short-period Planets

    Science.gov (United States)

    Schwamb, Megan E.; Lintott, Chris J.; Fischer, Debra A.; Giguere, Matthew J.; Lynn, Stuart; Smith, Arfon M.; Brewer, John M.; Parrish, Michael; Schawinski, Kevin; Simpson, Robert J.

    2012-08-01

    We present the results from a search of data from the first 33.5 days of the Kepler science mission (Quarter 1) for exoplanet transits by the Planet Hunters citizen science project. Planet Hunters enlists members of the general public to visually identify transits in the publicly released Kepler light curves via the World Wide Web. Over 24,000 volunteers reviewed the Kepler Quarter 1 data set. We examine the abundance of >=2 R ⊕ planets on short-period (=4 R ⊕ Planet Hunters >=85% efficient at identifying transit signals for planets with periods less than 15 days for the Kepler sample of target stars. Our high efficiency rate for simulated transits along with recovery of the majority of Kepler >=4 R ⊕ planets suggests that the Kepler inventory of >=4 R ⊕ short-period planets is nearly complete.

  1. THE GEMINI NICI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF GIANT PLANETS AROUND YOUNG B AND A STARS

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Eric L.; Liu, Michael C.; Chun, Mark; Ftaclas, Christ [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Wahhaj, Zahed [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago (Chile); Biller, Beth A. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Hayward, Thomas L.; Hartung, Markus [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Close, Laird M.; Males, Jared R.; Skemer, Andrew J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Alencar, Silvia H. P. [Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 30270-901 Belo Horizonte, MG (Brazil); Artymowicz, Pawel [University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4 (Canada); Boss, Alan [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, N.W., Washington, DC 20015 (United States); Clarke, Fraser [Department of Astronomy, University of Oxford, DWB, Keble Road, Oxford OX1 3RH (United Kingdom); De Gouveia Dal Pino, Elisabete; Gregorio-Hetem, Jane [Departamento de Astronomia, Universidade de Sao Paulo, IAG/USP, Rua do Matao 1226, 05508-900 Sao Paulo, SP (Brazil); Ida, Shigeru [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Kuchner, Marc [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Greenbelt, MD 20771 (United States); Lin, Douglas N. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States); and others

    2013-10-10

    We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (≈1.5-2.5 M{sub ☉}) conducted to date and includes the planet hosts β Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass companions to HD 1160 and HIP 79797. We have found that the previously known young brown dwarf companion to HIP 79797 is itself a tight (3 AU) binary, composed of brown dwarfs with masses 58{sup +21}{sub -20} M{sub Jup} and 55{sup +20}{sub -19} M{sub Jup}, making this system one of the rare substellar binaries in orbit around a star. Considering the contrast limits of our NICI data and the fact that we did not detect any planets, we use high-fidelity Monte Carlo simulations to show that fewer than 20% of 2 M{sub ☉} stars can have giant planets greater than 4 M{sub Jup} between 59 and 460 AU at 95% confidence, and fewer than 10% of these stars can have a planet more massive than 10 M{sub Jup} between 38 and 650 AU. Overall, we find that large-separation giant planets are not common around B and A stars: fewer than 10% of B and A stars can have an analog to the HR 8799 b (7 M{sub Jup}, 68 AU) planet at 95% confidence. We also describe a new Bayesian technique for determining the ages of field B and A stars from photometry and theoretical isochrones. Our method produces more plausible ages for high-mass stars than previous age-dating techniques, which tend to underestimate stellar ages and their uncertainties.

  2. The IRAS Minor Planet Survey

    Science.gov (United States)

    1992-12-01

    896 Sphinx 11.80 0.1971 0.017 13.07 0.5 0.10 5 12 1.00 .111.. 1 .... 111..1 ..... 1 ........ 897 Lysistrata 10.37 0.2619 0.036 21.90 1.4 1.00 5 13...1 ........ 2934 Aristophanes 11.20 0.0780 0.009 27.39 1.4 0.10 6 9 0.75 .111 .. 1 .... 111..1 ..... 1 ........ 2945 1935 STI 12.20 0.0522 0.006

  3. Planet Detection: The Kepler Mission

    Science.gov (United States)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    The search for exoplanets is one of the hottest topics in astronomy and astrophysics in the twenty-first century, capturing the public's attention as well as that of the astronomical community. This nascent field was conceived in 1989 with the discovery of a candidate planetary companion to HD114762 [35] and was born in 1995 with the discovery of the first extrasolar planet 51 Peg-b [37] orbiting a main sequence star. As of March, 2011, over 500 exoplanets have been discovered* and 106 are known to transit or cross their host star, as viewed from Earth. Of these transiting planets, 15 have been announced by the Kepler Mission, which was launched into an Earth-trailing, heliocentric orbit in March, 2009 [1,4,6,15,18,20,22,31,32,34,36,43]. In addition, over 1200 candidate transiting planets have already been detected by Kepler [5], and vigorous follow-up observations are being conducted to vet these candidates. As the false-positive rate for Kepler is expected to be quite low [39], Kepler has effectively tripled the number of known exoplanets. Moreover, Kepler will provide an unprecedented data set in terms of photometric precision, duration, contiguity, and number of stars. Kepler's primary science objective is to determine the frequency of Earth-size planets transiting their Sun-like host stars in the habitable zone, that range of orbital distances for which liquid water would pool on the surface of a terrestrial planet such as Earth, Mars, or Venus. This daunting task demands an instrument capable of measuring the light output from each of over 100,000 stars simultaneously with an unprecedented photometric precision of 20 parts per million (ppm) at 6.5-h intervals. The large number of stars is required because the probability of the geometrical alignment of planetary orbits that permit observation of transits is the ratio of the size of the star to the size of the planetary orbit. For Earth-like planets in 1-astronomical unit (AU) orbits† about sun-like stars

  4. High-fidelity Simulations of the Near-Earth Object Search Performance of the Large Synoptic Survey Telescope

    Science.gov (United States)

    Vereš, Peter; Chesley, Steven R.

    2017-07-01

    We perform high-fidelity simulations of a wide-field telescopic survey searching for Near-Earth Objects (NEOs) larger than 140 m, focusing on the observation and detection model, as well as detection efficiency and accuracy. As a test survey, we select the Large Synoptic Survey Telescope (LSST). We use its proposed pointings for a 10-year mission, and model the detection of NEOs in the fields. We discuss individual model parameters for magnitude losses, vignetting, fading, asteroid rotation and colors, fill factor, limiting magnitude, rate of motion, field shape and rotation, and survey patterns. We assess results in terms of the cumulative completeness of the detected population as a function of size and time. Additionally, we examine the sources of modeling uncertainty, and derive the overall NEO population completeness for the baseline LSST survey to be 55 ± 5% for NEOs with absolute magnitude brighter than 22. Including already discovered objects and ongoing surveys, the NEO completeness at the end of the LSST baseline survey should reach ˜77%.

  5. Binary frequency of planet-host stars at wide separations: A new brown dwarf companion to a planet-host star

    CERN Document Server

    Lodieu, N; Bejar, V J S; Gauza, B; Ruiz, M T; Rebolo, R; Pinfield, D J; Martin, E L

    2014-01-01

    The aim of the project is to improve our knowledge on the multiplicity of planet-host stars at wide physical separations. We cross-matched approximately 6200 square degree area of the Southern sky imaged by the Visible Infrared Survey Telescope for Astronomy (VISTA) Hemisphere Survey (VHS) with the Two Micron All Sky Survey (2MASS) to look for wide common proper motion companions to known planet-host stars. We complemented our astrometric search with photometric criteria. We confirmed spectroscopically the co-moving nature of seven sources out of 16 companion candidates and discarded eight, while the remaining one stays as a candidate. Among these new wide companions to planet-host stars, we discovered a T4.5 dwarf companion at 6.3 arcmin (~9000 au) from HIP70849, a K7V star which hosts a 9 Jupiter mass planet with an eccentric orbit. We also report two new stellar M dwarf companions to one G and one metal-rich K star. We infer stellar and substellar binary frequencies for our complete sample of 37 targets of...

  6. MARVELS-1: A Face-on Double-lined Binary Star Masquerading as a Resonant Planetary System and Consideration of Rare False Positives in Radial Velocity Planet Searches

    Science.gov (United States)

    Wright, Jason T.; Roy, Arpita; Mahadevan, Suvrath; Wang, Sharon X.; Ford, Eric B.; Payne, Matt; Lee, Brian L.; Wang, Ji; Crepp, Justin R.; Gaudi, B. Scott; Eastman, Jason; Pepper, Joshua; Ge, Jian; Fleming, Scott W.; Ghezzi, Luan; González-Hernández, Jonay I.; Cargile, Phillip; Stassun, Keivan G.; Wisniewski, John; Dutra-Ferreira, Leticia; Porto de Mello, Gustavo F.; Maia, Márcio A. G.; Nicolaci da Costa, Luiz; Ogando, Ricardo L. C.; Santiago, Basilio X.; Schneider, Donald P.; Hearty, Fred R.

    2013-06-01

    We have analyzed new and previously published radial velocity (RV) observations of MARVELS-1, known to have an ostensibly substellar companion in a ~6 day orbit. We find significant (~100 m s-1) residuals to the best-fit model for the companion, and these residuals are naïvely consistent with an interior giant planet with a P = 1.965 days in a nearly perfect 3:1 period commensurability (|Pb /Pc - 3| MARVELS-1 with adaptive optics imaging at Keck; both are M dwarfs, one is likely bound, and the other is likely a foreground object. We explore false-alarm scenarios inspired by various curiosities in the data. Ultimately, a line profile and bisector analysis lead us to conclude that the ~100 m s-1 residuals are an artifact of spectral contamination from a stellar companion contributing ~15%-30% of the optical light in the system. We conclude that origin of this contamination is the previously detected RV companion to MARVELS-1, which is not, as previously reported, a brown dwarf, but in fact a G dwarf in a face-on orbit.

  7. An extrasolar planet that transits the disk of its parent star.

    Science.gov (United States)

    Konacki, Maciej; Torres, Guillermo; Jha, Saurabh; Sasselov, Dimitar D

    2003-01-30

    Planets orbiting other stars could in principle be found through the periodic dimming of starlight as a planet moves across--or 'transits'--the line of sight between the observer and the star. Depending on the size of the planet relative to the star, the dimming could reach a few per cent of the apparent brightness of the star. Despite many searches, no transiting planet has been discovered in this way; the one known transiting planet--HD209458b--was first discovered using precise measurements of the parent star's radial velocity and only subsequently detected photometrically. Here we report radial velocity measurements of the star OGLE-TR-56, which was previously found to exhibit a 1.2-day transit-like light curve in a survey looking for gravitational microlensing events. The velocity changes that we detect correlate with the light curve, from which we conclude that they are probably induced by an object of around 0.9 Jupiter masses in an orbit only 0.023 au from its star. We estimate the planetary radius to be around 1.3 Jupiter radii and its density to be about 0.5 g x cm(-3). This object is hotter than any known planet (approximately 1,900 K), but is still stable against long-term evaporation or tidal disruption.

  8. Testing planet formation theories with Giant stars

    CERN Document Server

    Pasquini, Luca; Hatzes, A; Setiawan, J; Girardi, L; da Silva, L; De Medeiros, J R

    2008-01-01

    Planet searches around evolved giant stars are bringing new insights to planet formation theories by virtue of the broader stellar mass range of the host stars compared to the solar-type stars that have been the subject of most current planet searches programs. These searches among giant stars are producing extremely interesting results. Contrary to main sequence stars planet-hosting giants do not show a tendency of being more metal rich. Even if limited, the statistics also suggest a higher frequency of giant planets (at least 10 %) that are more massive compared to solar-type main sequence stars. The interpretation of these results is not straightforward. We propose that the lack of a metallicity-planet connection among giant stars is due to pollution of the star while on the main sequence, followed by dilution during the giant phase. We also suggest that the higher mass and frequency of the planets are due to the higher stellar mass. Even if these results do not favor a specific formation scenario, they su...

  9. Origins Space Telescope: Planet-forming disks and exoplanets

    Science.gov (United States)

    Pontoppidan, Klaus; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the science case related to planet formation and exoplanets. Leveraging orders of magnitude of improvements in sensitivity, the Origins Telescope will reveal the path of water from the interstellar medium to the inner regions of planet-forming disks, and determine the total masses of disks around stars across the stellar mass range out to distances of 500 pc. It will measure the temperatures and search for basic chemical ingredients for life on rocky planets. Beyond this, the Origins Telescope will open a vast discovery space in the general areas of star formation, protoplanetary and debris disks, and cool exoplanets in habitable zones.

  10. From Disks To Planets: A Theoretical Perspective

    Science.gov (United States)

    Bromley, Ben

    2016-07-01

    Circumstellar disks of gas and dust naturally produce planets. Observations of young stellar systems tell us the starting conditions, while planet surveys reveal an amazing diversity of outcomes. Theory tries to connect the dots with ideas on how planets emerge from dust within an evolving gas disk. Here I give a broad-brush view of planet formation from a theoretical perspective, noting recent ideas and successes. I also consider the challenges. The conversion of primordial dust into planetesimals is uncertain. Even the mass budget in solids is a problem, since the total mass in dust observed around young stars seems insufficient to account for the census of full-fledged planets. Toward resolving these issues, the Atacama Large Millimeter Array and the Karl G. Jansky Very Large Array are playing key roles in illuminating how disks become planets.

  11. Planet Hunters VI: The First Kepler Seven Planet Candidate System and 13 Other Planet Candidates from the Kepler Archival Data

    CERN Document Server

    Schmitt, Joseph R; Fischer, Debra A; Jek, Kian J; Moriarty, John C; Boyajian, Tabetha S; Schwamb, Megan E; Lintott, Chris; Smith, Arfon M; Parrish, Michael; Schawinski, Kevin; Lynn, Stuart; Simpson, Robert; Omohundro, Mark; Winarski, Troy; Goodman, Samuel J; Jebson, Tony; Lacourse, Daryll

    2013-01-01

    We report the discovery of 14 new transiting planet candidates in the Kepler field from the Planet Hunters citizen science program. None of these candidates overlap with Kepler Objects of Interest (KOIs), and five of the candidates were missed by the Kepler Transit Planet Search (TPS) algorithm. The new candidates have periods ranging from 124-904 days, eight residing in their host star's habitable zone (HZ) and two (now) in multiple planet systems. We report the discovery of one more addition to the six planet candidate system around KOI-351, marking the first seven planet candidate system from Kepler. Additionally, KOI-351 bears some resemblance to our own solar system, with the inner five planets ranging from Earth to mini-Neptune radii and the outer planets being gas giants; however, this system is very compact, with all seven planet candidates orbiting $\\lesssim 1$ AU from their host star. We perform a numerical integration of the orbits and show that the system remains stable for over 100 million years....

  12. Direct Imaging of Warm Extrasolar Planets

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different from our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that

  13. Planets and Life

    Science.gov (United States)

    Sullivan, Woodruff T., III; Baross, John

    2007-09-01

    Foreword; Preface; Contributors; Prologue; Part I. History: 1. History of astrobiological ideas W. T. Sullivan and D. Carney; 2. From exobiology to astrobiology S. J. Dick; Part II. The Physical Stage: 3. Formation of Earth-like habitable planets D. E. Brownlee and M. Kress; 4. Planetary atmospheres and life D. Catling and J. F. Kasting; Part III. The Origin of Life on Earth: 5. Does 'life' have a definition? C.E. Cleland and C. F. Chyba; 6. Origin of life: crucial issues R. Shapiro; 7. Origin of proteins and nucleic acids A. Ricardo and S. A. Benner; 8. The roots of metabolism G.D. Cody and J. H. Scott; 9. Origin of cellular life D. W. Deamer; Part IV. Life on Earth: 10. Evolution: a defining feature of life J. A. Baross; 11. Evolution of metabolism and early microbial communities J. A. Leigh, D. A. Stahl and J. T. Staley; 12. The earliest records of life on Earth R. Buick; 13. The origin and diversification of eukaryotes M. L. Sogin, D. J. Patterson and A. McArthur; 14. Limits of carbon life on Earth and elsewhere J. A. Baross, J. Huber and M. Schrenk; 15. Life in ice J. W. Deming and H. Eicken; 16. The evolution and diversification of life S. Awramik and K. J. McNamara; 17. Mass extinctions P. D. Ward; Part V. Potentially Habitable Worlds: 18. Mars B. M. Jakosky, F. Westall and A. Brack; 19. Europa C. F. Chyba and C. B. Phillips; 20. Titan J. I. Lunine and B. Rizk; 21. Extrasolar planets P. Butler; Part VI. Searching for Extraterrestrial Life: 22. How to search for life on other worlds C. P. McKay; 23. Instruments and strategies for detecting extraterrestrial life P. G. Conrad; 24. Societial and ethical concerns M. S. Race; 25. Planetary protection J. D. Rummel; 26. Searching for extraterrestrial intelligence J. C. Tarter; 27. Alien biochemistries P. D. Ward and S. A. Benner; Part VII. Future of the Field: 28. Disciplinary and educational opportunities L. Wells, J. Armstrong and J. Huber; Epilogue C. F. Chyba; Appendixes: A. Units and usages; B. Planetary

  14. Detection of Extrasolar Planets by Transit Photometry

    Science.gov (United States)

    Borucki, William; Koch, David; Webster, Larry; Dunham, Edward; Witteborn, Fred; Jenkins, Jon; Caldwell, Douglas; Showen, Robert; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    technology exists to find such small planets, our group has conducted an end-to-end system test. The results of the laboratory tests are presented and show that we are ready to start the search for Earth-size planets.

  15. Stellar Activity and Exclusion of the Outer Planet in the HD 99492 System

    CERN Document Server

    Kane, Stephen R; Henry, Gregory W; Hinkel, Natalie R; Jensen, Eric L N; Boyajian, Tabetha S; Fischer, Debra A; Howard, Andrew W; Isaacson, Howard T; Wright, Jason T

    2016-01-01

    A historical problem for indirect exoplanet detection has been contending with the intrinsic variability of the host star. If the variability is periodic, it can easily mimic various exoplanet signatures, such as radial velocity variations that originate with the stellar surface rather than the presence of a planet. Here we present an update for the HD~99492 planetary system, using new radial velocity and photometric measurements from the Transit Ephemeris Refinement and Monitoring Survey (TERMS). Our extended time series and subsequent analyses of the Ca II H\\&K emission lines show that the host star has an activity cycle of $\\sim$13 years. The activity cycle correlates with the purported orbital period of the outer planet, the signature of which is thus likely due to the host star activity. We further include a revised Keplerian orbital solution for the remaining planet, along with a new transit ephemeris. Our transit-search observations were inconclusive.

  16. STELLAR ACTIVITY AND EXCLUSION OF THE OUTER PLANET IN THE HD 99492 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R.; Thirumalachari, Badrinath; Hinkel, Natalie R. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 (United States); Jensen, Eric L. N. [Dept of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081 (United States); Boyajian, Tabetha S.; Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Isaacson, Howard T. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Wright, Jason T., E-mail: skane@sfsu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2016-03-20

    A historical problem for indirect exoplanet detection has been contending with the intrinsic variability of the host star. If the variability is periodic, it can easily mimic various exoplanet signatures, such as radial velocity (RV) variations that originate with the stellar surface rather than the presence of a planet. Here we present an update for the HD 99492 planetary system, using new RV and photometric measurements from the Transit Ephemeris Refinement and Monitoring Survey. Our extended time series and subsequent analyses of the Ca ii H and K emission lines show that the host star has an activity cycle of ∼13 years. The activity cycle correlates with the purported orbital period of the outer planet, the signature of which is thus likely due to the host star activity. We further include a revised Keplerian orbital solution for the remaining planet, along with a new transit ephemeris. Our transit-search observations were inconclusive.

  17. Medical literature search practice in paediatric junior medical staff: a questionnaire survey.

    Science.gov (United States)

    Shirkhedkar, P; Day, A S

    2008-03-01

    With increasing medical knowledge and emphasis upon evidence-based medicine, it is essential for practitioners to have optimal literature searching skills. There are limited data regarding the use of online information retrieval (IR) systems by paediatric junior medical officers (JMO). The aims of this questionnaire-based study of a group of JMO were to assess the accessibility, frequency of use and preferences for electronic information resources, and to ascertain their perceived adequacy of training and expertise in online searching. Questionnaires were distributed to 319 JMO at two Australian children's hospitals. A total of 106 questionnaires were returned (33.2% response rate). Twenty-four-hour access to electronic medical databases was available to almost 90% of respondents at work or home. Five or less online searches per month were performed by 53.7% of respondents. Previous formal training in database searching was reported by 72.4% of respondents, but over half felt it had been inadequate. Most JMO (91.5%) acknowledged a need for further training in search skills. In spite of widespread availability of online resources, use of these resources was sub-optimal in this group of trainee doctors. Most respondents reported a need for further training in electronic searching. Continuing targeted education in electronic database searching is required to ensure that future doctors develop skills to ensure optimal use of medical literature.

  18. Extrasolar Giant Planets and X-ray Activity

    CERN Document Server

    Kashyap, Vinay L; Saar, Steven H

    2008-01-01

    We have carried out a survey of X-ray emission from stars with giant planets, combining both archival and targeted surveys. Over 230 stars have been currently identified as possessing planets, and roughly a third of these have been detected in X-rays. We carry out detailed statistical analysis on a volume limited sample of main sequence star systems with detected planets, comparing subsamples of stars that have close-in planets with stars that have more distant planets. This analysis reveals strong evidence that stars with close-in giant planets are on average more X-ray active by a factor ~4 than those with planets that are more distant. This result persists for various sample selections. We find that even after accounting for observational sample bias, a significant residual difference still remains. This observational result is consistent with the hypothesis that giant planets in close proximity to the primary stars influences the stellar magnetic activity.

  19. Can Investors Save The Planet?

    Institute of Scientific and Technical Information of China (English)

    MATTHEW PLOWRIGHT

    2008-01-01

    @@ The zoo people packed into a smart function room in Beijing's Kerry Center Hotel did not,at first glance,seem likely candidates to save the planet.The men were decked out in tailored suits and expensive leather shoes; the women wore clicking high heels and twirled designer handbags.Most were venture capitalists,or entrepreneurs searching for seed capital for their new start-ups.The conversation was all about IPOs and profitable exits.

  20. Expected Detection and False Alarm Rates for Transiting Jovian Planets

    CERN Document Server

    Brown, T M

    2003-01-01

    Ground-based searches for transiting Jupiter-sized planets have so far produced few detections of planets, but many of stellar systems with eclipse depths, durations, and orbital periods that resemble those expected from planets. I show that these detection rates are consistent with our present knowledge of binary and multiple-star systems, and of Jovian-mass extrasolar planets. Upcoming space-based searches for transiting Earth-sized planets will be largely unaffected by the sources of false alarms that afflict current ground-based searches, with one exception, namely distant eclipsing binaries whose light is strongly diluted by that of a foreground star. A byproduct of the rate estimation is evidence that the period distribution of extrasolar planets is depressed for periods between 5 and 200 days.

  1. On the Abundance of Circumbinary Planets

    CERN Document Server

    Armstrong, D J; Brown, D; Faedi, F; Chew, Y Gómez Maqueo; Martin, D; Pollacco, D; Udry, S

    2014-01-01

    Circumbinary planets have been the subject of much recent work, providing both simulations and new discoveries. We present the first observationally based determination of the rate of occurrence of these planets. This is derived from the publicly available Kepler data, using an automated search algorithm and debiasing process to produce occurrence rates implied by the seven systems already known. These rates depend critically on the planetary inclination distribution: if circumbinary planets are preferentially coplanar with their host binaries, as has been suggested, then the rate of occurrence of planets with $R_p>6R_\\oplus$ orbiting with $P_p}10R_\\oplus$) are significantly less common in circumbinary orbits than their smaller siblings, and confirm that the proposed shortfall of circumbinary planets orbiting the shorter period binaries in the Kepler sample is a real effect.

  2. Search Patterns

    CERN Document Server

    Morville, Peter

    2010-01-01

    What people are saying about Search Patterns "Search Patterns is a delight to read -- very thoughtful and thought provoking. It's the most comprehensive survey of designing effective search experiences I've seen." --Irene Au, Director of User Experience, Google "I love this book! Thanks to Peter and Jeffery, I now know that search (yes, boring old yucky who cares search) is one of the coolest ways around of looking at the world." --Dan Roam, author, The Back of the Napkin (Portfolio Hardcover) "Search Patterns is a playful guide to the practical concerns of search interface design. It cont

  3. A photometric survey for Lyalpha-HeII dual emitters: Searching for Population III stars in high-redshift galaxies

    CERN Document Server

    Nagao, Tohru; Maiolino, Roberto; Grady, Celestine; Kashikawa, Nobunari; Ly, Chun; Malkan, Matthew; Motohara, Kentaro; Murayama, Takashi; Schaerer, Daniel; Shioya, Yasuhiro; Taniguchi, Yoshiaki

    2008-01-01

    We present a new photometric search for high-z galaxies hosting Population III (PopIII) stars based on deep intermediate-band imaging observations obtained in the Subaru Deep Field (SDF), by using Suprime-Cam on the Subaru Telescope. By combining our new data with the existing broad-band and narrow-band data, we searched for galaxies which emit strongly both in Ly_alpha and in HeII 1640 (``dual emitters'') that are promising candidates for PopIII-hosting galaxies, at 3.93 2 Msun/yr was found by our photometric search in 4.03 x 10^5 Mpc^3 in the SDF. This result disfavors low feedback models for PopIII star clusters, and implies an upper-limit of the PopIII SFR density of SFRD_PopIII < 5 x 10^-6 Msun/yr/Mpc^3. This new selection method to search for PopIII-hosting galaxies should be useful in future narrow-band surveys to achieve the first observational detection of PopIII-hosting galaxies at high redshifts.

  4. A Planet Found by Pulsations

    Science.gov (United States)

    Kohler, Susanna

    2016-10-01

    Searching for planets around very hot stars is much more challenging than looking around cool stars. For this reason, the recent discovery of a planet around a main-sequence A star is an important find both because of its unique position near the stars habitable zone, and because of the way in which the planet was discovered.Challenges in VariabilityIn the past three decades, weve discovered thousands of exoplanets yet most of them have been found around cool stars (like M dwarfs) or moderate stars (like G stars like our Sun). Very few of the planets that weve found orbit hot stars; in fact, weve only discovered ~20 planets orbiting the very hot, main-sequence A stars.The instability strip, indicated on an H-R diagram. Stellar classification types are listed across the bottom of the diagram. Many main-sequence A stars reside in the instability strip. [Rursus]Why is this? We dont expect that main-sequence A stars host fewer planets than cooler stars. Instead, its primarily because the two main techniques that we use to find planets namely, transits and radial velocity cant be used as effectively on the main-sequence A stars that are most likely to host planets, because the luminosities of these stars are often variable.These stars can lie on whats known as the classical instability strip in the Herzsprung-Russell diagram. Such variable stars pulsate due to changes in the ionization state of atoms deep in their interiors, which causes the stars to puff up and then collapse back inward. For variable main-sequence A stars, the periods for these pulsations can be several to several tens of times per day.These very pulsations that make transits and radial-velocity measurements so difficult, however, can potentially be used to detect planets in a different way. Led by Simon Murphy (University of Sydney, Australia and Aarhus University, Denmark), a team of scientists has recently detected the first planet ever to be discovered around a main-sequence A star from the timing

  5. PSF subtraction to search for distant Jupiters with SPITZER

    Science.gov (United States)

    Rameau, Julien; Artigau, Etienne; Baron, Frédérique; Lafrenière, David; Doyon, Rene; Malo, Lison; Naud, Marie-Eve; Delorme, Philippe; Janson, Markus; Albert, Loic; Gagné, Jonathan; Beichman, Charles

    2015-12-01

    In the course of the search for extrasolar planets, a focus has been made towards rocky planets very close (within few AUs) to their parent stars. However, planetary systems might host gas giants as well, possibly at larger separation from the central star. Direct imaging is the only technique able to probe the outer part of planetary systems. With the advent of the new generation of planet finders like GPI and SPHERE, extrasolar systems are now studied at the solar system scale. Nevertheless, very extended planetary systems do exist and have been found (Gu Ps, AB Pic b, etc.). They are easier to detect and characterize. They are also excellent proxy for close-in gas giants that are detected from the ground. These planets have no equivalent in our solar system and their origin remain a matter of speculation. In this sense, studying planetary systems from its innermost to its outermost part is therefore mandatory to have a clear understanding of its architecture, hence hints of its formation and evolution. We are carrying out a space-based survey using SPITZER to search for distant companions around a well-characterized sample of 120 young and nearby stars. We designed an observing strategy that allows building a very homogeneous PSF library. With this library, we perform a PSF subtraction to search for planets from 10’’ down to 1’’. In this poster, I will present the library, the different algorithms used to subtract the PSF, and the promising detection sensitivity that we are able to reach with this survey. This project to search for the most extreme planetary systems is unique in the exoplanet community. It is also the only realistic mean of directly imaging and subsequently obtaining spectroscopy of young Saturn or Jupiter mass planets in the JWST-era.

  6. The search for free particles with fractional charge;Experimental survey and new results.

    Science.gov (United States)

    Halyo, Valerie; Kim, Peter; Lee, Eric R.; Lee, Irwin T.; Loomba, Dinesh; Perl, Martin L.

    2000-04-01

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--- about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71×10-22 particles per nucleon with 95% confidence.

  7. Searching for Gas Giant Planets on Solar System Scales: VLT NACO/APP Observations of the Debris Disk Host Stars HD172555 and HD115892

    CERN Document Server

    Quanz, Sascha P; Meyer, Michael R; Girard, Julien H V; Kasper, Markus

    2011-01-01

    Using the APP coronagraph of VLT/NACO we searched for planetary mass companions around HD115892 and HD172555 in the thermal infrared at 4 micron. Both objects harbor unusually luminous debris disks for their age and it has been suggested that small dust grains were produced recently in transient events (e.g., a collision) in these systems. Such a collision of planetesimals or protoplanets could have been dynamically triggered by yet unseen companions. We did not detect any companions in our images but derived the following detection limits: For both objects we would have detected companions with apparent magnitudes between ~13.2-14.1 mag at angular separations between 0.4- 1.0" at the 5-sigma level. For HD115892 we were sensitive to companions with 12.1 mag even at 0.3". Using theoretical models these magnitudes are converted into mass limits. For HD115892 we would have detected objects with 10-15 M_Jup at angular separations between 0.4-1.0" (7-18 AU). At 0.3" (~5.5 AU) the detection limit was ~25 M_Jup. For...

  8. SDSS-III MARVELS Planet Candidate RV Follow-up

    Science.gov (United States)

    Ge, Jian; Thomas, Neil; Ma, Bo; Li, Rui; SIthajan, Sirinrat

    2014-02-01

    Planetary systems, discovered by the radial velocity (RV) surveys, reveal strong correlations between the planet frequency and stellar properties, such as metallicity and mass, and a greater diversity in planets than found in the solar system. However, due to the sample sizes of extant surveys (~100 to a few hundreds of stars) and their heterogeneity, many key questions remained to be addressed: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate- mass stars and binaries? Is the ``planet desert'' within 0.6 AU in the planet orbital distribution of intermediate-mass stars real? The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars. The latest data pipeline effort at UF has been able to remove long term systematic errors suffered in the earlier data pipeline. 18 high confident giant planet candidates have been identified among newly processed data. We propose to follow up these giant planet candidates with the KPNO EXPERT instrument to confirm the detection and also characterize their orbits. The confirmed planets will be used to measure occurrence rates, distributions and multiplicity of giants planets around F,G,K stars with a broad range of mass (~0.6-2.5 M_⊙) and metallicity ([Fe/H]~-1.5-0.5). The well defined MARVELS survey cadence allows robust determinations of completeness limits for rigorously testing giant planet formation theories and constraining models.

  9. Volatiles and refratories in solar analogs: no terrestial planet connection

    OpenAIRE

    Hernandez, J. I. Gonzalez; Israelian, G.; Santos,N.C.; Sousa, S.; Delgado-Mena, E.; Neves, V.; Udry, S.

    2010-01-01

    We have analysed very high-quality HARPS and UVES spectra of 95 solar analogs, 24 hosting planets and 71 without detected planets, to search for any possible signature of terrestial planets in the chemical abundances of volatile and refractory elements with respect to the solar abundances. We demonstrate that stars with and without planets in this sample show similar mean abundance ratios, in particular, a sub-sample of 14 planet-host and 14 "single" solar analogs in the metallicity range 0.14

  10. Selection constraints on high-redshift quasar searches in the VISTA Kilo-degree Infrared Galaxy survey

    Science.gov (United States)

    Findlay, J. R.; Sutherland, W. J.; Venemans, B. P.; Reylé, C.; Robin, A. C.; Bonfield, D. G.; Bruce, V. A.; Jarvis, M. J.

    2012-02-01

    The European Southern Observatory's (ESO) Visible and Infrared Survey Telescope for Astronomy (VISTA) is a 4-m class survey telescope for wide-field near-infrared imaging. VISTA is currently running a suite of six public surveys, which will shortly deliver their first Europe wide public data releases to ESO. The VISTA Kilo-degree Infrared Galaxy survey (VIKING) forms a natural intermediate between current wide shallow and deeper more concentrated surveys, by targeting two patches totalling 1500 deg2 in the Northern and Southern hemispheres with measured 5σ limiting depths of Z≃ 22.4, Y≃ 21.4, J≃ 20.9, H≃ 19.9 and Ks≃ 19.3 (Vega). This architecture forms an ideal working parameter space for the discovery of a significant sample of 6.5 ≤ z ≤ 7.5 quasars. In the first data release, priority has been placed on small areas encompassing a number of fields well sampled at many wavelengths, thereby optimizing science gains and synergy whilst ensuring a timely release of the first products. For rare object searches, e.g. high-z quasars, this policy is not ideal since photometric selection strategies generally evolve considerably with the acquisition of data. Without a reasonably representative data set sampling many directions on the sky, it is not clear how a rare object search can be conducted in a highly complete and efficient manner. In this paper, we alleviate this problem by supplementing initial data with a realistic model of the spatial, luminosity and colour distributions of sources known to heavily contaminate photometric quasar selection spaces, namely dwarf stars of spectral types M, L and T. We use this model along with a subset of available data to investigate contamination of quasar selection space by cool stars and galaxies and lay down a set of benchmark selection constraints that limit contamination to reasonable levels whilst maintaining high completeness as a function of both magnitude and redshift. We review recent follow-up imaging of

  11. Discovery of a warm, dusty giant planet around HIP 65426

    Science.gov (United States)

    Chauvin, G.; Desidera, S.; Lagrange, A.-M.; Vigan, A.; Gratton, R.; Langlois, M.; Bonnefoy, M.; Beuzit, J.-L.; Feldt, M.; Mouillet, D.; Meyer, M.; Cheetham, A.; Biller, B.; Boccaletti, A.; D'Orazi, V.; Galicher, R.; Hagelberg, J.; Maire, A.-L.; Mesa, D.; Olofsson, J.; Samland, M.; Schmidt, T. O. B.; Sissa, E.; Bonavita, M.; Charnay, B.; Cudel, M.; Daemgen, S.; Delorme, P.; Janin-Potiron, P.; Janson, M.; Keppler, M.; Le Coroller, H.; Ligi, R.; Marleau, G. D.; Messina, S.; Mollière, P.; Mordasini, C.; Müller, A.; Peretti, S.; Perrot, C.; Rodet, L.; Rouan, D.; Zurlo, A.; Dominik, C.; Henning, T.; Menard, F.; Schmid, H.-M.; Turatto, M.; Udry, S.; Vakili, F.; Abe, L.; Antichi, J.; Baruffolo, A.; Baudoz, P.; Baudrand, J.; Blanchard, P.; Bazzon, A.; Buey, T.; Carbillet, M.; Carle, M.; Charton, J.; Cascone, E.; Claudi, R.; Costille, A.; Deboulbe, A.; De Caprio, V.; Dohlen, K.; Fantinel, D.; Feautrier, P.; Fusco, T.; Gigan, P.; Giro, E.; Gisler, D.; Gluck, L.; Hubin, N.; Hugot, E.; Jaquet, M.; Kasper, M.; Madec, F.; Magnard, Y.; Martinez, P.; Maurel, D.; Le Mignant, D.; Möller-Nilsson, O.; Llored, M.; Moulin, T.; Origné, A.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Puget, P.; Rabou, P.; Ramos, J.; Rigal, R.; Rochat, S.; Roelfsema, R.; Rousset, G.; Roux, A.; Salasnich, B.; Sauvage, J.-F.; Sevin, A.; Soenke, C.; Stadler, E.; Suarez, M.; Weber, L.; Wildi, F.; Antoniucci, S.; Augereau, J.-C.; Baudino, J.-L.; Brandner, W.; Engler, N.; Girard, J.; Gry, C.; Kral, Q.; Kopytova, T.; Lagadec, E.; Milli, J.; Moutou, C.; Schlieder, J.; Szulágyi, J.; Thalmann, C.; Wahhaj, Z.

    2017-09-01

    Aims: The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories. Methods: We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the 17 Myr old Lower Centaurus-Crux association. Results: At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 μm indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 MJup, Teff = 1300-1600 K and R = 1.5 ± 0.1 RJup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log (g) = 4.0-5.0 with smaller radii (1.0-1.3 RJup). Conclusions: Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution. Based on observations collected at La Silla

  12. Transiting Planets with LSST I: Potential for LSST Exoplanet Detection

    CERN Document Server

    Lund, Michael B; Stassun, Keivan G

    2014-01-01

    The Large Synoptic Survey Telescope (LSST) has been designed in order to satisfy several different scientific objectives that can be addressed by a ten-year synoptic sky survey. However, LSST will also provide a large amount of data that can then be exploited for additional science beyond its primary goals. We demonstrate the potential of using LSST data to search for transiting exoplanets, and in particular to find planets orbiting host stars that are members of stellar populations that have been less thoroughly probed by current exoplanet surveys. We find that existing algorithms can detect in simulated LSST light curves the transits of Hot Jupiters around solar-type stars, Hot Neptunes around K dwarfs, and planets orbiting stars in the Large Magellanic Cloud. We also show that LSST would have the sensitivity to potentially detect Super-Earths orbiting red dwarfs, including those in habitable zone orbits, if they are present in some fields that LSST will observe. From these results, we make the case that LS...

  13. Can CMB Experiments Find Planet Nine?

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Recent studies have identified signs of an unseen, distant ninth planet in our solar system. How might we find the elusive Planet Nine? A team of scientists suggests the key might be cosmology experiments.AHypothetical PlanetOrbits of six distant Kuiper-belt objects. Their clustered perihelia and orbital orientations suggest they may have been shepherded by a massive object, hypothesized to be Planet Nine. [Caltech/Robert Hurt]Early this year, a study was published that demonstrated that the clustered orbits of distant Kuiper belt objects (and several other features of our solar system) can be explained by the gravitational tug of a yet-undiscovered planet. This hypothetical Planet Nine is predicted to be a giant planet similar to Neptune or Uranus, with a mass of more than ~10 Earthmasses, currently orbiting ~700 AU away.In a recent study, a team of scientists led by Nicolas Cowan (McGill University in Canada) has estimated the blackbody emission expected from Planet Nine. The team proposes how we might be able to search for this distant body using its heat signature.Heat from an Icy WorldCowan and collaborators first estimate Planet Nines effective temperature, based on the solar flux received at ~700 AU and assuming its internal heating is similar to Uranus or Neptune. They find that Planet Nines effective temperature would likely be an icy ~3050 K, corresponding to a blackbody peak at 50100 micrometers.Search space for Planet Nine. Based on its millimeter flux and annual parallax motion, several current and future cosmology experiments may be able to detect it. Experiments resolution ranges are shown with blue boxes. [Cowan et al. 2016]How can we detect an object withemission that peaks in this range? Intriguingly, cosmology experiments monitoring the cosmic microwave background (CMB) radiation are optimized for millimeter flux. At a wavelength of 1mm, Cowan and collaborators estimate that Planet Nine would have a very detectable flux level of ~30 mJy. The

  14. Terrestrial Planet Finder: science overview

    Science.gov (United States)

    Unwin, Stephen C.; Beichman, C. A.

    2004-01-01

    The Terrestrial Planet Finder (TPF) seeks to revolutionize our understanding of humanity's place in the universe - by searching for Earth-like planets using reflected light, or thermal emission in the mid-infrared. Direct detection implies that TPF must separate planet light from glare of the nearby star, a technical challenge which has only in recent years been recognized as surmountable. TPF will obtain a low-resolution spectra of each planets it detects, providing some of its basic physical characteristics and its main atmospheric constituents, thereby allowing us to assess the likelihood that habitable conditions exist there. NASA has decided the scientific importance of this research is so high that TPF will be pursued as two complementary space observatories: a visible-light coronagraph and a mid-infrared formation flying interferometer. The combination of spectra from both wavebands is much more valuable than either taken separately, and it will allow a much fuller understanding of the wide diversity of planetary atmospheres that may be expected to exist. Measurements across a broad wavelength range will yield not only physical properties such as size and albedo, but will also serve as the foundations of a reliable and robust assessment of habitability and the presence of life.

  15. Discovery of Two Jovian Planet Candidates Around AU Mic

    Science.gov (United States)

    Plavchan, Peter; Gao, Peter; Gagne, Jonathan; Tanner, Angelle M.; Furlan, Elise; Brinkworth, Carolyn; von Braun, Kaspar; Ciardi, David R.; Kane, Stephen R.; White, Russel; Johnson, John A.; Hall, Ryan; Giddens, Frank; Zilberman, Perri; Huber, Joe; Nishimoto, America; Cancino, Andrew; Weigand, Denise; Klenke, Christopher

    2017-01-01

    We present a pair of candidate Jovian exoplanets discovered with the radial velocity (RV) technique in the near-infrared (NIR) orbiting the young M dwarf star AU Mic (a ~ 0.3 and 3.5 AU; M_p ~ 1.5 and 6 M_J). Data were obtained at 2.3 microns from 2010-2016 with the R=46,000 CSHELL spectrograph at the NASA Infrared Telescope Facility, and from 2005-2007 with the R=25,000 NIRSPEC spectrograph at the Keck Observatory. AU Mic possesses long-lived BY Draconis type polar starspots with a known rotation period of 4.865 days. No signal in the NIR RVs is identified that is consistent with the rotation period of the star, but stellar activity remains a possible explanation for the observed NIR RV variability. The outer Jovian planet candidate offers a plausible dynamical explanation for the observed debris disk dynamics of moving "clumps" on several year time-scales. It may be possible to directly image the outer planet candidate with the current generation of high contrast imaging instruments. If confirmed, this discovery would demonstrate the utility of RV precursor observations for informing direct imaging surveys and the utility of NIR RV searches for planets around young and/or active stars. These results also point to the promise of future NIR precise RVs, including iSHELL, SPIRou, HPF and CARMENES, which will operate at higher precision and with larger spectral grasp than CSHELL.

  16. Extent of pollution in planet-bearing stars

    CERN Document Server

    Li, S -L; Liu, X -W

    2008-01-01

    (abridged) Search for planets around main-sequence (MS) stars more massive than the Sun is hindered by their hot and rapidly spinning atmospheres. This obstacle has been sidestepped by radial-velocity surveys of those stars on their post-MS evolutionary track (G sub-giant and giant stars). Preliminary observational findings suggest a deficiency of short-period hot Jupiters around the observed post MS stars, although the total fraction of them with known planets appears to increase with their mass. Here we consider the possibility that some very close- in gas giants or a population of rocky planets may have either undergone orbital decay or been engulfed by the expanding envelope of their intermediate-mass host stars. If such events occur during or shortly after those stars' main sequence evolution when their convection zone remains relatively shallow, their surface metallicity can be significantly enhanced by the consumption of one or more gas giants. We show that stars with enriched veneer and lower-metallic...

  17. The Einstein@Home Gamma-ray Pulsar Survey. I. Search Methods, Sensitivity and Discovery of New Young Gamma-ray Pulsars

    OpenAIRE

    Clark, C J; Wu, J.; Pletsch, H. J.; Guillemot, L.; Allen, B.; Aulbert, C.; Beer, C; Bock, O.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Kramer, M.; Machenschalk, B.; Nieder, L.

    2016-01-01

    We report on the results of a recent blind search survey for gamma-ray pulsars in Fermi Large Area Telescope (LAT) data being carried out on the distributed volunteer computing system, Einstein@Home. The survey has searched for pulsations in 118 unidentified pulsar-like sources, requiring about 10,000 years of CPU core time. In total, this survey has resulted in the discovery of 17 new gamma-ray pulsars, of which 13 are newly reported in this work, and an accompanying paper. These pulsars are...

  18. The Sloan Digital Sky Survey Quasar Lens Search. IV. Statistical Lens Sample from the Fifth Data Release

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Naohisa; /Wako, RIKEN /Tokyo U., ICEPP; Oguri, Masamune; /Natl. Astron. Observ. of Japan /Stanford U., Phys. Dept.; Shin, Min-Su; /Michigan U. /Princeton U. Observ.; Kayo, Issha; /Tokyo U., ICRR; Strauss, Michael A.; /Princeton U. Observ.; Hennawi, Joseph F.; /UC, Berkeley /Heidelberg, Max Planck Inst. Astron.; Morokuma, Tomoki; /Natl. Astron. Observ. of Japan; Becker, Robert H.; /LLNL, Livermore /UC, Davis; White, Richard L.; /Baltimore, Space Telescope Sci.; Kochanek, Christopher S.; /Ohio State U.; Gregg, Michael D.; /LLNL, Livermore /UC, Davis /Exeter U.

    2010-05-01

    We present the second report of our systematic search for strongly lensed quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive follow-up observations of 136 candidate objects, we find 36 lenses in the full sample of 77,429 spectroscopically confirmed quasars in the SDSS Data Release 5. We then define a complete sample of 19 lenses, including 11 from our previous search in the SDSS Data Release 3, from the sample of 36,287 quasars with i < 19.1 in the redshift range 0.6 < z < 2.2, where we require the lenses to have image separations of 1 < {theta} < 20 and i-band magnitude differences between the two images smaller than 1.25 mag. Among the 19 lensed quasars, 3 have quadruple-image configurations, while the remaining 16 show double images. This lens sample constrains the cosmological constant to be {Omega}{sub {Lambda}} = 0.84{sub -0.08}{sup +0.06}(stat.){sub -0.07}{sup + 0.09}(syst.) assuming a flat universe, which is in good agreement with other cosmological observations. We also report the discoveries of 7 binary quasars with separations ranging from 1.1 to 16.6, which are identified in the course of our lens survey. This study concludes the construction of our statistical lens sample in the full SDSS-I data set.

  19. The High Time Resolution Universe Pulsar Survey XII : Galactic plane acceleration search and the discovery of 60 pulsars

    CERN Document Server

    Ng, C; Bailes, M; Barr, E D; Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; Flynn, C M L; Jameson, A; Johnston, S; Keith, M J; Kramer, M; Levin, L; Petroff, E; Possenti, A; Stappers, B W; van Straten, W; Tiburzi, C; Eatough, R P; Lyne, A G

    2015-01-01

    We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ~0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have re-detected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD)...

  20. Selection constraints on high redshift quasar searches in the VISTA kilo-degree infrared galaxy survey

    CERN Document Server

    Findlay, J R; Venemans, B P; Reyle, C; Robin, A C; Bonfield, D G; Bruce, V A; Jarvis, M J

    2011-01-01

    The European Southern Observatory's (ESO) Visible and Infrared Survey Telescope for Astronomy (VISTA) is a 4-m class survey telescope for wide-field near-infrared imaging. VISTA is currently running a suite of six public surveys, which will shortly deliver their first Europe wide public data releases to ESO. The VISTA Kilo-degree Infrared Galaxy Survey (VIKING) forms a natural intermediate between current wide shallow, and deeper more concentrated surveys, by targeting two patches totalling 1500 sq.deg in the northern and southern hemispheres with measured 5-sigma limiting depths of Z ~ 22.4, Y ~ 21.4, J ~ 20.9, H ~ 19.9 and Ks ~19.3 (Vega). This architecture forms an ideal working parameter space for the discovery of a significant sample of 6.5 <= z <= 7.5 quasars. In the first data release priority has been placed on small areas encompassing a number of fields well sampled at many wavelengths, thereby optimising science gains and synergy whilst ensuring a timely release of the first products. For rare...

  1. UCAC4 Nearby Star Survey: A Search for Our Stellar Neighbors

    Science.gov (United States)

    2014-12-01

    the Sun. A sample of nearby stars with accurate trigonometric parallaxes from the Research Consortium On Nearby Stars is used to generate a set of 16...stars is required to determine accurate stellar luminosity and mass functions in the solar neighborhood, and is vital to our understanding of the...of the photometric color–MKs relations that incorporate BVgriJHKs photometry and high-quality trigonometric parallaxes. We outline the search for

  2. Creatures on Other Planets

    Institute of Scientific and Technical Information of China (English)

    罗汉中; 张静

    2000-01-01

    People often discuss whether there are creatures on other planets .Some people say “yes” while others say “no” This is because they haven't seen any real creatures or flying objects from other planets.

  3. Barnard’s Star: Planets or Pretense

    Science.gov (United States)

    Bartlett, Jennifer L.; Ianna, P. A.

    2014-01-01

    Barnard’s Star remains popular with planet hunters because it is not only an extremely near, high proper motion star, but also the object of early planet-detection claims. In 1963, van de Kamp explained perturbations in its proper motion by the presence of a planet. In 1969, he produced another single-planet solution and a two-planet solution to the astrometric wobbles detected. At least 19 studies have failed to confirm his results using a range of techniques, including radial velocity, direct imaging, and speckle interferometry. However, most of them lacked the sensitivity to detect the planets he described, including astrometric studies at the McCormick and Naval Observatories. However, radial-velocity monitoring of Barnard’s Star at Lick and Keck Observatories from 1987 through 2012 appears to have ruled out such planets. Based upon observations made at the Sproul Observatory between 1916 and 1962, van de Kamp claimed that Barnard’s Star had a planet with about 1.6 times the mass of Jupiter and an orbital period of 24 years. After accounting for instrumentation effects that might have been partially responsible for his initial results, he continued to assert that this red dwarf had two planets. In his 1982 analysis of ~20,000 exposures collected between 1938 and 1981, he calculated that two planets with 0.7- and 0.5-Jupiter masses in 12- and 20-year orbits, respectively, orbited the second-closest stellar system to our own. Starting in 1995, the dramatic successes of radial velocity searches for extrasolar planets drove van de Kamp’s unsubstantiated claims from popular consciousness. Although many low-mass stellar companions were discovered through astrometry, the technique has been less successful for planets: “The Extrasolar Planets Encyclopaedia” identifies one such discovery out of the 997 planets listed on 2013 September 23. Although Barnard’s Star has lost its pretensions to hosting the first extrasolar planets known, its intrinsic

  4. A search for Lyman Break Galaxies at z>8 in the NICMOS Parallel Imaging Survey

    CERN Document Server

    Henry, A L; Colbert, J W; Siana, B; Teplitz, H I; McCarthy, P; Yan, L; Henry, Alaina L.; Malkan, Matthew A.; Colbert, James W.; Siana, Brian; Teplitz, Harry I.; Carthy, Patrick Mc

    2007-01-01

    We have selected 14 J-dropout Lyman Break Galaxy (LBG) candidates with J110 - H160 > 2.5 from the NICMOS Parallel Imaging Survey. This survey consists of 135 square arcminutes of imaging in 228 independent sight lines, reaching average 5 sigma sensitivities of J110 = 25.8 and H160 = 25.6 (AB). Distinguishing these candidates from dust reddened star forming galaxies at z ~ 2-3 is difficult, and will require longer wavelength observations. We consider the likelihood that any J-dropout LBGs exist in this survey, and find that if L*(z=9.5) is significantly brighter than L*(z=6) (a factor of four), then a few J-dropout LBGs are likely. A similar increase in luminosity has been suggested by Eyles et al. and Yan et al., but the magnitude of this increase is uncertain.

  5. STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun; Abbot, Dorian S. [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States); Cowan, Nicolas B., E-mail: abbot@uchicago.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States)

    2013-07-10

    The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.

  6. Kinematics of planet-host stars and their relation with dynamical streams in the solar neighbourhood

    CERN Document Server

    Ecuvillon, A; Pont, F; Santos, N C; Mayor, M

    2006-01-01

    We present a detailed study on the kinematics of metal-rich stars with and without planets, and their relation with the Hyades, Sirius and Hercules dynamical streams in the solar neighbourhood. Accurate kinematics have been derived for all the stars belonging to the CORALIE planet search survey. We used precise radial velocity measurements and CCF parameters from the CORALIE database, and parallaxes, photometry and proper motions from the HIPPARCOS and Tycho-2 catalogues. The location of stars with planets in the thin or thick discs has been analysed using both kinematic and chemical constraints. We compare the kinematic behaviour of known planet-host stars to the remaining targets belonging to the volume-limited sample, in particular to its metal-rich population. The high average metallicity of the Hyades stream is confirmed. The planet-host targets show a kinematic behaviour similar to that of the metal-rich comparison subsample, rather than to that of the comparison sample as a whole, thus supporting a pri...

  7. Naming the extrasolar planets

    CERN Document Server

    Lyra, W

    2009-01-01

    Extrasolar planets are not named and are referred to only by their assigned scientific designation. The reason given by the IAU to not name the planets is that it is considered impractical as planets are expected to be common. I advance some reasons as to why this logic is flawed, and suggest names for the 403 extrasolar planet candidates known as of Oct 2009, based on the continued tradition of na