WorldWideScience

Sample records for plane-wave born approximation

  1. Correction of the near threshold behavior of electron collisional excitation cross-sections in the plane-wave Born approximation

    Science.gov (United States)

    Kilcrease, D. P.; Brookes, S.

    2013-12-01

    The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. A simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure for the Born cross-sections that employs the Elwert-Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. We also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.

  2. Scattering of plane waves by rough surfaces in the sense of Born approximation

    OpenAIRE

    Arnold, Thomas

    2014-01-01

    Das Thema dieser Arbeit ist die Streuung elektromagnetischer ebener Wellen an rauen Oberflächen, also an ebenen Oberflächen mit glatten und beschränkten Störungen. Darüber hinaus wird ein kleiner Kontrast der Materialkonstanten zwischen dem Deckmaterial und dem Material unter der rauen Oberfläche angenommen. Unter diesen Voraussetzungen wird ein Fernfeld-Formel für das gestreute Feld mit Hilfe von Born-Approximation und Fourier-Techniken hergeleitet. Dieser Ansatz basiert auf einer Modifikati...

  3. Quantum scattering beyond the plane-wave approximation

    Science.gov (United States)

    Karlovets, Dmitry

    2017-12-01

    While a plane-wave approximation in high-energy physics works well in a majority of practical cases, it becomes inapplicable for scattering of the vortex particles carrying orbital angular momentum, of Airy beams, of the so-called Schrödinger cat states, and their generalizations. Such quantum states of photons, electrons and neutrons have been generated experimentally in recent years, opening up new perspectives in quantum optics, electron microscopy, particle physics, and so forth. Here we discuss the non-plane-wave effects in scattering brought about by the novel quantum numbers of these wave packets. For the well-focused electrons of intermediate energies, already available at electron microscopes, the corresponding contribution can surpass that of the radiative corrections. Moreover, collisions of the cat-like superpositions of such focused beams with atoms allow one to probe effects of the quantum interference, which have never played any role in particle scattering.

  4. Dirac particle in a plane wave field and the semi-classical approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bourouaine, S. [Department of Physics, Faculty of Sciences, Mentouri University, Constantine (Algeria)

    2005-04-01

    In this paper we investigate the influence of photon represented by plane wave field on Dirac particle in the context of path integral approach given by Fradkin and Gitman formalism. In our case, although the action relative to Dirac particle in plane wave field seems to be non quadratic, the result obtained by semi-classical approach is the same as that found by an exact calculation. Hence; when we add the plane wave field to any quadratic actions related to Fradkin and Gitman approach, the total action behaves like quadratic. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  5. Dirac particle in a plane wave field and the semi-classical approximation

    International Nuclear Information System (INIS)

    Bourouaine, S.

    2005-01-01

    In this paper we investigate the influence of photon represented by plane wave field on Dirac particle in the context of path integral approach given by Fradkin and Gitman formalism. In our case, although the action relative to Dirac particle in plane wave field seems to be non quadratic, the result obtained by semi-classical approach is the same as that found by an exact calculation. Hence; when we add the plane wave field to any quadratic actions related to Fradkin and Gitman approach, the total action behaves like quadratic. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  6. Simulation of angle-resolved photoemission spectra by approximating the final state by a plane wave: From graphene to polycyclic aromatic hydrocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Puschnig, Peter, E-mail: peter.puschnig@uni-graz.at; Lüftner, Daniel

    2015-04-15

    Highlights: • Computational study on angular dependent photoemission spectroscopy. • Graphene and polycyclic aromatic hydrocarbon molecules. • Plane wave final state approximation accounts for experimental findings. - Abstract: We present a computational study on the angular-resolved photoemission spectra (ARPES) from a number of polycyclic aromatic hydrocarbons and graphene. Our theoretical approach is based on ab-initio density functional theory and the one-step model where we greatly simplify the evaluation of the matrix element by assuming a plane wave for the final state. Before comparing our ARPES simulations with available experimental data, we discuss how typical approximations for the exchange-correlation energy affect orbital energies. In particular, we show that by employing a hybrid functional, considerable improvement can be obtained over semi-local functionals in terms of band widths and relative energies of π and σ states. Our ARPES simulations for graphene show that the plane wave final state approximation provides indeed an excellent description when compared to experimental band maps and constant binding energy maps. Furthermore, our ARPES simulations for a number of polycyclic aromatic molecules from the oligo-acene, oligo-phenylene, phen-anthrene families as well as for disc-shaped molecules nicely illustrate the evolution of the electronic structure from molecules with increasing size towards graphene.

  7. Excited state nuclear forces from the Tamm-Dancoff approximation to time-dependent density functional theory within the plane wave basis set framework

    Science.gov (United States)

    Hutter, Jürg

    2003-03-01

    An efficient formulation of time-dependent linear response density functional theory for the use within the plane wave basis set framework is presented. The method avoids the transformation of the Kohn-Sham matrix into the canonical basis and references virtual orbitals only through a projection operator. Using a Lagrangian formulation nuclear derivatives of excited state energies within the Tamm-Dancoff approximation are derived. The algorithms were implemented into a pseudo potential/plane wave code and applied to the calculation of adiabatic excitation energies, optimized geometries and vibrational frequencies of three low lying states of formaldehyde. An overall good agreement with other time-dependent density functional calculations, multireference configuration interaction calculations and experimental data was found.

  8. A Sobolev-Type Upper Bound for Rates of Approximation by Linear Combinations of Heaviside Plane Waves

    Czech Academy of Sciences Publication Activity Database

    Kainen, P.C.; Kůrková, Věra; Vogt, A.

    2007-01-01

    Roč. 147, č. 1 (2007), s. 1-10 ISSN 0021-9045 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : characteristic functions of closed half-spaces * perceptron neural networks * integral formulas * variation with respect to half-spaces * Radon transform * Gaussian function * rates of approximation Subject RIV: IN - Informatics, Computer Science Impact factor: 0.697, year: 2007

  9. A finite range coupled channel Born approximation code

    International Nuclear Information System (INIS)

    Nagel, P.; Koshel, R.D.

    1978-01-01

    The computer code OUKID calculates differential cross sections for direct transfer nuclear reactions in which multistep processes, arising from strongly coupled inelastic states in both the target and residual nuclei, are possible. The code is designed for heavy ion reactions where full finite range and recoil effects are important. Distorted wave functions for the elastic and inelastic scattering are calculated by solving sets of coupled differential equations using a Matrix Numerov integration procedure. These wave functions are then expanded into bases of spherical Bessel functions by the plane-wave expansion method. This approach allows the six-dimensional integrals for the transition amplitude to be reduced to products of two one-dimensional integrals. Thus, the inelastic scattering is treated in a coupled channel formalism while the transfer process is treated in a finite range born approximation formalism. (Auth.)

  10. Fast Plane Wave Imaging

    DEFF Research Database (Denmark)

    Jensen, Jonas

    This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along...... the ultrasound beam. The first part of the contribution investigates the compromise between frame rate and plane wave image quality including the influence of grating lobes from a λ-pitch transducer. A method for optimizing the image quality is suggested, and it is shown that the frame rate can be increased...... healthy volunteers. Complex flow patterns were measured in an anthropomorphic flow phantom and showed good agreement with the velocity field simulated using computational fluid dynamics. The last part of the contribution investigates two clinical applications. Plane wave imaging was used for slow velocity...

  11. On Born approximation in black hole scattering

    Science.gov (United States)

    Batic, D.; Kelkar, N. G.; Nowakowski, M.

    2011-12-01

    A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordström and Reissner-Nordström-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes.

  12. On transparent potentials: a Born approximation study

    International Nuclear Information System (INIS)

    Coudray, C.

    1980-01-01

    In the frame of the scattering inverse problem at fixed energy, a class of potentials transparent in Born approximation is obtained. All these potentials are spherically symmetric and are oscillating functions of the reduced radial variable. Amongst them, the Born approximation of the transparent potential of the Newton-Sabatier method is found. In the same class, quasi-transparent potentials are exhibited. Very general features of potentials transparent in Born approximation are then stated. And bounds are given for the exact scattering amplitudes corresponding to most of the potentials previously exhibited. These bounds, obtained at fixed energy, and for large values of the angular momentum, are found to be independent on the energy

  13. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    International Nuclear Information System (INIS)

    Zhang, Shen; Kang, Wei; Wang, Hongwei; Zhang, Ping; He, X. T.

    2016-01-01

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  14. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shen; Kang, Wei, E-mail: weikang@pku.edu.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Wang, Hongwei [College of Engineering, Peking University, Beijing 100871 (China); Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); He, X. T., E-mail: xthe@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2016-04-15

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  15. Approximated solutions to Born-Infeld dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA),Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina); Nigro, Mauro [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina)

    2016-02-01

    The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.

  16. Approximated solutions to Born-Infeld dynamics

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Nigro, Mauro

    2016-01-01

    The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.

  17. Generating asymptotically plane wave spacetimes

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund

    2003-01-01

    In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line. (author)

  18. Estimation of spin contamination error in dissociative adsorption of Au2 onto MgO(0 0 1) surface: First application of approximate spin projection (AP) method to plane wave basis

    Science.gov (United States)

    Tada, Kohei; Koga, Hiroaki; Okumura, Mitsutaka; Tanaka, Shingo

    2018-06-01

    Spin contamination error in the total energy of the Au2/MgO system was estimated using the density functional theory/plane-wave scheme and approximate spin projection methods. This is the first investigation in which the errors in chemical phenomena on a periodic surface are estimated. The spin contamination error of the system was 0.06 eV. This value is smaller than that of the dissociation of Au2 in the gas phase (0.10 eV). This is because of the destabilization of the singlet spin state due to the weakening of the Au-Au interaction caused by the Au-MgO interaction.

  19. Plane waves with weak singularities

    International Nuclear Information System (INIS)

    David, Justin R.

    2003-03-01

    We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)

  20. Plane waves and spacelike infinity

    International Nuclear Information System (INIS)

    Marolf, Donald; Ross, Simon F

    2003-01-01

    In an earlier paper, we showed that the causal boundary of any homogeneous plane wave satisfying the null convergence condition consists of a single null curve. In Einstein-Hilbert gravity, this would include any homogeneous plane wave satisfying the weak null energy condition. For conformally flat plane waves such as the Penrose limit of AdS 5 x S 5 , all spacelike curves that reach infinity also end on this boundary and the completion is Hausdorff. However, the more generic case (including, e.g., the Penrose limits of AdS 4 x S 7 and AdS 7 x S 4 ) is more complicated. In one natural topology, not all spacelike curves have limit points in the causal completion, indicating the need to introduce additional points at 'spacelike infinity' - the endpoints of spacelike curves. We classify the distinct ways in which spacelike curves can approach infinity, finding a two-dimensional set of distinct limits. The dimensionality of the set of points at spacelike infinity is not, however, fixed from this argument. In an alternative topology, the causal completion is already compact, but the completion is non-Hausdorff

  1. A surprise in the first Born approximation for electron scattering

    International Nuclear Information System (INIS)

    Treacy, M.M.J.; Van Dyck, D.

    2012-01-01

    A standard textbook derivation for the scattering of electrons by a weak potential under the first Born approximation suggests that the far-field scattered wave should be in phase with the incident wave. However, it is well known that waves scattered from a weak phase object should be phase-shifted by π/2 relative to the incident wave. A disturbing consequence of this missing phase is that, according to the Optical Theorem, the total scattering cross section would be zero in the first Born approximation. We resolve this mystery pedagogically by showing that the first Born approximation fails to conserve electrons even to first order. Modifying the derivation to conserve electrons introduces the correct phase without changing the scattering amplitude. We also show that the far-field expansion for the scattered waves used in many texts is inappropriate for computing an exit wave from a sample, and that the near-field expansion also give the appropriately phase-shifted result. -- Highlights: ► The first Born approximation is usually invoked as the theoretical physical basis for kinematical electron scattering theory. ► Although it predicts the correct scattering amplitude, it predicts the wrong phase; the scattered wave is missing a prefactor of i. ► We show that this arises because the standard textbook version of the first Born approximation does not conserve electrons. ► We show how this can be fixed.

  2. A plane-wave final-state theory of ATI

    International Nuclear Information System (INIS)

    Parker, J.S.; Clark, C.W.

    1993-01-01

    A Fermi Golden Rule calculation of ionization cross-sections provides us with the simplest example of a plane-wave final-state theory. In this method the final (unbound) state is modeled as a plane wave, an approximation that generally gives best results in the high energy limit in which the affect of the atomic potential on the final state can be neglected. A cross-section is then calculated from the matrix element connecting the bound initial state with the final state. The idea of generalizing this method to model transitions among unbound states is credited to L.V. Keldysh, and a number of related formalisms have been proposed that are consistent with the general features of experimental data. Here we describe a plane-wave final-state model of ATI that is in the spirit of these theories, but differs significantly in its implementation and predictions. We will present a comparison of the predictions of the plane-wave model with those of a full numerical integration of the time-dependent Schrodinger equation for atomic hydrogen in a radiation field. The theory and the numerical integration give good qualitative agreement in their predictions of photoelectron spectra over about 14 orders of magnitude

  3. Causal inheritance in plane wave quotients

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2003-01-01

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality

  4. Causal inheritance in plane wave quotients

    Science.gov (United States)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2004-01-01

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general space-time to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave space-times. We show that all other quotients preserve stable causality.

  5. Applicability of refined Born approximation to non-linear equations

    International Nuclear Information System (INIS)

    Rayski, J.

    1990-01-01

    A computational method called ''Refined Born Approximation'', formerly applied exclusively to linear problems, is shown to be successfully applicable also to non-linear problems enabling me to compute bifurcations and other irregular solutions which cannot be obtained by the standard perturbation procedures. (author)

  6. Plane wave limits and T-duality

    International Nuclear Information System (INIS)

    Guven, R.

    2000-04-01

    The Penrose limit is generalized to show that, any leading order solution of the low-energy field equations in any one of the five string theories has a plane wave solution as a limit. This limiting procedure takes into account all the massless fields that may arise and commutes with the T-duality so that any dual solution has again a plane wave limit. The scaling rules used in the limit are unique and stem from the scaling property of the D = 11 supergravity action. Although the leading order dual solutions need not be exact or supersymmetric, their plane wave limits always preserve some portion of the Poincare supersymmetry and solve the relevant field equations in all powers of the string tension parameter. Further properties of the limiting procedure are discussed. (author)

  7. On the mathematical treatment of the Born-Oppenheimer approximation

    International Nuclear Information System (INIS)

    Jecko, Thierry

    2014-01-01

    Motivated by the paper by Sutcliffe and Woolley [“On the quantum theory of molecules,” J. Chem. Phys. 137, 22A544 (2012)], we present the main ideas used by mathematicians to show the accuracy of the Born-Oppenheimer approximation for molecules. Based on mathematical works on this approximation for molecular bound states, in scattering theory, in resonance theory, and for short time evolution, we give an overview of some rigorous results obtained up to now. We also point out the main difficulties mathematicians are trying to overcome and speculate on further developments. The mathematical approach does not fit exactly to the common use of the approximation in Physics and Chemistry. We criticize the latter and comment on the differences, contributing in this way to the discussion on the Born-Oppenheimer approximation initiated by Sutcliffe and Woolley. The paper neither contains mathematical statements nor proofs. Instead, we try to make accessible mathematically rigourous results on the subject to researchers in Quantum Chemistry or Physics

  8. On the mathematical treatment of the Born-Oppenheimer approximation

    Energy Technology Data Exchange (ETDEWEB)

    Jecko, Thierry, E-mail: thierry.jecko@u-cergy.fr [AGM, UMR 8088 du CNRS, Université de Cergy-Pontoise, Département de mathématiques, site de Saint Martin, 2 avenue Adolphe Chauvin, F-95000 Pontoise (France)

    2014-05-15

    Motivated by the paper by Sutcliffe and Woolley [“On the quantum theory of molecules,” J. Chem. Phys. 137, 22A544 (2012)], we present the main ideas used by mathematicians to show the accuracy of the Born-Oppenheimer approximation for molecules. Based on mathematical works on this approximation for molecular bound states, in scattering theory, in resonance theory, and for short time evolution, we give an overview of some rigorous results obtained up to now. We also point out the main difficulties mathematicians are trying to overcome and speculate on further developments. The mathematical approach does not fit exactly to the common use of the approximation in Physics and Chemistry. We criticize the latter and comment on the differences, contributing in this way to the discussion on the Born-Oppenheimer approximation initiated by Sutcliffe and Woolley. The paper neither contains mathematical statements nor proofs. Instead, we try to make accessible mathematically rigourous results on the subject to researchers in Quantum Chemistry or Physics.

  9. Comparison of the Born series and rational approximants in potential scattering. [Pade approximants, Yikawa and exponential potential

    Energy Technology Data Exchange (ETDEWEB)

    Garibotti, C R; Grinstein, F F [Rosario Univ. Nacional (Argentina). Facultad de Ciencias Exactas e Ingenieria

    1976-05-08

    It is discussed the real utility of Born series for the calculation of atomic collision processes in the Born approximation. It is suggested to make use of Pade approximants and it is shown that this approach provides very fast convergent sequences over all the energy range studied. Yukawa and exponential potential are explicitly considered and the results are compared with high-order Born approximation.

  10. No surprise in the first Born approximation for electron scattering

    International Nuclear Information System (INIS)

    Lentzen, M.

    2014-01-01

    In a recent article it is argued that the far-field expansion of electron scattering, a pillar of electron diffraction theory, is wrong (Treacy and Van Dyck, 2012 [1]). It is further argued that in the first Born approximation of electron scattering the intensity of the electron wave is not conserved to first order in the scattering potential. Thus a “mystery of the missing phase” is investigated, and the supposed flaw in scattering theory is seeked to be resolved by postulating a standing spherical electron wave (Treacy and Van Dyck, 2012 [1]). In this work we show, however, that these theses are wrong. A review of the essential parts of scattering theory with careful checks of the underlying assumptions and limitations for high-energy electron scattering yields: (1) the traditional form of the far-field expansion, comprising a propagating spherical wave, is correct; (2) there is no room for a missing phase; (3) in the first Born approximation the intensity of the scattered wave is conserved to first order in the scattering potential. The various features of high-energy electron scattering are illustrated by wave-mechanical calculations for an explicit target model, a Gaussian phase object, and for a Si atom, considering the geometric conditions in high-resolution transmission electron microscopy. - Highlights: Treacy and Van Dyck (2012) argue that the far-field expansion of electron scattering is wrong. The chief theses of that former work are wrong. There is no room for the missing phase proposed by Treacy and Van Dyck. There is no violation of the intensity conservation to first order in the scattering potential. Calculations for a phase object and an atomic target confirm traditional scattering theory

  11. Plane-wave impulse approximation extraction of the neutron magnetic form factor from Quasi-Elastic 3(rvec H)e((rvec e),e(prime)) at Q2 = 0.3 to 0.6 (GeV/c)2

    International Nuclear Information System (INIS)

    Xu, W.; Anderson, B.; Auberbach, L.; Averett, T.; Bertozzi, W.; Black, T.; Calarco, J.; Cardman, L.; Cates, G.D.; Chai, Z.W.; Chen, J.P.; Choi, S.; Chudakov, E.; Churchwell, S.; Corrado, G.S.; Crawford, C.; Dale, D.; Deur, A.; Djawotho, P.; Donnelly, T.W.; Dutta, D.; Finn, J.M.; Gao, H.; Gilman, R.; Glamazdin, A.V.; Glashausser, C.; Gloeckle, Walter; Golak, J.; Gomez, J.; Gorbenko, V.G.; Hansen, J.O.; Hersman, F.W.; Higinbotham, D.W.; Holmes, R.; Howell, C.R.; Hughes, E.; Humensky, B.; Incerti, S.; Jager, C.W. de; Jensen, J.S.; Jiang, X.; Jones, C.E.; Jones, M.; Kahl, R.; Kamada, H.; Kievsky, A.; Kominis, I.; Korsch, W.; Kramer, K.; Kumbartzki, G.; Kuss, M.; Lakuriqi, E.; Liang, M.; Liyanage, N.; LeRose, J.; Malov, S.; Margaziotis, D.J.; Martin, J.W.; McCormick, K.; McKeown, R. D.; McIlhany, K.; Meziani, Z.E.; Michaels, R.; Miller, G.W.; Mitchell, J.; Nanda, S.; Pace, E.; Pavlin, T.; Petratos, G.G.; Pomatsalyuk, R.I.; Pripstein, D.; Prout, D.; Ransome, R.D.; Roblin, Y.; Rvachev, M.; Saha, A.; Salme, G.; Schnee, M.; Shin, T.; Slifer, K.; Souder, P.A.; Strauch, S.; Suleiman, R.; Sutter, M.; Tipton, B.; Todor, L.; Viviani, M.; Vlahovic, B.; Watson, J.; Williamson, C.F.; Witala, H.; Wojtsekhowski, B.; Xiong, F.; Yeh, J.; Zolnierczuk, P.

    2003-01-01

    A high precision measurement of the transverse spin-dependent asymmetry A T in 3 (rvec H)e((rvec e),e(prime)) quasielastic scattering was performed in Hall A at Jefferson Lab at values of the squared four-momentum transfer, Q 2 , between 0.1 and 0.6 (GeV/c) 2 . A T is sensitive to the neutron magnetic form factor, G M n . Values of G M n at Q 2 = 0.1 and 0.2 (GeV/c) 2 , extracted using Faddeev calculations, were reported previously. Here, we report the extraction of G M n for the remaining Q 2 -values in the range from 0.3 to 0.6 (GeV/c) 2 using a Plane-Wave Impulse Approximation calculation. The results are in good agreement with recent precision data from experiments using a deuterium target

  12. Plane wave fast color flow mode imaging

    DEFF Research Database (Denmark)

    Bolic, Ibrahim; Udesen, Jesper; Gran, Fredrik

    2006-01-01

    A new Plane wave fast color flow imaging method (PWM) has been investigated, and performance evaluation of the PWM based on experimental measurements has been made. The results show that it is possible to obtain a CFM image using only 8 echo-pulse emissions for beam to flow angles between 45...... degrees and 75 degrees. Compared to the conventional ultrasound imaging the frame rate is similar to 30 - 60 times higher. The bias, B-est of the velocity profile estimate, based on 8 pulse-echo emissions, is between 3.3% and 6.1% for beam to flow angles between 45 degrees and 75 degrees, and the standard...

  13. Synchrotron-radiation plane-wave topography

    International Nuclear Information System (INIS)

    Riglet, P.; Sauvage, M.; Petroff, J.F.; Epelboin, Y.

    1980-01-01

    A computer program based on the Takagi-Taupin differential equations for X-ray propagation in distorted crystals has been developed in order to simulate dislocation images in the Bragg case. The program is valid both for thin and thick crystals. Simulated images of misfit dislocations formed either in a thin epilayer or in a thick substrate are compared with experimental images obtained by synchrotron-radiation plane-wave topography. The influence of the various strain components on the image features is discussed. (author)

  14. Blackfolds, plane waves and minimal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)

    2015-07-29

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  15. Blackfolds, plane waves and minimal surfaces

    Science.gov (United States)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  16. A ''quadratized'' augmented plane wave method

    International Nuclear Information System (INIS)

    Smrcka, L.

    1982-02-01

    The exact radial solution inside the muffin-tin sphere is replaced by its Taylor expansion with respect to the energy, truncated after the quadratic term. Making use of it the energy independent augmented plane waves are formed which lead to the secular equations linear in energy. The method resembles the currently used linearized APW method but yields higher accuracy. The analysis of solution inside one muffin-tin sphere shows that the eigenvalue error is proportional to (E-E 0 ) 6 as compared with (E-E 0 ) 4 for LAPW. The error of eigenfunctions is (E-E 0 ) 3 ((E-E 0 ) 2 for LAPW). These conclusions are confirmed by direct numerical calculation of band structure of Cu and Al. (author)

  17. Augmented-plane-wave calculations on small molecules

    International Nuclear Information System (INIS)

    Serena, P.A.; Baratoff, A.; Soler, J.M.

    1993-01-01

    We have performed ab initio calculations on a wide range of small molecules, demonstrating the accuracy and flexibility of an alternative method for calculating the electronic structure of molecules, solids, and surfaces. It is based on the local-density approximation (LDA) for exchange and correlation and the nonlinear augmented-plane-wave method. Very accurate atomic forces are obtained directly. This allows for implementation of Car-Parrinello-like techniques to determine simultaneously the self-consistent electron wave functions and the equilibrium atomic positions within an iterative scheme. We find excellent agreement with the best existing LDA-based calculations and remarkable agreement with experiment for the equilibrium geometries, vibrational frequencies, and dipole moments of a wide variety of molecules, including strongly bound homopolar and polar molecules, hydrogen-bound and electron-deficient molecules, and weakly bound alkali and noble-metal dimers, although binding energies are overestimated

  18. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei

    2013-06-03

    A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.

  19. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2013-01-01

    . The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase

  20. Scattering of spinning test particles by gravitational plane waves

    International Nuclear Information System (INIS)

    Bini, D.; Gemelli, G.

    1997-01-01

    The authors study the motion of spinning particles in the gravitational plane-wave background and discuss particular solutions under a suitable choice of supplementary conditions. An analysis of the discontinuity of the motion across the wavefront is presented too

  1. Can plane wave modes be physical modes in soliton models?

    International Nuclear Information System (INIS)

    Aldabe, F.

    1995-08-01

    I show that plane waves may not be used as asymptotic states in soliton models because they describe unphysical states. When asymptotic states are taken to the physical there is not T-matrix of O(1). (author). 9 refs

  2. Regularized plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin; Dai, Wei; Schuster, Gerard T.

    2013-01-01

    A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity

  3. Plane-wave Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2012-01-01

    convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A

  4. 3D plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin; Dai, Wei; Huang, Yunsong; Schuster, Gerard T.

    2014-01-01

    A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition

  5. DLCQ and plane wave matrix Big Bang models

    Science.gov (United States)

    Blau, Matthias; O'Loughlin, Martin

    2008-09-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  6. DLCQ and plane wave matrix Big Bang models

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin

    2008-01-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  7. Regularized plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin

    2013-09-22

    A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity model. Both synthetic and field results show that: 1) LSM with a reflectivity model common for all the plane-wave gathers provides the best image when the migration velocity model is accurate, but it is more sensitive to the velocity errors, 2) the regularized plane-wave LSM is more robust in the presence of velocity errors, and 3) LSM achieves both computational and IO saving by plane-wave encoding compared to shot-domain LSM for the models tested.

  8. Plane-wave scattering from half-wave dipole arrays

    DEFF Research Database (Denmark)

    Jensen, Niels E.

    1970-01-01

    A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays.......A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays....

  9. Tunnelling of plane waves through a square barrier

    Energy Technology Data Exchange (ETDEWEB)

    Julve, J [IMAFF, Consejo Superior de Investigaciones CientIficas, Serrano 113 bis, Madrid 28006 (Spain); UrrIes, F J de [Departamento de Fisica, Universidad de Alcala de Henares, Alcala de Henares, Madrid (Spain)], E-mail: julve@imaff.cfmac.csic.es, E-mail: fernando.urries@uah.es

    2008-08-01

    The time evolution of plane waves in the presence of a one-dimensional square quantum barrier is considered. Comparison is made between the cases of an infinite and a cut-off (shutter) initial plane wave. The difference is relevant when the results are applied to the analysis of the tunnelling regime. This work is focused on the analytical calculation of the time-evolved solution and highlights the contribution of the resonant (Gamow) states.

  10. A comparative study of the second-order Born and Faddeev-Watson approximations: Pt. 3

    International Nuclear Information System (INIS)

    Roberts, M.J.

    1988-01-01

    Singularities which arise in the second-order Born and Faddeev-Watson approximations for ionisation processes are examined. A regularisation procedure for the latter is suggested. Comparison with He(e,2e)He + experimental data in symmetric coplanar energy-sharing kinematics shows that the second-order Faddeev-Watson approximation is inferior to the second Born results of Byron et al. (1985. J. Phys. B: At. Mol. Phys. 18, 3203). (author)

  11. 3D plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin

    2014-08-05

    A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition geometries, a cylindrical-wave encoding is adopted for the narrow azimuth streamer data. To account for the mispositioning of reflectors due to errors in the velocity model, a regularized LSM is devised so that each plane-wave or cylindrical-wave gather gives rise to an individual migration image, and a regularization term is included to encourage the similarities between the migration images of similar encoding schemes. Both synthetic and field results show that: 1) plane-wave or cylindrical-wave encoding LSM can achieve both computational and IO saving, compared to shot-domain LSM, however, plane-wave LSM is still about 5 times more expensive than plane-wave migration; 2) the regularized LSM is more robust compared to LSM with one reflectivity model common for all the plane-wave or cylindrical-wave gathers.

  12. The boundary-corrected second Born (B2B) approximation: proton-hydrogen electron capture

    International Nuclear Information System (INIS)

    Dewangan, D.P.; Bransden, B.H.

    1988-01-01

    The probability amplitude for proton-hydrogen ground-state electron capture at 125 keV in the boundary-corrected second Born approximation has been evaluated numerically by retaining all significant bound and continuum hydrogenic intermediate states for which the orbital angular momentum l ≤ 3. The differential cross section is found to be in good agreement with the experimental data for scattering angles less than about 1 mrad in the centre of mass system. The value of the boundary-corrected second Born total cross section is similar to that obtained in the boundary-corrected first Born approximation. (author)

  13. Scattering of electromagnetic plane waves by a buried vertical dike

    Directory of Open Access Journals (Sweden)

    Batista Lurimar S.

    2003-01-01

    Full Text Available The complete and exact solution of the scattering of a TE mode frequency domain electromagnetic plane wave by a vertical dike under a conductive overburden has been established. An integral representation composed of one-sided Fourier transforms describes the scattered electric field components in each one of the five media: air, overburden, dike, and the country rocks on both sides of the dike. The determination of the terms of the series that represents the spectral components of the Fourier integrals requires the numerical inversion of a sparse matrix, and the method of successive approaches. The zero-order term of the series representation for the spectral components of the overburden, for given values of the electrical and geometrical parameters of the model, has been computed. This result allowed to determine an approximate value of the variation of the electric field on the top of the overburden in the direction perpendicular to the strike of the dike. The results demonstrate the efficiency of this forward electromagnetic modeling, and are fundamental for the interpretation of VLF and Magnetotelluric data.

  14. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  15. Colliding almost-plane gravitational waves: Colliding plane waves and general properties of almost-plane-wave spacetimes

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1988-01-01

    It is well known that when two precisely plane-symmetric gravitational waves propagating in an otherwise flat background collide, they focus each other so strongly as to produce a curvature singularity. This paper is the first of several devoted to almost-plane gravitational waves and their collisions. Such waves are more realistic than plane waves in having a finite but very large transverse size. In this paper we review some crucial features of the well-known exact solutions for colliding plane waves and we argue that one of these features, the breakdown of ''local inextendibility'' can be regarded as nongeneric. We then introduce a new framework for analyzing general colliding plane-wave spacetimes; we give an alternative proof of a theorem due to Tipler implying the existence of singularities in all generic colliding plane-wave solutions; and we discuss the fact that the recently constructed Chandrasekhar-Xanthopoulos colliding plane-wave solutions are not strictly plane symmetric and thus do not satisfy the conditions and the conclusion of Tipler's theorem

  16. Validity of the Born approximation for beyond Gaussian weak lensing observables

    Science.gov (United States)

    Petri, Andrea; Haiman, Zoltán; May, Morgan

    2017-06-01

    Accurate forward modeling of weak lensing (WL) observables from cosmological parameters is necessary for upcoming galaxy surveys. Because WL probes structures in the nonlinear regime, analytical forward modeling is very challenging, if not impossible. Numerical simulations of WL features rely on ray tracing through the outputs of N -body simulations, which requires knowledge of the gravitational potential and accurate solvers for light ray trajectories. A less accurate procedure, based on the Born approximation, only requires knowledge of the density field, and can be implemented more efficiently and at a lower computational cost. In this work, we use simulations to show that deviations of the Born-approximated convergence power spectrum, skewness and kurtosis from their fully ray-traced counterparts are consistent with the smallest nontrivial O (Φ3) post-Born corrections (so-called geodesic and lens-lens terms). Our results imply a cancellation among the larger O (Φ4) (and higher order) terms, consistent with previous analytic work. We also find that cosmological parameter bias induced by the Born-approximated power spectrum is negligible even for a LSST-like survey, once galaxy shape noise is considered. When considering higher order statistics such as the κ skewness and kurtosis, however, we find significant bias of up to 2.5 σ . Using the LensTools software suite, we show that the Born approximation saves a factor of 4 in computing time with respect to the full ray tracing in reconstructing the convergence.

  17. Plane waves and structures in turbulent channel flow

    Science.gov (United States)

    Sirovich, L.; Ball, K. S.; Keefe, L. R.

    1990-01-01

    A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.

  18. Plane-Wave Imaging Challenge in Medical Ultrasound

    DEFF Research Database (Denmark)

    Liebgott, Herve; Molares, Alfonso Rodriguez; Jensen, Jørgen Arendt

    2016-01-01

    for this effect, but comparing the different methods is difficult due to the lack of appropriate tools. PICMUS, the Plane-Wave Imaging Challenge in Medical Ultrasound aims to provide these tools. This paper describes the PICMUS challenge, its motivation, implementation, and metrics.......Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate...

  19. Problems of the orthogonalized plane wave method. 1

    International Nuclear Information System (INIS)

    Farberovich, O.V.; Kurganskii, S.I.; Domashevskaya, E.P.

    1979-01-01

    The main problems of the orthogonalized plane wave method are discussed including (a) consideration of core states; (b) effect of overlap of wave functions of external core states upon the band structure; (c) calculation of d-type states. The modified orthogonal plane wave method (MOPW method) of Deegan and Twose is applied in a general form to solve the problems of the usual OPW method. For the first time the influence on the spectrum of the main parameters of the MOPW method is studied systematically by calculating the electronic energy spectrum in the transition metals Nb and V. (author)

  20. Plane-wave spectrum approach for the calculation of electromagnetic absorption under near-field exposure conditions

    International Nuclear Information System (INIS)

    Chatterjee, I.; Gandhi, O.P.; Hagmann, M.J.; Riazi, A.

    1980-01-01

    The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed

  1. Technique for measurements of plane waves of uniaxial strain

    International Nuclear Information System (INIS)

    Graham, R.A.

    1977-01-01

    The measurement of plane waves in uniaxial strain, in which large surface areas are loaded and the measurements are restricted to a central region that is not influenced by lateral boundaries, is discussed. Measuring techniques are covered and instruments are discussed

  2. Plane-wave electronic structure calculations on a parallel supercomputer

    International Nuclear Information System (INIS)

    Nelson, J.S.; Plimpton, S.J.; Sears, M.P.

    1993-01-01

    The development of iterative solutions of Schrodinger's equation in a plane-wave (pw) basis over the last several years has coincided with great advances in the computational power available for performing the calculations. These dual developments have enabled many new and interesting condensed matter phenomena to be studied from a first-principles approach. The authors present a detailed description of the implementation on a parallel supercomputer (hypercube) of the first-order equation-of-motion solution to Schrodinger's equation, using plane-wave basis functions and ab initio separable pseudopotentials. By distributing the plane-waves across the processors of the hypercube many of the computations can be performed in parallel, resulting in decreases in the overall computation time relative to conventional vector supercomputers. This partitioning also provides ample memory for large Fast Fourier Transform (FFT) meshes and the storage of plane-wave coefficients for many hundreds of energy bands. The usefulness of the parallel techniques is demonstrated by benchmark timings for both the FFT's and iterations of the self-consistent solution of Schrodinger's equation for different sized Si unit cells of up to 512 atoms

  3. An Apparatus for Constructing an Electromagnetic Plane Wave Model

    Science.gov (United States)

    Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William

    2015-01-01

    In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…

  4. Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...

  5. A differentiated plane wave as an electromagnetic vortex

    International Nuclear Information System (INIS)

    Hannay, J H; Nye, J F

    2015-01-01

    Differentiating a complex scalar plane wave with respect to its direction produces an isolated straight vortex line and has a natural extension, described in earlier papers, to the vector waves of electromagnetism—a differentiated plane wave (DPW). It epitomizes destructive interference and will be shown to have the local structure of an electromagnetic vortex. In this paper its polarization structure and Poynting vector field are compared and contrasted with that of the family of linear polynomial waves, of which it is a special member. By definition this wider family has a general linear complex vector function of position multiplying a plane wave, but the function must be such that the combination satisfies Maxwell’s equations. This forces translational invariance of the function along the wavevector direction—in other words the wave is ‘non-diffracting’. In a natural sense all possible polarizations are exhibited once only. But the DPW has a distinctive polarization structure only partly explored previously. Both classes of waves share similar Poynting vector fields, which can be ‘elliptic’ (helix-like flow lines) or ‘hyperbolic’, of a repulsive nature, unexpected for a vortex. Both classes can be considered as a limit in the superposition of three closely parallel ordinary plane waves in destructive interference, and this derivation is supplied in full here. (paper)

  6. Beyond the Born approximation. The case of very long polymer chains adsorbed at an interface

    International Nuclear Information System (INIS)

    Guiselin, O.; Jannink, G.; Cloizeaux, J. des

    1991-01-01

    Two experimental evidences are discussed of the reflectance discontinuity associated with very long adsorbed polymer chains. It is shown that the Born approximation is not valid in this case. The anomalous low reflectivity is compared to the Ramsauer-Townsend effect in the scattering of slow electrons by rare-gas atoms. (author) 15 refs.; 6 figs

  7. Muonic-hydrogen molecular bound states, quasibound states, and resonances in the Born-Oppenheimer approximation

    International Nuclear Information System (INIS)

    Jackson, J.D.

    1994-01-01

    The Born-Oppenheimer approximation is used as an exploratory tool to study bound states, quasibound states, and scattering resonances in muon (μ)--hydrogen (x)--hydrogen (y) molecular ions. Our purpose is to comment on the existence and nature of the narrow states reported in three-body calculations, for L=0 and 1, at approximately 55 eV above threshold and the family of states in the same partial waves reported about 1.9 keV above threshold. We first discuss the motivation for study of excited states beyond the well-known and well-studied bound states. Then we reproduce the energies and other properties of these well-known states to show that, despite the relatively large muon mass, the Born-Oppenheimer approximation gives a good, semiquantitative description containing all the essential physics. Born-Oppenheimer calculations of the s- and p-wave scattering of d-(dμ), d-(tμ), and t-(tμ) are compared with the accurate three-body results, again with general success. The places of disagreement are understood in terms of the differences in location of slightly bound (or unbound) states in the Born-Oppenheimer approximation compared to the accurate three-body calculations

  8. The AC Stark Effect, Time-Dependent Born-Oppenheimer Approximation, and Franck-Condon Factors

    CERN Document Server

    Hagedorn, G A; Jilcott, S W

    2005-01-01

    We study the quantum mechanics of a simple molecular system that is subject to a laser pulse. We model the laser pulse by a classical oscillatory electric field, and we employ the Born--Oppenheimer approximation for the molecule. We compute transition amplitudes to leading order in the laser strength. These amplitudes contain Franck--Condon factors that we compute explicitly to leading order in the Born--Oppenheimer parameter. We also correct an erroneous calculation in the mathematical literature on the AC Stark effect for molecular systems.

  9. Inverse bremsstrahlung heating beyond the first Born approximation for dense plasmas in laser fields

    International Nuclear Information System (INIS)

    Moll, M; Schlanges, M; Bornath, Th; Krainov, V P

    2012-01-01

    Inverse bremsstrahlung (IB) heating, an important process in the laser-matter interaction, involves two different kinds of interaction—the interaction of the electrons with the external laser field and the electron-ion interaction. This makes analytical approaches very difficult. In a quantum perturbative approach to the IB heating rate in strong laser fields, usually the first Born approximation with respect to the electron-ion potential is considered, whereas the influence of the electric field is taken exactly in the Volkov wave functions. In this paper, a perturbative treatment is presented adopting a screened electron-ion interaction potential. As a new result, we derive the momentum-dependent, angle-averaged heating rate in the first Born approximation. Numerical results are discussed for a broad range of field strengths, and the conditions for the applicability of a linear approximation for the heating rate are analyzed in detail. Going a step further in the perturbation series, we consider the transition amplitude in the second Born approximation, which enables us to calculate the heating rate up to the third order of the interaction strength. (paper)

  10. Parallel Multi-Focusing Using Plane Wave Decomposition

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Munk, Peter; Jensen, Jørgen Arendt

    2003-01-01

    of desired 2-D sensitivity functions is specified, for multi-focusing in a number of directions. The field along these directions is decomposed to a sufficiently large (for accurate specification) number of plane waves, which are then back-propagated to all transducer elements. The contributions of all plane...... waves result in one time function per element. The numerical solution is presented and discussed. It contains pulses with a variation in central frequency and time-varying apodization across the aperture (dynamic apodization). The RMS difference between the transmitted field using the calculated pulse...... of the transmitted pulses is based on the directivity spectrum method, a generalization of the angular spectrum method, a generalization of the angular spectrum method, containing no evanescent waves. The underlying theory is based on the Fourier slice theorem, and field reconstruction from projections. First a set...

  11. Electron impact excitation of positive ions calculated in the Coulomb-Born approximation

    International Nuclear Information System (INIS)

    Nakazaki, Shinobu; Hashino, Tasuke

    1979-08-01

    Theoretical results on the electron impact excitation of positive ions are surveyed through the end of 1978. As a guide to the available data, a list of references is made. The list shows ion species, transitions, energy range and methods of calculation for the respective data. Based on the literature survey, the validity of the Coulomb-Born approximation is investigated. Comparisons with the results of the close-coupling and the distorted-wave methods are briefly summarized. (author)

  12. Second-order Born approximation for the ionization of molecules by electron and positron impact

    Energy Technology Data Exchange (ETDEWEB)

    Dal Cappello, C. [Universite Paul Verlaine-Metz, Laboratoire de Physique Moleculaire et des Collisions, Institut Jean Barriol (FR2843), 1 Boulevard Arago, F-57078 Metz Cedex 3 (France); Rezkallah, Z.; Houamer, S. [Laboratoire de Physique Quantique et Systemes Dynamiques, Departement de Physique, Faculte des Sciences Universite Ferhat Abbas, Setif 19000 (Algeria); Charpentier, I. [Universite Paul Verlaine-Metz, Laboratoire de Physique et Mecanique des Materiaux UMR 7554, Ile du Saulcy, F-57045 Metz Cedex 1 (France); Hervieux, P. A. [Institut de Physique et Chimie des Materiaux de Strasbourg, 23 Rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Ruiz-Lopez, M. F. [Nancy-University, Equipe de Chimie et Biochimie Theoriques, UMR CNRS-UHP 7565, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Dey, R. [Max-Planck Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Roy, A. C. [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math 711202, West Bengal (India)

    2011-09-15

    Second-order Born approximation is applied to study the ionization of molecules. The initial and final states are described by single-center wave functions. For the initial state a Gaussian wave function is used while for the ejected electron it is a distorted wave. Results of the present model are compared with recent (e,2e) experiments on the water molecule. Preliminary results are also presented for the ionization of the thymine molecule by electrons and positrons.

  13. Plane-wave Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei

    2012-11-04

    Least-squares reverse time migration is formulated with a new parameterization, where the migration image of each shot is updated separately and a prestack image is produced with common image gathers. The advantage is that it can offer stable convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A regularization term which penalizes the image difference between nearby angles are used to keep the prestack image consistent through all the angles. Numerical tests on a marine dataset is performed to illustrate the advantages of least-squares reverse time migration in the plane-wave domain. Through iterations of least-squares migration, the migration artifacts are reduced and the image resolution is improved. Empirical results suggest that the LSRTM in plane wave domain is an efficient method to improve the image quality and produce common image gathers.

  14. Scattering on plane waves and the double copy

    Science.gov (United States)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2018-01-01

    Perturbatively around flat space, the scattering amplitudes of gravity are related to those of Yang–Mills by colour-kinematic duality, under which gravitational amplitudes are obtained as the ‘double copy’ of the corresponding gauge theory amplitudes. We consider the question of how to extend this relationship to curved scattering backgrounds, focusing on certain ‘sandwich’ plane waves. We calculate the 3-point amplitudes on these backgrounds and find that a notion of double copy remains in the presence of background curvature: graviton amplitudes on a gravitational plane wave are the double copy of gluon amplitudes on a gauge field plane wave. This is non-trivial in that it requires a non-local replacement rule for the background fields and the momenta and polarization vectors of the fields scattering on the backgrounds. It must also account for new ‘tail’ terms arising from scattering off the background. These encode a memory effect in the scattering amplitudes, which naturally double copies as well.

  15. Born approximation to a perturbative numerical method for the solution of the Schrodinger equation

    International Nuclear Information System (INIS)

    Adam, Gh.

    1978-05-01

    A perturbative numerical (PN) method is given for the solution of a regular one-dimensional Cauchy problem arising from the Schroedinger equation. The present method uses a step function approximation for the potential. Global, free of scaling difficulty, forward and backward PN algorithms are derived within first order perturbation theory (Born approximation). A rigorous analysis of the local truncation errors is performed. This shows that the order of accuracy of the method is equal to four. In between the mesh points, the global formula for the wavefunction is accurate within O(h 4 ), while that for the first order derivative is accurate within O(h 3 ). (author)

  16. ONETEP: linear-scaling density-functional theory with plane-waves

    International Nuclear Information System (INIS)

    Haynes, P D; Mostof, A A; Skylaris, C-K; Payne, M C

    2006-01-01

    This paper provides a general overview of the methodology implemented in onetep (Order-N Electronic Total Energy Package), a parallel density-functional theory code for largescale first-principles quantum-mechanical calculations. The distinctive features of onetep are linear-scaling in both computational effort and resources, obtained by making well-controlled approximations which enable simulations to be performed with plane-wave accuracy. Titanium dioxide clusters of increasing size designed to mimic surfaces are studied to demonstrate the accuracy and scaling of onetep

  17. Useful Solutions for Plane Wave Diffraction by Dielectric Slabs and Wedges

    Directory of Open Access Journals (Sweden)

    Gianluca Gennarelli

    2012-01-01

    Full Text Available This work presents an overview of available uniform asymptotic physical optics solutions for evaluating the plane wave diffraction by some canonical geometries of large interest: dielectric slabs and wedges. Such solutions are based on a physical optics approximation of the electric and magnetic equivalent surface currents in the involved scattering integrals. The resulting diffraction coefficients are expressed in terms of the geometrical optics response of the considered structure and the standard transition function of the Uniform Geometrical Theory of Diffraction. Numerical tests and comparisons make evident the effectiveness and reliability of the presented solutions.

  18. Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations

    International Nuclear Information System (INIS)

    Stottmeister, Alexander; Thiemann, Thomas

    2016-01-01

    This article, as the first of three, aims at establishing the (time-dependent) Born-Oppenheimer approximation, in the sense of space adiabatic perturbation theory, for quantum systems constructed by techniques of the loop quantum gravity framework, especially the canonical formulation of the latter. The analysis presented here fits into a rather general framework and offers a solution to the problem of applying the usual Born-Oppenheimer ansatz for molecular (or structurally analogous) systems to more general quantum systems (e.g., spin-orbit models) by means of space adiabatic perturbation theory. The proposed solution is applied to a simple, finite dimensional model of interacting spin systems, which serves as a non-trivial, minimal model of the aforesaid problem. Furthermore, it is explained how the content of this article and its companion affect the possible extraction of quantum field theory on curved spacetime from loop quantum gravity (including matter fields).

  19. Quantum fields interacting with colliding plane waves: the stress-energy tensor and backreaction

    International Nuclear Information System (INIS)

    Dorca, M.; Verdaguer, E.

    1997-01-01

    Following a previous work on the quantization of a massless scalar field in a space-time representing the head on collision of two plane waves which focus into a Killing-Cauchy horizon, we compute the renormalized expectation value of the stress-energy tensor of the quantum field near that horizon in the physical state which corresponds to the Minkowski vacuum before the collision of the waves. It is found that for minimally coupled and conformally coupled scalar fields the respective stress-energy tensors are unbounded in the horizon. The specific form of the divergences suggests that when the semiclassical Einstein equations describing the backreaction of the quantum fields on the space-time geometry are taken into account, the horizon will acquire a curvature singularity. Thus the Killing-Cauchy horizon which is known to be unstable under ''generic'' classical perturbations is also unstable by vacuum polarization. The calculation is done following the point-splitting regularization technique. The dynamical colliding wave space-time has four quite distinct space-time regions, namely, one flat region, two single plane wave regions, and one interaction region. Exact mode solutions of the quantum field equation cannot be found exactly, but the blueshift suffered by the initial modes in the plane wave and interaction regions makes the use of the WKB expansion a suitable method of solution. To ensure the correct regularization of the stress-energy tensor, the initial flat modes propagated into the interaction region must be given to a rather high adiabatic order of approximation. (orig.)

  20. Path integral for Dirac particle in plane wave field

    International Nuclear Information System (INIS)

    Zeggari, S.; Boudjedaa, T.; Chetouani, L.

    2001-01-01

    The problem of a relativistic spinning particle in interaction with an electromagnetic plane wave field is treated via path integrals. The dynamics of the spin of the particle is described using the supersymmetric action proposed by Fradkin and Gitman. The problem has been solved by using two identities, one bosonic and the other fermionic, which are related directly to the classical equations of motion. The exact expression of the relative Green's function is given and the result agrees with those of the literature. Further, the suitably normalized wave functions are also extracted. (orig.)

  1. Path integral for Dirac particle in plane wave field

    Energy Technology Data Exchange (ETDEWEB)

    Zeggari, S.; Boudjedaa, T.; Chetouani, L. [Mentouri Univ., Constantine (Algeria). Dept. of Physique

    2001-10-01

    The problem of a relativistic spinning particle in interaction with an electromagnetic plane wave field is treated via path integrals. The dynamics of the spin of the particle is described using the supersymmetric action proposed by Fradkin and Gitman. The problem has been solved by using two identities, one bosonic and the other fermionic, which are related directly to the classical equations of motion. The exact expression of the relative Green's function is given and the result agrees with those of the literature. Further, the suitably normalized wave functions are also extracted. (orig.)

  2. Plane waves and spherical means applied to partial differential equations

    CERN Document Server

    John, Fritz

    2004-01-01

    Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con

  3. Electromagnetic forces and torques in nanoparticles irradiated by plane waves

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.

    2004-01-01

    Optical tweezers and optical lattices are making it possible to control small particles by means of electromagnetic forces and torques. In this context, a method is presented in this work to calculate electromagnetic forces and torques for arbitrarily-shaped objects in the presence of other objects illuminated by a plane wave. The method is based upon an expansion of the electromagnetic field in terms of multipoles around each object, which are in turn used to derive forces and torques analytically. The calculation of multipole coefficients are obtained numerically by means of the boundary element method. Results are presented for both spherical and non-spherical objects

  4. Energy Relations for Plane Waves Reflected from Moving Media

    DEFF Research Database (Denmark)

    Daly, P.; Gruenberg, Harry

    1967-01-01

    When a plane wave is obliquely incident from vacuum on a semi-infinite moving medium, the energy flow carried by the incident wave, is in general, not carried away by the reflected and transmitted waves. This is only the case when the medium velocity is parallel to its vacuum interface. Otherwise...... there is a net inflow or outflow of electromagnetic energy, which can be accounted for by the change of stored energy in the system, and the work done by the mechanical forces acting on the medium. A detailed energy balance is drawn up for two different media moving normal to their vacuum interfaces: (a...

  5. Multiple projection optical diffusion tomography with plane wave illumination

    International Nuclear Information System (INIS)

    Markel, Vadim A; Schotland, John C

    2005-01-01

    We describe a new data collection scheme for optical diffusion tomography in which plane wave illumination is combined with multiple projections in the slab imaging geometry. Multiple projection measurements are performed by rotating the slab around the sample. The advantage of the proposed method is that the measured data are more compatible with the dynamic range of most commonly used detectors. At the same time, multiple projections improve image quality by mutually interchanging the depth and transverse directions, and the scanned (detection) and integrated (illumination) surfaces. Inversion methods are derived for image reconstructions with extremely large data sets. Numerical simulations are performed for fixed and rotated slabs

  6. Born approximation to a perturbative numerical method for the solution of the Schroedinger equation

    International Nuclear Information System (INIS)

    Adam, Gh.

    1978-01-01

    A step function perturbative numerical method (SF-PN method) is developed for the solution of the Cauchy problem for the second order liniar differential equation in normal form. An important point stressed in the present paper, which seems to have been previously ignored in the literature devoted to the PN methods, is the close connection between the first order perturbation theory of the PN approach and the wellknown Born approximation, and, in general, the connection between the varjous orders of the PN corrections and the Neumann series. (author)

  7. Subshell stopping power of the elements for protons in the Born approximation

    International Nuclear Information System (INIS)

    McGuire, E.J.

    1982-01-01

    The generalized oscillator-strength formulation of the Born approximation was used to generate a large sample of subshell excitation and ionization generalized oscillator strengths across the periodic table. These were used to calculate the excitation and ionization contributions to the proton stopping power by individual subshells. The subshell ionization stopping powers are expressed in scaled form, depending on the subshell ionization energy. Detailed comparison of the calculated total proton stopping power is in good agreement with experiment across the periodic table. Detailed calculations show the importance of outer-shell ionization and excitation to the total stopping power for protons with energy less than 10 MeV

  8. Molecular distorted-wave Born approximation for ionization of H2 by electron impact

    International Nuclear Information System (INIS)

    Liu, Junbo; Liu, Dejun; Zhou, Yajun

    2012-01-01

    The molecular distorted-wave Born approximation is proposed to study the (e, 2e) reaction for H 2 targets. The wave functions of the incoming and outgoing electrons are obtained by solving the Lippmann-Schwinger equations, and the T-matrix in the Lippmann-Schwinger equations is calculated in a momentum space static-exchange-optical model. Triple differential cross sections are computed for incident energies of 100 and 250 eV in coplanar asymmetric geometry. Comparison of the present calculated results with the available experimental data in the literature reveals that there is good agreement. (paper)

  9. Second Born approximation in elastic-electron scattering from nuclear static electro-magnetic multipoles

    International Nuclear Information System (INIS)

    Al-Khamiesi, I.M.; Kerimov, B.K.

    1988-01-01

    Second Born approximation corrections to electron scattering by nuclei with arbitrary spin are considered. Explicit integral expressions for the charge, magnetic dipole and interference differential cross sections are obtained. Magnetic and interference relative corrections are then investigated in the case of backward electron scattering using shell model form factors for nuclear targets 9 Be, 10 B, and 14 N. To understand exponential growth of these corrections with square of the electron energy K 0 2 , the case of electron scattering by 6 Li is considered using monopole model charge form factor with power-law asymptotics. 11 refs., 2 figs. (author)

  10. On the Mass of Atoms in Molecules: Beyond the Born-Oppenheimer Approximation

    Science.gov (United States)

    Scherrer, Arne; Agostini, Federica; Sebastiani, Daniel; Gross, E. K. U.; Vuilleumier, Rodolphe

    2017-07-01

    Describing the dynamics of nuclei in molecules requires a potential energy surface, which is traditionally provided by the Born-Oppenheimer or adiabatic approximation. However, we also need to assign masses to the nuclei. There, the Born-Oppenheimer picture does not account for the inertia of the electrons, and only bare nuclear masses are considered. Nowadays, experimental accuracy challenges the theoretical predictions of rotational and vibrational spectra and requires the participation of electrons in the internal motion of the molecule. More than 80 years after the original work of Born and Oppenheimer, this issue has still not been solved, in general. Here, we present a theoretical and numerical framework to address this problem in a general and rigorous way. Starting from the exact factorization of the electron-nuclear wave function, we include electronic effects beyond the Born-Oppenheimer regime in a perturbative way via position-dependent corrections to the bare nuclear masses. This maintains an adiabaticlike point of view: The nuclear degrees of freedom feel the presence of the electrons via a single potential energy surface, whereas the inertia of electrons is accounted for and the total mass of the system is recovered. This constitutes a general framework for describing the mass acquired by slow degrees of freedom due to the inertia of light, bounded particles; thus, it is applicable not only in electron-nuclear systems but in light-heavy nuclei or ions as well. We illustrate this idea with a model of proton transfer, where the light particle is the proton and the heavy particles are the oxygen atoms to which the proton is bounded. Inclusion of the light-particle inertia allows us to gain orders of magnitude in accuracy. The electron-nuclear perspective is adopted, instead, to calculate position-dependent mass corrections using density functional theory for a few polyatomic molecules at their equilibrium geometry. These data can serve as input for the

  11. The geometry of plane waves in spaces of constant curvature

    International Nuclear Information System (INIS)

    Tran, H.V.

    1988-01-01

    We examined the geometry of possible plane wave fronts in spaces of constant curvature for three cases in which the cosmological constant is positive, zero, or negative. The cosmological constant and a second-order invariant determined by a congruence of null rays were used in the investigation. We embedded the spaces under investigation in a flat five-dimensional space, and studied the null hyperplanes passing through the origin of the flat five-dimensional space. The embedded spaces are represented by quadrics in the five-dimensional space. The plane wave fronts are represented by the intersection of the quadric with null hyperplanes passing through the origin of the five-dimensional space. We concluded that in Minkowski spaces (zero cosmological constant), the plane-fronted waves will intersect if and only if the second-order invariant mentioned above is non-zero. For deSitter spaces (positive cosmological constant), plane-fronted waves will always intersect. For anti-deSitter spaces (negative cosmological constant), plane-fronted waves may but need not intersect

  12. A differentiated plane wave: its passage through a slab

    International Nuclear Information System (INIS)

    Hannay, J H; Nye, J F

    2013-01-01

    Differentiating a monochromatic uniform plane electromagnetic wavefield with respect to its direction produces, from a field that is completely lacking in localized specific features, one that contains a straight vortex-like line, a ‘C-line’ of defined circular polarization. There is also a second separate C-line of opposite handedness; indeed, in a sense, a straight line of every polarization is realized. Because of its primitive construction it is analytically simple to study the passage of a differentiated wave obliquely through a plane interface into a medium of different refractive index, to trace its C-line. This was done in an earlier paper. Here we extend the method to passage through a parallel-sided transparent slab. There are multiple reflections within the slab, as in a Fabry–Pérot interferometer. The exiting wave, as a single differentiated plane wave, has a straight oblique C-line. Inside the slab, and in front of it, there is wave interference. The result is a coiled, helix-like, C-line in front of the slab and another inside it. The two coils wrap around separate hyperboloids of one sheet, like cooling towers. The emerging straight C-line is shifted (with respect to a C-line in a notional undisturbed incident plane wave) both in the plane of incidence and transversely to it, and the second C-line behaves similarly. The analysis is exact and could be extended in a straightforward way to a general stratified medium. (paper)

  13. Energy transfer in structured and unstructured environments: Master equations beyond the Born-Markov approximations

    Energy Technology Data Exchange (ETDEWEB)

    Iles-Smith, Jake, E-mail: Jakeilessmith@gmail.com [Controlled Quantum Dynamics Theory, Imperial College London, London SW7 2PG (United Kingdom); Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Department of Photonics Engineering, DTU Fotonik, Ørsteds Plads, 2800 Kongens Lyngby (Denmark); Dijkstra, Arend G. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Lambert, Neill [CEMS, RIKEN, Saitama 351-0198 (Japan); Nazir, Ahsan, E-mail: ahsan.nazir@manchester.ac.uk [Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-01-28

    We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum correlations generated between the system and its environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction coordinate formalism to the case of a structured environment comprising of both underdamped (i.e., sharply peaked) and overdamped (broad) components simultaneously. We find that though an enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and the relative strengths of the underdamped and overdamped contributions.

  14. A comparative study of the second-order Born and Faddeev-Watson approximations for electron-atom collisions

    International Nuclear Information System (INIS)

    Fargher, H.E.; Roberts, M.J.

    1983-01-01

    Simplified versions of the second-order Born and Faddeev-Watson approximations are applied to the excitation of the n=2 levels of atomic hydrogen by the impact of 54.4 eV electrons. The theories are compared with the measurements of differential cross sections and angular correlation parameters. The results indicate that the Born approximation is better at low angles of scattering but that the Faddeev-Watson approximation is better at high angles. The importance of the phases of the two-body T matrices in the Faddeev-Watson approximation is illustrated. (author)

  15. Linear augmented plane wave method for self-consistent calculations

    International Nuclear Information System (INIS)

    Takeda, T.; Kuebler, J.

    1979-01-01

    O.K. Andersen has recently introduced a linear augmented plane wave method (LAPW) for the calculation of electronic structure that was shown to be computationally fast. A more general formulation of an LAPW method is presented here. It makes use of a freely disposable number of eigenfunctions of the radial Schroedinger equation. These eigenfunctions can be selected in a self-consistent way. The present formulation also results in a computationally fast method. It is shown that Andersen's LAPW is obtained in a special limit from the present formulation. Self-consistent test calculations for copper show the present method to be remarkably accurate. As an application, scalar-relativistic self-consistent calculations are presented for the band structure of FCC lanthanum. (author)

  16. Large-scale parameter extraction in electrocardiology models through Born approximation

    KAUST Repository

    He, Yuan

    2012-12-04

    One of the main objectives in electrocardiology is to extract physical properties of cardiac tissues from measured information on electrical activity of the heart. Mathematically, this is an inverse problem for reconstructing coefficients in electrocardiology models from partial knowledge of the solutions of the models. In this work, we consider such parameter extraction problems for two well-studied electrocardiology models: the bidomain model and the FitzHugh-Nagumo model. We propose a systematic reconstruction method based on the Born approximation of the original nonlinear inverse problem. We describe a two-step procedure that allows us to reconstruct not only perturbations of the unknowns, but also the backgrounds around which the linearization is performed. We show some numerical simulations under various conditions to demonstrate the performance of our method. We also introduce a parameterization strategy using eigenfunctions of the Laplacian operator to reduce the number of unknowns in the parameter extraction problem. © 2013 IOP Publishing Ltd.

  17. Distorted-wave Born approximation in the case of an optical scattering potential

    International Nuclear Information System (INIS)

    Mytnichenko, Sergey V.

    2005-01-01

    Application of the distorted-wave Born approximation in the conventional form developed for the case of a real scattering potential is shown to cause significant errors in calculating X-ray diffuse scattering from non-ideal crystals, superlattices, multilayers and other objects if energy dissipation (photoabsorption, inelastic scattering, and so on) is not negligible, or in other words, in the case of an optical (complex) scattering potential. We show how a correct expression for the X-ray diffuse-scattering cross-section can be obtained in this case. Generally, the diffuse-scattering cross-section from an optical potential is not T-invariant, i.e. the reciprocity principle is violated. Violations of T-invariance are more evident when the dynamical nature of the diffraction is more critical

  18. On the Mass of Atoms in Molecules: Beyond the Born-Oppenheimer Approximation

    Directory of Open Access Journals (Sweden)

    Arne Scherrer

    2017-08-01

    Full Text Available Describing the dynamics of nuclei in molecules requires a potential energy surface, which is traditionally provided by the Born-Oppenheimer or adiabatic approximation. However, we also need to assign masses to the nuclei. There, the Born-Oppenheimer picture does not account for the inertia of the electrons, and only bare nuclear masses are considered. Nowadays, experimental accuracy challenges the theoretical predictions of rotational and vibrational spectra and requires the participation of electrons in the internal motion of the molecule. More than 80 years after the original work of Born and Oppenheimer, this issue has still not been solved, in general. Here, we present a theoretical and numerical framework to address this problem in a general and rigorous way. Starting from the exact factorization of the electron-nuclear wave function, we include electronic effects beyond the Born-Oppenheimer regime in a perturbative way via position-dependent corrections to the bare nuclear masses. This maintains an adiabaticlike point of view: The nuclear degrees of freedom feel the presence of the electrons via a single potential energy surface, whereas the inertia of electrons is accounted for and the total mass of the system is recovered. This constitutes a general framework for describing the mass acquired by slow degrees of freedom due to the inertia of light, bounded particles; thus, it is applicable not only in electron-nuclear systems but in light-heavy nuclei or ions as well. We illustrate this idea with a model of proton transfer, where the light particle is the proton and the heavy particles are the oxygen atoms to which the proton is bounded. Inclusion of the light-particle inertia allows us to gain orders of magnitude in accuracy. The electron-nuclear perspective is adopted, instead, to calculate position-dependent mass corrections using density functional theory for a few polyatomic molecules at their equilibrium geometry. These data can

  19. Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin; Meessen, Patrick

    2003-01-01

    We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)

  20. Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias; O' Loughlin, Martin; Meessen, Patrick [SISSA/ISAS, Via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: meessen@sissa.it

    2003-09-01

    We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)

  1. Does really Born-Oppenheimer approximation break down in charge transfer processes? An exactly solvable model

    International Nuclear Information System (INIS)

    Kuznetsov, Alexander M.; Medvedev, Igor G.

    2006-01-01

    Effects of deviation from the Born-Oppenheimer approximation (BOA) on the non-adiabatic transition probability for the transfer of a quantum particle in condensed media are studied within an exactly solvable model. The particle and the medium are modeled by a set of harmonic oscillators. The dynamic interaction of the particle with a single local mode is treated explicitly without the use of BOA. Two particular situations (symmetric and non-symmetric systems) are considered. It is shown that the difference between the exact solution and the true BOA is negligibly small at realistic parameters of the model. However, the exact results differ considerably from those of the crude Condon approximation (CCA) which is usually considered in the literature as a reference point for BOA (Marcus-Hush-Dogonadze formula). It is shown that the exact rate constant can be smaller (symmetric system) or larger (non-symmetric one) than that obtained in CCA. The non-Condon effects are also studied

  2. Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis

    Science.gov (United States)

    Schäfer, Tobias; Ramberger, Benjamin; Kresse, Georg

    2017-03-01

    We present a low-complexity algorithm to calculate the correlation energy of periodic systems in second-order Møller-Plesset (MP2) perturbation theory. In contrast to previous approximation-free MP2 codes, our implementation possesses a quartic scaling, O ( N 4 ) , with respect to the system size N and offers an almost ideal parallelization efficiency. The general issue that the correlation energy converges slowly with the number of basis functions is eased by an internal basis set extrapolation. The key concept to reduce the scaling is to eliminate all summations over virtual orbitals which can be elegantly achieved in the Laplace transformed MP2 formulation using plane wave basis sets and fast Fourier transforms. Analogously, this approach could allow us to calculate second order screened exchange as well as particle-hole ladder diagrams with a similar low complexity. Hence, the presented method can be considered as a step towards systematically improved correlation energies.

  3. Charge and finite size corrections for virtual photon spectra in second order Born approximation

    International Nuclear Information System (INIS)

    Durgapal, P.

    1982-01-01

    The purpose of this work is to investigate the effects of finite nuclear size and charge on the spectrum of virtual photons emitted when a relativistic electron is scattered in the field of an atomic nucleus. The method consisted in expanding the scattering cross section in terms of integrals over the nuclear inelastic form factor with a kernel which was evaluated in second order Born approximation and was derived from the elastic-electron scattering form factor. The kernel could be evaluated analytically provided the elastic form factor contained only poles. For this reason the author used a Yukawa form factor. Before calculating the second order term the author studied the first order term containing finite size effects in the inelastic form factor. The author observed that the virtual photon spectrum is insensitive to the details of the inelastic distribution over a large range of energies and depends only on the transition radius. This gave the author the freedom of choosing an inelastic distribution for which the form factor has only poles and the author chose a modified form of the exponential distribution, which enabled the author to evaluate the matrix element analytically. The remaining integral over the physical momentum transfer was performed numerically. The author evaluated the virtual photon spectra for E1 and M1 transitions for a variety of electron energies using several nuclei and compared the results with the distorted wave calculations. Except for low energy and high Z, the second order results compared well with the distorted wave calculations

  4. Initial value problem for colliding gravitational plane waves. III

    International Nuclear Information System (INIS)

    Hauser, I.; Ernst, F.J.

    1990-01-01

    The development of a homogeneous Hilbert problem (HHP) approach to the initial value problem (IVP) for colliding gravitational plane waves with noncollinear polarization that began in two earlier papers [I. Hauser and F. J. Ernst, J. Math. Phys. 30, 872 (1989) and 30, 2322 (1989)] is continued. After formulating the HHP, the description of how one can apply it to generate a new family of solutions of the colliding wave problem that generalizes a three-parameter family constructed by Ernst, Garcia, and Hauser [J. Math. Phys. 29, 681 (1988)] using a double-Harrison transformation is given. Then the proof that the solution of the new HHP indeed solves the IVP that is posed is presented. A matrix Fredholm equation of the second kind that is equivalent to the HHP is also deduced. This will be used in a sequel to complete the proof of existence of solutions of the HHP and the proof that certain assumed differentiability hypotheses are in fact valid

  5. The plain truth about forming a plane wave of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Apoorva G., E-mail: nintsspd@barc.gov.i [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Abbas, Sohrab [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Treimer, Wolfgang [Helmholtz Zentrum Berlin, Glienicker Str. 100, D-14109 Berlin (Germany)

    2011-04-01

    We have attained the first sub-arcsecond collimation of a monochromatic neutron beam by diffracting neutrons from a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. Analytical as well numerical computations based on the dynamical diffraction theory, led to the optimised collimator configuration of a silicon {l_brace}1 1 1{r_brace} Bragg prism for 5.26 A neutrons. We fabricated a Bragg prism to these specifications, tested and operated it at the double diffractometer setup in Helmholtz Zentrum Berlin to produce a 0.58 arcsec wide monochromatic neutron beam. With a similarly optimised Bragg prism analyser of opposite asymmetry, we recorded a 0.62 arcsec wide virgin rocking curve for this ultra-parallel beam. With this nearly plane-wave neutron beam, we have recorded the first ever USANS spectrum in Q{approx}10{sup -6} A{sup -1} range with a hydroxyapatite casein protein sample and demonstrated the instrument capability to characterise agglomerates up to 150 {mu}m in size. The super-collimated monochromatic beam has also enabled us to record the first neutron diffraction pattern from a macroscopic grating of 200 {mu}m period. The transverse coherence length of 175 {mu}m (FWHM) of the ultra-parallel beam derived from the analysis of this pattern, is the greatest achieved to date for A wavelength neutrons.

  6. Dispersive photonic crystals from the plane wave method

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  7. Ground penetrating radar antenna measurements based on plane-wave expansions

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...

  8. Plane-Wave Characterization of Antennas Close to a Planar Interface

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The plane-wave scattering matrix is used to characterize antennas that are located just above a planar interface that separates two media. The plane-wave transmitting spectrum for the field radiated downwards into the lower medium is expressed directly in terms of the current distribution of the ...

  9. Lectures on strings in flat space and plane waves from N = 4 super Yang Mills

    International Nuclear Information System (INIS)

    Maldacena, J.

    2003-01-01

    In these lecture notes we explain how the string spectrum in flat space and plane waves arises from the large N limit of U(N) N = 4 super Yang Mills. We reproduce the spectrum by summing a subset of the planar Feynman diagrams. We also describe some other aspects of string propagation on plane wave backgrounds. (author)

  10. Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers

    KAUST Repository

    Guo, Bowen

    2017-06-01

    Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.

  11. bb̅ud̅ four-quark systems in the Born-Oppenheimer approximation: prospects and challenges

    Science.gov (United States)

    Peters, Antje; Bicudo, Pedro; Wagner, Marc

    2018-03-01

    We summarize previous work on b̅b̅ud four-quark systems in the Born-Oppenheimer approximation and discuss first steps towards an extension to the theoretically more challenging bb̅ud̅ system. Strategies to identify a possibly existing bb̅ud̅ bound state are discussed and first numerical results are presented.

  12. A new GTD slope diffraction coefficient for plane wave illumination of a wedge

    DEFF Research Database (Denmark)

    Lumholt, Michael; Breinbjerg, Olav

    1997-01-01

    Two wedge problems including slope diffraction are solved: one in which the incident field is a non-uniform plane wave, and one in which it is an inhomogeneous plane wave. The two solutions lead to the same GTD slope diffraction coefficient. This coefficient reveals the existence of a coupling...... effect between a transverse magnetic (or transverse electric) incident plane wave and the transverse electric (or transverse magnetic) slope-diffracted field. The coupling effect is not described by the existing GTD slope diffraction coefficient...

  13. Off-shell properties of the second-order Born approximation for laser-assisted potential scattering

    International Nuclear Information System (INIS)

    Trombetta, F.

    1991-01-01

    A formal method is presented to evaluate the second-order Born approximation of the laser-assisted potential scattering. It is an implicit closure technique that includes intermediate virtual-state transitions and enables one to find the exact explicit expression of the transition amplitude. This is of interest from two standpoints: first, one can deal with ranges of parameters in which the first-order Born approximation is a poor one; second, one can set limits of on-shell approximations that are also widely used to analyze recent laser-assisted experiments. The off-shell character yields new terms in the exact amplitude, and in particular, it is shown to play a crucial role in forward scattering from a long-range potential

  14. A numerical analysis of the Born approximation for image formation modeling of differential interference contrast microscopy for human embryos

    Science.gov (United States)

    Trattner, Sigal; Feigin, Micha; Greenspan, Hayit; Sochen, Nir

    2008-03-01

    The differential interference contrast (DIC) microscope is commonly used for the visualization of live biological specimens. It enables the view of the transparent specimens while preserving their viability, being a non-invasive modality. Fertility clinics often use the DIC microscope for evaluation of human embryos quality. Towards quantification and reconstruction of the visualized specimens, an image formation model for DIC imaging is sought and the interaction of light waves with biological matter is examined. In many image formation models the light-matter interaction is expressed via the first Born approximation. The validity region of this approximation is defined in a theoretical bound which limits its use to very small specimens with low dielectric contrast. In this work the Born approximation is investigated via the Helmholtz equation, which describes the interaction between the specimen and light. A solution on the lens field is derived using the Gaussian Legendre quadrature formulation. This numerical scheme is considered both accurate and efficient and has shortened significantly the computation time as compared to integration methods that required a great amount of sampling for satisfying the Whittaker - Shannon sampling theorem. By comparing the numerical results with the theoretical values it is shown that the theoretical bound is not directly relevant to microscopic imaging and is far too limiting. The numerical exhaustive experiments show that the Born approximation is inappropriate for modeling the visualization of thick human embryos.

  15. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...

  16. Diffraction of an inhomogeneous plane wave by an impedance wedge in a lossy medium

    CSIR Research Space (South Africa)

    Manara, G

    1998-11-01

    Full Text Available The diffraction of an inhomogeneous plane wave by an impedance wedge embedded in a lossy medium is analyzed. The rigorous integral representation for the field is asymptotically evaluated in the context of the uniform geometrical theory...

  17. On plane-wave relativistic electrodynamics in plasmas and in vacuum

    International Nuclear Information System (INIS)

    Fiore, Gaetano

    2014-01-01

    We revisit the exact microscopic equations (in differential, and equivalent integral form) ruling a relativistic cold plasma after the plane-wave Ansatz, without customary approximations. We show that in the Eulerian description the motion of a very diluted plasma initially at rest and excited by an arbitrary transverse plane electromagnetic travelling-wave has a very simple and explicit dependence on the transverse electromagnetic potential; for a non-zero density plasma the above motion is a good approximation of the real one as long as the back-reaction of the charges on the electromagnetic field can be neglected, i.e. for a time lapse decreasing with the plasma density, and can be used as initial step in an iterative resolution scheme. As one of many possible applications, we use these results to describe how the ponderomotive force of a very intense and short plane laser pulse hitting normally the surface of a plasma boosts the surface electrons into the ion background. In response to this penetration, the electrons are pulled back by the electric force exerted by the ions and the other displaced electrons and may leave the plasma with high energy in the direction opposite to that of propagation of the pulse ‘slingshot effect’ (Fiore G et al 2013 arXiv:1309.1400). (paper)

  18. Existence and Stability of Spatial Plane Waves for the Incompressible Navier-Stokes in R^3

    Science.gov (United States)

    Correia, Simão; Figueira, Mário

    2018-03-01

    We consider the three-dimensional incompressible Navier-Stokes equation on the whole space. We observe that this system admits a L^∞ family of global spatial plane wave solutions, which are connected with the two-dimensional equation. We then proceed to prove local well-posedness over a space which includes L^3(R^3) and these solutions. Finally, we prove L^3-stability of spatial plane waves, with no condition on their size.

  19. The coupled-channel T-matrix: its lowest-order Born + Lanczos approximants

    International Nuclear Information System (INIS)

    Znojil, M.

    1995-01-01

    Three iterative methods of solution of the Lippmann-Schwinger equations (viz., the method of continued fractions by J.Horacek and T.Sasakawa), its Born-remainder modification and a coupled-channel matrix-continued-fraction generalization are all interpreted as special cases of a common iterative matrix prescription. Firstly, in terms of certain asymmetric projectors P≠P + , we re-derive the three particular older methods as different realizations of the well-known Lanczos inversion. Then, a generalized iteration method is proposed as a Born-like re-arrangement of any intermediate Lanczos iteration step. A maximal flexibility is achieved in the formalism which might compete with the standard Pade re-summations in practice. Its first few truncations are listed, therefore. 26 refs., 1 tab

  20. Eddington-inspired Born-Infeld gravity: nuclear physics constraints and the validity of the continuous fluid approximation

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-11-01

    In this paper we investigate the classical non-relativistic limit of the Eddington-inspired Born-Infeld theory of gravity. We show that strong bounds on the value of the only additional parameter of the theory κ, with respect to general relativity, may be obtained by requiring that gravity plays a subdominant role compared to electromagnetic interactions inside atomic nuclei. We also discuss the validity of the continuous fluid approximation used in this and other astrophysical and cosmological studies. We argue that although the continuous fluid approximation is expected to be valid in the case of sufficiently smooth density distributions, its use should eventually be validated at a quantum level.

  1. Eddington-inspired Born-Infeld gravity: nuclear physics constraints and the validity of the continuous fluid approximation

    International Nuclear Information System (INIS)

    Avelino, P.P.

    2012-01-01

    In this paper we investigate the classical non-relativistic limit of the Eddington-inspired Born-Infeld theory of gravity. We show that strong bounds on the value of the only additional parameter of the theory κ, with respect to general relativity, may be obtained by requiring that gravity plays a subdominant role compared to electromagnetic interactions inside atomic nuclei. We also discuss the validity of the continuous fluid approximation used in this and other astrophysical and cosmological studies. We argue that although the continuous fluid approximation is expected to be valid in the case of sufficiently smooth density distributions, its use should eventually be validated at a quantum level

  2. Virial theorem and the Born-Oppenheimer approximation at different orders of perturbation

    International Nuclear Information System (INIS)

    Olivier, Gabriel; Weislinger, Edmond

    1977-01-01

    The link between the virial theorem and the adiabatic approximation is studied for a few orders of perturbation. It is shown that the total energy of the system is distributed between the mean values of kinetic and potential energy of the nuclei and the electrons in each order of perturbation. No static approximation connected with the Hellmann-Feynman theorem is made [fr

  3. Quantum chemical approach for positron annihilation spectra of atoms and molecules beyond plane-wave approximation

    Science.gov (United States)

    Ikabata, Yasuhiro; Aiba, Risa; Iwanade, Toru; Nishizawa, Hiroaki; Wang, Feng; Nakai, Hiromi

    2018-05-01

    We report theoretical calculations of positron-electron annihilation spectra of noble gas atoms and small molecules using the nuclear orbital plus molecular orbital method. Instead of a nuclear wavefunction, the positronic wavefunction is obtained as the solution of the coupled Hartree-Fock or Kohn-Sham equation for a positron and the electrons. The molecular field is included in the positronic Fock operator, which allows an appropriate treatment of the positron-molecule repulsion. The present treatment succeeds in reproducing the Doppler shift, i.e., full width at half maximum (FWHM) of experimentally measured annihilation (γ-ray) spectra for molecules with a mean absolute error less than 10%. The numerical results indicate that the interpretation of the FWHM in terms of a specific molecular orbital is not appropriate.

  4. Seismic Imaging and Velocity Analysis Using a Pseudo Inverse to the Extended Born Approximation

    KAUST Repository

    Alali, Abdullah A.

    2018-05-01

    Prestack depth migration requires an accurate kinematic velocity model to image the subsurface correctly. Wave equation migration velocity analysis techniques aim to update the background velocity model by minimizing image residuals to achieve the correct model. The most commonly used technique is differential semblance optimization (DSO), which depends on applying an image extension and penalizing the energy in the non-physical extension. However, studies show that the conventional DSO gradient is contaminated with artifact noise and unwanted oscillations which might lead to local minima. To deal with this issue and improve the stability of DSO, recent studies proposed to use an inversion formula rather than migration to obtain the image. Migration is defined as the adjoint of Born modeling. Since the inversion is complicated and expensive, a pseudo inverse is used instead. A pseudo inverse formula has been developed recently for the horizontal space shift extended Born. This formula preserves the true amplitude and reduces the artifact noise even when an incorrect velocity is used. Although the theory for such an inverse is well developed, it has only been derived and tested on laterally homogeneous models. This is because the formula contains a derivative of the image with respect to a vertical extension evaluated at zero offset. Implementing the vertical extension is computationally expensive, which means this derivative needs to be computed without applying the additional extension. For laterally invariant models, the inverse is simplified and this derivative is eliminated. I implement the full asymptotic inverse to the extended Born to account for laterally heterogeneity. I compute the derivative of the image with respect to a vertical extension without performing any additional shift. This is accomplished by applying the derivative to the imaging condition and utilizing the chain rule. The fact that this derivative is evaluated at zero offset vertical

  5. A Time--Independent Born--Oppenheimer Approximation with Exponentially Accurate Error Estimates

    CERN Document Server

    Hagedorn, G A

    2004-01-01

    We consider a simple molecular--type quantum system in which the nuclei have one degree of freedom and the electrons have two levels. The Hamiltonian has the form \\[ H(\\epsilon)\\ =\\ -\\,\\frac{\\epsilon^4}2\\, \\frac{\\partial^2\\phantom{i}}{\\partial y^2}\\ +\\ h(y), \\] where $h(y)$ is a $2\\times 2$ real symmetric matrix. Near a local minimum of an electron level ${\\cal E}(y)$ that is not at a level crossing, we construct quasimodes that are exponentially accurate in the square of the Born--Oppenheimer parameter $\\epsilon$ by optimal truncation of the Rayleigh--Schr\\"odinger series. That is, we construct $E_\\epsilon$ and $\\Psi_\\epsilon$, such that $\\|\\Psi_\\epsilon\\|\\,=\\,O(1)$ and \\[ \\|\\,(H(\\epsilon)\\,-\\,E_\\epsilon))\\,\\Psi_\\epsilon\\,\\|\\ 0. \\

  6. Exact exchange plane-wave-pseudopotential calculations for slabs: Extending the width of the vacuum

    Science.gov (United States)

    Engel, Eberhard

    2018-04-01

    Standard plane-wave pseudopotential (PWPP) calculations for slabs such as graphene become extremely demanding, as soon as the exact exchange (EXX) of density functional theory is applied. Even if the Krieger-Li-Iafrate (KLI) approximation for the EXX potential is utilized, such EXX-PWPP calculations suffer from the fact that an accurate representation of the occupied states throughout the complete vacuum between the replicas of the slab is required. In this contribution, a robust and efficient extension scheme for the PWPP states is introduced, which ensures the correct exponential decay of the slab states in the vacuum for standard cutoff energies and therefore facilitates EXX-PWPP calculations for very wide vacua and rather thick slabs. Using this scheme, it is explicitly verified that the Slater component of the EXX/KLI potential decays as -1 /z over an extended region sufficiently far from the surface (assumed to be perpendicular to the z direction) and from the middle of the vacuum, thus reproducing the asymptotic behavior of the exact EXX potential of a single slab. The calculations also reveal that the orbital-shift component of the EXX/KLI potential is quite sizable in the asymptotic region. In spite of the long-range exchange potential, the replicas of the slab decouple rather quickly with increasing width of the vacuum. Relying on the identity of the work function with the Fermi energy obtained with a suitably normalized total potential, the present EXX/KLI calculations predict work functions for both graphene and the Si(111) surface which are substantially larger than the corresponding experimental data. Together with the size of the orbital-shift potential in the asymptotic region, the very large EXX/KLI work functions indicate a failure of the KLI approximation for nonmetallic slabs.

  7. Wave equation of a nonlinear triatomic molecule and the adiabatic correction to the Born--Oppenheimer approximation

    International Nuclear Information System (INIS)

    Bardo, R.D.; Wolfsberg, M.

    1977-01-01

    The wave equation for a nonlinear polyatomic molecule is formulated in molecule-fixed coordinates by a method originally due to Hirschfelder and Wigner. Application is made to a triatomic molecule, and the wave equation is explicitly presented in a useful molecule-fixed coordinate system. The formula for the adiabatic correction to the Born--Oppenheimer approximation for a triatomic molecule is obtained. The extension of the present formulation to larger polyatomic molecules is pointed out. Some terms in the triatomic molecule wave equation are discussed in detail

  8. Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2018-01-01

    of the complex hypergeometric function 2F1 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far......In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation......-field scattering components, that is, the phase function. I include recurrence formulae for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity...

  9. Mass distribution of fission fragments within the Born-Oppenheimer approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pomorski, K.; Nerlo-Pomorska, B. [M.C.S. University, Department of Theoretical Physics, Lublin (Poland); Ivanyuk, F.A. [Institute for Nuclear Research, Kiev (Ukraine)

    2017-03-15

    The fission fragments mass-yield of {sup 236} U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using a Woods-Saxon single-particle levels. The four-dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within a cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining the final fragment mass distribution. (orig.)

  10. Dilepton spectrum from quark-gluon plasma in second Born approximation

    International Nuclear Information System (INIS)

    Makhlin, A.N.

    1989-01-01

    The real time temperature Keldysh technique has been used to calculate the rate of dilepton emission from quark-gluon plasma in the first order with respect to strong coupling constant. This approximation us shown to be inconsistent. The radiative corrections turned to be of the same order as the contribution of real processes with gluons. Nevertheless the general properties inherent in dilepton emission from continuous media can be verified by measuring the lepton distribution inside the dilepton. 11 refs.; 2 figs

  11. In-Vivo Synthetic Aperture and Plane Wave High Frame Rate Cardiac Imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Jensen, Jonas; Brandt, Andreas Hjelm

    2014-01-01

    A comparison of synthetic aperture imaging using spherical and plane waves with low number of emission events is presented. For both wave types, a 90 degree sector is insonified using 15 emission events giving a frame rate of 200 frames per second. Field II simulations of point targets show simil.......43 for spherical and 0.70 for plane waves. All measures are well within FDA limits for cardiac imaging. In-vivo images of the heart of a healthy 28-year old volunteer are shown....

  12. Analytic plane wave solutions for the quaternionic potential step

    International Nuclear Information System (INIS)

    De Leo, Stefano; Ducati, Gisele C.; Madureira, Tiago M.

    2006-01-01

    By using the recent mathematical tools developed in quaternionic differential operator theory, we solve the Schroedinger equation in the presence of a quaternionic step potential. The analytic solution for the stationary states allows one to explicitly show the qualitative and quantitative differences between this quaternionic quantum dynamical system and its complex counterpart. A brief discussion on reflected and transmitted times, performed by using the stationary phase method, and its implication on the experimental evidence for deviations of standard quantum mechanics is also presented. The analytic solution given in this paper represents a fundamental mathematical tool to find an analytic approximation to the quaternionic barrier problem (up to now solved by numerical method)

  13. Eddy current imaging. Limits of the born approximation and advantages of an exact solution to the inverse problem

    International Nuclear Information System (INIS)

    Hamman, E.; Zorgati, R.

    1995-01-01

    Eddy current non-destructive testing is used by EDF to detect flaws affecting conductive objects such as steam generator tubes. With a view to obtaining ever more accurate information on equipment integrity, thereby facilitating diagnosis, studies aimed at using measurements to reconstruct an image of the flaw have been proceeding now for about ten years. In this context, our approach to eddy current imaging is based on inverse problem formalism. The direct problem, involving a mathematical model linking measurements provided by a probe with variables characterizing the defect, is dealt with elsewhere. Using the model results, we study the possibility of inverting it, i.e. of reconstructing an image of the flaw from the measurements. We first give an overview of the different inversion techniques, representative of the state of the art and all based on linearization of the inverse problem by means of the Born approximation. The model error resulting from an excessive Born approximation nevertheless severely limits the quantity of the images which can be obtained. In order to counteract this often critical error and extend the eddy current imaging application field, we have to del with the non-linear inverse problem. A method derived from recent research is proposed and implemented to ensure consistency with the exact model. Based on an 'optimization' type approach and provided with a convergence theorem, the method is highly efficient. (authors). 17 refs., 7 figs., 1 append

  14. Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...

  15. An extended Fourier modal method for plane-wave scattering from finite structures

    NARCIS (Netherlands)

    Pisarenco, M.; Maubach, J.M.L.; Setija, I.D.; Mattheij, R.M.M.

    2010-01-01

    This paper extends the area of application of the Fourier modal method from periodic structures to aperiodic ones, in particular for plane-wave illumination at arbitrary angles. This is achieved by placing perfectly matched layers at the lateral sides of the computational domain and reformulating

  16. Measurement Verification of Plane Wave Synthesis Technique Based on Multi-probe MIMO-OTA Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Carreño, Xavier; Nielsen, Jesper Ødum

    2012-01-01

    Standardization work for MIMO OTA testing methods is currently ongoing, where a multi-probe anechoic chamber based solution is an important candidate. In this paper, the probes located on an OTA ring are used to synthesize a plane wave field in the center of the OTA ring. This paper investigates...

  17. The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence

    Science.gov (United States)

    Smith, Glenn S.

    2012-01-01

    In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…

  18. Progress in parallel implementation of the multilevel plane wave time domain algorithm

    KAUST Repository

    Liu, Yang; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    The computational complexity and memory requirements of classical schemes for evaluating transient electromagnetic fields produced by Ns dipoles active for Nt time steps scale as O(NtN s 2) and O(Ns 2), respectively. The multilevel plane wave time

  19. From plane waves to local Gaussians for the simulation of correlated periodic systems

    International Nuclear Information System (INIS)

    Booth, George H.; Tsatsoulis, Theodoros; Grüneis, Andreas; Chan, Garnet Kin-Lic

    2016-01-01

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.

  20. From plane waves to local Gaussians for the simulation of correlated periodic systems

    Energy Technology Data Exchange (ETDEWEB)

    Booth, George H., E-mail: george.booth@kcl.ac.uk [Department of Physics, King’s College London, Strand, London WC2R 2LS (United Kingdom); Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Chan, Garnet Kin-Lic [Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-08-28

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.

  1. Aharonov-Casher effect and quantum transport in graphene based nano rings: A self-consistent Born approximation

    Science.gov (United States)

    Ghaderzadeh, A.; Rahbari, S. H. Ebrahimnazhad; Phirouznia, A.

    2018-03-01

    In this study, Rashba coupling induced Aharonov-Casher effect in a graphene based nano ring is investigated theoretically. The graphene based nano ring is considered as a central device connected to semi-infinite graphene nano ribbons. In the presence of the Rashba spin-orbit interaction, two armchair shaped edge nano ribbons are considered as semi-infinite leads. The non-equilibrium Green's function approach is utilized to obtain the quantum transport characteristics of the system. The relaxation and dephasing mechanisms within the self-consistent Born approximation is scrutinized. The Lopez-Sancho method is also applied to obtain the self-energy of the leads. We unveil that the non-equilibrium current of the system possesses measurable Aharonov-Casher oscillations with respect to the Rashba coupling strength. In addition, we have observed the same oscillations in dilute impurity regimes in which amplitude of the oscillations is shown to be suppressed as a result of the relaxations.

  2. Electron capture by alpha particles from helium atoms in a Coulomb-Born distorted-wave approximation

    International Nuclear Information System (INIS)

    Ghanbari-Adivi, E; Ghavaminia, H

    2012-01-01

    A three-body Coulomb-Born continuum distorted-wave approximation is applied to calculate the differential and total cross sections for single-electron exchange in the collision of fast alpha particles with helium atoms in their ground states. The applied first-order distorted wave theory satisfies correct Coulomb boundary conditions. Both post and prior forms of the transition amplitude are calculated. The nuclear-screening effect of the passive electron on the differential and total cross sections is investigated. The results are compared with those of other theories and with the available experimental data. For differential cross sections, the comparisons show a reasonable agreement with empirical measurements at higher impact energies. The agreement between experimental data and the present calculations for total cross sections with the average of the post and prior forms of the transition amplitude is reasonable at all the specified energies.

  3. Quantitative assessment of submicron scale anisotropy in tissue multifractality by scattering Mueller matrix in the framework of Born approximation

    Science.gov (United States)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-04-01

    A number of tissue-like disordered media exhibit local anisotropy of scattering in the scaling behavior. Scaling behavior contains wealth of fractal or multifractal properties. We demonstrate that the spatial dielectric fluctuations in a sample of biological tissue exhibit multifractal anisotropy. Multifractal anisotropy encoded in the wavelength variation of the light scattering Mueller matrix and manifesting as an intriguing spectral diattenuation effect. We developed an inverse method for the quantitative assessment of the multifractal anisotropy. The method is based on the processing of relevant Mueller matrix elements in Fourier domain by using Born approximation, followed by the multifractal analysis. The approach promises for probing subtle micro-structural changes in biological tissues associated with the cancer and precancer, as well as for non-destructive characterization of a wide range of scattering materials.

  4. Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF

    Science.gov (United States)

    Li, Chen; Requist, Ryan; Gross, E. K. U.

    2018-02-01

    We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = Rc, where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical Rc by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M-1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇Rχ(R) and ∇Rn(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation—an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).

  5. Accuracy and Precision of Plane Wave Vector Flow Imaging for Laminar and Complex Flow In Vivo

    DEFF Research Database (Denmark)

    Jensen, Jonas; Traberg, Marie Sand; Villagómez Hoyos, Carlos Armando

    2017-01-01

    In this study, a comparison between velocity fields for a plane wave 2-D vector flow imaging (VFI) method and a computational fluid dynamics (CFD) simulation is made. VFI estimates are obtained from the scan of a flow phantom, which mimics the complex flow conditions in the carotid artery....... Furthermore, the precision of the VFI method is investigated under laminar and complex flow conditions in vivo. The carotid bifurcation of a healthy volunteer was scanned using both fast plane wave ultrasound and magnetic resonance imaging (MRI). The acquired MRI geometry of the bifurcation was used...... difference within 15 %, however, it was 23 % in the external branch. For the in vivo scan, the precision in terms of mean standard deviation (SD) of estimates aligned to the cardiac cycle was highest in the center of the common carotid artery (SD 4.7◦ for angles) and lowest in the external branch and close...

  6. Photonic band structures solved by a plane-wave-based transfer-matrix method.

    Science.gov (United States)

    Li, Zhi-Yuan; Lin, Lan-Lan

    2003-04-01

    Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method.

  7. Photonic band structures solved by a plane-wave-based transfer-matrix method

    International Nuclear Information System (INIS)

    Li Zhiyuan; Lin Lanlan

    2003-01-01

    Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method

  8. Plane wave diffraction by a finite plate with impedance boundary conditions.

    Science.gov (United States)

    Nawaz, Rab; Ayub, Muhammad; Javaid, Akmal

    2014-01-01

    In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.

  9. Plane wave diffraction by a finite plate with impedance boundary conditions.

    Directory of Open Access Journals (Sweden)

    Rab Nawaz

    Full Text Available In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.

  10. Path integral for spinning particle in the plane wave field: Global and local projections

    International Nuclear Information System (INIS)

    Boudiaf, N.; Boudjedaa, T.; Chetouani, L.

    2001-01-01

    The Green function related to the problem of a Dirac particle interacting with a plane wave is calculated via the path integral formalism proposed recently by Alexandrou et al. according to the two so-called global and local projections. With the help of the incorporation of two simple identities, it is shown that the contribution to the calculation of the integrals comes essentially from classical solutions projected along the direction of wave propagation. (orig.)

  11. A parallel orbital-updating based plane-wave basis method for electronic structure calculations

    International Nuclear Information System (INIS)

    Pan, Yan; Dai, Xiaoying; Gironcoli, Stefano de; Gong, Xin-Gao; Rignanese, Gian-Marco; Zhou, Aihui

    2017-01-01

    Highlights: • Propose three parallel orbital-updating based plane-wave basis methods for electronic structure calculations. • These new methods can avoid the generating of large scale eigenvalue problems and then reduce the computational cost. • These new methods allow for two-level parallelization which is particularly interesting for large scale parallelization. • Numerical experiments show that these new methods are reliable and efficient for large scale calculations on modern supercomputers. - Abstract: Motivated by the recently proposed parallel orbital-updating approach in real space method , we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers.

  12. Localized orbitals vs. pseudopotential-plane waves basis sets: performances and accuracy for molecular magnetic systems

    CERN Document Server

    Massobrio, C

    2003-01-01

    Density functional theory, in combination with a) a careful choice of the exchange-correlation part of the total energy and b) localized basis sets for the electronic orbital, has become the method of choice for calculating the exchange-couplings in magnetic molecular complexes. Orbital expansion on plane waves can be seen as an alternative basis set especially suited to allow optimization of newly synthesized materials of unknown geometries. However, little is known on the predictive power of this scheme to yield quantitative values for exchange coupling constants J as small as a few hundredths of eV (50-300 cm sup - sup 1). We have used density functional theory and a plane waves basis set to calculate the exchange couplings J of three homodinuclear Cu-based molecular complexes with experimental values ranging from +40 cm sup - sup 1 to -300 cm sup - sup 1. The plane waves basis set proves as accurate as the localized basis set, thereby suggesting that this approach can be reliably employed to predict and r...

  13. Localized orbitals vs. pseudopotential-plane waves basis sets: performances and accuracy for molecular magnetic systems

    International Nuclear Information System (INIS)

    Massobrio, C.; Ruiz, E.

    2003-01-01

    Density functional theory, in combination with a) a careful choice of the exchange-correlation part of the total energy and b) localized basis sets for the electronic orbital, has become the method of choice for calculating the exchange-couplings in magnetic molecular complexes. Orbital expansion on plane waves can be seen as an alternative basis set especially suited to allow optimization of newly synthesized materials of unknown geometries. However, little is known on the predictive power of this scheme to yield quantitative values for exchange coupling constants J as small as a few hundredths of eV (50-300 cm -1 ). We have used density functional theory and a plane waves basis set to calculate the exchange couplings J of three homodinuclear Cu-based molecular complexes with experimental values ranging from +40 cm -1 to -300 cm -1 . The plane waves basis set proves as accurate as the localized basis set, thereby suggesting that this approach can be reliably employed to predict and rationalize the magnetic properties of molecular-based materials. (author)

  14. Improved Plane-Wave Ultrasound Beamforming by Incorporating Angular Weighting and Coherent Compounding in Fourier Domain.

    Science.gov (United States)

    Chen, Chuan; Hendriks, Gijs A G M; van Sloun, Ruud J G; Hansen, Hendrik H G; de Korte, Chris L

    2018-05-01

    In this paper, a novel processing framework is introduced for Fourier-domain beamforming of plane-wave ultrasound data, which incorporates coherent compounding and angular weighting in the Fourier domain. Angular weighting implies spectral weighting by a 2-D steering-angle-dependent filtering template. The design of this filter is also optimized as part of this paper. Two widely used Fourier-domain plane-wave ultrasound beamforming methods, i.e., Lu's f-k and Stolt's f-k methods, were integrated in the framework. To enable coherent compounding in Fourier domain for the Stolt's f-k method, the original Stolt's f-k method was modified to achieve alignment of the spectra for different steering angles in k-space. The performance of the framework was compared for both methods with and without angular weighting using experimentally obtained data sets (phantom and in vivo), and data sets (phantom) provided by the IEEE IUS 2016 plane-wave beamforming challenge. The addition of angular weighting enhanced the image contrast while preserving image resolution. This resulted in images of equal quality as those obtained by conventionally used delay-and-sum (DAS) beamforming with apodization and coherent compounding. Given the lower computational load of the proposed framework compared to DAS, to our knowledge it can, therefore, be concluded that it outperforms commonly used beamforming methods such as Stolt's f-k, Lu's f-k, and DAS.

  15. Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.

    Science.gov (United States)

    Frisvad, Jeppe Revall

    2018-04-01

    In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.

  16. Extending the precision and efficiency of the all-electron full-potential linearized augmented plane-wave density-functional theory method

    International Nuclear Information System (INIS)

    Michalicek, Gregor

    2015-01-01

    Density functional theory (DFT) is the most widely-used first-principles theory for analyzing, describing and predicting the properties of solids based on the fundamental laws of quantum mechanics. The success of the theory is a consequence of powerful approximations to the unknown exchange and correlation energy of the interacting electrons and of sophisticated electronic structure methods that enable the computation of the density functional equations on a computer. A widely used electronic structure method is the full-potential linearized augmented plane-wave (FLAPW) method, that is considered to be one of the most precise methods of its kind and often referred to as a standard. Challenged by the demand of treating chemically and structurally increasingly more complex solids, in this thesis this method is revisited and extended along two different directions: (i) precision and (ii) efficiency. In the full-potential linearized augmented plane-wave method the space of a solid is partitioned into nearly touching spheres, centered at each atom, and the remaining interstitial region between the spheres. The Kohn-Sham orbitals, which are used to construct the electron density, the essential quantity in DFT, are expanded into a linearized augmented plane-wave basis, which consists of plane waves in the interstitial region and angular momentum dependent radial functions in the spheres. In this thesis it is shown that for certain types of materials, e.g., materials with very broad electron bands or large band gaps, or materials that allow the usage of large space-filling spheres, the variational freedom of the basis in the spheres has to be extended in order to represent the Kohn-Sham orbitals with high precision over a large energy spread. Two kinds of additional radial functions confined to the spheres, so-called local orbitals, are evaluated and found to successfully eliminate this error. A new efficient basis set is developed, named linearized augmented lattice

  17. πN scattering and γN → Nπ photoproduction within the unitary improved Born approximation

    Science.gov (United States)

    Mariano, A.

    2007-07-01

    Following the programme of describing consistently several processes where the isobar Δ(1232 MeV) nucleon resonance appears as an intermediate state, in this work we propose to unitarize our old improved Born approximation already used to describe successfully π+p elastic and radiative scattering, to treat pion photoproduction. First we add the effect of final state interactions and make a new determination of the mass, width and the coupling constant to the pion-nucleon state of the Δ resonance. Then extending the model for pion photoproduction and using the resonance parameters determined previously, we are able to define effective form factors (at k2γ = 0) for the γN → Δ vertex with values GM = 2.97 ± 0.08 and GE = 0.055 ± 0.010, by fitting the data for the M3/21+ and E3/21+ multipoles. These values are fully consistent with recent chiral effective field theory calculations, and using them we can predict satisfactorily the data for other multipoles and the photoproduction cross section. Finally, we intend a model-independent determination of the bare form factors making a dynamical dressing of the vertex, getting G0M = 1.69 ± 0.02, G0E = 0.028 ± 0.008 and R0EM = -1.67 ± 0.45%, which are compared with different quark models.

  18. Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis

    KAUST Repository

    Guo, Bowen

    2017-08-28

    Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating in the subsurface. To exceed this resolution limit, this thesis develops a new imaging method using resonant multiples, which produces superresolution images with twice or even more the spatial resolution compared to the conventional primary reflection image. A resonant multiple is defined as a seismic reflection that revisits the same subsurface location along coincident reflection raypath. This reverberated raypath is the reason for superresolution imaging because it increases the differences in reflection times associated with subtle changes in the spatial location of the reflector. For the practical implementation of superresolution imaging, I develop a post-stack migration technique that first enhances the signal-to-noise ratios (SNRs) of resonant multiples by a moveout-correction stacking method, and then migrates the post-stacked resonant multiples with the associated Kirchhoff or wave-equation migration formula. I show with synthetic and field data examples that the first-order resonant multiple image has about twice the spatial resolution compared to the primary reflection image. Besides resolution, the correct estimate of the subsurface velocity is crucial for determining the correct depth of reflectors. Towards this goal, wave-equation migration velocity analysis (WEMVA) is an image-domain method which inverts for the velocity model that maximizes the similarity of common image gathers (CIGs). Conventional WEMVA based on subsurface-offset, angle domain or time-lag CIGs requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, I present a new WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce the

  19. Piecewise linear approximations to model the dynamics of adaptation to osmotic stress by food-borne pathogens.

    Science.gov (United States)

    Métris, Aline; George, Susie M; Ropers, Delphine

    2017-01-02

    Addition of salt to food is one of the most ancient and most common methods of food preservation. However, little is known of how bacterial cells adapt to such conditions. We propose to use piecewise linear approximations to model the regulatory adaptation of Escherichiacoli to osmotic stress. We apply the method to eight selected genes representing the functions known to be at play during osmotic adaptation. The network is centred on the general stress response factor, sigma S, and also includes a module representing the catabolic repressor CRP-cAMP. Glutamate, potassium and supercoiling are combined to represent the intracellular regulatory signal during osmotic stress induced by salt. The output is a module where growth is represented by the concentration of stable RNAs and the transcription of the osmotic gene osmY. The time course of gene expression of transport of osmoprotectant represented by the symporter proP and of the osmY is successfully reproduced by the network. The behaviour of the rpoS mutant predicted by the model is in agreement with experimental data. We discuss the application of the model to food-borne pathogens such as Salmonella; although the genes considered have orthologs, it seems that supercoiling is not regulated in the same way. The model is limited to a few selected genes, but the regulatory interactions are numerous and span different time scales. In addition, they seem to be condition specific: the links that are important during the transition from exponential to stationary phase are not all needed during osmotic stress. This model is one of the first steps towards modelling adaptation to stress in food safety and has scope to be extended to other genes and pathways, other stresses relevant to the food industry, and food-borne pathogens. The method offers a good compromise between systems of ordinary differential equations, which would be unmanageable because of the size of the system and for which insufficient data are available

  20. Interpreting the Coulomb-field approximation for generalized-Born electrostatics using boundary-integral equation theory.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2008-10-14

    The importance of molecular electrostatic interactions in aqueous solution has motivated extensive research into physical models and numerical methods for their estimation. The computational costs associated with simulations that include many explicit water molecules have driven the development of implicit-solvent models, with generalized-Born (GB) models among the most popular of these. In this paper, we analyze a boundary-integral equation interpretation for the Coulomb-field approximation (CFA), which plays a central role in most GB models. This interpretation offers new insights into the nature of the CFA, which traditionally has been assessed using only a single point charge in the solute. The boundary-integral interpretation of the CFA allows the use of multiple point charges, or even continuous charge distributions, leading naturally to methods that eliminate the interpolation inaccuracies associated with the Still equation. This approach, which we call boundary-integral-based electrostatic estimation by the CFA (BIBEE/CFA), is most accurate when the molecular charge distribution generates a smooth normal displacement field at the solute-solvent boundary, and CFA-based GB methods perform similarly. Conversely, both methods are least accurate for charge distributions that give rise to rapidly varying or highly localized normal displacement fields. Supporting this analysis are comparisons of the reaction-potential matrices calculated using GB methods and boundary-element-method (BEM) simulations. An approximation similar to BIBEE/CFA exhibits complementary behavior, with superior accuracy for charge distributions that generate rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields. This approximation, BIBEE by preconditioning (BIBEE/P), essentially generates initial guesses for preconditioned Krylov-subspace iterative BEMs. Thus, iterative refinement of the BIBEE/P results recovers the BEM solution; excellent agreement

  1. On AdS/CFT correspondence beyond SUGRA: plane waves, free CFTs and double-trace deformations

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Vazquez, D.E.

    2007-09-13

    This thesis deals with three corners of the AdS/CFT Correspondence that lie one step beyond the classical supergravity (SUGRA) approximation. We first explore the BMN limit of the duality and study, in particular, the behavior of field theoretic propagators in the corresponding Penrose limit. We unravel the semiclassical (WKB-) exactness of the propagators in the resulting plane wave background metric. Then, we address the limit of vanishing coupling of the conformal field theory (CFT) at large N. In the simplified scenario of Higher Spin/O(N) Vector Model duality, the conformal partial wave (CPW) expansion of scalar four-point functions are reorganized to make them suggestive of a bulk interpretation in term of a consistent truncated massless higher spin theory and their corresponding exchange Witten graphs. We also explore the connection to the interacting O(N) Vector Model at its infra-red fixed point, at leading large N. Finally, coming back to the gauge theory, we study the effect of a relevant double-trace deformations of the boundary CFT on the partition function and its dual bulk interpretation. We show how the one-loop computation in the Anti-de Sitter (AdS) space correctly reproduces the partition function and conformal anomaly of the boundary theory. In all, we get a clean test of the duality beyond the classical SUGRA approximation in the AdS bulk and at the corresponding next-to-leading 1/N order of the CFT at the conformal boundary. (orig.)

  2. On AdS/CFT correspondence beyond SUGRA: plane waves, free CFTs and double-trace deformations

    International Nuclear Information System (INIS)

    Diaz Vazquez, D.E.

    2007-01-01

    This thesis deals with three corners of the AdS/CFT Correspondence that lie one step beyond the classical supergravity (SUGRA) approximation. We first explore the BMN limit of the duality and study, in particular, the behavior of field theoretic propagators in the corresponding Penrose limit. We unravel the semiclassical (WKB-) exactness of the propagators in the resulting plane wave background metric. Then, we address the limit of vanishing coupling of the conformal field theory (CFT) at large N. In the simplified scenario of Higher Spin/O(N) Vector Model duality, the conformal partial wave (CPW) expansion of scalar four-point functions are reorganized to make them suggestive of a bulk interpretation in term of a consistent truncated massless higher spin theory and their corresponding exchange Witten graphs. We also explore the connection to the interacting O(N) Vector Model at its infra-red fixed point, at leading large N. Finally, coming back to the gauge theory, we study the effect of a relevant double-trace deformations of the boundary CFT on the partition function and its dual bulk interpretation. We show how the one-loop computation in the Anti-de Sitter (AdS) space correctly reproduces the partition function and conformal anomaly of the boundary theory. In all, we get a clean test of the duality beyond the classical SUGRA approximation in the AdS bulk and at the corresponding next-to-leading 1/N order of the CFT at the conformal boundary. (orig.)

  3. A singularity extraction technique for computation of antenna aperture fields from singular plane wave spectra

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel

    2008-01-01

    An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...

  4. Increased Frame Rate for Plane Wave Imaging Without Loss of Image Quality

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    Clinical applications of plane wave imaging necessitate the creation of high-quality images with the highest possible frame rate for improved blood flow tracking and anatomical imaging. However, linear array transducers create grating lobe artefacts, which degrade the image quality especially...... in the near field for λ-pitch transducers. Artefacts can only partly be suppressed by increasing the number of emissions, and this paper demonstrates how the frame rate can be increased without loss of image quality by using λ/2-pitch transducers. The number of emissions and steering angles are optimized...

  5. Effect of weak nonlinearities on the plane waves in a plasma stream

    International Nuclear Information System (INIS)

    Seshadri, S.R.

    1976-01-01

    The effect of weak nonlinearities on the monochromatic plane waves in a cold infinite plasma stream is investigated for the case in which the waves are progressing parallel to the drift velocity. The fast and the slow space-charge waves undergo amplitude-dependent frequency and wave number shifts. There is a long time slow modulation of the amplitude of the electromagnetic mode which becomes unstable to this nonlinear wave modulation. The importance of using the relativistically correct equation of motion for predicting correctly the modulational stability of the electromagnetic mode is pointed out. (author)

  6. Quantum mechanics of lattice gas automata: One-particle plane waves and potentials

    International Nuclear Information System (INIS)

    Meyer, D.A.

    1997-01-01

    Classical lattice gas automata effectively simulate physical processes, such as diffusion and fluid flow (in certain parameter regimes), despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined quantum lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Studying the single particle sector of a one-dimensional quantum lattice gas we find discrete analogs of plane waves and wave packets, and then investigate their behavior in the presence of inhomogeneous potentials. copyright 1997 The American Physical Society

  7. Efficient evaluation of Coulomb integrals in a mixed Gaussian and plane-wave basis

    Czech Academy of Sciences Publication Activity Database

    Čársky, Petr

    2007-01-01

    Roč. 107, č. 1 (2007), s. 56-62 ISSN 0020-7608 R&D Projects: GA AV ČR IAA100400501; GA AV ČR 1ET400400413 Grant - others:European Science Foundation (EIPAM)(XE) PESC7-20; U.S. National Science Foundation(US) OISE-0532040 Institutional research plan: CEZ:AV0Z40400503 Keywords : two- electron integrals * mixed plane-wave and Gaussian basis sets * Coulomb integrals Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 1.368, year: 2007

  8. Worldline path integrals for a Dirac particle in a weak gravitational plane wave

    International Nuclear Information System (INIS)

    Haouat, S.; Chetouani, L.

    2008-01-01

    The problem of a relativistic spinning particle interacting with a weak gravitational plane wave in (3+1) dimensions is formulated in the frame work of covariant supersymmetric path integrals. The relative Green function is expressed through a functional integral over bosonic trajectories that describe the external motion and fermionic variables that describe the spin degrees of freedom. The (3+1) dimensional problem is reduced to the (1+1) dimensional one by using an identity. Next, the relative propagator is exactly calculated and the wave functions are extracted. (orig.)

  9. Explicit formulas for Neumann coefficients in the plane-wave geometry

    International Nuclear Information System (INIS)

    He Yanghui; Schwarz, John H.; Spradlin, Marcus; Volovich, Anastasia

    2003-01-01

    We obtain explicit formulas for the Neumann coefficients and associated quantities that appear in the three-string vertex for type IIB string theory in a plane-wave background, for any value of the mass parameter μ. The derivation involves constructing the inverse of a certain infinite-dimensional matrix, in terms of which the Neumann coefficients previously had been written only implicitly. We derive asymptotic expansions for large μ and find unexpectedly simple results, which are valid to all orders in 1/μ. Using BMN duality, these give predictions for certain gauge theory quantities to all orders in the modified 't Hooft coupling λ ' . A specific example is presented

  10. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)

    2017-03-26

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.

  11. Planar plane-wave matrix theory at the four loop order: integrability without BMN scaling

    International Nuclear Information System (INIS)

    Fischbacher, Thomas; Klose, Thomas; Plefka, Jan

    2005-01-01

    We study SU(N) plane-wave matrix theory up to fourth perturbative order in its large N planar limit. The effective hamiltonian in the closed su(2) subsector of the model is explicitly computed through a specially tailored computer program to perform large scale distributed symbolic algebra and generation of planar graphs. The number of graphs here was in the deep billions. The outcome of our computation establishes the four-loop integrability of the planar plane-wave matrix model. To elucidate the integrable structure we apply the recent technology of the perturbative asymptotic Bethe ansatz to our model. The resulting S-matrix turns out to be structurally similar but nevertheless distinct to the so far considered long-range spin-chain S-matrices of Inozemtsev, Beisert-Dippel-Staudacher and Arutyunov-Frolov-Staudacher in the AdS/CFT context. In particular our result displays a breakdown of BMN scaling at the four-loop order. That is, while there exists an appropriate identification of the matrix theory mass parameter with the coupling constant of the N=4 superconformal Yang-Mills theory which yields an eighth order lattice derivative for well separated impurities (naively implying BMN scaling) the detailed impurity contact interactions ruin this scaling property at the four-loop order. Moreover we study the issue of 'wrapping' interactions, which show up for the first time at this loop-order through a Konishi descendant length four operator. (author)

  12. Parallel Implementation of Gamma-Point Pseudopotential Plane-Wave DFT with Exact Exchange

    International Nuclear Information System (INIS)

    Bylaska, Eric J.; Tsemekhman, Kiril L.; Baden, Scott B.; Weare, John H.; Jonsson, Hannes

    2011-01-01

    One of the more persistent failures of conventional density functional theory (DFT) methods has been their failure to yield localized charge states such as polarons, excitons and solitons in solid-state and extended systems. It has been suggested that conventional DFT functionals, which are not self-interaction free, tend to favor delocalized electronic states since self-interaction creates a Coulomb barrier to charge localization. Pragmatic approaches in which the exchange correlation functionals are augmented with small amount of exact exchange (hybrid-DFT, e.g. B3LYP and PBE0) have shown promise in localizing charge states and predicting accurate band gaps and reaction barriers. We have developed a parallel algorithm for implementing exact exchange into pseudopotential plane-wave density functional theory and we have implemented it in the NWChem program package. The technique developed can readily be employed in plane-wave DFT programs. Furthermore, atomic forces and stresses are straightforward to implement, making it applicable to both confined and extended systems, as well as to Car-Parrinello ab initio molecular dynamic simulations. This method has been applied to several systems for which conventional DFT methods do not work well, including calculations for band gaps in oxides and the electronic structure of a charge trapped state in the Fe(II) containing mica, annite.

  13. Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons

    Science.gov (United States)

    Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

  14. Optimization of exit-plane waves restored from HRTEM through-focal series

    International Nuclear Information System (INIS)

    Erni, Rolf; Rossell, Marta D.; Nakashima, Philip N.H.

    2010-01-01

    Atomic-resolution transmission electron microscopy has largely benefited from the implementation of aberration correctors in the imaging part of the microscope. Though the dominant geometrical axial aberrations can in principle be corrected or suitably adjusted, the impact of higher-order aberrations, which are mainly due to the implementation of non-round electron optical elements, on the imaging process remains unclear. Based on a semi-empirical criterion, we analyze the impact of residual aperture aberrations on the quality of exit-plane waves that are retrieved from through-focal series recorded using an aberration-corrected and monochromated instrument which was operated at 300 kV and enabled for an information transfer of ∼0.05 nm. We show that the impact of some of the higher-order aberrations in retrieved exit-plane waves can be balanced by a suitable adjustment of symmetry equivalent lower-order aberrations. We find that proper compensation and correction of 1st and 2nd order aberrations is critical, and that the required accuracy is difficult to achieve. This results in an apparent insensitivity towards residual higher-order aberrations. We also investigate the influence of the detector characteristics on the image contrast. We find that correction for the modulation transfer function results in a contrast gain of up to 40%.

  15. A wavenumber approach to analysing the active control of plane waves with arrays of secondary sources

    Science.gov (United States)

    Elliott, Stephen J.; Cheer, Jordan; Bhan, Lam; Shi, Chuang; Gan, Woon-Seng

    2018-04-01

    The active control of an incident sound field with an array of secondary sources is a fundamental problem in active control. In this paper the optimal performance of an infinite array of secondary sources in controlling a plane incident sound wave is first considered in free space. An analytic solution for normal incidence plane waves is presented, indicating a clear cut-off frequency for good performance, when the separation distance between the uniformly-spaced sources is equal to a wavelength. The extent of the near field pressure close to the source array is also quantified, since this determines the positions of the error microphones in a practical arrangement. The theory is also extended to oblique incident waves. This result is then compared with numerical simulations of controlling the sound power radiated through an open aperture in a rigid wall, subject to an incident plane wave, using an array of secondary sources in the aperture. In this case the diffraction through the aperture becomes important when its size is compatible with the acoustic wavelength, in which case only a few sources are necessary for good control. When the size of the aperture is large compared to the wavelength, and diffraction is less important but more secondary sources need to be used for good control, the results then become similar to those for the free field problem with an infinite source array.

  16. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    Science.gov (United States)

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  17. Plane-Wave Implementation and Performance of à-la-Carte Coulomb-Attenuated Exchange-Correlation Functionals for Predicting Optical Excitation Energies in Some Notorious Cases.

    Science.gov (United States)

    Bircher, Martin P; Rothlisberger, Ursula

    2018-06-12

    Linear-response time-dependent density functional theory (LR-TD-DFT) has become a valuable tool in the calculation of excited states of molecules of various sizes. However, standard generalized-gradient approximation and hybrid exchange-correlation (xc) functionals often fail to correctly predict charge-transfer (CT) excitations with low orbital overlap, thus limiting the scope of the method. The Coulomb-attenuation method (CAM) in the form of the CAM-B3LYP functional has been shown to reliably remedy this problem in many CT systems, making accurate predictions possible. However, in spite of a rather consistent performance across different orbital overlap regimes, some pitfalls remain. Here, we present a fully flexible and adaptable implementation of the CAM for Γ-point calculations within the plane-wave pseudopotential molecular dynamics package CPMD and explore how customized xc functionals can improve the optical spectra of some notorious cases. We find that results obtained using plane waves agree well with those from all-electron calculations employing atom-centered bases, and that it is possible to construct a new Coulomb-attenuated xc functional based on simple considerations. We show that such a functional is able to outperform CAM-B3LYP in some cases, while retaining similar accuracy in systems where CAM-B3LYP performs well.

  18. Far-field divergence of a vectorial plane wave diffracted by a circular aperture from the vectorial structure

    International Nuclear Information System (INIS)

    Zhou Guo-Quan

    2011-01-01

    Based on the vectorial structure of an electromagnetic wave, the analytical and concise expressions for the TE and TM terms of a vectorial plane wave diffracted by a circular aperture are derived in the far-field. The expressions of the energy flux distributions of the TE term, the TM term and the diffracted plane wave are also presented. The ratios of the power of the TE and TM terms to that of the diffracted plane wave are examined in the far-field. In addition, the far-field divergence angles of the TE term, the TM term and the diffracted plane wave, which are related to the energy flux distribution, are investigated. The different energy flux distributions of the TE and TM terms result in the discrepancy of their divergence angles. The influences of the linearly polarized angle and the radius of the circular aperture on the far-field divergence angles of the TE term, the TM term and the diffracted plane wave are discussed in detail. This research may promote the recognition of the optical propagation through a circular aperture. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Invertible propagator for plane wave illumination of forward-scattering structures.

    Science.gov (United States)

    Samelsohn, Gregory

    2017-05-10

    Propagation of directed waves in forward-scattering media is considered. It is assumed that the evolution of the wave field is governed by the standard parabolic wave equation. An efficient one-step momentum-space propagator, suitable for a tilted plane wave illumination of extended objects, is derived. It is expressed in terms of a propagation operator that transforms (the complex exponential of) a linogram of the illuminated object into a set of its diffraction patterns. The invertibility of the propagator is demonstrated, which permits a multiple-shot scatter correction to be performed, and makes the solution especially attractive for either projective or tomographic imaging. As an example, high-resolution tomograms are obtained in numerical simulations implemented for a synthetic phantom, with both refractive and absorptive inclusions.

  20. A numerical method for determining the radial wave motion correction in plane wave couplers

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni

    2016-01-01

    Microphones are used for realising the unit of sound pressure level, the pascal (Pa). Electro-acoustic reciprocity is the preferred method for the absolute determination of the sensitivity. This method can be applied in different sound fields: uniform pressure, free field or diffuse field. Pressure...... solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model...... of the microphone-coupler system in a Boundary Element formulation. In order to obtain a realistic representation of the sound field, viscous losses must be introduced in the model. This paper presents such a model, and the results of the simulations for different combinations of microphones and couplers...

  1. DFT LCAO and plane wave calculations of SrZrO3

    International Nuclear Information System (INIS)

    Evarestov, R.A.; Bandura, A.V.; Alexandrov, V.E.; Kotomin, E.A.

    2005-01-01

    The results of the density functional (DFT) LCAO and plane wave (PW) calculations of the electronic and structural properties of four known SrZrO 3 phases (Pm3m, I4/mcm, Cmcm and Pbnm) are presented and discussed. The calculated unit cell energies and relative stability of these phases agree well with the experimental sequence of SrZrO 3 phases as the temperature increases. The lattice structure parameters optimized in the PW calculations for all four phases are in good agreement with the experimental neutron diffraction data. The LCAO and PW results for the electronic structure, density of states and chemical bonding in the cubic phase (Pm3m) are discussed in detail and compared with the results of previous PW calculations. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. DFT LCAO and plane wave calculations of SrZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Evarestov, R.A.; Bandura, A.V.; Alexandrov, V.E. [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetskiy Prospekt, Stary Peterhof 198504 (Russian Federation); Kotomin, E.A. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstr. 1, 70569, Stuttgart (Germany)

    2005-02-01

    The results of the density functional (DFT) LCAO and plane wave (PW) calculations of the electronic and structural properties of four known SrZrO{sub 3} phases (Pm3m, I4/mcm, Cmcm and Pbnm) are presented and discussed. The calculated unit cell energies and relative stability of these phases agree well with the experimental sequence of SrZrO{sub 3} phases as the temperature increases. The lattice structure parameters optimized in the PW calculations for all four phases are in good agreement with the experimental neutron diffraction data. The LCAO and PW results for the electronic structure, density of states and chemical bonding in the cubic phase (Pm3m) are discussed in detail and compared with the results of previous PW calculations. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Kinetic theory of electromagnetic plane wave obliquely incident on bounded plasma slab

    International Nuclear Information System (INIS)

    Angus, J. R.; Krasheninnikov, S. I.; Smolyakov, A. I.

    2010-01-01

    The effects of electromagnetic plane waves obliquely incident on a warm bounded plasma slab of finite length L are studied by solving the coupled Vlasov-Maxwell set of equations. It is shown that the solution can be greatly simplified in the limit where thermal effects are most important by expanding in small parameters and introducing self-similar variables. These solutions reveal that the coupling of thermal effects with the angle of incidence is negligible in the region of bounce resonance and anomalous skin effect. In the region of the anomalous skin effect, the heating is shown to scale linearly with the anomalous skin depth δ a when δ a a >>L, the heating is shown to decay with 1/δ a 3 . The transmission is found to be exponentially larger than that predicted from a local theory in the appropriate region of the anomalous skin effect.

  4. Performance evaluation of compounding and directional beamforming techniques for carotid strain imaging using plane wave transmissions

    DEFF Research Database (Denmark)

    Hansen, Hendrik H.G.; Stuart, Matthias Bo; Villagómez Hoyos, Carlos Armando

    2014-01-01

    Carotid strain imaging in 3D is not possible with conventional focused imaging, because the frame rate is too low. Plane wave ultrasound provides sufficiently high frame rates, albeit at t he cost of image quality, especially in the off - axis direction due to the lack of focusing . Multiple...... techniques have been developed to cope with the low off - axis image quality when performing 2D (and in future 3D) motion estimation: cross correlation with directional beamforming (with or without RF (coherent) compounding) and displacement compounding. This study compares the precision of these techniques...... with RF compounding and 2D displacement compounding with θ = ~20 ° per formed equally and best with a relative root - mean - squared error of ~2% with respect to the analytical solution . The mean and standard deviation of the estimated motion direction for 2D displacement compounding with θ = 20 ° was 0...

  5. Integrable open spin chain in Super Yang-Mills and the plane-wave/SYM duality

    International Nuclear Information System (INIS)

    Chen Bin; Wang Xiaojun; Wu Yongshi

    2004-01-01

    We investigate the integrable structures in an N = 2 superconfomal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, N = 4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic operators is identified with the Hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime. (author)

  6. Simplified description of out-of-plane waves in thin annular elastic plates

    DEFF Research Database (Denmark)

    Zadeh, Maziyar Nesari; Sorokin, Sergey

    2013-01-01

    Dispersion relations are derived for the out-of-plane wave propagation in planar elastic plates with constant curvature using the classical Kirchhoff thin plate theory. The dispersion diagrams and the mode shapes are compared with their counterparts for a straight plate strip and the role...... of curvature is assessed for plates with unconstrained edges. Elementary Bernoulli–Euler theory for a beam of rectangular cross-section with the circular shape of its axis is also employed to analyze the wave guide properties of this structure in its out-of-plane deformation. The applicability range...... of the elementary beam theory is validated. The wave finite element method in the formulation of the three-dimensional elasticity theory is used to ensure that the comparison of dispersion diagrams is performed in the frequency range, where the classical thin plate theory is valid. Thus, the paper summarizes...

  7. Progress in parallel implementation of the multilevel plane wave time domain algorithm

    KAUST Repository

    Liu, Yang

    2013-07-01

    The computational complexity and memory requirements of classical schemes for evaluating transient electromagnetic fields produced by Ns dipoles active for Nt time steps scale as O(NtN s 2) and O(Ns 2), respectively. The multilevel plane wave time domain (PWTD) algorithm [A.A. Ergin et al., Antennas and Propagation Magazine, IEEE, vol. 41, pp. 39-52, 1999], viz. the extension of the frequency domain fast multipole method (FMM) to the time domain, reduces the above costs to O(NtNslog2Ns) and O(Ns α) with α = 1.5 for surface current distributions and α = 4/3 for volumetric ones. Its favorable computational and memory costs notwithstanding, serial implementations of the PWTD scheme unfortunately remain somewhat limited in scope and ill-suited to tackle complex real-world scattering problems, and parallel implementations are called for. © 2013 IEEE.

  8. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines

    International Nuclear Information System (INIS)

    Jia, Weile; Fu, Jiyun; Cao, Zongyan; Wang, Long; Chi, Xuebin; Gao, Weiguo; Wang, Lin-Wang

    2013-01-01

    Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP

  9. Spin effects in nonlinear Compton scattering in a plane-wave laser pulse

    International Nuclear Information System (INIS)

    Boca, Madalina; Dinu, Victor; Florescu, Viorica

    2012-01-01

    We study theoretically the electron angular and energy distribution in the non-linear Compton effect in a finite plane-wave laser pulse. We first present analytical and numerical results for unpolarized electrons (described by a Volkov solution of the Dirac equation), in comparison with those corresponding to a spinless particle (obeying the Klein–Gordon equation). Then, in the spin 1/2 case, we include results for the spin flip probability. The regime in which the spin effects are negligible, i.e. the results for the unpolarized spin 1/2 particle coincide practically with those for the spinless particle, is the same as the regime in which the emitted radiation is well described by classical electrodynamics.

  10. Temperature elevation in the eye of anatomically based human head models for plane-wave exposures

    International Nuclear Information System (INIS)

    Hirata, A; Watanabe, S; Fujiwara, O; Kojima, M; Sasaki, K; Shiozawa, T

    2007-01-01

    This study investigated the temperature elevation in the eye of anatomically based human head models for plane-wave exposures. The finite-difference time-domain method is used for analyzing electromagnetic absorption and temperature elevation. The eyes in the anatomic models have average dimensions and weight. Computational results show that the ratio of maximum temperature in the lens to the eye-average SAR (named 'heating factor for the lens') is almost uniform (0.112-0.147 deg. C kg W -1 ) in the frequency region below 3 GHz. Above 3 GHz, this ratio increases gradually with an increase of frequency, which is attributed to the penetration depth of an electromagnetic wave. Particular attention is paid to the difference in the heating factor for the lens between this study and earlier works. Considering causes clarified in this study, compensated heating factors in all these studies are found to be in good agreement

  11. Fast Plane Wave 2-D Vector Flow Imaging Using Transverse Oscillation and Directional Beamforming

    DEFF Research Database (Denmark)

    Jensen, Jonas; Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo

    2017-01-01

    load, which is 4.6 times larger than for TO and seven times smaller than for conventional DB. Steered plane wave transmissions are employed for high frame rate imaging, and parabolic flow with a peak velocity of 0.5 m/s is simulated in straight vessels at beamto- flow angles from 45 to 90. The TO......-DB method estimates the angle with a bias and standard deviation (SD) less than 2, and the SD of the velocity magnitude is less than 2%. When using only TO, the SD of the angle ranges from 2 to 17 and for the velocity magnitude up to 7%. Bias of the velocity magnitude is within 2% for TO and slightly larger...

  12. Accuracy and Precision of a Plane Wave Vector Flow Imaging Method in the Healthy Carotid Artery

    DEFF Research Database (Denmark)

    Jensen, Jonas; Villagómez Hoyos, Carlos Armando; Traberg, Marie Sand

    2018-01-01

    The objective of the study described here was to investigate the accuracy and precision of a plane wave 2-D vector flow imaging (VFI) method in laminar and complex blood flow conditions in the healthy carotid artery. The approach was to study (i) the accuracy for complex flow by comparing...... of laminar flow in vivo. The precision in vivo was calculated as the mean standard deviation (SD) of estimates aligned to the heart cycle and was highest in the center of the common carotid artery (SD = 3.6% for velocity magnitudes and 4.5° for angles) and lowest in the external branch and for vortices (SD...... the velocity field from a computational fluid dynamics (CFD) simulation to VFI estimates obtained from the scan of an anthropomorphic flow phantom and from an in vivo scan; (ii) the accuracy for laminar unidirectional flow in vivo by comparing peak systolic velocities from VFI with magnetic resonance...

  13. Plane-wave diffraction by periodic structures with artificial anisotropic dielectrics

    International Nuclear Information System (INIS)

    Kazerooni, Azadeh Semsar; Shahabadi, Mahmoud

    2010-01-01

    Periodic structures with artificial anisotropic dielectrics are studied. The artificial anisotropic dielectric material in this work is made of two alternating isotropic dielectric layers. By a proper choice of the dielectric constant of the layers, we can realize a uniaxial anisotropic medium with controllable anisotropy. The artificial anisotropic dielectric is then used in periodic structures. For these structures, the optical axis of the artificial dielectric is assumed to be parallel or perpendicular to the period of the structure. Diffraction of plane waves by these structures is analyzed by a fully vectorial rigorous matrix method based on a generalized transmission line (TL) formulation. The propagation constants and field distributions are computed and diffraction properties of such structures are studied to show that, by a proper choice of structural parameters, these periodic structures with artificial anisotropic dielectrics can be used as polarizers or polarizing mirrors

  14. Computational dosimetry in embryos exposed to electromagnetic plane waves over the frequency range of 10 MHz-1.5 GHz

    International Nuclear Information System (INIS)

    Kawai, Hiroki; Nagaoka, Tomoaki; Watanabe, Soichi; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi

    2010-01-01

    This paper presents calculated specific absorption rate (SAR) dosimetry in 4 and 8 week Japanese pregnant-woman models exposed to plane waves over the frequency range of 10 MHz-1.5 GHz. Two types of 2 mm spatial-resolution pregnant-woman models comprised a woman model, which is similar to the average-sized Japanese adult female in height and weight, with a cubic (4 week) embryo or spheroidal (8 week) one. The averaged SAR in the embryos exposed to vertically and horizontally polarized plane waves at four kinds of propagation directions are calculated from 10 MHz to 1.5 GHz. The results indicate that the maximum average SAR in the embryos exposed to plane waves is lower than 0.08 W kg -1 when the incident power density is at the reference level of ICNIRP guideline for general public environment. (note)

  15. Propagation of plane waves in a rotating magneto-thermoelastic fiber-reinforced medium under G-N theory

    Directory of Open Access Journals (Sweden)

    Maity N.

    2017-06-01

    Full Text Available The article is concernedwith the possibility of plane wave propagation in a rotating elastic medium under the action of magnetic and thermal fields. The material is assumed to be fibre-reinforced with increased stiffness, strength and load bearing capacity. Green and Nagdhi’s concepts of generalized thermoelastic models II and III have been followed in the governing equations expressed in tensor notation. The effects of various parameters of the applied fields on the plane wave velocity have been shown graphically.

  16. Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet's principle

    Science.gov (United States)

    Nakata, Yosuke; Urade, Yoshiro; Nakanishi, Toshihiro; Kitano, Masao

    2013-11-01

    We investigate theoretically electromagnetic plane-wave scattering by self-complementary metasurfaces. By using Babinet's principle extended to metasurfaces with resistive elements, we show that the frequency-independent transmission and reflection are realized for normal incidence of a circularly polarized plane wave onto a self-complementary metasurface, even if there is diffraction. Next, we consider two special classes of self-complementary metasurfaces. We show that self-complementary metasurfaces with rotational symmetry can act as coherent perfect absorbers, and those with translational symmetry compatible with their self-complementarity can split the incident power equally, even for oblique incidences.

  17. Approximative analytic study of fermions in magnetar's crust; ultra-relativistic plane waves, Heun and Mathieu solutions and beyond

    Science.gov (United States)

    Dariescu, Marina-Aura; Dariescu, Ciprian

    2012-10-01

    Working with a magnetic field periodic along Oz and decaying in time, we deal with the Dirac-type equation characterizing the fermions evolving in magnetar's crust. For ultra-relativistic particles, one can employ the perturbative approach, to compute the conserved current density components. If the magnetic field is frozen and the magnetar is treated as a stationary object, the fermion's wave function is expressed in terms of the Heun's Confluent functions. Finally, we are extending some previous investigations on the linearly independent fermionic modes solutions to the Mathieu's equation and we discuss the energy spectrum and the Mathieu Characteristic Exponent.

  18. A semi-analytical approach towards plane wave analysis of local resonance metamaterials using a multiscale enriched continuum description

    NARCIS (Netherlands)

    Sridhar, A.; Kouznetsova, V.; Geers, M.G.D.

    2017-01-01

    This work presents a novel multiscale semi-analytical technique for the acoustic plane wave analysis of (negative) dynamic mass density type local resonance metamaterials with complex micro-structural geometry. A two step solution strategy is adopted, in which the unit cell problem at the

  19. A projection-free method for representing plane-wave DFT results in an atom-centered basis

    International Nuclear Information System (INIS)

    Dunnington, Benjamin D.; Schmidt, J. R.

    2015-01-01

    Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strict orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches

  20. ABINIT: Plane-Wave-Based Density-Functional Theory on High Performance Computers

    Science.gov (United States)

    Torrent, Marc

    2014-03-01

    For several years, a continuous effort has been produced to adapt electronic structure codes based on Density-Functional Theory to the future computing architectures. Among these codes, ABINIT is based on a plane-wave description of the wave functions which allows to treat systems of any kind. Porting such a code on petascale architectures pose difficulties related to the many-body nature of the DFT equations. To improve the performances of ABINIT - especially for what concerns standard LDA/GGA ground-state and response-function calculations - several strategies have been followed: A full multi-level parallelisation MPI scheme has been implemented, exploiting all possible levels and distributing both computation and memory. It allows to increase the number of distributed processes and could not be achieved without a strong restructuring of the code. The core algorithm used to solve the eigen problem (``Locally Optimal Blocked Congugate Gradient''), a Blocked-Davidson-like algorithm, is based on a distribution of processes combining plane-waves and bands. In addition to the distributed memory parallelization, a full hybrid scheme has been implemented, using standard shared-memory directives (openMP/openACC) or porting some comsuming code sections to Graphics Processing Units (GPU). As no simple performance model exists, the complexity of use has been increased; the code efficiency strongly depends on the distribution of processes among the numerous levels. ABINIT is able to predict the performances of several process distributions and automatically choose the most favourable one. On the other hand, a big effort has been carried out to analyse the performances of the code on petascale architectures, showing which sections of codes have to be improved; they all are related to Matrix Algebra (diagonalisation, orthogonalisation). The different strategies employed to improve the code scalability will be described. They are based on an exploration of new diagonalization

  1. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle

    Science.gov (United States)

    Albert, Julian; Hader, Kilian; Engel, Volker

    2017-12-01

    It is commonly assumed that the time-dependent electron flux calculated within the Born-Oppenheimer (BO) approximation vanishes. This is not necessarily true if the flux is directly determined from the continuity equation obeyed by the electron density. This finding is illustrated for a one-dimensional model of coupled electronic-nuclear dynamics. There, the BO flux is in perfect agreement with the one calculated from a solution of the time-dependent Schrödinger equation for the coupled motion. A reflection principle is derived where the nuclear BO flux is mapped onto the electronic flux.

  2. High Intensity Compton Scattering in a strong plane wave field of general form

    International Nuclear Information System (INIS)

    Hartin, A.; Moortgat-Pick, G.; Hamburg Univ.

    2011-06-01

    Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons, an integration over one of the phase space components and the Fourier transforms of the Volkov phases. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two circularly polarised external fields separated by a phase difference is studied both analytically and numerically. (orig.)

  3. Beam Dynamics a Integrated Plane Wave Transformer Photoinjector at S- and X- band

    Science.gov (United States)

    Rosenzweig, J. B.; Ding, X.; Pellegrini, X.; Serafini, L.; Yu, D.

    1997-05-01

    The beam dynamics of an integrated S-band rf photoinjector based on the plane wave transformer concept, proposed as part of an SBIR collaboration between UCLA and DULY Research, are studied. The intial design, which calls for an 11.5 cell structure run at a peak on-axis accelerating field of 60 MV/m, and has a compact solenoid around the intial 2.5 cells, is based on the recently developed theory of emittance compensation(L.Serafini, and J.B. Rosenzweig, submitted to Physical Review E.). It calls for matching the beam onto an envelope which is a generalized Brillouin flow, producing a beam which diminishes in transverse size as the square root of the accelerating beam energy. This condition produces a minimized emittance, which for the S-band case is 1 mm-rad at at charge of 1 nC. This design is also scaled to produce nearly identical performance at X-band, giving an injector appropriate to running an FEL at the SLAC NLCTA. It is noted that these designs are insensitive to rf emittance increase, allowign a choice of injection phase, and the option to compress the emitted pulse.

  4. Four-dimensional parameter estimation of plane waves using swarming intelligence

    International Nuclear Information System (INIS)

    Zaman Fawad; Munir Fahad; Khan Zafar Ullah; Qureshi Ijaz Mansoor

    2014-01-01

    This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) direction of arrival, namely, azimuth and elevation angles. The proposed approach is based on memetic computation, in which the global optimizer, particle swarm optimization is hybridized with a rapid local search technique, pattern search. For this purpose, a new multi-objective fitness function is used. This fitness function is the combination of mean square error and the correlation between the normalized desired and estimated vectors. The proposed hybrid scheme is not only compared with individual performances of particle swarm optimization and pattern search, but also with the performance of the hybrid genetic algorithm and that of the traditional approach. A large number of Monte—Carlo simulations are carried out to validate the performance of the proposed scheme. It gives promising results in terms of estimation accuracy, convergence rate, proximity effect and robustness against noise. (interdisciplinary physics and related areas of science and technology)

  5. The Uniform geometrical Theory of Diffraction for elastodynamics: Plane wave scattering from a half-plane.

    Science.gov (United States)

    Djakou, Audrey Kamta; Darmon, Michel; Fradkin, Larissa; Potel, Catherine

    2015-11-01

    Diffraction phenomena studied in electromagnetism, acoustics, and elastodynamics are often modeled using integrals, such as the well-known Sommerfeld integral. The far field asymptotic evaluation of such integrals obtained using the method of steepest descent leads to the classical Geometrical Theory of Diffraction (GTD). It is well known that the method of steepest descent is inapplicable when the integrand's stationary phase point coalesces with its pole, explaining why GTD fails in zones where edge diffracted waves interfere with incident or reflected waves. To overcome this drawback, the Uniform geometrical Theory of Diffraction (UTD) has been developed previously in electromagnetism, based on a ray theory, which is particularly easy to implement. In this paper, UTD is developed for the canonical elastodynamic problem of the scattering of a plane wave by a half-plane. UTD is then compared to another uniform extension of GTD, the Uniform Asymptotic Theory (UAT) of diffraction, based on a more cumbersome ray theory. A good agreement between the two methods is obtained in the far field.

  6. An Enhanced Plane Wave Expansion Method to Solve Piezoelectric Phononic Crystal with Resonant Shunting Circuits

    Directory of Open Access Journals (Sweden)

    Ziyang Lian

    2016-01-01

    Full Text Available An enhanced plane wave expansion (PWE method is proposed to solve piezoelectric phononic crystal (PPC connected with resonant shunting circuits (PPC-C, which is named as PWE-PPC-C. The resonant shunting circuits can not only bring about the locally resonant (LR band gap for the PPC-C but also conveniently tune frequency and bandwidth of band gaps through adjusting circuit parameters. However, thus far, more than one-dimensional PPC-C has been studied just by Finite Element method. Compared with other methods, the PWE has great advantages in solving more than one-dimensional PC as well as various lattice types. Nevertheless, the conventional PWE cannot accurately solve coupling between the structure and resonant shunting circuits of the PPC-C since only taking one-way coupling from displacements to electrical parameters into consideration. A two-dimensional PPC-C model of orthorhombic lattice is established to demonstrate the whole solving process of PWE-PPC-C. The PWE-PPC-C method is validated by Transfer Matrix method as well as Finite Element method. The dependence of band gaps on circuit parameters has been investigated in detail by PWE-PPC-C. Its advantage in solving various lattice types is further illustrated by calculating the PPC-C of triangular and hexagonal lattices, respectively.

  7. High Intensity Compton Scattering in a strong plane wave field of general form

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moortgat-Pick, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-06-15

    Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons, an integration over one of the phase space components and the Fourier transforms of the Volkov phases. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two circularly polarised external fields separated by a phase difference is studied both analytically and numerically. (orig.)

  8. Cylindrical and spherical space equivalents to the plane wave expansion technique of Maxwell's wave equations

    Science.gov (United States)

    Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed

    2015-02-01

    The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier- Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.

  9. Mobile ultrasound plane wave beamforming on iPhone or iPad using metal-based GPU processing

    OpenAIRE

    Hewener, H.; Tretbar, S.

    2015-01-01

    Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like Apple iPad for full signal processing of raw data for ultraound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobil...

  10. Magnetism of hexagonal close-packed nickel calculated by full-potential linearized augmented plane wave method

    International Nuclear Information System (INIS)

    Tian, F.; Tian, H.; Whitmore, L.; Ye, L.Y.

    2015-01-01

    The energy dependent on volume of hexagonal close-packed (hcp) nickel with different magnetism is calculated by full-potential linearized augmented plane wave method. Based on the calculation ferromagnetic state is found to be the most stable state. The magnetic moment of hcp Ni is calculated and compared to those calculated by different pseudo-potential methods. Furthermore, it is also compared to that of face-centered cubic (fcc) one with the reason discussed

  11. Slow collisions between identical atoms in a laser field: Application of the Born and Markov approximations to the system of moving atoms

    International Nuclear Information System (INIS)

    Trippenbach, M.; Gao, B.; Cooper, J.; Burnett, K.

    1992-01-01

    We have derived reduced-density-matrix equations of motion for a pair of two identical atoms moving in the radiation field as the first step in establishing a theory of collisional redistribution of light from neutral-atom traps. We use the Zwanzig projection-operator technique to average over spontaneous field modes and establish the conditions under which Born and Markov approximations can be applied to the system of moving atoms. It follows from these considerations that when these conditions hold, the reduced-density-matrix equation for moving atoms has the same form as that for the stationary case: time dependence is introduced into the decay rates and interaction potentials by making the substitution R=R(t)

  12. Magnetoelastic plane waves in rotating media in thermoelasticity of type II (G-N model

    Directory of Open Access Journals (Sweden)

    S. K. Roychoudhuri

    2004-01-01

    Full Text Available A study is made of the propagation of time-harmonic plane waves in an infinite, conducting, thermoelastic solid permeated by a uniform primary external magnetic field when the entire medium is rotating with a uniform angular velocity. The thermoelasticity theory of type II (G-N model (1993 is used to study the propagation of waves. A more general dispersion equation is derived to determine the effects of rotation, thermal parameters, characteristic of the medium, and the external magnetic field. If the primary magnetic field has a transverse component, it is observed that the longitudinal and transverse motions are linked together. For low frequency (χ≪1, χ being the ratio of the wave frequency to some standard frequency ω∗, the rotation and the thermal field have no effect on the phase velocity to the first order of χ and then this corresponds to only one slow wave influenced by the electromagnetic field only. But to the second order of χ, the phase velocity, attenuation coefficient, and the specific energy loss are affected by rotation and depend on the thermal parameters cT, cT being the nondimensional thermal wave speed of G-N theory, and the thermoelastic coupling εT, the electromagnetic parameters εH, and the transverse magnetic field RH. Also for large frequency, rotation and thermal field have no effect on the phase velocity, which is independent of primary magnetic field to the first order of (1/χ (χ≫1, and the specific energy loss is a constant, independent of any field parameter. However, to the second order of (1/χ, rotation does exert influence on both the phase velocity and the attenuation factor, and the specific energy loss is affected by rotation and depends on the thermal parameters cT and εT, electromagnetic parameter εH, and the transverse magnetic field RH, whereas the specific energy loss is independent of any field parameters to the first order of (1/χ.

  13. Local Fitting of the Kohn-Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations.

    Science.gov (United States)

    Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg

    2017-05-09

    A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.

  14. Plane-wave and common-translation-factor treatments of He2++H collisions at high velocities

    International Nuclear Information System (INIS)

    Errea, L.F.; Harel, C.; Jouin, H.; Maidagan, J.M.; Mendez, L.; Pons, B.; Riera, A.

    1992-01-01

    We complement previous work that showed that the molecular approach, modified with plane-wave translation factors, is able to reproduce the fall of charge-exchange cross sections in He 2+ +H collisions, by presenting the molecular data, and studying the corresponding mechanism. We test the accuracy of simplifications of the method that have been employed in the literature, and that lead to very simple calculations. We show that the common-translation-factor method is also successful at high nuclear velocities, provided that sufficiently excited states are included in the basis; moreover, it yields a simple picture of the mechanism and a description of ionization processes at high velocities

  15. Density fitting for derivatives of Coulomb integrals in ab initio calculations using mixed Gaussian and plane-wave basis

    Czech Academy of Sciences Publication Activity Database

    Čársky, Petr

    2009-01-01

    Roč. 109, č. 620 (2009), s. 1237-1242 ISSN 0020-7608 R&D Projects: GA ČR GA203/07/0070; GA ČR GA202/08/0631; GA AV ČR 1ET400400413; GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : Derivatives of Coulomb integrals * mixed Gaussian and plane-wave basis sets * electron scattering * computer time saving Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.315, year: 2009

  16. Evaluation of the Electromagnetic Power Absorption in Humans Exposed to Plane Waves: The Effect of Breathing Activity

    Directory of Open Access Journals (Sweden)

    Marta Cavagnaro

    2013-01-01

    Full Text Available The safety aspects of the exposure of people to uniform plane waves in the frequency range from 900 MHz to 5 GHz are analyzed. Starting from a human body model available in the literature, representing a man in resting state, two new anatomical models are considered, representing different phases of the respiratory activity: tidal breath and deep breath. These models have been used to evaluate the whole body Specific Absorption Rate (SAR and the 10-g averaged and 1-g averaged SAR. The analysis is performed using a parallel implementation of the finite difference time domain method. A uniform plane wave, with vertical polarization, is used as an incident field since this is the canonical exposure situation used in safety guidelines. Results show that if the incident electromagnetic field is compliant with the reference levels promulgated by the International Commission on Non-Ionizing Radiation Protection and by IEEE, the computed SAR values are lower than the corresponding basic restrictions, as expected. On the other side, when the Federal Communications Commission reference levels are considered, 1-g SAR values exceeding the basic restrictions for exposure at 4 GHz and above are obtained. Furthermore, results show that the whole body SAR values increase passing from the resting state model to the deep breath model, for all the considered frequencies.

  17. Linear GPR Imaging Based on Electromagnetic Plane-Wave Spectra and Diffraction Tomography

    DEFF Research Database (Denmark)

    Meincke, Peter

    2004-01-01

    Two linear diffraction-tomography based inversion schemes, referred to as the Fourier transform method (FTM) and the far-field method (FFM), are derived for 3-dimensional fixed-offset GPR imaging of buried objects. The FTM and FFM are obtained by using different asymptotic approximations...

  18. Coherent quantum states of a relativistic particle in an electromagnetic plane wave and a parallel magnetic field

    International Nuclear Information System (INIS)

    Colavita, E.; Hacyan, S.

    2014-01-01

    We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle

  19. Time-domain analytic solutions of two-wire transmission line excited by a plane-wave field

    International Nuclear Information System (INIS)

    Ni Guyan; Yan Li; Yuan Naichang

    2008-01-01

    This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain. By the frequency-domain Baum–Liu–Tesche (BLT) equation, the time-domain analytic solutions are obtained and expressed in an infinite geometric series. Moreover, it is shown that there exist only finite nonzero terms in the infinite geometric series if the time variate is at a finite interval. In other word, the time-domain analytic solutions are expanded in a finite geometric series indeed if the time variate is at a finite interval. The computed results are subsequently compared with transient responses obtained by using the frequency-domain BLT equation via a fast Fourier transform, and the agreement is excellent. (the physics of elementary particles and fields)

  20. Time-domain analytic Solutions of two-wire transmission line excited by a plane-wave field

    Institute of Scientific and Technical Information of China (English)

    Ni Gu-Yan; Yan Li; Yuan Nai-Chang

    2008-01-01

    This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain.By the frequency-domain Baum-Liu-Tesche(BLT)equation,the time-domain analytic solutions are obtained and expressed in an infinite geometric series.Moreover,it is shown that there exist only finite nonzero terms in the infinite geometric series if the time variate is at a finite interval.In other word.the time-domain analytic solutions are expanded in a finite geometric series indeed if the time variate is at a finite interval.The computed results are subsequently compared with transient responses obtained by using the frequency-domain BLT equation via a fast Fourier transform,and the agreement is excellent.

  1. Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing

    Science.gov (United States)

    Hewener, Holger J.; Tretbar, Steffen H.

    Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.

  2. Scattering of three-dimensional plane waves in a self-reinforced half-space lying over a triclinic half-space

    Science.gov (United States)

    Gupta, Shishir; Pramanik, Abhijit; Smita; Pramanik, Snehamoy

    2018-06-01

    The phenomenon of plane waves at the intersecting plane of a triclinic half-space and a self-reinforced half-space is discussed with possible applications during wave propagation. Analytical expressions of the phase velocities of reflection and refraction for quasi-compressional and quasi-shear waves under initial stress are discussed carefully. The closest form of amplitude proportions on reflection and refraction factors of three quasi-plane waves are developed mathematically by applying appropriate boundary conditions. Graphics are sketched to exhibit the consequences of initial stress in the three-dimensional plane wave on reflection and refraction coefficients. Some special cases that coincide with the fundamental properties of several layers are designed to express the reflection and refraction coefficients.

  3. Validity of PEC Approximation for On-Body Propagation

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2016-01-01

    Many articles on on-body propagation assumes that the human body can be approximated by a perfect electric conductor (PEC) instead of the actual constitutive parameters of the human body, which is that of a lossy dielectric. This assumption is investigated in this article through comparison...... of the scattering of a plane wave at oblique incidence by a PEC and a lossy dielectric cylinder. The investigation shows that the validity of the assumption depends on the polarization of the plane wave, the angle of incidence, and the region of interest....

  4. On the comparsion of the Spherical Wave Expansion-to-Plane Wave Expansion and the Sources Reconstruction Method for Antenna Diagnostics

    DEFF Research Database (Denmark)

    Alvarez, Yuri; Cappellin, Cecilia; Las-Heras, Fernando

    2008-01-01

    A comparison between two recently developed methods for antenna diagnostics is presented. On one hand, the Spherical Wave Expansion-to-Plane Wave Expansion (SWE-PWE), based on the relationship between spherical and planar wave modes. On the other hand, the Sources Reconstruction Method (SRM), based...

  5. The D-instanton and other supersymmetric D-branes in IIB plane-wave string theory

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Green, Michael B.

    2003-01-01

    A class of D-branes for the type IIB plane-wave background is considered that preserve half the dynamical supersymmetries of the light-cone gauge. The D-branes of this type are the Euclidean (or instantonic) (0,0), (0,4), and (4,0) branes (where (r,s) denotes a brane oriented with r axes in the first four directions transverse to the +, - light-cone, and s axes in the second four directions). Corresponding Lorentzian D-branes are (+,-;0,0), (+,-;0,4), and (+,-;4,0). These are constructed in two ways. The first uses a boundary state formalism which implements appropriate fermionic gluing conditions and the second is based on a direct quantization of the open strings ending on the branes. In distinction to the D-branes considered earlier these have massless world-volume fermions but do not possess kinematical supersymmetries. Cylinder diagrams describing the overlap between a pair of boundary states displaced by some distance are evaluated. The open-string description of this system involves mode frequencies that are, in general, given by irrational solutions to transcendental equations. The closed-string and open-string descriptions are shown to be equivalent by a nontrivial implementation of the S modular transformation. A classical description of the D-instanton (the (0,0) case) in light-cone gauge is also given

  6. Modelling the optical response of human retinal photoreceptors to plane wave illumination with the finite integration technique

    Science.gov (United States)

    Akhlagh Moayed, Alireza; Dang, Shannon; Ramahi, Omar M.; Bizheva, Kostadinka K.

    2009-02-01

    The early stages of ocular diseases such as Diabetic Retinopathy are manifested by morphological changes in retinal tissue occurring on cellular level. Therefore, a number of ophthalmic diseases can be diagnosed at an early stage by detecting spatial and temporal variations in the scattering profile of retinal tissue. It was recently demonstrated that, OCT can be used to probe the functional response of retinal photoreceptors to external light stimulation [1]-[3]. fUHROCT measures localized differential changes in the retina reflectivity over time resulting from external light stimulation of the retina. Currently the origins of the observed reflectivity changes are not well understood. However, due to the complex nature of retinal physiology using purely experimental approaches in this case is problematic. For example fUHROCT is sensitive to small changes in the refractive index of biological tissue which as demonstrated previously, can result from a number of processes such as membrane hyperpolarization, osmotic swelling, metabolic changes, etc. In this paper, we present a computational model of interaction between photoreceptor cells and optical plane wave based on the Finite Integration Technique (FIT).

  7. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz

    International Nuclear Information System (INIS)

    Bakker, J F; Paulides, M M; Van Rhoon, G C; Christ, A; Kuster, N

    2010-01-01

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SAR wb ) and the peak 10 g spatial-averaged SAR (SAR 10g ). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SAR wb ) and 58% (SAR 10g ) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SAR wb is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR 10g values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.

  8. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, J F; Paulides, M M; Van Rhoon, G C [Erasmus MC-Daniel den Hoed Cancer Center, Department of Radiation Oncology, Section Hyperthermia, PO box 5201, NL-3008 AE, Rotterdam (Netherlands); Christ, A; Kuster, N, E-mail: j.bakker@erasmusmc.n [Foundation for Research on Information Technologies in Society (IT' IS) (Switzerland)

    2010-06-07

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SAR{sub wb}) and the peak 10 g spatial-averaged SAR (SAR{sub 10g}). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SAR{sub wb}) and 58% (SAR{sub 10g}) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SAR{sub wb} is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR{sub 10g} values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.

  9. How do we decide whether the first Born approximation applies to inelastic collisions of charged particles with an atom or molecule

    International Nuclear Information System (INIS)

    Inokuti, M.; Manson, S.T.

    1985-01-01

    A motivation of our study is to help resolve a general issue in atomic-collision physics. There are two major sources of uncertainties in the evaluation of cross sections. First, one uses an approximation for treating the collision process, e.g., the FBA, the distorted-wave approximation, or the close-coupling approximation. Second, explicit evaluation of cross sections within any of these approximations must use as input eigenfunctions for the target in the initial state and in the final state at least, and possibly in the intermediate states. It is important to distinguish these two sources of uncertainties as clearly as possible. For instance, once the authors are sure that the FBA holds, the uncertainties in the cross-section evaluation are fully attributable to the uncertainties in the target eigenfunctions. Strong plausibility arguments are given for the validity of the FBA

  10. Numerical tests of evolution systems, gauge conditions, and boundary conditions for 1D colliding gravitational plane waves

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Buchman, L.T.

    2002-01-01

    We investigate how the accuracy and stability of numerical relativity simulations of 1D colliding plane waves depends on choices of equation formulations, gauge conditions, boundary conditions, and numerical methods, all in the context of a first-order 3+1 approach to the Einstein equations, with basic variables some combination of first derivatives of the spatial metric and components of the extrinsic curvature tensor. Hyperbolic schemes, specifically variations on schemes proposed by Bona and Masso and Anderson and York, are compared with variations of the Arnowitt-Deser-Misner formulation. Modifications of the three basic schemes include raising one index in the metric derivative and extrinsic curvature variables and adding a multiple of the energy constraint to the extrinsic curvature evolution equations. Redundant variables in the Bona-Masso formulation may be reset frequently or allowed to evolve freely. Gauge conditions which simplify the dynamical structure of the system are imposed during each time step, but the lapse and shift are reset periodically to control the evolution of the spacetime slicing and the longitudinal part of the metric. We show that physically correct boundary conditions, satisfying the energy and momentum constraint equations, generically require the presence of some ingoing eigenmodes of the characteristic matrix. Numerical methods are developed for the hyperbolic systems based on decomposing flux differences into linear combinations of eigenvectors of the characteristic matrix. These methods are shown to be second-order accurate, and in practice second-order convergent, for smooth solutions, even when the eigenvectors and eigenvalues of the characteristic matrix are spatially varying

  11. Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides

    International Nuclear Information System (INIS)

    Li Zhiyuan; Ho Kaiming

    2003-01-01

    The plane-wave-based transfer-matrix method (TMM) exhibits a peculiar advantage of being capable of solving eigenmodes involved in an infinite photonic crystal and electromagnetic (EM) wave propagation in finite photonic crystal slabs or even semi-infinite photonic crystal structures within the same theoretical framework. In addition, this theoretical approach can achieve much improved numerical convergency in solution of photonic band structures than the conventional plane-wave expansion method. In this paper we employ this TMM in combination with a supercell technique to handle two important kinds of three-dimensional (3D) photonic crystal waveguide structures. The first one is waveguides created in a 3D layer-by-layer photonic crystal that possesses a complete band gap, the other more popular one is waveguides built in a two-dimensional photonic crystal slab. These waveguides usually have mirror-reflection symmetries in one or two directions perpendicular to their axis. We have taken advantage of these structural symmetries to reduce the numerical burden of the TMM solution of the guided modes. The solution to the EM problems under these mirror-reflection symmetries in both the real space and the plane-wave space is discussed in a systematic way and in great detail. Both the periodic boundary condition and the absorbing boundary condition are employed to investigate structures with or without complete 3D optical confinement. The fact that the EM field components investigated in the TMM are collinear with the symmetric axes of the waveguide brings great convenience and clarity in exploring the eigenmode symmetry in both the real space and the plane-wave space. The classification of symmetry involved in the guided modes can help people to better understand the coupling of the photonic crystal waveguides with external channels such as dielectric slab or wire waveguides

  12. The effect of finite-difference time-domain resolution and power-loss computation method on SAR values in plane-wave exposure of Zubal phantom

    International Nuclear Information System (INIS)

    Uusitupa, T M; Ilvonen, S A; Laakso, I M; Nikoskinen, K I

    2008-01-01

    In this paper, the anatomically realistic body model Zubal is exposed to a plane wave. A finite-difference time-domain (FDTD) method is used to obtain field data for specific-absorption-rate (SAR) computation. It is investigated how the FDTD resolution, power-loss computation method and positioning of the material voxels in the FDTD grid affect the SAR results. The results enable one to estimate the effects due to certain fundamental choices made in the SAR simulation

  13. On the dipole approximation with error estimates

    Science.gov (United States)

    Boßmann, Lea; Grummt, Robert; Kolb, Martin

    2018-01-01

    The dipole approximation is employed to describe interactions between atoms and radiation. It essentially consists of neglecting the spatial variation of the external field over the atom. Heuristically, this is justified by arguing that the wavelength is considerably larger than the atomic length scale, which holds under usual experimental conditions. We prove the dipole approximation in the limit of infinite wavelengths compared to the atomic length scale and estimate the rate of convergence. Our results include N-body Coulomb potentials and experimentally relevant electromagnetic fields such as plane waves and laser pulses.

  14. Climate change and the spread of vector-borne diseases: using approximate Bayesian computation to compare invasion scenarios for the bluetongue virus vector Culicoides imicola in Italy.

    Science.gov (United States)

    Mardulyn, Patrick; Goffredo, Maria; Conte, Annamaria; Hendrickx, Guy; Meiswinkel, Rudolf; Balenghien, Thomas; Sghaier, Soufien; Lohr, Youssef; Gilbert, Marius

    2013-05-01

    Bluetongue (BT) is a commonly cited example of a disease with a distribution believed to have recently expanded in response to global warming. The BT virus is transmitted to ruminants by biting midges of the genus Culicoides, and it has been hypothesized that the emergence of BT in Mediterranean Europe during the last two decades is a consequence of the recent colonization of the region by Culicoides imicola and linked to climate change. To better understand the mechanism responsible for the northward spread of BT, we tested the hypothesis of a recent colonization of Italy by C. imicola, by obtaining samples from more than 60 localities across Italy, Corsica, Southern France, and Northern Africa (the hypothesized source point for the recent invasion of C. imicola), and by genotyping them with 10 newly identified microsatellite loci. The patterns of genetic variation within and among the sampled populations were characterized and used in a rigorous approximate Bayesian computation framework to compare three competing historical hypotheses related to the arrival and establishment of C. imicola in Italy. The hypothesis of an ancient presence of the insect vector was strongly favoured by this analysis, with an associated P ≥ 99%, suggesting that causes other than the northward range expansion of C. imicola may have supported the emergence of BT in southern Europe. Overall, this study illustrates the potential of molecular genetic markers for exploring the assumed link between climate change and the spread of diseases. © 2013 Blackwell Publishing Ltd.

  15. Program POD; A computer code to calculate nuclear elastic scattering cross sections with the optical model and neutron inelastic scattering cross sections by the distorted-wave born approximation

    International Nuclear Information System (INIS)

    Ichihara, Akira; Kunieda, Satoshi; Chiba, Satoshi; Iwamoto, Osamu; Shibata, Keiichi; Nakagawa, Tsuneo; Fukahori, Tokio; Katakura, Jun-ichi

    2005-07-01

    The computer code, POD, was developed to calculate angle-differential cross sections and analyzing powers for shape-elastic scattering for collisions of neutron or light ions with target nucleus. The cross sections are computed with the optical model. Angle-differential cross sections for neutron inelastic scattering can also be calculated with the distorted-wave Born approximation. The optical model potential parameters are the most essential inputs for those model computations. In this program, the cross sections and analyzing powers are obtained by using the existing local or global parameters. The parameters can also be inputted by users. In this report, the theoretical formulas, the computational methods, and the input parameters are explained. The sample inputs and outputs are also presented. (author)

  16. Anisotropic effects of background fields on Born-Infeld electromagnetic waves

    International Nuclear Information System (INIS)

    Aiello, Matias; Bengochea, Gabriel R.; Ferraro, Rafael

    2007-01-01

    We show exact solutions of the Born-Infeld theory for electromagnetic plane waves propagating in the presence of static background fields. The non-linear character of the Born-Infeld equations generates an interaction between the background and the wave that changes the speed of propagation and adds a longitudinal component to the wave. As a consequence, in a magnetic background the ray direction differs from the propagation direction-a behavior resembling the one of a wave in an anisotropic medium. This feature could open up a way to experimental tests of the Born-Infeld theory

  17. Anisotropic effects of background fields on Born-Infeld electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, Matias [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)]. E-mail: aiello@iafe.uba.ar; Bengochea, Gabriel R. [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)]. E-mail: gabriel@iafe.uba.ar; Ferraro, Rafael [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)]. E-mail: ferraro@iafe.uba.ar

    2007-01-22

    We show exact solutions of the Born-Infeld theory for electromagnetic plane waves propagating in the presence of static background fields. The non-linear character of the Born-Infeld equations generates an interaction between the background and the wave that changes the speed of propagation and adds a longitudinal component to the wave. As a consequence, in a magnetic background the ray direction differs from the propagation direction-a behavior resembling the one of a wave in an anisotropic medium. This feature could open up a way to experimental tests of the Born-Infeld theory.

  18. Validation of the k-filtering technique for a signal composed of random-phase plane waves and non-random coherent structures

    Directory of Open Access Journals (Sweden)

    O. W. Roberts

    2014-12-01

    Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single-spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed for temporal and spatial changes to be resolved, using techniques such as k filtering. While this technique does not assume Taylor's hypothesis it requires both weak stationarity of the time series and that the fluctuations can be described by a superposition of plane waves with random phases. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random-phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.

  19. The Dirac distorted wave Born approximation

    International Nuclear Information System (INIS)

    Cooper, T.; Sherif, H.S.; Johansson, J.; Sawafta, R.I.

    1985-02-01

    The purpose of this investigation is to illuminate the assumptions which are made when one writes down a Dirac DWBA matrix element. Due to the strong nature of the nucleon-nucleon potentials it is difficult to justify some of the steps involved in the general case; however by limiting ourselves to situations where only one (interacting) nucleon is present we can side-step this difficulty. We conclude the excellent agreement with the experiment justifies, a posteriori, the procedure, however we would like to remind the reader that, at least for proton inelastic scattering to collective states, the same quality of agreement can be obtained purely within a Schrodinger formalism

  20. New approximation for Glauber theory on stripping of relativistic deuterons

    International Nuclear Information System (INIS)

    Nissen-Meyer, S.A.

    1978-03-01

    The momentum distribution of forward protons from relativistic collisions of deuterons with nuclei is computed from a Glauber theoretical Ansatz of Bertocchi and Tekou. The outgoing proton-neutron scattering state (disintegrated deuteron) with a plane wave minus the components of this plane wave along the deuteron bound state vector is approximated. With no fitted parameters good agreement is found with data from the reaction d + C 12 → p + X in the region corresponding to nonrelativistic Fermi momenta in the forward direction. At more relativistic Fermi momenta, the model deviates more from the data, which can be due to incorrect choice of the short distance part of the deuteron wave function as well as off-shell effects in the deuteron

  1. Propagation of plane waves at the interface of an elastic solid half-space and a microstretch thermoelastic diffusion solid half-space

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    Full Text Available The problem of reflection and refraction phenomenon due to plane waves incident obliquely at a plane interface between uniform elastic solid half-space and microstretch thermoelastic diffusion solid half-space has been studied. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence, frequency of incident wave and are influenced by the microstretch thermoelastic diffusion properties of the media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios have been computed numerically for a particular model. The variations of energy ratios with angle of incidence are shown for thermoelastic diffusion media in the context of Lord-Shulman (L-S (1967 and Green-Lindsay (G-L (1972 theories. The conservation of energy at the interface is verified. Some particular cases are also deduced from the present investigation.

  2. Acoustic plane waves normally incident on a clamped panel in a rectangular duct. [to explain noise reduction curves for reducing interior noise in aircraft

    Science.gov (United States)

    Unz, H.; Roskam, J.

    1979-01-01

    The theory of acoustic plane wave normally incident on a clamped panel in a rectangular duct is developed. The coupling theory between the elastic vibrations of the panel (plate) and the acoustic wave propagation in infinite space and in the rectangular duct is considered. The partial differential equation which governs the vibration of the panel (plate) is modified by adding to its stiffness (spring) forces and damping forces, and the fundamental resonance frequency and the attenuation factor are discussed. The noise reduction expression based on the theory is found to agree well with the corresponding experimental data of a sample aluminum panel in the mass controlled region, the damping controlled region, and the stiffness controlled region. All the frequency positions of the upward and downward resonance spikes in the sample experimental data are identified theoretically as resulting from four cross interacting major resonance phenomena: the cavity resonance, the acoustic resonance, the plate resonance, and the wooden back panel resonance.

  3. Inverse scattering of a layered and dispersionless dielectric half-space - 1. reflection data from plane waves at normal incidence

    International Nuclear Information System (INIS)

    Coen, S.

    1981-01-01

    The theory given by Moses and deRidder is modified so that the derivative of the solution of the Gelfand-Levitan integral equation is not required. Based on this modification, a numerical procedure is developed which approximately constructs the dielectric profile of the layered half-space from the impulse response. Moreover, an inverse scattering theory is developed for a Goupillaud-type dielectric medium, and a fast numerical procedure based on the Berryman and Greene algorithm is presented. The performance of the numerical algorithms is examined by applying them to pecise and imprecise artificial impulse response data. 11 refs

  4. Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions

    Science.gov (United States)

    Jerke, Jonathan; Poirier, Bill

    2018-03-01

    Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy—i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted—as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.

  5. Ab initio electronic structure of quasi-two-dimensional materials: A “native” Gaussian–plane wave approach

    Energy Technology Data Exchange (ETDEWEB)

    Trevisanutto, Paolo E. [Graphene Research Centre and CA2DM, National University of Singapore, Singapore 117542, Singapore and Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore); Vignale, Giovanni, E-mail: vignaleg@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211 (United States)

    2016-05-28

    Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is “native” to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory — density functional theory, GW approximation and Bethe-Salpeter equation — are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields.

  6. Searching for stable Si(n)C(n) clusters: combination of stochastic potential surface search and pseudopotential plane-wave Car-Parinello simulated annealing simulations.

    Science.gov (United States)

    Duan, Xiaofeng F; Burggraf, Larry W; Huang, Lingyu

    2013-07-22

    To find low energy Si(n)C(n) structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA). We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each Si(n)C(n) cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to Si(n)C(n) (n = 4-12) clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each Si(n)C(n) cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.

  7. Searching for Stable SinCn Clusters: Combination of Stochastic Potential Surface Search and Pseudopotential Plane-Wave Car-Parinello Simulated Annealing Simulations

    Directory of Open Access Journals (Sweden)

    Larry W. Burggraf

    2013-07-01

    Full Text Available To find low energy SinCn structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA. We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each SinCn cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to SinCn (n = 4–12 clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each SinCn cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.

  8. Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids

    International Nuclear Information System (INIS)

    Holzwarth, N.A.; Matthews, G.E.; Dunning, R.B.; Tackett, A.R.; Zeng, Y.

    1997-01-01

    The projector augmented-wave (PAW) method was developed by Bloechl as a method to accurately and efficiently calculate the electronic structure of materials within the framework of density-functional theory. It contains the numerical advantages of pseudopotential calculations while retaining the physics of all-electron calculations, including the correct nodal behavior of the valence-electron wave functions and the ability to include upper core states in addition to valence states in the self-consistent iterations. It uses many of the same ideas developed by Vanderbilt in his open-quotes soft pseudopotentialclose quotes formalism and in earlier work by Bloechl in his open-quotes generalized separable potentials,close quotes and has been successfully demonstrated for several interesting materials. We have developed a version of the PAW formalism for general use in structural and dynamical studies of materials. In the present paper, we investigate the accuracy of this implementation in comparison with corresponding results obtained using pseudopotential and linearized augmented-plane-wave (LAPW) codes. We present results of calculations for the cohesive energy, equilibrium lattice constant, and bulk modulus for several representative covalent, ionic, and metallic materials including diamond, silicon, SiC, CaF 2 , fcc Ca, and bcc V. With the exception of CaF 2 , for which core-electron polarization effects are important, the structural properties of these materials are represented equally well by the PAW, LAPW, and pseudopotential formalisms. copyright 1997 The American Physical Society

  9. Interaction of gravitational plane waves

    International Nuclear Information System (INIS)

    Ferrari, V.

    1988-01-01

    The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed

  10. Approximate spacetime symmetries and conservation laws

    Energy Technology Data Exchange (ETDEWEB)

    Harte, Abraham I [Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)], E-mail: harte@uchicago.edu

    2008-10-21

    A notion of geometric symmetry is introduced that generalizes the classical concepts of Killing fields and other affine collineations. There is a sense in which flows under these new vector fields minimize deformations of the connection near a specified observer. Any exact affine collineations that may exist are special cases. The remaining vector fields can all be interpreted as analogs of Poincare and other well-known symmetries near timelike worldlines. Approximate conservation laws generated by these objects are discussed for both geodesics and extended matter distributions. One example is a generalized Komar integral that may be taken to define the linear and angular momenta of a spacetime volume as seen by a particular observer. This is evaluated explicitly for a gravitational plane wave spacetime.

  11. A periodic mixed gaussians-plane waves DFT study on simple thiols on Au(111): adsorbate species, surface reconstruction, and thiols functionalization.

    Science.gov (United States)

    Rajaraman, Gopalan; Caneschi, Andrea; Gatteschi, Dante; Totti, Federico

    2011-03-07

    Here we present DFT calculations based on a periodic mixed gaussians/plane waves approach to study the energetics, structure, bonding of SAMs of simple thiols on Au(111). Several open issues such as structure, bonding and the nature of adsorbate are taken into account. We started with methyl thiols (MeSH) on Au(111) to establish the nature of the adsorbate. We have considered several structural models embracing the reconstructed surface scenario along with the MeS˙-Au(ad)-MeS˙ type motif put forward in recent years. Our calculations suggest a clear preference for the homolytic cleavage of the S-H bond leading to a stable MeS˙ on a gold surface. In agreement with the recent literature studies, the reconstructed models of the MeS˙ species are found to be energetically preferred over unreconstructed models. Besides, our calculations reveal that the model with 1:2 Au(ad)/thiols ratio, i.e. MeS˙-Au(ad)-MeS˙, is energetically preferred compared to the clean and 1:1 ratio models, in agreement with the experimental and theoretical evidences. We have also performed Molecular Orbital/Natural Bond Orbital, MO/NBO, analysis to understand the electronic structure and bonding in different structural motifs and many useful insights have been gained. Finally, the studies have then been extended to alkyl thiols of the RSR' (R, R' = Me, Et and Ph) type and here our calculations again reveal a preference for the RS˙ type species adsorption for clean as well as for reconstructed 1:2 Au(ad)/thiols ratio models.

  12. Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach

    International Nuclear Information System (INIS)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-01-01

    The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU’s) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH 3 , CO 2 , formic acid, and benzene

  13. Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach

    Science.gov (United States)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-09-01

    The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU's) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH3, CO2, formic acid, and benzene.

  14. Calculation of the total electron excitation cross section in the Born approximation using Slater wave functions for the Li (2s yields 2p), Li (2s yields 3p), Na (3s yields 4p), Mg (3p yields 4s), Ca (4s yields 4p) and K (4s yields 4p) excitations. M.S. Thesis

    Science.gov (United States)

    Simsic, P. L.

    1974-01-01

    Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.

  15. Factorized distorted wave approximation for the (e,2e) reaction on atoms : coplanar symmetric

    International Nuclear Information System (INIS)

    Fuss, I.; McCarthy, I.E.; Noble, C.J.; Weigold, E.

    1977-02-01

    The coplanar symmetric (e,2e) cross section has been studied in the intermediate energy region for the valence states of the inert gases He, Ar and Ne. Experimental measurements at 200, 400, 800, and 1200eV for He, and at 400, 800 and 1200eV for Ne and Ar, are compared with calculations based on the factorized half-off-shell distorted-wave impulse approximation. Calculations are carried out using partial wave expanded optical model wave functions which describe elastic scattering for the distorted waves, the eikonal approximation, and the plane wave approximation. (Author)

  16. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz.

    Science.gov (United States)

    Hirata, Akimasa; Laakso, Ilkka; Oizumi, Takuya; Hanatani, Ryuto; Chan, Kwok Hung; Wiart, Joe

    2013-02-21

    According to the international safety guidelines/standard, the whole-body-averaged specific absorption rate (Poljak et al 2003 IEEE Trans. Electromagn. Compat. 45 141-5) and the peak spatial average SAR are used as metrics for human protection from whole-body and localized exposures, respectively. The IEEE standard (IEEE 2006 IEEE C95.1) indicates that the upper boundary frequency, over which the whole-body-averaged SAR is deemed to be the basic restriction, has been reduced from 6 to 3 GHz, because radio-wave energy is absorbed around the body surface when the frequency is increased. However, no quantitative discussion has been provided to support this description especially from the standpoint of temperature elevation. It is of interest to investigate the maximum temperature elevation in addition to the core temperature even for a whole-body exposure. In the present study, using anatomically based human models, we computed the SAR and the temperature elevation for a plane-wave exposure from 30 MHz to 6 GHz, taking into account the thermoregulatory response. As the primary result, we found that the ratio of the core temperature elevation to the whole-body-averaged SAR is almost frequency independent for frequencies below a few gigahertz; the ratio decreases above this frequency. At frequencies higher than a few gigahertz, core temperature elevation for the same whole-body averaged SAR becomes lower due to heat convection from the skin to air. This lower core temperature elevation is attributable to skin temperature elevation caused by the power absorption around the body surface. Then, core temperature elevation even for whole-body averaged SAR of 4 W kg(-1) with the duration of 1 h was at most 0.8 °C, which is smaller than a threshold considered in the safety guidelines/standard. Further, the peak 10 g averaged SAR is correlated with the maximum body temperature elevations without extremities and pinna over the frequencies considered. These findings

  17. Approximate Likelihood

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...

  18. Diophantine approximation

    CERN Document Server

    Schmidt, Wolfgang M

    1980-01-01

    "In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)

  19. Low-complexity computation of plate eigenmodes with Vekua approximations and the method of particular solutions

    Science.gov (United States)

    Chardon, Gilles; Daudet, Laurent

    2013-11-01

    This paper extends the method of particular solutions (MPS) to the computation of eigenfrequencies and eigenmodes of thin plates, in the framework of the Kirchhoff-Love plate theory. Specific approximation schemes are developed, with plane waves (MPS-PW) or Fourier-Bessel functions (MPS-FB). This framework also requires a suitable formulation of the boundary conditions. Numerical tests, on two plates with various boundary conditions, demonstrate that the proposed approach provides competitive results with standard numerical schemes such as the finite element method, at reduced complexity, and with large flexibility in the implementation choices.

  20. Dispersion representations for hard exclusive processes. Beyond the born approximation

    International Nuclear Information System (INIS)

    Diehl, M.; Ivanov, D.Yu.

    2007-07-01

    Several hard exclusive scattering processes admit a description in terms of generalized parton distributions and perturbative hard-scattering kernels. Both the physical amplitude and the hard-scattering kernels fulfill dispersion relations. We give a detailed investigation of their consistency at all orders in perturbation theory. The results shed light on the information about generalized parton distributions that can be extracted from the real and imaginary parts of exclusive amplitudes. They also provide a practical consistency check for models of these distributions in which Lorentz invariance is not exactly satisfied. (orig.)

  1. The second Born approximation of electron–argon elastic scattering ...

    Indian Academy of Sciences (India)

    [7] D Nehari, J Holmes, K M Dunseath and M Terao-Dunseath, J. Phys. B43, 025203 (2010). [8] B A Harak, L Ladino and N L S Martin, Bull. Am. Phys. Soc. 55, 5 (2010). [9] M Ghalim and F Mastour, J. Phys. B32, 3783 (1999). [10] S T Zhang, J Chen and S M Li, Can. J. Phys. 80, 969 (2002). Pramana – J. Phys., Vol. 78, No.

  2. Factorized distorted wave approximation for the (e,2e) reaction on atoms : noncoplanar symmetric

    International Nuclear Information System (INIS)

    Dixon, A.J.; McCarthy, I.E.; Noble, C.J.; Weigold, E.

    1977-02-01

    Angular and energy correlations for electrons produced in the ionization of neon and xenon by electrons with energies between 400eV and 2.5 keV have been measured using symmetric noncoplanar kinematics. The reaction yields information about the atomic orbitals and their correlations when analysed with the distorted-wave off-shell impulse approximation. In the past either plane waves or various eikonal approximations have been used for the distorted waves, and in the cases where the eikonal parameters are approximately related to the elastic scattering the spectroscopic sum rule has been approximately verified. In the present work calculations have also been carried out using partial-wave-expanded optical model wave functions which describe the elastic scattering in detail. (Author)

  3. Diophantine approximation and badly approximable sets

    DEFF Research Database (Denmark)

    Kristensen, S.; Thorn, R.; Velani, S.

    2006-01-01

    . The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension...

  4. [Tick-borne diseases].

    Science.gov (United States)

    Tissot Dupont, H; Raoult, D

    1993-05-01

    Due to their worldwide distribution, from hottest to coldest climates, and due to their behaviour, ticks are capable of transmitting numerous human and animal bacterial viral or parasitous diseases. Depending on the disease, they play the role of biological vector or intermediate host. In France, six tick borne diseases are of epidemiologic importance. Q fever (not often tick-borne), Mediterranean Spotted Fever, Lyme disease, Turalemia (human and animal), Babesiosis and Tick-borne Viral Encephalitis.

  5. Plane waves in linear homogeneous media. III

    NARCIS (Netherlands)

    Graaf, de J.; Broer, L.J.F.

    1972-01-01

    In this third paper the program outlined in the introduction of the first paper is carried out for the second order propagation equation. We discuss successively a representation of the solution of the initial value problem, mode decomposition, quadratic conservation laws and their classification,

  6. Plane waves in linear homogeneous media. II

    NARCIS (Netherlands)

    Graaf, de J.; Broer, L.J.F.

    1972-01-01

    In this second paper the program outlined in the introduction of the first paper is carried out for the first order propagation equation. We discuss successively a representation of the solution of the initial value problem, mode decomposition, quadratic conservation laws and their classification,

  7. Innovative Born Globals

    DEFF Research Database (Denmark)

    Kraus, Sascha; Brem, Alexander; Muench, Miriam

    2017-01-01

    Internationalization is a hot topic in innovation management, whereby the phenomenon of “Born Globals” is still limited to research in the domains of Entrepreneurship and International Management. As business model design plays a key role for Born Globals, we link these two concepts. For this, we...... propose hypotheses about the influence of efficiency-centered and novelty-entered business model design on international firm performance. To test these hypotheses, we performed a quantitative survey with 252 founders of international companies in Germany, Switzerland and Liechtenstein. Additionally, we...... gained further insights through a case study analysis of 11 Born Globals. The results show that business model design matters to international firm performance and the business model design of Born Globals tends to be more efficiency-centered. Based on a multiple case study, we analyzed business models...

  8. A born dreamer

    Indian Academy of Sciences (India)

    Lawrence

    encouraged me to believe that education was the only way to fulfil one's dreams ... liant student, financial constraints prevented him from pursuing. A born ... higher education. .... to fulfil one's dream despite difficulties, which women face. How-.

  9. No-recoil approximation to the knock-on exchange potential in the double folding model for heavy-ion collisions

    International Nuclear Information System (INIS)

    Hagino, K.; Takehi, T.; Takigawa, N.

    2006-01-01

    We propose the no-recoil approximation, which is valid for heavy systems, for a double folding nucleus-nucleus potential. With this approximation, the nonlocal knock-on exchange contribution becomes a local form. We discuss the applicability of this approximation for elastic scattering of the 6 Li + 40 Ca system. We find that, for this and heavier systems , the no-recoil approximation works as good as another widely used local approximation that employs a local plane wave for the relative motion between the colliding nuclei. We also compare the results of the no-recoil calculations with those of the zero-range approximation often used to handle the knock-on exchange effect

  10. Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle.

    Science.gov (United States)

    Xu, Feng; Ren, Kuan Fang; Cai, Xiaoshu

    2006-07-10

    The geometrical-optics approximation of light scattering by a transparent or absorbing spherical particle is extended from plane wave to Gaussian beam incidence. The formulas for the calculation of the phase of each ray and the divergence factor are revised, and the interference of all the emerging rays is taken into account. The extended geometrical-optics approximation (EGOA) permits one to calculate the scattering diagram in all directions from 0 degrees to 180 degrees. The intensities of the scattered field calculated by the EGOA are compared with those calculated by the generalized Lorenz-Mie theory, and good agreement is found. The surface wave effect in Gaussian beam scattering is also qualitatively analyzed by introducing a flux ratio factor. The approach proposed is particularly important to the further extension of the geometrical-optics approximation to the scattering of large spheroidal particles.

  11. Random phase approximation applied to solids, molecules, and graphene-metal interfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2013-01-01

    The random phase approximation (RPA) is attracting renewed interest as a universal and accurate method for first-principles total energy calculations. The RPA naturally accounts for long-range dispersive forces without compromising accuracy for short-range interactions making the RPA superior...... to semilocal and hybrid functionals in systems dominated by weak van der Waals or mixed covalent-dispersive interactions. In this work, we present plane-wave-based RPA calculations for a broad collection of systems with bond types ranging from strong covalent to van der Waals. Our main result is the RPA...... the RPA captures both the weak covalent and dispersive forces, which are equally important for these systems. We benchmark our implementation in the GPAW electronic structure code by calculating cohesive energies of graphite and a range of covalently bonded solids and molecules as well as the dissociation...

  12. Electronic and Optical Properties of TiS_2 Determined from Generalized Gradient Approximation Study

    International Nuclear Information System (INIS)

    El-Kouch, Hamza; Farh, Larbi El; Sayah, Jamal; Challioui, Allal

    2015-01-01

    The electronic and optical properties of TiS_2 are studied by using an ab-initio calculation within the frame of density functional theory. A linearized and augmented plane wave basis set with the generalized gradient approximation as proposed by Perdew et al. is used for the energy exchange-correlation determination. The results show a metallic character of TiS_2, and the plots of total and partial densities of states of TiS_2 show the metallic character of the bonds and a strong hybridization between the states d of Ti and p of S below the Fermi energy. The optical properties of the material such as real and imaginary parts of dielectric constant (ϵ(ω) = ϵ_1(ω) + iϵ_2(ω)), refractive index n(ω), optical reflectivity R(ω), for E//x and E//z are performed for the energy range of 0–14 eV. (paper)

  13. Approximate treatment of semicore states in GW calculations with application to Au clusters.

    Science.gov (United States)

    Xian, Jiawei; Baroni, Stefano; Umari, P

    2014-03-28

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G0W0 level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au20 and Au32, that would be otherwise very difficult to deal with.

  14. Approximate treatment of semicore states in GW calculations with application to Au clusters

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Jiawei [SISSA – Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy); Baroni, Stefano [SISSA – Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy); CNR-IOM Democritos, Theory-Elettra group, Trieste (Italy); Umari, P., E-mail: paolo.umari@unipd.it [CNR-IOM Democritos, Theory-Elettra group, Trieste (Italy); Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2014-03-28

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G{sub 0}W{sub 0} level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au{sub 20} and Au{sub 32}, that would be otherwise very difficult to deal with.

  15. Approximate treatment of semicore states in GW calculations with application to Au clusters

    International Nuclear Information System (INIS)

    Xian, Jiawei; Baroni, Stefano; Umari, P.

    2014-01-01

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G 0 W 0 level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au 20 and Au 32 , that would be otherwise very difficult to deal with

  16. [Tick borne diseases].

    Science.gov (United States)

    Holzer, B R

    2005-11-01

    It is known for many years that tick-borne diseases have worldwide a high economical impact on farming industry and veterinary medicine. But only in the last twenty years the importance of such diseases were notified in human medicine by the medical community and the public with emerging of the tick borne encephalitis virus and the description of Borrelia burgdorferi. It is often forgotten that many other infectious agents as bacteria, virus, Rickettsia or protozoa can be transmitted by ticks. Such diseases are rarely diagnosed in Europe either they are overlooked and misdiagnosed or they are connected with special professional activities. The development of new regions for tourism with different out door activities (adventure trips, trekking, hunting) leads to an exposure to different tick borne diseases, which are often misdiagnosed.

  17. Modulated Pade approximant

    International Nuclear Information System (INIS)

    Ginsburg, C.A.

    1980-01-01

    In many problems, a desired property A of a function f(x) is determined by the behaviour of f(x) approximately equal to g(x,A) as x→xsup(*). In this letter, a method for resuming the power series in x of f(x) and approximating A (modulated Pade approximant) is presented. This new approximant is an extension of a resumation method for f(x) in terms of rational functions. (author)

  18. Sparse approximation with bases

    CERN Document Server

    2015-01-01

    This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications.  The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...

  19. Vector-borne Infections

    Centers for Disease Control (CDC) Podcasts

    2011-04-18

    This podcast discusses emerging vector-borne pathogens, their role as prominent contributors to emerging infectious diseases, how they're spread, and the ineffectiveness of mosquito control methods.  Created: 4/18/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 4/27/2011.

  20. Tick-borne disease.

    Science.gov (United States)

    Bratton, Robert L; Corey, Ralph

    2005-06-15

    Tick-borne diseases in the United States include Rocky Mountain spotted fever, Lyme disease, ehrlichiosis, tularemia, babesiosis, Colorado tick fever, and relapsing fever. It is important for family physicians to consider these illnesses when patients present with influenza-like symptoms. A petechial rash initially affecting the palms and soles of the feet is associated with Rocky Mountain spotted fever, whereas erythema migrans (annular macule with central clearing) is associated with Lyme disease. Various other rashes or skin lesions accompanied by fever and influenza-like illness also may signal the presence of a tick-borne disease. Early, accurate diagnosis allows treatment that may help prevent significant morbidity and possible mortality. Because 24 to 48 hours of attachment to the host are required for infection to occur, early removal can help prevent disease. Treatment with doxycycline or tetracycline is indicated for Rocky Mountain spotted fever, Lyme disease, ehrlichiosis, and relapsing fever. In patients with clinical findings suggestive of tick-borne disease, treatment should not be delayed for laboratory confirmation. If no symptoms follow exposure to tick bites, empiric treatment is not indicated. The same tick may harbor different infectious pathogens and transmit several with one bite. Advising patients about prevention of tick bites, especially in the summer months, may help prevent exposure to dangerous vector-borne diseases.

  1. Approximate symmetries of Hamiltonians

    Science.gov (United States)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  2. Generalized Born Models of Macromolecular Solvation Effects

    Science.gov (United States)

    Bashford, Donald; Case, David A.

    2000-10-01

    It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.

  3. Approximating distributions from moments

    Science.gov (United States)

    Pawula, R. F.

    1987-11-01

    A method based upon Pearson-type approximations from statistics is developed for approximating a symmetric probability density function from its moments. The extended Fokker-Planck equation for non-Markov processes is shown to be the underlying foundation for the approximations. The approximation is shown to be exact for the beta probability density function. The applicability of the general method is illustrated by numerous pithy examples from linear and nonlinear filtering of both Markov and non-Markov dichotomous noise. New approximations are given for the probability density function in two cases in which exact solutions are unavailable, those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the random telegraph signal. The approximate results are compared with previously published Monte Carlo simulations in these two cases.

  4. CONTRIBUTIONS TO RATIONAL APPROXIMATION,

    Science.gov (United States)

    Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)

  5. Approximation techniques for engineers

    CERN Document Server

    Komzsik, Louis

    2006-01-01

    Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.

  6. Expectation Consistent Approximate Inference

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2005-01-01

    We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...

  7. Tick-Borne Encephalitis (TBE)

    Science.gov (United States)

    ... virus, Siberian tick-borne encephalitis virus, and Far eastern Tick-borne encephalitis virus (formerly known as Russian ... viruses are closely related to TBEV and Far-eastern TBE, and include Omsk hemorrhagic fever virus in ...

  8. Vector borne diseases

    OpenAIRE

    Melillo Fenech, Tanya

    2010-01-01

    A vector-borne disease is one in which the pathogenic microorganism is transmitted from an infected individual to another individual by an arthropod or other agent. The transmission depends upon the attributes and requirements of at least three different Iiving organisms : the pathologic agent which is either a virus, protozoa, bacteria or helminth (worm); the vector, which is commonly an arthropod such as ticks or mosquitoes; and the human host.

  9. Ordered cones and approximation

    CERN Document Server

    Keimel, Klaus

    1992-01-01

    This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.

  10. Where was Joseph Babinski born?

    Directory of Open Access Journals (Sweden)

    H A G Teive

    2011-01-01

    Full Text Available There is controversy in the neurological literature about where Joseph Babinski was born, including a myth propounded by various important authors that he was born in Lima, Peru. However, according to the most consistent biographical data, he was in fact born in Paris, France, and became a medical celebrity there and in Poland as well as around the world.

  11. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  12. Approximate and renormgroup symmetries

    International Nuclear Information System (INIS)

    Ibragimov, Nail H.; Kovalev, Vladimir F.

    2009-01-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  13. Approximations of Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Vinai K. Singh

    2013-03-01

    Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions

  14. General Rytov approximation.

    Science.gov (United States)

    Potvin, Guy

    2015-10-01

    We examine how the Rytov approximation describing log-amplitude and phase fluctuations of a wave propagating through weak uniform turbulence can be generalized to the case of turbulence with a large-scale nonuniform component. We show how the large-scale refractive index field creates Fermat rays using the path integral formulation for paraxial propagation. We then show how the second-order derivatives of the Fermat ray action affect the Rytov approximation, and we discuss how a numerical algorithm would model the general Rytov approximation.

  15. Geometric approximation algorithms

    CERN Document Server

    Har-Peled, Sariel

    2011-01-01

    Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

  16. INTOR cost approximation

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1980-01-01

    A simplified cost approximation for INTOR parameter sets in a narrow parameter range is shown. Plausible constraints permit the evaluation of the consequences of parameter variations on overall cost. (orig.) [de

  17. Approximation and Computation

    CERN Document Server

    Gautschi, Walter; Rassias, Themistocles M

    2011-01-01

    Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg

  18. Approximate kernel competitive learning.

    Science.gov (United States)

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Vector-borne diseases

    DEFF Research Database (Denmark)

    More, Simon J.; Bicout, Dominique; Bøtner, Anette

    2017-01-01

    After a request from the Europea n Commission, EFSA’s Panel on Animal Health and Welfaresummarised the main characteristics of 36 vector-borne disease s (VBDs) in 36 web-based storymaps.The risk of introduction in the EU through movement of livestock or pets was assessed for eac h of the36 VBDs......-agents for which the rate of introduction wasestimated to be very low, no further asse ssments were made. Due to the uncertainty related to someparameters used for the risk assessment or the instable or unpredictability disease situation in some ofthe source regions, it is recommended to update the assessment when...

  20. Reduced-rank approximations to the far-field transform in the gridded fast multipole method

    Science.gov (United States)

    Hesford, Andrew J.; Waag, Robert C.

    2011-05-01

    The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.

  1. Geometrical-optics approximation of forward scattering by gradient-index spheres.

    Science.gov (United States)

    Li, Xiangzhen; Han, Xiang'e; Li, Renxian; Jiang, Huifen

    2007-08-01

    By means of geometrical optics we present an approximation method for acceleration of the computation of the scattering intensity distribution within a forward angular range (0-60 degrees ) for gradient-index spheres illuminated by a plane wave. The incident angle of reflected light is determined by the scattering angle, thus improving the approximation accuracy. The scattering angle and the optical path length are numerically integrated by a general-purpose integrator. With some special index models, the scattering angle and the optical path length can be expressed by a unique function and the calculation is faster. This method is proved effective for transparent particles with size parameters greater than 50. It fails to give good approximation results at scattering angles whose refractive rays are in the backward direction. For different index models, the geometrical-optics approximation is effective only for forward angles, typically those less than 60 degrees or when the refractive-index difference of a particle is less than a certain value.

  2. On Covering Approximation Subspaces

    Directory of Open Access Journals (Sweden)

    Xun Ge

    2009-06-01

    Full Text Available Let (U';C' be a subspace of a covering approximation space (U;C and X⊂U'. In this paper, we show that and B'(X⊂B(X∩U'. Also, iff (U;C has Property Multiplication. Furthermore, some connections between outer (resp. inner definable subsets in (U;C and outer (resp. inner definable subsets in (U';C' are established. These results answer a question on covering approximation subspace posed by J. Li, and are helpful to obtain further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.

  3. Scalar geons in Born-Infeld gravity

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, V.I. [Unidade Acadêmica de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB (Brazil); Olmo, Gonzalo J. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia—CSIC, Universidad de Valencia, Burjassot-46100, Valencia (Spain); Rubiera-Garcia, D., E-mail: viafonso@df.ufcg.edu.br, E-mail: gonzalo.olmo@uv.es, E-mail: drgarcia@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, P-1749-016 Lisbon (Portugal)

    2017-08-01

    The existence of static, spherically symmetric, self-gravitating scalar field solutions in the context of Born-Infeld gravity is explored. Upon a combination of analytical approximations and numerical methods, the equations for a free scalar field (without a potential term) are solved, verifying that the solutions recover the predictions of General Relativity far from the center but finding important new effects in the central regions. We find two classes of objects depending on the ratio between the Schwarzschild radius and a length scale associated to the Born-Infeld theory: massive solutions have a wormhole structure, with their throat at r ≈ 2 M , while for the lighter configurations the topology is Euclidean. The total energy density of these solutions exhibits a solitonic profile with a maximum peaked away from the center, and located at the throat whenever a wormhole exists. The geodesic structure and curvature invariants are analyzed for the various configurations considered.

  4. On Convex Quadratic Approximation

    NARCIS (Netherlands)

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  5. Prestack wavefield approximations

    KAUST Repository

    Alkhalifah, Tariq

    2013-01-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.

  6. Approximating The DCM

    DEFF Research Database (Denmark)

    Madsen, Rasmus Elsborg

    2005-01-01

    The Dirichlet compound multinomial (DCM), which has recently been shown to be well suited for modeling for word burstiness in documents, is here investigated. A number of conceptual explanations that account for these recent results, are provided. An exponential family approximation of the DCM...

  7. Approximation by Cylinder Surfaces

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1997-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  8. Prestack wavefield approximations

    KAUST Repository

    Alkhalifah, Tariq

    2013-09-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.

  9. Tick-borne encephalitis.

    Science.gov (United States)

    Dumpis, U; Crook, D; Oksi, J

    1999-04-01

    Tick-borne encephalitis (TBE) is a zoonotic arbovirus infection endemic to Russia and Eastern and Central Europe. Despite being a common and serious life-threatening disease for which a mass vaccination program was implemented in Austria, there is only limited reference to this disease in the English-language literature. TBE is transmitted to humans usually by the bite of a tick (either Ixodes persulcatus or Ixodes ricinus); occasionally, cases occur following consumption of infected unpasteurized milk. Transmission is seasonal and occurs in spring and summer, particularly in rural areas favored by the vector. TBE is a serious cause of acute central nervous system disease, which may result in death or long-term neurological sequelae. Effective vaccines are available in a few countries. The risk for travelers of acquiring TBE is increasing with the recent rise in tourism to areas of endemicity during spring and summer.

  10. An improved saddlepoint approximation.

    Science.gov (United States)

    Gillespie, Colin S; Renshaw, Eric

    2007-08-01

    Given a set of third- or higher-order moments, not only is the saddlepoint approximation the only realistic 'family-free' technique available for constructing an associated probability distribution, but it is 'optimal' in the sense that it is based on the highly efficient numerical method of steepest descents. However, it suffers from the problem of not always yielding full support, and whilst [S. Wang, General saddlepoint approximations in the bootstrap, Prob. Stat. Lett. 27 (1992) 61.] neat scaling approach provides a solution to this hurdle, it leads to potentially inaccurate and aberrant results. We therefore propose several new ways of surmounting such difficulties, including: extending the inversion of the cumulant generating function to second-order; selecting an appropriate probability structure for higher-order cumulants (the standard moment closure procedure takes them to be zero); and, making subtle changes to the target cumulants and then optimising via the simplex algorithm.

  11. Prestack traveltime approximations

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.

  12. Topology, calculus and approximation

    CERN Document Server

    Komornik, Vilmos

    2017-01-01

    Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...

  13. Approximate Bayesian recursive estimation

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav

    2014-01-01

    Roč. 285, č. 1 (2014), s. 100-111 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf

  14. Approximating Preemptive Stochastic Scheduling

    OpenAIRE

    Megow Nicole; Vredeveld Tjark

    2009-01-01

    We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...

  15. Optimization and approximation

    CERN Document Server

    Pedregal, Pablo

    2017-01-01

    This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.

  16. Vacancy-rearrangement theory in the first Magnus approximation

    International Nuclear Information System (INIS)

    Becker, R.L.

    1984-01-01

    In the present paper we employ the first Magnus approximation (M1A), a unitarized Born approximation, in semiclassical collision theory. We have found previously that the M1A gives a substantial improvement over the first Born approximation (B1A) and can give a good approximation to a full coupled channels calculation of the mean L-shell vacancy probability per electron, p/sub L/, when the L-vacancies are accompanied by a K-shell vacancy (p/sub L/ is obtained experimentally from measurements of K/sub α/-satellite intensities). For sufficiently strong projectile-electron interactions (sufficiently large Z/sub p/ or small v) the M1A ceases to reproduce the coupled channels results, but it is accurate over a much wider range of Z/sub p/ and v than the B1A. 27 references

  17. Cyclic approximation to stasis

    Directory of Open Access Journals (Sweden)

    Stewart D. Johnson

    2009-06-01

    Full Text Available Neighborhoods of points in $mathbb{R}^n$ where a positive linear combination of $C^1$ vector fields sum to zero contain, generically, cyclic trajectories that switch between the vector fields. Such points are called stasis points, and the approximating switching cycle can be chosen so that the timing of the switches exactly matches the positive linear weighting. In the case of two vector fields, the stasis points form one-dimensional $C^1$ manifolds containing nearby families of two-cycles. The generic case of two flows in $mathbb{R}^3$ can be diffeomorphed to a standard form with cubic curves as trajectories.

  18. On the WKBJ approximation

    International Nuclear Information System (INIS)

    El Sawi, M.

    1983-07-01

    A simple approach employing properties of solutions of differential equations is adopted to derive an appropriate extension of the WKBJ method. Some of the earlier techniques that are commonly in use are unified, whereby the general approximate solution to a second-order homogeneous linear differential equation is presented in a standard form that is valid for all orders. In comparison to other methods, the present one is shown to be leading in the order of iteration, and thus possibly has the ability of accelerating the convergence of the solution. The method is also extended for the solution of inhomogeneous equations. (author)

  19. The relaxation time approximation

    International Nuclear Information System (INIS)

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  20. Polynomial approximation on polytopes

    CERN Document Server

    Totik, Vilmos

    2014-01-01

    Polynomial approximation on convex polytopes in \\mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.

  1. Finite elements and approximation

    CERN Document Server

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  2. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Martínez, Enrique; Cawkwell, Marc J; Voter, Arthur F; Niklasson, Anders M N

    2015-04-21

    Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. The thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.

  3. Finite-rank potential that reproduces the Pade approximant

    International Nuclear Information System (INIS)

    Tani, S.

    1979-01-01

    If a scattering potential is of a finite rank, say N, the exact solution of the problem can be obtained from the Born series, if the potential strength is within the radius of convergence; the exact solution can be obtained from the analytical continuation of the formal Born series outside the radius of convergence. Beyond the first 2N terms of the Born series, an individual term of the Born series depends on the first 2N terms, and the [N/N] Pade approximant and the exact solution agree with each other. The above-mentioned features of a finite-rank problem are relevant to scattering theory in general, because most scattering problems may be handled as an extension of the rank-N problem, in which the rank N tends to infinity. The foregoing aspects of scattering theory will be studied in depth in the present paper, and in so doing we proceed in the opposite direction. Namely, given a potential, we calculate the first 2N terms of the Born series for the K matrix and the first N terms of the Born series for the wave function. Using these data, a special rank-N potential is constructed in such a way that it reproduces the [N/N] Pade approximant of the K matrix of the original scattering problem. One great advantage of obtaining such a rank-N potential is that the wave function of the system may be approximated in the same spirit as done for the K matrix; hence, we can introduce a new approximation method for dealing with an off-shell T matrix. A part of the mathematical work is incomplete, but the physical aspects are thoroughly discussed

  4. Approximate Bayesian computation.

    Directory of Open Access Journals (Sweden)

    Mikael Sunnåker

    Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.

  5. Validation of Born Traveltime Kernels

    Science.gov (United States)

    Baig, A. M.; Dahlen, F. A.; Hung, S.

    2001-12-01

    Most inversions for Earth structure using seismic traveltimes rely on linear ray theory to translate observed traveltime anomalies into seismic velocity anomalies distributed throughout the mantle. However, ray theory is not an appropriate tool to use when velocity anomalies have scale lengths less than the width of the Fresnel zone. In the presence of these structures, we need to turn to a scattering theory in order to adequately describe all of the features observed in the waveform. By coupling the Born approximation to ray theory, the first order dependence of heterogeneity on the cross-correlated traveltimes (described by the Fréchet derivative or, more colourfully, the banana-doughnut kernel) may be determined. To determine for what range of parameters these banana-doughnut kernels outperform linear ray theory, we generate several random media specified by their statistical properties, namely the RMS slowness perturbation and the scale length of the heterogeneity. Acoustic waves are numerically generated from a point source using a 3-D pseudo-spectral wave propagation code. These waves are then recorded at a variety of propagation distances from the source introducing a third parameter to the problem: the number of wavelengths traversed by the wave. When all of the heterogeneity has scale lengths larger than the width of the Fresnel zone, ray theory does as good a job at predicting the cross-correlated traveltime as the banana-doughnut kernels do. Below this limit, wavefront healing becomes a significant effect and ray theory ceases to be effective even though the kernels remain relatively accurate provided the heterogeneity is weak. The study of wave propagation in random media is of a more general interest and we will also show our measurements of the velocity shift and the variance of traveltime compare to various theoretical predictions in a given regime.

  6. Early Recollections of First-Borns.

    Science.gov (United States)

    Fakouri, M. Ebrahim; Hafner, James L.

    1984-01-01

    Compared the early recollections of 50 first-borns and 98 later-borns. The first-borns mentioned significantly more nonfamily members, illness/injury, hospital/doctor's office. Later-borns mentioned significantly more siblings than did first-borns. Findings were discussed in the context of Adler's personality theory. (JAC)

  7. The random phase approximation

    International Nuclear Information System (INIS)

    Schuck, P.

    1985-01-01

    RPA is the adequate theory to describe vibrations of the nucleus of very small amplitudes. These vibrations can either be forced by an external electromagnetic field or can be eigenmodes of the nucleus. In a one dimensional analogue the potential corresponding to such eigenmodes of very small amplitude should be rather stiff otherwise the motion risks to be a large amplitude one and to enter a region where the approximation is not valid. This means that nuclei which are supposedly well described by RPA must have a very stable groundstate configuration (must e.g. be very stiff against deformation). This is usually the case for doubly magic nuclei or close to magic nuclei which are in the middle of proton and neutron shells which develop a very stable groundstate deformation; we take the deformation as an example but there are many other possible degrees of freedom as, for example, compression modes, isovector degrees of freedom, spin degrees of freedom, and many more

  8. The quasilocalized charge approximation

    International Nuclear Information System (INIS)

    Kalman, G J; Golden, K I; Donko, Z; Hartmann, P

    2005-01-01

    The quasilocalized charge approximation (QLCA) has been used for some time as a formalism for the calculation of the dielectric response and for determining the collective mode dispersion in strongly coupled Coulomb and Yukawa liquids. The approach is based on a microscopic model in which the charges are quasilocalized on a short-time scale in local potential fluctuations. We review the conceptual basis and theoretical structure of the QLC approach and together with recent results from molecular dynamics simulations that corroborate and quantify the theoretical concepts. We also summarize the major applications of the QLCA to various physical systems, combined with the corresponding results of the molecular dynamics simulations and point out the general agreement and instances of disagreement between the two

  9. Born : vastutustundlikud tulevikus edukad / Kerstin Born ; interv. Kristo Kiviorg

    Index Scriptorium Estoniae

    Born, Kerstin

    2007-01-01

    Vastutustundliku ettevõtluse Euroopa organisatsiooni CSR Europe'i juht Kerstin Born vastab küsimustele ettevõtete vastutustundlikkuse kohta ühiskonnas. Vt. samas: Käivitus vastutustundliku ettevõtluse indeks

  10. Convergence of the Distorted Wave Born series

    International Nuclear Information System (INIS)

    MacMillan, D.S.

    1981-01-01

    The aim of this thesis is to begin to understand the idea of reaction mechanisms in nonrelativistic scattering systems. If we have a complete reaction theory of a particular scattering system, then we claim that the theory itself must contain information about important reaction mechanisms in the system. This information can be used to decide what reaction mechanisms should be included in an approximate calculation. To investigate this claim, we studied several solvable models. The primary concept employed in studying our models is the convergence of the multistep series generated by iterating the corresponding scattering integral equation. We known that the eigenvalues of the kernel of the Lippmann-Schwinger equation for potential scattering determine the rate of convergence of the Born series. The Born series will converge only if these eigenvalues all life within the unit circle. We extend these results to a study of the distorted wave Born series for inelastic scattering. The convergence criterion tells us when approximations are valid. We learn how the convergence of the distorted wave series depends upon energy, coupling constants, angular momentum, and angular momentum transfer. In one of our models, we look at several possible distorting potentials to see which one gives the best convergence. We have also applied our results to several actual DWBA or coupled channel calculations in the literature. In addition to the study of models of two-body scattering systems, we have considered the case of rearrangement scattering. We have discussed the formulation of (N greater than or equal to 3)-body distorted wave equations in which the interior dynamics have been redistributed by introducing compact N-body distortion potentials

  11. Proton induced nucleon knockout from 40Ca in the Dirac impulse approximation

    International Nuclear Information System (INIS)

    Maxwell, O.V.; Cooper, E.D.

    1989-12-01

    The (p,2p) reaction on 40 Ca at incident proton energies of 200 and 300 MeV is examined within a Dirac distorted wave impulse approximation. The relativistic Love-Franey t-matrix is evaluated at the nucleon-nucleon laboratory energy (as defined within the plane wave approximation), rather than the nucleon-nucleus laboratory energy. Particular attention is paid to the sensitivity of the calculated cross sections and analyzing powers to the properties of the bound states employed. It is found that the analyzing powers depend very little on the bound state properties, while the cross sections depend significantly only on the rms radii of the bound state wave functions. A major success of the model is its ability to fit the cross section data over a particular range of momentum transfers at both 200 and 300 MeV with the same bound state potential. Outside this momentum transfer range, the predicted cross sections are too low. The calculated analyzing powers agree well with the data at 200 MeV, but disagree with the data at 300 MeV. Values for the rms radii of the 1D 3/2 and 1D 5/2 states in 40 Ca are derived from the requirement that the peak positions of the calculated cross sections at 300 MeV agree with the empirical peak positions. Some preliminary results are also reported for neutron knockout from 40 Ca at 150 MeV

  12. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)

    2015-12-21

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  13. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation.

    Science.gov (United States)

    Lestrange, Patrick J; Egidi, Franco; Li, Xiaosong

    2015-12-21

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  14. Approximate quantum Markov chains

    CERN Document Server

    Sutter, David

    2018-01-01

    This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information. The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb's triple ma...

  15. Prestack traveltime approximations

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-05-01

    Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.

  16. Born-Infeld Nonlinear Electrodynamics

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.

    1999-01-01

    This is only a summary of a lecture delivered at the Infeld Centennial Meeting. In the lecture the history of the Born-Infeld nonlinear electrodynamics was presented and some general features of the theory were discussed. (author)

  17. The L1-shell ionisation of atoms by relativistic particles

    International Nuclear Information System (INIS)

    Moiseiwitsch, B.L.; Norrington, P.H.

    1979-01-01

    An expression for the L 1 -shell ionisation cross sections of atoms by high-energy particles has been derived using the relativistic plane-wave Born approximation. The incident and scattered particles are described by Dirac plane waves while Darwin hydrogenic wavefunctions are used for the atomic electrons. A comparison is made with experimental total cross sections for incident electrons in the energy range 1-2 MeV. The agreement is a considerable improvement on that obtained using the non-relativistic planewave Born approximation. (author)

  18. Self-similar factor approximants

    International Nuclear Information System (INIS)

    Gluzman, S.; Yukalov, V.I.; Sornette, D.

    2003-01-01

    The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving an improved type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are called self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Pade approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions, which include a variety of nonalgebraic functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Pade approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties

  19. Forward modeling of space-borne gravitational wave detectors

    International Nuclear Information System (INIS)

    Rubbo, Louis J.; Cornish, Neil J.; Poujade, Olivier

    2004-01-01

    Planning is underway for several space-borne gravitational wave observatories to be built in the next 10 to 20 years. Realistic and efficient forward modeling will play a key role in the design and operation of these observatories. Space-borne interferometric gravitational wave detectors operate very differently from their ground-based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate the description of space-based systems, while nonlinear control systems complicate the description of ground-based systems. Here we explore the forward modeling of space-based gravitational wave detectors and introduce an adiabatic approximation to the detector response that significantly extends the range of the standard low frequency approximation. The adiabatic approximation will aid in the development of data analysis techniques, and improve the modeling of astrophysical parameter extraction

  20. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  1. International Conference Approximation Theory XV

    CERN Document Server

    Schumaker, Larry

    2017-01-01

    These proceedings are based on papers presented at the international conference Approximation Theory XV, which was held May 22–25, 2016 in San Antonio, Texas. The conference was the fifteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 146 participants. The book contains longer survey papers by some of the invited speakers covering topics such as compressive sensing, isogeometric analysis, and scaling limits of polynomials and entire functions of exponential type. The book also includes papers on a variety of current topics in Approximation Theory drawn from areas such as advances in kernel approximation with applications, approximation theory and algebraic geometry, multivariate splines for applications, practical function approximation, approximation of PDEs, wavelets and framelets with applications, approximation theory in signal processing, compressive sensing, rational interpolation, spline approximation in isogeometric analysis, a...

  2. Hierarchical low-rank approximation for high dimensional approximation

    KAUST Repository

    Nouy, Anthony

    2016-01-01

    Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.

  3. Hierarchical low-rank approximation for high dimensional approximation

    KAUST Repository

    Nouy, Anthony

    2016-01-07

    Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.

  4. Forms of Approximate Radiation Transport

    CERN Document Server

    Brunner, G

    2002-01-01

    Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.

  5. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  6. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  7. International Conference Approximation Theory XIV

    CERN Document Server

    Schumaker, Larry

    2014-01-01

    This volume developed from papers presented at the international conference Approximation Theory XIV,  held April 7–10, 2013 in San Antonio, Texas. The proceedings contains surveys by invited speakers, covering topics such as splines on non-tensor-product meshes, Wachspress and mean value coordinates, curvelets and shearlets, barycentric interpolation, and polynomial approximation on spheres and balls. Other contributed papers address a variety of current topics in approximation theory, including eigenvalue sequences of positive integral operators, image registration, and support vector machines. This book will be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.

  8. Linear analytical solution to the phase diversity problem for extended objects based on the Born approximation

    NARCIS (Netherlands)

    Andrei, R.M.; Smith, C.S.; Fraanje, P.R.; Verhaegen, M.; Korkiakoski, V.A.; Keller, C.U.; Doelman, N.J.

    2012-01-01

    In this paper we give a new wavefront estimation technique that overcomes the main disadvantages of the phase diversity (PD) algorithms, namely the large computational complexity and the fact that the solutions can get stuck in a local minima. Our approach gives a good starting point for an

  9. 6Li real potential volume integrals in elastic scattering and distorted-waveBorn approximation analyses

    International Nuclear Information System (INIS)

    Lezoch, P.; Trost, H.; Strohbusch, U.

    1981-01-01

    The magnitudes of volume integrals per interacting nucleon pair J/sub R/' calculated from a compilation of 6 Li potentials vary between 100 and 500 MeV fm 3 . They are grouped in discrete branches with J/sub R/(A) smoothly increasing with decreasing target mass. Comparison with the results for lighter projectiles restricts the ''physically meaningful'' branches to those characterized by J/sub R/ (A> or =48) 3 . ( 6 Li,d) reaction analyses yield the same fit qualities for 6 Li potentials of the different discrete families, but deduced spectroscopic factors jump (by factors of approx.3) when changing between successive families

  10. Seismic Imaging and Velocity Analysis Using a Pseudo Inverse to the Extended Born Approximation

    KAUST Repository

    Alali, Abdullah A.

    2018-01-01

    the correct model. The most commonly used technique is differential semblance optimization (DSO), which depends on applying an image extension and penalizing the energy in the non-physical extension. However, studies show that the conventional DSO gradient

  11. Large-scale parameter extraction in electrocardiology models through Born approximation

    KAUST Repository

    He, Yuan; Keyes, David E.

    2012-01-01

    One of the main objectives in electrocardiology is to extract physical properties of cardiac tissues from measured information on electrical activity of the heart. Mathematically, this is an inverse problem for reconstructing coefficients

  12. The born approximation and Calderón's method for reconstruction of conductivities in 3-D

    DEFF Research Database (Denmark)

    Knudsen, Kim; Mueller, Jennifer L.

    2011-01-01

    Two algorithms for the direct reconstruction of conductivities in a bounded domain in [\\mathbb{R}^3] from surface measurements of the solutions to the conductivity equation are presented. The algorithms are based on complex geometrical optics solutions and a nonlinear scattering transform. We test...

  13. Plane wave interaction with a homogeneous warm plasma sphere

    International Nuclear Information System (INIS)

    Ruppin, R.

    1975-01-01

    A Mie type theory for the scattering and absorption properties of a homogeneous warm plasma sphere is developed. The theory is applied to the calculation of the extinction cross section of plasma spheres, and the effects of Landau damping and collisional damping on the spectra are discussed. The dependence of the main resonance and of the Tonks-Dattner resonances on the physical parameters characterizing the sphere and its surroundings is investigated. The spectrum is shown to be insenitive to the boundary conditions which specify the behaviour of the electrons at the surface of the sphere (author)

  14. On the energy-momentum density of gravitational plane waves

    International Nuclear Information System (INIS)

    Dereli, T; Tucker, R W

    2004-01-01

    By embedding Einstein's original formulation of general relativity into a broader context, we show that a dynamic covariant description of gravitational stress-energy emerges naturally from a variational principle. A tensor T G is constructed from a contraction of the Bel tensor with a symmetric covariant second degree tensor field Φ and has a form analogous to the stress-energy tensor of the Maxwell field in an arbitrary spacetime. For plane-fronted gravitational waves helicity-2 polarized (graviton) states can be identified carrying non-zero energy and momentum

  15. A pulsed electron gun for the Plane Wave Transformer Linac

    Science.gov (United States)

    Mahadevan, S.; Gandhi, M. L.; Nandedkar, R. V.

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 μperv and the normalized emittance is within 5 π mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance.

  16. A pulsed electron gun for the Plane Wave Transformer Linac

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, S. E-mail: maharaja@cat.ernet.in; Gandhi, M.L. E-mail: mlg@cat.ernet.in; Nandedkar, R.V. E-mail: nrv@cat.ernet.in

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 {mu}perv and the normalized emittance is within 5{pi} mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance.

  17. A pulsed electron gun for the Plane Wave Transformer Linac

    CERN Document Server

    Mahadevan, S; Nandedkar, R V

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 mu perv and the normalized emittance is within 5 pi mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance.

  18. A pulsed electron gun for the Plane Wave Transformer Linac

    International Nuclear Information System (INIS)

    Mahadevan, S.; Gandhi, M.L.; Nandedkar, R.V.

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 μperv and the normalized emittance is within 5π mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance

  19. Inverse problems and inverse scattering of plane waves

    CERN Document Server

    Ghosh Roy, Dilip N

    2001-01-01

    The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.

  20. Transverse spin and transverse momentum in scattering of plane waves

    OpenAIRE

    Saha, Sudipta; Singh, Ankit K.; Ray, Subir K.; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2016-01-01

    We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demon...

  1. Analyzing Lagrange gauge measurements of spherical, cylindrical, or plane waves

    International Nuclear Information System (INIS)

    Aidun, J.B.

    1993-01-01

    Material response characterizations that are very useful in constitutive model development can be obtained from careful analysis of in-material (embedded, Lagrangian) gauge measurements of stress and/or particle velocity histories at multiple locations. The requisite measurements and the analysis are feasible for both laboratory and field experiments. The final product of the analysis is a set of load paths (e.g., radial stress vs. radial strain, tangential vs. radial stress, tangential vs. radial strain, radial stress vs. particle velocity) and their possible variation with propagation distance. Material model development can be guided and constrained by this information, but extra information or assumptions are needed to first establish a parameterized representation of the material response

  2. Plane-wave decomposition by spherical-convolution microphone array

    Science.gov (United States)

    Rafaely, Boaz; Park, Munhum

    2004-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  3. Plane wave scattering by bow-tie posts

    Science.gov (United States)

    Lech, Rafal; Mazur, Jerzy

    2004-04-01

    The theory of scattering in free space by a novel structure of a two-dimensional dielectric-metallic post is developed with the use of a combination of a modified iterative scattering procedure and an orthogonal expansion method. The far scattered field patterns for open structures are derived. The rotation of the post affects its scattered field characteristic, which permits to make adjustments in characteristic of the posts arrays.

  4. Some results in Diophantine approximation

    DEFF Research Database (Denmark)

    Pedersen, Steffen Højris

    the basic concepts on which the papers build. Among other it introduces metric Diophantine approximation, Mahler’s approach on algebraic approximation, the Hausdorff measure, and properties of the formal Laurent series over Fq. The introduction ends with a discussion on Mahler’s problem when considered......This thesis consists of three papers in Diophantine approximation, a subbranch of number theory. Preceding these papers is an introduction to various aspects of Diophantine approximation and formal Laurent series over Fq and a summary of each of the three papers. The introduction introduces...

  5. Limitations of shallow nets approximation.

    Science.gov (United States)

    Lin, Shao-Bo

    2017-10-01

    In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Towards violation of Born's rule: description of a simple experiment

    International Nuclear Information System (INIS)

    Khrennikov, Andrei

    2011-01-01

    Recently a new model with hidden variables of the wave type was elaborated, so called prequantum classical statistical field theory (PCSFT). Roughly speaking PCSFT is a classical signal theory applied to a special class of signals - 'quantum systems'. PCSFT reproduces successfully all probabilistic predictions of QM, including correlations for entangled systems. This model peacefully coexists with all known no-go theorems, including Bell's theorem. In our approach QM is an approximate model. All probabilistic predictions of QM are only (quite good) approximations of 'real physical averages'. The latter are averages with respect to fluctuations of prequantum fields. In particular, Born's rule is only an approximate rule. More precise experiments should demonstrate its violation. We present a simple experiment which has to produce statistical data violating Born's rule. Since the PCSFT-presentation of this experiment may be difficult for experimenters, we reformulate consequences of PCSFT in terms of the conventional wave function. In general, deviation from Born's rule is rather small. We found an experiment amplifying this deviation. We start with a toy example. Then we present a more realistic example based on Gaussian states with very small dispersion.

  7. Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact

    International Nuclear Information System (INIS)

    Attaourti, Y.; Taj, S.

    2004-01-01

    Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the (e,2e) reaction and in the presence of a circularly polarized laser field, we introduce as a first step the Dirac-Volkov plane wave Born approximation 1 where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the Dirac-Volkov plane wave Born approximation 2 where we take totally into account the relativistic dressing of the incident, scattered, and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the nonrelativistic and the relativistic regime

  8. Bacterial food-borne zoonoses.

    Science.gov (United States)

    Thorns, C J

    2000-04-01

    In many countries of the world, bacterial food-borne zoonotic infections are the most common cause of human intestinal disease. Salmonella and Campylobacter account for over 90% of all reported cases of bacteria-related food poisoning world-wide. Poultry and poultry products have been incriminated in the majority of traceable food-borne illnesses caused by these bacteria, although all domestic livestock are reservoirs of infection. In contrast to the enzootic nature of most Salmonella and Campylobacter infections, Salmonella Enteritidis caused a pandemic in both poultry and humans during the latter half of the 20th Century. Salmonella Typhimurium and Campylobacter appear to be more ubiquitous in the environment, colonising a greater variety of hosts and environmental niches. Verocytotoxin-producing Escherichia coli O157 (VTEC O157) also emerged as a major food-borne zoonotic pathogen in the 1980s and 1990s. Although infection is relatively rare in humans, clinical disease is often severe, with a significant mortality rate among the young and elderly. The epidemiology of VTEC O157 is poorly understood, although ruminants, especially cattle and sheep, appear to be the major source of infection. The dissemination of S. Enteritidis along the food chain is fairly well understood, and control programmes have been developed to target key areas of poultry meat and egg production. Recent evidence indicates that these control programmes have been associated with an overall reduction of S. Enteritidis along the food chain. Unfortunately, existing controls do not appear to reduce the levels of Campylobacter and VTEC O157 infections. Future control strategies need to consider variations in the epidemiologies of food-borne zoonotic infections, and apply a quantitative risk analysis approach to ensure that the most cost-effective programmes are developed.

  9. Emerging Vector-Borne Diseases.

    Science.gov (United States)

    Huntington, Mark K; Allison, Jay; Nair, Dilip

    2016-10-01

    Several mosquito-borne viral infections have recently emerged in North America; West Nile virus is the most common in the United States. Although West Nile virus generally causes a self-limited, flulike febrile illness, a serious neuroinvasive form may occur. Dengue is the most common vector-borne viral disease worldwide, and it has been a significant public health threat in the United States since 2009. Known as breakbone fever for its severe myalgias and arthralgias, dengue may cause a hemorrhagic syndrome. Chikungunya also causes flulike febrile illness and disabling arthralgias. Although meningoencephalitis may occur with chikungunya, bleeding is uncommon. Symptoms of Zika virus infection are similar to those of dengue, but milder. Zika virus increases the risk of fetal brain abnormalities, including microcephaly, if a pregnant woman is infected. Zika virus is spread through Aedes albopictus mosquito bites, is transmitted sexually, and may rarely spread nonsexually from person to person. Diagnosis of these vectorborne infections is clinical and serologic, and treatment is supportive. Other, well-established vector-borne diseases are also important. Ehrlichiosis is a tick-borne bacterial disease that presents as a nonspecific syndrome of fever, headache, malaise, and myalgias. It is diagnosed via blood smear testing, with confirmatory serology. Ehrlichiosis is treated with doxycycline. Rickettsial infections are transmitted by fleas, mites, and ticks, and severity ranges from mild to life threatening. Rocky Mountain spotted fever, the most significant rickettsial infection, is primarily a clinical diagnosis that presents as fever, headache, myalgias, petechial rash, and tick exposure. Doxycycline is effective for rickettsial infections if administered promptly. Vector avoidance strategies are critical to the prevention of all of these infections.

  10. Spherical Approximation on Unit Sphere

    Directory of Open Access Journals (Sweden)

    Eman Samir Bhaya

    2018-01-01

    Full Text Available In this paper we introduce a Jackson type theorem for functions in LP spaces on sphere And study on best approximation of  functions in  spaces defined on unit sphere. our central problem is to describe the approximation behavior of functions in    spaces for  by modulus of smoothness of functions.

  11. Approximate circuits for increased reliability

    Science.gov (United States)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  12. Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.

    Science.gov (United States)

    Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E

    2018-06-01

    An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.

  13. Semiclassical approximation of the Wheeler-DeWitt equation: arbitrary orders and the question of unitarity

    Science.gov (United States)

    Kiefer, Claus; Wichmann, David

    2018-06-01

    We extend the Born-Oppenheimer type of approximation scheme for the Wheeler-DeWitt equation of canonical quantum gravity to arbitrary orders in the inverse Planck mass squared. We discuss in detail the origin of unitarity violation in this scheme and show that unitarity can be restored by an appropriate modification which requires back reaction from matter onto the gravitational sector. In our analysis, we heavily rely on the gauge aspects of the standard Born-Oppenheimer scheme in molecular physics.

  14. The efficiency of Flory approximation

    International Nuclear Information System (INIS)

    Obukhov, S.P.

    1984-01-01

    The Flory approximation for the self-avoiding chain problem is compared with a conventional perturbation theory expansion. While in perturbation theory each term is averaged over the unperturbed set of configurations, the Flory approximation is equivalent to the perturbation theory with the averaging over the stretched set of configurations. This imposes restrictions on the integration domain in higher order terms and they can be treated self-consistently. The accuracy δν/ν of Flory approximation for self-avoiding chain problems is estimated to be 2-5% for 1 < d < 4. (orig.)

  15. Coplanar (e, 3e) differential cross-section of He atom

    Indian Academy of Sciences (India)

    -section (FDCS) for (, 3) process on He atom in low momentum transfer and high electron impact energy in shake-off mechanism. The formalism has been developed in Born approximation using plane waves, Byron and Joachain as well as ...

  16. Charge exchange between singly ionized helium ions

    International Nuclear Information System (INIS)

    Choi, B.H.; Poe, R.T.; Tang, K.T.

    1978-01-01

    The plane-wave Born approximation was used to evaluate the charge transfer cross sections for the reaction He + + He + → He ++ + He. The charge transfer cross section is graphed as a function of incident energy and compared with experimental measurements

  17. Application of correlation techniques to the angular spectrum of scattered radiation from tokamak plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.

    1990-01-01

    In the limit of the first Born approximation for a partially coherent secondary source consisting of a spatially random plasma illuminated by a coherent plane wave, it is shown that the spectral coherence of the scattered radiation conveys information on the three-dimensional intensity distribution of the secondary source

  18. Electron distortion effects in quasi-eleastic electron scattering

    International Nuclear Information System (INIS)

    Jin, Yanhe.

    1991-03-01

    This report discusses the following topics: dirac single particle shell model; dirac free states in Coulomb and optical potentials; deep inelastic electron scattering; plane wave born approximation and Rosenbluth separation; analysis of the 40 Ca(e,e') experimental data; and analysis of the exclusive (e,e'p) experimental data

  19. Approximate Implicitization Using Linear Algebra

    Directory of Open Access Journals (Sweden)

    Oliver J. D. Barrowclough

    2012-01-01

    Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.

  20. Rollout sampling approximate policy iteration

    NARCIS (Netherlands)

    Dimitrakakis, C.; Lagoudakis, M.G.

    2008-01-01

    Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions, which focus on policy representation using classifiers and address policy learning as a

  1. Weighted approximation with varying weight

    CERN Document Server

    Totik, Vilmos

    1994-01-01

    A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.

  2. Framework for sequential approximate optimization

    NARCIS (Netherlands)

    Jacobs, J.H.; Etman, L.F.P.; Keulen, van F.; Rooda, J.E.

    2004-01-01

    An object-oriented framework for Sequential Approximate Optimization (SAO) isproposed. The framework aims to provide an open environment for thespecification and implementation of SAO strategies. The framework is based onthe Python programming language and contains a toolbox of Python

  3. Genetic Characterization of the Tick-Borne Orbiviruses

    Directory of Open Access Journals (Sweden)

    Manjunatha N. Belaganahalli

    2015-04-01

    Full Text Available The International Committee for Taxonomy of Viruses (ICTV recognizes four species of tick-borne orbiviruses (TBOs: Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae. Nucleotide (nt and amino acid (aa sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV; Chobar Gorge virus (CGV and Wad Medani virus (WMV. Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs. CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in ‘conserved’ Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1, is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome.

  4. A variational approach to operator and matrix Pade approximation. Applications to potential scattering and field theory

    International Nuclear Information System (INIS)

    Mery, P.

    1977-01-01

    The operator and matrix Pade approximation are defined. The fact that these approximants can be derived from the Schwinger variational principle is emphasized. In potential theory, using this variational aspect it is shown that the matrix Pade approximation allow to reproduce the exact solution of the Lippman-Schwinger equation with any required accuracy taking only into account the knowledge of the first two coefficients in the Born expansion. The deep analytic structure of this variational matrix Pade approximation (hyper Pade approximation) is discussed

  5. We have "born digital" - now what about "born semantic"?

    Science.gov (United States)

    Leadbetter, Adam; Fredericks, Janet

    2014-05-01

    The phrase "born-digital" refers to those materials which originate in a digital form. In Earth and Space Sciences, this is now very much the norm for data: analogue to digital converters sit on instrument boards and produce a digital record of the observed environment. While much effort has been put in to creating and curating these digital data, there has been little work on using semantic mark up of data from the point of collection - what we term 'born semantic'. In this presentation we report on two efforts to expand this area: Qartod-to-OGC (Q2O) and SenseOCEAN. These projects have taken a common approach to 'born semantic': create or reuse appropriate controlled vocabularies, published to World Wide Web Commission (W3C) standards use standards from the Open Geospatial Consortium's Sensor Web Enablement (SWE) initiative to describe instrument setup, deployment and/or outputs using terms from those controlled vocabularies embed URLs from the controlled vocabularies within the SWE documents in a "Linked Data" conformant approach Q2O developed best practices examples of SensorML descriptions of Original Equipment Manufacturers' metadata (model characteristics, capabilities, manufacturer contact, etc ...) set-up and deployment SensorML files; and data centre process-lineage using registered vocabularies to describe terms (including input, output, processes, parameters, quality control flags) One Q2O use case, the Martha's Vineyard Coastal Observatory ADCP Waves instance, uses SensorML and registered vocabularies to fully describe the process of computing wave parameters from sensed properties, including quality control tests and associated results. The European Commission Framework Programme 7 project SenseOCEAN draws together world leading marine sensor developers to create a highly integrated multifunction and cost-effective in situ marine biogeochemical sensor system. This project will provide a quantum leap in the ability to measure crucial biogeochemical

  6. Surgical experts: born or made?

    Science.gov (United States)

    Sadideen, Hazim; Alvand, Abtin; Saadeddin, Munir; Kneebone, Roger

    2013-01-01

    The concept of surgical expertise and the processes involved in its development are topical, and there is a constant drive to identify reliable measures of expert performance in surgery. This review explores the notion of whether surgical experts are "born" or "made", with reference to educational theory and pertinent literature. Peer-reviewed publications, books, and online resources on surgical education, expertise and training were reviewed. Important themes and aspects of expertise acquisition were identified in order to better understand the concept of a surgical expert. The definition of surgical expertise and several important aspects of its development are highlighted. Innate talent plays an important role, but is insufficient on its own to produce a surgical expert. Multiple theories that explore motor skill acquisition and memory are relevant, and Ericsson's theory of the development of competence followed by deliberate self-practice has been especially influential. Psychomotor and non-technical skills are necessary for progression in the current climate in light of our training curricula; surgical experts are adaptive experts who excel in these. The literature suggests that surgical expertise is reached through practice; surgical experts are made, not born. A deeper understanding of the nature of expert performance and its development will ensure that surgical education training programmes are of the highest possible quality. Surgical educators should aim to develop an expertise-based approach, with expert performance as the benchmark. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Nuclear Hartree-Fock approximation testing and other related approximations

    International Nuclear Information System (INIS)

    Cohenca, J.M.

    1970-01-01

    Hartree-Fock, and Tamm-Dancoff approximations are tested for angular momentum of even-even nuclei. Wave functions, energy levels and momenta are comparatively evaluated. Quadripole interactions are studied following the Elliott model. Results are applied to Ne 20 [pt

  8. Shearlets and Optimally Sparse Approximations

    DEFF Research Database (Denmark)

    Kutyniok, Gitta; Lemvig, Jakob; Lim, Wang-Q

    2012-01-01

    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations...... optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction...... to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field....

  9. Diophantine approximation and Dirichlet series

    CERN Document Server

    Queffélec, Hervé

    2013-01-01

    This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of anal...

  10. Approximations to camera sensor noise

    Science.gov (United States)

    Jin, Xiaodan; Hirakawa, Keigo

    2013-02-01

    Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.

  11. Rational approximations for tomographic reconstructions

    International Nuclear Information System (INIS)

    Reynolds, Matthew; Beylkin, Gregory; Monzón, Lucas

    2013-01-01

    We use optimal rational approximations of projection data collected in x-ray tomography to improve image resolution. Under the assumption that the object of interest is described by functions with jump discontinuities, for each projection we construct its rational approximation with a small (near optimal) number of terms for a given accuracy threshold. This allows us to augment the measured data, i.e., double the number of available samples in each projection or, equivalently, extend (double) the domain of their Fourier transform. We also develop a new, fast, polar coordinate Fourier domain algorithm which uses our nonlinear approximation of projection data in a natural way. Using augmented projections of the Shepp–Logan phantom, we provide a comparison between the new algorithm and the standard filtered back-projection algorithm. We demonstrate that the reconstructed image has improved resolution without additional artifacts near sharp transitions in the image. (paper)

  12. Approximation methods in probability theory

    CERN Document Server

    Čekanavičius, Vydas

    2016-01-01

    This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.

  13. Approximate reasoning in physical systems

    International Nuclear Information System (INIS)

    Mutihac, R.

    1991-01-01

    The theory of fuzzy sets provides excellent ground to deal with fuzzy observations (uncertain or imprecise signals, wavelengths, temperatures,etc.) fuzzy functions (spectra and depth profiles) and fuzzy logic and approximate reasoning. First, the basic ideas of fuzzy set theory are briefly presented. Secondly, stress is put on application of simple fuzzy set operations for matching candidate reference spectra of a spectral library to an unknown sample spectrum (e.g. IR spectroscopy). Thirdly, approximate reasoning is applied to infer an unknown property from information available in a database (e.g. crystal systems). Finally, multi-dimensional fuzzy reasoning techniques are suggested. (Author)

  14. Face Recognition using Approximate Arithmetic

    DEFF Research Database (Denmark)

    Marso, Karol

    Face recognition is image processing technique which aims to identify human faces and found its use in various different fields for example in security. Throughout the years this field evolved and there are many approaches and many different algorithms which aim to make the face recognition as effective...... processing applications the results do not need to be completely precise and use of the approximate arithmetic can lead to reduction in terms of delay, space and power consumption. In this paper we examine possible use of approximate arithmetic in face recognition using Eigenfaces algorithm....

  15. A differential equation for the Generalized Born radii.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2013-06-28

    The Generalized Born (GB) model offers a convenient way of representing electrostatics in complex macromolecules like proteins or nucleic acids. The computation of atomic GB radii is currently performed by different non-local approaches involving volume or surface integrals. Here we obtain a non-linear second-order partial differential equation for the Generalized Born radius, which may be solved using local iterative algorithms. The equation is derived under the assumption that the usual GB approximation to the reaction field obeys Laplace's equation. The equation admits as particular solutions the correct GB radii for the sphere and the plane. The tests performed on a set of 55 different proteins show an overall agreement with other reference GB models and "perfect" Poisson-Boltzmann based values.

  16. Approximate Reanalysis in Topology Optimization

    DEFF Research Database (Denmark)

    Amir, Oded; Bendsøe, Martin P.; Sigmund, Ole

    2009-01-01

    In the nested approach to structural optimization, most of the computational effort is invested in the solution of the finite element analysis equations. In this study, the integration of an approximate reanalysis procedure into the framework of topology optimization of continuum structures...

  17. Approximate Matching of Hierarchial Data

    DEFF Research Database (Denmark)

    Augsten, Nikolaus

    -grams of a tree are all its subtrees of a particular shape. Intuitively, two trees are similar if they have many pq-grams in common. The pq-gram distance is an efficient and effective approximation of the tree edit distance. We analyze the properties of the pq-gram distance and compare it with the tree edit...

  18. Approximation of Surfaces by Cylinders

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1998-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  19. Approximation properties of haplotype tagging

    Directory of Open Access Journals (Sweden)

    Dreiseitl Stephan

    2006-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are locations at which the genomic sequences of population members differ. Since these differences are known to follow patterns, disease association studies are facilitated by identifying SNPs that allow the unique identification of such patterns. This process, known as haplotype tagging, is formulated as a combinatorial optimization problem and analyzed in terms of complexity and approximation properties. Results It is shown that the tagging problem is NP-hard but approximable within 1 + ln((n2 - n/2 for n haplotypes but not approximable within (1 - ε ln(n/2 for any ε > 0 unless NP ⊂ DTIME(nlog log n. A simple, very easily implementable algorithm that exhibits the above upper bound on solution quality is presented. This algorithm has running time O((2m - p + 1 ≤ O(m(n2 - n/2 where p ≤ min(n, m for n haplotypes of size m. As we show that the approximation bound is asymptotically tight, the algorithm presented is optimal with respect to this asymptotic bound. Conclusion The haplotype tagging problem is hard, but approachable with a fast, practical, and surprisingly simple algorithm that cannot be significantly improved upon on a single processor machine. Hence, significant improvement in computatational efforts expended can only be expected if the computational effort is distributed and done in parallel.

  20. All-Norm Approximation Algorithms

    NARCIS (Netherlands)

    Azar, Yossi; Epstein, Leah; Richter, Yossi; Woeginger, Gerhard J.; Penttonen, Martti; Meineche Schmidt, Erik

    2002-01-01

    A major drawback in optimization problems and in particular in scheduling problems is that for every measure there may be a different optimal solution. In many cases the various measures are different ℓ p norms. We address this problem by introducing the concept of an All-norm ρ-approximation

  1. Truthful approximations to range voting

    DEFF Research Database (Denmark)

    Filos-Ratsika, Aris; Miltersen, Peter Bro

    We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare...

  2. On badly approximable complex numbers

    DEFF Research Database (Denmark)

    Esdahl-Schou, Rune; Kristensen, S.

    We show that the set of complex numbers which are badly approximable by ratios of elements of , where has maximal Hausdorff dimension. In addition, the intersection of these sets is shown to have maximal dimension. The results remain true when the sets in question are intersected with a suitably...

  3. Approximate reasoning in decision analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M M; Sanchez, E

    1982-01-01

    The volume aims to incorporate the recent advances in both theory and applications. It contains 44 articles by 74 contributors from 17 different countries. The topics considered include: membership functions; composite fuzzy relations; fuzzy logic and inference; classifications and similarity measures; expert systems and medical diagnosis; psychological measurements and human behaviour; approximate reasoning and decision analysis; and fuzzy clustering algorithms.

  4. Rational approximation of vertical segments

    Science.gov (United States)

    Salazar Celis, Oliver; Cuyt, Annie; Verdonk, Brigitte

    2007-08-01

    In many applications, observations are prone to imprecise measurements. When constructing a model based on such data, an approximation rather than an interpolation approach is needed. Very often a least squares approximation is used. Here we follow a different approach. A natural way for dealing with uncertainty in the data is by means of an uncertainty interval. We assume that the uncertainty in the independent variables is negligible and that for each observation an uncertainty interval can be given which contains the (unknown) exact value. To approximate such data we look for functions which intersect all uncertainty intervals. In the past this problem has been studied for polynomials, or more generally for functions which are linear in the unknown coefficients. Here we study the problem for a particular class of functions which are nonlinear in the unknown coefficients, namely rational functions. We show how to reduce the problem to a quadratic programming problem with a strictly convex objective function, yielding a unique rational function which intersects all uncertainty intervals and satisfies some additional properties. Compared to rational least squares approximation which reduces to a nonlinear optimization problem where the objective function may have many local minima, this makes the new approach attractive.

  5. Pythagorean Approximations and Continued Fractions

    Science.gov (United States)

    Peralta, Javier

    2008-01-01

    In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…

  6. Ultrafast Approximation for Phylogenetic Bootstrap

    NARCIS (Netherlands)

    Bui Quang Minh, [No Value; Nguyen, Thi; von Haeseler, Arndt

    Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and

  7. Approximate Coulomb effects in the three-body scattering problem

    International Nuclear Information System (INIS)

    Haftel, M.I.; Zankel, H.

    1981-01-01

    From the momentum space Faddeev equations we derive approximate expressions which describe the Coulomb-nuclear interference in the three-body elastic scattering, rearrangement, and breakup problems and apply the formalism to p-d elastic scattering. The approximations treat the Coulomb interference as mainly a two-body effect, but we allow for the charge distribution of the deuteron in the p-d calculations. Real and imaginary parts of the Coulomb correction to the elastic scattering phase shifts are described in terms of on-shell quantities only. In the case of pure Coulomb breakup we recover the distorted-wave Born approximation result. Comparing the derived approximation with the full Faddeev p-d elastic scattering calculation, which includes the Coulomb force, we obtain good qualitative agreement in S and P waves, but disagreement in repulsive higher partial waves. The on-shell approximation investigated is found to be superior to other current approximations. The calculated differential cross sections at 10 MeV raise the question of whether there is a significant Coulomb-nuclear interference at backward angles

  8. Conceptualizing Innovation in Born Global Firms

    DEFF Research Database (Denmark)

    Zijdemans, Erik; Tanev, Stoyan

    2014-01-01

    This research provides insights from recent literature on innovativeness in the environment of born globals. This article will be relevant to researchers interested in born globals and their business environments and, more specifically, the role that innovation plays in their foundation and devel...... of knowledge acquisition, networking capabilities and the lean startup approach in born global innovation. Finally, the article addresses the issue of quantifying and measuring innovativeness....

  9. Relativistic hadrodynamics with field-strength dependent coupling of the scalar fields in Hartree and Hartree-Fock approximation

    International Nuclear Information System (INIS)

    Lindner, J.

    1992-09-01

    In this thesis in the framework of our model of the field-strength dependent coupling the properties of infinitely extended, homogeneous, static, spin- and isospin-saturated nuclear matter are studied. Thereby we use the Hartree-Mean-Field and the Hartree-Fock approximation, whereby the influence of the antiparticle states in the Fermi sea is neglected. In chapter 2 the Lagrangian density basing to our model is fixed. Starting from the Walecka model we modify in the Lagrangian density the Linear coupling of the scalar field to the scalar density as follows g S φanti ψψ→g S f(φ) anti ψψ. In chapter 3 we fix three different functions f(φ). For these three cases and for the Walecka model with f(φ)=φ nuclear-matter calculations are performed. In chapter 4 for the Hartree-Fock calculations, but also very especially regarding the molecular-dynamics calculations, the properties of the Dirac spinors in the plane-wave representation are intensively studied. (orig.)

  10. Time domain analysis of thin-wire antennas over lossy ground using the reflection-coefficient approximation

    Science.gov (United States)

    FernáNdez Pantoja, M.; Yarovoy, A. G.; Rubio Bretones, A.; GonzáLez GarcíA, S.

    2009-12-01

    This paper presents a procedure to extend the methods of moments in time domain for the transient analysis of thin-wire antennas to include those cases where the antennas are located over a lossy half-space. This extended technique is based on the reflection coefficient (RC) approach, which approximates the fields incident on the ground interface as plane waves and calculates the time domain RC using the inverse Fourier transform of Fresnel equations. The implementation presented in this paper uses general expressions for the RC which extend its range of applicability to lossy grounds, and is proven to be accurate and fast for antennas located not too near to the ground. The resulting general purpose procedure, able to treat arbitrarily oriented thin-wire antennas, is appropriate for all kind of half-spaces, including lossy cases, and it has turned out to be as computationally fast solving the problem of an arbitrary ground as dealing with a perfect electric conductor ground plane. Results show a numerical validation of the method for different half-spaces, paying special attention to the influence of the antenna to ground distance in the accuracy of the results.

  11. Beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2013-01-01

    We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...... functional theory and the adiabatic connection fluctuation-dissipation theorem and contains no fitted parameters. The new kernel is shown to preserve the accurate description of dispersive interactions from RPA while significantly improving the description of short-range correlation in molecules, insulators......, and metals. For molecular atomization energies, the rALDA is a factor of 7 better than RPA and a factor of 4 better than the Perdew-Burke-Ernzerhof (PBE) functional when compared to experiments, and a factor of 3 (1.5) better than RPA (PBE) for cohesive energies of solids. For transition metals...

  12. Hydrogen: Beyond the Classic Approximation

    International Nuclear Information System (INIS)

    Scivetti, Ivan

    2003-01-01

    The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position

  13. Approximation errors during variance propagation

    International Nuclear Information System (INIS)

    Dinsmore, Stephen

    1986-01-01

    Risk and reliability analyses are often performed by constructing and quantifying large fault trees. The inputs to these models are component failure events whose probability of occuring are best represented as random variables. This paper examines the errors inherent in two approximation techniques used to calculate the top event's variance from the inputs' variance. Two sample fault trees are evaluated and several three dimensional plots illustrating the magnitude of the error over a wide range of input means and variances are given

  14. WKB approximation in atomic physics

    International Nuclear Information System (INIS)

    Karnakov, Boris Mikhailovich

    2013-01-01

    Provides extensive coverage of the Wentzel-Kramers-Brillouin approximation and its applications. Presented as a sequence of problems with highly detailed solutions. Gives a concise introduction for calculating Rydberg states, potential barriers and quasistationary systems. This book has evolved from lectures devoted to applications of the Wentzel-Kramers-Brillouin- (WKB or quasi-classical) approximation and of the method of 1/N -expansion for solving various problems in atomic and nuclear physics. The intent of this book is to help students and investigators in this field to extend their knowledge of these important calculation methods in quantum mechanics. Much material is contained herein that is not to be found elsewhere. WKB approximation, while constituting a fundamental area in atomic physics, has not been the focus of many books. A novel method has been adopted for the presentation of the subject matter, the material is presented as a succession of problems, followed by a detailed way of solving them. The methods introduced are then used to calculate Rydberg states in atomic systems and to evaluate potential barriers and quasistationary states. Finally, adiabatic transition and ionization of quantum systems are covered.

  15. Structural, electronic and magnetic properties of LaCr2Si2C: Ab initio calculation, mean field approximation and Monte-Carlo simulation

    Science.gov (United States)

    Endichi, A.; Zaari, H.; Benyoussef, A.; El Kenz, A.

    2018-06-01

    The magnetic behavior of LaCr2Si2C compound is investigated in this work, using first principle methods, Monte Carlo simulation (MCS) and mean field approximation (MFA). The structural, electronic and magnetic properties are described using ab initio method in the framework of the Generalized Gradient Approximation (GGA), and the Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method implemented in the WIEN2K packages. We have also computed the coupling terms between magnetic atoms which are used in Hamiltonian model. A theoretical study realized by mean field approximation and Monte Carlo Simulation within the Ising model is used to more understand the magnetic properties of this compound. Thereby, our results showed a ferromagnetic ordering of the Cr magnetic moments below the Curie temperature of 30 K (Tc magnetization, the energy, the specific heat and the susceptibility. This material shows the small sign of supra-conductivity; and future researches could be focused to enhance the transport and magnetic properties of this system.

  16. Bond selective chemistry beyond the adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Butler, L.J. [Univ. of Chicago, IL (United States)

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  17. Non-abelian Born-Infeld revisited

    NARCIS (Netherlands)

    Roo, M. de

    2002-01-01

    We discuss the non-abelian Born-Infeld action, including fermions, as a series in α'. We review recent work establishing the complete result to α'2, and its impact on our earlier attempts to derive the Born-Infeld action using κ-symmetry.

  18. [Climate- and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, I.C.; Schioler, K.L.; Konradsen, F.

    2009-01-01

    The predicted changes in climate have raised concerns that vector-borne diseases may emerge or expand in tempered regions. Malaria, leishmaniasis and tick-borne illnesses are discussed in terms of climate change and their endemic potential, especially in Denmark. While climate may play an important...

  19. Impact of cloud-borne aerosol representation on aerosol direct and indirect effects

    Directory of Open Access Journals (Sweden)

    S. J. Ghan

    2006-01-01

    Full Text Available Aerosol particles attached to cloud droplets are much more likely to be removed from the atmosphere and are much less efficient at scattering sunlight than if unattached. Models used to estimate direct and indirect effects of aerosols employ a variety of representations of such cloud-borne particles. Here we use a global aerosol model with a relatively complete treatment of cloud-borne particles to estimate the sensitivity of simulated aerosol, cloud and radiation fields to various approximations to the representation of cloud-borne particles. We find that neglecting transport of cloud-borne particles introduces little error, but that diagnosing cloud-borne particles produces global mean biases of 20% and local errors of up to 40% for aerosol, droplet number, and direct and indirect radiative forcing. Aerosol number, aerosol optical depth and droplet number are significantly underestimated in regions and seasons where and when wet removal is primarily by stratiform rather than convective clouds (polar regions during winter, but direct and indirect effects are less biased because of the limited sunlight there and then. A treatment that predicts the total mass concentration of cloud-borne particles for each mode yields smaller errors and runs 20% faster than the complete treatment. The errors are much smaller than current estimates of uncertainty in direct and indirect effects of aerosols, which suggests that the treatment of cloud-borne aerosol is not a significant source of uncertainty in estimates of direct and indirect effects.

  20. Second-order Born effect in coplanar doubly symmetric (e,2e) collisions for sodium

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Jiao, Liguang [Center for Theoretical Atomic and Molecular Physics, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China); Zhou, Yajun, E-mail: yajunzhou2003@yahoo.com.cn [Center for Theoretical Atomic and Molecular Physics, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China)

    2012-06-18

    The second-order distorted wave Born approximation (DWBA) method is employed to investigate the triple differential cross sections (TDCS) of coplanar doubly symmetric (e,2e) collisions for alkali target sodium at excess energies of 6–60 eV. Comparing with the first-order DWBA calculations, the inclusion of second-order Born term in the scattering amplitude improves the degree of agreement with experiments, especially for backward scattering region of TDCS. This indicates the present second-order Born term is capable to give a reasonable correction to DWBA model in studying coplanar symmetric (e,2e) problems in low and intermediate energy range. -- Highlights: ► We consider second-order Born effect in (e,2e) collisions for sodium. ► Our second-order term gives a correct description on the multi scattering process. ► Our second-order DWBA model improves the agreement between theory and experiment.

  1. Semiclassical approximations for gravity and the issue of backreaction

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    1989-01-01

    Semiclassical approximations, which are useful in the study of a quantum system interacting with a classical system, are studied and compared. In particular, we consider the Born-Oppenheimer approximation (BOA) (corresponding to G → O at fixed ℎ), the effective action approach (ℎ → O at fixed G) and their combinations. We show that in the strict BOA limit there is no backreaction on gravity. In the effective action approach one can obtain a semi-classical description of gravity, if certain stringent requirements are satisfied. In most situations of interest these conditions will not be met and the O(ℎ) contribution from gravitons will be comparable to that from quantum fields. (author)

  2. Approximate solutions to Mathieu's equation

    Science.gov (United States)

    Wilkinson, Samuel A.; Vogt, Nicolas; Golubev, Dmitry S.; Cole, Jared H.

    2018-06-01

    Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.

  3. Approximate Inference for Wireless Communications

    DEFF Research Database (Denmark)

    Hansen, Morten

    This thesis investigates signal processing techniques for wireless communication receivers. The aim is to improve the performance or reduce the computationally complexity of these, where the primary focus area is cellular systems such as Global System for Mobile communications (GSM) (and extensions...... to the optimal one, which usually requires an unacceptable high complexity. Some of the treated approximate methods are based on QL-factorization of the channel matrix. In the work presented in this thesis it is proven how the QL-factorization of frequency-selective channels asymptotically provides the minimum...

  4. Quantum tunneling beyond semiclassical approximation

    International Nuclear Information System (INIS)

    Banerjee, Rabin; Majhi, Bibhas Ranjan

    2008-01-01

    Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.

  5. Generalized Gradient Approximation Made Simple

    International Nuclear Information System (INIS)

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-01-01

    Generalized gradient approximations (GGA close-quote s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. copyright 1996 The American Physical Society

  6. Impulse approximation in solid helium

    International Nuclear Information System (INIS)

    Glyde, H.R.

    1985-01-01

    The incoherent dynamic form factor S/sub i/(Q, ω) is evaluated in solid helium for comparison with the impulse approximation (IA). The purpose is to determine the Q values for which the IA is valid for systems such a helium where the atoms interact via a potential having a steeply repulsive but not infinite hard core. For 3 He, S/sub i/(Q, ω) is evaluated from first principles, beginning with the pair potential. The density of states g(ω) is evaluated using the self-consistent phonon theory and S/sub i/(Q,ω) is expressed in terms of g(ω). For solid 4 He resonable models of g(ω) using observed input parameters are used to evaluate S/sub i/(Q,ω). In both cases S/sub i/(Q, ω) is found to approach the impulse approximation S/sub IA/(Q, ω) closely for wave vector transfers Q> or approx. =20 A -1 . The difference between S/sub i/ and S/sub IA/, which is due to final state interactions of the scattering atom with the remainder of the atoms in the solid, is also predominantly antisymmetric in (ω-ω/sub R/), where ω/sub R/ is the recoil frequency. This suggests that the symmetrization procedure proposed by Sears to eliminate final state contributions should work well in solid helium

  7. Finite approximations in fluid mechanics

    International Nuclear Information System (INIS)

    Hirschel, E.H.

    1986-01-01

    This book contains twenty papers on work which was conducted between 1983 and 1985 in the Priority Research Program ''Finite Approximations in Fluid Mechanics'' of the German Research Society (Deutsche Forschungsgemeinschaft). Scientists from numerical mathematics, fluid mechanics, and aerodynamics present their research on boundary-element methods, factorization methods, higher-order panel methods, multigrid methods for elliptical and parabolic problems, two-step schemes for the Euler equations, etc. Applications are made to channel flows, gas dynamical problems, large eddy simulation of turbulence, non-Newtonian flow, turbomachine flow, zonal solutions for viscous flow problems, etc. The contents include: multigrid methods for problems from fluid dynamics, development of a 2D-Transonic Potential Flow Solver; a boundary element spectral method for nonstationary viscous flows in 3 dimensions; navier-stokes computations of two-dimensional laminar flows in a channel with a backward facing step; calculations and experimental investigations of the laminar unsteady flow in a pipe expansion; calculation of the flow-field caused by shock wave and deflagration interaction; a multi-level discretization and solution method for potential flow problems in three dimensions; solutions of the conservation equations with the approximate factorization method; inviscid and viscous flow through rotating meridional contours; zonal solutions for viscous flow problems

  8. Plasma Physics Approximations in Ares

    International Nuclear Information System (INIS)

    Managan, R. A.

    2015-01-01

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for A α (ζ ),A β (ζ ), ζ, f(ζ ) = (1 + e -μ/θ )F 1/2 (μ/θ), F 1/2 '/F 1/2 , F c α , and F c β . In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  9. S-wave Qanti Qqanti q states in the adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Chao, K T [Oxford Univ. (UK). Dept. of Theoretical Physics

    1981-06-01

    The static potential energy for an S-wave Qanti Qqanti q system is discussed in an adiabatic (Born-Oppenheimer) approximation. Both spherical bag and arbitrary bag are considered. We concentrate on those Qanti Qqanti q states in which both (Qanti Q) and (qanti q) are colour singlets. Their energy level, wave function, and possible experimental observation are studied.

  10. Quantum Chemistry beyond Born–Oppenheimer Approximation on a Quantum Computer: A Simulated Phase Estimation Study

    Czech Academy of Sciences Publication Activity Database

    Veis, Libor; Višňák, Jakub; Nishizawa, H.; Nakai, H.; Pittner, Jiří

    2016-01-01

    Roč. 116, č. 18 (2016), s. 1328-1336 ISSN 0020-7608 R&D Projects: GA ČR GA203/08/0626 Institutional support: RVO:61388955 Keywords : Born-Oppenheimer approximation * nuclear orbital plus molecular orbital method * phase estimation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.920, year: 2016

  11. Approximating the minimum cycle mean

    Directory of Open Access Journals (Sweden)

    Krishnendu Chatterjee

    2013-07-01

    Full Text Available We consider directed graphs where each edge is labeled with an integer weight and study the fundamental algorithmic question of computing the value of a cycle with minimum mean weight. Our contributions are twofold: (1 First we show that the algorithmic question is reducible in O(n^2 time to the problem of a logarithmic number of min-plus matrix multiplications of n-by-n matrices, where n is the number of vertices of the graph. (2 Second, when the weights are nonnegative, we present the first (1 + ε-approximation algorithm for the problem and the running time of our algorithm is ilde(O(n^ω log^3(nW/ε / ε, where O(n^ω is the time required for the classic n-by-n matrix multiplication and W is the maximum value of the weights.

  12. Physical Fitness in Young Adults Born Preterm.

    Science.gov (United States)

    Tikanmäki, Marjaana; Tammelin, Tuija; Sipola-Leppänen, Marika; Kaseva, Nina; Matinolli, Hanna-Maria; Miettola, Satu; Eriksson, Johan G; Järvelin, Marjo-Riitta; Vääräsmäki, Marja; Kajantie, Eero

    2016-01-01

    Young adults born preterm have higher levels of cardiometabolic risk factors than their term-born peers. Muscular and cardiorespiratory fitness have important cardiometabolic and other health benefits. We assessed muscular, cardiorespiratory, and self-rated fitness in preterm-born young adults. We studied unimpaired participants of the ESTER (Ennenaikainen syntymä ja aikuisiän terveys [Preterm Birth and Early-Life Programming of Adult Health and Disease]) birth cohort study at age 23.3 (SD: 1.2) years: 139 born early preterm (EPT; Young adults born EPT (-0.8; 95% confidence interval: -1.5 to -0.1; adjusted for gender, age, and source cohort) and LPT (-0.8; -1.4 to -0.3) performed fewer modified push-ups than controls. Handgrip strength was 23.8 (0.9-46.8) N lower in EPT participants. Cardiorespiratory fitness, measured by submaximal step test, was similar. On a self-rated fitness scale (1-5), the EPT adults reported 0.2 (0.0-0.4) lower scores than controls. After adjustment for early-life confounders, the results remained. They attenuated after further adjustment for mediating factors. Young adults born EPT and LPT had lower muscular fitness than controls, which may predispose them to cardiometabolic and other chronic diseases. Adults born EPT also perceived themselves as less fit than controls. Copyright © 2016 by the American Academy of Pediatrics.

  13. Nonlinear approximation with dictionaries I. Direct estimates

    DEFF Research Database (Denmark)

    Gribonval, Rémi; Nielsen, Morten

    2004-01-01

    We study various approximation classes associated with m-term approximation by elements from a (possibly) redundant dictionary in a Banach space. The standard approximation class associated with the best m-term approximation is compared to new classes defined by considering m-term approximation w...

  14. Approximate cohomology in Banach algebras | Pourabbas ...

    African Journals Online (AJOL)

    We introduce the notions of approximate cohomology and approximate homotopy in Banach algebras and we study the relation between them. We show that the approximate homotopically equivalent cochain complexes give the same approximate cohomologies. As a special case, approximate Hochschild cohomology is ...

  15. [Climate- and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, I.C.; Schioler, K.L.; Konradsen, F.

    2009-01-01

    The predicted changes in climate have raised concerns that vector-borne diseases may emerge or expand in tempered regions. Malaria, leishmaniasis and tick-borne illnesses are discussed in terms of climate change and their endemic potential, especially in Denmark. While climate may play an important...... role in disease patterns, it is evident that transmission potential is governed by a complex of factors, including socio-economy, health-care capacity and ecology. In Denmark, malaria and leishmaniasis are unlikely to become public health problems, whereas the potential for tick-borne illnesses may...

  16. Evolution of the orbitals Dy-4f in the DyB2 compound using the LDA, PBE approximations, and the PBE0 hybrid functional

    Science.gov (United States)

    Rasero Causil, Diego; Ortega López, César; Espitia Rico, Miguel

    2018-04-01

    Computational calculations of total energy based on density functional theory were used to investigate the structural, electronic, and magnetic properties of the DyB2 compounds in the hexagonal structure. The calculations were carried out by means of the full-potential linearized augmented plane wave (FP-LAPW) method, employing the computational Wien2k package. The local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the electron-electron interactions. Additionally, we used the functional hybrid PBE0 for a better description the electronic and magnetic properties, because the DyB2 compound is a strongly-correlated system. We found that the calculated lattice constant agrees well with the values reported theoretically and experimentally. The density of states (DOS) calculation shows that the compound exhibits a metallic behavior and has magnetic properties, with a total magnetic moment of 5.47 μ0/cell determined mainly by the 4f states of the rare earth elements. The functional PBE0 shows a strong localization of the Dy-4f orbitals.

  17. Structure-borne noise at hotels

    Science.gov (United States)

    Wilson, George Paul; Jue, Deborah A.

    2002-11-01

    Hotels present a challenging environment for building designers to provide suitable noise and vibration isolation between very incompatible uses. While many are familiar with ways to reduce traditional sources of airborne noise and vibration, structure-borne noise and vibration are often overlooked, often with costly repercussions. Structure-borne noise can be very difficult to pinpoint, and troubleshooting the sources of the vibration can be a tedious process. Therefore, the best approach is to avoid the problem altogether during design, with attention to the building construction, potential vibration sources, building uses and equipment locations. In this paper, the relationship between structure-borne vibration and noise are reviewed, typical vibration sources discussed (e.g., aerobic rooms, laundry rooms, mechanical equipment/building services, and subway rail transit), and key details and design guidance to minimize structure-borne noise provided.

  18. Pap Tests and Foreign-Born Women

    Centers for Disease Control (CDC) Podcasts

    Foreign-born women living in the U.S. are less likely to have Pap tests to detect cervical cancer than women born in this country. The problem is worse for women from certain countries or regions. Find out why this is a disturbing trend, who these women are and why they are less likely to get a Pap test, and what CDC is doing about it.

  19. Foreign-born Peers and Academic Performance.

    Science.gov (United States)

    Conger, Dylan

    2015-04-01

    The academic performance of foreign-born youth in the United States is well studied, yet little is known about whether and how foreign-born students influence their classmates. In this article, I develop a set of expectations regarding the potential consequences of immigrant integration across schools, with a distinction between the effects of sharing schools with immigrants who are designated as English language learners (ELL) and those who are not. I then use administrative data on multiple cohorts of Florida public high school students to estimate the effect of immigrant shares on immigrant and native-born students' academic performance. The identification strategy pays careful attention to the selection problem by estimating the effect of foreign-born peers from deviations in the share foreign-born across cohorts of students attending the same school in different years. The assumption underlying this approach is that students choose schools based on the composition of the entire school, not on the composition of each entering cohort. The results of the analysis, which hold under several robustness checks, indicate that foreign-born peers (both those who are ELL and those who are non-ELL) have no effect on their high school classmates' academic performance.

  20. Estimation of error in using born scaling for collision cross sections involving muonic ions

    International Nuclear Information System (INIS)

    Stodden, C.D.; Monkhorst, H.J.; Szalewicz, K.

    1988-01-01

    A quantitative estimate is obtained for the error involved in using Born scaling to calcuated excitation and ionization cross sections for collisions between muonic ions. The impact parameter version of the Born Approximation is used to calculate cross sections and Coulomb corrections for the 1s→2s excitation of αμ in collisions with d. An error of about 50% is found around the peak of the cross section curve. The error falls to less than 5% for velocities above 2 a.u

  1. Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation

    KAUST Repository

    Li, Muxingzi

    2017-04-24

    Optical Coherence Tomography (OCT) is a coherence-gated, micrometer-resolution imaging technique that focuses a broadband near-infrared laser beam to penetrate into optical scattering media, e.g. biological tissues. The OCT resolution is split into two parts, with the axial resolution defined by half the coherence length, and the depth-dependent lateral resolution determined by the beam geometry, which is well described by a Gaussian beam model. The depth dependence of lateral resolution directly results in the defocusing effect outside the confocal region and restricts current OCT probes to small numerical aperture (NA) at the expense of lateral resolution near the focus. Another limitation on OCT development is the presence of a mixture of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous papers have adopted the first Born approximation with the assumption of small perturbation of the incident field in inhomogeneous media. The Rytov method of the same order with smooth phase perturbation assumption benefits from a wider spatial range of validity. A deconvolution method for solving the inverse problem associated with the first Rytov approximation is developed, significantly reducing the defocusing effect through depth and therefore extending the feasible range of NA.

  2. Wavefield separation by energy norm Born scattering

    KAUST Repository

    Sun, Bingbing

    2017-08-17

    In Reflection Based Waveform Inversion, the gradient is computed by cross-correlating the direct and Born scattered wavefield with their adjoints applied to the data residuals. In this case, the transmitted part of the Born scattered wavefield produces high wavenumber artifacts, which would harm the convergence of the inversion process. We propose an efficient Energy Norm Born Scattering (ENBS) to attenuate the transmission components of the Born modeling, and allow it to produce only reflections. ENBS is derived from the adjoint of the Energy Norm (inverse scattering) imaging condition and in order to get deeper insights of how this method works, we show analytically that given an image, in which reflectivity is represented by a Dirac delta function, ENBS attenuates transmission energy perfectly. We use numerical examples to demonstrate that ENBS works in both the time and the frequency domain. We also show that in reflection waveform inversion (RWI) the wave path constructed by ENBS would be cleaner and free of high wavenumber artifacts associated with conventional Born scattering.

  3. Wavefield separation by energy norm Born scattering

    KAUST Repository

    Sun, Bingbing; Alkhalifah, Tariq Ali

    2017-01-01

    In Reflection Based Waveform Inversion, the gradient is computed by cross-correlating the direct and Born scattered wavefield with their adjoints applied to the data residuals. In this case, the transmitted part of the Born scattered wavefield produces high wavenumber artifacts, which would harm the convergence of the inversion process. We propose an efficient Energy Norm Born Scattering (ENBS) to attenuate the transmission components of the Born modeling, and allow it to produce only reflections. ENBS is derived from the adjoint of the Energy Norm (inverse scattering) imaging condition and in order to get deeper insights of how this method works, we show analytically that given an image, in which reflectivity is represented by a Dirac delta function, ENBS attenuates transmission energy perfectly. We use numerical examples to demonstrate that ENBS works in both the time and the frequency domain. We also show that in reflection waveform inversion (RWI) the wave path constructed by ENBS would be cleaner and free of high wavenumber artifacts associated with conventional Born scattering.

  4. Tornado-borne missile speeds. Final report

    International Nuclear Information System (INIS)

    Simiu, E.; Cordes, M.

    1976-04-01

    An investigation of the question of tornado-borne missile speeds was carried out, with a view to identify pertinent areas of uncertainty and to estimate credible tornado-borne missile speeds - within the limitations inherent in the present state of the art. The investigation consists of two parts: (1) a study in which a rational model for the missile motion is proposed, and numerical experiments are carried out corresponding to various assumptions on the initial conditions of the missile motion, the structure of the tornado flow, and the aerodynamic properties of the missile; (2) a theoretical and experimental study of tornado-borne missile aerodynamics, conducted by Colorado State Univ. (CSU) to be covered in a separate report by CSU. In the present report, the factors affecting missile motion and their influence upon such motion are examined

  5. Dual symmetry in Born-Infeld theory

    International Nuclear Information System (INIS)

    Khademi, S; Ayoubi, A

    2008-01-01

    Born-Infeld theory is a non-linear formalism which has many applications in string and electromagnetic theories. Although, the existence of magnetic monopoles and dyons are suggested by Born-Infeld theory, but this theory is not invariant under the dual transformations. In this theory electric fields for point charged particles are not singular at origin (r = 0), but magnetic fields and vector potentials are still singular. In this paper we show that the vanishing of dual symmetry is responsible for these singularities. Furthermore, we present the dual symmetric Born-Infeld theory, by a symmetric definition of electromagnetic fields in terms of new scalar and vector potentials, as well as the ordinary ones. All singularities of vector potential and magnetic field are removed as an immediate consequence of this symmetry.

  6. [Conflicts and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian

    2010-01-01

    Based on literature and personal experiences, vector-borne diseases and conflicts are reviewed. Simple rapid diagnostic tests for three important parasitoses are available. Resort is often made to case definitions and to presumptive treatment. Resistance is an emerging problem. Vaccines are still...... not available for most diseases. Promising preventive methods, including long-lasting impregnated bed-nets and tents, are available. War has been an impetus for disclosing life-cycles of vector-borne diseases and for control methods; peace, reconciliation and poverty reduction are required to achieve lasting...

  7. Pap Tests and Foreign-Born Women

    Centers for Disease Control (CDC) Podcasts

    2007-11-26

    Foreign-born women living in the U.S. are less likely to have Pap tests to detect cervical cancer than women born in this country. The problem is worse for women from certain countries or regions. Find out why this is a disturbing trend, who these women are and why they are less likely to get a Pap test, and what CDC is doing about it.  Created: 11/26/2007 by National Breast and Cervical Cancer Early Detection Program.   Date Released: 12/7/2007.

  8. Probabilities from entanglement, Born's rule from envariance

    International Nuclear Information System (INIS)

    Zurek, W.

    2005-01-01

    Full text: I shall discuss consequences of envariance (environment - assisted invariance) symmetry exhibited by entangled quantum states. I shall focus on the implications of envariance for the understanding of the origins and nature of ignorance, and, hence, for the origin of probabilities in physics. While the derivation of the Born's rule for probabilities (pk IykI2) is the principal accomplishment of this research, I shall explore the possibility that several other symptoms of the quantum - classical transition that are a consequence of decoherence can be justified directly by envariance -- i.e., without invoking Born's rule. (author)

  9. Born's reciprocity principle in stochastic phase space

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1981-01-01

    It is shown that the application of Born's reciprocity principle to relativistic quantum mechanics in stochastic phase space (by the requirement that the proper wave functions of extended particles satisfy the Born-Lande as well as the Klein-Gordon equation) leads to the unique determination of these functions for any given value of their rms radius. The resulting particle propagators display not only Lorentz but also reciprocal invariance. This feature remains true even in the case of mass-zero particles, such as photons, when their localization is achieved by means of extended test particles whose proper wave functions obey the reciprocity principle. (author)

  10. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-01-01

    to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic

  11. Reduction of Linear Programming to Linear Approximation

    OpenAIRE

    Vaserstein, Leonid N.

    2006-01-01

    It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.

  12. Born iterative reconstruction using perturbed-phase field estimates.

    Science.gov (United States)

    Astheimer, Jeffrey P; Waag, Robert C

    2008-10-01

    A method of image reconstruction from scattering measurements for use in ultrasonic imaging is presented. The method employs distorted-wave Born iteration but does not require using a forward-problem solver or solving large systems of equations. These calculations are avoided by limiting intermediate estimates of medium variations to smooth functions in which the propagated fields can be approximated by phase perturbations derived from variations in a geometric path along rays. The reconstruction itself is formed by a modification of the filtered-backpropagation formula that includes correction terms to account for propagation through an estimated background. Numerical studies that validate the method for parameter ranges of interest in medical applications are presented. The efficiency of this method offers the possibility of real-time imaging from scattering measurements.

  13. Some relations between entropy and approximation numbers

    Institute of Scientific and Technical Information of China (English)

    郑志明

    1999-01-01

    A general result is obtained which relates the entropy numbers of compact maps on Hilbert space to its approximation numbers. Compared with previous works in this area, it is particularly convenient for dealing with the cases where the approximation numbers decay rapidly. A nice estimation between entropy and approximation numbers for noncompact maps is given.

  14. Axiomatic Characterizations of IVF Rough Approximation Operators

    Directory of Open Access Journals (Sweden)

    Guangji Yu

    2014-01-01

    Full Text Available This paper is devoted to the study of axiomatic characterizations of IVF rough approximation operators. IVF approximation spaces are investigated. The fact that different IVF operators satisfy some axioms to guarantee the existence of different types of IVF relations which produce the same operators is proved and then IVF rough approximation operators are characterized by axioms.

  15. An approximation for kanban controlled assembly systems

    NARCIS (Netherlands)

    Topan, E.; Avsar, Z.M.

    2011-01-01

    An approximation is proposed to evaluate the steady-state performance of kanban controlled two-stage assembly systems. The development of the approximation is as follows. The considered continuous-time Markov chain is aggregated keeping the model exact, and this aggregate model is approximated

  16. Operator approximant problems arising from quantum theory

    CERN Document Server

    Maher, Philip J

    2017-01-01

    This book offers an account of a number of aspects of operator theory, mainly developed since the 1980s, whose problems have their roots in quantum theory. The research presented is in non-commutative operator approximation theory or, to use Halmos' terminology, in operator approximants. Focusing on the concept of approximants, this self-contained book is suitable for graduate courses.

  17. The effects of coulomb distortion on the first, second, and third sturcture functions for (e, e'p) reactions

    International Nuclear Information System (INIS)

    Kim, K. S.; Cheoun, Myung Ki; Cheon, Il Tong; Chung, Yeun Gun

    1998-01-01

    In this paper, we study the electron Coulomb distortion effects on the first, second, and third structure functions for the exclusive reaction (e, e'p) in the quasielastic region. For a heavy target ( 208 Pb) or a light nucleus ( 16 O), these structure functions calculated using the distorted wave Born approximation for the electron Coulomb distortion have shapes similar to those calculated using the plane wave Born approximation, but the effects are changed in magnitude. We use the approximate Moeller potential which has a 'plane-wave-like' form and hence permits the separation of the cross section into five structure functions. We investigate the dependence of the azimuthal angle for the outgoing proton on each structure functions. In this calculation, we use the Dirac-Hartree single particle wave functions for the ground state and the relativistic optical wave functions for the continuum proton

  18. Analysis of corrections to the eikonal approximation

    Science.gov (United States)

    Hebborn, C.; Capel, P.

    2017-11-01

    Various corrections to the eikonal approximations are studied for two- and three-body nuclear collisions with the goal to extend the range of validity of this approximation to beam energies of 10 MeV/nucleon. Wallace's correction does not improve much the elastic-scattering cross sections obtained at the usual eikonal approximation. On the contrary, a semiclassical approximation that substitutes the impact parameter by a complex distance of closest approach computed with the projectile-target optical potential efficiently corrects the eikonal approximation. This opens the possibility to analyze data measured down to 10 MeV/nucleon within eikonal-like reaction models.

  19. [Conflicts and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian

    2010-01-01

    Based on literature and personal experiences, vector-borne diseases and conflicts are reviewed. Simple rapid diagnostic tests for three important parasitoses are available. Resort is often made to case definitions and to presumptive treatment. Resistance is an emerging problem. Vaccines are still...

  20. Scientific Discoveries the Year I Was Born

    Science.gov (United States)

    Cherif, Abour

    2012-01-01

    The author has successfully used a learning activity titled "The Year I Was Born" to motivate students to conduct historical research and present key scientific discoveries from their birth year. The activity promotes writing, helps students enhance their scientific literacy, and also improves their attitude toward the learning of science. As one…

  1. Testing Born-Infeld Electrodynamics in Waveguides

    International Nuclear Information System (INIS)

    Ferraro, Rafael

    2007-01-01

    Waveguides can be employed to test nonlinear effects in electrodynamics. We solve Born-Infeld equations for TE waves in a rectangular waveguide. We show that the energy velocity acquires a dependence on the amplitude, and harmonic components appear as a consequence of the nonlinear behavior

  2. Born with Protection against Whooping Cough

    Centers for Disease Control (CDC) Podcasts

    This podcast provides information about whooping cough, a disease that can be deadly for babies, and CDC’s recommendation that all women receive the Tdap vaccine during the third trimester of every pregnancy so their babies can be born with protection from this serious disease.

  3. Mapping moveout approximations in TI media

    KAUST Repository

    Stovas, Alexey; Alkhalifah, Tariq Ali

    2013-01-01

    Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.

  4. Analytical approximation of neutron physics data

    International Nuclear Information System (INIS)

    Badikov, S.A.; Vinogradov, V.A.; Gaj, E.V.; Rabotnov, N.S.

    1984-01-01

    The method for experimental neutron-physical data analytical approximation by rational functions based on the Pade approximation is suggested. It is shown that the existence of the Pade approximation specific properties in polar zones is an extremely favourable analytical property essentially extending the convergence range and increasing its rate as compared with polynomial approximation. The Pade approximation is the particularly natural instrument for resonance curve processing as the resonances conform to the complex poles of the approximant. But even in a general case analytical representation of the data in this form is convenient and compact. Thus representation of the data on the neutron threshold reaction cross sections (BOSPOR constant library) in the form of rational functions lead to approximately twenty fold reduction of the storaged numerical information as compared with the by-point calculation at the same accWracy

  5. A unified approach to the Darwin approximation

    International Nuclear Information System (INIS)

    Krause, Todd B.; Apte, A.; Morrison, P. J.

    2007-01-01

    There are two basic approaches to the Darwin approximation. The first involves solving the Maxwell equations in Coulomb gauge and then approximating the vector potential to remove retardation effects. The second approach approximates the Coulomb gauge equations themselves, then solves these exactly for the vector potential. There is no a priori reason that these should result in the same approximation. Here, the equivalence of these two approaches is investigated and a unified framework is provided in which to view the Darwin approximation. Darwin's original treatment is variational in nature, but subsequent applications of his ideas in the context of Vlasov's theory are not. We present here action principles for the Darwin approximation in the Vlasov context, and this serves as a consistency check on the use of the approximation in this setting

  6. Mapping moveout approximations in TI media

    KAUST Repository

    Stovas, Alexey

    2013-11-21

    Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.

  7. An Approximate Approach to Automatic Kernel Selection.

    Science.gov (United States)

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  8. Bounded-Degree Approximations of Stochastic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar

    2017-06-01

    We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identify the r-best approximations among these classes, enabling robust decision making.

  9. A S-matrix-like approximation in the charged particle scattering by the hydrogen atom

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Tort, A.C.

    1979-01-01

    The Born approximation for charged particle scattering by the hydrogen atom is unfit at low energies. From a S-matrix-like consideration on the dominance of the neighbour singularities, the calculation of other contributions is suggested. The inclusion of bound states is made, following Eden's and his colaborators' ideas, which are described by their interest and likeness with procedures in the intermediate energy physics. (Author) [pt

  10. Joint Laxity in Preschool Children Born Preterm.

    Science.gov (United States)

    Romeo, Domenico M; Velli, Chiara; Lucibello, Simona; Ferrantini, Gloria; Leo, Giuseppina; Brogna, Claudia; Cota, Francesco; Ricci, Daniela; Gallini, Francesca; Romagnoli, Costantino; Vento, Giovanni; Mercuri, Eugenio

    2018-06-01

    To evaluate the prevalence of joint laxity in children born preterm assessed in the first 2 years, the relationship between joint laxity and motor performance at preschool age, and possible changes over time in a subgroup of children followed longitudinally. The revised scale of Beighton Score was used to evaluate joint laxity in a population of 132 preschool children born preterm between 24 and 32 weeks of gestational age. All were assessed for joint laxity between 12 and 24 months of age. Children also performed the Movement Assessment Battery for Children-Second Edition between the age of 3 years and 6 months and 4 years; the age at onset of independent walking also was recorded. The total Beighton Score ranged between 0 and 8. Twenty percent of the cohort showed joint laxity. No differences related to sex or gestational age were observed. Children born preterm with joint laxity achieved later independent walking and achieved lower scores on Movement Assessment Battery for Children-Second Edition than those without joint laxity. In 76 children born preterm, an assessment for joint laxity was repeated once between 25 and 36 months and again after >36 months. No statistically significant difference was observed between the 3 assessments. The Beighton Score can be used to assess generalized joint laxity in children born preterm. As the presence of joint laxity influenced motor competences, the possibility to early identify these infants in the first 2 years is of interest to benefit from early intervention and potentially improve gross motor skills and coordination. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Born in Bradford, a cohort study of babies born in Bradford, and their parents: Protocol for the recruitment phase

    Directory of Open Access Journals (Sweden)

    Raynor Pauline

    2008-09-01

    Full Text Available Abstract Background Bradford, one of the most deprived cities in the United Kingdom, has a wide range of public health problems associated with socioeconomic deprivation, including an infant mortality rate almost double that for England and Wales. Infant mortality is highest for babies of Pakistani origin, who comprise almost half the babies born in Bradford. The Born in Bradford cohort study aims to examine environmental, psychological and genetic factors that impact on health and development perinatally, during childhood and subsequent adult life, and those that influence their parents' health and wellbeing. This protocol outlines methods for the recruitment phase of the study. Methods Most Bradford women attend for antenatal care and give birth at the Bradford Royal Infirmary, which has approximately 5,800 births per year. Women are eligible for recruitment if they plan to give birth here. Babies born from March 2007 are eligible to participate, recruitment is planned to continue until 2010. Fathers of babies recruited are invited to participate. Women are usually recruited when they attend for a routine oral glucose tolerance test at 26–28 weeks gestation. Recruitment of babies is at birth. Fathers are recruited whenever possible during the antenatal period, or soon after the birth. The aim is to recruit 10,000 women, their babies, and the babies' fathers. At recruitment women have blood samples taken, are interviewed to complete a semi-structured questionnaire, weighed, and have height, arm circumference and triceps skinfold measured. Umbilical cord blood is collected at birth. Within two weeks of birth babies have their head, arm and abdominal circumference measured, along with subscapular and triceps skinfold thickness. Fathers self-complete a questionnaire at recruitment, have height and weight measured, and provide a saliva sample. Participants are allocated a unique study number. NHS numbers will be used to facilitate record linkage

  12. Cosmological applications of Padé approximant

    International Nuclear Information System (INIS)

    Wei, Hao; Yan, Xiao-Peng; Zhou, Ya-Nan

    2014-01-01

    As is well known, in mathematics, any function could be approximated by the Padé approximant. The Padé approximant is the best approximation of a function by a rational function of given order. In fact, the Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. In the present work, we consider the Padé approximant in two issues. First, we obtain the analytical approximation of the luminosity distance for the flat XCDM model, and find that the relative error is fairly small. Second, we propose several parameterizations for the equation-of-state parameter (EoS) of dark energy based on the Padé approximant. They are well motivated from the mathematical and physical points of view. We confront these EoS parameterizations with the latest observational data, and find that they can work well. In these practices, we show that the Padé approximant could be an useful tool in cosmology, and it deserves further investigation

  13. Cosmological applications of Padé approximant

    Science.gov (United States)

    Wei, Hao; Yan, Xiao-Peng; Zhou, Ya-Nan

    2014-01-01

    As is well known, in mathematics, any function could be approximated by the Padé approximant. The Padé approximant is the best approximation of a function by a rational function of given order. In fact, the Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. In the present work, we consider the Padé approximant in two issues. First, we obtain the analytical approximation of the luminosity distance for the flat XCDM model, and find that the relative error is fairly small. Second, we propose several parameterizations for the equation-of-state parameter (EoS) of dark energy based on the Padé approximant. They are well motivated from the mathematical and physical points of view. We confront these EoS parameterizations with the latest observational data, and find that they can work well. In these practices, we show that the Padé approximant could be an useful tool in cosmology, and it deserves further investigation.

  14. Solution of the Chew-Low equations in the quadratic approximation

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Zharkov, A.Yu.

    1982-01-01

    Within the framework of the iteration scheme for constructing the general solution of the Chew-Low equations as suggested earlier the second order power contributions are found. In contrast to the linear approximation obtained before the quadratic approximation includes an infinite number of poles on the complex plane of the uniformizing variable w. It is shown that taking into account the second order corrections in the general solution allows us to select the class of solutions possessing the Born pole at w=0. The most cumbersome part of analytical computations has been carried out by computer using the algebraic system REDUCE-2

  15. Theory of magnetic neutron small-angle scattering using the dynamical theory of diffraction instead of the Born approximation. I

    International Nuclear Information System (INIS)

    Schaerpf, O.

    1978-01-01

    Two ways are given for solving the problem of the dependence of the refraction on the direction of magnetization on both sides of the refractive boundary, one applying the Halpern magnetic scattering vector, the other applying the dynamical theory of diffraction. They lead to different results. Experimental investigation of refraction by magnetic boundaries shows no dependence of the angle of deflection on the relative angles of magnetization in adjacent domains. This behaviour is only described correctly by the dynamical theory, which far from Laue reflections leads to a treatment by the Schoedinger equation with a spin-dependent potential dependent on the average continuous homogenous magnetic induction, both for the law of refraction and for the precession of the spin. The results of this treatment are discussed as a consequence of the behaviour of the spin of the neutrons. This gives some insight about how and why, with refraction, the intensities of the direct and deflected beams depend on the magnetization directions in adjacent domains. The dynamical theory also shows that the Halpern magnetic scattering vector applies only with Laue or Bragg reflections and not with transmission far from those reflections. (Auth.)

  16. Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Till; Uwer, Peter [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstraße 15, 12489 Berlin (Germany)

    2015-09-14

    In this article we illustrate how event weights for jet events can be calculated efficiently at next-to-leading order (NLO) accuracy in QCD. This is a crucial prerequisite for the application of the Matrix Element Method in NLO. We modify the recombination procedure used in jet algorithms, to allow a factorisation of the phase space for the real corrections into resolved and unresolved regions. Using an appropriate infrared regulator the latter can be integrated numerically. As illustration, we reproduce differential distributions at NLO for two sample processes. As further application and proof of concept, we apply the Matrix Element Method in NLO accuracy to the mass determination of top quarks produced in e{sup +}e{sup −} annihilation. This analysis is relevant for a future Linear Collider. We observe a significant shift in the extracted mass depending on whether the Matrix Element Method is used in leading or next-to-leading order.

  17. Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy

    International Nuclear Information System (INIS)

    Martini, Till; Uwer, Peter

    2015-01-01

    In this article we illustrate how event weights for jet events can be calculated efficiently at next-to-leading order (NLO) accuracy in QCD. This is a crucial prerequisite for the application of the Matrix Element Method in NLO. We modify the recombination procedure used in jet algorithms, to allow a factorisation of the phase space for the real corrections into resolved and unresolved regions. Using an appropriate infrared regulator the latter can be integrated numerically. As illustration, we reproduce differential distributions at NLO for two sample processes. As further application and proof of concept, we apply the Matrix Element Method in NLO accuracy to the mass determination of top quarks produced in e"+e"− annihilation. This analysis is relevant for a future Linear Collider. We observe a significant shift in the extracted mass depending on whether the Matrix Element Method is used in leading or next-to-leading order.

  18. A comparison of efficient methods for the computation of Born gluon amplitudes

    International Nuclear Information System (INIS)

    Dinsdale, Michael; Ternick, Marko; Weinzierl, Stefan

    2006-01-01

    We compare four different methods for the numerical computation of the pure gluonic amplitudes in the Born approximation. We are in particular interested in the efficiency of the various methods as the number n of the external particles increases. In addition we investigate the numerical accuracy in critical phase space regions. The methods considered are based on (i) Berends-Giele recurrence relations, (ii) scalar diagrams, (iii) MHV vertices and (iv) BCF recursion relations

  19. A forward model for ground penetrating radar imaging of buried perfect electric conductors within the physical optics approximation

    DEFF Research Database (Denmark)

    Polat, Burak; Meincke, Peter

    2004-01-01

    A forward model for ground penetrating radar imaging of buried 3-D perfect electric conductors is addressed within the framework of diffraction tomography. The similarity of the present forward model derived within the physical optics approximation with that derived within the first Born...

  20. Multilevel Monte Carlo in Approximate Bayesian Computation

    KAUST Repository

    Jasra, Ajay

    2017-02-13

    In the following article we consider approximate Bayesian computation (ABC) inference. We introduce a method for numerically approximating ABC posteriors using the multilevel Monte Carlo (MLMC). A sequential Monte Carlo version of the approach is developed and it is shown under some assumptions that for a given level of mean square error, this method for ABC has a lower cost than i.i.d. sampling from the most accurate ABC approximation. Several numerical examples are given.

  1. Uniform analytic approximation of Wigner rotation matrices

    Science.gov (United States)

    Hoffmann, Scott E.

    2018-02-01

    We derive the leading asymptotic approximation, for low angle θ, of the Wigner rotation matrix elements, dm1m2 j(θ ) , uniform in j, m1, and m2. The result is in terms of a Bessel function of integer order. We numerically investigate the error for a variety of cases and find that the approximation can be useful over a significant range of angles. This approximation has application in the partial wave analysis of wavepacket scattering.

  2. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  3. Bent approximations to synchrotron radiation optics

    International Nuclear Information System (INIS)

    Heald, S.

    1981-01-01

    Ideal optical elements can be approximated by bending flats or cylinders. This paper considers the applications of these approximate optics to synchrotron radiation. Analytic and raytracing studies are used to compare their optical performance with the corresponding ideal elements. It is found that for many applications the performance is adequate, with the additional advantages of lower cost and greater flexibility. Particular emphasis is placed on obtaining the practical limitations on the use of the approximate elements in typical beamline configurations. Also considered are the possibilities for approximating very long length mirrors using segmented mirrors

  4. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  5. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  6. APPROXIMATIONS TO PERFORMANCE MEASURES IN QUEUING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kambo, N. S.

    2012-11-01

    Full Text Available Approximations to various performance measures in queuing systems have received considerable attention because these measures have wide applicability. In this paper we propose two methods to approximate the queuing characteristics of a GI/M/1 system. The first method is non-parametric in nature, using only the first three moments of the arrival distribution. The second method treads the known path of approximating the arrival distribution by a mixture of two exponential distributions by matching the first three moments. Numerical examples and optimal analysis of performance measures of GI/M/1 queues are provided to illustrate the efficacy of the methods, and are compared with benchmark approximations.

  7. Differences in the self-reported racism experiences of US-born and foreign-born Black pregnant women

    OpenAIRE

    Dominguez, Tyan Parker; Strong, Emily Ficklin; Krieger, Nancy; Gillman, Matthew W.; Rich-Edwards, Janet W.

    2009-01-01

    Differential exposure to minority status stressors may help explain differences in United States (US)-born and foreign-born Black women’s birth outcomes. We explored self-reports of racism recorded in a survey of 185 US-born and 114 foreign-born Black pregnant women enrolled in Project Viva, a prospective cohort study of pregnant women in Boston, Massachusetts, USA. Self-reported prevalence of personal racism and group racism was significantly higher among US-born than foreign-born Black preg...

  8. The form of electron-atom excitation amplitudes at high momentum transfers in the Faddeev-Watson approximation

    International Nuclear Information System (INIS)

    Catalan, G.; Roberts, M.J.

    1979-01-01

    A form of the off-shell Coulomb T matrix, which has a well defined on-shell limit, is used in the Faddeev-Watson multiple-scattering expansion for a direct three-body collision process. Using the excitation of atomic hydrogen by electron impact as an example, approximations to the second-order terms, which are valid for high momentum transfers of the incident electron, are derived. It is shown how the resulting asymptotic behaviour of the second-order Faddeev-Watson approximation is related to the high momentum transfer limit of the second Born approximation. The results are generalised to the excitation of more complex atoms. The asymptotic forms of the Faddeev-Watson and Born approximations are compared with other theories and with measurements of differential cross sections and angular correlation parameters for the excitation of H(2p) and He(2 1 P). The results indicate that the Faddeev-Watson approximation converges more rapidly at high momentum transfers than does the Born approximation. (author)

  9. VECTOR BORNE TRANSMISSIBLE ZOONOSES IN MONTENEGRO

    Directory of Open Access Journals (Sweden)

    Gordana Mijovic

    2012-02-01

    Full Text Available Vector borne transmissible zoonoses are becoming more and more important in the group of emerging and re-emerging infections. We present the characteristics and actuality of this group of infectious diseases in Montenegro for the period 1998 - 2011. In examinations, standard epidemiological, clinical, serological, pathohistological diagnostic methods are employed. Natural conditions in Montenegro make it an important endemic area for more vector borne transmissible zoonoses. The changes of ecological characteristics, the vectors and infective agents, present the accidence for expansion and increasing importance of these infections in national pathology. According to the fact that it is an international port of nautical, continental and air traffic, Montenegro has responsibility for control and management of diseases belonging to the group of the travel and tropical diseases.

  10. On generalized Born-Infeld electrodynamics

    International Nuclear Information System (INIS)

    Kruglov, S I

    2010-01-01

    The generalized Born-Infeld electrodynamics with two parameters is investigated. In this model the propagation of a linearly polarized laser beam in the external transverse magnetic field is considered. It was shown that there is the effect of vacuum birefringence, and we evaluate induced ellipticity. The upper bounds on the combination of parameters introduced from the experimental data of BRST and PVLAS Collaborations were obtained. When two parameters are equal to each other, we arrive at Born-Infeld electrodynamics and the effect of vacuum birefringence vanishes. We find the canonical and symmetrical Belinfante energy-momentum tensors. The trace of the energy-momentum tensor is not zero and the dilatation symmetry is broken. The four-divergence of the dilatation current is equal to the trace of the Belinfante energy-momentum tensor and is proportional to the parameter (with the dimension of the field strength) of the model. The dual symmetry is also broken in the model considered.

  11. Geometrical dynamics of Born-Infeld objects

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Col. Villas San Sebastian, Colima (Mexico); Rojas, Efrain [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2007-03-21

    We present a geometrically inspired study of the dynamics of Dp-branes. We focus on the usual non-polynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1-brane immersed in a AdS{sub 3} x S{sup 3} background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation.

  12. Geometrical dynamics of Born-Infeld objects

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2007-01-01

    We present a geometrically inspired study of the dynamics of Dp-branes. We focus on the usual non-polynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1-brane immersed in a AdS 3 x S 3 background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation

  13. serological detection of seed borne viruses in cowpea regenerated

    African Journals Online (AJOL)

    Administrator

    out to detect the presence of seed borne viruses in fourteen cowpea accessions ... were serologically indexed to detect any seed-borne viruses after acclimatisation to screen house conditions. The .... showed external virus-like symptoms were.

  14. Born-Infeld gravity in Weitzenboeck spacetime

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Fiorini, Franco

    2008-01-01

    Using the teleparallel equivalent of general relativity formulated in Weitzenboeck spacetime, we thoroughly explore a kind of Born-Infeld regular gravity leading to second order field equations for the vielbein components. We explicitly solve the equations of motion for two examples: the extended Banados-Teitelboim-Zanelli black hole, which exists even if the cosmological constant is positive, and a cosmological model with matter, where the scale factor is well behaved, thus giving a singularity-free solution.

  15. Mosquito-borne viruses in Europe

    Czech Academy of Sciences Publication Activity Database

    Hubálek, Zdeněk

    2008-01-01

    Roč. 103, Suppl. 1 (2008), S29-S43 ISSN 0932-0113. [Vector-borne diseases: impact of climate change on vectors and rodent reservoirs. Berlin, 27.09.2007-28.09.2007] R&D Projects: GA AV ČR IAA600930611 Institutional research plan: CEZ:AV0Z60930519 Keywords : moboviruses * epidemiology Subject RIV: EE - Microbiology, Virology Impact factor: 1.473, year: 2008

  16. Leak detection using structure-borne noise

    Science.gov (United States)

    Holland, Stephen D. (Inventor); Chimenti, Dale E. (Inventor); Roberts, Ronald A. (Inventor)

    2010-01-01

    A method for detection and location of air leaks in a pressure vessel, such as a spacecraft, includes sensing structure-borne ultrasound waveforms associated with turbulence caused by a leak from a plurality of sensors and cross correlating the waveforms to determine existence and location of the leak. Different configurations of sensors and corresponding methods can be used. An apparatus for performing the methods is also provided.

  17. Dynamics of Born-Infeld membranes

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, R [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, A [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Col. Villas San Sebastian, Colima (Mexico); Rojas, E [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2007-11-15

    We present a geometrical inspired study of the dynamics of Dp-branes. We focus on the usual nonpolynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent.

  18. Dynamics of Born-Infeld membranes

    International Nuclear Information System (INIS)

    Cordero, R; Molgado, A; Rojas, E

    2007-01-01

    We present a geometrical inspired study of the dynamics of Dp-branes. We focus on the usual nonpolynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent

  19. Development of transition edge superconducting bolometers for the SAFARI Far-Infrared spectrometer on the SPICA space-borne telescope

    NARCIS (Netherlands)

    Mauskopf, P.; Morozov, D.; Glowacka, D.; Goldie, D.; Withington, S.; Bruijn, M.; De Korte, P.; Hoevers, H.; Ridder, M.; Van der Kuur, J.; Gao, J.R.

    2008-01-01

    We describe the optimization of transition edge superconducting (TES) detectors for use in a far-infrared (FIR) Fourier transform spectrometer (FTS) mounted on a cryogenically cooled space-borne telescope (e.g. SPICA). The required noise equivalent power (NEP) of the detectors is approximately 10?19

  20. Spectrophotometric determination of substrate-borne polyacrylamide.

    Science.gov (United States)

    Lu, Jianhang; Wu, Laosheng

    2002-08-28

    Polyacrylamides (PAMs) have wide application in many industries and in agriculture. Scientific research and industrial applications manifested a need for a method that can quantify substrate-borne PAM. The N-bromination method (a PAM analytical technique based on N-bromination of amide groups and spectrophotometric determination of the formed starch-triiodide complex), which was originally developed for determining PAM in aqueous solutions, was modified to quantify substrate-borne PAM. In the modified method, the quantity of substrate-borne PAM was converted to a concentration of starch-triiodide complex in aqueous solution that was then measured by spectrophotometry. The method sensitivity varied with substrates due to sorption of reagents and reaction intermediates on the substrates. Therefore, separate calibration for each substrate was required. Results from PAM samples in sand, cellulose, organic matter burnt soils, and clay minerals showed that this method had good accuracy and reproducibility. The PAM recoveries ranged from 95.8% to 103.7%, and the relative standard deviations (n = 4) were application and facilitating PAM-related research.