WorldWideScience

Sample records for plane wave limit

  1. Homogeneity and plane-wave limits

    CERN Document Server

    Figueroa-O'Farrill, J M; Philip, S; Farrill, Jos\\'e Figueroa-O'; Meessen, Patrick; Philip, Simon

    2005-01-01

    We explore the plane-wave limit of homogeneous spacetimes. For plane-wave limits along homogeneous geodesics the limit is known to be homogeneous and we exhibit the limiting metric in terms of Lie algebraic data. This simplifies many calculations and we illustrate this with several examples. We also investigate the behaviour of (reductive) homogeneous structures under the plane-wave limit.

  2. Conceptual Design of Wave Plane

    DEFF Research Database (Denmark)

    Frigaard, Peter; Trewers, Andrew; Kofoed, Jens Peter;

    The Wave Plane is a patented Wave Energy device of the overtopping type, designed to capture potential as well as kinetic energy. This is as such different to other overtopping devices, who usually only focus on potential energy. If Wave Plane A/S can deliver the turbine technology to utilize both...

  3. Convergence of many-body wavefunction expansions using a plane wave basis in the thermodynamic limit

    CERN Document Server

    Shepherd, James J

    2016-01-01

    Basis set incompleteness error and finite size error can manifest concurrently in systems for which the two effects are phenomenologically well-separated in length scale. When this is true, we need not necessarily remove the two sources of error simultaneously. Instead, the errors can be found and remedied in different parts of the basis set. This would be of great benefit to a method such as coupled cluster theory since the combined cost of $n_{occ}^6 n_{virt}^4$ could be separated into $n_{occ}^6$ and $n_{virt}^4$ costs with smaller prefactors. In this Communication, we present analysis on a data set due to Baardsen and coworkers, containing coupled cluster doubles energies for the 2DEG for $r_s=$ 0.5, 1.0 and 2.0 a.u.~at a wide range of basis set sizes and particle numbers. In obtaining complete basis set limit thermodynamic limit results, we find that within a small and removable error the above assertion is correct for this simple system. This approach allows for the combination of methods which separate...

  4. High-resolution diffraction microscopy using the plane-wave field of a nearly diffraction limited focused x-ray beam

    OpenAIRE

    Takahashi, Yukio; Nishino, Yoshinori; Tsutsumi, Ryosuke; Kubo, Hideto; Furukawa, Hayato; Mimura, Hidekazu; MATSUYAMA, Satoshi; Zettsu, Nobuyuki; Matsubara, Eiichiro; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2009-01-01

    X-ray waves in the center of the beam waist of nearly diffraction limited focused x-ray beams can be considered to have amplitude and phase that are both almost uniform, i.e., they are x-ray plane waves. Here we report the results of an experimental demonstration of high-resolution diffraction microscopy using the x-ray plane wave of the synchrotron x-ray beam focused using Kirkpatrik-Baez mirrors. A silver nanocube with an edge length of ∼100 nm is illuminated with the x-ray beam focused to ...

  5. Conformal boundary and geodesics for AdS sub 5 xS sup 5 and the plane wave: Their approach in the Penrose limit

    CERN Document Server

    Dorn, H

    2003-01-01

    Projecting on a suitable subset of coordinates, a picture is constructed in which the conformal boundary of AdS sub 5 xS sup 5 and that of the plane wave resulting in the Penrose limit are located at the same line. In a second line of arguments all AdS sub 5 xS sup 5 and plane wave geodesics are constructed in their integrated form. Performing the Penrose limit, the approach of null geodesics reaching the conformal boundary of AdS sub 5 xS sup 5 to that of the plane wave is studied in detail. At each point these null geodesics of AdS sub 5 xS sup 5 form a cone which degenerates in the limit. (author)

  6. Communication: Convergence of many-body wave-function expansions using a plane-wave basis in the thermodynamic limit

    Science.gov (United States)

    Shepherd, James J.

    2016-07-01

    Basis set incompleteness error and finite size error can manifest concurrently in systems for which the two effects are phenomenologically well-separated in length scale. When this is true, we need not necessarily remove the two sources of error simultaneously. Instead, the errors can be found and remedied in different parts of the basis set. This would be of great benefit to a method such as coupled cluster theory since the combined cost of nocc 6 nvirt 4 could be separated into nocc 6 and nvirt 4 costs with smaller prefactors. In this Communication, we present analysis on a data set due to Baardsen and co-workers, containing 2D uniform electron gas coupled cluster doubles energies for rs = 0.5, 1.0, and 2.0 a.u. at a wide range of basis set sizes and particle numbers. In obtaining complete basis set limit thermodynamic limit results, we find that within a small and removable error the above assertion is correct for this simple system. We then use this method to obtain similar results for the 3D electron gas at rs = 1.0, 2.0, and 5.0 a.u. and make comparison to the Ceperley-Alder quantum Monte Carlo results. This approach allows for the combination of methods which separately address finite size effects and basis set incompleteness error.

  7. Plane waves as tractor beams

    CERN Document Server

    Forgács, Péter; Romańczukiewicz, Tomasz

    2013-01-01

    It is shown that in a large class of systems plane waves can act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode having a larger wave number, in which case excess momentum is created behind the scatterer. Such a tractor beam or negative radiation pressure effect arises naturally in systems where the coupling between the scattering channels is due to Aharonov-Bohm (AB) gauge potentials. It is demonstrated that this effect is also present if the AB potential is an induced, ("artificial") gauge potential such as the one found in J. March-Russell, J. Preskill, F. Wilczek, Phys. Rev. Lett. 58 2567 (1992).

  8. Singularities from colliding plane gravitational waves

    Science.gov (United States)

    Tipler, Frank J.

    1980-12-01

    A simple geometrical argument is given which shows that a collision between two plane gravitational waves must result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily small energy density.

  9. Singularities from colliding plane gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Tipler, F.J.

    1980-12-15

    A simple geometrical argument is given which shows that a collision between two plane gravitational waves must result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily small energy density.

  10. Free string evolution across plane wave singularities

    CERN Document Server

    Craps, Ben; Evnin, Oleg

    2009-01-01

    In these proceedings, we summarize our studies of free string propagation in (near-)singular scale-invariant plane wave geometries. We analyze the singular limit of the evolution for the center-of-mass motion and all excited string modes. The requirement that the entire excitation energy of the string should be finite excludes consistent propagation across the singularity, in case no dimensionful scales are introduced at the singular locus (in an otherwise scale-invariant space-time).

  11. Blackfolds, Plane Waves and Minimal Surfaces

    CERN Document Server

    Armas, Jay

    2015-01-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid...

  12. Blackfolds, plane waves and minimal surfaces

    Science.gov (United States)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  13. Blackfolds, plane waves and minimal surfaces

    OpenAIRE

    Armas, Jay; Blau, Matthias

    2015-01-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and comp...

  14. 3D plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin

    2014-08-05

    A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition geometries, a cylindrical-wave encoding is adopted for the narrow azimuth streamer data. To account for the mispositioning of reflectors due to errors in the velocity model, a regularized LSM is devised so that each plane-wave or cylindrical-wave gather gives rise to an individual migration image, and a regularization term is included to encourage the similarities between the migration images of similar encoding schemes. Both synthetic and field results show that: 1) plane-wave or cylindrical-wave encoding LSM can achieve both computational and IO saving, compared to shot-domain LSM, however, plane-wave LSM is still about 5 times more expensive than plane-wave migration; 2) the regularized LSM is more robust compared to LSM with one reflectivity model common for all the plane-wave or cylindrical-wave gathers.

  15. Causal inheritence in plane wave quotients

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2003-11-24

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality.

  16. Horizons and plane waves: A review

    CERN Document Server

    Hubeny, V E; Hubeny, Veronika E.; Rangamani, Mukund

    2003-01-01

    We review the attempts to construct black hole/string solutions in asymptotically plane wave spacetimes. First, we demonstrate that geometries admitting a covariantly constant null Killing vector cannot admit event horizons, which implies that pp-waves can't describe black holes. However, relaxing the symmetry requirements allows us to generate solutions which do possess regular event horizons while retaining the requisite asymptotic properties. In particular, we present two solution generating techniques and use them to construct asymptotically plane wave black string/brane geometries.

  17. Exact plane gravitational waves and electromagnetic fields

    OpenAIRE

    Enrico MontanariUniversity of Ferrara and INFN sezione di Ferrara, Italy; Mirco Calura(University of Ferrara and INFN sezione di Ferrara, Italy)

    2000-01-01

    The behaviour of a "test" electromagnetic field in the background of an exact gravitational plane wave is investigated in the framework of Einstein's general relativity. We have expressed the general solution to the de Rham equations as a Fourier-like integral. In the general case we have reduced the problem to a set of ordinary differential equations and have explicitly written the solution in the case of linear polarization of the gravitational wave. We have expressed our ...

  18. Plane-wave scattering from half-wave dipole arrays

    DEFF Research Database (Denmark)

    Jensen, Niels E.

    1970-01-01

    A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays.......A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays....

  19. Aperture domain model image reconstruction (ADMIRE) with plane wave synthesis

    Science.gov (United States)

    Dei, Kazuyuki; Tierney, Jaime; Byram, Brett

    2017-03-01

    In our previous studies, we demonstrated that our aperture domain model-based clutter suppression algorithm improved image quality of in vivo B-mode data obtained from focused transmit beam sequences. Our approach suppresses off-axis clutter and reverberation and tackles limitations of related algorithms because it preserves RF channel signals and speckle statistics. We call the algorithm aperture domain model image reconstruction (ADMIRE). We previously focused on reverberation suppression, but ADMIRE is also effective at suppressing off-axis clutter. We are interested in how ADMIRE performs on plane wave sequences and the impact of AD- MIRE applied before and after synthetic beamforming of steered plane wave sequences. We employed simulated phantoms using Field II and tissue-mimicking phantoms to evaluate ADMIRE applied to plane wave sequencing. We generated images acquired from plane waves with and without synthetic aperture synthesis and measured contrast and contrast-to-noise ratio (CNR). For simulated cyst images formed from single plane waves, the contrast for delay-and-sum (DAS) and ADMIRE are 15.64 dB and 28.34 dB, respectively, while the CNR are 1.76 dB and 3.90 dB, respectively. Based on these findings, ADMIRE improves plane wave image quality. We also applied ADMIRE to resolution phantoms having a point target at 3 cm depth on-axis, simulating the point spread functions from data obtained from 1 and 75 steered plane waves, along with linear scan at focus of 3 and 4 cm depth. We then examined the outcome of applying ADMIRE before and after synthetic aperture processing. Finally, we applied this to an in vivo carotid artery.

  20. Thermally-induced vacuum instability in a single plane wave

    CERN Document Server

    King, B; Di Piazza, A

    2012-01-01

    Ever since Schwinger published his influential paper [J. Schwinger, Phys. Rev. \\textbf{82}, 664 (1951)], it has been unanimously accepted that the vacuum is stable in the presence of an electromagnetic plane wave. However, we advance an analysis that indicates this statement is not rigorously valid in a real situation, where thermal effects are present. We show that the thermal vacuum, in the presence of a single plane-wave field, even in the limit of zero frequency (a constant crossed field), decays into electron-positron pairs. Interestingly, the pair-production rate is found to depend nonperturbatively on both the amplitude of the constant crossed field and on the temperature.

  1. Supersymmetry and Branes in M-theory Plane-waves

    CERN Document Server

    Kim, N; Kim, Nakwoo; Yee, Jung-Tay

    2003-01-01

    We study brane embeddings in M-theory plane-waves and their supersymmetry. The relation with branes in AdS backgrounds via the Penrose limit is also explored. Longitudinal planar branes are originated from AdS branes while giant gravitons of AdS spaces become spherical branes which are realized as fuzzy spheres in the massive matrix theory.

  2. Exact plane gravitational waves and electromagnetic fields

    CERN Document Server

    Montanari, E; Montanari, Enrico; Calura, Mirco

    2000-01-01

    The behaviour of a "test" electromagnetic field in the background of an exactgravitational plane wave is investigated in the framework of Einstein's generalrelativity. We have expressed the general solution to the de Rham equations asa Fourier-like integral. In the general case we have reduced the problem to aset of ordinary differential equations and have explicitly written the solutionin the case of linear polarization of the gravitational wave. We have expressedour results by means of Fermi Normal Coordinates (FNC), which define the properreference frame of the laboratory. Moreover we have provided some "gedankenexperiments", showing that an external gravitational wave induces measurableeffects of non tidal nature via electromagnetic interaction. Consequently it isnot possible to eliminate gravitational effects on electromagnetic field, evenin an arbitrarily small spatial region around an observer freely falling in thefield of a gravitational wave. This is opposite to the case of mechanicalinteraction invo...

  3. Optics in a nonlinear gravitational plane wave

    Science.gov (United States)

    Harte, Abraham I.

    2015-09-01

    Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.

  4. The memory effect for plane gravitational waves

    Science.gov (United States)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2017-09-01

    We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einstein's vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by observing the motion of freely falling particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent displacement claimed by Zel'dovich and Polnarev. A non-vanishing asymptotic relative velocity might be used to detect gravitational waves through the ;velocity memory effect;, considered by Braginsky, Thorne, Grishchuk, and Polnarev.

  5. Generalized plane gravitational waves of non-symmetric unified field theories in plane symmetry

    Directory of Open Access Journals (Sweden)

    Sanjiv R. Bhoyar

    2012-12-01

    Full Text Available In this paper we investigated the plane wave solutions of both the weak and strong non-symmetric unified field equations of Einstein and Bonner in a generalized plane symmetric space-time in the sense of Taub [Ann. Math. 53, 472 (1951] for plane gravitational waves. We show that the plane wave solutions of Einstein and Bonner field equations exist in plane symmetry.

  6. Colliding Plane Waves in String Theory

    CERN Document Server

    Chen, B; Furuta, K; Lin, F L; Chen, Bin; Chu, Chong-Sun; Furuta, Ko; Lin, Feng-Li

    2004-01-01

    We construct colliding plane wave solutions in higher dimensional gravity theory with dilaton and higher form flux, which appears naturally in the low energy theory of string theory. Especially, the role of the junction condition in constructing the solutions is emphasized. Our results not only include the previously known CPW solutions, but also provide a wide class of new solutions that is not known in the literature before. We find that late time curvature singularity is always developed for the solutions we obtained in this paper. This supports the generalized version of Tipler's theorem in higher dimensional supergravity.

  7. On General Plane Fronted Waves. Geodesics

    CERN Document Server

    Candela, A M; Sánchez, M; Sanchez, Miguel

    2003-01-01

    A general class of Lorentzian metrics, $M_0 x R^2$, $ds^2 = + 2 du dv + H(x,u) du^2$, with $(M_0, $ any Riemannian manifold, is introduced in order to generalize classical exact plane fronted waves. Here, we start a systematic study of their main geodesic properties: geodesic completeness, geodesic connectedness and multiplicity, causal character of connecting geodesics. These results are independent of the possibility of a full integration of geodesic equations. Variational and geometrical techniques are applied systematically. In particular, we prove that the asymptotic behavior of $H(x,u)$ with $x$ at infinity determines many properties of geodesics. Essentially, a subquadratic growth of $H$ ensures geodesic completeness and connectedness, while the critical situation appears when $H(x,u)$ behaves in some direction as $|x|^2$, as in the classical model of exact gravitational waves

  8. Gravitational scattering of zero-rest-mass plane waves

    Science.gov (United States)

    De Logi, W. K.; Kovacs, S. J., Jr.

    1977-01-01

    The Feyman-diagram technique is used to calculate the differential cross sections for the scattering of zero-rest-mass plane waves of spin 0, 1, and 2 by linearized Schwarzschild and Kerr geometries in the long-wavelength weak-field limit. It is found that the polarization of right (or left) circularly polarized electromagnetic waves is unaffected by the scattering process (i.e., helicity is conserved) and that the two helicity (polarization) states of the photon are scattered differently by the Kerr geometry. This coupling between the photon helicity and the angular momentum of the scatterer also leads to a partial polarization of unpolarized incident light. For gravitational waves, on the other hand, there is neither helicity conservation nor helicity-dependent scattering; the angular momentum of the scatterer has no polarizing effect on incident unpolarized gravitational waves.

  9. On the plane-wave cubic vertex

    CERN Document Server

    Lucietti, J; Sinha, A K; Lucietti, James; Schäfer-Nameki, Sakura; Sinha, Aninda

    2004-01-01

    The exact bosonic Neumann matrices of the cubic vertex in plane-wave light-cone string field theory are derived using the contour integration techniques developed in our earlier paper. This simplifies the original derivation of the vertex. In particular, the Neumann matrices are written in terms of \\mu-deformed Gamma-functions, thus casting them into a form that elegantly generalizes the well-known flat-space solution. The asymptotics of the \\mu-deformed Gamma-functions allow one to determine the large-\\mu behaviour of the Neumann matrices including exponential corrections. We provide an explicit expression for the first exponential correction and make a conjecture for the subsequent exponential correction terms.

  10. The plane wave spectrum representation of electromagnetic fields

    CERN Document Server

    Clemmow, P C

    1966-01-01

    The Plane Wave Spectrum Representation of Electromagnetic Fields presents the theory of the electromagnetic field with emphasis to the plane wave. This book explains how fundamental electromagnetic fields can be represented by the superstition of plane waves traveling in different directions. Organized into two parts encompassing eight chapters, this book starts with an overview of the methods whereby plane wave spectrum representation can be used in attacking different characteristic problems belonging to the theories of radiation, diffraction, and propagation. This book then discusses the co

  11. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei

    2013-06-03

    A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.

  12. Plane waves in a thermally conducting viscous liquid

    Indian Academy of Sciences (India)

    Baljeet Singh

    2004-02-01

    The aim of this paper is to investigate plane waves in a thermally conducting viscous liquid half-space with thermal relaxation times. There exist three basic waves, namely; thermal wave, longitudinal wave and transverse wave in a thermally conducting viscous liquid half-space. Reflection of plane waves from the free surface of a thermally conducting viscous liquid half-space is studied. The results are obtained in terms of amplitude ratios and are compared with those without viscosity and thermal disturbances.

  13. Loads and responses for planing craft in waves

    OpenAIRE

    2004-01-01

    Experimental and numerical analysis of loads and responses for planing craft in waves is considered. Extensive experiments have been performed on a planing craft, in full-scale as well as in model scale. The test set-ups and significant results are reviewed. The required resolution in experiments on planing craft in waves, concerning sampling frequencies, filtering and pressure transducer areas, is investigated. The aspects of peak identification in transient signals, fitting of analytical cu...

  14. Plane wave method for elastic wave scattering by a heterogeneous fracture

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Seiji; Nihei, Kurt T.; Myer, Larry R.

    2003-02-21

    A plane-wave method for computing the three-dimensional scattering of propagating elastic waves by a planar fracture with heterogeneous fracture compliance distribution is presented. This method is based upon the spatial Fourier transform of the seismic displacement-discontinuity (SDD) boundary conditions (also called linear slip interface conditions), and therefore, called the wave-number-domain SDD method (wd-SDD method). The resulting boundary conditions explicitly show the coupling between plane waves with an incident wave number component (specular component) and scattered waves which do not follow Snell's law (nonspecular components) if the fracture is viewed as a planar boundary. For a spatially periodic fracture compliance distribution, these boundary conditions can be cast into a linear system of equations that can be solved for the amplitudes of individual wave modes and wave numbers. We demonstrate the developed technique for a simulated fracture with a stochastic (correlated) surface compliance distribution. Low- and high-frequency solutions of the method are also compared to the predictions by low-order Born series in the weak and strong scattering limit.

  15. On the Hagedorn Behaviour of Singular Scale-Invariant Plane Waves

    CERN Document Server

    Blau, Matthias; O'Loughlin, M; Blau, Matthias; Borunda, Monica; Loughlin, Martin O'

    2005-01-01

    As a step towards understanding the properties of string theory in time-dependent and singular spacetimes, we study the divergence of density operators for string ensembles in singular scale-invariant plane waves, i.e. those plane waves that arise as the Penrose limits of generic spacetime singularities. We show that the scale invariance implies that the Hagedorn behaviour of bosonic and supersymmetric strings in these backgrounds, even with the inclusion of RR or NS fields, is the same as that of strings in flat space. This is in marked contrast to the behaviour of strings in the BFHP plane wave which exhibit quantitatively and qualitatively different thermodynamic properties.

  16. Plane Waves in a Transparent Isotropic Chiral Medium

    Science.gov (United States)

    Fisanov, V. V.

    2015-04-01

    A homogeneous isotropic transparent chiral medium supports two normal plane waves with left and right circular polarization and differently valued positive wave numbers. The presence or absence of forward and backward Beltrami waves and their helicity are regulated by the signs of the permittivity and permeability and the strength of the chirality. The ray refractive index is a universal parameter whose sign differentiates the forward and backward waves.

  17. Regularized plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin

    2013-09-22

    A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity model. Both synthetic and field results show that: 1) LSM with a reflectivity model common for all the plane-wave gathers provides the best image when the migration velocity model is accurate, but it is more sensitive to the velocity errors, 2) the regularized plane-wave LSM is more robust in the presence of velocity errors, and 3) LSM achieves both computational and IO saving by plane-wave encoding compared to shot-domain LSM for the models tested.

  18. Solitary plane waves in an isotropic hexagonal lattice

    DEFF Research Database (Denmark)

    Zolotaryuk, Yaroslav; Savin, A.V.; Christiansen, Peter Leth

    1998-01-01

    Solitary plane-wave solutions in a two-dimensional hexagonal lattice which can propagate in different directions on the plane are found by using the pseudospectral method. The main point of our studies is that the lattice model is isotropic and we show that the sound velocity is the same for diff...

  19. Exact Nonlinear Internal Equatorial Waves in the f-plane

    Science.gov (United States)

    Hsu, Hung-Chu

    2016-07-01

    We present an explicit exact solution of the nonlinear governing equations for internal geophysical water waves propagating westward above the thermocline in the f-plane approximation near the equator. Moreover, the mass transport velocity induced by this internal equatorial wave is eastward and a westward current occurs in the transition zone between the great depth where the water is still and the thermocline.

  20. An Apparatus for Constructing an Electromagnetic Plane Wave Model

    Science.gov (United States)

    Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William

    2015-01-01

    In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…

  1. An Apparatus for Constructing an Electromagnetic Plane Wave Model

    Science.gov (United States)

    Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William

    2015-01-01

    In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…

  2. Improved beamforming performance using pulsed plane wave decomposition

    DEFF Research Database (Denmark)

    Munk, Peter; Jensen, Jørgen Arendt

    2000-01-01

    A tool for calculating the beamformer setup associated with a specified pulsed acoustic field is presented. The method is named Pulsed Plane Wave Decomposition (PPWD) and is based on the decomposition of a pulsed acoustic field into a set of PPWs at a given depth. Each PPW can be propagated...... to the location of the elements of an array transducer by a time delay. The contribution of each propagated PPW is summed to form one time function for each array element (the BMF matrix). This approach gives the beamformer setup needed to obtain a close approximation to the desired bounded pulsed acoustic field...... without involving any optimization scheme. The approximation arises due to the limited size of the acoustic aperture and the spatial sampling property of the array transducer. Thus, the acoustical field can be designed according to the imaging needs. The method is demonstrated by examples in the 2D space...

  3. In-plane propagation of electromagnetic waves in planar metamaterials

    Science.gov (United States)

    Yi, Changhyun; Rhee, Joo Yull; Kim, Ki Won; Lee, YoungPak

    2016-08-01

    Some planar metamaterials (MMs) or subwavelength antenna/hole arrays have a considerable amount of in-plane propagation when certain conditions are met. In this paper, the in-plane propagation caused by a wave incident on a MM absorber was studied by using a finite-difference time-domain (FDTD) technique. By using a FDTD simulation, we were able to observe a nonnegligible amount of in-plane propagation after the incident wave had arrived at the surface of the planar structure and gradually decreased propagation of the electromagnetic wave in the planar direction gradually decreased. We performed the FDTD simulation carefully to reproduce valid results and to verify the existence of in-plane propagation. For verification of the in-plane propagation explicitly, Poynting vectors were calculated and visualized inside the dielectric substrate between the metallic back-plate and an array of square patches. We also investigated several different structures with resonators of various shapes and found that the amount of facing edges of adjacent metallic patches critically determined the strength of the in-plane propagation. Through this study, we could establish the basis for the existence of in-plane propagation in MMs.

  4. Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers

    KAUST Repository

    Guo, Bowen

    2017-06-01

    Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.

  5. Strings On Plane-waves And Spin Chains On Orbifolds

    CERN Document Server

    Sadri, D

    2005-01-01

    This thesis covers a number of topics in string theory focusing on various aspects of the AdS/CFT duality in various guises and regimes. In the first chapter we present a self-contained review of the Plane- wave/super-Yang-Mills duality. This duality is a specification of the usual AdS/CFT correspondence in the “Penrose limit”. In chapter two we study the most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Quantization of string modes, their compactification and behaviour under T- duality are also studied, as are BPS Dp- branes on such backgrounds. In chapter three we consider giant gravitons on the maximally supersymmetric plane-wave background. We deduce the low energy effective light-cone Hamiltonian of ...

  6. In-Vivo Synthetic Aperture and Plane Wave High Frame Rate Cardiac Imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Jensen, Jonas; Brandt, Andreas Hjelm;

    2014-01-01

    A comparison of synthetic aperture imaging using spherical and plane waves with low number of emission events is presented. For both wave types, a 90 degree sector is insonified using 15 emission events giving a frame rate of 200 frames per second. Field II simulations of point targets show simil.......43 for spherical and 0.70 for plane waves. All measures are well within FDA limits for cardiac imaging. In-vivo images of the heart of a healthy 28-year old volunteer are shown....

  7. AdS plane waves, entanglement and mutual information

    CERN Document Server

    Mukherjee, Debangshu

    2014-01-01

    $AdS$ plane wave backgrounds are dual to CFT excited states with energy momentum density $T_{++}=Q$. Building on previous work on entanglement entropy in these and nonconformal brane plane wave backgrounds, we first describe a phenomenological scaling picture for entanglement in terms of "entangling partons". We then study aspects of holographic mutual information in these backgrounds for two strip shaped subsystems, aligned parallel or orthogonal to the flux. We focus on the wide ($Ql^d\\gg 1$) and narrow ($Ql^d\\ll 1$) strip regimes. In the wide strip regime, mutual information exhibits growth with the individual strip sizes and a disentangling transition as the separation between the strips increases, whose behaviour is distinct from the ground and thermal states. In the narrow strip case, our calculations have parallels with "entanglement thermodynamics" for these $AdS$ plane wave deformations. We also discuss some numerical analysis.

  8. Plane-Wave Imaging Challenge in Medical Ultrasound

    DEFF Research Database (Denmark)

    Liebgott, Herve; Molares, Alfonso Rodriguez; Cervenansky, F.

    2016-01-01

    for this effect, but comparing the different methods is difficult due to the lack of appropriate tools. PICMUS, the Plane-Wave Imaging Challenge in Medical Ultrasound aims to provide these tools. This paper describes the PICMUS challenge, its motivation, implementation, and metrics.......Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate...

  9. Polarization operator for plane-wave background fields

    CERN Document Server

    Meuren, S; Di Piazza, A

    2013-01-01

    We derive an alternative representation of the leading-order contribution to the polarization operator in strong-field QED with a plane-wave electromagnetic background field, which is manifestly symmetric with respect to the external photon momenta. Our derivation is based on a direct evaluation of the corresponding Feynman diagram, using the Volkov-representation of the dressed fermion propagator. Furthermore, the validity of the Ward-Takahashi identity is shown for general loop diagrams in an external plane-wave background field.

  10. Metaphysics of colliding self-gravitating plane waves

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, R.A.; Tipler, F.J.

    1984-04-15

    We discuss certain global features of colliding plane-wave solutions to Einstein's equations. In particular, we show that the apparently local curvature singularities both in the Khan-Penrose solution and in the Bell-Szekeres solution are actually global. These global singularities are associated with the breakdown of nondegenerate planar symmetry in the characteristic initial data sets.

  11. Metaphysics of colliding self-gravitating plane waves

    Science.gov (United States)

    Matzner, Richard A.; Tipler, Frank J.

    1984-04-01

    We discuss certain global features of colliding plane-wave solutions to Einstein's equations. In particular, we show that the apparently local curvature singularities both in the Khan-Penrose solution and in the Bell-Szekeres solution are actually global. These global singularities are associated with the breakdown of nondegenerate planar symmetry in the characteristic initial data sets.

  12. Plane-Wave Propagation in Extreme Magnetoelectric (EME) Media

    CERN Document Server

    Lindell, I V; Favaro, A

    2016-01-01

    The extreme magnetoelectric medium (EME medium) is defined in terms of two medium dyadics, $\\alpha$, producing electric polarization by the magnetic field and $\\beta$, producing magnetic polarization by the electric field. Plane-wave propagation of time-harmonic fields of fixed finite frequency in the EME medium is studied. It is shown that (if $\\omega\

  13. Exact near-wall traveling waves of plane Poiseuille flow

    Science.gov (United States)

    Gibson, John; Brand, Evan

    2013-11-01

    We present several spatially-localized equilibrium and traveling-wave solutions of plane Couette and plane Poiseuille flow. The solutions consist of highly concentrated and spanwise-localized alternating streamwise rolls, centered over low-speed streamwise streaks and flanked on either side by high-speed streaks. For large Reynolds numbers the solutions develop critical layers that are concentrated at isolated points on the critical surface u = c . For several traveling-wave solutions of plane Poiseuille flow, the rolls are concentrated near one wall, producing streaks near the wall and larger reduction of the bulk flow in the core. These solutions form particularly isolated and elemental versions of near-wall coherent structures in shear flows and capture, as precise time-independent solutions of Navier-Stokes, the process by which near-wall rolls exchange momentum between the wall and core regions and thereby increase drag.

  14. Energy Relations for Plane Waves Reflected from Moving Media

    DEFF Research Database (Denmark)

    Daly, P.; Gruenberg, Harry

    1967-01-01

    When a plane wave is obliquely incident from vacuum on a semi-infinite moving medium, the energy flow carried by the incident wave, is in general, not carried away by the reflected and transmitted waves. This is only the case when the medium velocity is parallel to its vacuum interface. Otherwise...... there is a net inflow or outflow of electromagnetic energy, which can be accounted for by the change of stored energy in the system, and the work done by the mechanical forces acting on the medium. A detailed energy balance is drawn up for two different media moving normal to their vacuum interfaces: (a...

  15. Plane wave holonomies in quantum gravity. II. A sine wave solution

    Science.gov (United States)

    Neville, Donald E.

    2015-08-01

    This paper constructs an approximate sinusoidal wave packet solution to the equations of canonical gravity. The theory uses holonomy-flux variables with support on a lattice (LHF =lattice-holonomy flux ). There is an SU(2) holonomy on each edge of the LHF simplex, and the goal is to study the behavior of these holonomies under the influence of a passing gravitational wave. The equations are solved in a small sine approximation: holonomies are expanded in powers of sines and terms beyond sin2 are dropped; also, fields vary slowly from vertex to vertex. The wave is unidirectional and linearly polarized. The Hilbert space is spanned by a set of coherent states tailored to the symmetry of the plane wave case. Fixing the spatial diffeomorphisms is equivalent to fixing the spatial interval between vertices of the loop quantum gravity lattice. This spacing can be chosen such that the eigenvalues of the triad operators are large, as required in the small sine limit, even though the holonomies are not large. Appendices compute the energy of the wave, estimate the lifetime of the coherent state packet, discuss circular polarization and coarse-graining, and determine the behavior of the spinors used in the U(N) SHO realization of LQG.

  16. Radiation of Electron in the Field of Plane Light Wave

    Energy Technology Data Exchange (ETDEWEB)

    Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; /Kharkov, KIPT; Tatchyn, R.; /SLAC

    2006-02-24

    Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity.

  17. Plane waves and spherical means applied to partial differential equations

    CERN Document Server

    John, Fritz

    2004-01-01

    Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con

  18. CMS-Wave Model: Part 5. Full-plane Wave Transformation and Grid Nesting

    Science.gov (United States)

    2012-04-01

    are available in previous reports and CHETNs (Lin et al. 2006; Demirbilek et al. 2007). CMS -Wave is part of the Coastal Modeling System ( CMS ...the U.S. Army Corps of Engineers’ (USACE) Surface-water Modeling System (SMS). The CMS -Wave FP option is available in SMS Version 11.1 and higher...ERDC/CHL CHETN-IV-81 April 2012 Approved for public release; distribution is unlimited. CMS -Wave Model: Part 5. Full-plane Wave Transformation

  19. Focal plane wave-front sensing algorithm for high-contrast imaging

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    High-contrast imaging provided by a coronagraph is critical for the direction imaging of the Earth-like planet orbiting its bright parent star.A major limitation for such direct imaging is the speckle noise that is induced from the wave-front error of an optical system.We derive an algorithm for the wave-front measurement directly from 3 focal plane images.The 3 images are achieved through a deformable mirror to provide specific phases for the optics system.We introduce an extra amplitude modulation on one deformable mirror configuration to create an uncorrelated wave-front,which is a critical procedure for wave-front sensing.The simulation shows that the reconstructed wave-front is consistent with the original wave-front theoretically,which indicates that such an algorithm is a promising technique for the wave-front measurement for the high-contrast imaging.

  20. Focal plane wave-front sensin8 algorithm for high-contrast imaging

    Institute of Scientific and Technical Information of China (English)

    DOU JiangPei; REN DeQing; ZHU YongTian; ZHANG Xi

    2009-01-01

    High-contrast imaging provided by a coronagraph is critical for the direction imaging of the Earth-like planet orbiting its bright parent star. A major limitation for such direct imaging is the speckle noise that is induced from the wave-front error of an optical system. We derive an algorithm for the wave-front measurement directly from 3 focal plane images. The 3 images are achieved through a deformable mirror to provide specific phases for the optics system. We introduce an extra amplitude modulation on one deformable mirror configuration to create an uncorrelated wave-front, which is a critical procedure for wave-front sensing. The simulation shows that the reconstructed wave-front is consistent with the original wave-front theoretically, which indicates that such an algorithm is a promising technique for the wave-front measurement for the high-contrast imaging.

  1. Scattering of Plane Guided Waves Obliquely Incident on Straight Features

    Science.gov (United States)

    Wilcox, P. D.; Velichko, A.; Drinkwater, B. W.; Croxford, A. J.; Todd, M. D.

    2011-06-01

    A semi-analytical finite element model is developed to study the scattering of plane guided waves obliquely incident on a straight geometric feature. The model is first used to investigate the reflection of the S0 mode from a free edge and the results are compared to those of bulk waves reflecting from a free boundary. The model is then used to predict the transmission of the S0 mode past an adhesively-bonded stiffener. The results obtained are in excellent agreement with experimental measurements.

  2. Scattering of a CW plane wave by a pulse

    Science.gov (United States)

    Trivett, D. H.; Rogers, P. H.

    1982-05-01

    A procedure similar to the CW crossed-beam calculation of Ingard and Pridmore-Brown (1956) is used to calculate the far field scattered sound pressure of a pulse interacting with a plane wave. The scattered sound is found to be at neither the sum nor the difference frequency. It is suggested that this type of interaction is ideal for investigating the scattering of sound by sound, and a numerical solution is used to discuss the general features of the nearfield waveform.

  3. Two-Flux Colliding Plane Waves in String Theory

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We construct the two-flux colliding plane wave solutions in higher-dimensional gravity theory with dilaton,and two complementary fluxes. Two kinds of solutions have been obtained: Bell-Szekeres (BS) type and homogeneous type. After imposing the junction condition, we find that only the BS type solution is physically well-defined. Furthermore, we show that the future curvature singularity is always developed for our solutions.

  4. The worldline approach to helicity flip in plane waves

    CERN Document Server

    Ilderton, Anton

    2016-01-01

    We apply worldline methods to the study of vacuum polarisation effects in plane wave backgrounds, in both scalar and spinor QED. We calculate helicity-flip probabilities to one loop order and treated exactly in the background field, and provide a toolkit of methods for use in investigations of higher-order processes. We also discuss the connections between the worldline, S-matrix, and lightfront approaches to vacuum polarisation effects.

  5. Plane-wave Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei

    2012-11-04

    Least-squares reverse time migration is formulated with a new parameterization, where the migration image of each shot is updated separately and a prestack image is produced with common image gathers. The advantage is that it can offer stable convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A regularization term which penalizes the image difference between nearby angles are used to keep the prestack image consistent through all the angles. Numerical tests on a marine dataset is performed to illustrate the advantages of least-squares reverse time migration in the plane-wave domain. Through iterations of least-squares migration, the migration artifacts are reduced and the image resolution is improved. Empirical results suggest that the LSRTM in plane wave domain is an efficient method to improve the image quality and produce common image gathers.

  6. Stolt's f-k migration for plane wave ultrasound imaging.

    Science.gov (United States)

    Garcia, Damien; Le Tarnec, Louis; Muth, Stéphan; Montagnon, Emmanuel; Porée, Jonathan; Cloutier, Guy

    2013-09-01

    Ultrafast ultrasound is an emerging modality that offers new perspectives and opportunities in medical imaging. Plane wave imaging (PWI) allows one to attain very high frame rates by transmission of planar ultrasound wave-fronts. As a plane wave reaches a given scatterer, the latter becomes a secondary source emitting upward spherical waves and creating a diffraction hyperbola in the received RF signals. To produce an image of the scatterers, all the hyperbolas must be migrated back to their apexes. To perform beamforming of plane wave echo RFs and return high-quality images at high frame rates, we propose a new migration method carried out in the frequency-wavenumber (f-k) domain. The f-k migration for PWI has been adapted from the Stolt migration for seismic imaging. This migration technique is based on the exploding reflector model (ERM), which consists in assuming that all the scatterers explode in concert and become acoustic sources. The classical ERM model, however, is not appropriate for PWI. We showed that the ERM can be made suitable for PWI by a spatial transformation of the hyperbolic traces present in the RF data. In vitro experiments were performed to outline the advantages of PWI with Stolt's f-k migration over the conventional delay-and-sum (DAS) approach. The Stolt's f-k migration was also compared with the Fourier-based method developed by J.-Y. Lu. Our findings show that multi-angle compounded f-k migrated images are of quality similar to those obtained with a stateof- the-art dynamic focusing mode. This remained true even with a very small number of steering angles, thus ensuring a highly competitive frame rate. In addition, the new FFT-based f-k migration provides comparable or better contrast-to-noise ratio and lateral resolution than the Lu's and DAS migration schemes. Matlab codes for the Stolt's f-k migration for PWI are provided.

  7. On the local plane wave methods for in situ measurement of acoustic absorption

    NARCIS (Netherlands)

    Wijnant, Y.H.

    2015-01-01

    In this paper we address a series of so-called local plane wave methods (LPW) to measure acoustic absorption. As opposed to other methods, these methods do not rely on assumptions of the global sound field, like e.g. a plane wave or diffuse field, but are based on a local plane wave assumption. Ther

  8. Waveguide characteristics of coupled in-plane waves.

    Science.gov (United States)

    Pan, Jie; Lu, Jing; Qiu, Xiaojun

    2012-06-01

    In-plane waves in a waveguide made from a thin plate are described by a superposition of a set of orthogonal functions that satisfy the edge conditions of the waveguide. Due to the Poisson and shear effects, the displacement components of the in-plane waves along the two in-plane orthogonal coordinates are coupled and this coupling affects the propagation and spatial properties of the waveguide modes. The orthogonal functions and their associated wavenumbers represent the characteristics of the uncoupled modes of the waveguide where the above mentioned couplings are ignored. This study demonstrates that the characteristics of the waveguide modes are determined by the couplings of the uncoupled mode pairs, which become significant when the pairs satisfy the conditions of spatial coincidence. At some frequencies, certain waveguide modes can be determined by a single pair of uncoupled modes. For this case, the analytical solution for the waveguide modes exists and provides both a qualitative and quantitative interpretation of the characteristics of the waveguide mode.

  9. N=4 Supersymmetric Yang-Mills on S^3 in Plane Wave Matrix Model at Finite Temperature

    CERN Document Server

    Kitazawa, Yoshihisa

    2008-01-01

    We investigate the large N reduced model of gauge theory on a curved spacetime through the plane wave matrix model. We formally derive the action of the N=4 supersymmetric Yang-Mills theory on R \\times S^3 from the plane wave matrix model in the large N limit. Furthermore, we evaluate the effective action of the plane wave matrix model up to the two-loop level at finite temperature. We find that the effective action is consistent with the free energy of the N=4 supersymmetric Yang-Mills theory on S^3 at high temperature limit where the planar contributions dominate. We conclude that the plane wave matrix model can be used as a large N reduced model to investigate nonperturbative aspects of the N=4 supersymmetric Yang-Mills theory on R \\times S^3.

  10. Magnetohydrodynamic waves within the medium separated by the plane shock wave or rotational discontinuity

    Directory of Open Access Journals (Sweden)

    A. A. Lubchich

    2005-07-01

    Full Text Available Characteristics of small amplitude plane waves within the medium separated by the plane discontinuity into two half spaces are analysed. The approximation of the ideal one-fluid magnetohydrodynamics (MHD is used. The discontinuities with the nonzero mass flux across them are mainly examined. These are fast or slow shock waves and rotational discontinuities. The dispersion equation for MHD waves within each of half space is obtained in the reference frame connected with the discontinuity surface. The solution of this equation permits one to determine the wave vectors versus the parameter cp, which is the phase velocity of surface discontinuity oscillations. This value of cp is common for all MHD waves and determined by an incident wave or by spontaneous oscillations of the discontinuity surface. The main purpose of the study is a detailed analysis of the dispersion equation solution. This analysis let us draw the following conclusions. (I For a given cp, ahead or behind a discontinuity at most, one diverging wave can transform to a surface wave damping when moving away from the discontinuity. The surface wave can be a fast one or, in rare cases, a slow, magnetoacoustic one. The entropy and Alfvén waves always remain in a usual homogeneous mode. (II For certain values of cp and parameters of the discontinuity behind the front of the fast shock wave, there can be four slow magnetoacoustic waves, satisfying the dispersion equation, and none of the fast magnetoacoustic waves. In this case, one of the four slow magnetoacoustic waves is incident on the fast shock wave from the side of a compressed medium. It is shown that its existence does not contradict the conditions of the evolutionarity of MHD shock waves. The four slow magnetoacoustic waves, satisfying the dispersion equation, can also exist from either side of a slow shock wave or rotational discontinuity. (III The

  11. Neutrino fluxes from the Galactic plane and the ANTARES limit

    Directory of Open Access Journals (Sweden)

    Fusco Luigi Antonio

    2016-01-01

    Full Text Available The existence of cosmic neutrinos has been reported by the IceCube Collaboration. Though this measurement is consistent with an isotropic neutrino flux, a sub-dominant galactic component coming from extended regions such as the Galactic Plane cannot be excluded. The ANTARES detector, located in the Mediterranean Sea, is currently the largest and longest operated under-water neutrino telescope; its effective area and good exposure to the Southern Sky allow to constrain an enhanced muon neutrino emission from extended sources such as the Galactic Plane. ANTARES data from 2007 to 2013 have been analysed and upper limits on the neutrino production from the central region of our galaxy have been set.

  12. Understanding the power reflection and transmission coefficients of a plane wave at a planar interface

    Science.gov (United States)

    Ye, Qian; Jiang, Yikun; Lin, Haoze

    2017-03-01

    In most textbooks, after discussing the partial transmission and reflection of a plane wave at a planar interface, the power (energy) reflection and transmission coefficients are introduced by calculating the normal-to-interface components of the Poynting vectors for the incident, reflected and transmitted waves, separately. Ambiguity arises among students since, for the Poynting vector to be interpreted as the energy flux density, on the incident (reflected) side, the electric and magnetic fields involved must be the total fields, namely, the sum of incident and reflected fields, instead of the partial fields which are just the incident (reflected) fields. The interpretation of the cross product of partial fields as energy flux has not been obviously justified in most textbooks. Besides, the plane wave is actually an idealisation that is only ever found in textbooks, then what do the reflection and transmission coefficients evaluated for a plane wave really mean for a real beam of limited extent? To provide a clearer physical picture, we exemplify a light beam of finite transverse extent by a fundamental Gaussian beam and simulate its reflection and transmission at a planar interface. Due to its finite transverse extent, we can then insert the incident fields or reflected fields as total fields into the expression of the Poynting vector to evaluate the energy flux and then power reflection and transmission coefficients. We demonstrate that the power reflection and transmission coefficients of a beam of finite extent turn out to be the weighted sum of the corresponding coefficients for all constituent plane wave components that form the beam. The power reflection and transmission coefficients of a single plane wave serve, in turn, as the asymptotes for the corresponding coefficients of a light beam as its width expands infinitely.

  13. Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...... Field H and a 7 MHz, 128-elements, linear array transducer with lambda/2-spacing. MV is compared to the conventional delay-and-sum (DS) beamformer with Boxcar and Hanning weights. Furthermore, the PW images are compared to the a conventional ultrasound image, obtained from a linear scan sequence...

  14. Plane-Wave Propagation in Electromagnetic PQ Medium

    CERN Document Server

    Lindell, Ismo V

    2015-01-01

    Two basic classes of electromagnetic media, recently defined and labeled as those of P media and Q media, are generalized to define the class of PQ media. Plane wave propagation in the general PQ medium is studied and the quartic dispersion equation is derived in analytic form applying four-dimensional dyadic formalism. The result is verified by considering various special cases of PQ media for which the dispersion equation is known to decompose to two quadratic equations or be identically satisfied (media with no dispersion equation). As a numerical example, the dispersion surface of a PQ medium with non-decomposable dispersion equation is considered.

  15. Plane shock wave structure in a dilute granular gas

    Science.gov (United States)

    Reddy, M. H. Lakshminarayana; Alam, Meheboob

    2016-11-01

    We analyse the early time evolution of the Riemann problem of planar shock wave structures for a dilute granular gas by solving Navier-Stokes equations numerically. The one-dimensional reduced Navier-Stokes equations for plane shock wave problem are solved numerically using a relaxation-type numerical scheme. The results on the shock structures in granular gases are presented for different Mach numbers and restitution coefficients. Based on our analysis on early time shock dynamics we conclude that the density and temperature profiles are "asymmetric"; the density maximum and the temperature maximum occur within the shock layer; the absolute magnitudes of longitudinal stress and heat flux which are initially zero at both end states attain maxima in a very short time and thereafter decrease with time.

  16. Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements.

    Science.gov (United States)

    Schwab, Hans-Martin; Beckmann, Martin F; Schmitz, Georg

    2016-04-01

    Photoacoustic imaging aims to visualize light absorption properties of biological tissue by receiving a sound wave that is generated inside the observed object as a result of the photoacoustic effect. In clinical applications, the strong light absorption in human skin is a major problem. When high amplitude photoacoustic waves that originate from skin absorption propagate into the tissue, they are reflected back by acoustical scatterers and the reflections contribute to the received signal. The artifacts associated with these reflected waves are referred to as clutter or skin echo and limit the applicability of photoacoustic imaging for medical applications severely. This study seeks to exploit the acoustic tissue information gained by plane wave ultrasound measurements with a linear array in order to correct for reflections in the photoacoustic image. By deriving a theory for clutter waves in k-space and a matching inversion approach, photoacoustic measurements compensated for clutter are shown to be recovered.

  17. A numerical method for determining the radial wave motion correction in plane wave couplers

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni

    2016-01-01

    solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model......Microphones are used for realising the unit of sound pressure level, the pascal (Pa). Electro-acoustic reciprocity is the preferred method for the absolute determination of the sensitivity. This method can be applied in different sound fields: uniform pressure, free field or diffuse field. Pressure...... calibration, carried out in plane wave couplers, is the most extended. Here plane wave propagation is assumed. While this assumption is valid at low and mid frequencies, it fails at higher frequencies because the membrane of the microphones is not moving uniformly, and there are viscous losses. An existing...

  18. Refractive Index and Wave Resistance of Homogeneous Plane Waves in Isotropic Media with Losses and Gain

    Science.gov (United States)

    Fisanov, V. V.

    2017-09-01

    Analytical expressions for complex values of the wave number, refractive index, and the characteristic wave impedance of homogeneous electromagnetic plane waves propagating in a linear, homogeneous, isotropic medium with losses and gain are derived. Formulas for determining the type of normal wave as a function of the values of the real and imaginary parts of the permittivity and permeability are obtained, and conditions for the appearance of positive and negative refraction at the interface of two isotropic media are indicated. In the approach applied here, the concept of a negative refractive index is not used.

  19. Propagation of Quasi-plane Nonlinear Waves in Tubes

    Directory of Open Access Journals (Sweden)

    P. Koníček

    2002-01-01

    Full Text Available This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicability of the KZK equation and the GBE equation for describing nonlinear waves in tubes are discussed.

  20. Simultaneous inversion of layered compressional velocity and shear velocity by using plane wave seismogram

    Institute of Scientific and Technical Information of China (English)

    宋海斌; 马在田; 张关泉

    1996-01-01

    A layer-stripping method is presented for simultaneous inversion of compressional velocity and shear velocity in layered medium from single precritical-incident-angle data of P-P and P-SV plane wave seismogram. A finite bandwidth algorithm is provided and results obviously better than previous research work are obtained by the numerical experiments for band-limited seismogram and synthetic data including noise.

  1. A physical solution for plane SH waves in anelastic media

    Science.gov (United States)

    Ursin, Bjorn; Carcione, José M.; Gei, Davide

    2017-05-01

    In a lossy medium with complex frequency-dependent wave speed both rays and plane waves at an interface should satisfy the dispersion relation (that is, the wave equation), the radiation condition (the amplitude should go to zero at infinity) and the horizontal complex slowness should be continuous (Snell's law). It is known that this may lead to a transmitted wave which violates the radiation condition and which also causes problems with the phase of the reflection coefficient. In fact, ray-tracing algorithms and analytical evaluations of the reflection and transmission coefficients in anelastic media may lead to non-physical solutions related to the complex square roots of the vertical slowness and polarizations. The steepest-descent approximation with complex horizontal slowness involves non-physical complex horizontal distances, and in some cases also a non-physical vertical slowness that violates the radiation condition. Similarly, the reflection and transmission coefficients and ray-tracing codes obtained with this approach yields wrong results. In order to tackle this problem, we choose the stationary-phase approximation with real horizontal slowness. This gives real horizontal distances, the radiation condition is always satisfied and the reflection and transmission coefficients are correct. This is shown by comparison to full-wave space-time modelling results by computing the reflection and transmission coefficients and respective phase angles from synthetic seismograms. This numerical evaluation is based on a 2-D wavenumber-frequency Fourier transform. The results indicate that the stationary-phase method with a real horizontal slowness provides the correct physical solution.

  2. Optimized equivalent staggered-grid FD method for elastic wave modelling based on plane wave solutions

    Science.gov (United States)

    Yong, Peng; Huang, Jianping; Li, Zhenchun; Liao, Wenyuan; Qu, Luping; Li, Qingyang; Liu, Peijun

    2017-02-01

    In finite-difference (FD) method, numerical dispersion is the dominant factor influencing the accuracy of seismic modelling. Various optimized FD schemes for scalar wave modelling have been proposed to reduce grid dispersion, while the optimized time-space domain FD schemes for elastic wave modelling have not been fully investigated yet. In this paper, an optimized FD scheme with Equivalent Staggered Grid (ESG) for elastic modelling has been developed. We start from the constant P- and S-wave speed elastic wave equations and then deduce analytical plane wave solutions in the wavenumber domain with eigenvalue decomposition method. Based on the elastic plane wave solutions, three new time-space domain dispersion relations of ESG elastic modelling are obtained, which are represented by three equations corresponding to P-, S- and converted-wave terms in the elastic equations, respectively. By using these new relations, we can study the dispersion errors of different spatial FD terms independently. The dispersion analysis showed that different spatial FD terms have different errors. It is therefore suggested that different FD coefficients to be used to approximate the three spatial derivative terms. In addition, the relative dispersion error in L2-norm is minimized through optimizing FD coefficients using Newton's method. Synthetic examples have demonstrated that this new optimal FD schemes have superior accuracy for elastic wave modelling compared to Taylor-series expansion and optimized space domain FD schemes.

  3. Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis

    KAUST Repository

    Guo, Bowen

    2017-08-28

    Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating in the subsurface. To exceed this resolution limit, this thesis develops a new imaging method using resonant multiples, which produces superresolution images with twice or even more the spatial resolution compared to the conventional primary reflection image. A resonant multiple is defined as a seismic reflection that revisits the same subsurface location along coincident reflection raypath. This reverberated raypath is the reason for superresolution imaging because it increases the differences in reflection times associated with subtle changes in the spatial location of the reflector. For the practical implementation of superresolution imaging, I develop a post-stack migration technique that first enhances the signal-to-noise ratios (SNRs) of resonant multiples by a moveout-correction stacking method, and then migrates the post-stacked resonant multiples with the associated Kirchhoff or wave-equation migration formula. I show with synthetic and field data examples that the first-order resonant multiple image has about twice the spatial resolution compared to the primary reflection image. Besides resolution, the correct estimate of the subsurface velocity is crucial for determining the correct depth of reflectors. Towards this goal, wave-equation migration velocity analysis (WEMVA) is an image-domain method which inverts for the velocity model that maximizes the similarity of common image gathers (CIGs). Conventional WEMVA based on subsurface-offset, angle domain or time-lag CIGs requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, I present a new WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce the

  4. On the types and number of plane waves in hypoelastic materials

    Science.gov (United States)

    Rushchitsky, J. J.

    2005-11-01

    General principles are formulated for modeling the elastic deformation of materials and analyzing plane waves in nonlinearly elastic materials such as hyperelastic, hypoelastic, and those governed by the general law of elasticity. The results of studying the propagation of plane waves in hypoelastic materials are further outlined. The influence of initial stresses and initial velocities on the types and number of plane waves is studied. Wave effects characteristic of hypoelastic materials are predicted theoretically. One of such effects is blocking of certain types of plane waves by initial stresses

  5. A numerical method for determining the radial wave motion correction in plane wave couplers

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni

    2016-01-01

    solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model...

  6. Tangent Bifurcation of Band Edge Plane Waves, Dynamical Symmetry Breaking and Vibrational Localization

    CERN Document Server

    Flach, S

    1995-01-01

    We study tangent bifurcation of band edge plane waves in nonlinear Hamiltonian lattices. The lattice is translationally invariant. We argue for the breaking of permutational symmetry by the new bifurcated periodic orbits. The case of two coupled oscillators is considered as an example for the perturbation analysis, where the symmetry breaking can be traced using Poincare maps. Next we consider a lattice and derive the dependence of the bifurcation energy on the parameters of the Hamiltonian function in the limit of large system sizes. A necessary condition for the occurence of the bifurcation is the repelling of the band edge plane wave's frequency from the linear spectrum with increasing energy. We conclude that the bifurcated orbits will consequently exponentially localize in the configurational space.

  7. Multi-view horizon-driven sea plane estimation for stereo wave imaging on moving vessels

    Science.gov (United States)

    Bergamasco, Filippo; Benetazzo, Alvise; Barbariol, Francesco; Carniel, Sandro; Sclavo, Mauro

    2016-10-01

    In the last few years we faced an increased popularity of stereo imaging as an effective tool to investigate wind sea waves at short and medium scales. Given the advances of computer vision techniques, the recovery of a scattered point-cloud from a sea surface area is nowadays a well consolidated technique producing excellent results both in terms of wave data resolution and accuracy. Nevertheless, almost all the subsequent analyses tasks, from the recovery of directional wave spectra to the estimation of significant wave height, are bound to two limiting conditions. First, wave data are required to be aligned to the mean sea plane. Second, a uniform distribution of 3D point samples is assumed. Since the stereo-camera rig is placed tilted with respect to the sea surface, perspective distortion do not allow these conditions to be met. Errors due to this problem are even more challenging if the optical instrumentation is mounted on a moving vessel, so that the mean sea plane cannot be simply obtained by averaging data from multiple subsequent frames. We address the first problem with two main contributions. First, we propose a novel horizon estimation technique to recover the attitude of a moving stereo rig with respect to the sea plane. Second, an effective weighting scheme is described to account for the non-uniform sampling of the scattered data in the estimation of the sea-plane distance. The interplay of the two allows us to provide a precise point cloud alignment without any external positioning sensor or rig viewpoint pre-calibration. The advantages of the proposed technique are evaluated throughout an experimental section spanning both synthetic and real-world scenarios.

  8. Dispersive photonic crystals from the plane wave method

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  9. Effects of a covering layer in a circular-arc canyon on incident plane SV waves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An analytical solution for scattering of incident plane SV waves by a circular-arc canyon with a covering layer was derived by Fourier-Bessel series expansion technique, and the solution was utilized to analyze the effects of the covering layer on incident plane SV waves. It was shown that the covering layer in a canyon, even if it is very thin, amplifies incident plane SV waves tremendously, and the amplification can be two and half times more than that for a simple canyon; the stiffness and thickness of the covering layer also have great effects on incident plane SV waves.

  10. On the integrability of large N plane-wave matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Klose, Thomas E-mail: thklose@aei.mpg.de; Plefka, Jan E-mail: plefka@aei.mpg.de

    2004-02-16

    We show the three-loop integrability of large N plane-wave matrix theory in a subsector of states comprised of two complex light scalar fields. This is done by diagonalizing the theory's Hamiltonian in perturbation theory and taking the large N limit. At one-loop level the result is known to be equal to the Heisenberg spin-1/2 chain, which is a well-known integrable system. Here, integrability implies the existence of hidden conserved charges and results in a degeneracy of parity pairs in the spectrum. In order to confirm integrability at higher loops, we show that this degeneracy is not lifted and that (corrected) conserved charges exist. Plane-wave matrix theory is intricately connected to N=4 super-Yang-Mills, as it arises as a consistent reduction of the gauge theory on a three-sphere. We find that after appropriately renormalizing the mass parameter of the plane-wave matrix theory the effective Hamiltonian is identical to the dilatation operator of N=4 super-Yang-Mills theory in the considered subsector. Our results therefore represent a strong support for the conjectured three-loop integrability of planar N=4 SYM and are in disagreement with a recent dual string theory finding. Finally, we study the stability of the large N integrability against nonsupersymmetric deformations of the model.

  11. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...

  12. Ciliary beating plane and wave propagation in the bovine oviduct.

    Science.gov (United States)

    Schätz, G; Schneiter, M; Rička, J; Kühni-Boghenbor, K; Tschanz, S A; Doherr, M G; Frenz, M; Stoffel, M H

    2013-01-01

    The uterine tube is an essential conduit for the gametes and zygote during reproduction. The necessary bidirectional conveyance occurs through peristalsis and ciliary activity, but unlike in respiratory tract, little is known about mucociliary transport in the uterine tube, and the direction of transport and the alignment of oviductal cilia have not been conclusively characterized. This study aimed to determine the uniformity in the axonemal orientation of motile cilia in the bovine uterine tube, to identify the direction of mucociliary transport and to relate the presumptive beating plane and the mucociliary transport direction to the long axis of the uterine tube. The angular spread of oviductal motile cilia was determined by electron microscopy, and by maintaining the accurate alignment of the samples throughout the processing steps, axonemal orientation was determined relative to the long axis of the oviduct. The direction of the effective mucociliary transport was determined by the analysis of video microscopic data recorded on explants. Vector-based analysis of electron micrographs yielded the mean angle of deviation between the 'effective ciliary stroke', as derived from axonemal orientation, and the tubal longitudinal axis pointing towards the uterus to be 0.8°, with a standard deviation of 35.2°. The corresponding angular deviation of the short-wave propagation was -6.8° (SD 34.6°). These results show that oviductal motile cilia are rigorously aligned, that the beating plane of the cilia is parallel to the long axis of the uterine tube and that the 'effective stroke' and mucociliary transport are directed towards the uterus. © 2014 S. Karger AG, Basel.

  13. Parallel Multi-Focusing Using Plane Wave Decomposition

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Munk, Peter; Jensen, Jørgen Arendt

    2003-01-01

    of the transmitted pulses is based on the directivity spectrum method, a generalization of the angular spectrum method, a generalization of the angular spectrum method, containing no evanescent waves. The underlying theory is based on the Fourier slice theorem, and field reconstruction from projections. First a set...... waves result in one time function per element. The numerical solution is presented and discussed. It contains pulses with a variation in central frequency and time-varying apodization across the aperture (dynamic apodization). The RMS difference between the transmitted field using the calculated pulse......In conventional phased-array imaging, identical short single-carrier pulses are emitted from the entire aperture, and focusing is done in one direction at a time by applying simple geometric delays. This is a sequential and not optimal transmission scheme, which limits the frame rate and makes 3D...

  14. Scattering of electromagnetic plane waves by a buried vertical dike

    Directory of Open Access Journals (Sweden)

    Batista Lurimar S.

    2003-01-01

    Full Text Available The complete and exact solution of the scattering of a TE mode frequency domain electromagnetic plane wave by a vertical dike under a conductive overburden has been established. An integral representation composed of one-sided Fourier transforms describes the scattered electric field components in each one of the five media: air, overburden, dike, and the country rocks on both sides of the dike. The determination of the terms of the series that represents the spectral components of the Fourier integrals requires the numerical inversion of a sparse matrix, and the method of successive approaches. The zero-order term of the series representation for the spectral components of the overburden, for given values of the electrical and geometrical parameters of the model, has been computed. This result allowed to determine an approximate value of the variation of the electric field on the top of the overburden in the direction perpendicular to the strike of the dike. The results demonstrate the efficiency of this forward electromagnetic modeling, and are fundamental for the interpretation of VLF and Magnetotelluric data.

  15. The plain truth about forming a plane wave of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Apoorva G., E-mail: nintsspd@barc.gov.i [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Abbas, Sohrab [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Treimer, Wolfgang [Helmholtz Zentrum Berlin, Glienicker Str. 100, D-14109 Berlin (Germany)

    2011-04-01

    We have attained the first sub-arcsecond collimation of a monochromatic neutron beam by diffracting neutrons from a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. Analytical as well numerical computations based on the dynamical diffraction theory, led to the optimised collimator configuration of a silicon {l_brace}1 1 1{r_brace} Bragg prism for 5.26 A neutrons. We fabricated a Bragg prism to these specifications, tested and operated it at the double diffractometer setup in Helmholtz Zentrum Berlin to produce a 0.58 arcsec wide monochromatic neutron beam. With a similarly optimised Bragg prism analyser of opposite asymmetry, we recorded a 0.62 arcsec wide virgin rocking curve for this ultra-parallel beam. With this nearly plane-wave neutron beam, we have recorded the first ever USANS spectrum in Q{approx}10{sup -6} A{sup -1} range with a hydroxyapatite casein protein sample and demonstrated the instrument capability to characterise agglomerates up to 150 {mu}m in size. The super-collimated monochromatic beam has also enabled us to record the first neutron diffraction pattern from a macroscopic grating of 200 {mu}m period. The transverse coherence length of 175 {mu}m (FWHM) of the ultra-parallel beam derived from the analysis of this pattern, is the greatest achieved to date for A wavelength neutrons.

  16. The Lukash Plane-Wave Attractor and Relative Energy

    CERN Document Server

    Korunur, M; Salti, M; Aydogdu, Oktay; Korunur, Murat; Salti, Mustafa

    2006-01-01

    We study energy distribution in the context of teleparallel theory of gravity, due to matter and fields including gravitation, of the universe based on the plane-wave Bianchi VII$_{\\delta}$ spacetimes described by the Lukash metric. In order to make this calculation we consider the teleparallel gravity analogs of the energy-momentum formulations of Einstein, Bergmann-Thomson and Landau-Lifshitz. We find that Einstein and Bergmann-Thomson prescriptions agree with each other and give the same results for the energy distribution in a given spacetime, but the Landau-Lifshitz complex does not. Energy density turns out to be non-vanishing in all of these prescriptions. It is interesting to mention that the results can be reduced to the already available results for the Milne universe when we write $\\omega=1$ and $\\Xi^2=1$ in the metric of the Lukash spacetime, and for this special case, we get the same relation among the energy-momentum formulations of Einstein, Bergmann-Thomson and Landau-Lifshitz as obtained for ...

  17. Exact exchange plane-wave-pseudopotential calculations for slabs.

    Science.gov (United States)

    Engel, Eberhard

    2014-05-14

    The exact exchange of density functional theory is applied to both free-standing graphene and a Si(111) slab, using the plane-wave pseudopotential (PWPP) approach and a periodic repetition of the supercell containing the slab. It is shown that (i) PWPP calculations with exact exchange for slabs in supercell geometry are basically feasible, (ii) the width of the vacuum required for a decoupling of the slabs is only moderately larger than in the case of the local-density approximation, and (iii) the resulting exchange potential vx shows an extended region, both far outside the surface of the slab and far from the middle of the vacuum region between the slabs, in which vx behaves as -e(2)/z, provided the width of the vacuum is chosen sufficiently large. This last result is corroborated by an analytical analysis of periodically repeated jellium slabs. The intermediate -e(2)/z behavior of vx can be used for an absolute normalization of vx and the total Kohn-Sham potential, which, in turn, allows the determination of the work function.

  18. Lectures on the Plane-Wave String/Gauge Theory Duality

    CERN Document Server

    Plefka, J

    2004-01-01

    These lectures give an introduction to the novel duality relating type IIB string theory in a maximally supersymmetric plane-wave background to N=4, d=4, U(N) Super Yang-Mills theory in a particular large N and large R-charge limit due to Berenstein, Maldacena and Nastase. In the first part of these lectures the duality is derived from the AdS/CFT correspondence by taking a Penrose limit of the AdS_5 x S^5 geometry and studying the corresponding double-scaling limit on the gauge theory side. The resulting free plane-wave superstring is then quantized in light-cone gauge. On the gauge theory side of the correspondence the composite Super Yang-Mills operators dual to string excitations are identified, and it is shown how the string spectrum can be mapped to the planar scaling dimensions of these operators. In the second part of these lectures we study the correspondence at the interacting respectively non-planar level. On the gauge theory side it is demonstrated that the large N large R-charge limit in question...

  19. Ground penetrating radar antenna measurements based on plane-wave expansions

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...

  20. Reflection of semi-guided plane waves at angled thin-film transitions

    NARCIS (Netherlands)

    Çivitci, Fehmi; Hammer, Manfred; Hoekstra, Hugo J.W.M.

    2013-01-01

    The propagation of thin-film guided, in-plane unguided plane optical waves, and their partial or total reflection at transitions between regions with different film thickness, is considered. The properties of reflected and refracted waves can be predicted reasonably by readily available Helmholtz- a

  1. Classical and Quantum Strings in plane waves, shock waves and spacetime singularities synthesis and new results

    CERN Document Server

    Sánchez, N G

    2003-01-01

    Key issues of classical and quantum strings in gravitational plane waves, shock waves and spacetime singularities are synthetically understood. This includes the string mass and mode number excitations, energy-momentum tensor, scattering amplitudes, vacuum polarization and wave-string polarization effect. The role of the real pole singularities characteristic of the tree level string spectrum (real mass resonances) and that of spacetime singularities is clearly exhibited. This throws light on the issue of singularities in string theory which can be thus classified and fully physically characterized in two different sets: strong singularities (poles of order equal or larger than 2, and black holes), where the string motion is collective and non oscillating in time, outgoing and scattering states do not appear, the string does not cross the singularities, and weak singularities (poles of order smaller than 2, Dirac delta, and conic/orbifold singularities) where the whole string motion is oscillatory in time, ou...

  2. Parallel 3-dim fast Fourier transforms with load balancing of the plane waves

    CERN Document Server

    Gao, Xingyu; Fang, Jun; Wang, Han

    2016-01-01

    The plane wave method is most widely used for solving the Kohn-Sham equations in first-principles materials science computations. In this procedure, the three-dimensional (3-dim) trial wave functions' fast Fourier transform (FFT) is a regular operation and one of the most demanding algorithms in terms of the scalability on a parallel machine. We propose a new partitioning algorithm for the 3-dim FFT grid to accomplish the trade-off between the communication overhead and load balancing of the plane waves. It is shown by qualitative analysis and numerical results that our approach could scale the plane wave first-principles calculations up to more nodes.

  3. Experimental evidence of a triadic resonance of plane inertial waves in a rotating fluid

    CERN Document Server

    Bordes, Guilhem; Dauxois, Thierry; Cortet, Pierre-Philippe

    2011-01-01

    Plane inertial waves are generated using a wavemaker, made of oscillating stacked plates, in a rotating water tank. Using particle image velocimetry, we observe that, after a transient, the primary plane wave is subject to a subharmonic instability and excites two secondary plane waves. The measured frequencies and wavevectors of these secondary waves are in quantitative agreement with the predictions of the triadic resonance mechanism. The secondary wavevectors are found systematically more normal to the rotation axis than the primary wavevector: this feature illustrates the basic mechanism at the origin of the energy transfers towards slow, quasi two-dimensional, motions in rotating turbulence.

  4. Longshore Currents of Random Waves on Different Plane Beaches

    Institute of Scientific and Technical Information of China (English)

    邹志利; 王淑平; 邱大洪; 王艳; 王风龙; 董国海

    2003-01-01

    Model tests and numerical calculation of longshore currents and wave heights produced by irregular waves on two beaches with slopes of 1:100 and 1:40 are studied. The cross-shore distributions of longshore current velocities and wave heights are given and the influences of wave heights, wave periods, and beach slopes on longshore currents are discussed. The discussion is also made on the influences of different eddy viscosity coefficients on the numerical results of longshore current velocities.

  5. Inertial effects on thin-film wave structures with imposed surface shear on an inclined plane

    Science.gov (United States)

    Sivapuratharasu, M.; Hibberd, S.; Hubbard, M. E.; Power, H.

    2016-06-01

    This study provides an extended approach to the mathematical simulation of thin-film flow on a flat inclined plane relevant to flows subject to high surface shear. Motivated by modelling thin-film structures within an industrial context, wave structures are investigated for flows with moderate inertial effects and small film depth aspect ratio ε. Approximations are made assuming a Reynolds number, Re ∼ O(ε-1) and depth-averaging used to simplify the governing Navier-Stokes equations. A parallel Stokes flow is expected in the absence of any wave disturbance and a generalisation for the flow is based on a local quadratic profile. This approach provides a more general system which includes inertial effects and is solved numerically. Flow structures are compared with studies for Stokes flow in the limit of negligible inertial effects. Both two-tier and three-tier wave disturbances are used to study film profile evolution. A parametric study is provided for wave disturbances with increasing film Reynolds number. An evaluation of standing wave and transient film profiles is undertaken and identifies new profiles not previously predicted when inertial effects are neglected.

  6. Identification of Critical Transmission Limits in Injection Impedance Plane

    DEFF Research Database (Denmark)

    Jóhannsson, Hjörtur; Østergaard, Jacob; Nielsen, Arne Hejde

    2012-01-01

    for the critical and characteristic lines in the impedance plane form the basis for a new phasormeasurement based situational awareness method, which uses the results in this paper to identify critical operational boundariesin real time and to visualize the system operating conditions in an informative way...

  7. A new GTD slope diffraction coefficient for plane wave illumination of a wedge

    DEFF Research Database (Denmark)

    Lumholt, Michael; Breinbjerg, Olav

    1997-01-01

    Two wedge problems including slope diffraction are solved: one in which the incident field is a non-uniform plane wave, and one in which it is an inhomogeneous plane wave. The two solutions lead to the same GTD slope diffraction coefficient. This coefficient reveals the existence of a coupling...... effect between a transverse magnetic (or transverse electric) incident plane wave and the transverse electric (or transverse magnetic) slope-diffracted field. The coupling effect is not described by the existing GTD slope diffraction coefficient...

  8. No pair production of open strings in a plane-wave background

    CERN Document Server

    Sakaguchi, Makoto; Yoshida, Kentaroh

    2014-01-01

    We consider whether an external electric field may cause the pair production of open strings in a type IIA plane-wave background. The boundary states of D-branes with condensates are constructed in the Green-Schwarz formulation of superstring with the light-cone gauge. The cylinder diagrams are computed with massive theta functions. Although the value of the electric field is bounded by the upper value as usual, there is no pole in the amplitudes and it indicates that no pair production occurs in the plane-wave background. This result would be universal for a class of plane-wave backgrounds.

  9. Convergence of many-body wave-function expansions using a plane-wave basis: From homogeneous electron gas to solid state systems

    Science.gov (United States)

    Shepherd, James J.; Grüneis, Andreas; Booth, George H.; Kresse, Georg; Alavi, Ali

    2012-07-01

    Using the finite simulation-cell homogeneous electron gas (HEG) as a model, we investigate the convergence of the correlation energy to the complete-basis-set (CBS) limit in methods utilizing plane-wave wave-function expansions. Simple analytic and numerical results from second-order Møller-Plesset theory (MP2) suggest a 1/M decay of the basis-set incompleteness error where M is the number of plane waves used in the calculation, allowing for straightforward extrapolation to the CBS limit. As we shall show, the choice of basis-set truncation when constructing many-electron wave functions is far from obvious, and here we propose several alternatives based on the momentum transfer vector, which greatly improve the rate of convergence. This is demonstrated for a variety of wave-function methods, from MP2 to coupled-cluster doubles theory and the random-phase approximation plus second-order screened exchange. Finite basis-set energies are presented for these methods and compared with exact benchmarks. A transformation can map the orbitals of a general solid state system onto the HEG plane-wave basis and thereby allow application of these methods to more realistic physical problems. We demonstrate this explicitly for solid and molecular lithium hydride.

  10. Geometry of magnetosonic shocks and plane-polarized waves: Coplanarity Variance Analysis (CVA)

    Science.gov (United States)

    Scudder, J. D.

    2005-02-01

    Minimum Variance Analysis (MVA) is frequently used for the geometrical organization of a time series of vectors. The Coplanarity Variance Analysis (CVA) developed in this paper reproduces the layer geometry involving coplanar magnetosonic shocks or plane-polarized wave trains (including normals and coplanarity directions) 300 times more precisely (CVA technique exploits the eigenvalue degeneracy of the covariance matrix present at planar structures to find a consistent normal to the coplanarity plane of the fluctuations. Although Tangential Discontinuities (TDs) have a coplanarity plane, the eigenvalues of their covariance matrix are usually not degenerate; accordingly, CVA does not misdiagnose TDs as shocks or plane-polarized waves. Together CVA and MVA may be used to sort between the hypotheses that the time series is caused by a one-dimensional current layer that has magnetic disturbances that are (1) coplanar, linearly polarized (shocks/plane waves), (2) intrinsically helical (rotational/tangential discontinuities), or (3) neither 1 nor 2.

  11. Diffraction of an inhomogeneous plane wave by an impedance wedge in a lossy medium

    CSIR Research Space (South Africa)

    Manara, G

    1998-11-01

    Full Text Available The diffraction of an inhomogeneous plane wave by an impedance wedge embedded in a lossy medium is analyzed. The rigorous integral representation for the field is asymptotically evaluated in the context of the uniform geometrical theory...

  12. Contributions of Higgs bosons in anomalous momentum of electron in plane-wave field

    CERN Document Server

    Klimenko, E Y

    2002-01-01

    The Higgs bosons contribution to the anomalous magnetic momentum of the electron, moving in the field representing the superposition of the constant crossed field and plane electromagnetic wave of the elliptical polarization are considered in this work

  13. Matrix basis for plane and modal waves in a Timoshenko beam.

    Science.gov (United States)

    Claeyssen, Julio Cesar Ruiz; Tolfo, Daniela de Rosso; Tonetto, Leticia

    2016-11-01

    Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville's technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form.

  14. Matrix basis for plane and modal waves in a Timoshenko beam

    Science.gov (United States)

    Claeyssen, Julio Cesar Ruiz; Tolfo, Daniela de Rosso; Tonetto, Leticia

    2016-11-01

    Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville's technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form.

  15. Planar plane-wave matrix theory at the four loop order: integrability without BMN scaling

    Energy Technology Data Exchange (ETDEWEB)

    Fischbacher, Thomas [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany); Physique Theorique et Mathematique and International Solvay Institutes, Universite Libre de Bruxelles, Campus Plaine C.P. 231, B-1050 Brussels (Belgium); Klose, Thomas; Plefka, Jan [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany)]. E-mail: jan.plefka@aei.mpg.de

    2005-02-01

    We study SU(N) plane-wave matrix theory up to fourth perturbative order in its large N planar limit. The effective hamiltonian in the closed su(2) subsector of the model is explicitly computed through a specially tailored computer program to perform large scale distributed symbolic algebra and generation of planar graphs. The number of graphs here was in the deep billions. The outcome of our computation establishes the four-loop integrability of the planar plane-wave matrix model. To elucidate the integrable structure we apply the recent technology of the perturbative asymptotic Bethe ansatz to our model. The resulting S-matrix turns out to be structurally similar but nevertheless distinct to the so far considered long-range spin-chain S-matrices of Inozemtsev, Beisert-Dippel-Staudacher and Arutyunov-Frolov-Staudacher in the AdS/CFT context. In particular our result displays a breakdown of BMN scaling at the four-loop order. That is, while there exists an appropriate identification of the matrix theory mass parameter with the coupling constant of the N=4 superconformal Yang-Mills theory which yields an eighth order lattice derivative for well separated impurities (naively implying BMN scaling) the detailed impurity contact interactions ruin this scaling property at the four-loop order. Moreover we study the issue of 'wrapping' interactions, which show up for the first time at this loop-order through a Konishi descendant length four operator. (author)

  16. Application of Plane Wave Method to the Calculation of Electronic States of Nano-Structures

    Institute of Scientific and Technical Information of China (English)

    LI Shu-Shen; XIA Jian-Bai

    2006-01-01

    @@ The electronic states of nano-structures are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The barrier width and the number of plane waves are proposed to be 2.5 times the effective Bohr radius and 15n, respectively, for n-dimensional nano-structures (n = 1, 2, 3). Our proposals can be widely applied in the design of various nano-structure devices.

  17. Traveling Wave Modes of a Plane Layered Anelastic Earth

    Science.gov (United States)

    2016-05-20

    variable in the standing wave free oscillation problem is the frequency , which makes the eigenvalue problem nonlinear. The choice of the wavenumber as...38) By making the assignment Irn = κn Iqn, (39) the quadratic generalized eigenvalue problem Eq. (34) can be converted to a linear generalized...elastic eigenfunctions and the complex frequency dependent elastic moduli. The lateral standing-wave nature of the earth free oscillation problem leads to

  18. Propagation of plane waves in poroviscoelastic anisotropic media

    Institute of Scientific and Technical Information of China (English)

    A.K.Vashishth,M.D.Sharma

    2008-01-01

    This study discusses wave propagation in perhaps the most general model of a poroelastic medium.The medium is considered as a viscoelastic,anisotropic and porous solid frame such that its pores of anisotropic permeability are filled with a viscous fluid.The anisotropy considered is of general type,and the attenuating waves in the medium are treated as the inhomogeneous waves.The complex slowness vector is resolved to define the phase velocity,homogeneous attenuation,inhomogeneous attenuation,and angle of attenuation for each of the four attenuating waves in the medium.A non-dimensional parameter measures the deviation of an inhomogeneous wave from its homogeneous version.An numerical model of a North-Sea sandstone is used to analyze the effects of the propagation direction,inhomogeneity parameter,frequency regime,anisotropy symmetry,anelasticity of the frame,and viscosity of the pore-fluid on the propagation characteristics of waves in such a medium.

  19. Response of a Doppler canceling system to plane gravitational waves

    Science.gov (United States)

    Caporali, A.

    1982-01-01

    This paper discusses the interaction of long periodic gravitational waves with a three-link microwave system known as the Doppler canceling system. This system, which was developed for a gravitational red-shift experiment, uses one-way and two-way Doppler information to construct the beat signal of two reference oscillators moving with respect to each other. The geometric-optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational-wave space-time. The signature left on the Doppler-cancelled beat by bursts and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler canceling system and that of a (NASA) Doppler tracking system which employs two-way, round-trip radio waves. A threefold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

  20. The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence

    Science.gov (United States)

    Smith, Glenn S.

    2012-01-01

    In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…

  1. An experimental study on runup of two solitary waves on plane beaches

    Institute of Scientific and Technical Information of China (English)

    XUAN Rui-tao; WU Wei; LIU Hua

    2013-01-01

    Experiments of the runup of two solitary waves on a plane beach are carried out in a wave flume.The two solitary waves with the same amplitude and the crest separating distances are generated by using an improved wave generation method.It is found that,with regard to the two solitary waves with same wave amplitude,the runup amplification of the second wave is less than that of the first wave if the relative crest separating distance is reduced to a certain threshold value.The rundown of the first solitary wave depresses the maximum runup of the second wave.If the leading solitary wave is of relatively smaller amplitude for the two solitary waves,the runup amplification is affected by the overtaking process of two solitary waves.It turns out that the runup amplification of the second wave is larger than that of the first wave if the similarity factor is approximately larger than 15,which means the larger wave overtakes the smaller one before the waves runup on a beach.

  2. A phase-plane analysis of localized frictional waves

    Science.gov (United States)

    Putelat, T.; Dawes, J. H. P.; Champneys, A. R.

    2017-07-01

    Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.

  3. Characteristics of Plane Wave Propagation in Biaxially Anisotropic Gyrotropic Media

    Institute of Scientific and Technical Information of China (English)

    PAN Wei-Tao; LIU Song-Hua; QIU Zhi-Liang

    2012-01-01

    Propagation characteristics of electromagnetic waves at the interface between an isotropic regular medium and a biaxially anisotropic gyrotropic medium are investigated.The results indicate that the reflection and refract ionproperties of electromagnetic waves are closely dependent on the dispersion relation of the gyrotropic media,and that anomalous total reflection and negative refraction may occur.The existence conditions of total transmission are also considered.It is found that total transmission arises when the TE-polarized incident waves are normal to the interface and the physical parameters of the two media are chosen properly,which are quite different from the existence conditions of total transmission at the anisotropic left-handed material interface.Numerical resul tsare given to validate our theoretical analysis.

  4. Progress in parallel implementation of the multilevel plane wave time domain algorithm

    KAUST Repository

    Liu, Yang

    2013-07-01

    The computational complexity and memory requirements of classical schemes for evaluating transient electromagnetic fields produced by Ns dipoles active for Nt time steps scale as O(NtN s 2) and O(Ns 2), respectively. The multilevel plane wave time domain (PWTD) algorithm [A.A. Ergin et al., Antennas and Propagation Magazine, IEEE, vol. 41, pp. 39-52, 1999], viz. the extension of the frequency domain fast multipole method (FMM) to the time domain, reduces the above costs to O(NtNslog2Ns) and O(Ns α) with α = 1.5 for surface current distributions and α = 4/3 for volumetric ones. Its favorable computational and memory costs notwithstanding, serial implementations of the PWTD scheme unfortunately remain somewhat limited in scope and ill-suited to tackle complex real-world scattering problems, and parallel implementations are called for. © 2013 IEEE.

  5. Planckian energy scattering, colliding plane gravitational waves and black hole creation

    CERN Document Server

    Viswanathan, K S; Viswanathan, K S; Volovich, I V

    1994-01-01

    In a series of papers Amati, Ciafaloni and Veneziano and 't Hooft conjectured that black holes occur in the collision of two light particles at planckian energies. In this paper we discuss a possible scenario for such a process by using the Chandrasekhar-Ferrari-Xanthopoulos duality between the Kerr black hole solution and colliding plane gravitational waves. We clarify issues arising in the definition of transition amplitude from a quantum state containing only usual matter without black holes to a state containing black holes. Collision of two plane gravitational waves producing a space-time region which is locally isometric to an interior of black hole solution is considered. The phase of the transition amplitude from plane waves to white and black hole is calculated by using the Fabbrichesi, Pettorino, Veneziano and Vilkovisky approach. An alternative extension beyond the horizon in which the space-time again splits into two separating gravitational waves is also discussed. Such a process is interpreted a...

  6. Propagation of plane waves in thermoelastic cubic crystal material with two relaxation times

    Institute of Scientific and Technical Information of China (English)

    Rajneesh Kumar; Manjeet Singh

    2007-01-01

    A problem concerned with the reflection and refraction of thermoelastic plane waves an imperfect interface between two generalized thermally conducting cutimes has been investigated.The generalized thermoelastic theory with two relaxation of retiected and refracted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal stiffness,transverse stiffness,themlal contact conductance,slip and welded boundaries. Amplitude ratios of different reflected and graphically for different incident waves.It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thermal properties of the media.

  7. Finite-amplitude steady waves in plane viscous shear flows

    Science.gov (United States)

    Milinazzo, F. A.; Saffman, P. G.

    1985-01-01

    Computations of two-dimensional solutions of the Navier-Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on the physical constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artifice of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.

  8. Well-posedness and generalized plane waves simulations of a 2D mode conversion model

    CERN Document Server

    Imbert-Gérard, Lise-Marie

    2015-01-01

    Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.

  9. Dispersion of circumferential waves in cylindrically anisotropic layered pipes in plane strain.

    Science.gov (United States)

    Vasudeva, R Y; Sudheer, G; Vema, Anu Radha

    2008-06-01

    Dispersion spectra of circumferential waves along the periphery of circular pipes made of layered anisotropic materials do not seem to be available in literature. This note attempts to partially fill this gap by providing the dispersion spectra in two and three layered cylindrically anisotropic pipes in plane strain motion. The spectra for pipes executing time harmonic vibrations in plane strain condition are obtained as roots of a numerical characteristic equation derived extending a weighted residual method of solution of the governing equations for a single layer pipe [Towfighi et al., J. Appl. Mech. 69, 283-291 (2002)] to a general N layered pipe. The anisotropic elastic coefficients are considered to be independent of position coordinates and the bond condition at interfaces of the layers is assumed to be perfect. Numerical illustrations are presented for two and three layered pipes with anisotropy directions differing in adjacent layers. Increase in curvature of the pipe and inclination of the fiber orientation in the outermost layers to propagation direction are factors that seem to influence the mode number and pattern within the limited examples worked out.

  10. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  11. Continuous-wave terahertz multi-plane in-line digital holography

    Science.gov (United States)

    Huang, Haochong; Wang, Dayong; Li, Weihua; Rong, Lu; Taylor, Zachary D.; Deng, Qinghua; Li, Bin; Wang, Yunxin; Wu, Weidong; Panezai, Spozmai

    2017-07-01

    Terahertz digital holography is a non-scanning and real time method for reconstructing the absorption and phase distributions of the wave-front diffracted by a given sample simultaneously in the terahertz region. A continuous-wave terahertz in-line digital holographic multi-plane imaging method is presented here for achieving a three-dimensional shape of a specific portion of a sample with the best possible focus. The three enhancement techniques of synthetic aperture, autofocusing and phase retrieval are applied to the single plane recordings for achieving a high resolution, good quality and optimally focused reconstructed image. Later, multi-plane reconstructed images are processed with the threshold mask and a three dimensional profile of the sample is obtained. Experimental verification confirms that the proposed method is a valid tool for acquiring multi-plane information of a target in the terahertz range.

  12. Two- and three-dimensional computation of solitary wave runup on non-plane beach

    Directory of Open Access Journals (Sweden)

    B. H. Choi

    2008-06-01

    Full Text Available Solitary wave runup on a non-plane beach is studied analytically and numerically. For the theoretical approach, nonlinear shallow-water theory is applied to obtain the analytical solution for the simplified bottom geometry, such as an inclined channel whose cross-slope shape is parabolic. It generalizes Carrier-Greenspan approach for long wave runup on the inclined plane beach that is currently used now. For the numerical study, the Reynolds Averaged Navier-Stokes (RANS system is applied to study soliton runup on an inclined beach and the detailed characteristics of the wave processes (water displacement, velocity field, turbulent kinetic energy, energy dissipation are analyzed. In this study, it is theoretically and numerically proved that the existence of a parabolic cross-slope channel on the plane beach causes runup intensification, which is often observed in post-tsunami field surveys.

  13. Efficient computation of GW energy level corrections for molecules described in a plane wave basis

    Science.gov (United States)

    Rousseau, Bruno; Laflamme Janssen, Jonathan; Côté, Michel

    2013-03-01

    An efficient computational approach is presented to compute the ionisation energy and quasiparticle band gap at the level of the GW approximation when the Hilbert space is described in terms of plane waves. The method relies on ab initio calculations as a starting point. Then, the use of the Sternheimer equation eliminates slowly convergent sums on conduction states. Further, the Lanczos method is used to efficiently extract the most important eigenstates of the dielectric operator. This approach avoids the explicit computation of matrix elements of the dielectric operator in the plane wave basis, a crippling bottleneck of the brute force approach. The method is initially applied to organic molecules of current interest in the field of organic photovoltaics. Given the completeness of the plane wave basis, systematic convergence studies can be conducted. Furthermore, the method can readily be extended to describe polymers, which are also of interest for photovoltaic applications, but remain a significant computational challenge for methods based on localized basis sets.

  14. Reflection of plane waves from free surface of a microstretch elastic solid

    Indian Academy of Sciences (India)

    Baljeet Singh

    2002-03-01

    In the present investigation, it is shown that there exists five basic waves in a microstretch elastic solid half-space. The problem of reflection of plane waves from free surface of a microstretch elastic solid half-space is studied. The energy ratios for various reflected waves are obtained for aluminium- epoxy composite as a microstretch elastic solid half-space. The variations of the energy ratios with the angle of incidence are shown graphically. The microstretch effect is shown on various reflected waves.

  15. Reection and refraction of plane waves at the interface between magnetoelectroelastic and liquid media

    Directory of Open Access Journals (Sweden)

    Zhang Rong

    2013-01-01

    Full Text Available This paper analyzes the reflection and refraction of plane wave incidences at the interface between magnetoelectroelastic (MEE and liquid media. The MEE medium is assumed to be transversely isotropic and the liquid medium to be nonviscous. Three cases, i.e., the coupled quasipressure wave incidence from the MEE medium, the coupled quasi-shear vertical wave incidence from the MEE medium, and the pressure wave incidence from the liquid medium, are discussed. The expressions of reflection and transmission coefficients varying with the incident angle are obtained. This investigation would be useful to the MEE acoustic device field.

  16. Stretch bending - the plane within the sheet where strains reach the forming limit curve

    Science.gov (United States)

    Neuhauser, F. M.; Terrazas, O. R.; Manopulo, N.; Hora, P.; Van Tyne, C. J.

    2016-11-01

    Finite element analysis (FEA) was used to model the angular stretch bend test, where a strip of sheet metal is locked at both ends and a tool with a radius stretches and bends the center of the strip until failure. The FEA program used in the study was Abaqus. The FEA model was verified by experimental work using a dual phase steel (DP600) and with a simplified analytical analysis. The FEA model was used to simulate the experimental test for various frictional conditions and various radii of an upward moving tool. The primary objective of the study was to evaluate the concave-side rule, which states that during stretch bending the forming limit occurs when the strains on the concave surface plane of the bent sheet (i.e. bottom plane) reach the forming limit curve (FLC). The verification with experimental data indicates that the FEA model represents the process very well. Only conditions where failure occurred on or near the tooling are included in the results. The FEA simulations showed that the actual forming limit of the sheet occurs when the strains on the bottom plane of the sheet (i.e. concave side of the bend) reach the forming limit curve for high friction and small tool radii. For lower friction and for larger tool radii the actual forming limit occurs when strains on other planes in the sheet (i.e. mid planes or top surface plane) reach the forming limit curve. The implications of these results suggest that care must be taken in assessing forming operations when both stretch and bending occur. Although it is known that the FLC cannot predict the forming limit for small bend radii, the common assumption that the forming limit occurs when the strains for the middle thickness plane of the sheet reach the forming limit curve or that the concave side rule is often made. Understanding the limits of this assumption needs to be carefully and critically evaluated.

  17. Collision of plane thermonuclear detonation waves in a preliminarily compressed DT mixture

    Science.gov (United States)

    Khishchenko, K. V.; Charakhch'yan, A. A.

    2015-03-01

    The paper deals with a one-dimensional problem on symmetric irradiation of a plane DT fuel layer with a thickness 2 H and density ρ0 ⩽ 100ρ s (where ρ s is the density of the DT fuel in the solid state at atmospheric pressure and a temperature of 4 K) by two identical monoenergetic proton beams with a kinetic energy of 1 MeV, an intensity of 1019 W/cm2, and a duration of 50 ps. The problem is solved in the framework of one-fluid two-temperature hydrodynamic model that takes into account the equation of state for hydrogen, electron and ion heat conductivities, kinetics of the DT reaction, plasma self-radiation, and plasma heating by α-particles. The irradiation of the fuel results in the appearance of two counterpropagating detonation waves to the fronts of which rarefaction waves are adjacent. The efficiency of the DT reaction after the collision (reflection from the plane of symmetry) of the detonation waves depends on the spatial homogeneity of thermodynamic functions between the fronts of the reflected detonation waves. At Hρ0 ≈ 1 g/cm2, the gain factor is G ≈ 200, whereas at Hρ0 ≈ 5 g/cm2, it is G > 2000. As applied to a cylindrical target that is ignited from ends and in which the cylinder with the fuel is surrounded by a heavy magnetized shell, the obtained values of the burn-up and gain factors are maximum possible. To estimate the ignition energy E ig of a cylindrical target by using solutions to the one-dimensional problem, a quasi-one-dimensional model is developed. The model assumes that the main mechanism of target ignition is fuel heating by α-particles. The trajectories of α-particles are limited by a cylindrical surface with a given radius, which is a parameter of the model and is identified with the fuel radius in the target and the radii of the irradiating proton beams. This model reproduces the well-known theoretical dependence E ig ˜ ρ{0/-2} and yields E ig = 160 kJ as a lower estimate of the ignition energy for ρ0 = 100ρ s

  18. Full-wave Analyses of Scattering of Electromagnetic Wave from the Weakly Ionized Plasma in Plane Geometry

    Institute of Scientific and Technical Information of China (English)

    Song Falun; Cao Jinxiang; Wang Ge

    2005-01-01

    The purpose of the present work is to present a full-wave analysis of scattering from the weakly ionized plasma in the plane geometry. We have yielded an approximate solution in an analytic form to the electromagnetic wave scattering from the weakly ionizsd plasma. In the normal and oblique incidence, the analytic solution works well, as compared with the exact solution and the solution based on the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation to the uniform density profile.

  19. Plane-wave decomposition by spherical-convolution microphone array

    Science.gov (United States)

    Rafaely, Boaz; Park, Munhum

    2001-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  20. Plane-wave decomposition by spherical-convolution microphone array

    Science.gov (United States)

    Rafaely, Boaz; Park, Munhum

    2004-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  1. Scattering and diffraction of plane SH-waves by periodically distributed canyons

    Science.gov (United States)

    Ba, Zhenning; Liang, Jianwen; Zhang, Yanju

    2016-06-01

    A new method is presented to study the scattering and diffraction of plane SH-waves by periodically distributed canyons in a layered half-space. This method uses the indirect boundary element method combined with Green's functions of uniformly distributed loads acting on periodically distributed inclined lines. The periodicity feature of the canyons is exploited to limit the discretization effort to a single canyon, which avoids errors induced by the truncation of the infinite boundary, and the computational complexity and the demand on memory can be significantly reduced. Furthermore, the total wave fields are decomposed into the free field and scattered field in the process of calculation, which means that the method has definite physical meaning. The implementation of the method is described in detail and its accuracy is verified. Parametric studies are performed in the frequency domain by taking periodically distributed canyons of semi-circular and semi-elliptic cross-sections as examples. Numerical results show that the dynamic responses of periodically distributed canyons can be quite different from those for a single canyon and significant dynamic interactions exist between the canyons.

  2. Back Radiation Suppression through a Semitransparent Ground Plane for a mm-Wave Patch Antenna

    KAUST Repository

    Klionovski, Kirill

    2017-06-21

    Omnidirectional radiation pattern with minimum backward radiation is highly desirable for base station antennas to minimize the multipath effects. Semitransparent ground planes have been used to reduce the backward radiation, but mostly with complicated non-uniform impedance distribution. In this work, we propose, for the first time, a round semitransparent ground plane of radius 0.8 λ with uniform impedance distribution that can improve the front-to-back ratio of a wideband patch antenna by 11.6 dB as compared to a similar sized metallic ground plane. The value of uniform impedance is obtained through analytical optimization by using asymptotic expressions in the Kirchhoff approximation of the radiation pattern of a toroidal wave scattered by a round semitransparent ground plane. The semitransparent ground plane has been realized using a low-cost carbon paste on a Kapton film. Experimental results match closely with those of simulations and validate the overall concept.

  3. Visualization of superluminal pulses inside a white light cavity using plane wave spatio temporal transfer functions.

    Science.gov (United States)

    Yum, H N; Jang, Y J; Liu, X; Shahriar, M S

    2012-08-13

    In a white light cavity (WLC), the group velocity is superluminal over a finite bandwidth. For a WLC-based data buffering system we recently proposed, it is important to visualize the behavior of pulses inside such a cavity. The conventional plane wave transfer functions, valid only over space that is translationally invariant, cannot be used for the space inside WLC or any cavity, which is translationally variant. Here, we develop the plane wave spatio temporal transfer function (PWSTTF) method to solve this problem, and produce visual representations of a Gaussian input pulse incident on a WLC, for all times and positions.

  4. A time domain energy theorem for scattering of plane electromagnetic waves

    Science.gov (United States)

    de Hoop, A. T.

    1984-10-01

    A time domain analysis of the scattering problem reveals the more general conditions under which the relevant theorems in the theory of the scattering of electromagnetic waves by an obstacle of bounded extent may also hold in the time domain. The present investigation is concerned with the energy theorem for plane wave scattering. Three different kinds of time behavior are considered, taking into account transient fields, time-periodic fields, and perpetuating fields. The derived energy theorem relates the energy which is both absorbed and scattered by the object to the spherical-wave amplitude of the scattered field in the far-field region, when observed in the direction of propagation of the incident plane wave.

  5. Study of simple plane wave generator with an air-metal barrier

    Directory of Open Access Journals (Sweden)

    Wei Xiong

    2014-06-01

    Full Text Available Plane wave generators (PWGs are used to accelerate flyer plates to high velocities with their generated plane waves, which are widely used in the test of dynamic properties of materials. The traditional PWG is composed of two explosives with different detonation velocities. It is difficult to implement the related fabrication processes and control the generated waves due to its complicated structures. A simple plane wave generator is presented in this paper, which is composed of two identical cylindrical high explosive (HE charges and an air-metal barrier. A theoretical model was established based on two different paths of the propagation of detonation waves, based on which the size of air-metal barrier was calculated for a given charge. The corresponding numerical simulations were also carried out by AUTODYN-2D® based on the calculated results, which were used to compare with the theoretical calculations. A detonation wave with a flatness of 0.039 μs within the range of 70-percent diameter of the main charge was obtained through the simulations.

  6. Study of simple plane wave generator with an air-metal barrier

    Institute of Scientific and Technical Information of China (English)

    Wei XIONG; Xian-feng ZHANG; Zhong-wei GUAN; Yong HE; Liang QIAO; Li-li GUO

    2014-01-01

    Plane wave generators (PWGs) are used to accelerate flyer plates to high velocities with their generated plane waves, which are widely used in the test of dynamic properties of materials. The traditional PWG is composed of two explosives with different detonation velocities. It is difficult to implement the related fabrication processes and control the generated waves due to its complicated structures. A simple plane wave generator is presented in this paper, which is composed of two identical cylindrical high explosive (HE) charges and an air-metal barrier. A theoretical model was established based on two different paths of the propagation of detonation waves, based on which the size of air-metal barrier was calculated for a given charge. The corresponding numerical simulations were also carried out by AUTODYN-2D® based on the calculated results, which were used to compare with the theoretical calculations. A detonation wave with a flatness of 0.039 ms within the range of 70-percent diameter of the main charge was obtained through the simulations.

  7. From plane waves to local Gaussians for the simulation of correlated periodic systems

    Science.gov (United States)

    Booth, George H.; Tsatsoulis, Theodoros; Chan, Garnet Kin-Lic; Grüneis, Andreas

    2016-08-01

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller-Plesset perturbation theory.

  8. Causality and conjugate points in general plane waves

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J L; Sanchez, M [Departamento de Geometria y Topologia, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva s/n, 18071 Granada (Spain)

    2003-06-07

    Let M = M{sub 0} x R{sup 2} be a pp-wave-type spacetime endowed with the metric ({center_dot}, {center_dot}){sub z} = ({center_dot}, {center_dot}){sub x} + 2 du dv + H(x, u) du{sup 2}, where (M{sub 0}, ({center_dot}, {center_dot}){sub x}) is any Riemannian manifold and H(x, u) is an arbitrary function. We show that the behaviour of H(x, u) at spatial infinity determines the causality of M, say: (a) if -H(x, u) behaves subquadratically (i.e, essentially -H(x, u) {<=} R{sub 1}(u)|x|{sup 2-{epsilon}} for some {epsilon} > 0 and large distance |x| to a fixed point) and the spatial part (M{sub 0}, ({center_dot}, {center_dot}){sub x}) is complete, then the spacetime M is globally hyperbolic, (b) if -H(x, u) grows at most quadratically (i.e, -H(x, u) {<=} R{sub 1}(u)|x|{sup 2} for large |x|) then it is strongly causal and (c) M is always causal, but there are non-distinguishing examples (and thus, not strongly causal), even when -H(x, u) {<=} R{sub 1}(u)|x|{sup 2+{epsilon}}, for small {epsilon} > 0. Therefore, the classical model M{sub 0} = R{sup 2}, H(x, u) = {sigma}{sub i,j} h{sub ij}(u)x{sub i}x{sub j} {ne} 0), which is known to be strongly causal but not globally hyperbolic, lies in the critical quadratic situation with complete M{sub 0}. This must be taken into account for realistic applications. In fact, we argue that -H will be subquadratic (and the spacetime globally hyperbolic) if M is asymptotically flat. The relation of these results with the notion of astigmatic conjugacy and the existence of conjugate points is also discussed.

  9. A pulsed electron gun for the Plane Wave Transformer Linac

    CERN Document Server

    Mahadevan, S; Nandedkar, R V

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 mu perv and the normalized emittance is within 5 pi mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance.

  10. Band structure of thin films by the linear augmented-plane-wave method

    DEFF Research Database (Denmark)

    Jepsen, O.; Madsen, J.; Andersen, Ole Krogh

    1978-01-01

    We present a linear augmented-plane-wave method for solving the band-structure problem in thin crystalline films. The potential is separated into a muffin-tin potential inside the film, a potential depending exclusively on the normal coordinate outside the film, and corrections in both regions...

  11. Linear GPR Imaging Based on Electromagnetic Plane-Wave Spectra and Diffraction Tomography

    DEFF Research Database (Denmark)

    Meincke, Peter

    2004-01-01

    in the forward model. The two inversion schemes include an accurate electromagnetic description of the GPR antennas through their plane-wave transmitting and receiving spectra. The performance of the FTM is investigated through a numerical example involving a 2.5-dimensional configuration in which the GPR...

  12. Optimized Plane Wave Imaging for Fast and High-Quality Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2016-01-01

    This paper presents a method for optimizing parameters affecting the image quality in plane wave imaging. More specifically, the number of emissions and steering angles is optimized to attain the best images with the highest frame rate possible. The method is applied to a specific problem, where ...

  13. Simplified description of out-of-plane waves in thin annular elastic plates

    DEFF Research Database (Denmark)

    Zadeh, Maziyar Nesari; Sorokin, Sergey

    2013-01-01

    Dispersion relations are derived for the out-of-plane wave propagation in planar elastic plates with constant curvature using the classical Kirchhoff thin plate theory. The dispersion diagrams and the mode shapes are compared with their counterparts for a straight plate strip and the role of curv...

  14. Performance evaluation of compounding and directional beamforming techniques for carotid strain imaging using plane wave transmissions

    DEFF Research Database (Denmark)

    Hansen, Hendrik H.G.; Stuart, Matthias Bo; Villagómez Hoyos, Carlos Armando

    2014-01-01

    using linear array ultrasound data of a pulsating concentric homogeneous artery simulated using Field II . The transducer ( f c = 9 MHz, pitch = 197.9 μ m, 192 elements, f s = 180 MHz) transmitted plane waves at 3 sequentially alternating angles (0°, + θ , - θ ) at a PRF of 2 kHz. Simulations were...

  15. Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...

  16. Z sup 0 -boson contribution in anomalous electron momenta in plane-wave electromagnetic field

    CERN Document Server

    Klimenko, E Y

    2002-01-01

    The Z sup 0 -boson contribution to the mass of electron moving in plane-wave field is considered. The dependence of the Z sup 0 -boson contribution to electron anomalous magnetic momentum and anomalous electric momentum on the external field parameters is studied within the frames of the Weinberg-Salam-Glashow standard model

  17. Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...

  18. Fast color flow mode imaging using plane wave excitation and temporal encoding

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt

    2005-01-01

    velocity image is presented. The method is based on using a plane wave excitation with temporal encoding to compensate for the decreased SNR, resulting from the lack of focusing. The temporal encoding is done with a linear frequency modulated signal. To decrease lateral sidelobes, a Tukey window is used...

  19. LDA+DMFT implemented with the pseudopotential plane-wave approach

    Energy Technology Data Exchange (ETDEWEB)

    Trimarchi, G; Leonov, I; Binggeli, N [Abdus Salam International Centre for Theoretical Physics, Trieste 34014 (Italy); Korotin, Dm; Anisimov, V I [Institute of Metal Physics, Russian Academy of Sciences, Ural Division, 620219 Yekaterinburg GSP-170 (Russian Federation)], E-mail: binggeli@ictp.it

    2008-04-02

    We present a joint implementation of dynamical-mean-field theory (DMFT) with the pseudopotential plane-wave approach, via Wannier functions, for the determination of the electronic properties of strongly correlated materials. The scheme uses, as input for the DMFT calculations, a tight-binding Hamiltonian obtained from the plane-wave calculations by projection onto atomic-centered symmetry-constrained Wannier functions for the correlated orbitals. We apply this scheme to two prototype systems: a paramagnetic correlated metal, SrVO{sub 3}, and a paramagnetic correlated system, V{sub 2}O{sub 3}, which exhibits a metal-insulator transition. Comparisons with available linear-muffin-tin-orbital (LMTO) plus DMFT calculations demonstrate the suitability of the joint DMFT pseudopotential plane-wave approach to describe the electronic properties of strongly correlated materials. This opens the way to future developments using the pseudopotential plane-wave DMFT approach to address total-energy properties, such as structural properties.

  20. The motion of charged particles in strong plane waves including radiation reaction

    Science.gov (United States)

    Leinemann, R.; Herold, H.; Ruder, H.; Kegel, W. H.

    The Lorentz-Dirac equation in the Landau approximation is used to study the motion of charged particles in strong plane vacuum waves. It is shown that integration for circularly polarized waves can be used to determine analytically the curves of the particle trajectories. The solution is used to investigate the particle trajectories and energy evolution for various strong waves. The initial conditions for the motion are chosen so that the particles start from a radiation-free path and the growing effect of the radiation reaction on the particle trajectory is highlighted.

  1. Reflection of plane waves in an initially stressed perfectly conducting transversely isotropic solid half-space

    Indian Academy of Sciences (India)

    Baljeet Singh; Anand Kumar Yadav

    2013-08-01

    Reflection of plane waves is studied at a free surface of a perfectly conducting transversely isotropic elastic solid half-space with initial stress. The governing equations are solved to obtain the velocity equation which indicates the existence of two quasi planar waves in the medium. Reflection coefficients and energy ratios for reflected qP and qSV waves are derived and computed numerically for a particular material. Effects of the initial stress and magnetic field are shown graphically on these reflection coefficients and energy ratios.

  2. Numerical Study of Submerged Vertical Plane Jets Under Progressive Water Surface Waves

    Institute of Scientific and Technical Information of China (English)

    DAI Hui-chao; WANG Ling-ling

    2005-01-01

    When wastewater is discharged into a coastal area through an outfall system, it will always be subjected to the action of waves. It is important to study and quantify the mixing of the discharge with the ambient water so that accurate environmental impact assessment can be made for such discharge conditions. The present work aims to study the phenomenon of a plane jet discharged into water environment with regular waves. A 3D numerical model based on the full Navier-Stokes equations (NSE) in the σ-coordinate is developed to study the present problem. Turbulence effects are modeled by a subgrid-scale (SGS) model using the concept of large eddy simulation (LES). The operator splitting method is used to solve the modified NSE. The model has been applied to the simulation of three different cases of submerged plane jets with surface waves: jet with strong waves, jet with weak waves and jet without waves. Numerical results show that the waves enhance the mixing of the jet with the ambient fluid, and cause a periodic deflection of the jet. The size of the re-circulation is about 1.5~2.4 depth of water. The velocity profile of the jet is self-similar in the zone of established flow for both the pure jet and jet in wave circumstances. The spreading characteristic constant α is 0.100 and 0.105 for pure momentum jets with Re numbers 1025 and 2050. The value of α increases from 0.130 to 0.147 for a jet in weak and strong wave circumstances, showing that waves have an obvious effect on the mixing and dilution properties of jets. Numerical results are in good agreement with the experimental data for the cases of pure jets and jets with waves.

  3. Optical Measurement of In-plane Elastic Waves in Mechanical Metamaterials Through Digital Image Correlation

    CERN Document Server

    Schaeffer, Marshall; Ruzzene, Massimo

    2016-01-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behavior, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centering image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subsequent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing ...

  4. Radiation of de-excited electrons at large times in a strong electromagnetic plane wave

    CERN Document Server

    Kazinski, P O

    2013-01-01

    The late time asymptotics of the physical solutions to the Lorentz-Dirac equation in the electromagnetic external fields of simple configurations -- the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave -- are found. The solutions to the Landau-Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. General properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half of the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late ti...

  5. Reflection of plane electromagnetic waves from the surface of a perfect conductor moving in an arbitrary direction

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The reflection of plane electromagnetic waves (TE wave and TM wave) from a perfect conductor which moves in an arbitrary direction is investigated. Based on Maxwell's equations and the boundary conditions for moving boundary, the relation between the field vectors of reflected and incident waves, and the reflection coefficient are derived. The energy balance between incident and reflected waves, the force exerted by electromagnetic waves to the moving conductor are also discussed and some new conclusions are suggested for notice.

  6. Possible second-order nonlinear interactions of plane waves in an elastic solid.

    Science.gov (United States)

    Korneev, V A; Demčenko, A

    2014-02-01

    There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order. All other possible interactions out of 54 combinations (triplets) of interacting and resulting waves are prohibited, because of restrictions of various kinds. The considered waves include longitudinal and two shear waves polarized in the interacting plane and orthogonal to it. The amplitudes of scattered waves have simple analytical forms, which can be used for experimental setup and design. The analytic results are verified by comparison with numerical solutions of initial equations. Amplitude coefficients for all ten interactions are computed as functions of frequency for polyvinyl chloride, together with interaction and scattering angles. The nonlinear equation of motion is put into a general vector form and can be used for any coordinate system.

  7. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave.

    Science.gov (United States)

    Sum, K S; Pan, J

    2007-07-01

    Distributions of sound pressure and intensity on the surface of a flat impedance strip flush-mounted on a rigid baffle are studied for a grazing incident plane wave. The distributions are obtained by superimposing the unperturbed wave (the specularly reflected wave as if the strip is rigid plus the incident wave) with the radiated wave from the surface vibration of the strip excited by the unperturbed pressure. The radiated pressure interferes with the unperturbed pressure and distorts the propagating plane wave. When the plane wave propagates in the baffle-strip-baffle direction, it encounters discontinuities in acoustical impedance at the baffle-strip and strip-baffle interfaces. The radiated pressure is highest around the baffle-strip interface, but decreases toward the strip-baffle interface where the plane wave distortion reduces accordingly. As the unperturbed and radiated waves have different magnitudes and superimpose out of phase, the surface pressure and intensity increase across the strip in the plane wave propagation direction. Therefore, the surface absorption of the strip is nonzero and nonuniform. This paper provides an understanding of the surface pressure and intensity behaviors of a finite impedance strip for a grazing incident plane wave, and of how the distributed intensity determines the sound absorption coefficient of the strip.

  8. On the exact open-closed vertex in plane-wave light-cone string field theory

    CERN Document Server

    Lucietti, J; Sinha, A K; Lucietti, James; Schafer-Nameki, Sakura; Sinha, Aninda

    2003-01-01

    The open-closed vertex in the maximally supersymmetric type IIB plane-wave light-cone string field theory is considered and an explicit solution for the bosonic part of the vertex is derived, valid for all values of the mass parameter, \\mu. This vertex is of relevance to IIB plane-wave orientifolds, as well as IIB plane-wave strings in the presence of D-branes, and their gauge theory duals. Methods of complex analysis are used to develop a systematic procedure for obtaining the solution. This procedure is first applied to the vertex in flat space, and then extended to the plane-wave case. The plane-wave solution for the vertex requires introducing certain ``\\mu-deformed Gamma functions'', which are generalizations of the ordinary Gamma function. The behaviour of the Neumann matrices is graphically illustrated and their large-\\mu asymptotics are analysed.

  9. Resolution limits for wave equation imaging

    KAUST Repository

    Huang, Yunsong

    2014-08-01

    Formulas are derived for the resolution limits of migration-data kernels associated with diving waves, primary reflections, diffractions, and multiple reflections. They are applicable to images formed by reverse time migration (RTM), least squares migration (LSM), and full waveform inversion (FWI), and suggest a multiscale approach to iterative FWI based on multiscale physics. That is, at the early stages of the inversion, events that only generate low-wavenumber resolution should be emphasized relative to the high-wavenumber resolution events. As the iterations proceed, the higher-resolution events should be emphasized. The formulas also suggest that inverting multiples can provide some low- and intermediate-wavenumber components of the velocity model not available in the primaries. Finally, diffractions can provide twice or better the resolution than specular reflections for comparable depths of the reflector and diffractor. The width of the diffraction-transmission wavepath is approximately λ at the diffractor location for the diffraction-transmission wavepath. © 2014 Elsevier B.V.

  10. The decay of plane wave pulses with complex structure in a nonlinear dissipative medium

    CERN Document Server

    Gurbatov, S N; Pasmanik, G V; Gurbatov, Sergei N.; Enflo, Bengt O.; Pasmanik, Galina V.

    2000-01-01

    Nonlinear plane acoustic waves propagating through a fluid are studied using Burgers' equation with finite viscosity. The evolution of a simple N-pulse with regular and random initial amplitude and of pulses with monochromatic and noise carrier is considered. In the latter case the initial pulses are characterized by two length scales. The length scale of the modulation function is much greater than the period or the length scale of the carrier. With increasing time the initial pulses are deformed and shocks appear. The finite viscosity leads to a finite shock width, which does not depend on the fine structure of the initial pulse and is fully determined by the shock position in the zero viscosity limit. The other effect of nonzero viscosity is the shift of the shock position from the position at zero viscosity. This shift, as well as the linear time, at which the nonlinear stage of evolution changes to the linear stage, depends on the fine structure of the initial pulse. It is also shown that the nonlinearit...

  11. Towards a generalized iso-density continuum model for molecular solvents in plane-wave DFT

    Science.gov (United States)

    Gunceler, Deniz; Arias, T. A.

    2017-01-01

    Implicit electron-density solvation models offer a computationally efficient solution to the problem of calculating thermodynamic quantities of solvated systems from first-principles quantum mechanics. However, despite much recent interest in such models, to date the applicability of such models in the plane-wave context to non-aqueous solvents has been limited because the determination of the model parameters requires fitting to a large database of experimental solvation energies for each new solvent considered. This work presents a simple approach to quickly find approximations to the non-electrostatic contributions to the solvation energy, allowing for development of new iso-density models for a large class of protic and aprotic solvents from only simple, single-molecule ab initio calculations and readily available bulk thermodynamic data. Finally, to illustrate the capabilities of the resulting theory, we also calculate the surface solvation energies of crystalline LiF in various different non-aqueous solvents, and discuss the observed trends and their relevance to lithium battery technology.

  12. Ring-plane traveling-wave tube slow-wave circuit design simulations at V-Band frequencies

    Science.gov (United States)

    Kory, Carol L.; Wilson, Jeffrey D.

    1995-01-01

    The V-Band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for intersatellite communications. As a first effort to develop a high-efficiency V-band TWT, variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite the high-power capabilities of the ring-plane TWT, disadvantages of low bandwidth and high voltage requirements have until now prevented its acceptance outside the laboratory. In this paper, we use the three-dimensional electromagnetic simulation code MAFIA to investigate methods of increasing the bandwidth and lowering the operating voltage. Dispersion, impedance, and attenuation calculations for various geometric variations and loading distributions were performed. Based on the results of the variations, a circuit termed the finned-ladder TWT slowwave circuit was designed and is compared here to the scaled ring-plane prototype and the conventional ferruled coupled-cavity TWT circuit over the V-band frequency range.

  13. Propagation characteristics of shock waves from a plane carbon-nanotube-coated optoacoustic transducer in water

    Science.gov (United States)

    Fan, Xiaofeng; Baek, Yonggeun; Ha, Kanglyeol; Kim, Moojoon; Kim, Jungsoon; Kim, Duckjong; Kang, Hyun Wook; Oh, Junghwan

    2017-07-01

    An optoacoustic transducer made of light-absorbing and elastomeric materials can generate high-pressure wide-band ultrasound waves in water when it is illuminated by a pulse laser. To generate such waves with high efficiency, carbon nanotubes (CNTs) and poly(dimethylsiloxane) (PDMS) are widely used as the light-absorbing and elastomeric materials, respectively. It was previously reported that an optoacoustic concave transducer made of these materials can produce strong shock waves, namely, blast waves, within its focal zone. In this study, we have shown that these waves can also be generated by a plane optoacoustic transducer fabricated by coating CNTs-PDMS on a poly(methyl methacrylate) (PMMA) plate. Some propagation characteristics of the blast wave generated were measured and compared with the calculated results. It was found that the propagation speed and attenuation of the wave are different from those of usual sounds. From the comparison of the measured and the calculated acoustic fields, it is assumed that every point on the transducer surface produces almost the same blast wave.

  14. Cavity-based linear polarizer immune to the polarization direction of an incident plane wave.

    Science.gov (United States)

    Wang, Jiang; Shen, Zhongxiang; Gao, Xiang; Wu, Wen

    2016-01-15

    We herein report a linear polarizer based on a 2D array of substrate integrated waveguide cavities, which can convert an arbitrary linearly polarized (LP) incident wave into an outgoing LP wave in a specified polarization direction with constant transmittance. Two orthogonal slots etched on the front surface of the cavity are utilized to couple a wave of arbitrary polarization into the cavity, while another slot on the back side helps to couple the field out along a desired polarization direction. Microwave experiments are performed as a proof of concept. The proposed polarizer exhibits very good performance with stable transmittance as 50% and a polarization extinction ratio over 45 dB. The new polarizer is potentially useful in novel polarization-selective devices that are immune to the polarization direction of an incident plane wave.

  15. Travelling-wave solutions bifurcating from relative periodic orbits in plane Poiseuille flow

    CERN Document Server

    Rawat, Subhendu; Rincon, François

    2016-01-01

    Travelling-wave solutions are shown to bifurcate from relative periodic orbits in plane Poiseuille flow at Re = 2000 in a saddle-node infinite period bifurcation. These solutions consist in self-sustaining sinuous quasi-streamwise streaks and quasi- streamwise vortices located in the bulk of the flow. The lower branch travelling-wave solutions evolve into spanwise localized states when the spanwise size Lz of the domain in which they are computed is increased. On the contrary, upper branch of travelling-wave solutions develop multiple streaks when Lz is increased. Upper branch travelling-wave solutions can be continued into coherent solutions of the filtered equations used in large-eddy simulations where they represent turbulent coherent large-scale motions.

  16. Radiation of a Plane Shear Wave from an Elastic Waveguide to a Composite Elastic Space

    Directory of Open Access Journals (Sweden)

    Grigoryan E.Kh.

    2007-09-01

    Full Text Available The radiation of a plane shear wave from an elastic strip (waveguide to an elastic space is investigated in this paper. The strip is embedded into a space and is partially bonded with it. A given plane shear wave propagates from the free part of the strip and radiates into the composite space. The problem’s solution is led to a system of two uncoupled functional Wiener-Hopf type equations which are solved via the method of factorization. Closed form expressions are obtained which determine the wavefield in all the parts of the strip and space. Asymptotic expressions are provided which represent the wavefield in the far field and in the neighborhood of the contact zones. From these formulas it follows that: a in the cases of several values of the ratio of the wave numbers of the strip and space the order of vanishing of the volume wave in the strip becomes less and equal to the one in the case of a homogeneous material, b the radiated volume wave in the strip has a velocity of propagation equal to the volume wave’s velocity in the space.

  17. A Michelson Interferometer in the Field of a Plane Gravitational Wave

    CERN Document Server

    Poplawski, N J

    2006-01-01

    In this paper we treat the problem of a Michelson interferometer in the field of a weak, monochromatic, plane gravitational wave in the framework of the general theory of relativity. The arms of the interferometer are regarded as world lines, whose motion is determined by the equations of geodesics in the Hamilton-Jacobi formalism. We find that interference appears in the second approximation. Moreover, the measurement of the light beam delay between both arms can be used for determining the wavelength of such a wave.

  18. SCATTERING OF PLANE SH-WAVE BY A CYLINDRICAL HILL OF ARBITRARY SHAPE

    Institute of Scientific and Technical Information of China (English)

    曹欣荣; 宋天舒; 刘殿魁

    2001-01-01

    The problems of scattering of plane SH-wave by a cylindrical hill of arbitrary shape is studied based on the methods of conjunction and division of solution zone. The scattering wave function is given by using the complex variable and conformal mapping methods. The conjunction boundary conditions are satisfied. Furthermore appling orthogonal function expanding technique, the problems can finally be summarized into the solution of a series of infinite algebraic equations. At last, numerical results of surface displacements of a cylindrical arc hill and of a semi-ellipse hill are obtained. And those computational results are compared with the results of finite element method (FEM).

  19. Reflection of plane micropolar viscoelastic waves at a loosely bonded solid-solid interface

    Indian Academy of Sciences (India)

    Baljeet Singh

    2002-10-01

    A solution of the field equations governing small motions of a micropolar viscoelastic solid half-space is employed to study the reflection and transmission of plane waves at a loosely bonded interface between two dissimilar micropolar viscoelastic solid half-spaces. The amplitude ratios for various reflected and refracted waves are computed for a particular model for different values of bonding parameter. The variations of these amplitude ratios with the angle of incidence are shown graphically. Effects of bonding parameter and viscosity on the amplitude ratios are shown.

  20. Relativistic two-boson system in presence of electromagnetic plane waves

    CERN Document Server

    Droz-Vincent, Philippe

    2015-01-01

    The relativistic two-body problem is considered for spinless particles subject to an external macroscopic electromagnetic field. When this field is made of the monochromatic superposition of two conter-propagating plane waves (and provided the mutual interaction between particles is known), it is possible to write down explicitly a pair of coupled wave equations (corresponding to a pair of mass-shell constraints) which takes into account also the field contribution. These equations are manifestly covariant; constants of the motion are exhibited, so one ends up with a reduced problem concerning five degrees of freedom.

  1. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Science.gov (United States)

    Abramov, Arnold; Kostikov, Alexander

    2017-03-01

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder.

  2. Dynamics of a spiral pair source and its interaction with plane waves.

    Science.gov (United States)

    Rabinovitch, A; Biton, Y; Gutman, M; Aviram, I

    2009-05-01

    Spiral pair creation and dynamics is a widely occurring phenomenon in nature. It can appear in the heart tissue, causing severe arrhythmia, known as a figure-eight reentry. We consider the appearance of a spiral pair source, its minimal strength for survival, and the possible results of its interaction with a plane wave. In particular, its ability to outlast such an encounter is of interest. We also consider the question of exposing the source to a train of pulses, in terms of the frequency and angle of encounter. Results show different regimes of behavior, e.g. source annihilation, motion of the source away from, or towards the origin of the plane waves, its breaking and multiplication. Relevance of these results to heart arrhythmia and their possible cancellation by external pacing are briefly discussed.

  3. Tiny graviton matrix theory: DLCQ of IIB plane-wave string theory, a conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh-Jabbari, Mohammad M. [Department of Physics, Stanford University, 382 via Pueblo Mall, Stanford CA 94305-4060 (United States)]. E-mail: jabbari@itp.stanford.edu

    2004-09-01

    We conjecture that the discrete light-cone quantization (DLCQ) of strings on the maximally supersymmetric type IIB plane-wave background in the sector with J units of light-cone momentum is a supersymmetric 0+1 dimensional U(J) gauge theory (quantum mechanics) with PSU(2|2) x PSU(2|2) x U(1) superalgebra. The conjectured hamiltonian for the plane-wave matrix (string) theory, the tiny graviton matrix theory, is the quantized (regularized) three brane action on the same background. We present some pieces of evidence for this conjecture through analysis of the hamiltonian , its vacua, spectrum and coupling constant. Moreover, we discuss an extension of our conjecture to the DLCQ of type IIB strings on AdS{sub 5} x S{sup 5} geometry. (author)

  4. Simulations and cold-test results of a prototype plane wave transformer linac structure

    Directory of Open Access Journals (Sweden)

    Arvind Kumar

    2002-03-01

    Full Text Available We have built a 4-cell prototype plane wave transformer (PWT linac structure. We discuss here details of the design and fabrication of the PWT linac structure. We present results from superfish and gdfidl simulations as well as cold tests, which are in good agreement with each other. We also present detailed tolerance maps for the PWT structure. We discuss beam dynamics simulation studies performed using parmela.

  5. The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave

    CERN Document Server

    Finster, Felix

    2016-01-01

    We give a non-perturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.

  6. Contributions in anomalous fermion momenta of neutral vector boson in plane-wave field

    CERN Document Server

    Klimenko, E Y

    2002-01-01

    The contributions of the neutral vector boson to the anomalous magnetic and electric momenta of the polarized fermion moving in the plane-wave electromagnetic field are considered in this paper. The contributions are divided by the fermion spin polarization states, which makes it possible to investigate the important problem on the contributions to the fermion anomalous momenta, coming from the the fermion transition to the intermediate state spin-nonflip or spin flip of fermion

  7. Transition between free-space Helmholtz equation solutions with plane sources and parabolic wave equation solutions.

    Science.gov (United States)

    Mahillo-Isla, R; Gonźalez-Morales, M J; Dehesa-Martínez, C

    2011-06-01

    The slowly varying envelope approximation is applied to the radiation problems of the Helmholtz equation with a planar single-layer and dipolar sources. The analyses of such problems provide procedures to recover solutions of the Helmholtz equation based on the evaluation of solutions of the parabolic wave equation at a given plane. Furthermore, the conditions that must be fulfilled to apply each procedure are also discussed. The relations to previous work are given as well.

  8. Multiple-scattering corrections in diluted magnetic semiconductors: A plane-wave expansion

    Science.gov (United States)

    Scalbert, D.; Ghazali, A.; Benoit à la Guillaume, C.

    1993-12-01

    Energy levels of band edges in diluted magnetic semiconductors are calculated in the effective-mass approximation, retaining off-diagonal terms in the exchange interaction and using a plane-wave expansion. This model accounts qualitatively for the observed asymmetry in the splitting of the A exciton in a magnetic field in Cd1-xMnxS for which multiple-scattering corrections are expected to be important.

  9. Remarks on the completeness of trajectories of accelerated particles in Riemannian manifolds and plane waves

    CERN Document Server

    Candela, Anna Maria; Sánchez, Miguel

    2013-01-01

    Recently, classical results on completeness of trajectories of Hamiltonian systems obtained at the beginning of the seventies, have been revisited, improved and applied to Lorentzian Geometry. Our aim here is threefold: to give explicit proofs of some technicalities in the background of the specialists, to show that the introduced tools allow to obtain more results for the completeness of the trajectories, and to apply these results to the completeness of spacetimes that generalize classical plane and pp-waves.

  10. Comparison between holographic interferometry and high-speed videography techniques in the study of the reflection of plane shock waves

    Science.gov (United States)

    Barbosa, Filipe J.; Skews, Beric W.

    1997-05-01

    Double exposure holographic interferometry and high speed laser shadowgraph photography and videography are used to investigate the mutual reflection of two plane shock waves. Normally research on the transition from regular to Mach reflection is undertaken by allowing a plane shock wave to impinge on a wedge. However due to the boundary layer growth on the wedge, regular reflection persists at wedge angles higher than that allowed for by inviscid shock wave theory. Several bifurcated shock tubes have been constructed, wherein an initially planar shock wave is split symmetrically into two and then recombined at the trailing edge of a wedge. The plane of symmetry acts as an ideal rigid wall eliminating thermal and viscous boundary layer effects. The flow visualization system used needs to provide high resolution information on the shockwave, slipstream, triple point and vortex positions and angles. Initially shadowgraph and schlieren methods, with a Xenon light source, were used. These results, while proving useful, are not of a sufficient resolution to measure the Mach stem and slipstream lengths accurately enough in order to determine the transition point between regular and Mach reflection. To obtain the required image resolution a 2 joule double pulse ruby laser, with a 30 ns pulse duration, was used to make holographic interferograms. The combined advantages of holographic interferometry and the 30 ns pulse laser allows one to obtain much sharper definition, and more qualitative as well as quantitative information on the flow field. The disadvantages of this system are: the long time taken to develop holograms, the difficulty of aligning the pulse laser and the fact that only one image per test is obtained. Direct contact shadowgraphs were also obtained using the pulse ruby laser to help determine triple point trajectory angles. In order to provide further information a one million frames per second CCD camera, which can take up to 10 superimposed images, was

  11. New examples of sandwich gravitational waves and their impulsive limit

    CERN Document Server

    Podolsky, J

    1998-01-01

    Non-standard sandwich gravitational waves are constructed from the homogeneous pp vacuum solution and the motions of free test particles in the space-times are calculated explicitly. They demonstrate the caustic property of sandwich waves. By performing limits to impulsive gravitational wave it is demonstrated that the resulting particle motions are identical regardless of the ''initial'' sandwich.

  12. Preconditioned prestack plane-wave least squares reverse time migration with singular spectrum constraint

    Science.gov (United States)

    Li, Chuang; Huang, Jian-Ping; Li, Zhen-Chun; Wang, Rong-Rong

    2017-03-01

    Least squares migration can eliminate the artifacts introduced by the direct imaging of irregular seismic data but is computationally costly and of slow convergence. In order to suppress the migration noise, we propose the preconditioned prestack plane-wave least squares reverse time migration (PLSRTM) method with singular spectrum constraint. Singular spectrum analysis (SSA) is used in the preconditioning of the take-offangle-domain common-image gathers (TADCIGs). In addition, we adopt randomized singular value decomposition (RSVD) to calculate the singular values. RSVD reduces the computational cost of SSA by replacing the singular value decomposition (SVD) of one large matrix with the SVD of two small matrices. We incorporate a regularization term into the preconditioned PLSRTM method that penalizes misfits between the migration images from the plane waves with adjacent angles to reduce the migration noise because the stacking of the migration results cannot effectively suppress the migration noise when the migration velocity contains errors. The regularization imposes smoothness constraints on the TADCIGs that favor differential semblance optimization constraints. Numerical analysis of synthetic data using the Marmousi model suggests that the proposed method can efficiently suppress the artifacts introduced by plane-wave gathers or irregular seismic data and improve the imaging quality of PLSRTM. Furthermore, it produces better images with less noise and more continuous structures even for inaccurate migration velocities.

  13. Generation and Limiters of Rogue Waves

    Science.gov (United States)

    2014-06-01

    chapter ( X ) Confetei’ICe P~tildlngs (not refereed) f l Multimedia report Journal article not rtfereed) Oral Presen ~n. not pub118hed It is...directional spectrum: , (4) i.e. higher values of A correspond to narrower directional distributions. Babanin et al. (2010) suggested a directional...Sell, W. and Walden, H. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch

  14. Properties of electrons scattered by a strong plane electromagnetic wave with a linear polarization: Semiclassical treatment

    Science.gov (United States)

    Bogdanov, O. V.; Kazinski, P. O.

    2015-02-01

    The problem of scattering of ultrarelativistic electrons by a strong plane electromagnetic wave of a low (optical) frequency and linear polarization is solved in the semiclassical approximation, when the electron wave packet size is much smaller than the wavelength of electromagnetic wave. The exit momenta of ultrarelativistic electrons scattered are found using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of electrons traversed the electromagnetic wave depend weakly on the initial values of momenta. These electrons are mostly scattered at small angles to the propagation direction of the electromagnetic wave. The maximum Lorentz factor of electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momentum. The momentum component parallel to the electric field vector of the electromagnetic wave is determined solely by the laser beam diameter measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. A reflection law that relates the incident and reflection angles and is independent of any parameters is found.

  15. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation

    Science.gov (United States)

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-02-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields.

  16. Plane-wave superpositions defined by orthonormal scalar functions on two- and three-dimensional manifolds

    Science.gov (United States)

    Borzdov

    2000-04-01

    Vector plane-wave superpositions defined by a given set of orthonormal scalar functions on a two- or three-dimensional manifold-beam manifold-are treated. We present a technique for composing orthonormal beams and some other specific types of fields such as three-dimensional standing waves, moving and evolving whirls. It can be used for any linear fields, in particular, electromagnetic fields in complex media and elastic fields in crystals. For electromagnetic waves in an isotropic medium or free space, unique families of exact solutions of Maxwell's equations are obtained. The solutions are illustrated by calculating fields, energy densities, and energy fluxes of beams defined by the spherical harmonics. It is shown that the obtained results can be used for a transition from the plane-wave approximation to more accurate models of real incident beams in free-space techniques for characterizing complex media. A mathematical formalism convenient for the treatment of various beams defined by the spherical harmonics is presented.

  17. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)

    2017-03-26

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.

  18. Probing phase of a scattering amplitude beyond the plane-wave approximation

    CERN Document Server

    Karlovets, Dmitry V

    2016-01-01

    Within a plane-wave approach, a number of scattering events in a generic collision process is insensitive to an overall complex phase of a transition amplitude, although this phase is extremely important for a number of problems, especially in hadronic physics at the LHC energies. In reality, however, the particles are better described as localized wave packets with the mean momenta $p$, their uncertainties $\\sigma$, and here we show that the observables grow dependent upon this phase if one lays aside the simplified plane-wave model. A relative contribution of the phase to the cross section is generally attenuated by a small factor $\\sigma^2/p^2 \\ll 1$, making its experimental measurement a rather challenging task. We discuss two methods for probing how this phase changes with the transferred momentum $t$, either by colliding two beams at a non-zero impact-parameter (say, $pp \\rightarrow X$) or by employing the states with the non-trivial wave functions, for instance, vortex particles carrying orbital angula...

  19. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation

    Science.gov (United States)

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-01-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields. PMID:28205589

  20. Rossby wave radiation by an eddy on the polar beta-plane

    CERN Document Server

    Zhang, Yang

    2015-01-01

    Results from the laboratory experiments on the evolution of vortices (eddies) generated in a rotating tank with topographic beta-effect are presented. The surface elevation and velocity fields are measured by the Altimetric Imaging Velocimetry. The experiments are supplemented by shallow water numerical simulations as well as a linear theory which describes the Rossby wave radiation by travelling vortices. The cyclonic vortices observed in the experiments travel to the northwest and continuously radiate Rossby waves. Measurements show that initially axisymmetric vortices develop a dipolar component which enables them to perform translational motion. A pattern of alternating zonal jets to the west of the vortex is created by Rossby waves with approximately zonal crests. Energy spectra of the flows in the wavenumber space indicate that a wavenumber similar to that introduced by Rhines for turbulent flows on the beta-plane can be introduced here. The wavenumber is based on the translational speed of a vortex rat...

  1. 45∘ Relative Orientations of Planes of Polarizations States of Gravitational Waves and the Graviton

    Science.gov (United States)

    Manoukian, E. B.

    2016-11-01

    The recent detection of gravitational waves calls for, not just in words or by plausible arguments, of an explicit derivation of polarization aspects of gravitational waves with emphasis, especially, on the non-trivial aspect of the relative 45∘ orientations of the planes of polarization states of gravitation in the same way as has been done over the years for the far simpler case involving electromagnetic wave propagation with the well known relative 90∘ between its polarization states. The purpose of this communication is to carry out in a covariant description as well as by giving special attention to the underlying gauge problem these polarization aspects via a direct consideration of the graviton propagator in a quantum field theory setting from which fundamental properties of polarizations are readily extracted.

  2. Nonlinear dynamics and band transport in a superlattice driven by a plane wave

    Science.gov (United States)

    Apostolakis, A.; Awodele, M. K.; Alekseev, K. N.; Kusmartsev, F. V.; Balanov, A. G.

    2017-06-01

    A quantum particle transport induced in a spatially periodic potential by a propagating plane wave has a number of important implications in a range of topical physical systems. Examples include acoustically driven semiconductor superlattices and cold atoms in an optical crystal. Here we apply a kinetic description of the directed transport in a superlattice beyond standard linear approximation, and utilize exact path-integral solutions of the semiclassical transport equation. We show that the particle drift and average velocities have nonmonotonic dependence on the wave amplitude with several prominent extrema. Such nontrivial kinetic behavior is related to global bifurcations developing with an increase of the wave amplitude. They cause dramatic transformations of the system phase space and lead to changes of the transport regime. We describe different types of phase trajectories contributing to the directed transport and analyze their spectral content.

  3. 45∘ Relative Orientations of Planes of Polarizations States of Gravitational Waves and the Graviton

    Science.gov (United States)

    Manoukian, E. B.

    2016-07-01

    The recent detection of gravitational waves calls for, not just in words or by plausible arguments, of an explicit derivation of polarization aspects of gravitational waves with emphasis, especially, on the non-trivial aspect of the relative 45∘ orientations of the planes of polarization states of gravitation in the same way as has been done over the years for the far simpler case involving electromagnetic wave propagation with the well known relative 90∘ between its polarization states. The purpose of this communication is to carry out in a covariant description as well as by giving special attention to the underlying gauge problem these polarization aspects via a direct consideration of the graviton propagator in a quantum field theory setting from which fundamental properties of polarizations are readily extracted.

  4. INTERACTION OF GENERAL PLANE P WAVE AND CYLINDRICAL INCLUSION PARTIALLY DEBONDED FROM ITS VISCOELASTIC MATRIX

    Institute of Scientific and Technical Information of China (English)

    魏培君; 章梓茂; 汪越胜

    2002-01-01

    The interaction of a general plane P wave and an elastic cylindrical inclusion of infinite length partially debonded from its surrounding viscoelastic matrix of infinite extension is investigated. The debonded region is modeled as an arc-shaped interface crack between inclusion and matrix with non-contacting faces. With wave functions expansion and singular integral equation technique, the interaction problem is reduced to a set of simultaneous singular integral equations of crack dislocation density function. By analysis of the fundamental solution of the singular integral equation, it is found that dynamic stress field at the crack tip is oscillatory singular,which is related to the frequency of incident wave. The singular integral equations are solved numerically, and the crack open displacement and dynamic stress intensity factor are evaluated for various incident angles and frequencies.

  5. On the comparsion of the Spherical Wave Expansion-to-Plane Wave Expansion and the Sources Reconstruction Method for Antenna Diagnostics

    DEFF Research Database (Denmark)

    Alvarez, Yuri; Cappellin, Cecilia; Las-Heras, Fernando

    2008-01-01

    A comparison between two recently developed methods for antenna diagnostics is presented. On one hand, the Spherical Wave Expansion-to-Plane Wave Expansion (SWE-PWE), based on the relationship between spherical and planar wave modes. On the other hand, the Sources Reconstruction Method (SRM), based...

  6. Stress Waves in Composite Laminates Excited by Transverse Plane Shock Waves

    Directory of Open Access Journals (Sweden)

    G.R. Liu

    1996-01-01

    Full Text Available A simple 1-dimensional model is presented to investigate elastic stress waves in composite laminates excited by underwater explosion shocks. The focus is on the elastic dynamic stress fields in the composite laminate immediately after the action of the shock wave. In this model, the interaction between the laminate and the water is taken into account, and the effects of the laminate-water interaction on the stress wave fields in the laminate are investigated. In the formulation of the model, wave fields in the laminate and the water are the first obtained in the frequency domain and then transferred into the time domain using the Fourier transform techniques. A quadrature technique is used to deal with the Fourier transform integrals in which the integrands have very sharp peaks on the integral axis. Numerical examples for stress waves in a steel plate and a glass reinforced plastic sandwich laminate are presented. The technique and the results presented in this article may be used in the design of ship hull structures subjected to underwater explosions.

  7. On plane-wave relativistic electrodynamics in plasmas and in vacuum

    CERN Document Server

    Fiore, Gaetano

    2016-01-01

    We revisit the exact microscopic equations (in differential, and equivalent integral form) ruling a relativistic cold plasma after the plane-wave Ansatz, without customary approximations. We show that in the Eulerian description the motion of a very diluted plasma initially at rest and excited by an arbitrary transverse plane electromagnetic travelling-wave has a very simple and explicit dependence on the transverse electromagnetic potential; for a non-zero density plasma the above motion is a good approximation of the real one as long as the back-reaction of the charges on the electromagnetic field can be neglected, i.e. for a time lapse decreasing with the plasma density, and can be used as initial step in an iterative resolution scheme. As one of many possible applications, we use these results to describe how the ponderomotive force of a very intense and short plane laser pulse hitting normally the surface of a plasma boosts the surface electrons into the ion background. Because of this penetration the el...

  8. Canonical Formulation of the Light-Front Gluodynamics and Quantization of the Non-Abelian Plane Waves

    CERN Document Server

    Kim, V T; Pivovarov, G B; Vary, J P; Kim, Victor T.; Matveev, Victor A.; Pivovarov, Grigorii B.; Vary, James P.

    2001-01-01

    Without a gauge fixing, canonical variables for the light-front SU(2) gluodynamics are determined. The Gauss law is written in terms of the canonical variables. The system is qualified as a generalized dynamical system with first class constraints. Abeliazation is a specific feature of the formulation (most of the canonical variables transform nontrivially only under the action of an Abelian subgroup of the gauge transformations). At finite volume, a discrete spectrum of the light-front Hamiltonian $P_+$ is obtained in the sector of vanishing $P_-$. We obtain, therefore, a quantized form of the classical solutions previously known as non-Abelian plane waves. Then, considering the infinite volume limit, we find that the presence of the mass gap depends on the way the infinite volume limit is taken, which may suggest the presence of different ``phases'' of the infinite volume theory.

  9. Photonic antenna enhanced middle wave and longwave infrared focal plane array with low noise and high operating temperature Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Photodetectors and focal plane arrays (FPAs) covering the middle-wave and longwave infrared (MWIR/LWIR) are of great importance in numerous NASA applications,...

  10. Plane-Wave Least-Squares Reverse Time Migration for Rugged Topography

    Institute of Scientific and Technical Information of China (English)

    Jianping Huang; Chuang Li; Rongrong Wang; Qingyang Li

    2015-01-01

    We present a method based on least-squares reverse time migration with plane-wave encod-ing (P-LSRTM) for rugged topography. Instead of modifying the wave field before migration, we modify the plane-wave encoding function and fill constant velocity to the area above rugged topography in the model so that P-LSRTM can be directly performed from rugged surface in the way same to shot domain reverse time migration. In order to improve efficiency and reduce I/O (input/output) cost, the dynamic en-coding strategy and hybrid encoding strategy are implemented. Numerical test on SEG rugged topography model show that P-LSRTM can suppress migration artifacts in the migration image, and compensate am-plitude in the middle-deep part efficiently. Without data correction, P-LSRTM can produce a satisfying image of near-surface if we could get an accurate near-surface velocity model. Moreover, the pre-stack P-LSRTM is more robust than conventional RTM in the presence of migration velocity errors.

  11. Radiation of de-excited electrons at large times in a strong electromagnetic plane wave

    Science.gov (United States)

    Kazinski, P. O.

    2013-12-01

    The late time asymptotics of the physical solutions to the Lorentz-Dirac equation in the electromagnetic external fields of simple configurations-the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave-are found. The solutions to the Landau-Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime.

  12. The radiation of sound by the instability waves of a compressible plane turbulent shear layer

    Science.gov (United States)

    Tam, C. K. W.; Morris, P. J.

    1980-01-01

    The problem of acoustic radiation generated by instability waves of a compressible plane turbulent shear layer is solved. The solution provided is valid up to the acoustic far-field region. It represents a significant improvement over the solution obtained by classical hydrodynamic-stability theory which is essentially a local solution with the acoustic radiation suppressed. The basic instability-wave solution which is valid in the shear layer and the near-field region is constructed in terms of an asymptotic expansion using the method of multiple scales. This solution accounts for the effects of the slightly divergent mean flow. It is shown that the multiple-scales asymptotic expansion is not uniformly valid far from the shear layer. Continuation of this solution into the entire upper half-plane is described. The extended solution enables the near- and far-field pressure fluctuations associated with the instability wave to be determined. Numerical results show that the directivity pattern of acoustic radiation into the stationary medium peaks at 20 degrees to the axis of the shear layer in the downstream direction for supersonic flows. This agrees qualitatively with the observed noise-directivity patterns of supersonic jets.

  13. Trail-Needs pseudopotentials in quantum Monte Carlo calculations with plane-wave/blip basis sets

    Science.gov (United States)

    Drummond, N. D.; Trail, J. R.; Needs, R. J.

    2016-10-01

    We report a systematic analysis of the performance of a widely used set of Dirac-Fock pseudopotentials for quantum Monte Carlo (QMC) calculations. We study each atom in the periodic table from hydrogen (Z =1 ) to mercury (Z =80 ), with the exception of the 4 f elements (57 ≤Z ≤70 ). We demonstrate that ghost states are a potentially serious problem when plane-wave basis sets are used in density functional theory (DFT) orbital-generation calculations, but that this problem can be almost entirely eliminated by choosing the s channel to be local in the DFT calculation; the d channel can then be chosen to be local in subsequent QMC calculations, which generally leads to more accurate results. We investigate the achievable energy variance per electron with different levels of trial wave function and we determine appropriate plane-wave cutoff energies for DFT calculations for each pseudopotential. We demonstrate that the so-called "T-move" scheme in diffusion Monte Carlo is essential for many elements. We investigate the optimal choice of spherical integration rule for pseudopotential projectors in QMC calculations. The information reported here will prove crucial in the planning and execution of QMC projects involving beyond-first-row elements.

  14. Real-space and plane-wave hybrid method for electronic structure calculations for two-dimensional materials

    Science.gov (United States)

    Do, V. Nam; Le, H. Anh; Vu, V. Thieu

    2017-04-01

    We propose a computational approach to combining the plane-wave method and the real-space treatment to describe the periodic variation in the material plane and the decay of wave functions from the material surfaces. The proposed approach is natural for two-dimensional material systems and thus may circumvent some intrinsic limitations involving the artificial replication of material layers in traditional supercell methods. In particular, we show that the proposed method is easy to implement and, especially, computationally effective since low-cost computational algorithms, such as iterative and recursive techniques, can be used to treat matrices with block tridiagonal structure. Using this approach we show first-principles features that supplement the current knowledge of some fundamental issues in bilayer graphene systems, including the coupling between the two graphene layers, the preservation of the σ band of monolayer graphene in the electronic structure of the bilayer system, and the differences in low-energy band structure between the AA- and AB-stacked configurations.

  15. Penetration shock wave in elastic isotropic half-plane, boundary of which has the rigid support moving with arbitrary velocity

    Directory of Open Access Journals (Sweden)

    Davtyan A.V.

    2014-09-01

    Full Text Available In present paper is considered the problem of penetration of the pressure in an isotropic elastic half-plane, boundary of which has the rigid support moving with arbitrary velocity. Solution of the plane problem is sought by method of integral transforms Laplace, Fourier and by method of the convolutions. Partial problems about a shock wave propagating along the boundary half-plane are solved. The stress intensity factors, stress on the line of contact is calculated.

  16. Lamb waves in phononic crystal slabs: truncated plane parallels to the axis of periodicity.

    Science.gov (United States)

    Chen, Jiujiu; Xia, Yunjia; Han, Xu; Zhang, Hongbo

    2012-09-01

    A theoretical study is presented on the propagation properties of Lamb wave modes in phononic crystal slabs consisting of a row or more of parallel square cylinders placed periodically in the host material. The surfaces of the slabs are parallel to the axis of periodicity. The dispersion curves of Lamb wave modes are calculated based on the supercell method. The finite element method is employed to calculate the band structures and the transmission power spectra, which are in good agreement with the results by the supercell method. We also have found that the dispersion curves of Lamb waves are strongly dependent on the crystal termination, which is the position of the cut plane through the square cylinders. There exist complete or incomplete (truncated) layers of square cylinders with the change of the crystal termination. The influence of the crystal termination on the band gaps of Lamb wave modes is analyzed by numerical simulations. The variation of the crystal termination leads to obvious changes in the dispersion curves of the Lamb waves and the widths of the band gaps. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Reflection and refraction of an arbitrary electromagnetic wave at a plane interface separating an isotropic and a biaxial medium.

    Science.gov (United States)

    Stamnes, J J; Sithambaranathan, G S

    2001-12-01

    Exact solutions are obtained for the reflected and transmitted fields resulting when an arbitrary electromagnetic field is incident on a plane interface separating an isotropic medium and a biaxially anisotropic medium in which one of the principal axes is along the interface normal. From our exact solutions for the reflected fields resulting when a plane TE or TM wave is incident on the plane interface, it can be inferred that the reflected field contains both a TE and a TM component. This gives a change in polarization that can be utilized to determine the properties of the biaxial medium. The time-harmonic solution for the reflected field is in the form of two quadruple integrals, one of which is a superposition of plane waves polarized perpendicular to the plane of incidence and the other a superposition of plane waves polarized parallel to the plane of incidence. The time-harmonic solution for the transmitted field is also in the form of two quadruple integrals. Each of these is a superposition of extraordinary plane waves with displacement vectors that are perpendicular to the direction of phase propagation.

  18. Scattering-induced changes in the degree of polarization of a stochastic electromagnetic plane-wave pulse.

    Science.gov (United States)

    Ding, Chaoliang; Cai, Yangjian; Zhang, Yongtao; Pan, Liuzhan

    2012-06-01

    The scattering of a stochastic electromagnetic plane-wave pulse on a deterministic spherical medium is investigated. An analytical formula for the degree of polarization (DOP) of the scattered field in the far zone is derived. Letting pulse duration T(0) → ∞, our formula can be applied to study the scattering of a stationary stochastic electromagnetic light wave. Numerical results show that the DOP of the far zone field is closely determined by the size of the spherical medium when the incident field is a stochastic electromagnetic plane-wave pulse. This is much different from the case when the incident field is a stationary stochastic electromagnetic light wave, where the DOP of the far zone field is independent of the size of the medium. One may obtain the information of the spherical medium by measuring the scattering-induced changes in the DOP of a stochastic electromagnetic plane-wave pulse.

  19. An Exact Transfer Matrix Formulation of Plane Sound Wave Transmission in Inhomogeneous Ducts

    Science.gov (United States)

    Dockumaci, E.

    1998-11-01

    The impedance, or the reflection coefficient, of plane sound waves in inhomogeneous ducts satisfies a Riccati equation. The present paper shows that the duct impedance matrix, or the scattering matrix, can be related explicitly to the solutions of the associated linear equation of the Riccati equation for duct impedance, or reflection coefficient, respectively. New exact analytical scattering matrix solutions, which follow as consequences of this connection, are given for two significant duct acoustics problems, namely, the sound transmission in non-uniform ducts carrying an incompressible subsonic low Mach number mean flow transmission of sound in uniform ducts with a full quadratic axial mean temperature gradient.

  20. Nonlocal Effects on D-branes in Plane-Wave Backgrounds

    CERN Document Server

    Ganor, O J; Ganor, Ori J.; Varadarajan, Uday

    2002-01-01

    We argue that the effective field theory on D3-branes in a plane-wave background with 3-form flux is a nonlocal deformation of Yang-Mills theory. In the case of NSNS flux, it is a dipole field theory with lightlike dipole vectors. For an RR 3-form flux the dipole theory is strongly coupled. We propose a weakly coupled S-dual description for it. The S-dual description is local at any finite order in string perturbation theory but becomes nonlocal when all perturbation theory orders are summed together.

  1. A singularity extraction technique for computation of antenna aperture fields from singular plane wave spectra

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel

    2008-01-01

    An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...

  2. NC plane waves, Casimir effect and flux tube potential with L\\"uscher terms

    CERN Document Server

    Kováčik, Samuel

    2016-01-01

    We analyze plane waves in a model of quantum mechanics in a three dimensional noncommutative (NC) space $R^3_{\\lambda}$. Signature features of NC models are impossibility of probing distances smaller than a certain length scale {\\lambda} and a presence of natural energetic cut-off at energy scale of order $1/{\\lambda}^2$ (in convenient units). We analyze consequences of such restrictions on a 1 dimensional Casimir effect. The result shows resemblance to flux tube potential for quark-antiquark pairs and to effective bosonic string theories with L\\"uscher terms. Such behavior might effect the radius of possible compact (fuzzy) dimensions.

  3. Plane wave matrix theory vs. N=4 D=4 super Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Kim, N. [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Golm (Germany)

    2004-06-01

    A mass deformed, supersymmetric, Yang-Mills quantum mechanics has been introduced recently as the matrix model of M-theory on plane-wave backgrounds. Here we point out that the massive matrix model can be obtained as a dimensional reduction of N=4, D=4 Super Yang-Mills theory on S{sup 3}. The hamiltonian of the matrix model can be matched with the dilatation operator of the conformal field theory, and we discuss how they behave in the perturbative computations. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  4. Electromagnetic plane-wave pulse transmission into a Lorentz half-space.

    Science.gov (United States)

    Cartwright, Natalie A

    2011-12-01

    The propagation of an electromagnetic plane-wave signal obliquely incident upon a Lorentz half-space is studied analytically. Time-domain asymptotic expressions that increase in accuracy with propagation distance are derived by application of uniform saddle point methods on the Fourier-Laplace integral representation of the transmitted field. The results are shown to be continuous in time and comparable with numerical calculations of the field. Arrival times and angles of refraction are given for prominent transient pulse features and the steady-state signal.

  5. Reflection and Transmission Coefficients for an Incident Plane Shear Wave at an Interface Separating Two Dissimilar Poroelastic Solids

    Science.gov (United States)

    Liu, Xu; Greenhalgh, Stewart

    2014-09-01

    Using Biot's poroelasticity theory, we derive expressions for the reflection and transmission coefficients for a plane shear wave incident on an interface separating two different poroelastic solids. The coefficients are formulated as a function of the wave incidence angle, frequency and rock properties. Specific cases calculated include the boundary between water-saturated sand and water-saturated sandstone and the gas-water interface in sand. The results show a very different interface response to that of an incident P wave. Plane SV wave incidence does not significantly excite the Biot slow P wave if the frequency of the wave is below the transition frequency. Above this frequency, an incident plane SV wave can generate a mode-converted slow Biot P wave which is actually a normal propagating wave and not highly attenuating as in the usual (diffusive) case. For an incident SV wave onto a gas-water interface, even at very high frequency, there is no significant Biot second P wave produced. For small incident angles, the gas-water interface is essentially transparent. With increasing angles, there can arise an unusual "definitive angle" in the reflection/transmission coefficient curves which is related to the change of fluid viscosity on both sides of the interface and provides a possible new means for underground fluid assessment.

  6. THE USE OF PLANE WAVES TO APPROXIMATE WAVE PROPAGATION IN ANISOTROPIC MEDIA

    Institute of Scientific and Technical Information of China (English)

    Tomi Huttunen; Peter Monk

    2007-01-01

    In this paper we extend the standard Ultra Weak Variational Formulation (UWVF) of Maxwell's equations in an isotropic medium to the case of an anisotropic medium. We verify that the underlying theoretical framework carries over to anisotropic media (however error estimates are not yet available) and completely describe the new scheme. We then consider TM mode scattering, show how this results in a Helmholtz equation in two dimensions with an anisotropic coefficient and demonstrate how to formulate the UWVF for it. In one special case, convergence can be proved. We then show some numerical results that suggest that the UWVF can successfully simulate wave propagation in anisotropic media.

  7. Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals.

    Science.gov (United States)

    Kumon, R E; Hamilton, M F

    2002-05-01

    Spectral evolution equations are used to perform analytical and numerical studies of nonlinear surface acoustic waves in the (001) plane of a variety of nonpiezoelectric cubic crystals. The basic theory underlying the model equations is outlined, and quasilinear solutions of the equations are presented. Expressions are also developed for a characteristic length scale for nonlinear distortion and a nonlinearity coefficient. A time-domain equation corresponding to the spectral equations is derived. Numerical calculations based on measured second- and third-order elastic constants taken from the literature are performed to predict the evolution of initially monofrequency surface waves. Nonlinearity matrix elements that indicate the coupling strength of harmonic interactions are shown to provide a useful tool for characterizing waveform distortion. The formation of compression or rarefaction shocks can be strongly dependent on the direction of propagation, and harmonic generation is suppressed or increased in certain directions.

  8. An efficient algorithm for time propagation as applied to linearized augmented plane wave method

    Science.gov (United States)

    Dewhurst, J. K.; Krieger, K.; Sharma, S.; Gross, E. K. U.

    2016-12-01

    An algorithm for time propagation of the time-dependent Kohn-Sham equations is presented. The algorithm is based on dividing the Hamiltonian into small time steps and assuming that it is constant over these steps. This allows for the time-propagating Kohn-Sham wave function to be expanded in the instantaneous eigenstates of the Hamiltonian. The method is particularly efficient for basis sets which allow for a full diagonalization of the Hamiltonian matrix. One such basis is the linearized augmented plane waves. In this case we find it is sufficient to perform the evolution as a second-variational step alone, so long as sufficient number of first variational states are used. The algorithm is tested not just for non-magnetic but also for fully non-collinear magnetic systems. We show that even for delicate properties, like the magnetization density, fairly large time-step sizes can be used demonstrating the stability and efficiency of the algorithm.

  9. PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.

    Science.gov (United States)

    Lee, M.W.

    1987-01-01

    Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.

  10. Diffraction of a Shear Plane Wave in Elastic Medium with Piecewise Homogeneous Infinite Inclusion

    Directory of Open Access Journals (Sweden)

    Voskanyan A. R.

    2007-06-01

    Full Text Available Diffraction of shear plane wave incident from infinity at arbitrary angle on infinite inclusion is considered. The infinite inclusion consists of two semi-infinite parts made of different materials. The problem’s solution is presented in the form of sum of its even and odd problems. The case of long waves is considered and these problems (the even and odd ones are modelled in a corresponding way after which each of them is reduced to the solution of Wiener-Hopf functional equation. Asymptotic formulas are obtained for displacement’s amplitude and contacts stresses in the far field. The behaviors of contact stresses in the neighborhood of the bonding line of the semi-infinite parts of the inclusion are also obtained.

  11. Reflection for three-dimensional plane waves in triclinic crystalline medium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The propagation of three-dimensional plane waves at a traction free boundary of a half-space composed of triclinic crystalline material is discussed. A method has been developed to find the analytical expressions of all the three phase velocities of quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH) in three dimensions. Closed form expressions in three dimensions for the amplitude ratios of reflection coefficients of qP, qSV and qSH waves in a triclinic medium are obtained. These expressions are used for numerically studying the variation of the reflection coefficients with the angle of incidence. The graphs are drawn for different polar angle and azimuth. Numerical results presented indicate that the anisotropy affect the reflection coefficients significantly in the three dimensional case compared to the two-dimensional case.

  12. A comparison of exact TM plane wave diffraction by coated wedges and impedance wedges

    DEFF Research Database (Denmark)

    Andersen, Lars S.; Breinbjerg, Olav; Moore, John T.

    1996-01-01

    without interference from direct fields or reflected fields. Results have been obtained in the case of illumination by a transverse magnetic (TM) uniform plane wave. The analysis of the coated wedge is based on an integral equation formulation combined with a hybrid technique, while the analysis......The purpose of this work is to numerically investigate the accuracy of the standard impedance boundary condition (SIBC) approximation for edge diffraction. To this end, we compare the scattering by coated wedges and SIBC wedges for which the diffracted field from a single edge can be observed...... of the SIBC wedge is based on Maliuzhinets' solution. Comparisons have been carried out for a series of configurations including lossy coatings as well as lossless coatings permitting unattenuated propagation of surface waves. The results show that the presence of an edge in a coated structure does...

  13. Statistics for long irregular wave run-up on a plane beach from direct numerical simulations

    Science.gov (United States)

    Didenkulova, Ira; Senichev, Dmitry; Dutykh, Denys

    2017-04-01

    -975 (2011). [2] P. Denissenko, I. Didenkulova, A. Rodin, M. Listak, E. Pelinovsky. Experimental statistics of long wave runup on a plane beach. Journal of Coastal Research 65, 195-200 (2013). [3] I. Didenkulova, E. Pelinovsky, A. Sergeeva. Statistical characteristics of long waves nearshore. Coastal Engineering 58, 94-102 (2011). [4] D. Dutykh, T. Katsaounis, D. Mitsotakis. Finite volume schemes for dispersive wave propagation and runup. J. Comput. Phys. 230 (8), 3035-3061 (2011a). [5] D. Dutykh, C. Labart, D. Mitsotakis. Long wave run-up on random beaches. Phys. Rev. Lett. 107, 184504 (2011b).

  14. On AdS/CFT correspondence beyond SUGRA: plane waves, free CFTs and double-trace deformations

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Vazquez, D.E.

    2007-09-13

    This thesis deals with three corners of the AdS/CFT Correspondence that lie one step beyond the classical supergravity (SUGRA) approximation. We first explore the BMN limit of the duality and study, in particular, the behavior of field theoretic propagators in the corresponding Penrose limit. We unravel the semiclassical (WKB-) exactness of the propagators in the resulting plane wave background metric. Then, we address the limit of vanishing coupling of the conformal field theory (CFT) at large N. In the simplified scenario of Higher Spin/O(N) Vector Model duality, the conformal partial wave (CPW) expansion of scalar four-point functions are reorganized to make them suggestive of a bulk interpretation in term of a consistent truncated massless higher spin theory and their corresponding exchange Witten graphs. We also explore the connection to the interacting O(N) Vector Model at its infra-red fixed point, at leading large N. Finally, coming back to the gauge theory, we study the effect of a relevant double-trace deformations of the boundary CFT on the partition function and its dual bulk interpretation. We show how the one-loop computation in the Anti-de Sitter (AdS) space correctly reproduces the partition function and conformal anomaly of the boundary theory. In all, we get a clean test of the duality beyond the classical SUGRA approximation in the AdS bulk and at the corresponding next-to-leading 1/N order of the CFT at the conformal boundary. (orig.)

  15. Analysis of factorization in (e,e`p) reactions. A survey of the relativistic plane wave impulse approximation

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, J.A. [Univ. de Sevilla (Spain). Dept. de Fisica Atomica, Molecular y Nucl.]|[Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, Madrid 28006 (Spain); Donnelly, T.W. [Centre for Theoretical Physics, Laboratory for Nuclear Science and Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Moya de Guerra, E. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, Madrid 28006 (Spain); Udias, J.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid 28040 (Spain)

    1998-03-23

    The issue of factorization within the context of coincidence quasi-elastic electron scattering is revisited. Using a relativistic formalism for the entire reaction mechanism and restricting ourselves to the case of plane waves for the outgoing proton, we discuss the role of the negative-energy components of the bound nucleon wave function. (orig.). 30 refs.

  16. Combined perfusion and doppler imaging using plane-wave nonlinear detection and microbubble contrast agents.

    Science.gov (United States)

    Tremblay-Darveau, Charles; Williams, Ross; Milot, Laurent; Bruce, Matthew; Burns, Peter N

    2014-12-01

    Plane-wave imaging offers image acquisition rates at the pulse repetition frequency, effectively increasing the imaging frame rates by up to two orders of magnitude over conventional line-by-line imaging. This form of acquisition can be used to achieve very long ensemble lengths in nonlinear modes such as pulse inversion Doppler, which enables new imaging trade-offs that were previously unattainable. We first demonstrate in this paper that the coherence of microbubble signals under repeated exposure to acoustic pulses of low mechanical index can be as high as 204 ± 5 pulses, which is long enough to allow an accurate power Doppler measurement. We then show that external factors, such as tissue acceleration, restrict the detection of perfusion at the capillary level with linear Doppler, even if long Doppler ensembles are considered. Hence, perfusion at the capillary level can only be detected with ultrasound through combined microbubbles and Doppler imaging. Finally, plane-wave contrast-enhanced power and color Doppler are performed on a rabbit kidney in vivo as a proof of principle. We establish that long pulse-inversion Doppler sequences and conventional wall-filters can create an image that simultaneously resolves both the vascular morphology of veins and arteries, and perfusion at the capillary level with frame rates above 100 Hz.

  17. Concepts and Tradeoffs in Velocity Estimation With Plane-Wave Contrast-Enhanced Doppler.

    Science.gov (United States)

    Tremblay-Darveau, Charles; Williams, Ross; Sheeran, Paul S; Milot, Laurent; Bruce, Matthew; Burns, Peter N

    2016-11-01

    While long Doppler ensembles are, in principle, beneficial for velocity estimates, short acoustic pulses must be used in microbubble contrast-enhanced (CE) Doppler to mitigate microbubble destruction. This introduces inherent tradeoffs in velocity estimates with autocorrelators, which are studied here. A model of the autocorrelation function adapted to the microbubble Doppler signal accounting for transit time, the echo frequency uncertainty, and contrast-agent destruction is derived and validated in vitro. It is further demonstrated that a local measurement of the center frequency of the microbubble echo is essential in order to avoid significant bias in velocity estimates arising from the linear and nonlinear frequency-dependent scattering of microbubbles and compensate for the inherent speckle nature of the received echo frequency. For these reasons, broadband Doppler estimators (2-D autocorrelator and Radon projection) are better suited than simpler narrow-band estimators (1-D autocorrelator and 1-D Fourier transform) for CE flow assessment. A case study of perfusion in a VX-2 carcinoma using CE plane-wave Doppler is also shown. We demonstrate that even when considering all uncertainties associated with microbubble-related decorrelation (destruction, pulse bandwidth, transit time, and flow gradient) and the need for real-time imaging, a coefficient of variation of 4% on the axial velocity is achievable with plane-wave imaging.

  18. 2, Pulse-mode expansions and refractive indices in plane-wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Shore, B.W.; Sacks, R.; Karr, T.; Morris, J.; Paisner, J.A.

    1987-06-20

    This memo presents basic background theory for treating simultaneous propagation of electromagnetic pulses of various colors, directed along a common ray, through a molecular vapor. The memo discusses some techniques for expanding the positive frequency part of the transverse electric field into pulse modes, characterized by carrier frequencies within a modulated envelope. We discuss, in the approximation of plane waves with slowly varying envelopes, a set of uncoupled envelope equations in which a polarization mode-envelope acts as a source for an electric-field envelope. These equations, when taken with a prescription for the polarization field, are the basic equations of plane-wave pulse propagation through a molecular medium. We discuss two ways of treating dispersive media, one based upon expansions in the frequency domain and the other based in the time domain. In both cases we find envelope equations that involve group velocities. This memo represents a portion of a more extensive treatment of propagation to be presented separately. Many of the equations presented here have been described in various books and articles. They are collected and described here as a summary and review of contemporary theory.

  19. Fast solution of elliptic partial differential equations using linear combinations of plane waves

    Science.gov (United States)

    Pérez-Jordá, José M.

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations A x =b , where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O (N logN ) memory and executing an iteration in O (N log2N ) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  20. Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging.

    Science.gov (United States)

    Le Jeune, Léonard; Robert, Sébastien; Lopez Villaverde, Eduardo; Prada, Claire

    2016-01-01

    This paper describes a new ultrasonic array imaging method for Non-Destructive Testing (NDT) which is derived from the medical Plane Wave Imaging (PWI) technique. The objective is to perform fast ultrasound imaging with high image quality. The approach is to transmit plane waves at several angles and to record the back-scattered signals with all the array elements. Focusing in receive is then achieved by coherent summations of the signals in every point of a region of interest. The medical PWI is generalized to immersion setups where water acts as a coupling medium and to multimodal (direct, half-skip modes) imaging in order to detect different types of defects (inclusions, porosities, cracks). This method is compared to the Total Focusing Method (TFM) which is the reference imaging technique in NDT. First, the two post-processing algorithms are described. Then experimental results with the array probe either in contact or in immersion are presented. A good agreement between the TFM and the PWI is observed, with three to ten times less transmissions required for the PWI.

  1. Scaling of plane-wave functions in statistically optimized near-field acoustic holography.

    Science.gov (United States)

    Hald, Jørgen

    2014-11-01

    Statistically Optimized Near-field Acoustic Holography (SONAH) is a Patch Holography method, meaning that it can be applied in cases where the measurement area covers only part of the source surface. The method performs projections directly in the spatial domain, avoiding the use of spatial discrete Fourier transforms and the associated errors. First, an inverse problem is solved using regularization. For each calculation point a multiplication must then be performed with two transfer vectors--one to get the sound pressure and the other to get the particle velocity. Considering SONAH based on sound pressure measurements, existing derivations consider only pressure reconstruction when setting up the inverse problem, so the evanescent wave amplification associated with the calculation of particle velocity is not taken into account in the regularized solution of the inverse problem. The present paper introduces a scaling of the applied plane wave functions that takes the amplification into account, and it is shown that the previously published virtual source-plane retraction has almost the same effect. The effectiveness of the different solutions is verified through a set of simulated measurements.

  2. Reconstruction of nonstationary sound fields based on the time domain plane wave superposition method.

    Science.gov (United States)

    Zhang, Xiao-Zheng; Thomas, Jean-Hugh; Bi, Chuan-Xing; Pascal, Jean-Claude

    2012-10-01

    A time-domain plane wave superposition method is proposed to reconstruct nonstationary sound fields. In this method, the sound field is expressed as a superposition of time convolutions between the estimated time-wavenumber spectrum of the sound pressure on a virtual source plane and the time-domain propagation kernel at each wavenumber. By discretizing the time convolutions directly, the reconstruction can be carried out iteratively in the time domain, thus providing the advantage of continuously reconstructing time-dependent pressure signals. In the reconstruction process, the Tikhonov regularization is introduced at each time step to obtain a relevant estimate of the time-wavenumber spectrum on the virtual source plane. Because the double infinite integral of the two-dimensional spatial Fourier transform is discretized directly in the wavenumber domain in the proposed method, it does not need to perform the two-dimensional spatial fast Fourier transform that is generally used in time domain holography and real-time near-field acoustic holography, and therefore it avoids some errors associated with the two-dimensional spatial fast Fourier transform in theory and makes possible to use an irregular microphone array. The feasibility of the proposed method is demonstrated by numerical simulations and an experiment with two speakers.

  3. Plane waves at or near grazing incidence in the parabolic approximation. [acoustic equations of motion for sound fields

    Science.gov (United States)

    Mcaninch, G. L.; Myers, M. K.

    1980-01-01

    The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a plane wave at or near grazing incidence to a finite impedance boundary. It is shown how this approximation accounts for effects neglected in the usual plane wave reflection analysis which, at grazing incidence, erroneously predicts complete cancellation of the incident field by the reflected field. Examples are presented which illustrate that the solution obtained by the parabolic approximation contains several of the physical phenomena known to occur in wave propagation near an absorbing boundary.

  4. Wind Wave Behavior in Fetch and Depth Limited Estuaries.

    Science.gov (United States)

    Karimpour, Arash; Chen, Qin; Twilley, Robert R

    2017-01-18

    Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design.

  5. Wind Wave Behavior in Fetch and Depth Limited Estuaries

    Science.gov (United States)

    Karimpour, Arash; Chen, Qin; Twilley, Robert R.

    2017-01-01

    Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design.

  6. Experimental Limits on Gravitational Waves in the MHz frequency Range

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, Robert Jr. [Univ. of Chicago, IL (United States)

    2015-03-01

    This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency range using dual power-recycled Michelson laser interferometers at Fermi National Accelerator Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency range has been achieved by cross-correlating the output fluctuations of two identical and colocated 40m long interferometers. This technique produces sensitivities better than two orders of magnitude below the quantum shot-noise limit, within integration times of less than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz frequency gravitational waves at the 10-21 Hz-1/2 level, constituting the best direct limits to date at these frequencies. For gravitational wave power distributed over this frequency range, a broadband upper limit of 2.4 x 10-21Hz-1/2 at 95% confidence level is also obtained. This thesis covers the detector technology, the commissioning and calibration of the instrument, the statistical data analysis, and the gravitational wave limit results. Particular attention is paid to the end-to-end calibration of the instrument’s sensitivity to differential arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the data is presented as well.

  7. The strain in the array is mainly in the plane (waves below ~1 Hz)

    Science.gov (United States)

    Gomberg, J.; Pavlis, G.; Bodin, P.

    1999-01-01

    We compare geodetic and single-station methods of measuring dynamic deformations and characterize their causes in the frequency bands 0.5-1.0 Hz and 4.0-8.0 Hz. The geodetic approach utilizes data from small-aperture seismic arrays, applying techniques from geodesy. It requires relatively few assumptions and a priori information. The single-station method uses ground velocities recorded at isolated or single stations and assumes all the deformation is due to plane-wave propagation. It also requires knowledge of the azimuth and horizontal velocity of waves arriving at the recording station. Data employed come from a small-aperture, dense seismic array deployed in Geyokcha, Turkmenistan, and include seismograms recorded by broadband STS2 and short-period L28 sensors. Poor agreement between geodetic and single-station estimates in the 4.0-8.0 Hz passband indicates that the displacement field may vary nonlinearly with distance over distances of ~50 m. STS2 geodetic estimates provide a robust standard in the 0.5-1.0 Hz passband because they appear to be computationally stable and require fewer assumptions than single-station estimates. The agreement between STS2 geodetic estimates and single-station L28 estimates is surprisingly good for the S-wave and early surface waves, suggesting that the single-station analysis should be useful with commonly available data. These results indicate that, in the 0.5 to 1.0 Hz passband, the primary source of dynamic deformation is plane-wave propagation along great-circle source-receiver paths. For later arriving energy, the effects of scattering become important. The local structure beneath the array exerts a strong control on the geometry of the dynamic deformation, implying that it may be difficult to infer source characteristics of modern or paleoearthquakes from indicators of dynamic deformations. However, strong site control also suggests that the dynamic deformations may be predictable, which would be useful for engineering

  8. Reflection and transmission of plane SH-waves in an initially stressed inhomogeneous anisotropic magnetoelastic medium

    Science.gov (United States)

    Majhi, S.; Pal, P. C.; Kumar, S.

    2017-01-01

    This study investigates the reflection and transmission of plane SH-waves in two semi-infinite anisotropic magnetoelastic media. The lower half-space is considered as initially stressed and inhomogeneous. The density of lower half-space is taken exponentially varying with depth. The solutions for half-spaces are obtained analytically. The expressions for reflection and transmission coefficient are obtained in the closed form subject to continuity conditions at the interfaces of anisotropic magnetoelastic half-spaces and the Snell's law. It is found that these coefficients depend on the initial stress, inhomogeneity parameter, the magnetoelastic coupling parameter, and the angle at which wave crosses the magnetic field of the half-spaces. Numerical computations are performed for these coefficients for a specific model of two different anisotropic magnetoelastic half-spaces. The numerical results are illustrated by the graph of reflection and transmission coefficient versus the angle of incidence. In general, as the initial stress increases the reflection and transmission coefficient increases, the affect is more prominent for more than 10 GPa. Inhomogeneity in the density of the material also increases the reflection and transmission coefficient. The anisotropic magnetoelastic parameter and the angle at which the wave crosses the magnetic field for both the half-spaces have a quite significant effect on the reflection and transmission coefficient.

  9. Reflection and transmission of plane SH-waves in an initially stressed inhomogeneous anisotropic magnetoelastic medium

    Science.gov (United States)

    Majhi, S.; Pal, P. C.; Kumar, S.

    2016-06-01

    This study investigates the reflection and transmission of plane SH-waves in two semi-infinite anisotropic magnetoelastic media. The lower half-space is considered as initially stressed and inhomogeneous. The density of lower half-space is taken exponentially varying with depth. The solutions for half-spaces are obtained analytically. The expressions for reflection and transmission coefficient are obtained in the closed form subject to continuity conditions at the interfaces of anisotropic magnetoelastic half-spaces and the Snell's law. It is found that these coefficients depend on the initial stress, inhomogeneity parameter, the magnetoelastic coupling parameter, and the angle at which wave crosses the magnetic field of the half-spaces. Numerical computations are performed for these coefficients for a specific model of two different anisotropic magnetoelastic half-spaces. The numerical results are illustrated by the graph of reflection and transmission coefficient versus the angle of incidence. In general, as the initial stress increases the reflection and transmission coefficient increases, the affect is more prominent for more than 10 GPa. Inhomogeneity in the density of the material also increases the reflection and transmission coefficient. The anisotropic magnetoelastic parameter and the angle at which the wave crosses the magnetic field for both the half-spaces have a quite significant effect on the reflection and transmission coefficient.

  10. Time-Reversal of Nonlinear Waves - Applicability and Limitations

    CERN Document Server

    Ducrozet, G; Chabchoub, A

    2016-01-01

    Time-reversal (TR) refocusing of waves is one of fundamental principles in wave physics. Using the TR approach, "Time-reversal mirrors" can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backwards. Lately, laboratory experiments proved that this approach can be applied not only in acoustics and electromagnetism but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic TR using a uni-directional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configu...

  11. Reflection and refraction properties of plane waves on the interface of uniaxially anisotropic chiral media.

    Science.gov (United States)

    Cheng, Qiang; Cui, Tie Jun

    2006-12-01

    We have investigated the reflection and refraction properties of plane waves incident from free space into a uniaxially anisotropic chiral medium, where the chirality appears only in one direction and the host medium can be either an isotropic dielectric or an anisotropic electric plasma. We show that the reflection and refraction properties are closely related to the dispersion relation of the chiral medium and that negative phase refractions and/or negative group refractions may occur. We further demonstrate that the two eigenwaves within the uniaxially anisotropic chiral medium behave differently with respect to the incident angle, and in some cases only one of them can be supported and transmitted. We have studied the critical angle and Brewster's angle with some special properties. We have also discussed the potential application of the uniaxially anisotropic chiral medium for the polarization beam splitter. Numerical results are given to validate our analysis.

  12. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT.

    Science.gov (United States)

    Maintz, Stefan; Deringer, Volker L; Tchougréeff, Andrei L; Dronskowski, Richard

    2016-04-30

    The computer program LOBSTER (Local Orbital Basis Suite Towards Electronic-Structure Reconstruction) enables chemical-bonding analysis based on periodic plane-wave (PAW) density-functional theory (DFT) output and is applicable to a wide range of first-principles simulations in solid-state and materials chemistry. LOBSTER incorporates analytic projection routines described previously in this very journal [J. Comput. Chem. 2013, 34, 2557] and offers improved functionality. It calculates, among others, atom-projected densities of states (pDOS), projected crystal orbital Hamilton population (pCOHP) curves, and the recently introduced bond-weighted distribution function (BWDF). The software is offered free-of-charge for non-commercial research. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  13. Resonant plane waves in metamaterials with dipoles and quadrupoles coupled with quantum system

    CERN Document Server

    Chipouline, A; Pertsch, T

    2013-01-01

    Here the multipole approach [13], in combination with the density matrix formalism is used for establishing of the model for MMs with gain. This approach allows us to investigate analytically or semi-analytically the interplay between gain and magnetic properties of the MMs, the influence of internally unstable operation mode for spasers (MAs coupled with emitters, which the MMs consist of) on the propagation characteristics, and finally to optimize MM design. Moreover, the presented model is in line with the previously presented approach [16] (actually is its natural extension on the problem of plane wave propagation) and from the other side pretty clear and observable. The results presented in this paper resolve the discussion excited by [12] followed by [35-38].

  14. Modulation instability of quasi-plane-wave optical beams in biased photorefractive- photovoltaic crystals

    Institute of Scientific and Technical Information of China (English)

    Lu Ke-Qing; Zhao Wei; Yang Yan-Long; Zhu Xiang-Ping; Li Jin-Ping; Zhang Yan-Peng

    2004-01-01

    We investigate the modulation instability of quasi-plane-wave optical beams in biased photorefractive-photovoltaic crystals by globally treating the space-charge field. The modulation instability growth rate is obtained, which depends on the external bias field, on the bulk photovoltaic effect, and on the ratio of the optical beam's intensity to that of the dark irradiance. Our analysis indicates that this modulation instability growth rate is identical to the modulation instability growth rate studied previously in biased photorefractive-nonphotovoltaic crystals when the bulk photovoltaic effect is negligible for shorted circuits, and predicts the modulation instability growth rate in open- and closed-circuit photorefractive-photovoltaic crystals when the external bias field is absent.

  15. DFT LCAO and plane wave calculations of SrZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Evarestov, R.A.; Bandura, A.V.; Alexandrov, V.E. [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetskiy Prospekt, Stary Peterhof 198504 (Russian Federation); Kotomin, E.A. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstr. 1, 70569, Stuttgart (Germany)

    2005-02-01

    The results of the density functional (DFT) LCAO and plane wave (PW) calculations of the electronic and structural properties of four known SrZrO{sub 3} phases (Pm3m, I4/mcm, Cmcm and Pbnm) are presented and discussed. The calculated unit cell energies and relative stability of these phases agree well with the experimental sequence of SrZrO{sub 3} phases as the temperature increases. The lattice structure parameters optimized in the PW calculations for all four phases are in good agreement with the experimental neutron diffraction data. The LCAO and PW results for the electronic structure, density of states and chemical bonding in the cubic phase (Pm3m) are discussed in detail and compared with the results of previous PW calculations. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Integrable Open Spin Chain in Super Yang-Mills and the Plane-wave/SYM duality

    CERN Document Server

    Chen, B; Wu, Y S; Chen, Bin; Wang, Xiao-Jun; Wu, Yong-Shi

    2004-01-01

    We investigate the integrable structures in an N=2 superconfomal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, N=4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic operators is identified with the Hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime.

  17. Integrable open spin chain in super Yang-Mills and the plane-wave/SYM duality

    Science.gov (United States)

    Chen, Bin; Wang, Xiao-Jun; Wu, Yong-Shi

    2004-02-01

    We investigate the integrable structures in an Script N = 2 superconformal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, Script N = 4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic scalar operators is identified with the hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime.

  18. Implementation of LDA+DMFT with the pseudo-potential-plane-wave method

    Institute of Scientific and Technical Information of China (English)

    Zhao Jian-Zhou; Zhuang Jia-Ning; Deng Xiao-Yu; Bi Yan; Cai Ling-Cang; Fang Zhong; Dai Xi

    2012-01-01

    We propose an efficient implementation of combining dynamical mean field theory(DMFT)with electronic structural calculation based on the local density approximation(LDA).The pseudo-potential-plane-wave method is used in the LDA part,which enables it to be applied to large systems.The full loop self consistency of the charge density has been reached in our implementation,which allows us to compute the total energy related properties.The procedure of LDA+DMFT is introduced in detail with a complete flow chart.We have also applied our code to study the electronic structure of several typical strong correlated materials,including cerium,americium and NiO.Our results fit quite well with both the experimental data and previous studies.

  19. Upper limits on gravitational wave emission from 78 radio pulsars

    CERN Document Server

    Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M; Bayer, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Castaldi, G; Cepeda, C; Chalkey, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; D'Ambrosio, E; Dalrymple, J; Danzmann, K; Davies, G; De Bra, D; DeSalvo, R; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; Dhurandhar, S V; Di Credico, A; Dickson, J; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Díaz, M; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R E; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L; González, G; Gossler, S; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Gustafson, R; Günther, M; Hage, B; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Krämer, M; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Lyne, A G; MacInnis, M; Machenschalk, B; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McWilliams, S; Meier, T; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Müller, G; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Ruet, L; Russell, P; Ryan, K; Rüdiger, A; Sakata, S; Samidi, M; Sancho de la Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D W; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P; Villar, A; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R; Watts, K; Weidner, A; Weinert, M; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C

    2007-01-01

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO600 gravitational wave detectors. The data from both runs have been combined coherently to maximise sensitivity. For the first time pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 3.2e-25 for PSRJ1603-7202, and the equatorial ellipticity of PSRJ2124-3358 is less than 10e-6. Furthermore, our strain upper limit for the Crab pulsar is only three times greater than the fiducial spin-down limit.

  20. Fully converged plane-wave-based self-consistent G W calculations of periodic solids

    Science.gov (United States)

    Cao, Huawei; Yu, Zhongyuan; Lu, Pengfei; Wang, Lin-Wang

    2017-01-01

    The G W approximation is a well-known method to obtain the quasiparticle and spectral properties of systems ranging from molecules to solids. In practice, G W calculations are often employed with many different approximations and truncations. In this work, we describe the implementation of a fully self-consistent G W approach based on the solution of the Dyson equation using a plane wave basis set. Algorithmic, numerical, and technical details of the self-consistent G W approach are presented. The fully self-consistent G W calculations are performed for GaAs, ZnO, and CdS including semicores in the pseudopotentials. No further approximations and truncations apart from the truncation on the plane wave basis set are made in our implementation of the G W calculation. After adopting a special potential technique, a ˜100 Ry energy cutoff can be used without the loss of accuracy. We found that the self-consistent G W (sc-G W ) significantly overestimates the bulk band gaps, and this overestimation is likely due to the underestimation of the macroscopic dielectric constants. On the other hand, the sc-G W accurately predicts the d -state positions, most likely because the d -state screening does not sensitively depend on the macroscopic dielectric constant. Our work indicates the need to include the high-order vertex term in order for the many-body perturbation theory to accurately predict the semiconductor band gaps. It also sheds some light on why, in some cases, the G0W0 bulk calculation is more accurate than the fully self-consistent G W calculation, because the initial density-functional theory has a better dielectric constant compared to experiments.

  1. Radiation of de-excited electrons at large times in a strong electromagnetic plane wave

    Energy Technology Data Exchange (ETDEWEB)

    Kazinski, P.O., E-mail: kpo@phys.tsu.ru

    2013-12-15

    The late time asymptotics of the physical solutions to the Lorentz–Dirac equation in the electromagnetic external fields of simple configurations–the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave–are found. The solutions to the Landau–Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime. -- Highlights: •Late time asymptotics of the solutions to the Lorentz–Dirac equation are studied. •General properties of the total radiation power of electrons are established. •The total radiation power equals a half the rest energy divided by the proper-time. •Spectral densities of radiation formed on the late time asymptotics are derived. •Possible experimental verification of the results is proposed.

  2. Monte Carlo homogenized limit analysis model for randomly assembled blocks in-plane loaded

    Science.gov (United States)

    Milani, Gabriele; Lourenço, Paulo B.

    2010-11-01

    A simple rigid-plastic homogenization model for the limit analysis of masonry walls in-plane loaded and constituted by the random assemblage of blocks with variable dimensions is proposed. In the model, blocks constituting a masonry wall are supposed infinitely resistant with a Gaussian distribution of height and length, whereas joints are reduced to interfaces with frictional behavior and limited tensile and compressive strength. Block by block, a representative element of volume (REV) is considered, constituted by a central block interconnected with its neighbors by means of rigid-plastic interfaces. The model is characterized by a few material parameters, is numerically inexpensive and very stable. A sub-class of elementary deformation modes is a-priori chosen in the REV, mimicking typical failures due to joints cracking and crushing. Masonry strength domains are obtained equating the power dissipated in the heterogeneous model with the power dissipated by a fictitious homogeneous macroscopic plate. Due to the inexpensiveness of the approach proposed, Monte Carlo simulations can be repeated on the REV in order to have a stochastic estimation of in-plane masonry strength at different orientations of the bed joints with respect to external loads accounting for the geometrical statistical variability of blocks dimensions. Two cases are discussed, the former consisting on full stochastic REV assemblages (obtained considering a random variability of both blocks height an length) and the latter assuming the presence of a horizontal alignment along bed joints, i.e. allowing blocks height variability only row by row. The case of deterministic blocks height (quasi-periodic texture) can be obtained as a subclass of this latter case. Masonry homogenized failure surfaces are finally implemented in an upper bound FE limit analysis code for the analysis at collapse of entire walls in-plane loaded. Two cases of engineering practice, consisting on the prediction of the failure

  3. Quantifying the limits of through-plane thermal dissipation in 2D-material-based systems

    Science.gov (United States)

    Yasaei, Poya; Behranginia, Amirhossein; Hemmat, Zahra; El-Ghandour, Ahmed I.; Foster, Craig D.; Salehi-Khojin, Amin

    2017-09-01

    Through-plane thermal transport accounts for a major fraction of heat dissipation from hot-spots in many existing devices made of two-dimensional (2D) materials. In this report, we performed a set of electrical thermometry measurements and 3D finite element analyses to quantify the limits of power dissipation in monolayer graphene, a representative of 2D materials, fabricated on various technologically viable substrates such as chemical vapor deposited (CVD) diamond, tape-casted (sintered) aluminum nitride (AlN), and single crystalline c-plane sapphire as well as silicon with different oxide layers. We demonstrate that the heat dissipation through graphene on AlN substrate near room temperature outperforms those of CVD diamond and other studied substrates, owing to its superior thermal boundary conductance (TBC). At room temperature, our measurements reveal a TBC of 33.5 MW · m-2 · K-1 for graphene on AlN compared to 6.2 MW · m-2 · K-1 on diamond. This study highlights the importance of simultaneous optimization of the interfaces and the substrate and provides a route to maximize the heat removal capability of 2D-material-based devices.

  4. Propagation of plane waves in a rotating magneto-thermoelastic fiber-reinforced medium under G-N theory

    Directory of Open Access Journals (Sweden)

    Maity N.

    2017-06-01

    Full Text Available The article is concernedwith the possibility of plane wave propagation in a rotating elastic medium under the action of magnetic and thermal fields. The material is assumed to be fibre-reinforced with increased stiffness, strength and load bearing capacity. Green and Nagdhi’s concepts of generalized thermoelastic models II and III have been followed in the governing equations expressed in tensor notation. The effects of various parameters of the applied fields on the plane wave velocity have been shown graphically.

  5. Spatial noise limited NETD performance of a HgCdTe hybrid focal plane array

    Science.gov (United States)

    Gopal, Vishnu

    1996-04-01

    This paper presents a model for theoretically estimating the residual spatial noise in a direct injection readout hybrid focal plane array (FPA) consisting of photovoltaic detectors. The procedure consists of computing the response of the pixels after taking into account the nonlinearity induced by the transfer function in the hybrid configuration and the estimated r.m.s. response nonuniformity from the known input parameters of the detector and readout arrays. A linear two point nonuniformity compensation algorithm is applied to the computed pixel responses to calculate the residual spatial noise. Signal-to-spatial noise ratio is then used to estimate the spatial noise limited NETD performance of MWIR and LWIR Hg 1- x Cd x Te hybrid FPAs.

  6. INTEGRAL/SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane

    CERN Document Server

    Teegarden, B J; Jean, P; Knödlseder, J; Lonjou, V; Roques, J P; Skinner, G K; Von Ballmoos, P; Weidenspointner, G; Bazzano, A; Butt, Y M; Decourchelle, A; Fabian, A C; Goldwurm, A; Güdel, M; Hannikainen, D C; Hartmann, D H; Hornstrup, A; Lewin, W H G; Makishima, K; Malzac, A; Miller, J; Parmar, A N; Reynolds, S P; Rothschild, R E; Tomsick, J A; Vink, J

    2004-01-01

    The center of our Galaxy is a known strong source of electron-positron 511-keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (INTErnational Gamma-RAy Astrophysics Laboratory) mission, launched in Oct. 2002, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high resolution coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic Plane. No positive annihilation flux was detected outside of the central region (|l| > 40 deg) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511-keV flux.

  7. Neoclassical Solution of Transient Interaction of Plane Acoustic Waves with a Spherical Elastic Shell

    Directory of Open Access Journals (Sweden)

    Hanson Huang

    1996-01-01

    Full Text Available A detailed solution to the transient interaction of plane acoustic waves with a spherical elastic shell was obtained more than a quarter of a century ago based on the classical separation of variables, series expansion, and Laplace transform techniques. An eight-term summation of the time history series was sufficient for the convergence of the shell deflection and strain, and to a lesser degree, the shell velocity. Since then, the results have been used routinely for validation of solution techniques and computer methods for the evaluation of underwater explosion response of submerged structures. By utilizing modern algorithms and exploiting recent advances of computer capacities and floating point mathematics, sufficient terms of the inverse Laplace transform series solution can now be accurately computed. Together with the application of the Cesaro summation using up to 70 terms of the series, two primary deficiencies of the previous solution are now remedied: meaningful time histories of higher time derivative data such as acceleration and pressure are now generated using a sufficient number of terms in the series; and uniform convergence around the discontinuous step wave front is now obtained, completely eradicating spurious oscillations due to the Gibbs' phenomenon. New results of time histories of response items of interest are presented.

  8. Effects of Non-Elevation-Focalized Linear Array Transducer on Ultrasound Plane-Wave Imaging

    Directory of Open Access Journals (Sweden)

    Congzhi Wang

    2016-11-01

    Full Text Available Plane-wave ultrasound imaging (PWUS has become an important method of ultrasound imaging in recent years as its frame rate has exceeded 10,000 frames per second, allowing ultrasound to be used for two-dimensional shear wave detection and functional brain imaging. However, compared to the traditional focusing and scanning method, PWUS images always suffer from a degradation of lateral resolution and contrast. To improve the image quality of PWUS, many different beamforming algorithms have been proposed and verified. Yet the influence of transducer structure is rarely studied. For this paper, the influence of using an acoustic lens for PWUS was evaluated. Two linear array transducers were fabricated. One was not self-focalized in the elevation direction (non-elevation-focalized transducer, NEFT; the other one was a traditional elevation-focalized transducer (EFT. An initial simulation was conducted to show the influence of elevation focusing. Then the images obtained with NEFT on a standard ultrasound imaging phantom were compared with those obtained with EFT. It was demonstrated that, in a relatively deep region, the contrast of an NEFT image is better than that of an EFT image. These results indicate that a more sophisticated design of ultrasound transducer would further improve the image quality of PWUS.

  9. Influence of Tissue Microstructure on Shear Wave Speed Measurements in Plane Shear Wave Elastography: A Computational Study in Lossless Fibrotic Liver Media.

    Science.gov (United States)

    Wang, Yu; Jiang, Jingfeng

    2017-07-01

    Shear wave elastography (SWE) has been used to measure viscoelastic properties for characterization of fibrotic livers. In this technique, external mechanical vibrations or acoustic radiation forces are first transmitted to the tissue being imaged to induce shear waves. Ultrasonically measured displacement/velocity is then utilized to obtain elastographic measurements related to shear wave propagation. Using an open-source wave simulator, k-Wave, we conducted a case study of the relationship between plane shear wave measurements and the microstructure of fibrotic liver tissues. Particularly, three different virtual tissue models (i.e., a histology-based model, a statistics-based model, and a simple inclusion model) were used to represent underlying microstructures of fibrotic liver tissues. We found underlying microstructures affected the estimated mean group shear wave speed (SWS) under the plane shear wave assumption by as much as 56%. Also, the elastic shear wave scattering resulted in frequency-dependent attenuation coefficients and introduced changes in the estimated group SWS. Similarly, the slope of group SWS changes with respect to the excitation frequency differed as much as 78% among three models investigated. This new finding may motivate further studies examining how elastic scattering may contribute to frequency-dependent shear wave dispersion and attenuation in biological tissues.

  10. Tunnel effect of fractal fault and transient S-wave velocity rupture (TSVR) of in-plane shear fault

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Transient S-wave velocity rupture (TSVR) means the velocity of fault rupture propagation is between S-wave velocity βand P-wave velocity α. Its existing in the rupture of in-plane (i.e. strike-slip) fault has been proved, but in 2-dimensional classical model, there are two difficulties in transient S-wave velocity rupture, i.e., initialization difficulty and divergence difficulty in interpreting the realization of TSVR. The initialization difficulty means, when v↑vR (Rayleigh wave velocity), the dynamic stress strength factor K2(t)→+0, and changes from positive into negative in the interval (vR,β). How v transit the forbidden of (vR,β)? The divergence difficulty means K2(t)→+ when v↓. Here we introduce the concept of fractal and tunnel effect that exist everywhere in fault. The structure of all the faults is fractal with multiple cracks. The velocity of fault rupture is differentiate of the length of the fault respect to time, so the rupture velocity is also fractal. The tunnel effect means the dynamic rupture crosses over the interval of the cracks, and the coalescence of the intervals is slower than the propagation of disturbance. Suppose the area of earthquake nucleation is critical or sub-critical propagation everywhere, the arriving of disturbance triggers or accelerates the propagation of cracks tip at once, and the observation system cannot distinguish the front of disturbance and the tip of fracture. Then the speed of disturbance may be identified as fracture velocity, and the phenomenon of TSVR appears, which is an apparent velocity. The real reason of apparent velocity is that the mathematics model of shear rupture is simplified of complex process originally. The dual character of rupture velocity means that the apparent velocity of fault and the real velocity of micro-crack extending, which are different in physics, but are unified in rupture criterion. Introducing the above-mentioned concept to the calculation of K2 (t), the difficulty of

  11. Adaptive selective ES-FEM limit analysis of cracked plane-strain structures

    Institute of Scientific and Technical Information of China (English)

    H. NGUYEN-XUAN[1; T. RABCZUK[2

    2015-01-01

    This paper presents a simple and efficient approach for predicting the plastic limit loads in cracked plane- strain structures. We use two levels of mesh repartitioning for the finite element limit analysis. The master level handles an adaptive primal-mesh process through a dissipation-based indicator. The slave level performs the subdivision of each triangle into three sub-triangles and constitutes a dual mesh from a pair of two adjacent sub-triangles shared by common edges of the primal mesh. Applying a strain smoothing projection to the strain rates on the dual mesh, the incompressibility constraint and the flow rule constraint are imposed over the edge-based smoothing domains and everywhere in the problem domain. The limit analysis problem is recast into the compact form of a second-order cone programming (SOCP) for the purpose of exploiting interior-point solvers. The present method retains a low number of optimization variables. It offers a convenient way for designing and solving the large-scale optimization problems effectively. Several benchmark examples are given to show the simplicity and effectiveness of the present method.

  12. Magnetoelastic plane waves in rotating media in thermoelasticity of type II (G-N model

    Directory of Open Access Journals (Sweden)

    S. K. Roychoudhuri

    2004-01-01

    Full Text Available A study is made of the propagation of time-harmonic plane waves in an infinite, conducting, thermoelastic solid permeated by a uniform primary external magnetic field when the entire medium is rotating with a uniform angular velocity. The thermoelasticity theory of type II (G-N model (1993 is used to study the propagation of waves. A more general dispersion equation is derived to determine the effects of rotation, thermal parameters, characteristic of the medium, and the external magnetic field. If the primary magnetic field has a transverse component, it is observed that the longitudinal and transverse motions are linked together. For low frequency (χ≪1, χ being the ratio of the wave frequency to some standard frequency ω∗, the rotation and the thermal field have no effect on the phase velocity to the first order of χ and then this corresponds to only one slow wave influenced by the electromagnetic field only. But to the second order of χ, the phase velocity, attenuation coefficient, and the specific energy loss are affected by rotation and depend on the thermal parameters cT, cT being the nondimensional thermal wave speed of G-N theory, and the thermoelastic coupling εT, the electromagnetic parameters εH, and the transverse magnetic field RH. Also for large frequency, rotation and thermal field have no effect on the phase velocity, which is independent of primary magnetic field to the first order of (1/χ (χ≫1, and the specific energy loss is a constant, independent of any field parameter. However, to the second order of (1/χ, rotation does exert influence on both the phase velocity and the attenuation factor, and the specific energy loss is affected by rotation and depends on the thermal parameters cT and εT, electromagnetic parameter εH, and the transverse magnetic field RH, whereas the specific energy loss is independent of any field parameters to the first order of (1/χ.

  13. Next generation sub-millimeter wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarization experiments

    Science.gov (United States)

    Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.

    2016-07-01

    The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.

  14. SH-Wave at a Plane Interface between Homogeneous and Inhomogeneous Fibre-Reinforced Elastic Half-Spaces

    Directory of Open Access Journals (Sweden)

    C. Zorammuana

    2015-01-01

    Full Text Available The problem of reflection and refraction of SH-waves at a plane interface between the homogeneous and inhomogeneous fibre-reinforced elastic half-spaces has been investigated. Amplitude and energy ratios corresponding to the reflected and refracted SH-waves are derived using appropriate boundary conditions. These ratios are computed numerically for a particular model and the results are depicted graphically.

  15. Uphill diffusion, zero-flux planes and transient chemical solitary waves in garnet

    Science.gov (United States)

    Vielzeuf, D.; Saúl, A.

    2011-05-01

    Diffusion profiles in minerals are increasingly used to determine the duration of geological events. For this purpose, the distinction between growth and diffusion zoning is critical; it requires the understanding of complex features associated with multicomponent diffusion. Seed-overgrowth interdiffusion experiments carried out in the range 1,050-1,250°C at 1.3 GPa have been designed to quantify and better understand Fe-Mg-Ca interdiffusion in garnet. Some of the diffusion profiles measured by analytical transmission electron microscope show characteristic features of multicomponent diffusion such as uphill diffusion, chemical solitary waves, zero-flux planes and complex diffusion paths. We implemented three different methods to calculate the interdiffusion coefficients of the D matrix from the experimental penetration curves and determined that with Ca as the dependent component, the crossed coefficients of the D matrix are negative. Experiments and numerical simulations indicate that: (1) uphill diffusion in garnet can be observed indifferently on the three components Fe, Mg and Ca, (2) it takes the form of complementary depletion/repletion waves and (3) chemical waves occur preferentially on initially flat concentration profiles. Derived D matrices are used to simulate the fate of chemical waves in time, in finite crystals. These examples show that the flow of atoms in multicomponent systems is not necessarily unidirectional for all components; it can change both in space along the diffusion profile and in time. Moving zero-flux planes in finite crystals are transitory features that allow flux reversals of atoms in the diffusion zone. Interdiffusion coefficients of the D matrices are also analyzed in terms of eigenvalues and eigenvectors. This analysis and the experimental results show that depending on the composition of the diffusion couple, (1) the shape of chemical waves and diffusion paths changes; (2) the width of the diffusion zone for each component

  16. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    DEFF Research Database (Denmark)

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained...

  17. Asymptotic Representation of the Filtration-Wave Field in the Layer of an Inhomogeneous Medium in the Form of a Plane Wave

    Science.gov (United States)

    Filippov, A. I.; Akhmetova, O. V.; Koval‧skii, A. A.

    2016-11-01

    The filtration-wave process in the central layer of a three-layer anisotropic medium is described as an equivalent plane wave with a modified asymptotic method accurate in the mean. The initial problem is parametrized and broken down into simpler problems for the coefficients of expansion in an asymptotic parameter. The zero expansion coefficient describes the sought plane wave, whereas the first coefficient ensures refinement of the wave-front geometry. The exact solution of the parametrized problem is obtained on the basis of the Fourier sine transformation. The correctness of the developed method is confirmed by comparing the obtained asymptotic solutions and the coefficients of Maclaurin-series expansion of the exact solution of the parametrized problem in a formal parameter.

  18. Upper limit map of a background of gravitational waves

    Science.gov (United States)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.

    2007-10-01

    We searched for an anisotropic background of gravitational waves using data from the LIGO S4 science run and a method that is optimized for point sources. This is appropriate if, for example, the gravitational wave background is dominated by a small number of distinct astrophysical sources. No signal was seen. Upper limit maps were produced assuming two different power laws for the source strain power spectrum. For an f-3 power law and using the 50 Hz to 1.8 kHz band the upper limits on the source strain power spectrum vary between 1.2×10-48Hz-1 (100Hz/f)3 and 1.2×10-47Hz-1 (100Hz/f)3, depending on the position in the sky. Similarly, in the case of constant strain power spectrum, the upper limits vary between 8.5×10-49Hz-1 and 6.1×10-48Hz-1. As a side product a limit on an isotropic background of gravitational waves was also obtained. All limits are at the 90% confidence level. Finally, as an application, we focused on the direction of Sco-X1, the brightest low-mass x-ray binary. We compare the upper limit on strain amplitude obtained by this method to expectations based on the x-ray flux from Sco-X1.

  19. Highly precise acoustic calibration method of ring-shaped ultrasound transducer array for plane-wave-based ultrasound tomography

    Science.gov (United States)

    Terada, Takahide; Yamanaka, Kazuhiro; Suzuki, Atsuro; Tsubota, Yushi; Wu, Wenjing; Kawabata, Ken-ichi

    2017-07-01

    Ultrasound computed tomography (USCT) is promising for a non-invasive, painless, operator-independent and quantitative system for breast-cancer screening. Assembly error, production tolerance, and aging-degradation variations of the hardwire components, particularly of plane-wave-based USCT systems, may hamper cost effectiveness, precise imaging, and robust operation. The plane wave is transmitted from a ring-shaped transducer array for receiving the signal at a high signal-to-noise-ratio and fast aperture synthesis. There are four signal-delay components: response delays in the transmitters and receivers and propagation delays depending on the positions of the transducer elements and their directivity. We developed a highly precise calibration method for calibrating these delay components and evaluated it with our prototype plane-wave-based USCT system. Our calibration method was found to be effective in reducing delay errors. Gaps and curves were eliminated from the plane wave, and echo images of wires were sharpened in the entire imaging area.

  20. Plane-wave matrix theory from N=4 super-Yang-Mills on RxS{sup 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nakwoo E-mail: kim@aei.mpg.de; Klose, Thomas E-mail: thklose@aei.mpg.de; Plefka, Jan E-mail: plefka@aei.mpg.de

    2003-11-03

    Recently a mass deformation of the maximally supersymmetric Yang-Mills quantum mechanics has been constructed from the supermembrane action in eleven-dimensional plane-wave backgrounds. However, the origin of this plane-wave matrix theory in terms of a compactification of a higher-dimensional super-Yang-Mills model has remained obscure. In this paper we study the Kaluza-Klein reduction of D=4, N=4 super-Yang-Mills theory on a round three-sphere, and demonstrate that the plane-wave matrix theory arises through a consistent truncation to the lowest lying modes. We further explore the relation between the dilatation operator of the conformal field theory and the Hamiltonian of the quantum mechanics through perturbative calculations up to two-loop order. In particular, we find that the one-loop anomalous dimensions of pure scalar operators are completely captured by the plane-wave matrix theory. At two-loop level this property ceases to exist.

  1. Exact Green Function for a Dirac Particle in Presence of Two Orthogonal Plane Wave Fields. Path Integral Derivation

    Science.gov (United States)

    Ould-Lahoucine, H. K.; Chetouani, L.

    2012-07-01

    Exact Green function for a Dirac particle subject to a couple of orthogonal plane wave fields is obtained throughout a path integral approach. In addition, a suitable representation of the Dirac matrices is deduced so that the initial problem becomes the one of a free particle.

  2. Singularity Correction for Long-Range-Corrected Density Functional Theory with Plane-Wave Basis Sets.

    Science.gov (United States)

    Kawashima, Yukio; Hirao, Kimihiko

    2017-02-24

    We introduced two methods to correct the singularity in the calculation of long-range Hartree-Fock (HF) exchange for long-range-corrected density functional theory (LC-DFT) calculations in plane-wave basis sets. The first method introduces an auxiliary function to cancel out the singularity. The second method introduces a truncated long-range Coulomb potential, which has no singularity. We assessed the introduced methods using the LC-BLYP functional by applying it to isolated systems of naphthalene and pyridine. We first compared the total energies and the HOMO energies of the singularity-corrected and uncorrected calculations and confirmed that singularity correction is essential for LC-DFT calculations using plane-wave basis sets. The LC-DFT calculation results converged rapidly with respect to the cell size as the other functionals, and their results were in good agreement with the calculated results obtained using Gaussian basis sets. LC-DFT succeeded in obtaining accurate orbital energies and excitation energies. We next applied LC-DFT with singularity correction methods to the electronic structure calculations of the extended systems, Si and SiC. We confirmed that singularity correction is important for calculations of extended systems as well. The calculation results of the valence and conduction bands by LC-BLYP showed good convergence with respect to the number of k points sampled. The introduced methods succeeded in overcoming the singularity problem in HF exchange calculation. We investigated the effect of the singularity correction on the excitation state calculation and found that careful treatment of the singularities is required compared to ground-state calculations. We finally examined the excitonic effect on the band gap of the extended systems. We calculated the excitation energies to the first excited state of the extended systems using a supercell model at the Γ point and found that the excitonic binding energy, supposed to be small for

  3. Periodic Wave Solutions and Their Limits for the Generalized KP-BBM Equation

    OpenAIRE

    Ming Song; Zhengrong Liu

    2012-01-01

    We use the bifurcation method of dynamical systems to study the periodic wave solutions and their limits for the generalized KP-BBM equation. A number of explicit periodic wave solutions are obtained. These solutions contain smooth periodic wave solutions and periodic blow-up solutions. Their limits contain periodic wave solutions, kink wave solutions, unbounded wave solutions, blow-up wave solutions, and solitary wave solutions.

  4. Upper limit map of a background of gravitational waves

    CERN Document Server

    Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M A; Bayer, K; Belczynski, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Casey, M M; Castaldi, G; Cepeda, C; Chalkey, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Chin, D; Chin, E; Chow, J; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Colacino, C N; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coward, D; Coyne, D; Creighton, J D E; Creighton, T D; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; De Bra, D; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S V; Díaz, M; Dickson, J; Di Credico, A; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L; González, G; Gossler, S; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Günther, M; Gustafson, R; Hage, B; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Howell, E; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Jackrel, D; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lee, B; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McNabb, J W C; McWilliams, S; Meier, T; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mudge, D; Müller, G; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sakata, S; Samidi, M; Sancho de la Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Tarallo, M; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D W; Ungarelli, C; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P; Villar, A; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L

    2007-01-01

    We searched for an anisotropic background of gravitational waves using data from the LIGO S4 science run and a method that is optimized for point sources. This is appropriate if, for example, the gravitational wave background is dominated by a small number of distinct astrophysical sources. No signal was seen. Upper limit maps were produced assuming two different power laws for the source strain power spectrum. For an f^-3 power law and using the 50 Hz to 1.8 kHz band the upper limits on the source strain power spectrum vary between 1.2e-48 Hz^-1 (100 Hz/f)^3 and 1.2e-47 Hz^-1 (100 Hz /f)^3, depending on the position in the sky. Similarly, in the case of constant strain power spectrum, the upper limits vary between 8.5e-49 Hz^-1 and 6.1e-48 Hz^-1. As a side product a limit on an isotropic background of gravitational waves was also obtained. All limits are at the 90% confidence level. Finally, as an application, we focused on the direction of Sco-X1, the closest low-mass X-ray binary. We compare the upper limi...

  5. Reflection and Transmission of Plane Electromagnetic Waves by a Geologic Layer.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-01

    Electric field and magnetic field reflection and transmission responses generated by a plane wave normally incident onto a finite - thickness geologic layer are mathematically derived and numerically evaluated. A thin layer with enhanced electric current conductivity and/or magnetic permeability is a reasonable geophysical representation of a hydraulic fracture inject ed with a high - contrast proppant pack. Both theory and numerics indicate that backward - and forward - scattered electromagnetic wavefields are potentially observable in a field experiment, despite the extreme thinness of a fracture compared to a typical low - frequency electromagnetic wavelength. The First Born Approximation (FBA) representation of layer scattering, significant for inversion studies, is shown to be accurate for a thin layer with mild medium parameter (i.e., conductivity, permeability, and per mittivity) contrasts with the surrounding homogeneous wholespace. However, FBA scattering theory breaks down for thick layers and strong parameter contrasts. ACKNOWLEDGEMENTS Sandia National Laboratories is a multi - mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. This research is conducted under the auspices of CRADA (Cooperative Research and Development Agreement) SC11/01780.00 between Carbo Ceramics Inc. and Sandia National Laboratories. The author acknowledges former Carbo R&D Vic e - President Mr. Chad Cannan and former SNL Geophysics Department manage r Ms. Amy Halloran for their interest i n and support of this work. Technical discussions with Project Manager and Principal Investigator Dr. Chester J. Weiss of the SNL Geophysics Department greatly benefited this work. Dr. Lewis C. Bartel, formerly with S NL and presently a consultant to Carbo Ceramics, provided many useful and intuitive insights, and

  6. Limits for superfocusing with finite evanescent wave amplification

    CERN Document Server

    Gordon, Reuven

    2011-01-01

    Perfect lensing using negative refractive index materials and radiationless electromagnetic interference both provide extreme subwavelength focusing by "amplifying" evanescent wave components that are usually lost. This paper provides a relation between the achievable focus spot size, the amplification available and the focal length. This may be considered as a revised version of Abbe's diffraction limit for focusing systems that have evanescent wave amplification. It is useful in comparing the amplification achieved in various subwavelength focusing implementations, as well as determining when it is better to use existing near-field techniques, such as simple diffraction from an aperture or slit, than to attempt complicated superfocusing.

  7. Generation of limited-diffraction wave by approximating theoretical X-wave with simple driving

    Science.gov (United States)

    Li, Yaqin; Ding, MingYue; Hua, Shaoyan; Ming, Yuchi

    2012-03-01

    X-wave is a particular case of limited diffracting waves which has great potential applications in the enlargement of the field depth in acoustic imaging systems. In practice, the generation of real time X-wave ultrasonic fields is a complex technology which involves precise and specific voltage for the excitations for each distinct array element. In order to simplify the X-wave generating process, L. Castellanos proposed an approach to approximate the X-wave excitations with rectangular pulses. The results suggested the possibility of achieving limited-diffraction waves with relatively simple driving waveforms, which could be implemented with a moderate cost in analogical electronics. In this work, we attempt to improve L. Castellanos's method by calculating the approximation driving pulse not only from rectangular but also triangular driving pulse. The differences between theoretical X-wave signals and driving pulses, related to their excitation effects, are minimized by L2 curve criterion. The driving pulses with the minimal optimization result we chosen. A tradeoff is obtained between the cost of implementation of classical 0-order X-wave and the precision of approximation with the simple pulsed electrical driving. The good agreement of the driving pulse and the result resulting field distributions, with those obtained from the classical X-wave excitations can be justified by the filtering effects induced by the transducer elements in frequency domain. From the simulation results, we can see that the new approach improve the precise of the approximation, the difference between theoretical X-wave and the new approach is lower 10 percent than the difference between theoretical X-wave and rectangular as the driving pulse in simulation.

  8. Self-consistent theory for a plane wave in a moving medium and light-momentum criterion

    CERN Document Server

    Wang, Changbiao

    2014-01-01

    A self-consistent theory is developed based on the principle of relativity for a plane wave in a moving non-dispersive, lossless, non-conducting, isotropic uniform medium. Light-momentum criterion is set up for the first time, which states that the momentum of light in a medium is parallel to the wave vector in all inertial frames of reference. By rigorous analysis, novel basic properties of the plane wave are exposed: (1) Poynting vector does not necessarily represent the electromagnetic (EM) power flow when a medium moves, (2) Minkowski light momentum and energy constitute a Lorentz four-vector in a form of single EM-field cell or single photon, and Planck constant is a Lorentz invariant, (3) there is no momentum transfer taking place between the plane wave and the uniform medium, and the EM momentum conservation equation cannot be uniquely determined without resort to the principle of relativity, and (4) the moving medium behaves as a so-called "negative index medium" when it moves opposite to the wave vec...

  9. Plasma Limiter Based on Surface Wave Plasma Excited by Microwave

    Institute of Scientific and Technical Information of China (English)

    YANG Geng; TAN Jichun; SHEN Benjian

    2008-01-01

    A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres-sure, ionization degree and density of seed electrons under low pressure (0.01 ~1 Torr) and high pressure (10 ~1000 Torr) cases. The results show that the limiter filled with Xe with a pressure of 0.9 Torr, seed electron density of 1016 m-3, and ionization degree of 10-4, has a breakdown time of approximate 19.6 ns.

  10. Reflection of plane waves at the free surface of a fibre-reinforced elastic half-space

    Indian Academy of Sciences (India)

    Baljeet Singh; Sarva Jit Singh

    2004-06-01

    The propagation of plane waves in fibre-reinforced, anisotropic, elastic media is discussed. The expressions for the phase velocity of quasi-$P(qP)$ and quasi-$SV(qSV)$ waves propagating in a plane containing the reinforcement direction are obtained as functions of the angle between the propagation and reinforcement directions. Closed form expressions for the amplitude ratios for qP and qSV waves reflected at the free surface of a fibre-reinforced, anisotropic, homogeneous, elastic half-space are obtained. These expressions are used to study the variation of amplitude ratios with angle of incidence. It is found that reinforcement has a significant effect on the amplitude ratios and critical angle.

  11. Plane wave propagation in a rotating anisotropic medium with voids under the action of a uniform magnetic field

    Science.gov (United States)

    Maity, Narottam; Barik, S. P.; Chaudhuri, P. K.

    2016-09-01

    In this paper, plane wave propagation in a rotating anisotropic material of general nature under the action of a magnetic field of constant magnitude has been investigated. The material is supposed to be porous in nature and contains voids. Following the concept of [Cowin S. C. and Nunziato, J. W. [1983] “Linear elastic materials with voids,” J. Elasticity 13, 125-147.] the governing equations of motion have been written in tensor notation taking account of rotation, magnetic field effect and presence of voids in the medium and the possibility of plane wave propagation has been examined. A number of particular cases have been derived from our general results to match with previously obtained results in this area. Effects of various parameters on the velocity of wave propagation have been presented graphically.

  12. A plane wave analysis of coherent holographic image reconstruction by phase transfer

    CERN Document Server

    Field, Jeffrey J; Bartels, Randy A

    2015-01-01

    Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a non-imaging single-element detector. While non-imaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy (SPIM), which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We rec...

  13. Numerical modeling of undersea acoustics using a partition of unity method with plane waves enrichment

    Science.gov (United States)

    Hospital-Bravo, Raúl; Sarrate, Josep; Díez, Pedro

    2016-05-01

    A new 2D numerical model to predict the underwater acoustic propagation is obtained by exploring the potential of the Partition of Unity Method (PUM) enriched with plane waves. The aim of the work is to obtain sound pressure level distributions when multiple operational noise sources are present, in order to assess the acoustic impact over the marine fauna. The model takes advantage of the suitability of the PUM for solving the Helmholtz equation, especially for the practical case of large domains and medium frequencies. The seawater acoustic absorption and the acoustic reflectance of the sea surface and sea bottom are explicitly considered, and perfectly matched layers (PML) are placed at the lateral artificial boundaries to avoid spurious reflexions. The model includes semi-analytical integration rules which are adapted to highly oscillatory integrands with the aim of reducing the computational cost of the integration step. In addition, we develop a novel strategy to mitigate the ill-conditioning of the elemental and global system matrices. Specifically, we compute a low-rank approximation of the local space of solutions, which in turn reduces the number of degrees of freedom, the CPU time and the memory footprint. Numerical examples are presented to illustrate the capabilities of the model and to assess its accuracy.

  14. Ab initio Sternheimer-GW method for quasiparticle calculations using plane waves

    Science.gov (United States)

    Lambert, Henry; Giustino, Feliciano

    2013-08-01

    We report on the extension and implementation of the Sternheimer-GW method introduced by Giustino [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.81.115105 81, 115105 (2010)] to the case of first-principles pseudopotential calculations based on a plane-waves basis. The Sternheimer-GW method consists of calculating the GW self-energy operator without resorting to the standard expansion over unoccupied Kohn-Sham electronic states. The Green's function is calculated by solving linear systems for frequencies along the real axis. The screened Coulomb interaction is calculated for frequencies along the imaginary axis by using the Sternheimer equation. Analytic continuation to the real axis is performed using Padé approximants. The generalized plasmon-pole approximation is avoided by performing explicit calculations at multiple frequencies using Frommer's multishift solver. We demonstrate our methodology by reporting tests on common insulators and semiconductors, including Si, diamond, LiCl, and SiC. Our calculated quasiparticle energies are in agreement with the results of fully converged calculations based on the sum-over-states approach. As the Sternheimer-GW method yields the complete self-energy Σ(r,r',ω) and not only its expectation values on Kohn-Sham states, this work opens the way to nonperturbative GW calculations and to direct calculations of spectral functions for angle-resolved photoemission spectroscopy. As an example of the capabilities of the method we calculate the G0W0 spectral functions of silicon and diamond.

  15. Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane-wave basis

    CERN Document Server

    Schäfer, Tobias; Kresse, Georg

    2016-01-01

    We present a low-complexity algorithm to calculate the correlation energy of periodic systems in second-order M{\\o}ller-Plesset perturbation theory (MP2). In contrast to previous approximation-free MP2 codes, our implementation possesses a quartic scaling, $\\mathcal O(N^4$), with respect to the system size $N$ and offers an almost ideal parallelization efficiency. The general issue that the correlation energy converges slowly with the number of basis functions is solved by an internal basis set extrapolation. The key concept to reduce the scaling of the algorithm is to eliminate all summations over virtual bands which can be elegantly achieved in the Laplace transformed MP2 (LTMP2) formulation using plane-wave basis sets. Analogously, this approach could allow to calculate second order screened exchange (SOSEX) as well as particle-hole ladder diagrams with a similar low complexity. Hence, the presented method can be considered as a step towards systematically improved correlation energies.

  16. Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.

    Science.gov (United States)

    Lenge, Matteo; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Liebgott, Hervé

    2015-12-01

    Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field. Such RF images are then processed by a 2-D phase-based displacement estimator to produce 2-D vector flow maps at thousands of frames per second. First, the capability of generating TOs after PW transmissions was thoroughly investigated by varying the lateral wavelength, the burst length, and the transmission frequency. Over the entire region of interest, the generated lateral wavelengths, compared with the designed ones, presented bias and standard deviation of -3.3 ± 5.7% and 10.6 ± 7.4% in simulations and experiments, respectively. The performance of the ultrafast vector flow mapping method was also assessed by evaluating the differences between the estimated velocities and the expected ones. Both simulations and experiments show overall biases lower than 20% when varying the beam-to-flow angle, the peak velocity, and the depth of interest. In vivo applications of the method on the common carotid and the brachial arteries are also presented.

  17. Quantum Larmor radiation from a moving charge in an electromagnetic plane wave background

    CERN Document Server

    Nakamura, Gen; 10.1142/S0217751X12501424

    2012-01-01

    We extend our previous work [Phys. Rev. D83 045030 (2011)], which investigated the first-order quantum effect in the Larmor radiation from a moving charge in a spatially homogeneous time-dependent electric field. Specifically, we investigate the quantum Larmor radiation from a moving charge in a monochromatic electromagnetic plane wave background based on the scalar quantum electrodynamics at the lowest order of the perturbation theory. Using the in-in formalism, we derive the theoretical formula of the total radiation energy from a charged particle in the initial states being at rest and being in a relativistic motion. Expanding the theoretical formula in terms of the Planck constant \\hbar, we obtain the first-order quantum effect on the Larmor radiation. The quantum effect generally suppresses the total radiation energy compared with the prediction of the classical Larmor formula, which is a contrast to the previous work. The reason is explained by the fact that the radiation from a moving charge in a monoc...

  18. On the formation of shocks of electromagnetic plane waves in non-linear crystals

    CERN Document Server

    Christodoulou, Demetrios

    2015-01-01

    An influential result of F. John states that no genuinely non-linear strictly hyperbolic quasi-linear first order system of partial differential equations in two variables has a global $C^2$-solution for small enough initial data. Inspired by recent work of D. Christodoulou, we revisit John's original proof and extract a more precise description of the behaviour of solutions at the time of shock. We show that John's singular first order quantity, when expressed in characteristic coordinates, remains bounded until the final time, which is then characterised by an inverse density of characteristics tending to zero in one point. Moreover, we study the derivatives of second order, showing again their boundedness when expressed in appropriate coordinates. We also recover John's upper bound for the time of shock formation and complement it with a lower bound. Finally, we apply these results to electromagnetic plane waves in a crystal with no magnetic properties and cubic electric non-linearity in the energy density...

  19. On the formation of shocks of electromagnetic plane waves in non-linear crystals

    Science.gov (United States)

    Christodoulou, Demetrios; Perez, Daniel Raoul

    2016-08-01

    An influential result of F. John states that no genuinely non-linear strictly hyperbolic quasi-linear first order system of partial differential equations in two variables has a global C2-solution for small enough initial data. Inspired by recent work of D. Christodoulou, we revisit John's original proof and extract a more precise description of the behaviour of solutions at the time of shock. We show that John's singular first order quantity, when expressed in characteristic coordinates, remains bounded until the final time, which is then characterised by an inverse density of characteristics tending to zero in one point. Moreover, we study the derivatives of second order, showing again their boundedness when expressed in appropriate coordinates. We also recover John's upper bound for the time of shock formation and complement it with a lower bound. Finally, we apply these results to electromagnetic plane waves in a crystal with no magnetic properties and cubic electric non-linearity in the energy density, assuming no dispersion.

  20. Noise characteristics analysis of short wave infrared InGaAs focal plane arrays

    Science.gov (United States)

    Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei

    2017-09-01

    The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.

  1. Diffraction of plane P waves by a canyon of arbitrary shape in poroelastic half-space (Ⅰ): Formulation

    Institute of Scientific and Technical Information of China (English)

    Jianwen Liang; Zhongxian Liu

    2009-01-01

    This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional and shear wave sources in poroelastic half-space are derived based on Biot's theory. The scattered waves are constructed using the fictitious wave sources close to the boundary of the canyon, and magnitude of the fictitious wave sources are determined by the boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, the comparison between the degenerated solutions of single-phased half-space and the well-known solutions, and the numerical stability of the method.

  2. Stokes Waves Revisited: Exact Solutions in the Asymptotic Limit

    CERN Document Server

    Davies, Megan

    2016-01-01

    Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic secular variation in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long standing theoretical insufficiency by invoking a compact exact $n$-ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third ordered perturbative solution, that leads to a seamless extension to higher order (e.g. fifth order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desir...

  3. Time-reversal of nonlinear waves: Applicability and limitations

    Science.gov (United States)

    Ducrozet, G.; Fink, M.; Chabchoub, A.

    2016-09-01

    Time-reversal (TR) refocusing of waves is one of the fundamental principles in wave physics. Using the TR approach, time-reversal mirrors can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backward. Laboratory experiments have proved that this approach can be applied not only in acoustics and electromagnetism, but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic time-reversal using a unidirectional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configurations, pointing out the importance of high-order dispersive and particularly nonlinear effects in the refocusing of hydrodynamic stationary envelope solitons and breathers. We expect that the results may motivate similar experiments in other nonlinear dispersive media and encourage several applications with particular emphasis on the field of ocean engineering.

  4. Upper limits on gravitational wave emission from 78 radio pulsars

    Science.gov (United States)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Nocera, F.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; de La Jordana, L. Sancho; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.; Kramer, M.; Lyne, A. G.

    2007-08-01

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors. The data from both runs have been combined coherently to maximize sensitivity. For the first time, pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 2.6×10-25 for PSR J1603-7202, and the equatorial ellipticity of PSR J2124 3358 is less than 10-6. Furthermore, our strain upper limit for the Crab pulsar is only 2.2 times greater than the fiducial spin-down limit.

  5. Total transmission of incident plane waves that satisfy the Brewster conditions at a free-space-chiral interface.

    Science.gov (United States)

    Bahar, Ezekiel

    2010-09-01

    The common definition of the Brewster angles for dielectric and magnetic achiral materials are the angles at which the vertically and horizontally polarized reflection coefficients vanish. We examine broader definitions of the Brewster conditions for waves that are incident on a free-space-chiral interface. Besides the common definition, the Brewster angles have been defined as the angles at which the polarizations of the reflected waves are independent of the polarizations of the incident waves. We consider total transmission of incident plane waves that satisfy the Brewster conditions at a free-space-chiral medium planar interface. In this case we determine the polarization of the incident wave for which the reflected vertically and horizontally polarized waves vanish simultaneously. Thus with this definition of the Brewster conditions the polarization of the reflected wave is undefined. The conditions for the excitation of surface waves are considered. The characteristic polarizations that are the same for the reflected and incident waves are also examined subject to the Brewster conditions. Potential applications of this analysis are to experimentally determine the chiral or geotropic measure of the medium and to identify and characterize biological and chemical materials through their optical activity in real time. Several independent measurements can be taken with the same polarimetric instrument to avoid false identifications. Since measurements can be conducted in the reflection mode they can be nonintrusive.

  6. Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 1. Theory

    Science.gov (United States)

    Poppeliers, Christian; Pavlis, Gary L.

    2003-02-01

    We present the theoretical foundations for a prestack migration technique to image teleseismic P-to-S converted phases. The method builds on teleseismic P wave deconvolution, pseudostation stacking [, 1999] and on the idea of using a plane wave decomposition for imaging as introduced by [1982]. Deconvolution operators are constructed by pseudostation stacking of the array aligned to the incident P wave arrival times to produce a space-variable deconvolution operator. The resulting data are then muted to remove the deconvolved direct P wave pulse and pseudostation stacked over a grid of feasible slowness vectors. The pseudostation stack interpolates the wave field onto a regular grid along Earth's surface producing a series (one per slowness vector) of uniformly sampled three-dimensional data cubes (two space variables and time). The plane wave components can be propagated downward using a form of approximate ray tracing with a three-dimensional Earth model. This yields a series of distorted cubes topologically equivalent to the original uniformly sampled data cubes. These data volumes are summed as a weighted stack with the weights derived from an integration formula for inverse scattering based on the generalized Radon transform. This allows an image of the subsurface to be constructed on an event by event basis beneath the array. We apply this technique to data from the Lodore array that was deployed in northwestern Colorado. The results suggest the presence of a major lithospheric-scale discontinuity defined by a south dipping boundary.

  7. Resonance reflection of elastic waves at the interface between two crystals with sliding contact: II. Plane waves and acoustic beams in structures with hexagonal symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Alshits, V.I.; Darinskii, A.N. [Russian Academy of Sciences, Moscow (Russian Federation); Radovich, A. [Kielce Technological Univ., Kielce (Poland)

    1995-05-01

    The specific features of acoustic wave reflection are analyzed at the interface between two hexagonal crystals with a sliding contact between them. Attention is focused on the angles of incidence corresponding to excitation of the leaky wave. The conditions supporting the existence of leaky waves are found. The expressions illustrating the behavior of plane wave transformation coefficients for reflection, refraction, and excitation of interfacial oscillations are found in analytic form. In addition, the features of nonmirror reflection are studied for a slightly diverging acoustic beam having initially a rectangular profile. The study deals with the case when the tangential projection of the {open_quotes}mean{close_quotes} wavevector for the beam is close to or coincides with the real part of the wavevector of the leaky wave. 9 refs., 10 figs.

  8. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    OpenAIRE

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained. Numerical examples are given in the context of a 10-ring annular array operating at a central frequency of 2.5 MHz in water.

  9. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz.

    Science.gov (United States)

    Bakker, J F; Paulides, M M; Christ, A; Kuster, N; van Rhoon, G C

    2010-06-07

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SAR(wb)) and the peak 10 g spatial-averaged SAR (SAR(10g)). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SAR(wb)) and 58% (SAR(10g)) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SAR(wb) is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR(10g) values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.

  10. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz

    Science.gov (United States)

    Bakker, J. F.; Paulides, M. M.; Christ, A.; Kuster, N.; van Rhoon, G. C.

    2010-06-01

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SARwb) and the peak 10 g spatial-averaged SAR (SAR10g). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SARwb) and 58% (SAR10g) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SARwb is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR10g values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.

  11. The Hagen-Poiseuille, Plane Couette and Poiseuille Flows Linear Instability and Rogue Waves Excitation Mechanism

    Science.gov (United States)

    Chefranov, Sergey; Chefranov, Alexander

    2016-04-01

    Linear hydrodynamic stability theory for the Hagen-Poiseuille (HP) flow yields a conclusion of infinitely large threshold Reynolds number, Re, value. This contradiction to the observation data is bypassed using assumption of the HP flow instability having hard type and possible for sufficiently high-amplitude disturbances. HP flow disturbance evolution is considered by nonlinear hydrodynamic stability theory. Similar is the case of the plane Couette (PC) flow. For the plane Poiseuille (PP) flow, linear theory just quantitatively does not agree with experimental data defining the threshold Reynolds number Re= 5772 ( S. A. Orszag, 1971), more than five-fold exceeding however the value observed, Re=1080 (S. J. Davies, C. M. White, 1928). In the present work, we show that the linear stability theory conclusions for the HP and PC on stability for any Reynolds number and evidently too high threshold Reynolds number estimate for the PP flow are related with the traditional use of the disturbance representation assuming the possibility of separation of the longitudinal (along the flow direction) variable from the other spatial variables. We show that if to refuse from this traditional form, conclusions on the linear instability for the HP and PC flows may be obtained for finite Reynolds numbers (for the HP flow, for Re>704, and for the PC flow, for Re>139). Also, we fit the linear stability theory conclusion on the PP flow to the experimental data by getting an estimate of the minimal threshold Reynolds number as Re=1040. We also get agreement of the minimal threshold Reynolds number estimate for PC with the experimental data of S. Bottin, et.al., 1997, where the laminar PC flow stability threshold is Re = 150. Rogue waves excitation mechanism in oppositely directed currents due to the PC flow linear instability is discussed. Results of the new linear hydrodynamic stability theory for the HP, PP, and PC flows are published in the following papers: 1. S.G. Chefranov, A

  12. Shapiro's plane waves in spaces of constant curvature and separation of variables in real and complex coordinates

    CERN Document Server

    Ovsiyuk, E M; Red'kov, V M

    2010-01-01

    The aim of the article to clarify the status of Shapiro plane wave solutions of the Schr\\"odinger's equation in the frames of the well-known general method of separation of variables. To solve this task, we use the well-known cylindrical coordinates in Riemann and Lobachevsky spaces, naturally related with Euler angle-parameters. Conclusion may be drawn: the general method of separation of variables embraces the all plane wave solutions; the plane waves in Lobachevsky and Riemann space consist of a small part of the whole set of basis wave functions of Schr\\"odinger equation. In space of constant positive curvature $S_{3}$, a complex analog of horospherical coordinates of Lobachevsky space $H_{3}$ is introduced. To parameterize real space $S_{3}$, two complex coordinates $(r,z)$ must obey additional restriction in the form of the equation $r^{2} = e^{z-z^{*}} - e^{2z} $. The metrical tensor of space $S_{3}$ is expressed in terms of $(r,z)$ with additional constraint, or through pairs of conjugate variables $(...

  13. Fast color flow mode imaging using plane wave excitation and temporal encoding

    Science.gov (United States)

    Udesen, Jesper; Gran, Fredrik; Jensen, Jorgen A.

    2005-04-01

    In conventional ultrasound color flow mode imaging, a large number (~500) of pulses have to be emitted in order to form a complete velocity map. This lowers the frame-rate and temporal resolution. A method for color flow imaging in which a few (~10) pulses have to be emitted to form a complete velocity image is presented. The method is based on using a plane wave excitation with temporal encoding to compensate for the decreased SNR, resulting from the lack of focusing. The temporal encoding is done with a linear frequency modulated signal. To decrease lateral sidelobes, a Tukey window is used as apodization on the transmitting aperture. The data are beamformed along the direction of the flow, and the velocity is found by 1-D cross correlation of these data. First the method is evaluated in simulations using the Field II program. Secondly, the method is evaluated using the experimental scanner RASMUS and a 7 MHz linear array transducer, which scans a circulating flowrig. The velocity of the blood mimicking fluid in the flowrig is constant and parabolic, and the center of the scanned area is situated at a depth of 40 mm. A CFM image of the blood flow in the flowrig is estimated from two pulse emissions. At the axial center line of the CFM image, the velocity is estimated over the vessel with a mean relative standard deviation of 2.64% and a mean relative bias of 6.91%. At an axial line 5 mm to the right of the center of the CFM image, the velocity is estimated over the vessel with a relative standard deviation of 0.84% and a relative bias of 5.74%. Finally the method is tested on the common carotid artery of a healthy 33-year-old male.

  14. Detailed 3-D S-wave velocity beneath the High Lava Plains, Oregon, from 2-plane-wave Rayleigh wave inversions

    Science.gov (United States)

    Wagner, L. S.; Forsyth, D. W.; Fouch, M. J.; James, D. E.

    2009-12-01

    The High Lava Plains (HLP) of eastern Oregon represent an unusual track of bimodal volcanism extending from the southeastern-most corner of the state to its current position beneath the Newberry Volcano on the eastern margin of the Cascades. The silicic volcanism is time progressive along this track, beginning some 15 Ma near the Owyhee plateau and then trending to the north east. The timing and location of the start of the HLP coincides with that of the initial volcanism associated with the Yellowstone/Snake River Plain track (YSRP). While the YSRP has often been interpreted as the classic intra-continental hot spot track, the HLP, which trends almost normal to absolute plate motion, is harder to explain. This study uses the 100+ stations associated with the HLP seismic deployment together with another ~100 Earthscope Transportable Array stations (TA) to perform a high resolution inversion for Rayleigh wave phase velocities using the 2-plane-wave methodology of Forsyth and Li (2004). Because of the comparatively small grid spacing of this study, we are able to discern much finer scale structures than studies looking at the entire western U.S. with only TA stations. Preliminary results indicate very low velocities across the study area, especially at upper mantle depths. Especially low velocities are seen beneath the Owyhee plateau and along both the HLP and YSRP tracks. Final details about the exact geometries of these features will help constrain possible scenarios for the formation of the HLP volcanic sequence.

  15. Terahertz Wide-Angle Imaging and Analysis on Plane-wave Criteria Based on Inverse Synthetic Aperture Techniques

    Science.gov (United States)

    Gao, Jing Kun; Qin, Yu Liang; Deng, Bin; Wang, Hong Qiang; Li, Jin; Li, Xiang

    2016-04-01

    This paper presents two parts of work around terahertz imaging applications. The first part aims at solving the problems occurred with the increasing of the rotation angle. To compensate for the nonlinearity of terahertz radar systems, a calibration signal acquired from a bright target is always used. Generally, this compensation inserts an extra linear phase term in the intermediate frequency (IF) echo signal which is not expected in large-rotation angle imaging applications. We carried out a detailed theoretical analysis on this problem, and a minimum entropy criterion was employed to estimate and compensate for the linear-phase errors. In the second part, the effects of spherical wave on terahertz inverse synthetic aperture imaging are analyzed. Analytic criteria of plane-wave approximation were derived in the cases of different rotation angles. Experimental results of corner reflectors and an aircraft model based on a 330-GHz linear frequency-modulated continuous wave (LFMCW) radar system validated the necessity and effectiveness of the proposed compensation. By comparing the experimental images obtained under plane-wave assumption and spherical-wave correction, it also showed to be highly consistent with the analytic criteria we derived.

  16. Rainbow and blueshift effect of a dispersive spherical invisibility cloak impinged on by a nonmonochromatic plane wave.

    Science.gov (United States)

    Zhang, Baile; Wu, Bae-Ian; Chen, Hongsheng; Kong, Jin Au

    2008-08-08

    We demonstrate some interesting phenomena associated with a nonmonochromatic plane wave passing through a spherical invisibility cloak whose radial permittivity and permeability are of Drude and Lorentz types. We observe that the frequency center of a quasimonochromatic incident wave will suffer a blueshift in the forward scattering direction. Different frequency components have different depths of penetration, causing a rainbowlike effect within the cloak. The concept of group velocity at the inner boundary of the cloak needs to be revisited. Extremely low scattering can still be achieved within a narrow band.

  17. DYNAMIC INTERACTION OF PLANE WAVES WITH A UNILATERALLY FRICTIONALLY CONSTRAINED INCLUSION-TIME DOMAIN BOUNDARY ELEMENT ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    FengYangde; WangYuesheng; ZhangZimao; CuiJunzhi

    2003-01-01

    A 2D time domain boundary element method (BEM) is developed to solve the transient scattering of plane waves by a unilaterally frictionally constrained inclusion. Coulomb friction is assumed along the contact interface. The incident wave is assumed strong enough so that localized slip and separation take place along the interface. The present problem is in effect a nonlinear boundary value problem since the mixed boundary conditions involve unknown intervals (slip, separation and stick regions). In order to determine the unknown intervals, an iterative technique is developed. As an example, we consider the scattering of a circular cylinder embeddedin an infinite solid.

  18. Electron transport in graphene/graphene side-contact junction by plane-wave multiple scattering method

    CERN Document Server

    Li, Xiang-Guo; Zhang, X -G; Cheng, Hai-Ping

    2015-01-01

    Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a "side-contact" geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave based multiple scattering theory for electron transport. This implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, we calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Such transport beh...

  19. Electronic states in low-dimensional nano-structures: Comparison between the variational and plane wave basis method

    Science.gov (United States)

    Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin

    2017-04-01

    A comparison is made between the plane wave basis and variational method. Within the framework of effective-mass approximation theory, the variational and plane wave basis method are used to calculate ground state energy and ground state binding energy in low-dimensional nano-structures under the external electric field. Comparing calculation results, the donor binding energies of ground state display the consistent trend, both of them are strongly dependent on the quantum size, impurity position and external electric field. However, the impurity ground state energy calculated using variational method may be larger than the real value and it results in the smaller binding energy for variational method. In addition, the binding energy is more sensitive to the external electric field for the variational method, which can be seen more clearly from Stark shift.

  20. Liquid Water through Density-Functional Molecular Dynamics: Plane-Wave vs Atomic-Orbital Basis Sets

    CERN Document Server

    Miceli, Giacomo; Pasquarello, Alfredo

    2016-01-01

    We determine and compare structural, dynamical, and electronic properties of liquid water at near ambient conditions through density-functional molecular dynamics simulations, when using either plane-wave or atomic-orbital basis sets. In both frameworks, the electronic structure and the atomic forces are self-consistently determined within the same theoretical scheme based on a nonlocal density functional accounting for van der Waals interactions. The overall properties of liquid water achieved within the two frameworks are in excellent agreement with each other. Thus, our study supports that implementations with plane-wave or atomic-orbital basis sets yield equivalent results and can be used indiscriminately in study of liquid water or aqueous solutions.

  1. The scattering fields for a spherical target irradiated by a plane electromagnetic wave in an arbitrary direction

    Institute of Scientific and Technical Information of China (English)

    Li Ying-Le; Huang Ji-Ying

    2006-01-01

    The relation between corresponding trigonometric functions in two rotating coordinate systems is presented. The transformation formula for a vector in the two rotating spherical coordinate systems is obtained. The scattering fields for a spherical target irradiated by a plane electromagnetic wave in an arbitrary direction are derived. These fields in a particular case retrogress to those available in the literature. The obtained results have great potential in practical applications.

  2. The limits of astrophysics with gravitational wave backgrounds

    CERN Document Server

    Callister, Thomas; Thrane, Eric; Qiu, Shi; Mandel, Ilya

    2016-01-01

    The recent Advanced LIGO detection of gravitational waves from the binary black hole GW150914 suggests there is a large population of merging binary black holes in the Universe. Although most are too distant to be individually resolved by advanced detectors, the superposition of gravitational waves from many unresolvable binaries is expected to create an astrophysical stochastic background. Recent results from the LIGO/Virgo collaboration show that this astrophysical background is within reach of Advanced LIGO. In principle, the binary black hole background encodes interesting astrophysical properties, such as the mass distribution and redshift distribution of distant binaries. However, we show that this information will be difficult to extract with the current configuration of advanced detectors (and using current data analysis tools). Additionally, the binary black hole background also constitutes a foreground that limits the ability of advanced detectors to observe other interesting stochastic background s...

  3. Limits of Astrophysics with Gravitational-Wave Backgrounds

    Science.gov (United States)

    Callister, Thomas; Sammut, Letizia; Qiu, Shi; Mandel, Ilya; Thrane, Eric

    2016-07-01

    The recent Advanced LIGO detection of gravitational waves from the binary black hole GW150914 suggests there exists a large population of merging binary black holes in the Universe. Although most are too distant to be individually resolved by advanced detectors, the superposition of gravitational waves from many unresolvable binaries is expected to create an astrophysical stochastic background. Recent results from the LIGO and Virgo Collaborations show that this astrophysical background is within reach of Advanced LIGO. In principle, the binary black hole background encodes interesting astrophysical properties, such as the mass distribution and redshift distribution of distant binaries. However, we show that this information will be difficult to extract with the current configuration of advanced detectors (and using current data analysis tools). Additionally, the binary black hole background also constitutes a foreground that limits the ability of advanced detectors to observe other interesting stochastic background signals, for example, from cosmic strings or phase transitions in the early Universe. We quantify this effect.

  4. Balanced homodyne readout for quantum limited gravitational wave detectors.

    Science.gov (United States)

    Fritschel, Peter; Evans, Matthew; Frolov, Valery

    2014-02-24

    Balanced homodyne detection is typically used to measure quantum-noise-limited optical beams, including squeezed states of light, at audio-band frequencies. Current designs of advanced gravitational wave interferometers use some type of homodyne readout for signal detection, in part because of its compatibility with the use of squeezed light. The readout scheme used in Advanced LIGO, called DC readout, is however not a balanced detection scheme. Instead, the local oscillator field, generated from a dark fringe offset, co-propagates with the signal field at the anti-symmetric output of the beam splitter. This article examines the alternative of a true balanced homodyne detection for the readout of gravitational wave detectors such as Advanced LIGO. Several practical advantages of the balanced detection scheme are described.

  5. Determination of the in-plane components of motion in a Lamb wave from single-axis laser vibrometry.

    Science.gov (United States)

    Rajic, Nik; Rosalie, Cedric; Norman, Patrick; Davis, Claire

    2014-06-01

    A method is proposed for determining in-plane components of motion in a Lamb wave from laser vibrometer measurements of surface motion out of plane. The approach relies on a frequency domain transformation that assumes knowledge only of the plate thickness and the bulk wave speeds. An outline of the relevant theory is followed by several validation case studies that generally affirm a useful level of accuracy and robust performance across a relatively wide frequency-thickness product range. In a comparison to the two-angle vibrometry approach, the proposed method is shown to be simpler to implement and to yield estimates with a consistently higher signal to noise ratio. The approach is then used to furnish estimates of the in-plane strains in Lamb waves propagating in an aluminum plate at frequencies below the first cut-off. These estimates are compared to strain measurements obtained from an adhesively bonded fiber Bragg grating. The agreement is shown to be excellent overall with an average discrepancy of less than 6%; however, systematic errors of twice that amount were recorded in the low-frequency-thickness product regime. These low-frequency discrepancies are not consistent with known sources of experimental error and cannot be explained by shear-lag theory.

  6. Plane thermonuclear detonation waves initiated by proton beams and quasi-one-dimensional model of fast ignition

    CERN Document Server

    Charakhch'yan, Alexander A

    2014-01-01

    The one-dimensional (1D) problem on bilatiral irradiation by proton beams of the plane layer of condensed DT mixture with length $2H$ and density $\\rho_0 \\leqslant 100\\rho_s$, where $\\rho_s$ is the fuel solid-state density at atmospheric pressure and temperature of 4 K, is considered. The proton kinetic energy is 1 MeV, the beam intensity is $10^{19}$ W/cm$^2$ and duration is 50 ps. A mathematical model is based on the one-fluid two-temperature hydrodynamics with a wide-range equation of state of the fuel, electron and ion heat conduction, DT fusion reaction kinetics, self-radiation of plasma and plasma heating by alpha-particles. If the ignition occurs, a plane detonation wave, which is adjacent to the front of the rarefaction wave, appears. Upon reflection of this detonation wave from the symmetry plane, the flow with the linear velocity profile along the spatial variable $x$ and with a weak dependence of the thermodynamic functions of $x$ occurs. An appropriate solution of the equations of hydrodynamics is...

  7. Multiple-scattering theory for out-of-plane propagation of elastic waves in two-dimensional phononic crystals.

    Science.gov (United States)

    Mei, Jun; Liu, Zhengyou; Qiu, Chunyin

    2005-06-29

    We extend the multiple-scattering theory (MST) to out-of-plane propagating elastic waves in 2D periodical composites by taking into account the full vector character. The formalism for both the band structure calculation and the reflection and transmission coefficient calculation for finite slabs is presented. The latter is based on a double-layer scheme, which obtains the reflection and transmission matrix elements for the multilayer slab from those of a single layer. Being more rapid in both the band structure and the transmission coefficient calculations for out-of-plane propagating elastic waves, our approach especially shows great advantages in handling the systems with mixed solid and fluid components, for which the conventional plane wave approach fails. As the applications of the formalism, we calculate the band structure as well as the transmission coefficients through finite slabs for systems with lead rods in an epoxy host, steel rods in a water host and water rods in a PMMA host.

  8. An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space

    Institute of Scientific and Technical Information of China (English)

    Zhongxian Liu; Lei Liu

    2015-01-01

    The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space.According to the theory of single-layer potential,the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface.The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces.The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space.Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently.The wave motion feature strongly depends on the wedge angle,the angle of incidence,incident frequency,the location of lined tunnel,and material parameters.The waves interference and amplification effect around the tunnel in wedge space is more significant,causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0,respectively,more than double that of the case of half-space.Hence,considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.

  9. A family of nonlinear Schrödinger equations admitting q-plane wave solutions

    Science.gov (United States)

    Nobre, F. D.; Plastino, A. R.

    2017-08-01

    Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross-Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross-Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field Φ (x → , t) (besides the usual one Ψ (x → , t)) must be introduced for consistency. The new field can be identified with Ψ* (x → , t) only when q → 1. For q ≠ 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields Ψ (x → , t) and Φ (x → , t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by Ψ (x → , t) and Φ (x → , t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.

  10. Convergence of many-body wavefunction expansions using a plane wave basis: from the homogeneous electron gas to the solid state

    CERN Document Server

    Shepherd, James J; Booth, George H; Kresse, Georg; Alavi, Ali

    2012-01-01

    Using the finite simulation-cell homogeneous electron gas (HEG) as a model, we investigate the convergence of the correlation energy to the complete basis set (CBS) limit in methods utilising plane-wave wavefunction expansions. Simple analytic and numerical results from second-order M{\\o}ller-Plesset theory (MP2) suggest a 1/M decay of the basis-set incompleteness error where M is the number of plane waves used in the calculation, allowing for straightforward extrapolation to the CBS limit. As we shall show, the choice of basis set truncation when constructing many-electron wavefunctions is far from obvious, and here we propose several alternatives based on the momentum transfer vector, which greatly improve the rate of convergence. This is demonstrated for a variety of wavefunction methods, from MP2 to coupled-cluster doubles theory (CCD) and the random-phase approximation plus second-order screened exchange (RPA+SOSEX). Finite basis-set energies are presented for these methods and compared with exact benchm...

  11. Upper Limits on a Stochastic Background of Gravitational Waves

    CERN Document Server

    Abbott, B; Adhikari, R; Ageev, A; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Daw, E; De Bra, D; Delker, T; Dergachev, V; DeSalvo, R; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; González, G; Goler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Müller, G; Mukherjee, S; Murray, P; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J

    2005-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of Omega_0<8.4e-4 in the 69-156 Hz band is ~10^5 times lower than the previous result in this frequency range.

  12. Upper limits on a stochastic background of gravitational waves.

    Science.gov (United States)

    Abbott, B; Abbott, R; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Allen, J; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barton, M A; Bayer, K; Belczynski, K; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Buonanno, A; Busby, D; Butler, W E; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cardenas, L; Carter, K; Casey, M M; Charlton, P; Chatterji, S; Chen, Y; Chin, D; Christensen, N; Cokelaer, T; Colacino, C N; Coldwell, R; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; DeBra, D; Dergachev, V; Desai, S; DeSalvo, R; Dhurandar, S; Díaz, M; Di Credico, A; Drever, R W P; Dupuis, R J; Ehrens, P; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Finn, L S; Franzen, K Y; Frey, R E; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Gholami, I; Giaime, J A; Goda, K; Goggin, L; González, G; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grunewald, S; Guenther, M; Gustafson, R; Hamilton, W O; Hanna, C; Hanson, J; Hardham, C; Harry, G; Heefner, J; Heng, I S; Hewitson, M; Hindman, N; Hoang, P; Hough, J; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, L; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Khan, A; Kim, C; King, P; Klimenko, S; Koranda, S; Kozak, D; Krishnan, B; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Lindquist, P; Liu, S; Lormand, M; Lubinski, M; Lück, H; Luna, M; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marka, S; Maros, E; Mason, K; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mueller, G; Mukherjee, S; Myers, E; Myers, J; Nash, T; Nocera, F; Noel, J S; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rawlins, K; Ray-Majumder, S; Re, V; Regimbau, T; Reitze, D H; Riesen, R; Riles, K; Rivera, B; Robertson, D I; Robertson, N A; Robinson, C; Roddy, S; Rodriguez, A; Rollins, J; Romano, J D; Romie, J; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sandberg, V; Sanders, G H; Sannibale, V; Sarin, P; Sathyaprakash, B S; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sintes, A M; Smith, J; Smith, M R; Spjeld, O; Strain, K A; Strom, D M; Stuver, A; Summerscales, T; Sung, M; Sutton, P J; Tanner, D B; Taylor, R; Thorne, K A; Thorne, K S; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D; Ungarelli, C; Vallisneri, M; van Putten, M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Ward, H; Ward, R; Watts, K; Webber, D; Weiland, U; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Willke, B; Wilson, A; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Woods, D; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yoshida, S; Zanolin, M; Zhang, L; Zotov, N; Zucker, M; Zweizig, J

    2005-11-25

    The Laser Interferometer Gravitational-Wave Observatory has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of omega0 < 8.4 x 10(-4) in the 69-156 Hz band is approximately 10(5) times lower than the previous result in this frequency range.

  13. Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level

    Science.gov (United States)

    Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.

    2010-01-01

    A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…

  14. Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis

    Science.gov (United States)

    Guanghui Li; Xiang Weng; Xiaocheng Du; Xiping Wang; Hailin Feng

    2016-01-01

    Acoustic tomography for urban tree inspection typically uses stress wave data to reconstruct tomographic images for the trunk cross section using interpolation algorithm. This traditional technique does not take into account the stress wave velocity patterns along tree height. In this study, we proposed an analytical model for the wave velocity in the longitudinal–...

  15. Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level

    Science.gov (United States)

    Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.

    2010-01-01

    A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…

  16. Theoretical and Experimental Study of Scattering of a Plane Wave by an Inhomogeneous Plasma Sphere

    Institute of Scientific and Technical Information of China (English)

    SONG Fa-Lun; CAO Jin-Xiang; WANG Ge; WANG Yan; ZHU Ying; ZHU Jian; WANG Liang; NIU Tian-Ye

    2006-01-01

    @@ Scattering of electromagnetic waves by an inhomogeneous plasma sphere has been studied theoretically and experimentally. The offset angles of electromagnetic waves caused by the plasma sphere have been observed experimentally. The effects of the electromagnetic wave frequency and plasma density on the offset angle are discussed. The plasma density is estimated with the offset angle.

  17. The propagation of the shock wave from a strong explosion in a plane-parallel stratified medium: the Kompaneets approximation

    Science.gov (United States)

    Olano, C. A.

    2009-11-01

    Context: Using certain simplifications, Kompaneets derived a partial differential equation that states the local geometrical and kinematical conditions that each surface element of a shock wave, created by a point blast in a stratified gaseous medium, must satisfy. Kompaneets could solve his equation analytically for the case of a wave propagating in an exponentially stratified medium, obtaining the form of the shock front at progressive evolutionary stages. Complete analytical solutions of the Kompaneets equation for shock wave motion in further plane-parallel stratified media were not found, except for radially stratified media. Aims: We aim to analytically solve the Kompaneets equation for the motion of a shock wave in different plane-parallel stratified media that can reflect a wide variety of astrophysical contexts. We were particularly interested in solving the Kompaneets equation for a strong explosion in the interstellar medium of the Galactic disk, in which, due to intense winds and explosions of stars, gigantic gaseous structures known as superbubbles and supershells are formed. Methods: Using the Kompaneets approximation, we derived a pair of equations that we call adapted Kompaneets equations, that govern the propagation of a shock wave in a stratified medium and that permit us to obtain solutions in parametric form. The solutions provided by the system of adapted Kompaneets equations are equivalent to those of the Kompaneets equation. We solved the adapted Kompaneets equations for shock wave propagation in a generic stratified medium by means of a power-series method. Results: Using the series solution for a shock wave in a generic medium, we obtained the series solutions for four specific media whose respective density distributions in the direction perpendicular to the stratification plane are of an exponential, power-law type (one with exponent k=-1 and the other with k =-2) and a quadratic hyperbolic-secant. From these series solutions, we deduced

  18. A 1D time-domain method for in-plane wave motions in a layered half-space

    Institute of Scientific and Technical Information of China (English)

    Jingbo Liu; Yan Wang

    2007-01-01

    A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the layered half-space is discretized on the basis of the propagation cha-racteristic of elastic wave according to the Snell law. Then, the finite element method with lumped mass and the cen-tral difference method are incorporated to establish 2D wave motion equations, which can be transformed into 1D equa-tions by discretization principle and explicit finite element method. By solving the 1D equations, the displacements of nodes in any vertical line can be obtained, and the wave motions in layered half-space are finally determined based on the characteristic of traveling wave. Both the theoretical ana-lysis and the numerical results demonstrate that the proposed method has high accuracy and good stability.

  19. Wave Detection Beyond the Standard Quantum Limit via EPR Entanglement

    Science.gov (United States)

    Ma, Yiqiu; Miao, Haixing; Pang, Belinda; Evans, Matthew; Zhao, Chunnong; Harms, Jan; Schnabel, Roman; Chen, Yanbei

    2017-01-01

    The Standard Quantum Limit in continuous monitoring of a system is given by the trade-off of shot noise and back-action noise. In gravitational-wave detectors, such as Advanced LIGO, both contributions can simultaneously be squeezed in a broad frequency band by injecting a spectrum of squeezed vacuum states with a frequency-dependent squeeze angle. This approach requires setting up an additional long base-line, low-loss filter cavity in a vacuum system at the detector's site. Here, we show that the need for such a filter cavity can be eliminated, by exploiting EPR-entangled signal and idler beams. By harnessing their mutual quantum correlations and the difference in the way each beam propagates in the interferometer, we can engineer the input signal beam to have the appropriate frequency dependent conditional squeezing once the out-going idler beam is detected. Our proposal is appropriate for all future gravitational-wave detectors for achieving sensitivities beyond the Standard Quantum Limit.

  20. Numerical modeling of extended short wave infrared InGaAs focal plane arrays

    Science.gov (United States)

    Glasmann, Andreu; Wen, Hanqing; Bellotti, Enrico

    2016-05-01

    Indium gallium arsenide (In1-xGaxAs) is an ideal material choice for short wave infrared (SWIR) imaging due to its low dark current and excellent collection efficiency. By increasing the indium composition from 53% to 83%, it is possible to decrease the energy gap from 0.74 eV to 0.47 eV and consequently increase the cutoff wavelength from 1.7 μm to 2.63 μm for extended short wavelength (ESWIR) sensing. In this work, we apply our well-established numerical modeling methodology to the ESWIR InGaAs system to determine the intrinsic performance of pixel detectors. Furthermore, we investigate the effects of different buffer/cap materials. To accomplish this, we have developed composition-dependent models for In1-xGaxAs, In1-xAlxAs, and InAs1-y Py. Using a Green's function formalism, we calculate the intrinsic recombination coefficients (Auger, radiative) to model the diffusion-limited behavior of the absorbing layer under ideal conditions. Our simulations indicate that, for a given total thickness of the buffer and absorbing layer, structures utilizing a linearly graded small-gap InGaAs buffer will produce two orders of magnitude more dark current than those with a wide gap, such as InAlAs or InAsP. Furthermore, when compared with experimental results for ESWIR photodiodes and arrays, we estimate that there is still a 1.5x magnitude of reduction in dark current before reaching diffusion-limited behavior.

  1. Long-Wave Runup on a Plane Beach: An Experimental and Numerical Investigation

    Science.gov (United States)

    Vater, Stefan; Drähne, Ulrike; Goseberg, Nils; Beisiegel, Nicole; Behrens, Jörn

    2016-04-01

    In this study the runup generated by leading depression single sinusoidal waves as a very basic representation of a tsunami is investigated through physical and numerical experiments. The results are compared against existing analytical expressions for the long-wave runup of periodic sinusoidal waves. It can be shown that shallow water theory is applicable for the investigated type of waves. Furthermore, we demonstrate how such a comparative, inter-methodological work contributes to the understanding of shoreline motion of long waves. The produced data set may serve as a novel benchmark for leading depression sinusoidal waves. The experimental study was conducted using an innovative pump-driven wave generator that is capable of generating arbitrarily long waves which might even exceed the length of the wave flume. Due to the complex control problem for the chosen type of wave generator, spurious over-riding small-scale waves were unavoidable in some of the experiments. The numerical simulations were carried out with a one-dimensional Runge-Kutta discontinuous Galerkin (RKDG) non-linear shallow water model. It incorporates a high fidelity wetting and drying scheme. The sinusoidal waves are generated in a constant depth section attached to a linearly sloping beach, have periods between 20 and 100 seconds and surf similarity parameters between 4.4 and 15.6. In a first qualitative analysis the evolution of the runup elevation and velocity is compared. In order to quantify analytical, numerical and experimental data, the wave similarity measured by the Brier score, maximum run-up and run-down height, as well as run-up/run-down velocities are utilized as metrics. As a starting point, periodic and non-periodic clean sinusoidal waves are compared numerically to rule out differences due to the single sinusoidal wave generation in the wave flume. On further analysis, significant differences in experimental and analytically expected values are observed. However, with the

  2. Modeling of Lamb wave propagation in plate with two-dimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method

    Energy Technology Data Exchange (ETDEWEB)

    Hou Zhilin [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)], E-mail: zhilin.hou@lpmi.uhp-nancy.fr; Assouar, Badreddine M. [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)

    2008-03-17

    We show that the conversional three-dimensional plane wave expansion method can be revised to investigate the lamb wave propagation in the plate with two-dimensional phononic crystal layer coated on uniform substrate. We find that an imaginary three-dimensional periodic system can be constructed by stacking the studied plates and vacuum layers alternately, and then the Fourier series expansion can be performed. The difference between our imaginary periodic system and the true three-dimensional one is that, in our system, the Bloch feature of the wave along the thickness direction is broken. Three different systems are investigated by the proposed method as examples. The principle and reliability of the method are also discussed.

  3. Optimal one-section and two-section circular sound-absorbing duct liners for plane-wave and monopole sources without flow

    Science.gov (United States)

    Lester, H. C.; Posey, J. W.

    1976-01-01

    A discrete frequency study is made of the influence of source characteristics on the optimal properties of acoustically lined uniform and two section ducts. Two simplified sources, a plane wave and a monopole, are considered in some detail and over a greater frequency range than has been previously studied. Source and termination impedance effects are given limited examination. An example of a turbomachinery source and three associated source variants is also presented. Optimal liner designs based on modal theory approach the Cremer criterion at low frequencies and the geometric acoustics limit at high frequencies. Over an intermediate frequency range, optimal two section liners produced higher transmission losses than did the uniform configurations. Source distribution effects were found to have a significant effect on optimal liner design, but source and termination impedance effects appear to be relatively unimportant.

  4. Instability of coupled gravity-inertial-Rossby waves on a β-plane in solar system atmospheres

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2009-11-01

    Full Text Available This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θc versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θc~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.

  5. Transmission of longitudinal wave at a plane interface between micropolar elastic and chiral solid half-spaces: Incidence from micropolar half-space

    Science.gov (United States)

    Khurana, Aarti; Tomar, S. K.

    2008-04-01

    Reflection and transmission phenomena of a plane longitudinal displacement wave impinging obliquely at a plane interface between a micropolar elastic solid half-space and a chiral elastic solid half-space are investigated. The incident wave is assumed to be striking at the plane interface after propagating through the micropolar elastic solid half-space. The reflection and transmission coefficients are obtained by utilizing two possible sets of boundary conditions, for a specific model and there values corresponding to two boundary conditions are also compared graphically. The effect of chirality parameter on various reflection and transmission coefficients have been noticed and shown graphically. Results of Lakhtakia et al. [Reflection of elastic plane waves at a planar achiral-chiral interface, Journal of the Acoustical Society of America 87 (1990) 2314-2318] and Miklowitz [The Theory of Elastic Waves and Waveguides, North-Holland, New York, 1978] have also been reduced as special cases from the present formulation.

  6. Calculations of Lamb wave band gaps and dispersions for piezoelectric phononic plates using mindlin's theory-based plane wave expansion method.

    Science.gov (United States)

    Hsu, Jin-Chen; Wu, Tsung-Tsong

    2008-02-01

    Based on Mindlin's piezoelectric plate theory and the plane wave expansion method, a formulation is proposed to study the frequency band gaps and dispersion relations of the lower-order Lamb waves in two-dimensional piezoelectric phononic plates. The method is applied to analyze the phononic plates composed of solid-solid and airsolid constituents with square and triangular lattices, respectively. Factors that influence the opening and width of the complete Lamb wave gaps are identified and discussed. For solid/solid phononic plates, it is suggested that the filling material be chosen with larger mass density, proper stiffness, and weak anisotropic factor embedded in a soft matrix in order to obtain wider complete band gaps of the lower-order Lamb waves. By comparing to the calculated results without considering the piezoelectricity, the influences of piezoelectric effect on Lamb waves are analyzed as well. On the other hand, for air/solid phononic plates, a background material itself with proper anisotropy and a high filling fraction of air may favor the opening of the complete Lamb wave gaps.

  7. The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass-air interface

    OpenAIRE

    Wenguo Zhu; Jianhui Yu; Heyuan Guan; Huihui Lu; Jieyuan Tang; Jun Zhang; Yunhan Luo; Zhe Chen

    2017-01-01

    Optical spin splitting has a promising prospect in quantum information and precision metrology. Since it is typically small, many efforts have been devoted to its enhancement. However, the upper limit of optical spin splitting remains uninvestigated. Here, we investigate systematically the in-plane spin splitting of a Gaussian beam reflected from a glass-air interface and find that the spin splitting can be enhanced in three different incident angular ranges: around the Brewster angle, slight...

  8. Possible second-order nonlinear interactions of plane waves in an elastic solid

    NARCIS (Netherlands)

    Korneev, V.A.; Demcenko, A.

    2014-01-01

    There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order. All other possible interactions out of 54 combinations (triplets) of interacting and resulting waves are prohibited, because of restrictions of various kinds. The cons

  9. Properties of electrons scattered on a strong plane electromagnetic wave with a linear polarization: classical treatment

    CERN Document Server

    Bogdanov, O V

    2014-01-01

    The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part l...

  10. General scaling limitations of ground-plane and isolated-object cloaks

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Hila; Johnson, Steven G. [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Oskooi, A. [Department of Electronic Science and Engineering, Kyoto University (Japan); Joannopoulos, J. D. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2011-08-15

    We prove that, for arbitrary three-dimensional transformation-based invisibility cloaking of an object above a ground plane or of isolated objects, there are practical constraints that increase with the object size. In particular, we show that the cloak thickness must scale proportionally to the thickness of the object being cloaked, assuming bounded refractive indices, and that absorption discrepancies and other imperfections must scale inversely with the object thickness. For isolated objects, we also show that bounded refractive indices imply a lower bound on the effective cross section.

  11. Limit State Analysis of Reinforced Concrete Plates subjected to in-plane forces

    DEFF Research Database (Denmark)

    Poulsen, Peter Noe; Damkilde, Lars

    2000-01-01

    A finite element formulation of rigid-plastic plates subjected to in-plane forces is developed using stress-based elements and linear programming. Three elements are established, namely a triangular plate element, a bar element and a beam element. The problem is formulated as a lower bound solution......, and the dual variables are interpreted as displacements. Both load and material optimization are formulated. The method is applied to concrete plate structures modelling both the distributed and the concentrated reinforcement. An efficient computational scheme is used, thereby reducing the size of the problem...

  12. Focal-plane optimization for detector noise limited performance in cryogenic Fourier transform spectrometer /FTS/ sensors

    Science.gov (United States)

    Mcguirk, M.; Logan, L.

    1980-01-01

    A study was performed to determine the optimum focal plane configuration including optics, filters and detector-preamplifier selection. The configuration was optimized particularly with respect to minimizing the noise level, but fabrication considerations for a cryogenic environment were also taken into account. The noise terms from source, background, detector electronics and charged particle radiation were quantitatively evaluated. It appears that noise equivalent spectral radiance less than 10 to the -11th W/sq cm per sr per kayser can be achieved between 2.5 and 20 microns.

  13. Limits of Astrophysics with Gravitational-Wave Backgrounds

    Directory of Open Access Journals (Sweden)

    Thomas Callister

    2016-08-01

    Full Text Available The recent Advanced LIGO detection of gravitational waves from the binary black hole GW150914 suggests there exists a large population of merging binary black holes in the Universe. Although most are too distant to be individually resolved by advanced detectors, the superposition of gravitational waves from many unresolvable binaries is expected to create an astrophysical stochastic background. Recent results from the LIGO and Virgo Collaborations show that this astrophysical background is within reach of Advanced LIGO. In principle, the binary black hole background encodes interesting astrophysical properties, such as the mass distribution and redshift distribution of distant binaries. However, we show that this information will be difficult to extract with the current configuration of advanced detectors (and using current data analysis tools. Additionally, the binary black hole background also constitutes a foreground that limits the ability of advanced detectors to observe other interesting stochastic background signals, for example, from cosmic strings or phase transitions in the early Universe. We quantify this effect.

  14. An Experimental and Numerical Study of Long Wave Run-Up on a Plane Beach

    Directory of Open Access Journals (Sweden)

    Ulrike Drähne

    2015-12-01

    Full Text Available This research is to facilitate the current understanding of long wave dynamics at coasts and during on-land propagation; experimental and numerical approaches are compared against existing analytical expressions for the long wave run-up. Leading depression sinusoidal waves are chosen to model these dynamics. The experimental study was conducted using a new pump-driven wave generator and the numerical experiments were carried out with a one-dimensional discontinuous Galerkin non-linear shallow water model. The numerical model is able to accurately reproduce the run-up elevation and velocities predicted by the theoretical expressions. Depending on the surf similarity of the generated waves and due to imperfections of the experimental wave generation, riding waves are observed in the experimental results. These artifacts can also be confirmed in the numerical study when the data from the physical experiments is assimilated. Qualitatively, scale effects associated with the experimental setting are discussed. Finally, shoreline velocities, run-up and run-down are determined and shown to largely agree with analytical predictions.

  15. Phonon Calculations in Cubic and Tetragonal Phases of SrTiO3: a Comparative LCAO and Plane Wave Study

    OpenAIRE

    Evarestov, Robert A.; Blokhin, Evgeny; Gryaznov, Denis; Kotomin, Eugene A.; Maier, Joachim

    2010-01-01

    The atomic, electronic structure and phonon frequencies have been calculated in a cubic and low-temperature tetragonal SrTiO3 phases at the ab initio level. We demonstrate that the use of hybrid exchange-correlation PBE0 functional gives the best agreement with experimental data. The results for the standard PBE and hybrid PBE0 are compared for the two types of basis sets: a linear combination of atomic orbitals (LCAO, CRYSTAL09 computer code) and plane waves (PW, VASP 5.2 code). Relation bet...

  16. Structural and theoretical investigations of short hydrogen bonds: neutron diffraction and plane-wave DFT calculations of urea phosphoric acid

    Science.gov (United States)

    Wilson, Chick C.; Morrison, Carole A.

    2002-08-01

    Low temperature neutron diffraction and high level computational methods have been applied to investigate the short hydrogen bond in urea-phosphoric acid. It is found that isolated molecule calculations predict a `normal' O-H⋯O hydrogen bond, in strong disagreement with the very short, 3 c-4 e hydrogen bond found from the neutron diffraction. Extending these calculations into a periodic environment using plane-wave DFT methods give much improved agreement with experiment, with a much shorter, stronger hydrogen bond, and significant elongation of the O-H `covalent' bond.

  17. The dynamic behavior of two collinear cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves

    Institute of Scientific and Technical Information of China (English)

    SUN Yu-guo; WU Lin-zhi

    2005-01-01

    The dynamic behavior of two collinear cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied using the Schmidt method for the permeable crack surface conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. In solving the triple integral equations, the jump of the displacements across the crack surface is expanded in a series of Jacobi polynomials. It can be obtained that the stress field is independent of the electric field and the magnetic flux.

  18. SCATTERING OF ANTI-PLANE SHEAR WAVES IN A FUNCTIONALLY GRADED MATERIAL STRIP WITH AN OFF-CENTER VERTICAL CRACK

    Institute of Scientific and Technical Information of China (English)

    LI Lin; ZHOU Zhen-gong; WANG Biao

    2006-01-01

    The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. To solve the dual integral equations, the jump of the displacement across the crack surfaces was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effects of the parameter describing the functionally graded materials, the position of the crack and the frequency of the incident waves upon the stress intensity factors of the crack.

  19. Anti-plane (SH) waves diffraction by an underground semi-circular cavity: analytical solution

    Institute of Scientific and Technical Information of China (English)

    Luo Hao; Vincent W. Lee; Liang Jianwen

    2010-01-01

    Diffraction of a two-dimensional (2D) semi-circular cavity in a half-space under incident SH-waves is studied using the classic wave function expansion method with a new de-coupling technique. This so-called "improved cosine half-range expansion" algorithm exhibits an excellent performance in reducing displacement residual errors at two rim points of concern. The governing equations are developed in a manner that minimizes the residues of the boundary conditions. Detailed derivation and analysis procedures as well as truncation of infinite linear governing equations are presented. The semi-circular cavity model presented in this paper, due to its simple profile, is expected to be used in seismic wave propagation studies as a benchmark for examining the accuracies of various analytical or numerical methods for mixed-boundary wave propagation problems.

  20. Bandgap calculation for mixed in-plane waves in 2D phononic crystals based on Dirichlet-to-Neumann map

    Institute of Scientific and Technical Information of China (English)

    Ni Zhen; Feng-Lian Li; Yue-Sheng Wang; Chuan-Zeng Zhang

    2012-01-01

    In this paper,a method based on the Dirichletto-Neumann map is developed for bandgap calculation of mixed in-plane waves propagating in 2D phononic crystals with square and triangular lattices.The method expresses the scattered fields in a unit cell as the cylindrical wave expansions and imposes the Bloch condition on the boundary of the unit cell.The Dirichlet-to-Neumann (DtN) map is applied to obtain a linear eigenvalue equation,from which the Bloch wave vectors along the irreducible Brillouin zone are calculated for a given frequency.Compared with other methods,the present method is memory-saving and time-saving.It can yield accurate results with fast convergence for various material combinations including those with large acoustic mismatch without extra computational cost.The method is also efficient for mixed fluid-solid systems because it considers the different wave modes in the fluid and solid as well as the proper fluid-solid interface condition.

  1. Dynamic interaction of twin vertically overlapping lined tunnels in an elastic half space subjected to incident plane waves

    Science.gov (United States)

    Liu, Zhongxian; Wang, Yirui; Liang, Jianwen

    2016-06-01

    The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.

  2. Schwinger method for particles of spin zero and 1/2 in the field of plane wave plus a constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Boudjedaa, T. [Ecole Normale Superieure, Jijel (Algeria). Dept. de Physique; Chetouani, L. [Dept. de Physique Theorique, Inst. de Physique, Univ. de Constantine (Algeria); Guechi, L. [Dept. de Physique Theorique, Inst. de Physique, Univ. de Constantine (Algeria); Hammann, T.F. [Lab. de Mathematiques et Physique Mathematique, Faculte des Sciences et Techniques, 68 Mulhouse (France)

    1995-07-01

    The Green`s functions for charged particles of spin zero and 1/2, subjected to the action of a Redmond field which is the combination of an electromagnetic plane wave plus a parallel constant magnetic field, are calculated via the Schwinger action principle. The Heisenberg equations are then exactly solved. The spectrum and the waves are deduced in both cases. (orig.).

  3. Reconstruction of wave front and object for inline holography from a set of detection planes.

    Science.gov (United States)

    Hagemann, J; Robisch, A-L; Luke, D R; Homann, C; Hohage, T; Cloetens, P; Suhonen, H; Salditt, T

    2014-05-19

    We illustrate the errors inherent in the conventional empty beam correction of full field X-ray propagation imaging, i.e. the division of intensities in the detection plane measured with an object in the beam by the intensity pattern measured without the object, i.e. the empty beam intensity pattern. The error of this conventional approximation is controlled by the ratio of the source size to the smallest feature in the object, as is shown by numerical simulation. In a second step, we investigate how to overcome the flawed empty beam division by simultaneous reconstruction of the probing wavefront (probe) and of the object, based on measurements in several detection planes (multi-projection approach). The algorithmic scheme is demonstrated numerically and experimentally, using the defocus wavefront of the hard X-ray nanoprobe setup at the European Synchrotron Radiation Facility (ESRF).

  4. Extension of the basis set of linearized augmented plane wave (LAPW) method by using supplemented tight binding basis functions

    Science.gov (United States)

    Nikolaev, A. V.; Lamoen, D.; Partoens, B.

    2016-07-01

    In order to increase the accuracy of the linearized augmented plane wave (LAPW) method, we present a new approach where the plane wave basis function is augmented by two different atomic radial components constructed at two different linearization energies corresponding to two different electron bands (or energy windows). We demonstrate that this case can be reduced to the standard treatment within the LAPW paradigm where the usual basis set is enriched by the basis functions of the tight binding type, which go to zero with zero derivative at the sphere boundary. We show that the task is closely related with the problem of extended core states which is currently solved by applying the LAPW method with local orbitals (LAPW+LO). In comparison with LAPW+LO, the number of supplemented basis functions in our approach is doubled, which opens up a new channel for the extension of the LAPW and LAPW+LO basis sets. The appearance of new supplemented basis functions absent in the LAPW+LO treatment is closely related with the existence of the u ˙ l -component in the canonical LAPW method. We discuss properties of additional tight binding basis functions and apply the extended basis set for computation of electron energy bands of lanthanum (face and body centered structures) and hexagonal close packed lattice of cadmium. We demonstrate that the new treatment gives lower total energies in comparison with both canonical LAPW and LAPW+LO, with the energy difference more pronounced for intermediate and poor LAPW basis sets.

  5. Evaluation of the Electromagnetic Power Absorption in Humans Exposed to Plane Waves: The Effect of Breathing Activity

    Directory of Open Access Journals (Sweden)

    Marta Cavagnaro

    2013-01-01

    Full Text Available The safety aspects of the exposure of people to uniform plane waves in the frequency range from 900 MHz to 5 GHz are analyzed. Starting from a human body model available in the literature, representing a man in resting state, two new anatomical models are considered, representing different phases of the respiratory activity: tidal breath and deep breath. These models have been used to evaluate the whole body Specific Absorption Rate (SAR and the 10-g averaged and 1-g averaged SAR. The analysis is performed using a parallel implementation of the finite difference time domain method. A uniform plane wave, with vertical polarization, is used as an incident field since this is the canonical exposure situation used in safety guidelines. Results show that if the incident electromagnetic field is compliant with the reference levels promulgated by the International Commission on Non-Ionizing Radiation Protection and by IEEE, the computed SAR values are lower than the corresponding basic restrictions, as expected. On the other side, when the Federal Communications Commission reference levels are considered, 1-g SAR values exceeding the basic restrictions for exposure at 4 GHz and above are obtained. Furthermore, results show that the whole body SAR values increase passing from the resting state model to the deep breath model, for all the considered frequencies.

  6. Room acoustics analysis using circular arrays: an experimental study based on sound field plane-wave decomposition.

    Science.gov (United States)

    Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo

    2013-04-01

    Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.

  7. Reflection of Plane Waves in Generalized Thermoelastic Half Space under the Action of Uniform Magnetic Field

    Directory of Open Access Journals (Sweden)

    Narottam Maity

    2016-01-01

    Full Text Available Reflection of longitudinal displacement waves in a generalized thermoelastic half space under the action of uniform magnetic field has been investigated. The magnetic field is applied in such a direction that the problem can be considered as a two-dimensional one. The discussion is based on the three theories of generalized thermoelasticity: Lord-Shulman (L-S, Green-Lindsay (G-L, and Green-Naghdi (G-N with energy dissipation. We compute the possible wave velocities for different models. Amplitude ratios have been presented. The effects of magnetic field on various subjects of interest are discussed and shown graphically.

  8. Plane linear waves in deformable electromagnetic materials with an extended description of the electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, T.; Strawinska, J. [Politechnika Poznanska, Poznan (Poland)

    1993-12-31

    The present considerations are devoted to the description of an electromagnetic field in deformable body within the framework of the conceptional extended electrodynamics. The formal tool used is the classical field theory based on methods of analytical mechanics. The deformation is described by applying the relativistic kinematics of a medium which makes it possible to obtain, as a particular case, three dimensional laws with simple physical interpretation. The dynamics of bodies interacting with an electromagnetic field has been expressed by Lagrange`s equation of motion with a view to obtaining linear field equations. In the domain of wave problems one-dimensional volume waves have been analysed. (author). 19 refs.

  9. Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics for large supercomputers.

    Science.gov (United States)

    Vadali, Ramkumar V; Shi, Yan; Kumar, Sameer; Kale, Laxmikant V; Tuckerman, Mark E; Martyna, Glenn J

    2004-12-01

    Many systems of great importance in material science, chemistry, solid-state physics, and biophysics require forces generated from an electronic structure calculation, as opposed to an empirically derived force law to describe their properties adequately. The use of such forces as input to Newton's equations of motion forms the basis of the ab initio molecular dynamics method, which is able to treat the dynamics of chemical bond-breaking and -forming events. However, a very large number of electronic structure calculations must be performed to compute an ab initio molecular dynamics trajectory, making the efficiency as well as the accuracy of the electronic structure representation critical issues. One efficient and accurate electronic structure method is the generalized gradient approximation to the Kohn-Sham density functional theory implemented using a plane-wave basis set and atomic pseudopotentials. The marriage of the gradient-corrected density functional approach with molecular dynamics, as pioneered by Car and Parrinello (R. Car and M. Parrinello, Phys Rev Lett 1985, 55, 2471), has been demonstrated to be capable of elucidating the atomic scale structure and dynamics underlying many complex systems at finite temperature. However, despite the relative efficiency of this approach, it has not been possible to obtain parallel scaling of the technique beyond several hundred processors on moderately sized systems using standard approaches. Consequently, the time scales that can be accessed and the degree of phase space sampling are severely limited. To take advantage of next generation computer platforms with thousands of processors such as IBM's BlueGene, a novel scalable parallelization strategy for Car-Parrinello molecular dynamics is developed using the concept of processor virtualization as embodied by the Charm++ parallel programming system. Charm++ allows the diverse elements of a Car-Parrinello molecular dynamics calculation to be interleaved with low

  10. New algorithm of mine slope reliability based on limiting state hyper-plane and its engineering application

    Institute of Scientific and Technical Information of China (English)

    刘志祥; 唐志祥; 王卫华; 孙晶晶; 彭康

    2015-01-01

    Due to the influence of joint fissure, mining intensity, designed slope angle, underground water and rainfall, the failure process of mine slope project is extremely complicated. The current safety factor calculation method has certain limitations, and it would be difficult to obtain the reliability index when the performance function of reliability analysis is implicit or has high order terms. Therefore, with the help of the logistic equation of chaos theory, a new algorithm of mine slope reliability based on limiting state hyper-plane is proposed. It is shown that by using this new reliability algorithm the calculation of partial derivative of performance function is avoided, and it has the advantages of being simple and easy to program. The new algorithm is suitable for calculating the reliability index of complex performance function containing high order terms. Furthermore, the limiting state hyper-plane models of both simplified Bishop’s and Janbu’s method adaptive to slope project are obtained, and have achieved satisfactory effect in the study of mine slope stability in Dexing copper open pit.

  11. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids.

    Science.gov (United States)

    Maintz, Stefan; Deringer, Volker L; Tchougréeff, Andrei L; Dronskowski, Richard

    2013-11-05

    Quantum-chemical computations of solids benefit enormously from numerically efficient plane-wave (PW) basis sets, and together with the projector augmented-wave (PAW) method, the latter have risen to one of the predominant standards in computational solid-state sciences. Despite their advantages, plane waves lack local information, which makes the interpretation of local densities-of-states (DOS) difficult and precludes the direct use of atom-resolved chemical bonding indicators such as the crystal orbital overlap population (COOP) and the crystal orbital Hamilton population (COHP) techniques. Recently, a number of methods have been proposed to overcome this fundamental issue, built around the concept of basis-set projection onto a local auxiliary basis. In this work, we propose a novel computational technique toward this goal by transferring the PW/PAW wavefunctions to a properly chosen local basis using analytically derived expressions. In particular, we describe a general approach to project both PW and PAW eigenstates onto given custom orbitals, which we then exemplify at the hand of contracted multiple-ζ Slater-type orbitals. The validity of the method presented here is illustrated by applications to chemical textbook examples-diamond, gallium arsenide, the transition-metal titanium-as well as nanoscale allotropes of carbon: a nanotube and the C60 fullerene. Remarkably, the analytical approach not only recovers the total and projected electronic DOS with a high degree of confidence, but it also yields a realistic chemical-bonding picture in the framework of the projected COHP method.

  12. Matter-wave diffraction at the natural limit

    Science.gov (United States)

    Brand, Christian; Sclafani, Michele; Knobloch, Christian; Lilach, Yigal; Juffmann, Thomas; Kotakoski, Jani; Mangler, Clemens; Winter, Andreas; Turchanin, Andrey; Meyer, Jannik; Cheshnovsky, Ori; Arndt, Markus

    2016-05-01

    The high sensitivity of matter-wave interferometry experiments to forces and perturbations makes them an essential tool for precision measurements and tests of quantum physics. While mostly grating made of laser-light are used, material gratings have the advantage that they are independent of the particle's internal properties. This makes them universally applicable. However, the molecules will experience substantial van der Waals shifts while passing the grating slits, which suggests limiting this perturbation by reducing the material thickness. In a comprehensive study we compared the van der Waals interactions for free-standing gratings made from single and double layer graphene to masks commonly used in atom interferometry. From the population of high fringe orders we deduce a surprisingly strong electrical interaction between the polarizable molecules and the nanomasks. As even for these thinnest diffraction elements which-path information is not shared with the environment, we interpret this as an experimental affirmation of Bohr's arguments in his famous debate with Einstein.

  13. A study of H+H2 and several H-bonded molecules by phaseless auxiliary-field quantum Monte Carlo with plane wave and Gaussian basis sets.

    Science.gov (United States)

    Al-Saidi, W A; Krakauer, Henry; Zhang, Shiwei

    2007-05-21

    The authors present phaseless auxiliary-field (AF) quantum Monte Carlo (QMC) calculations of the ground states of some hydrogen-bonded systems. These systems were selected to test and benchmark different aspects of the new phaseless AF QMC method. They include the transition state of H+H(2) near the equilibrium geometry and in the van der Walls limit, as well as the H(2)O, OH, and H(2)O(2) molecules. Most of these systems present significant challenges for traditional independent-particle electronic structure approaches, and many also have exact results available. The phaseless AF QMC method is used either with a plane wave basis with pseudopotentials or with all-electron Gaussian basis sets. For some systems, calculations are done with both to compare and characterize the performance of AF QMC under different basis sets and different Hubbard-Stratonovich decompositions. Excellent results are obtained using as input single Slater determinant wave functions taken from independent-particle calculations. Comparisons of the Gaussian based AF QMC results with exact full configuration interaction show that the errors from controlling the phase problem with the phaseless approximation are small. At the large basis-size limit, the AF QMC results using both types of basis sets are in good agreement with each other and with experimental values.

  14. Limiting Behavior of Travelling Waves for the Modified Degasperis-Procesi Equation

    Directory of Open Access Journals (Sweden)

    Jiuli Yin

    2014-01-01

    Full Text Available Using an improved qualitative method which combines characteristics of several methods, we classify all travelling wave solutions of the modified Degasperis-Procesi equation in specified regions of the parametric space. Besides some popular exotic solutions including peaked waves, and looped and cusped waves, this equation also admits some very particular waves, such as fractal-like waves, double stumpons, double kinked waves, and butterfly-like waves. The last three types of solutions have not been reported in the literature. Furthermore, we give the limiting behavior of all periodic solutions as the parameters trend to some special values.

  15. Plane Wave-Perturbative Method for Evaluating the Effective Speed of Sound in 1D Phononic Crystals

    Directory of Open Access Journals (Sweden)

    J. Flores Méndez

    2016-01-01

    Full Text Available A method for calculating the effective sound velocities for a 1D phononic crystal is presented; it is valid when the lattice constant is much smaller than the acoustic wave length; therefore, the periodic medium could be regarded as a homogeneous one. The method is based on the expansion of the displacements field into plane waves, satisfying the Bloch theorem. The expansion allows us to obtain a wave equation for the amplitude of the macroscopic displacements field. From the form of this equation we identify the effective parameters, namely, the effective sound velocities for the transverse and longitudinal macroscopic displacements in the homogenized 1D phononic crystal. As a result, the explicit expressions for the effective sound velocities in terms of the parameters of isotropic inclusions in the unit cell are obtained: mass density and elastic moduli. These expressions are used for studying the dependence of the effective, transverse and longitudinal, sound velocities for a binary 1D phononic crystal upon the inclusion filling fraction. A particular case is presented for 1D phononic crystals composed of W-Al and Polyethylene-Si, extending for a case solid-fluid.

  16. Prediction of Vertical-Plane Wave Loading and Ship Responses in High Seas

    DEFF Research Database (Denmark)

    Wang, Zhaohui; Xia, Jinzhu; Jensen, Jørgen Juncher

    2000-01-01

    The non-linearities in wave- and slamming-induced rigid-body motions and structural responses of ships such as heave, pitch and vertical bending moments are consistently investigated based on a rational time-domain strip method. A hydrodynamic model for predicting sectional green water force.......From the rather extensive computations and comparisons, it is found that non-linear effects are significant in head and bow waes in the motion-wave resonant region for both heave and pitch motions, bow accelerations and vertical bending moments for two container ships considered, whereas not significant...... for a VLCC. The non-linearities in motions and structural loads of conventional monohull ships seem well predicted by the present non-linear strip theory....

  17. Scattering of plane SH waves by a circular-arc hill with a circular tunnel

    Institute of Scientific and Technical Information of China (English)

    LIANG Jian-wen(梁建文); LUO Hao(罗昊); Vincent W. Lee

    2004-01-01

    An analytical solution for scattering of incident SH waves by a circular-arc hill with a concentric circular tunnel was derived by Fourier-Bessel series expansion and auxiliary functions technique. The solution is reduced to solving a set of infinite linear algebraic equations finally. The accuracies of the numerical results are checked by the residual errors of boundary conditions with the truncation order increasing. The numerical results show that the existence and dimension of the tunnel have great effect on motion of the ground surface nearby and dynamic stress concentration of the tunnel.

  18. Lower bound for the enstrophy transient growth of a set of traveling waves propagating in fluids moving between parallel planes

    CERN Document Server

    Fraternale, Federico; Staffilani, Gigliola; Tordella, Daniela

    2016-01-01

    By deriving conditions for no transient enstrophy growth for two-dimensional small perturbations in the plane Couette and Poiseuille flows, we show that transient kinetic energy growth for small traveling waves is not a sufficient condition for the enstrophy growth. It should be recalled that the vorticity perturbation problem in wall parallel flows was addressed at the beginning of the 20th century by J. L. Synge in an original way and as an alternative and equivalent way of determining flow stability with respect to the classical kinetic energy analysis. However, mathematical difficulties related to the vorticity boundary conditions left the problem open since then. Historically, the discovery of nonmodal perturbation growth and its link to the subcritical transition to turbulence lead to a preferential energy-based analysis. Here, we follow Synge's procedure and extend its work to the nonmodal approach and thus to the initial value problem capable to describe possible transient vorticity growth. Our calcul...

  19. Linearized augmented-plane-wave method for quasi-unidimensional systems: Carbyne and nanotube (Sc@C{sub 20})

    Energy Technology Data Exchange (ETDEWEB)

    D`yachkov, P.N. [Kurnakov Institute of General and Inorganic Chemistry, Moscow (Russian Federation); Nikolaev, A.V. [Institute of Physcial Chemistry, Moscow (Russian Federation)

    1995-10-01

    The advent of carbon nanotubes, which are graphite layers convoluted in cylinders several nanometers in diameter and several micrometers in length, as well as the experiments on implanting metal atoms in such tubes open the way to producing nanoconductors and other materials with unique properties. For theorists, the basic challenge is interpreting and predicting the structure and properties of these systems. The linearized augmented-plane-wave method (LAPW) is one of the most accurate methods in the theory of the electronic structure of solids. A generalization of this method for quasi-two-dimensional systems, surface electronic states, and layered crystals is known. The LAPW theory for quasi-unidimensional systems, which exhibit translational symmetry in one direction, has been absent thus far. In this paper, the authors suggest a version of such a theory and use this method to calculate the electronic structure of carbyne (a linear chain of carbon atoms) and carbon nanotube with implanted Sc atoms.

  20. Hybrid multilevel plane wave based near-field far-field transformation utilising combined near- and far-field translations

    Directory of Open Access Journals (Sweden)

    C. H. Schmidt

    2009-05-01

    Full Text Available The radiation of large antennas and those operating at low frequencies can be determined efficiently by near-field measurement techniques and a subsequent near-field far-field transformation. Various approaches and algorithms have been researched but for electrically large antennas and irregular measurement contours advanced algorithms with low computation complexity are required. In this paper an algorithm employing plane waves as equivalent sources and utilising efficient diagonal translation operators is presented. The efficiency is further enhanced using simple far-field translations in combination with the expensive near-field translations. In this way a low complexity near-field transformation is achieved, which works for arbitrary sample point distributions and incorporates a full probe correction without increasing the complexity.

  1. Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing

    Science.gov (United States)

    Hewener, Holger J.; Tretbar, Steffen H.

    Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.

  2. Scattering and Absorption of Gravitational Plane Waves by Rotating Black Holes

    CERN Document Server

    Dolan, Sam R

    2008-01-01

    In this study, we investigate scattering and absorption of planar gravitational waves by a Kerr black hole in vacuum. We compute cross sections for radiation incident along the rotation axis, and consider both co- and counter-rotating circular polarizations. We show that, if a novel series reduction method is employed, the partial wave approach developed by Matzner and coworkers yields accurate results. Phase shifts are computed via a Sasaki-Nakamura transformation, and spheroidal harmonics via a spectral decomposition method. A catalogue of cross sections is presented for a range of parameters ($M\\omega \\le 4$ and $a \\le 0.99M$). In the long- and short-wavelength regimes we find good agreement with perturbative and semi-classical approximations. We confirm that helicity is not conserved: flux scattered in the backward direction has the opposite polarization to the incident radiation. At low frequencies, fast-rotating holes generate superradiance in the $l = 2$, $m = 2$ mode which enhances the back-scattered ...

  3. Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips.

    Science.gov (United States)

    Gómez-Díaz, J S; Esquius-Morote, M; Perruisseau-Carrier, J

    2013-10-21

    An approach to couple free-space waves and non-resonant plasmons propagating along graphene strips is proposed based on the periodic modulation of the graphene strip width. The solution is technologically very simple, scalable in frequency, and provides customized coupling angle and intensity. Moreover, the coupling properties can be dynamically controlled at a fixed frequency via the graphene electrical field effect, enabling advanced and flexible plasmon excitation-detection strategies. We combine a previously derived scaling law for graphene strips with leaky-wave theory borrowed from microwaves to achieve rigorous and efficient modeling and design of the structure. In particular we analytically derive its dispersion, predict its coupling efficiency and radiated field structure, and design strip configurations able to fulfill specific coupling requirements. The proposed approach and developed methods are essential to the recent and fundamental problem of the excitation-detection of non-resonant plasmons propagating along a continuous graphene strip, and could pave the way to smart all-graphene sensors and transceivers.

  4. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

    Institute of Scientific and Technical Information of China (English)

    Chang-Jun Zheng; Hai-Bo Chen; Lei-Lei Chen

    2013-01-01

    This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only.Moreover,a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived,and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating,translating and saving the multipole/local expansion coefficients of the image domain.The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems.As for exterior acoustic problems,the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method.Details on the implementation of the present method are described,and numerical examples are given to demonstrate its accuracy and efficiency.

  5. Effect of random phase mask on input plane in photorefractive authentic memory with two-wave encryption method

    Science.gov (United States)

    Mita, Akifumi; Okamoto, Atsushi; Funakoshi, Hisatoshi

    2004-06-01

    We have proposed an all-optical authentic memory with the two-wave encryption method. In the recording process, the image data are encrypted to a white noise by the random phase masks added on the input beam with the image data and the reference beam. Only reading beam with the phase-conjugated distribution of the reference beam can decrypt the encrypted data. If the encrypted data are read out with an incorrect phase distribution, the output data are transformed into a white noise. Moreover, during read out, reconstructions of the encrypted data interfere destructively resulting in zero intensity. Therefore our memory has a merit that we can detect unlawful accesses easily by measuring the output beam intensity. In our encryption method, the random phase mask on the input plane plays important roles in transforming the input image into a white noise and prohibiting to decrypt a white noise to the input image by the blind deconvolution method. Without this mask, when unauthorized users observe the output beam by using CCD in the readout with the plane wave, the completely same intensity distribution as that of Fourier transform of the input image is obtained. Therefore the encrypted image will be decrypted easily by using the blind deconvolution method. However in using this mask, even if unauthorized users observe the output beam using the same method, the encrypted image cannot be decrypted because the observed intensity distribution is dispersed at random by this mask. Thus it can be said the robustness is increased by this mask. In this report, we compare two correlation coefficients, which represents the degree of a white noise of the output image, between the output image and the input image in using this mask or not. We show that the robustness of this encryption method is increased as the correlation coefficient is improved from 0.3 to 0.1 by using this mask.

  6. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    Science.gov (United States)

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high

  7. Loss of spatial coherence and limiting of focal plane intensity by small-scale laser-beam filamentation

    Energy Technology Data Exchange (ETDEWEB)

    Schweinsberg, Aaron; Kuper, Jerry [The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Boyd, Robert W. [The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, Canda K1N 6N5 (Canada)

    2011-11-15

    We describe a nonlinear optical mechanism that leads to a decrease of the degree of (transverse) spatial coherence of a laser beam as a function of propagation distance. This prediction is in direct contrast with those of the van Cittert-Zernike theorem, which applies to propagation through a linear, homogeneous material. The mechanism by which coherence is lost is the growth of small phase irregularities initially present on the laser wave front. We develop a detailed theoretical model of this effect and present experimental results that validate this model. The practical importance of this result is that by being able to controllably decrease the spatial coherence of a laser beam, one can limit the maximum intensity that is produced in its focal region. By limiting the intensity, one can prevent laser damage to bulk optical components or to sensitive photodetectors. This mechanism thus provides an alternative to current approaches of sensor protection based on optical power limiting.

  8. WSPEC: A waveguide filter-bank focal plane array spectrometer for millimeter wave astronomy and cosmology

    CERN Document Server

    Bryan, Sean; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony

    2015-01-01

    Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50-200) will be used to characterize large scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the SZ effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum Lumped-Element Kinetic Inductance Detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 GHz and 190-250 GHz, each Nyquist-sampled at R~200...

  9. WSPEC: A Waveguide Filter-Bank Focal Plane Array Spectrometer for Millimeter Wave Astronomy and Cosmology

    Science.gov (United States)

    Bryan, Sean; Aguirre, James; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony

    2016-07-01

    Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50-200) will be used to characterize large-scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the the Sunyaev Zeldovich (SZ) effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum lumped-element kinetic inductance detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 and 190-250 GHz, each Nyquist-sampled at R≈ 200 resolution. Here, we discuss the instrument concept and design, and successful initial testing of a WR10 (i.e., 90 GHz) prototype spectrometer. We recently tested a WR5 (180 GHz) prototype to verify that the concept works at higher frequencies, and also designed a resonant backshort structure that may further increase the optical efficiency. We are making progress towards integrating a spectrometer with a LEKID array and deploying a prototype device to a telescope for first light.

  10. Polarizability Matrix Extraction of a Bianisotropic Metamaterial from the Scattering Parameters of Normally Incident Plane Waves

    Directory of Open Access Journals (Sweden)

    T. D. Karamanos

    2012-11-01

    Full Text Available In this paper, a polarizability matrix retrieval method for bianisotropic metamaterials is presented. Assuming that scatterers can be modeled by electric and magnetic pointdipoles located at their centers, the induced dipole moments are analytically related to the normally incident fields, while the scattered fields are also analytically obtained for two individual cases of normal wave incidence. The latter can be combined with the incident fields, to express the desired polarizabilities, with regard to the measured or simulated scattering parameters. In this way, the polarizability matrix can be extracted by solving the resulting non-linear system of equations. The proposed technique is applied to two different split-ring resonator structures and reveals very good agreement with previously reported techniques.

  11. High frame-rate blood vector velocity imaging using plane waves: simulations and preliminary experiments

    DEFF Research Database (Denmark)

    Udesen, J.; Gran, F.; Hansen, K.L.

    2008-01-01

    Conventional ultrasound methods for acquiring color images of blood velocity are limited by a relatively low frame-rate and are restricted to give velocity estimates along the ultrasound beam direction only. To circumvent these limitations, the method presented in this paper uses 3 techniques: 1...... carotid artery of a healthy male was scanned with a scan sequence that satisfies the limits set by the Food and Drug Administration. Vector velocity images were obtained with a frame-rate of 100 Hz where 40 speckle images are used for each vector velocity image. It was found that the blood flow...... approximately followed the vessel wall, and that maximum velocity was approximately 1 m/s, which is a normal value for a healthy person. To further evaluate the method, the test person was scanned with magnetic resonance (MR) angiography. The volume flow derived from the MR scanning was compared with that from...

  12. Self-interaction corrected LDA + U investigations of BiFeO3 properties: plane-wave pseudopotential method

    Science.gov (United States)

    Yaakob, M. K.; Taib, M. F. M.; Lu, L.; Hassan, O. H.; Yahya, M. Z. A.

    2015-11-01

    The structural, electronic, elastic, and optical properties of BiFeO3 were investigated using the first-principles calculation based on the local density approximation plus U (LDA + U) method in the frame of plane-wave pseudopotential density functional theory. The application of self-interaction corrected LDA + U method improved the accuracy of the calculated properties. Results of structural, electronic, elastic, and optical properties of BiFeO3, calculated using the LDA + U method were in good agreement with other calculation and experimental data; the optimized choice of on-site Coulomb repulsion U was 3 eV for the treatment of strong electronic localized Fe 3d electrons. Based on the calculated band structure and density of states, the on-site Coulomb repulsion U had a significant effect on the hybridized O 2p and Fe 3d states at the valence and the conduction band. Moreover, the elastic stiffness tensor, the longitudinal and shear wave velocities, bulk modulus, Poisson’s ratio, and the Debye temperature were calculated for U = 0, 3, and 6 eV. The elastic stiffness tensor, bulk modulus, sound velocities, and Debye temperature of BiFeO3 consistently decreased with the increase of the U value.

  13. Limiting the effects of earthquakes on gravitational-wave interferometers

    CERN Document Server

    Coughlin, Michael; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2016-01-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce the duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Hypocenter and magnitude information is generally available in 5 to 20 minutes of a significant earthquake depending on its magnitude and location. The al...

  14. High Frame-Rate Blood Vector Velocity Imaging Using Plane Waves: Simulations and Preliminary Experiments

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Hansen, Kristoffer Lindskov;

    2008-01-01

    Conventional ultrasound methods for acquiring color images of blood velocity are limited by a relatively low frame-rate and are restricted to give velocity estimates along the ultrasound beam direction only. To circumvent these limitations, the method presented in this paper uses 3 techniques: 1......) The ultrasound is not focused during the transmissions of the ultrasound signals; 2) A 13-bit Barker code is transmitted simultaneously from each transducer element; and 3) The 2-D vector velocity of the blood is estimated using 2-D cross-correlation. A parameter study was performed using the Field II program......, and performance of the method was investigated when a virtual blood vessel was scanned by a linear array transducer. An improved parameter set for the method was identified from the parameter study, and a flow rig measurement was performed using the same improved setup as in the simulations. Finally, the common...

  15. LIGHT PRESSURE: Theoretical study of the light pressure force acting on a spherical dielectric particle of an arbitrary size in the interference field of two plane monochromatic electromagnetic waves

    Science.gov (United States)

    Guzatov, D. V.; Gaida, L. S.; Afanas'ev, Anatolii A.

    2008-12-01

    The light pressure force acting on a spherical dielectric particle in the interference field of two plane monochromatic electromagnetic waves is studied in detail for different particle radii and angles of incidence of waves.

  16. Wave scattering of complex local site in a layered half-space by using a multidomain IBEM: incident plane SH waves

    Science.gov (United States)

    Ba, Zhenning; Yin, Xiao

    2016-06-01

    A multidomain indirect boundary element method (IBEM) is proposed to study the wave scattering of plane SH waves by complex local site in a layered half-space. The new method, using both the full-space and layered half-space Green's functions as its fundamental solutions can also be regarded as a coupled method of the full-space IBEM and half-space IBEM. First, the whole model is decomposed into independent closed regions and an opened layered half-space region with all of the irregular interfaces; then, fictitious uniformly distributed loads are applied separately on the boundaries of each region, and scattered fields of the closed regions and the opened layered half-space region are constructed by calculating the full-space and layered half-space Green's functions, respectively; finally, all of the regions are assembled to establish the linear algebraic system that arises from discretization. The densities of the distributed loads are determined directly by solving the algebraic system. The accuracy and capability of the new approach are verified extensively by comparing its results with those of published approaches for a class of hills, valleys and embedded inclusions. And the capability of the new method is further displayed when it is used to investigate a hill-triple layered valley-hill coupled topography in a multilayered half-space. All of the numerical calculations presented in this paper demonstrate that the new method is very suitable for solving multidomain coupled multilayered wave scattering problems with the merits of high accuracy and representing the scattered fields in different kinds of regions more reasonably and flexibly.

  17. Departures from plane-wave-like coupling to a Maverick missile in the radiating near-field region of a horn antenna

    Science.gov (United States)

    Voss, D. E.; Koslover, R. A.; Cremer, C. D.; Silvestro, J.; Miner, L. M.

    1990-05-01

    The High Power Microwaves (HPM) susceptibility testing often requires irradiating test objects at the highest fluences possible. For aperture antennas, the highest fluences are generally found in the radiating near field region. For valid effects testing, the energy coupled to the object interior must accurately replicate that which would occur in a true weapon environment (plane wave illumination). Some believe that valid testing requires object placement at distances from the aperture exceeding 2 D squared/lambda (D=antenna effective diameter). Many also believe testing at farther away than 2 D squared/lambda guarantees plane wave-like coupling conditions. Neither view is correct. Testing in the reactive field region (less than lambda from the aperture) is generally invalid due to dominance of reactive coupling. For testing in the radiating near field, determination of validity is less trivial. An investigation was performed quantifying deviations from plane wave coupling. The measurements, using an instrumented Maverick missile in an anechoic chamber, and supported by theory, indicate conditions for which testing the Maverick missile accurately simulates plane wave coupling.

  18. Modeling fracture in the context of a strain-limiting theory of elasticity: a single anti-plane shear crack

    KAUST Repository

    Rajagopal, K. R.

    2011-01-06

    This paper is the first part of an extended program to develop a theory of fracture in the context of strain-limiting theories of elasticity. This program exploits a novel approach to modeling the mechanical response of elastic, that is non-dissipative, materials through implicit constitutive relations. The particular class of models studied here can also be viewed as arising from an explicit theory in which the displacement gradient is specified to be a nonlinear function of stress. This modeling construct generalizes the classical Cauchy and Green theories of elasticity which are included as special cases. It was conjectured that special forms of these implicit theories that limit strains to physically realistic maximum levels even for arbitrarily large stresses would be ideal for modeling fracture by offering a modeling paradigm that avoids the crack-tip strain singularities characteristic of classical fracture theories. The simplest fracture setting in which to explore this conjecture is anti-plane shear. It is demonstrated herein that for a specific choice of strain-limiting elasticity theory, crack-tip strains do indeed remain bounded. Moreover, the theory predicts a bounded stress field in the neighborhood of a crack-tip and a cusp-shaped opening displacement. The results confirm the conjecture that use of a strain limiting explicit theory in which the displacement gradient is given as a function of stress for modeling the bulk constitutive behavior obviates the necessity of introducing ad hoc modeling constructs such as crack-tip cohesive or process zones in order to correct the unphysical stress and strain singularities predicted by classical linear elastic fracture mechanics. © 2011 Springer Science+Business Media B.V.

  19. First upper limits from LIGO on gravitational wave bursts

    Energy Technology Data Exchange (ETDEWEB)

    B. Abbott et al.

    2004-03-09

    We report on a search for gravitational wave bursts using data from the first science run of the LIGO detectors. Our search focuses on bursts with durations ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians) as a function of their root-sum-square strain h{sub rss}; typical sensitivities lie in the range h{sub rss} {approx} 10{sup -19} - 10{sup -17} strain/{radical}Hz, depending on waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors.

  20. First upper limits from LIGO on gravitational wave bursts

    CERN Document Server

    Abbott, B; Adhikari, R; Ageev, A N; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S V; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, D; Barker-Patton, C; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff,S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Bland-Weaver, B; Bochner, B; Bogue, L; Bork, R G; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Brozek, S; Bullington, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Colacino, C N; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Davies, R; Daw, E; De Bra, D; Delker, T; DeSalvo, R; Dhurandhar, S V; Ding, H; Drever, R W P; Dupuis, R J; Ebeling, C; Edlund, J; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fallnich, C; Farnham, D; Fejer, M M; Fine, M; Finn, L S; Flanagan, E; Freise, A; Frey, R; Fritschel, P; Frolov, V; Fyffe, M; Ganezer, K S; Giaime, J A; Gillespie, A; Goda, K; González, G; Goler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ingley, R; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, W W; Johnston, W; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Kloevekorn, P; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Lück, H B; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K O; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNamara, P; Mendell, G; Meshkov, S; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Mours, B; Müller, G; Mukherjee, S; Myers, J; Nagano, S; Nash, T; Naundorf, H; Nayak, R; Newton, G; Nocera, F; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Papa, M A; Parameswariah, C; Parameshwaraiah, V; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Pratt, M; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Redding, D; Regehr, M W; Regimbau, T; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schofield, R; Schrempel, M; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seel, S; Sengupta, A S; Shapiro, C A; Shawhan, P S; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Skeldon, K D; Smith, J R; Smith, M; Smith, M R; Sneddon, P; Spero, R; Stapfer, G; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traeger, S; Traylor, G; Tyler, W; Ugolini, D W; Vallisneri, M; Van, M; Putten; Vass, S; Vecchio, A; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yoshida, S; Zawischa, I; Zhang, L; Zotov, N P; Zucker, M; Zweizig, J

    2004-01-01

    We report on a search for gravitational wave bursts using data from the first science run of the LIGO detectors. Our search focuses on bursts with durations ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians) as a function of their root-sum-square strain h_{rss}; typical sensitivities lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors.

  1. Limiting the effects of earthquakes on gravitational-wave interferometers

    Science.gov (United States)

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-01-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  2. Mechanical Limits to Size in Wave-Swept Organisms.

    Science.gov (United States)

    1983-11-10

    sponges produce taller colonies in deeper water where wave action is attenuated (Reidl 1971). Simi’ar trends in maximum body size have been noted in...grows taller . While for • .similar free-stream velocities turbulent boundary layers are thicker than -- laminar ones, they have, in general, blunter...coral reefs: rigid, brittle organisms such as stony coras suffered more breakage than did flexible, deformable organisms like gorgonians (Woodley et a_

  3. Sensitivity limits of capacitive transducer for gravitational wave resonant antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bassan, M.; Pizzella, G. [Rome Tor Vergata Univ. (Italy). Dip. di Fisica

    1996-12-01

    It is analyzed the performance of a resonant gravitational wave antenna equipped with a resonant, d.c. biased capacitive transducer, an untuned superconducting matching circuit and a d.c. Squid. It is derived simple relations for the detector energy sensitivity that serve as guidelines for device development and it is shown that, with reasonable improvements in Squid technology, an effective temperature for burst detection of 2miK can be achieved.

  4. Limiting the effects of earthquakes on gravitational-wave interferometers

    Science.gov (United States)

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-02-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  5. Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar

    Science.gov (United States)

    Abbott, B.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bastarrika, M.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cao, J.; Cardenas, L.; Casebolt, T.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Clark, D.; Clark, J.; Cokelaer, T.; Conte, R.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Cumming, A.; Cunningham, L.; Cutler, R. M.; Dalrymple, J.; Danzmann, K.; Davies, G.; DeBra, D.; Degallaix, J.; Degree, M.; Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Duke, I.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Echols, C.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fehrmann, H.; Fejer, M. M.; Finn, L. S.; Flasch, K.; Fotopoulos, N.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayama, K.; Hayler, T.; Heefner, J.; Heng, I. S.; Hennessy, M.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Huttner, S. H.; Ingram, D.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamat, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Khan, R.; Khazanov, E.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Kozhevatov, I.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M. M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leindecker, N.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lin, H.; Lindquist, P.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Lubinski, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McIvor, G.; McKechan, D.; McKenzie, K.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C. J.; Meyers, D.; Miller, J.; Minelli, J.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S.; Moreno, G.; Mossavi, K.; MowLowry, C.; Mueller, G.; Mukherjee, S.; Mukhopadhyay, H.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; Ogin, G.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.; Petrie, T.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D. S.; Radkins, H.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S. W.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.

    2008-08-01

    We present direct upper limits on gravitational wave emission from the Crab pulsar using data from the first 9 months of the fifth science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). These limits are based on two searches. In the first we assume that the gravitational wave emission follows the observed radio timing, giving an upper limit on gravitational wave emission that beats indirect limits inferred from the spin-down and braking index of the pulsar and the energetics of the nebula. In the second we allow for a small mismatch between the gravitational and radio signal frequencies and interpret our results in the context of two possible gravitational wave emission mechanisms.

  6. Excitation of Self-Localized Spin-Wave Bullets by Spin-Polarized Current in In-Plane Magnetized Magnetic Nano-Contacts: A Micromagnetic Study

    Science.gov (United States)

    2007-10-08

    Melkov,3 Vasil Tiberkevich,4 and Andrei N. Slavin4 1Dipartimento di Fisica della Materia e Tecnologie Fisiche Avanzate, University of Messina...nanocontact. In Eq. 1, the unit vector p defining the spin-polarization direction is parallel to the direction ez of the in-plane external magnetic field...linear theory,3 the propagating spin- wave mode excited at the threshold is a cylindrical spin- wave with the wave vector kL=1.2/Rc and frequency L

  7. Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background.

    Science.gov (United States)

    Taylor, S R; Mingarelli, C M F; Gair, J R; Sesana, A; Theureau, G; Babak, S; Bassa, C G; Brem, P; Burgay, M; Caballero, R N; Champion, D J; Cognard, I; Desvignes, G; Guillemot, L; Hessels, J W T; Janssen, G H; Karuppusamy, R; Kramer, M; Lassus, A; Lazarus, P; Lentati, L; Liu, K; Osłowski, S; Perrodin, D; Petiteau, A; Possenti, A; Purver, M B; Rosado, P A; Sanidas, S A; Smits, R; Stappers, B; Tiburzi, C; van Haasteren, R; Vecchio, A; Verbiest, J P W

    2015-07-24

    The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in the ~2-90 nHz band shows consistency with isotropy, with the strain amplitude in l>0 spherical harmonic multipoles ≲40% of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations.

  8. Modelling the optical response of human retinal photoreceptors to plane wave illumination with the finite integration technique

    Science.gov (United States)

    Akhlagh Moayed, Alireza; Dang, Shannon; Ramahi, Omar M.; Bizheva, Kostadinka K.

    2009-02-01

    The early stages of ocular diseases such as Diabetic Retinopathy are manifested by morphological changes in retinal tissue occurring on cellular level. Therefore, a number of ophthalmic diseases can be diagnosed at an early stage by detecting spatial and temporal variations in the scattering profile of retinal tissue. It was recently demonstrated that, OCT can be used to probe the functional response of retinal photoreceptors to external light stimulation [1]-[3]. fUHROCT measures localized differential changes in the retina reflectivity over time resulting from external light stimulation of the retina. Currently the origins of the observed reflectivity changes are not well understood. However, due to the complex nature of retinal physiology using purely experimental approaches in this case is problematic. For example fUHROCT is sensitive to small changes in the refractive index of biological tissue which as demonstrated previously, can result from a number of processes such as membrane hyperpolarization, osmotic swelling, metabolic changes, etc. In this paper, we present a computational model of interaction between photoreceptor cells and optical plane wave based on the Finite Integration Technique (FIT).

  9. Reflection of a plane wave from a two-layered seafloor with non-parallel interface between the layers.

    Science.gov (United States)

    Papadakis, Panagiotis I; Piperakis, George S; Kalogerakis, Michael A

    2015-02-01

    This work studies the reflection coefficient of a plane wave incident on a seafloor consisting of two layers (sediment and substrate), whose interface is linear but not parallel to the water-sediment interface. This is an extension of the well-established and studied reflection coefficient concept for seafloors with parallel layers. Moreover this study introduces the concept of the Coherent Reflection Coefficient (CRC) that extends the usual Rayleigh reflection coefficient definition not only at the water-sediment interface but inside the water column as well. The mathematical formulation of the CRC is derived and its numerical implementation is explained. Based on this implementation a numerical code is developed and incorporated-among other codes-in a user-friendly graphics toolbox that was built to facilitate CRC calculations. Numerical examples for realistic seafloors are presented and the derived results are compared to similar ones for parallel layers, indicating that even for small inclination angles the reflection coefficient difference between parallel and slanted interface layers is substantial, hence cannot be ignored. An imminent application of the extended seafloor model and the CRC introduced in this work is the enhancement of geophysics inversion schemes for the estimation of the seafloor parameters.

  10. Limits on the spatial variations of the electron-to-proton mass ratio in the Galactic plane

    CERN Document Server

    Levshakov, S A; Henkel, C; Winkel, B; Mignano, A; Centurion, M; Molaro, P

    2013-01-01

    Aims. To validate the Einstein equivalence principle (local position invariance) by limiting the fractional changes in the electron-to-proton mass ratio, mu = m_e/m_p, measured in Galactic plane objects. Methods. High resolution spectral observations of dark clouds in the inversion line of NH3(1,1) and pure rotational lines of other molecules (the so-called ammonia method) were performed at the Medicina 32-m and the Effelsberg 100-m radio telescopes to measure the radial velocity offsets, Delta RV = V_rot - V_inv, between the rotational and inversion transitions which have different sensitivities to the value of mu. Results. In our previous observations (2008-2010), a mean offset of = 0.027+/-0.010 km/s [3 sigma confidence level (C.L.)] was measured. To test for possible hidden errors, we carried out additional observations of a sample of molecular cores in 2010-2013. As a result, a systematic error in the radial velocities of an amplitude ~0.02 km/s was revealed. The averaged offset between the radial veloc...

  11. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    Science.gov (United States)

    Bashinov, Aleksei V.; Gonoskov, Arkady A.; Kim, A. V.; Marklund, Mattias; Mourou, G.; Sergeev, Aleksandr M.

    2013-04-01

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed.

  12. The limiting absorption principle for the acoustic wave operators in two unbounded media

    OpenAIRE

    Kadowaki, Mitsuteru

    1993-01-01

    In the present paper we study the limiting absorption principle for the acoustic wave operators in two unbounded media. We assume that the propagation speed is discontinuous at the interface and the equilibrium density is 1. ...

  13. On the classical limit of Bohmian mechanics for Hagedorn wave packets

    CERN Document Server

    Dürr, Detlef

    2010-01-01

    We consider the classical limit of quantum mechanics in terms of Bohmian trajectories. For wave packets as defined by Hagedorn we show that the Bohmian trajectories converge to Newtonian trajectories in probability.

  14. Shape optimization of solid-air porous phononic crystal slabs with widest full 3D bandgap for in-plane acoustic waves

    Science.gov (United States)

    D'Alessandro, Luca; Bahr, Bichoy; Daniel, Luca; Weinstein, Dana; Ardito, Raffaele

    2017-09-01

    The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded structures composed of a single material with periodic perforations. Such a configuration is very interesting, especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps; however, due to the application demand, it is desirable to find the best topologies in order to guarantee full bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization is conducted on the hole shape obtaining several topologies, also with non-square-symmetric unit cell, endowed with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest full bandgap are then completely analyzed, paying attention to engineering design issues.

  15. Twin Matter Waves for Interferometry Beyond the Classical Limit

    DEFF Research Database (Denmark)

    Lücke, Bernd; Scherer, Manuel; Kruse, Jens;

    2011-01-01

    Interferometers with atomic ensembles constitute an integral part of modern precision metrology. However, these interferometers are fundamentally restricted by the shot noise limit, which can only be overcome by creating quantum entanglement among the atoms. We used spin dynamics in Bose-Einstein...

  16. Using Gravitational Waves to put limits on Primordial Magnetic Fields

    CERN Document Server

    Garrison, David

    2016-01-01

    We describe a technique for using simulated tensor perturbations in order to place upper limits on the intensity of magnetic fields in the early universe. As an example, we apply this technique to the beginning of primordial nucleosynthesis. We determined that any magnetic seed fields that existed before that time were still in the process of being amplified. In the future, we plan to apply this technique to a wider range of initial magnetic fields and cosmological epochs.

  17. Upper limits on the cosmological gravitational wave background and maser clocks in space

    Science.gov (United States)

    Polnarev, A. G.; Roxburgh, I. W.

    1995-04-01

    We consider the possibility of detecting gravitational waves through the measurement of a time varying phase shift using a hydrogen maser clock on a satellite. Such measurements enable us to put interesting upper limits on the contribution of the gravitational-wave background to the dimensionless density of the Universe. The requirements on residual accelerations and the sensitivity of an accelerometer on the spacecraft are shown to be realistic and could be achieved using the accelerometer technology developed by ONERA for the ARISTOTELES mission. Such an experiment placing upper limits on the cosmological gravitational wave background could be conducted using the proposed Russian satellite “Millimetron”.

  18. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set

    Science.gov (United States)

    Oberhofer, Harald; Blumberger, Jochen

    2010-12-01

    We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( { } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.

  19. Frontal plane T-wave axis orientation predicts coronary events: Findings from the Moli-sani study.

    Science.gov (United States)

    Iacoviello, Licia; Bonaccio, Marialaura; Di Castelnuovo, Augusto; Costanzo, Simona; Rago, Livia; De Curtis, Amalia; Assanelli, Deodato; Badilini, Fabio; Vaglio, Martino; Persichillo, Mariarosaria; Macfarlane, Peter W; Cerletti, Chiara; Donati, Maria Benedetta; de Gaetano, Giovanni

    2017-09-01

    The orientation of the frontal plane T-wave axis (T axis) is a reliable measure of ventricular repolarisation. We investigated the association between T-axis and the risk of coronary heart disease (CHD), heart failure (HF), atrial fibrillation (AF), stroke and cardiovascular (CVD) mortality. A sample of 21,287 Moli-sani participants randomly recruited from the general adult (≥35 y) Italian population, free of CVD disease, were followed for a median of 4.4 years. T-axis was measured from a standard 12-lead resting ECG. After adjusting for CVD risk factors, subjects with abnormal T-axis showed an increase in the risk of both CHD (Hazard Ratio (HR) = 2.65; 95% CI = 1.67-4.21), HF (HR = 2.56; 1.80-3.63), AF (HR = 2.48; 1.56-3.94) and CVD mortality (HR = 2.83; 1.50-5.32). The association with CHD and HF, but not with AF or CVD death, remained significant after further adjustment for ECG abnormalities. Subjects with abnormal T-axis showed higher levels of subclinical inflammation, hs-troponin I and hs-NT-proBNP (p T-axis orientation is associated with an increased risk of both CHD and HF, independently of common CVD risk factors and other ECG abnormalities. This association was partially explained by increased hs-troponin I and hs-NT-proBNP levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Determination of zero-plane displacement and roughness length of a forest canopy using profiles of limited height

    Science.gov (United States)

    Lo, Aloysius Kou-Fang

    1995-09-01

    Flux parameters, zero-plane displancement height and roughness length of a forest canopy are determined taking into consideration a transition layer and atmospheric diabatic influences. The present study, unlike previous studies by DeBruin and Moore (1985) and Lo (1990) that accounted for the velocity profile alone, make use of information from both wind and temperature profiles in formulating the governing equations. However, only the top level measurement is assumed to be within the logarithmic regime. In addition to the mass conservation principle (e.g., Lo, 1990; DeBruin and Moore, 1985), an analytic relationship between the Monin-Obukhov length and the bulk Richardson number is employed as the closure equation for the governing system.The present method is applied to profile measurements taken at Camp Borden (den Hartog and Neumann, 1984) in and above a forest canopy with mean crown height of about 18.5 m. Profile data under neutral or near-neutral conditions yieldedd=12.69 m andz 0=0.97 m, which are realistic values. In general,z 0 increases slightly with increasing wind yet remains relatively constant with respect to small variation of stabilities. On the other hand, increases of wind speed reduced values of displacement height,d, by as much as 50%. The influence, if any, of stability ond, however, is not clear from the results of the present study. The validity of using profile data of limited height is also carefully examined. At least for neutral or near-neutral stabilities, the present method can yield realistic results even though the profile heights are substantially below the transition layer height" suggested by Garratt (1978).

  1. Limits on the spatial variations of the electron-to-proton mass ratio in the Galactic plane

    Science.gov (United States)

    Levshakov, S. A.; Reimers, D.; Henkel, C.; Winkel, B.; Mignano, A.; Centurión, M.; Molaro, P.

    2013-11-01

    Aims: We aim to validate the Einstein equivalence principle (local position invariance) by limiting the fractional changes in the electron-to-proton mass ratio, μ = me/mp, measured in Galactic plane objects. Methods: High-resolution spectral observations of dark clouds in the inversion line of NH3(1, 1) and pure rotational lines of other molecules (the so-called ammonia method) were performed at the Medicina 32-m and the Effelsberg 100-m radio telescopes to measure the radial velocity offsets, ΔRV = Vrot - Vinv, between the rotational and inversion transitions, which have different sensitivities to the value of μ. Results: In our previous observations (2008-2010), a mean offset of ⟨ΔRV⟩ = 0.027 ± 0.010 km s-1 (3σ confidence level (C.L.)) was measured. To test for possible hidden errors, we carried out additional observations of a sample of molecular cores in 2010-2013. As a result, a systematic error with an amplitude ~0.02 km s-1 in the radial velocities was revealed. The averaged offset between the radial velocities of the rotational transitions of HC3N(2-1), HC5N(9-8), HC7N(16-15), HC7N(21-20), and HC7N(23-22), and the inversion transition of NH3(1, 1) is ⟨ΔRV⟩ = 0.003 ± 0.018 km s-1 (3σ C.L.). This value, when interpreted in terms of Δμ/μ = (μobs - μlab)/μlab, constraints the μ-variation at the level of Δμ/μ Medicina 32-m telescope operated by INAF (Italy).

  2. Propagation properties of Rossby waves for latitudinal β-plane variations of f and zonal variations of the shallow water speed

    Directory of Open Access Journals (Sweden)

    C. T. Duba

    2012-05-01

    Full Text Available Using the shallow water equations for a rotating layer of fluid, the wave and dispersion equations for Rossby waves are developed for the cases of both the standard β-plane approximation for the latitudinal variation of the Coriolis parameter f and a zonal variation of the shallow water speed. It is well known that the wave normal diagram for the standard (mid-latitude Rossby wave on a β-plane is a circle in wave number (ky,kx space, whose centre is displaced −β/2 ω units along the negative kx axis, and whose radius is less than this displacement, which means that phase propagation is entirely westward. This form of anisotropy (arising from the latitudinal y variation of f, combined with the highly dispersive nature of the wave, gives rise to a group velocity diagram which permits eastward as well as westward propagation. It is shown that the group velocity diagram is an ellipse, whose centre is displaced westward, and whose major and minor axes give the maximum westward, eastward and northward (southward group speeds as functions of the frequency and a parameter m which measures the ratio of the low frequency-long wavelength Rossby wave speed to the shallow water speed. We believe these properties of group velocity diagram have not been elucidated in this way before. We present a similar derivation of the wave normal diagram and its associated group velocity curve for the case of a zonal (x variation of the shallow water speed, which may arise when the depth of an ocean varies zonally from a continental shelf.

  3. Diffraction of anti-plane SH waves by a semi-circular cylindrical hill with an inside concentric semi-circular tunnel

    Institute of Scientific and Technical Information of China (English)

    Vincent W.Lee; Luo Hao(罗昊); Liang Jianwen(梁建文)

    2004-01-01

    A closed-form analytic solution of two-dimensional scattering and diffraction of plane SH waves by a semicylindrical hill with a semi-cylindrical concentric tunnel inside an elastic half-space is presented using the cylindrical wave functions expansion method. The solution is reduced to solving a set of infinite linear algebraic equations. Fourier expansion theorem with the form of complex exponential function and cosine function is used. Numerical solutions are obtained by truncation of the infinite equations. The accuracy of the presented numerical results is carefully verified.

  4. Stationary Light Waves in Anizotropy and Nonolinear Plane Media, whose Dielectric Tensor's Principal Values Arbitrarily Depend upon Intensity Case of Scattering

    CERN Document Server

    Ochirbat, G

    2000-01-01

    A plane medium, whose dielectric tensor's principal values arbitrarily depend upon intensity, is considered. The problems of the TM and TE waves, within the problem of light scattering, are reduced to quadrature. A question of integrability of the full system of Maxwell equations is discussed. A closed equation has been obtained for an auxiliary variable for a nonlinearity of Kerr type. A scheme for integrating the full system of Maxwell equations by solving the equation over the auxiliary variable is suggested.

  5. Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach

    Science.gov (United States)

    Singh, Mithun Kuniyil Ajith; Jaeger, Michael; Frenz, Martin; Steenbergen, Wiendelt

    2017-01-01

    Reflection artifacts caused by acoustic inhomogeneities constitute a major problem in epi-mode biomedical photoacoustic imaging. Photoacoustic transients from the skin and superficial optical absorbers traverse into the tissue and reflect off echogenic structures to generate reflection artifacts. These artifacts cause difficulties in the interpretation of images and reduce contrast and imaging depth. We recently developed a method called PAFUSion (photoacoustic-guided focused ultrasound) to circumvent the problem of reflection artifacts in photoacoustic imaging. We already demonstrated that the photoacoustic signals can be backpropagated using synthetic aperture pulse-echo data for identifying and reducing reflection artifacts in vivo. In this work, we propose an alternative variant of PAFUSion in which synthetic backpropagation of photoacoustic signals is based on multi-angled plane-wave ultrasound measurements. We implemented plane-wave and synthetic aperture PAFUSion in a handheld ultrasound/photoacoustic imaging system and demonstrate reduction of reflection artifacts in phantoms and in vivo measurements on a human finger using both approaches. Our results suggest that, while both approaches are equivalent in terms of artifact reduction efficiency, plane-wave PAFUSion requires less pulse echo acquisitions when the skin absorption is the main cause of reflection artifacts. PMID:28736669

  6. Beating the Spin-down Limit on Gravitational Wave Emission from the Vela Pulsar

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner, M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; Kim, N.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.

    2011-08-01

    We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, 1.9 × 10-24 and 2.2 × 10-24, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of 2.1 × 10-24, with 95% degree of belief. These limits are below the indirect spin-down limit of 3.3 × 10-24 for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of ~10-3. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and the wave polarization angles are unknown.

  7. On physical limit of wireless digital transmission from radio wave propagation perspective

    Science.gov (United States)

    Karasawa, Y.

    2016-09-01

    Under a time-invariant condition with thermal noise, the physical limit of digital transmission ability is governed by Shannon's channel capacity. However, in this formula, it does not contain factors on radio wave propagation environments. In other words, for the ultimate information transmission, a sufficiently long time for the coding and signal processing is expected. However, since wave propagation prevents its premise, there is another physical limit for digital transmission in a different perspective with Shannon's channel capacity. Even if the S/N ratio is sufficiently high, there is the limit for information transmission. This paper deals with this matter concerning physical limit of wireless transmission from a radio wave propagation viewpoint.

  8. Modeling wave effects on limits of woody vegetation in Catahoula Lake, LA, USA

    Science.gov (United States)

    Edwards, B. L.; Curcic, M.; Keim, R.

    2014-12-01

    Exposure to water waves in lakes is an important control on the structure and distribution of both submerged and shoreline vegetative communities. Wave exposure incident on the shoreline limits the distribution of shrubs on both lake and coastal margins by preventing establishment of seedlings via bed disturbance and uprooting. The goal of this study is to investigate the relationship between bed stress due to wave action and the spatial distribution of woody seedling establishment in Catahoula Lake, Louisiana, USA. The lake bed consists of a broad, seasonally inundated flat bordered by a band of woody shrubs. Annual summer de-watering of the lake allows the lake bed to support a moist-soil herbaceous vegetation community, but recent encroachment by woody shrubs over the past ~70 years threatens ecosystem conversion. We use the University of Miami Wave Model (UMWM) to simulate surface wave evolution and bed shear stress for a range of dominant wind conditions and water levels. UMWM is a 3rdgeneration ocean wave model that solves the wave energy balance equation given wind forcing input. While the model has been previously validated in deep water and coastal ocean applications, this study validates the model in very shallow water where bed-induced wave dissipation is a significant process. Model results show that waves of sufficient energy to prevent establishment or to uproot seedlings are common in areas of the lake that are experiencing the least woody encroachment. Areas of the lake bed that are experiencing encroachment are often sheltered from the strongest waves due to the lakes orientation with respect to dominant winds and prior establishment of woody growth, which dissipates wave energy significantly. Results are consistent with some otherwise-unexplained conditions at the lake such as spatially inconsistent relationships between elevation and vegetation communities. We use model results to investigate feedbacks between woody encoachment (both new and

  9. Confirmation of Auger-1 Minority-Carrier Lifetimes in Hg0.77Cd0.23Te and Prediction of Dark Current for Long-Wave Infrared Focal-Plane Arrays

    Science.gov (United States)

    Destefanis, V.; Kerlain, A.

    2016-09-01

    Minority-carrier lifetime measurements have been carried out on Hg0.77Cd0.23Te (111)B materials with gap suitable for detection in the Long-Wave Infrared (LWIR) band. The materials were grown on top of CdZnTe substrates using a liquid-phase epitaxy (LPE) process. From measurements done at 80 K, a clear difference in terms of minority-carrier lifetimes was obtained, as expected, between p-intrinsic (≤5 ns) and n-extrinsic doped samples (420 ns). Minority-carrier lifetimes were also measured as a function of temperature for the n-type samples. Auger-1-limited lifetimes were demonstrated over a wide temperature range (from 80 K to 300 K) with negligible Radiative or Shockley-Read-Hall lifetime contributions. Predictions of dark current densities are made from those lifetime measurements, assuming an Auger-1-limited lifetime. The agreement is very good between the predictions and dark current densities measured from p-on- n 640 × 512 pixels LWIR HgCdTe focal-plane arrays with 15- μm pitch from SOFRADIR, Agreement between predicted and measured dark currents and Rule'07 for LWIR is also demonstrated herein. Finally, minority-carrier lifetime measurements are demonstrated as a predictive method for focal-plane array performance. State-of-the-art dark currents from SOFRADIR p-on- n LWIR focal-plane arrays based upon high-quality HgCdTe materials are also illustrated.

  10. Amplitude equations for coupled electrostatic waves in the limit of weak instability

    CERN Document Server

    Crawford, J D; Crawford, John David; Knobloch, Edgar

    1997-01-01

    We consider the simplest instabilities involving multiple unstable electrostatic plasma waves corresponding to four-dimensional systems of mode amplitude equations. In each case the coupled amplitude equations are derived up to third order terms. The nonlinear coefficients are singular in the limit in which the linear growth rates vanish together. These singularities are analyzed using techniques developed in previous studies of a single unstable wave. In addition to the singularities familiar from the one mode problem, there are new singularities in coefficients coupling the modes. The new singularities are most severe when the two waves have the same linear phase velocity and satisfy the spatial resonance condition $k_2=2k_1$. As a result the short wave mode saturates at a dramatically smaller amplitude than that predicted for the weak growth rate regime on the basis of single mode theory. In contrast the long wave mode retains the single mode scaling. If these resonance conditions are not satisfied both mo...

  11. Short wave infrared InGaAs focal plane arrays detector: the performance optimization of photosensitive element

    Science.gov (United States)

    Gao, Xin-jiang; Tang, Zun-lie; Zhang, Xiu-chuan; Chen, Yang; Jiang, Li-qun; Cheng, Hong-bing

    2009-07-01

    Significant progress has been achieved in technology of the InGaAs focal plane arrays (FPA) detector operating in short wave infrared (SWIR) last two decades. The no cryogenic cooling, low manufacturing cost, low power, high sensitivity and maneuverability features inherent of InGaAs FPA make it as a mainstream SWIR FPA in a variety of critical military, national security, aerospace, telecommunications and industrial applications. These various types of passive image sensing or active illumination image detecting systems included range-gated imaging, 3-Dimensional Ladar, covert surveillance, pulsed laser beam profiling, machine vision, semiconductor inspection, free space optical communications beam tracker, hyperspectroscopy imaging and many others. In this paper the status and perspectives of hybrid InGaAs FPA which is composed of detector array (PDA) and CMOS readout integrate circuit (ROIC) are reviewed briefly. For various low light levels applications such as starlight or night sky illumination, we have made use of the interface circuit of capacitive feedback transimpedance amplifier (CTIA) in which the integration capacitor was adjustable, therefore implements of the physical and electrical characteristics matches between detector arrays and readout intergrate circuit was achieved excellently. Taking into account the influences of InGaAs detector arrays' optoelectronic characteristics on performance of the FPA, we discussed the key parameters of the photodiode in detailed, and the tradeoff between the responsivity, dark current, impedance at zero bias and junction capacitance of photosensitive element has been made to root out the impact factors. As a result of the educed approach of the photodiode's characteristics optimizing which involve with InGaAs PDA design and process, a high performance InGaAs FPA of 30um pixel pitch and 320×256 format has been developed of which the response spectrum range over 0.9um to 1.7um, the mean peak detectivity (λ=1.55

  12. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion

    Science.gov (United States)

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838

  13. Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, A S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Campbell, W; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P

    2017-03-24

    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range F_{α,Θ}(f)<(0.1-56)×10^{-8}    erg cm^{-2} s^{-1} Hz^{-1}(f/25  Hz)^{α-1} depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω(f,Θ)<(0.39-7.6)×10^{-8}  sr^{-1}(f/25  Hz)^{α} depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h_{0}<(6.7,5.5,  and  7.0)×10^{-25}, respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.

  14. Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, A. S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Campbell, W.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schlassa, S.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-03-01

    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fα ,Θ(f )<(0.1 - 56 )×10-8 erg cm-2 s-1 Hz-1(f /25 Hz )α -1 depending on the sky location Θ and the spectral power index α . For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω (f ,Θ )<(0.39 - 7.6 )×10-8 sr-1(f /25 Hz )α depending on Θ and α . Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0<(6.7 ,5.5 , and 7.0 )×10-25 , respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.

  15. Overtopping on Rubble Mound Breakwaters for Low Steepness Waves in Deep and Depth Limited Conditions

    DEFF Research Database (Denmark)

    Færch Christensen, Nicole; Røge, Mads Sønderstrup; Thomsen, Jonas Bjerg;

    2014-01-01

    In this paper, the investigation of overtopping on rubble mound breakwaters for low steepness waves in both deep and shallow-water conditions are presented. The existing formulae provide quite different results for long waves for both conventional and berm breakwaters. Therefore, new model tests...... with focus on long waves have been performed for both types of breakwaters. The new model tests showed some deviation from the formulae. Therefore, limitations in the use of the present methods and an update for one of the methods are presented....

  16. Limits of applicability of the quasilinear approximation to the electrostatic wave-plasma interaction

    CERN Document Server

    Zacharegkas, Georgios; Vlahos, Loukas

    2016-01-01

    The limitation of the Quasilinear Theory (QLT) to describe the diffusion of electrons and ions in velocity space when interacting with a spectrum of large amplitude electrostatic Langmuir, Upper and Lower hybrid waves, is analyzed. We analytically and numerically estimate the threshold for the amplitude of the waves above which the QLT breaks down, using a test particle code. The evolution of the velocity distribution, the velocity-space diffusion coefficients, the driven current, and the heating of the particles are investigated, for the interaction with small and large amplitude electrostatic waves, i.e. in both regimes, there where QLT is valid and there where it clearly breaks down.

  17. Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Energy Technology Data Exchange (ETDEWEB)

    B. Allen et al.

    2003-12-11

    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 10{sup -22}.

  18. Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    CERN Document Server

    Allen, B; Abbott, B; Abbott, R; Adhikari, R; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S V; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, D; Barker-Patton, C; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Billingsley, G; Black, E; Blackburn, K; Bland-Weaver, B; Bochner, B; Bogue, L; Bork, R G; Bose, S; Brady, P R; Brau, J E; Brown, D A; Brozek, S; Bullington, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Colacino, C N; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Davies, R; Daw, E; De Bra, D; Delker, T; DeSalvo, R; Dhurandhar, S V; Ding, H; Drever, R W P; Dupuis, R J; Ebeling, C; Edlund, J; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fallnich, C; Farnham, D; Fejer, M M; Fine, M; Finn, L S; Flanagan, E; Freise, A; Frey, R; Fritschel, P; Frolov, V; Fyffe, M; Ganezer, K S; Giaime, J A; Gillespie, A; Goda, K; González, G; Gossler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ingley, R; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, W W; Johnston, W; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Kloevekorn, P; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Lück, H B; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNamara, P; Mendell, G; Meshkov, S; Messenger, C; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Mours, B; Müller, G; Mukherjee, S; Myers, J; Nagano, S; Nash, T; Naundorf, H; Nayak, R; Newton, G; Nocera, F; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Papa, M A; Parameswariah, C; Parameshwaraiah, V; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Pratt, M; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Redding, D; Regehr, M W; Regimbau, T; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schofield, R; Schrempel, M; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seel, S; Sengupta, A S; Shapiro, C A; Shawhan, P S; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Skeldon, K D; Smith, J R; Smith, M; Smith, M R; Sneddon, P; Spero, R; Stapfer, G; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Torres, C; Torrie, C; Traeger, S; Traylor, G; Tyler, W; Ugolini, D W; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Vorvick, C; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yoshida, S; Zawischa, I; Zhang, L; Zotov, N P; Zucker, M; Zweizig, J

    2004-01-01

    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times $10^{-22}$.

  19. INTEGRAL Upper Limits on Gamma-Ray Emission Associated with the Gravitational Wave Event GW150914

    DEFF Research Database (Denmark)

    Savchenko, V.; Ferrigno, C.; Mereghetti, S.;

    2016-01-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we place upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, which was discovered by the LIGO/Virgo Collaboration. The omnidirectional view...... in the 75 keV-2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy Eγ/EGW ... of the gravitational wave source, based on the available predictions for prompt electromagnetic emission....

  20. INTEGRAL Upper Limits on Gamma-Ray Emission Associated with the Gravitational Wave Event GW150914

    DEFF Research Database (Denmark)

    Savchenko, V.; Ferrigno, C.; Natalucci, L.;

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we place upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo Collaboration. The omnidirectional view of the INTEGRAL...... MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy Eγ/EGW gravitational wave...

  1. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders - A Reference Solution for the Numerical Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    To facilitate the validation of the numerical Method of Auxiliary Sources an analytical Method of Auxiliary Sources solution is derived in this paper. The Analytical solution is valid for transverse magnetic, and electric, plane wave scattering by circular impedance Cylinders, and it is derived...... by transformation of the exact eigenfunction series solution. The transformation employs the Hankel function wave transformation to express the eigenfunction series of higher-order Hankel functions, with their singularities at the coordinate system origin as a superposition of zero-order Hankel functions...... with their singularities at different positions away from the origin. The transformation necessitates a truncation of the wave transformation but the inaccuracy introduced hereby is shown to be negligible. The analytical Method of Auxiliary Sources solution is employed as a reference to investigate the accuracy...

  2. Wind, waves, and wing loading: Morphological specialization may limit range expansion of endangered albatrosses

    Science.gov (United States)

    Suryan, R.M.; Anderson, D.J.; Shaffer, S.A.; Roby, D.D.; Tremblay, Y.; Costa, D.P.; Sievert, P.R.; Sato, F.; Ozaki, K.; Balogh, G.R.; Nakamura, N.

    2008-01-01

    Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp.) inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata) are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift) compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis), which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to understanding past and

  3. Wind, waves, and wing loading: morphological specialization may limit range expansion of endangered albatrosses.

    Directory of Open Access Journals (Sweden)

    Robert M Suryan

    Full Text Available Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp. inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis, which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to

  4. Limits on gravitational wave emission from selected pulsars using LIGO data

    CERN Document Server

    Abbott, B; Adhikari, R; Ageev, A; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Daw, E; De Bra, D; Delker, T; Dergachev, V; DeSalvo, R; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; González, G; Gossler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Müller, G; Mukherjee, S; Murray, P; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J; Krämer, M; Lyne, A G

    2004-01-01

    We place direct upper limits on the strain of the gravitational waves from 28 isolated radio pulsars by a coherent multi-detector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational wave signals. The unprecedented sensitivity of the detectors allow us to set strain upper limits as low as a few times $10^{-24}$. These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than $10^{-5}$ for the four closest pulsars.

  5. Limits on gravitational-wave emission from selected pulsars using LIGO data.

    Science.gov (United States)

    Abbott, B; Abbott, R; Adhikari, R; Ageev, A; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Daw, E; DeBra, D; Delker, T; Dergachev, V; DeSalvo, R; Dhurandhar, S; Di Credico, A; Díaz, M; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; González, G; Gossler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grunewald, S; Guenther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kötter, K; Kovalik, J; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Lück, H; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Márka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Mueller, G; Mukherjee, S; Murray, P; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D; Ungarelli, C; Vallisneri, M; van Putten, M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N; Zucker, M; Zweizig, J; Kramer, M; Lyne, A G

    2005-05-13

    We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10(-24). These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10(-5) for the four closest pulsars.

  6. Beating the spin-down limit on gravitational wave emission from the Vela pulsar

    CERN Document Server

    Abadie, J; Abbott, R; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Affeldt, C; Allen, B; Allen, G S; Ceron, E Amador; Amariutei, D; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Arai, K; Arain, M A; Araya, M C; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, D; Barnum, S; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Bauchrowitz, J; Bauer, Th S; Behnke, B; Beker, M BejgerM G; Bell, A S; Belletoile, A; Belopolski, I; Benacquista, M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Birindelli, S; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Boyle, M; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brau, J E; Breyer, J; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brummit, A; Budzyński, R; Bulik, T; Bulten, H J; Buonanno, A; Burguet--Castell, J; Burmeister, O; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cain, J; Calloni, E; Camp, J B; Campagna, E; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C; Carbognani, F; Caride, S; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chaibi, O; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, Y; Chincarini, A; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Clara, F; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Coward, D M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Das, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; del Prete, M; Dent, T; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Dorsher, S; Douglas, E S D; Drago, M; Drever, R W P; Driggers, J C; Dumas, J -C; Dwyer, S; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Engel, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flanigan, M; Foley, S; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Galimberti, M; Gammaitoni, L; Garcia, J; Garofoli, J A; Garufi, F; Gáspár, M E; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gill, C; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Guido, C; Gupta, R; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Hayau, J -F; Hayler, T; Heefner, J; Heitmann, H; Hello, P; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hong, T; Hooper, S; Hosken, D J; Hough, J; Howell, E J; Huet, D; Hughey, B; Husa, S; Huttner, S H; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Jaranowski, P; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J B; Katsavounidis, E; Katzman, W; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Kelner, M; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, H; Kim, N; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kondrashov, V; Kopparapu, R; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kringel, V; Krishnamurthy, S; Krishnan, B; Królak, A; Kuehn, G; Kumar, R; Kwee, P; Landry, M; Lantz, B; Lastzka, N; Lazzarini, A; Leaci, P; Leong, J; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Liguori, N; Lindquist, P E; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Luan, J; Lubinski, M; Lück, H; Lundgren, A P; Macdonald, E; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marandi, A; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McKechan, D J A; Meadors, G; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Mercer, R A; Merill, L; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mino, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Moesta, P; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morgia, A; Mosca, S; Moscatelli, V; Mossavi, K; Mours, B; Mow--Lowry, C M; Mueller, G; Mukherjee, S; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Nash, T; Nawrodt, R; Nelson, J; Neri, I; Newton, G; Nishida, E; Nishizawa, A; Nocera, F; Nolting, D; Ochsner, E; O'Dell, J; Ogin, G H; Oldenburg, R G; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Pagliaroli, G; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parameswaran, A; Pardi, S; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pathak, D; Pedraza, M; Pekowsky, L; Penn, S; Peralta, C; Perreca, A; Persichetti, G; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Podkaminer, J; Poggiani, R; Pöld, J; Postiglione, F; Prato, M; Predoi, V; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Rakhmanov, M; Ramet, C R; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Redwine, K; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sakata, S; Sakosky, M; Salemi, F; Salit, M; Sammut, L; de la Jordana, L Sancho; Sandberg, V; Sannibale, V; Santamaría, L; Santiago-Prieto, I; Santostasi, G; Saraf, S; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Schilling, R; Schlamminger, S; Schnabel, R; Schofield, R M S; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D A; Shaltev, M; Shapiro, B; Shawhan, P; Weerathunga, T Shihan; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Singer, A; Singer, L; Sintes, A M; Skelton, G; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, N D; Smith, R; Somiya, K; Sorazu, B; Soto, J; Speirits, F C; Sperandio, L; Stefszky, M; Stein, A J; Steinlechner, J; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Szokoly, G P; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thüring, A; Titsler, C; Tokmakov, K V; Toncelli, A; Tonelli, M; Torre, O; Torres, C; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Tseng, K; Turner, L; Ugolini, D; Urbanek, K; Vahlbruch, H; Vaishnav, B; Vajente, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Veggel, A A; Vass, S; Vasuth, M; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A E; Vinet, J -Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Wanner, A; Ward, R L; Was, M; Wei, P; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yang, H; Yeaton-Massey, D; Yoshida, S; Yu, P; Yvert, M; Zanolin, M; Zhang, L; Zhang, Z; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J; Buchner, S; Hotan, A; Palfreyman, J

    2011-01-01

    We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, $1.9\\ee{-24}$ and $2.2\\ee{-24}$, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of $2.1\\ee{-24}$, with 95% degree of belief. These limits are below the indirect {\\it spin-down limit} of $3.3\\ee{-24}$ for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of $\\sim 10^{-3}$. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and ...

  7. Resonance reflection of elastic waves at the interface between two crystals with sliding contact: I. Plane waves in structures with arbitrary anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Alshits, V.I.; Darinskii, A.N. [Russian Academy of Sciences, Moscow (Russian Federation); Radovich, A. [Kielce Technological Univ., Kielce (Poland)

    1995-05-01

    The theory of resonance reflection is formulated for elastic waves at the interface between two anisotropic media under conditions of sliding contact. The phenomenon under study arises in the close vicinity of a certain incidence angle for which the tangential wave vector component of the bulk wave is equal to the real part of the wave vector for the leaky mode. The relations presenting the behavior of wave-response parameters near the leaky mode resonance are derived for arbitrary crystal anisotropy. In particular, the behavior of reflection, transmission, and transformation of the bulk mode to the nonuniform one is discussed. 18 refs.

  8. Wave Propagation Due to an Embedded Seismic Source in a Graded Half-Plane with Relief Peculiarities Part I: Mechanical Model and Computational Technique

    Directory of Open Access Journals (Sweden)

    Fontara I.-K.

    2015-03-01

    Full Text Available This work addresses the evaluation of the seismic wave field in a graded half-plane with free-surface and/or sub-surface relief subjected to shear horizontally (SH-polarized wave, radiating from an embedded seismic source. The considered boundary value problem is transformed into a system of boundary integral equations (BIEs along the boundaries of the free-surface and of any sub-surface relief, using an analytically derived frequency-dependent Green’s function for a quadratically inhomogeneous in depth half-plane. The numerical solution yields synthetic seismic signals at any point of the half-plane in both frequency and time domain following application of Fast Fourier Transform (FFT. Finally, in the companion paper, the verification and numerical simulation studies demonstrate the accuracy and efficiency of the present computational approach. The proposed BIE tool possesses the potential to reveal the sensitivity of the seismic signal to the type and properties of the seismic source, to the existence and type of the material gradient and to the lateral inhomogeneity, due to the free-surface and/or sub-surface relief peculiarities.

  9. Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox

    Science.gov (United States)

    Karimpour, Arash; Chen, Qin

    2017-09-01

    There are a number of well established methods in the literature describing how to assess and analyze measured wind wave data. However, obtaining reliable results from these methods requires adequate knowledge on their behavior, strengths and weaknesses. A proper implementation of these methods requires a series of procedures including a pretreatment of the raw measurements, and adjustment and refinement of the processed data to provide quality assurance of the outcomes, otherwise it can lead to untrustworthy results. This paper discusses potential issues in these procedures, explains what parameters are influential for the outcomes and suggests practical solutions to avoid and minimize the errors in the wave results. The procedure of converting the water pressure data into the water surface elevation data, treating the high frequency data with a low signal-to-noise ratio, partitioning swell energy from wind sea, and estimating the peak wave frequency from the weighted integral of the wave power spectrum are described. Conversion and recovery of the data acquired by a pressure transducer, particularly in depth-limited water like estuaries and lakes, are explained in detail. To provide researchers with tools for a reliable estimation of wind wave parameters, the Ocean Wave Analyzing toolbox, OCEANLYZ, is introduced. The toolbox contains a number of MATLAB functions for estimation of the wave properties in time and frequency domains. The toolbox has been developed and examined during a number of the field study projects in Louisiana's estuaries.

  10. Limited fetch revisited: comparison of wind input terms in surface waves modeling

    CERN Document Server

    Andrei, Pushkarev

    2015-01-01

    The results of numerical solution of the Hasselmann kinetic equation ($HE$) for wind driven sea spectra in the fetch limited geometry are presented. Five versions of the source functions, including recently introduced ZRP model, have been studied for the exact expression of Snl and high-frequency implicit dissipation due to wave-breaking. Four out of five experiments were done in the absence of spectral peak dissipation for various Sin terms. They demonstrated the dominance of quadruplet wave-wave interaction in the energy balance and the formation of self-similar regimes of unlimited wave energy growth along the fetch. Between them was ZRP model, which showed especially good agreement with the dozen of field observations performed in the seas and lakes since 1971. The fifth, WAM3 wind input term experiment, used additional spectral peak dissipation and reproduced the results of previous similar numerical simulation, but was in a good agreement with the field experiments only for moderate fetches, demonstrati...

  11. Revised Upper Limits of the Diffuse Tev Gamma Rays from the Galactic Planes with the Tibet II and III Air Shower Arrays

    CERN Document Server

    Amenomori, M; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng Cun Feng; Zhaoyang Feng; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Haibing, H; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y Q; Lü, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saitô, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue Liang; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Yi Zhang Zhaxisangzhu; Zhou, X X; al, et

    2006-01-01

    The flux upper limits of the diffuse gamma rays, from the inner and outer Galactic planes, are revised by factors of 4.0$\\sim$3.7 for mode energies 3$\\sim$10 TeV, respectively, by using the simulation results of the effective area ratios for gamma-ray induced showers and cosmic-ray induced ones in the Tibet air shower array. In our previous work, (Amenomori et al., ApJ, 580, 887, 2002) the flux upper limits were deduced only from the flux ratio of air showers generated by gamma rays versus cosmic rays. The details of the simulation are given in the paper (Amenomori et al., Advances in Space Research, 37, 1932, 2006). The present result using the same data as in ApJ suggests that the spectral index of source electrons is steeper than 2.2 and 2.1 for the inner and outer Galactic planes, respectively.

  12. Validation of the k-filtering technique for a signal composed of random phase plane waves and non-random coherent structures

    Directory of Open Access Journals (Sweden)

    O. W. Roberts

    2014-08-01

    Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed temporal and spatial changes to be resolved, with techniques such as the k-filtering technique. While this technique does not assume Taylor's hypothesis as is necessary with single spacecraft missions, it does require weak stationarity of the time series, and that the fluctuations can be described by a superposition of plane waves with random phase. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.

  13. Validation of the k-filtering technique for a signal composed of random-phase plane waves and non-random coherent structures

    Directory of Open Access Journals (Sweden)

    O. W. Roberts

    2014-12-01

    Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single-spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed for temporal and spatial changes to be resolved, using techniques such as k filtering. While this technique does not assume Taylor's hypothesis it requires both weak stationarity of the time series and that the fluctuations can be described by a superposition of plane waves with random phases. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random-phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.

  14. Modulation Equations for Roll Waves of a liquid film Down an Inclined Plane as a Power-Law Fluid

    Institute of Scientific and Technical Information of China (English)

    Kan.ZHU; Abdelaziz.Boudlal; Gilmar.Mompean.Mompean

    2014-01-01

    Roll waves of finite amplitude on a thin layer of non-Newtonian fluid modeled as a power-law fluid are considered. In the long wave approximation, the flow is governed by a non-homogeneous hyperbolic system of equations. As the linearized instability analysis of a uniform flow delivers only a diagnosis of instability, the nonlinear stability is investigated and the criterion for roll waves based on the hyperbolicity of the modulation equation is suggested. The main problem in defining the roll wave stability region on a roll wave diagram is due to the singularities of functions for the mean values and their derivatives near the boundaries of roll wave existence. Asymptotic formulae for nonlinear stability of roll waves of small and maximal amplitudes are derived. Numerical calculation reveals that for a Newtonian fluid, as the bottom inclination decreases downwardly the amplitude of admissible waves diminishes, and the stability domain reduces until it disappears. These results remain valid for a slightly non-Newtonian fluid. For highly non-Newtonian fluid, a transition in the nature of stability is observed.

  15. Errors incurred in a plane-wave-type expansion of a Gaussian beam. [in laser force calculations on light scattering aerosol experiments

    Science.gov (United States)

    Kattawar, G. W.

    1980-01-01

    The multipole expansion obtained by Morita et al. (1968) of the Gaussian laser beam used to levitate an aerosol particle in order that its complete phase matrix may be measured is compared with that of Tsai and Pogorzelski (1975) in order to demonstrate the effect of the incorrect expansion used by Morita. Errors incurred by the use of an equation in which one side satisfies the scalar wave equation while the other side does not and can be reduced to a plane wave amplitude are calculated as functions of the inverse of the wave number times the beam waist, the wave number times the radial spherical coordinate and the angular spherical coordinate. Errors on the order of a few percent, considered undetectable are obtained in the squared-field amplitudes due to the expansion, however, they are found to become significant (several tens of percent) when the angle is zero. It is concluded that the expansion of Morita should only be used in the regions where the spherical angle is less than 0.01 and its product with the wave number and the radial spherical coordinate is less than unity.

  16. Electron-impact excitation-autoionization of helium in the S-wave limit

    Energy Technology Data Exchange (ETDEWEB)

    Horner, Daniel A.; McCurdy, C. William; Rescigno, Thomas N.

    2004-10-01

    Excitation of the autoionizing states of helium by electron impact is shown in calculations in the s-wave limit to leave a clear signature in the singly differential cross section for the (e,2e) process. It is suggested that such behavior should be seen generally in (e,2e) experiments on atoms that measure the single differential cross section.

  17. European Pulsar Timing Array limits on an isotropic stochastic gravitational-wave background

    NARCIS (Netherlands)

    Lentati, L.; Taylor, S.R.; Mingarelli, C.M.F.; Sesana, A.; Sanidas, S.A.; Vecchio, A.; Caballero, R.N.; Lee, K.J.; van Haasteren, R.; Babak, S.; Bassa, C.G.; Brem, P.; Burgay, M.; Champion, D.J.; Cognard, I.; Desvignes, G.; Gair, J.R.; Guillemot, L.; Hessels, J.W.T.; Janssen, G.H.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Liu, K.; Osłowski, S.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M.B.; Rosado, P.A.; Smits, R.; Stappers, B.; Theureau, G.; Tiburzi, C.; Verbiest, J.P.W.

    2015-01-01

    We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar data set spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each p

  18. Explosion of limit cycles and chaotic waves in a simple nonlinear chemical system

    DEFF Research Database (Denmark)

    Brøns, Morten; Sturis, Jeppe

    2001-01-01

    A model of an autocatalytic chemical reaction was employed to study the explosion of limit cycles and chaotic waves in a nonlinear chemical system. The bifurcation point was determined using asymptotic analysis and perturbations. Scaling laws for amplitude and period were derived. A strong...

  19. Stability of Viscous St. Venant Roll Waves: From Onset to Infinite Froude Number Limit

    Science.gov (United States)

    Barker, Blake; Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Zumbrun, Kevin

    2016-09-01

    We study the spectral stability of roll wave solutions of the viscous St. Venant equations modeling inclined shallow water flow, both at onset in the small Froude number or "weakly unstable" limit F→ 2^+ and for general values of the Froude number F, including the limit F→ + ∞. In the former, F→ 2^+ , limit, the shallow water equations are formally approximated by a Korteweg-de Vries/Kuramoto-Sivashinsky (KdV-KS) equation that is a singular perturbation of the standard Korteweg-de Vries (KdV) equation modeling horizontal shallow water flow. Our main analytical result is to rigorously validate this formal limit, showing that stability as F→ 2^+ is equivalent to stability of the corresponding KdV-KS waves in the KdV limit. Together with recent results obtained for KdV-KS by Johnson-Noble-Rodrigues-Zumbrun and Barker, this gives not only the first rigorous verification of stability for any single viscous St. Venant roll wave, but a complete classification of stability in the weakly unstable limit. In the remainder of the paper, we investigate numerically and analytically the evolution of the stability diagram as Froude number increases to infinity. Notably, we find transition at around F=2.3 from weakly unstable to different, large-F behavior, with stability determined by simple power-law relations. The latter stability criteria are potentially useful in hydraulic engineering applications, for which typically 2.5≤ F≤ 6.0.

  20. Stability of Viscous St. Venant Roll Waves: From Onset to Infinite Froude Number Limit

    Science.gov (United States)

    Barker, Blake; Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Zumbrun, Kevin

    2017-02-01

    We study the spectral stability of roll wave solutions of the viscous St. Venant equations modeling inclined shallow water flow, both at onset in the small Froude number or "weakly unstable" limit F→ 2^+ and for general values of the Froude number F, including the limit F→ +∞ . In the former, F→ 2^+, limit, the shallow water equations are formally approximated by a Korteweg-de Vries/Kuramoto-Sivashinsky (KdV-KS) equation that is a singular perturbation of the standard Korteweg-de Vries (KdV) equation modeling horizontal shallow water flow. Our main analytical result is to rigorously validate this formal limit, showing that stability as F→ 2^+ is equivalent to stability of the corresponding KdV-KS waves in the KdV limit. Together with recent results obtained for KdV-KS by Johnson-Noble-Rodrigues-Zumbrun and Barker, this gives not only the first rigorous verification of stability for any single viscous St. Venant roll wave, but a complete classification of stability in the weakly unstable limit. In the remainder of the paper, we investigate numerically and analytically the evolution of the stability diagram as Froude number increases to infinity. Notably, we find transition at around F=2.3 from weakly unstable to different, large- F behavior, with stability determined by simple power-law relations. The latter stability criteria are potentially useful in hydraulic engineering applications, for which typically 2.5≤ F≤ 6.0.

  1. Linear stability of a weak shock wave appearing in flow over an infinite plane wedge (Lopatinski condition is fulfilled on the shock)

    Science.gov (United States)

    Blokhin, Alexander; Tkachev, Dmitry

    2016-10-01

    We study the classical problem for a flow of stationary inviscid non-heat-conducting gas in thermodynamical equilibrium moving onto a planar infinite wedge. Under the fulfillment of the Lopatinski condition on the shock (neutral stability) the correctness of the linearized mixed problem (main solution is a weak shock) is proven and the representation of the classical solution is obtained and in that case (unlike the case of a uniform Lopatinski condition i.e. absolutely stable attached shock) there are additionally plane waves in representation. For finite initial data solution goes to prescribed regime given infinite time.

  2. The light wave flow effect in a plane-parallel layer with a quasi-zero refractive index under the action of bounded light beams

    Energy Technology Data Exchange (ETDEWEB)

    Gadomsky, O. N., E-mail: gadomsky@mail.ru; Shchukarev, I. A., E-mail: blacxpress@gmail.com [Ul’yanovsk State University (Russian Federation)

    2016-08-15

    It is shown that external optical radiation in the 450–1200 nm range can be efficiently transformed under the action of bounded light beams to a surface wave that propagates along the external and internal boundaries of a plane-parallel layer with a quasi-zero refractive index. Reflection regimes with complex and real angles of refraction in the layer are considered. The layer with a quasi-zero refractive index in this boundary problem is located on a highly reflective metal substrate; it is shown that the uniform low reflection of light is achieved in the wavelength range under study.

  3. Full potential linearized augmented plane wave calculations of structural and electronic properties of GeC, SnC and GeSn

    Energy Technology Data Exchange (ETDEWEB)

    Khenata, R.; Baltache, H.; Sahnoun, M.; Driz, M.; Rerat, M.; Abbar, B

    2003-08-01

    A theoretical study of structural and electronic properties of GeC, SnC and GeSn is presented using the full potential linearized augmented plane wave method. In this approach, the generalized gradient approximation was used for the exchange-correlation potential. Results are given for lattice constant, bulk modulus and its pressure derivative in both zinc-blende and rocksalt structures. Band structure, density of states and band gap pressure coefficients in zinc-blende structure are also given. The results are compared with previous calculations and with experimental measurements.

  4. Energy distribution among the reflected and refracted plane elastic waves at the boundary between transversely isotropic media - 2nd Part

    Directory of Open Access Journals (Sweden)

    G. AHMAD

    1967-06-01

    Full Text Available The energy ratios of the reflected and refracted waves
    at the boundary between transversely isotropic media have been investigated.
    The energy equation has been derived on two bases, namely as (a
    double of the kinetic energy, (ft double of the potential energy. The ratios
    of the derived waves to that of the incident quasilongitudinal wave have been
    calculated for the particular case, where the symmetry axes of the media
    coincide with the normal to the boundary surface. The influence of varying
    the different elastic parameters is shown in a few diagrams

  5. Leaky Lens Based UWB Focal Plane Arrays for Sub-mm Wave Imaging Based on Kinetic Inductance Detectors

    NARCIS (Netherlands)

    Neto, A.

    2008-01-01

    A novel strategy for broad band focal plane array design is proposed. Its purpose is to couple the radiation from a Large FID reflector system to an array of Kinetic Inductance detectors that are being investigated and realized at SRON. To maximize the benefits from using their BW properties the ide

  6. Leaky Lens Based UWB Focal Plane Arrays for Sub-mm Wave Imaging Based on Kinetic Inductance Detectors

    NARCIS (Netherlands)

    Neto, A.; Iacono, A.; Gerini, G.; Baselmans, J.J.A.; Yates, S.J.C.; Baryshev, A.; Hoovers, H.F.C.

    2009-01-01

    This work highlights some of the results of a cooperation between TNO and SRON (Space Research Organization Netherlands) which is now going on with renewed efforts since almost two years. A novel strategy for broad band focal plane array design is proposed. Its purpose is to couple the radiation fro

  7. An upper limit on the stochastic gravitational-wave background of cosmological origin

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Acernese, F.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Alshourbagy, M.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, C.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauer, Th. S.; Behnke, B.; Beker, M.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birindelli, S.; Biswas, R.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Boccara, C.; Bodiya, T. P.; Bogue, L.; Bondu, F.; Bonelli, L.; Bork, R.; Boschi, V.; Bose, S.; Bosi, L.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Van Den Brand, J. F. J.; Brau, J. E.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; van den Broeck, C.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington, A.; Bulten, H. J.; Buonanno, A.; Burmeister, O.; Buskulic, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campagna, E.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Carbognani, F.; Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cokelaer, T.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Corda, C.; Cornish, N.; Corsi, A.; Coulon, J.-P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dari, A.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; de Rosa, R.; Debra, D.; Degallaix, J.; Del Prete, M.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drago, M.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J.-C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Ely, G.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franzen, A.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Gammaitoni, L.; Garofoli, J. A.; Gennai, A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Granata, M.; Granata, V.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Guidi, G.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Huet, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Sancho de La Jordana, L.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; La Penna, P.; Lam, P. K.; Landry, M.; Lantz, B.; Laval, M.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Leroy, N.; Letendre, N.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mackowski, J.-M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.

    2009-08-01

    A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100Hz, to be <6.9×10-6 at 95% confidence. The data rule out models of early Universe evolution with relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models. This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis and cosmic microwave background at 100Hz.

  8. An upper limit on the stochastic gravitational-wave background of cosmological origin.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Acernese, F; Adhikari, R; Ajith, P; Allen, B; Allen, G; Alshourbagy, M; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Aoudia, S; Arain, M A; Araya, M; Armandula, H; Armor, P; Arun, K G; Aso, Y; Aston, S; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, C; Barker, D; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauer, Th S; Behnke, B; Beker, M; Benacquista, M; Betzwieser, J; Beyersdorf, P T; Bigotta, S; Bilenko, I A; Billingsley, G; Birindelli, S; Biswas, R; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Boccara, C; Bodiya, T P; Bogue, L; Bondu, F; Bonelli, L; Bork, R; Boschi, V; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brand, J F J van den; Brau, J E; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Van Den Broeck, C; Brooks, A F; Brown, D A; Brummit, A; Brunet, G; Bullington, A; Bulten, H J; Buonanno, A; Burmeister, O; Buskulic, D; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campagna, E; Cannizzo, J; Cannon, K C; Canuel, B; Cao, J; Carbognani, F; Cardenas, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chatterji, S; Chelkowski, S; Chen, Y; Christensen, N; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cokelaer, T; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R C; Corda, C; Cornish, N; Corsi, A; Coulon, J-P; Coward, D; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S L; D'Antonio, S; Danzmann, K; Dari, A; Dattilo, V; Daudert, B; Davier, M; Davies, G; Daw, E J; Day, R; De Rosa, R; Debra, D; Degallaix, J; Del Prete, M; Dergachev, V; Desai, S; Desalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Paolo Emilio, M; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Drago, M; Drever, R W P; Dueck, J; Duke, I; Dumas, J-C; Dwyer, J G; Echols, C; Edgar, M; Effler, A; Ehrens, P; Ely, G; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Faltas, Y; Fan, Y; Fazi, D; Fehrmann, H; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flasch, K; Foley, S; Forrest, C; Fotopoulos, N; Fournier, J-D; Franc, J; Franzen, A; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Gammaitoni, L; Garofoli, J A; Garufi, F; Genin, E; Gennai, A; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Goda, K; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Gobler, S; Gouaty, R; Granata, M; Granata, V; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grimaldi, F; Grosso, R; Grote, H; Grunewald, S; Guenther, M; Guidi, G; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hammer, D; Hammond, G D; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Hoyland, D; Huet, D; Hughey, B; Huttner, S H; Ingram, D R; Isogai, T; Ito, M; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Sancho de la Jordana, L; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khan, R; Khazanov, E; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R; Koranda, S; Kozak, D; Krishnan, B; Kumar, R; Kwee, P; La Penna, P; Lam, P K; Landry, M; Lantz, B; Laval, M; Lazzarini, A; Lei, H; Lei, M; Leindecker, N; Leonor, I; Leroy, N; Letendre, N; Li, C; Lin, H; Lindquist, P E; Littenberg, T B; Lockerbie, N A; Lodhia, D; Longo, M; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Lubinski, M; Lucianetti, A; Lück, H; Machenschalk, B; Macinnis, M; Mackowski, J-M; Mageswaran, M; Mailand, K; Majorana, E; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Markowitz, J; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McIntyre, G; McKechan, D J A; McKenzie, K; Mehmet, M; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Menzinger, F; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Michel, C; Milano, L; Miller, J; Minelli, J; Minenkov, Y; Mino, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P

    2009-08-20

    A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be <6.9 x 10(-6) at 95% confidence. The data rule out models of early Universe evolution with relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models. This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis and cosmic microwave background at 100 Hz.

  9. Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence

    CERN Document Server

    Mitri, F G

    2016-01-01

    Analytical expressions for the axial and transverse acoustic radiation forces as well as the radiation torque per length are derived for a rigid elliptical cylinder placed arbitrarily in the field of in plane progressive, quasi-standing or standing waves. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a fluid particle suspended in air, because of the significant acoustic impedance mismatch at the particle's boundary. Based on the partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force compone...

  10. Free space millimeter wave-coupled electro-optic high speed nonlinear polymer phase modulator with in-plane slotted patch antennas.

    Science.gov (United States)

    Park, D H; Pagán, V R; Murphy, T E; Luo, J; Jen, A K-Y; Herman, W N

    2015-04-06

    We report in-plane slotted patch antenna-coupled electro-optic phase modulators with a carrier-to-sideband ratio (CSR) of 22 dB under an RF power density of 120 W/m(2) and a figure of merit of 2.0 W(-1/2) at the millimeter wave frequencies of 36-37 GHz based on guest-host type of second-order nonlinear polymer SEO125. CSR was improved more than 20 dB by using a SiO(2) protection layer. We demonstrate detection of 3 GHz modulation of the RF carrier. We also derive closed-form expressions for the modulated phase of optical wave and carrier-to-sideband ratio. Design, simulation, fabrication, and experimental results are discussed.

  11. SCATTERING OF ANTI-PLANE SHEAR WAVES BY A SINGLE CRACK IN AN UNBOUNDED TRANSVERSELY ISOTROPIC ELECTRO-MAGNETO-ELASTIC MEDIUM

    Institute of Scientific and Technical Information of China (English)

    杜建科; 沈亚鹏; 高波

    2004-01-01

    A theoretical treatment of the scattering of anti-plane shear (SH) waves is provided by a single crack in an unbounded transversely isotropic electro-magneto-elastic medium. Based on the differential equations of equilibrium, electric displacement and magnetic induction intensity differential equations, the governing equations for SH waves were obtained. By means of a linear transform, the governing equations were reduced to one Helmholtz and two Laplace equations. The Cauchy singular integral equations were gained by making use of Fourier transform and adopting electro-magneto impermeable boundary conditions. The closed form expression for the resulting stress intensity factor at the crack was achieved by solving the appropriate singular integral equations using Chebyshev polynomial. Typical examples are provided to show the loading frequency upon the local stress fields around the crack tips. The study reveals the importance of the electromagneto-mechanical coupling terms upon the resulting dynamic stress intensity factor.

  12. Wave Propagation Due to an Embedded Seismic Source in a Graded Half-Plane With Relief Peculiarities. Part II: Parametric Study

    Directory of Open Access Journals (Sweden)

    Fontara I.-K.

    2015-06-01

    Full Text Available The mechanical model and the accompanied computational technique, based on the boundary integral equation method (BIEM and Green’s function for continuously inhomogeneous half-plane were described in the first part of this work. 2D elastodynamic problem for quadratically inhomogeneous and heterogeneous geological area was defined in the first part of our work. The aim of the current second part is to demon-trate the accuracy and the convergence of the proposed computational tool. Furthermore, subsequent extensive parametric study will illustrate, that the seismic wave field is a complex result of mutual play of different key factors as free-surface relief, wave characteristics, as frequency and wavelength, seismic source properties, type and characteristics of the material gradient, existence of different type of heterogeneities and their interactions.

  13. Analysis of the effect of blocking mass at corner interface of two plates at arbitrary angles on transmission of plane bending waves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Vibration energy transmission at corner interface of two infinite plates rigidly jointed at arbitrary angles was studied by wave approach so as to investigate the effect of blocking mass used for reducing plane bending wave transmission. Two local coordinate systems were introduced and six new non-dimensional coefficients implying corresponding ratio governing characteristic impedances of plates or blocking mass were introduced to simplify formulations of transmission and reflection coefficients. Five samples were tested in experiment.Discussions were carried out based on the comparison between prediction and experiment in terms of insertion loss. It is concluded that blocking mass at corner interface acts like a "lowpass filter", effective for vibration attenuation above certain frequency. The value of TL and IL in "attenuation band" depends mainly on mass per unit length and band width of "attenuation band" on mass moment of inertia per unit length of the blocking mass.

  14. Acoustic plane waves normally incident on a clamped panel in a rectangular duct. [to explain noise reduction curves for reducing interior noise in aircraft

    Science.gov (United States)

    Unz, H.; Roskam, J.

    1979-01-01

    The theory of acoustic plane wave normally incident on a clamped panel in a rectangular duct is developed. The coupling theory between the elastic vibrations of the panel (plate) and the acoustic wave propagation in infinite space and in the rectangular duct is considered. The partial differential equation which governs the vibration of the panel (plate) is modified by adding to its stiffness (spring) forces and damping forces, and the fundamental resonance frequency and the attenuation factor are discussed. The noise reduction expression based on the theory is found to agree well with the corresponding experimental data of a sample aluminum panel in the mass controlled region, the damping controlled region, and the stiffness controlled region. All the frequency positions of the upward and downward resonance spikes in the sample experimental data are identified theoretically as resulting from four cross interacting major resonance phenomena: the cavity resonance, the acoustic resonance, the plate resonance, and the wooden back panel resonance.

  15. Transform-limited, achromatic injection-seeded terahertz-wave parametric generator

    Energy Technology Data Exchange (ETDEWEB)

    Guo, R; Minamide, H; Ito, H, E-mail: h-ito@riken.jp [RIKEN Advanced Science Institute, 519-1399, Aramaki Aoba, Aoba-ku, Sendai 980-0845 (Japan)

    2011-02-01

    A review to our effort on developing the transform-limited, frequency-agile terahertz-wave parametric generator (TPG) is presented. A frequency-agile THz-wave generation is realized by introducing the injection-seeding method and the optical design for the stationary dispersion-compensation The purity of the THz-wave frequency was dramatically improved to {Delta}v/v<10{sup -4}. Simultaneously, the THz-wave output was several hundred times higher than that of a conventional TPG. In addition, a wide frequency tuning with fast tuning speed were realized. The THz-wave frequency can be set randomly or scanned continuously over a frequency range from 0.6 THz to 2.4 THz with narrow linewidth of sub 100 MHz. Furthermore, a tabletop, high-performance THz-wave gas spectrometer based on this achromatic injection-seeded TPG was developed. To demonstrate the potential of this system, we performed the measurement of the absorption line due to rotational transitions of the water molecules and determined their pressure-broadening coefficient.

  16. Wave fronts in plane spillways with converging walls; Frentes de onda en aliviaderos planos de cajeros convergentes

    Energy Technology Data Exchange (ETDEWEB)

    Mateos Iguacel, C. [Laboratorio de Hidraulica del CEDEX, Ministerio de Fomento (Spain)

    1997-06-01

    Equations are set out for water movement in a flat-bottomed weir with converging training walls, which provoke the generation of wave fronts. A two dimensional, stationary analysis is made, thus deducing the characteristic lines as well as the evolution ratios throughout them in terms of fluid speeds and local wave celerities. The results of the numerical model that resolves the equation are congruent with the experimental results. (Author) 6 refs.

  17. INTEGRAL gamma-ray upper limit on the gravitational wave GW150914

    Science.gov (United States)

    Ferrigno, Carlo; Ubertini, Pietro; Courvoisier, Thierry; Kuulkers, Erik; Lebrun, Francois; Brandt, S.; Natalucci, Lorenzo; Laurent, Philippe; Bozzo, Enrico; Roques, Jean-Pierre; Mereghetti, Sandro; Savchenko, Volodymyr

    2016-07-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put tight upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo collaboration. The omni-directional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO/Virgo trigger. Our upper limits on the hard X-ray fluence at the time of the event range from F_{γ}=2 × 10^{-8} erg cm^{-2} to F_{γ}=10^{-6} erg cm^{-2} in the 75 keV - 2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy E_γ/E_{GW}<10^{-6}. We discuss the implication of gamma-ray limits on the characteristics of the gravitational wave source, based on the available predictions for prompt electromagnetic emission for this and forthcoming events. Our team has a memorandum of understanding to follow-up possible triggers issued in near real time from the analysis of the gravitational wave teams.

  18. Geometrical configurations of unphased diffraction-limited antennas in passive millimetre-wave imaging systems for concealed weapon detection

    Science.gov (United States)

    Serenelli, Roberto

    2004-12-01

    This paper analyzes simple imaging configurations to scan a human body, suitable as passive or active millimetre-wave imaging systems for concealed weapon detection (CWD). The first cylindrical configuration allows a 360 degrees scan: N unphased diffraction-limited antennas each of size L are placed on a circular support surrounding the subject (allowing scanning in the horizontal plane with N non-overlapping independent beams), and this circle is mechanically displaced over the whole body height. An analytical formula gives the maximum obtainable spatial resolution for different dimensions of the circular scanning device and operating frequencies, and the number of receivers achieving this optimal resolution. Constraints to be taken into account are diffraction, the usable total length of the circle, and the full coverage by the N beams over the subject, which is modelled as a cylinder with variable radius, coaxial with the scanning circle. Numerical calculations of system resolution are shown for different operating microwave (MW) and millimetre-wave (MMW) frequencies; in order to study off-axis performances, situations where the subject is not coaxial with the scanning device are also considered. For the case of a parallelepiped to be imaged instead of a cylinder, a linear array configuration is analyzed similarly to the circular one. A theoretical study is carried out to design other curved arrays, filled with unphased diffraction-limited antennas, for the imaging of linear subjects with finer resolution. Finally, the application of such configurations is considered for the design of active imaging systems, and different system architectures are discussed.

  19. Elimination of a spiral wave pinned at an obstacle by a train of plane waves: Effect of diffusion between obstacles and surrounding media

    Science.gov (United States)

    Tanaka, Masanobu; Hörning, Marcel; Kitahata, Hiroyuki; Yoshikawa, Kenichi

    2015-10-01

    In excitable media such as cardiac tissue and Belousov-Zhabotinsky reaction medium, spiral waves tend to anchor (pin) to local heterogeneities. In general, such pinned waves are difficult to eliminate and may progress to spatio-temporal chaos. Heterogeneities can be classified as either the absence or presence of diffusive interaction with the surrounding medium. In this study, we investigated the difference in the unpinning of spiral waves from obstacles with and without diffusive interaction, and found a profound difference. The pacing period required for unpinning at fixed obstacle size is larger in case of diffusive obstacles. Further, we deduced a generic theoretical framework that can predict the minimal unpinning period. Our results explain the difference in pacing periods between for the obstacles with and without diffusive interaction, and the difference is interpreted in terms of the local decrease of spiral wave velocity close to the obstacle boundary caused in the case of diffusive interaction.

  20. Elimination of a spiral wave pinned at an obstacle by a train of plane waves: Effect of diffusion between obstacles and surrounding media

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masanobu [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Hörning, Marcel [Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501 (Japan); Kitahata, Hiroyuki, E-mail: kitahata@chiba-u.jp [Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522 (Japan); Yoshikawa, Kenichi [Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan)

    2015-10-15

    In excitable media such as cardiac tissue and Belousov-Zhabotinsky reaction medium, spiral waves tend to anchor (pin) to local heterogeneities. In general, such pinned waves are difficult to eliminate and may progress to spatio-temporal chaos. Heterogeneities can be classified as either the absence or presence of diffusive interaction with the surrounding medium. In this study, we investigated the difference in the unpinning of spiral waves from obstacles with and without diffusive interaction, and found a profound difference. The pacing period required for unpinning at fixed obstacle size is larger in case of diffusive obstacles. Further, we deduced a generic theoretical framework that can predict the minimal unpinning period. Our results explain the difference in pacing periods between for the obstacles with and without diffusive interaction, and the difference is interpreted in terms of the local decrease of spiral wave velocity close to the obstacle boundary caused in the case of diffusive interaction.

  1. On the round-trip time for a photon propagating in the field of a plane gravitational wave

    CERN Document Server

    Rakhmanov, Malik

    2014-01-01

    A network of large-scale laser interferometers is currently employed for searches of gravitational waves from various astrophysical sources. The frequency dependence of the dynamic response of these detectors introduces corrections to their antenna patterns which in principle can affect the outcome of the associated data-analysis algorithms. The magnitude of these corrections and the corresponding systematic errors have recently been estimated for searches of periodic and stochastic gravitational waves (CQG 25 (2008) 184017). However, the calculation of the detector response in that paper followed the traditional semi-rigorous approach which does not properly take into account the curved nature of spacetime. The question then arises as to whether the results will be the same if the calculation is done within the rigorous framework of general relativity. In this paper we provide such a derivation of the response of the detectors to gravitational waves. We obtain the photon propagation time from the solution of...

  2. NANOGrav Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries in Circular Orbits

    CERN Document Server

    Arzoumanian, Z; Burke-Spolaor, S; Chamberlin, S J; Chatterjee, S; Cordes, J M; Demorest, P B; Deng, X; Dolch, T; Ellis, J A; Ferdman, R D; Finn, L S; Garver-Daniels, N; Jenet, F; Jones, G; Kaspi, V M; Koop, M; Lam, M; Lazio, T J W; Lommen, A N; Lorimer, D R; Luo, J; Lynch, R S; Madison, D R; McLaughlin, M; McWilliams, S T; Nice, D J; Palliyaguru, N; Pennucci, T T; Ransom, S M; Sesana, A; Siemens, X; Stairs, I H; Stinebring, D R; Stovall, K; Swiggum, J; Vallisneri, M; van Haasteren, R; Wang, Y; Zhu, W W

    2014-01-01

    The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project currently observes 43 pulsars using the Green Bank and Arecibo radio telescopes. In this work we use a subset of 17 pulsars timed for a span of roughly five years (2005--2010). We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Within the timing data, we perform a search for continuous gravitational waves from individual supermassive black hole binaries in circular orbits using robust frequentist and Bayesian techniques. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar dataset we place a 95% upper limit on the sky-averaged strain amplitude of $h_0\\lesssim 3.8\\times 10^{-14}$ at a frequency of 10 nHz. Furthermore, we place 95% ...

  3. Limited fetch revisited: Comparison of wind input terms, in surface wave modeling

    Science.gov (United States)

    Pushkarev, Andrei; Zakharov, Vladimir

    2016-07-01

    Results pertaining to numerical solutions of the Hasselmann kinetic equation (HE), for wind driven sea spectra, in the fetch limited geometry, are presented. Five versions of source functions, including the recently introduced ZRP model (Zakharov et al., 2012), have been studied, for the exact expression of Snl and high-frequency implicit dissipation, due to wave-breaking. Four of the five experiments were done in the absence of spectral peak dissipation for various Sin terms. They demonstrated the dominance of quadruplet wave-wave interaction, in the energy balance, and the formation of self-similar regimes, of unlimited wave energy growth, along the fetch. Between them was the ZRP model, which strongly agreed with dozens of field observations performed in the seas and lakes, since 1947. The fifth, the WAM3 wind input term experiment, used additional spectral peak dissipation and reproduced the results of a previous, similar, numerical simulation described in Komen et al. (1994), but only supported the field experiments for moderate fetches, demonstrating a total energy saturation at half of that of the Pierson-Moscowits limit. The alternative framework for HE numerical simulation is proposed, along with a set of tests, allowing one to select physically-justified source terms.

  4. Application of the Method of Auxiliary Sources for the Analysis of Plane-Wave Scattering by Impedance Spheres

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Breinbjerg, Olav

    2002-01-01

    The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....

  5. Single-Source Gravitational Wave Limits from the J1713+0747 24-hr Global Campaign

    CERN Document Server

    Dolch, T; Chatterjee, S; Cordes, J M; Lam, M T; Bassa, C; Bhattacharyya, B; Champion, D J; Cognard, I; Crowter, K; Demorest, P B; Hessels, J W T; Janssen, G; Jenet, F A; Jones, G; Jordan, C; Karuppusamy, R; Keith, M; Kondratiev, V I; Kramer, M; Lazarus, P; Lazio, T J W; Lorimer, D R; Madison, D R; McLaughlin, M A; Palliyaguru, N; Perrodin, D; Ransom, S M; Roy, J; Shannon, R M; Smits, R; Stairs, I H; Stappers, B W; Stinebring, D R; Stovall, K; Verbiest, J P W; Zhu, W W

    2015-01-01

    Dense, continuous pulsar timing observations over a 24-hr period provide a method for probing intermediate gravitational wave (GW) frequencies from 10 microhertz to 20 millihertz. The European Pulsar Timing Array (EPTA), the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the Parkes Pulsar Timing Array (PPTA), and the combined International Pulsar Timing Array (IPTA) all use millisecond pulsar observations to detect or constrain GWs typically at nanohertz frequencies. In the case of the IPTA's nine-telescope 24-Hour Global Campaign on millisecond pulsar J1713+0747, GW limits in the intermediate frequency regime can be produced. The negligible change in dispersion measure during the observation minimizes red noise in the timing residuals, constraining any contributions from GWs due to individual sources. At 10$^{-5}$Hz, the 95% upper limit on strain is 10$^{-11}$ for GW sources in the pulsar's direction.

  6. Limited-view ultrasonic guided wave tomography using an adaptive regularization method

    Science.gov (United States)

    Rao, Jing; Ratassepp, Madis; Fan, Zheng

    2016-11-01

    Ultrasonic guided waves are useful to assess the integrity of a structure from a remote location. Recently, tomography techniques have been developed to quantitatively estimate the thickness map of plate-like structures based on the dispersion characteristics of guided waves. In many applications only limited locations are available to place transducers. The missing viewing angles lead to artifacts which can degrade the image quality. To address this problem, this paper applies the regularization method to synthesize the missing components. The regularization technique is performed by an adaptive threshold approach to the limited view reconstruction. The effectiveness of this method combined with the full waveform inversion method is demonstrated by using numerical simulations as well as experiments on an irregularly shaped defect and two flat-bottom defects. The results indicate that the additional components obtained from the regularization method can significantly reduce the artifacts, leading to better reconstruction accuracy.

  7. On P-wave meson decay constants in the heavy quark limit of QCD

    CERN Document Server

    Le Yaouanc, A; Pène, O; Raynal, J C; Morénas, V

    2001-01-01

    In previous work it has been shown that, either from a sum rule for the subleading Isgur-Wise function $\\xi_3(1)$ or from a combination of Uraltsev and Bjorken SR, one infers for $P$-wave states $|\\tau_{1/2}(1)| \\ll |\\tau_{3/2}(1)|$. This implies, in the heavy quark limit of QCD, a hierarchy for the {\\it production} rates of $P$-states $\\Gamma(\\bar{B}_d \\to D ({1 \\over 2}) \\ell \

  8. Upper Limits On High-Frequency Single-Source Gravitational Waves

    Science.gov (United States)

    Halmrast, Daniel; Beklen, Elif; Chatterjee, Shami; Cordes, James M.; Dolch, Timothy; Ellis, Justin; Lam, Michael T.; McLaughlin, Maura; Pennucci, Timothy

    2017-01-01

    In the coming years, pulsar timing arrays (PTAs) are poised to detect gravitational waves (GWs) from supermassive black hole binary systems. In addition to measuring the GW stochastic background, PTAs can also detect single-source GWs. By analyzing data taken over many years, PTAs are typically sensitive to nanohertz-frequency GW sources. However, the microhertz to millihertz GW frequency regime is outside the typical range of PTA sensitivity, and is relatively unexplored. Through analysis of multiple-hour long observations of particular pulsars routinely measured by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), we searched for continuous wave (CW) sources at GW frequencies in the microhertz to millihertz regime. Using such single-pulsar measurements taken by the NRAO Green Bank Telescope, we applied CW detection algorithms to the datasets. While no CW sources were detected within the data, new upper limits on the strains of single-source GWs were found in the GW frequency range of 10 microhertz to 1 millihertz. By repeatedly simulating sources with known strains, we determined the minimum strains required for CW detection, and showed that these minimum strains place upper limits on the strengths of potential sources. Due to the positions of the pulsars analyzed, we also placed stronger directional limits on CW sources in the high GW frequency regime.

  9. INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914

    CERN Document Server

    Savchenko, V; Mereghetti, S; Natalucci, L; Bazzano, A; Bozzo, E; Courvoisier, T J -L; Brandt, S; Hanlon, L; Kuulkers, E; Laurent, P; Lebrun, F; Roques, J P; Ubertini, P; Weidenspointner, G

    2016-01-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put tight upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event \\gwevent, discovered by the LIGO/Virgo collaboration. The omni-directional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO/Virgo trigger. Our upper limits on the hard X-ray fluence at the time of the event range from $F_{\\gamma}=2 \\times 10^{-8}$ erg cm$^{-2}$ to $F_{\\gamma}=10^{-6}$ erg cm$^{-2}$ in the 75 keV - 2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy E$_\\gamma/$E$_{GW}<10^{-6}$. We discuss the implication of gamma-ray limits on the characteristics of the gravitational wave source, based on the available predictions for prom...

  10. INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914

    Science.gov (United States)

    Savchenko, V.; Ferrigno, C.; Mereghetti, S.; Natalucci, L.; Kuulkers, E.

    2016-06-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put tight upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo collaboration. The omni-directional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO/Virgo trigger. Our upper limits on the hard X-ray fluence at the time of the event range from F_{γ}=2 × 10^{-8} erg cm^{-2} to F_{γ}=10^{-6} erg cm^{-2} in the 75 keV - 2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy E_γ/E_{GW}<10^{-6}. We discuss the implication of gamma-ray limits on the characteristics of the gravitational wave source, based on the available predictions for prompt electromagnetic emission. This work has been possible thanks to a Memorandum of Understanding with the LIGO-Virgo scientific collaboration and is presented on behalf of a larger collaboration.

  11. Out-of-Plane Elastic Waves in 2D Models of Solids: A Case Study for a Nonlocal Discretization Scheme with Reduced Numerical Dispersion

    Directory of Open Access Journals (Sweden)

    Adam Martowicz

    2015-01-01

    Full Text Available The paper addresses the problem of numerical dispersion in simulations of wave propagation in solids. This characteristic of numerical models results from both spatial discretization and temporal discretization applied to carry out transient analyses. A denser mesh of degrees of freedom could be a straightforward solution to mitigate numerical dispersion, since it provides more advantageous relation between the model length scale and considered wavelengths. However, this approach also leads to higher computational effort. An alternative approach is the application of nonlocal discretization schemes, which employ a relatively sparse spatial distribution of nodes. Numerical analysis carried out to study the propagation of elastic waves in isotropic solid materials is demonstrated. Fourier-based nonlocal discretization for continuum mechanics is introduced for a two-dimensional model undergoing out-of-plane wave propagation. The results show gradual increase of the effectiveness of this approach while expanding the region of nonlocal interactions in the numerical model. A challenging case of high ratio between the model length scale and wavelength is investigated to present capability of the proposed approach. The elaborated discretization method also provides the perspective of accurate representation of any arbitrarily shaped dispersion relation based on physical properties of modelled materials.

  12. Reflection and transmission of plane harmonic waves at an interface between liquid and micropolar viscoelastic solid with stretch

    Indian Academy of Sciences (India)

    Baljeet Singh

    2000-12-01

    A solution of the field equations governing small motions of a micropolar viscoelastic solid half-space with stretch is employed to study the reflection and transmission at the interface between a liquid and a micropolar viscoelastic solid with stretch. The amplitude ratios for various reflected and refracted waves are computed and depicted graphically. Effects of axial stretch and viscosity on the amplitude ratios are discussed.

  13. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, FL 32306 (United States); Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Nuno, Raquel G., E-mail: bc13h@my.fsu.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: cjl46@wildcats.unh.edu, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: raquel.nuno@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2014-06-01

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  14. A Fatigue Crack Size Evaluation Method Based on Lamb Wave Simulation and Limited Experimental Data

    Directory of Open Access Journals (Sweden)

    Jingjing He

    2017-09-01

    Full Text Available This paper presents a systematic and general method for Lamb wave-based crack size quantification using finite element simulations and Bayesian updating. The method consists of construction of a baseline quantification model using finite element simulation data and Bayesian updating with limited Lamb wave data from target structure. The baseline model correlates two proposed damage sensitive features, namely the normalized amplitude and phase change, with the crack length through a response surface model. The two damage sensitive features are extracted from the first received S0 mode wave package. The model parameters of the baseline model are estimated using finite element simulation data. To account for uncertainties from numerical modeling, geometry, material and manufacturing between the baseline model and the target model, Bayesian method is employed to update the baseline model with a few measurements acquired from the actual target structure. A rigorous validation is made using in-situ fatigue testing and Lamb wave data from coupon specimens and realistic lap-joint components. The effectiveness and accuracy of the proposed method is demonstrated under different loading and damage conditions.

  15. Upper limits on gravitational wave bursts in LIGO's second science run

    CERN Document Server

    Abbott, R; Ageev, A; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Daw, E; De Bra, D; Delker, T; Dergachev, V; DeSalvo, R; Dhurandhar, S V; Di Credico, A; Díaz, M; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; González, G; Goler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Müller, G; Mukherjee, S; Murray, P; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J

    2005-01-01

    We perform a search for gravitational wave bursts using data from the second science run of the LIGO detectors, using a method based on a wavelet time-frequency decomposition. This search is sensitive to bursts of duration much less than a second and with frequency content in the 100-1100Hz range. It features significant improvements in the instrument sensitivity and in the analysis pipeline with respect to the burst search previously reported by LIGO. Improvements in the search method allow exploring weaker signals, relative to the detector noise floor, while maintaining a low false alarm rate, O(0.1) microHz. The sensitivity in terms of the root-sum-square (rss) strain amplitude lies in the range of hrss~10^{-20} - 10^{-19}/sqrt(Hz) No gravitational wave signals were detected in 9.98 days of analyzed data. We interpret the search result in terms of a frequentist upper limit on the rate of detectable gravitational wave bursts at the level of 0.26 events per day at 90% confidence level. We combine this limit ...

  16. Optimum design of phononic crystal perforated plate structures for widest bandgap of fundamental guided wave modes and maximized in-plane stiffness

    Science.gov (United States)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, Mohammad; Ng, Ching-Tai

    2016-04-01

    This paper presents a topology optimization of single material phononic crystal plate (PhP) to be produced by perforation of a uniform background plate. The primary objective of this optimization study is to explore widest exclusive bandgaps of fundamental (first order) symmetric or asymmetric guided wave modes as well as widest complete bandgap of mixed wave modes (symmetric and asymmetric). However, in the case of single material porous phononic crystals the bandgap width essentially depends on the resultant structural integration introduced by achieved unitcell topology. Thinner connections of scattering segments (i.e. lower effective stiffness) generally lead to (i) wider bandgap due to enhanced interfacial reflections, and (ii) lower bandgap frequency range due to lower wave speed. In other words higher relative bandgap width (RBW) is produced by topology with lower effective stiffness. Hence in order to study the bandgap efficiency of PhP unitcell with respect to its structural worthiness, the in-plane stiffness is incorporated in optimization algorithm as an opposing objective to be maximized. Thick and relatively thin Polysilicon PhP unitcells with square symmetry are studied. Non-dominated sorting genetic algorithm NSGA-II is employed for this multi-objective optimization problem and modal band analysis of individual topologies is performed through finite element method. Specialized topology initiation, evaluation and filtering are applied to achieve refined feasible topologies without penalizing the randomness of genetic algorithm (GA) and diversity of search space. Selected Pareto topologies are presented and gradient of RBW and elastic properties in between the two Pareto front extremes are investigated. Chosen intermediate Pareto topology, even not extreme topology with widest bandgap, show superior bandgap efficiency compared with the results reported in other works on widest bandgap topology of asymmetric guided waves, available in the literature

  17. Phonon calculations in cubic and tetragonal phases of SrTiO3: A comparative LCAO and plane-wave study

    Science.gov (United States)

    Evarestov, Robert A.; Blokhin, Evgeny; Gryaznov, Denis; Kotomin, Eugene A.; Maier, Joachim

    2011-04-01

    The atomic, electronic structure and phonon frequencies have been calculated in cubic and low-temperature tetragonal SrTiO3 phases at the ab initio level. We demonstrate that the use of the hybrid exchange-correlation PBE0 functional gives the best agreement with experimental data. The results for the standard generalized gradient approximation (PBE) and hybrid PBE0 functionals are compared for the two types of approaches: a linear combination of atomic orbitals (CRYSTAL09 computer code) and plane waves (VASP5.2 code). The relation between cubic and tetragonal phases and the relevant antiferrodistortive phase transition is discussed in terms of group theory and is illustrated with analysis of calculated soft-mode frequencies at the Γ and R points in the Brillouin zone. Based on phonon calculations, the temperature dependence of the heat capacity is in good agreement with experiment.

  18. Angular scattering of light by a homogeneous spherical particle in a zeroth-order Bessel beam and its relationship to plane wave scattering.

    Science.gov (United States)

    Preston, Thomas C; Reid, Jonathan P

    2015-06-01

    The angular scattering of light from a homogeneous spherical particle in a zeroth-order Bessel beam is calculated using a generalized Lorenz-Mie theory. We investigate the dependence of the angular scattering on the semi-apex angle of the Bessel beam and discuss the major features of the resulting scattering plots. We also compare Bessel beam scattering to plane wave scattering and provide criterion for when the difference between the two cases can be considered negligible. Finally, we discuss a method for characterizing spherical particles using angular light scattering. This work is useful to researchers who are interested in characterizing particles trapped in optical beams using angular dependent light scattering measurements.

  19. Non-local dynamic solution of two parallel cracks in a functionally graded piezoelectric material under harmonic anti-plane shear wave

    Science.gov (United States)

    Liu, Hai-Tao; Sang, Jian-Bing; Zhou, Zhen-Gong

    2016-10-01

    This paper investigates a functionally graded piezoelectric material (FGPM) containing two parallel cracks under harmonic anti-plane shear stress wave based on the non-local theory. The electric permeable boundary condition is considered. To overcome the mathematical difficulty, a one-dimensional non-local kernel is used instead of a two-dimensional one for the dynamic fracture problem to obtain the stress and the electric displacement fields near the crack tips. The problem is formulated through Fourier transform into two pairs of dual-integral equations, in which the unknown variables are jumps of displacements across the crack surfaces. Different from the classical solutions, that the present solution exhibits no stress and electric displacement singularities at the crack tips.

  20. The possibility of using the equivalent plane wave model to increase the efficiency of taking bearings of low-frequency signals in shallow water

    Science.gov (United States)

    Kuznetsov, G. N.; Lebedev, O. V.

    2012-09-01

    The possibility of approximating the sound field in the region of interference maxima using the equivalent plane wave model with the actual amplitude and the average "effective" phase velocity calculated or measured by the phase gradient at the array aperture is discussed. The method is substantiated by studying the mode, interference, and phase structures of the low-frequency sound field along with the spatial responses of an extended linear array. For bottom-moored or towed geophysical arrays whose sizes are large compared to the wavelength, both the necessity and the possibility of reducing the error in taking the bearing of a sound source in a waveguide are justified. The use of the proposed model is recommended for approximate matching of the array to the transfer function of the waveguide to reduce the bearing error.