Scaling and excitation of combined convection in a rapidly rotating plane layer
Energy Technology Data Exchange (ETDEWEB)
Starchenko, S. V., E-mail: sstarchenko@mail.ru [Russian Academy of Sciences, Pushkov Institute of Terrestrial Magnesium, Ionosphere and Radio Wave Propagation (Russian Federation)
2017-02-15
The optimum (to my mind) scaling of the combined thermal and compositional convection in a rapidly rotating plane layer is proposed.This scaling follows from self-consistent estimates of typical physical quantities. Similarity coefficients are introduced for the ratio convection dissipation/convection generation (s) and the ratio thermal convection/compositional convection (r). The third new and most important coefficient δ is the ratio of the characteristic size normal to the axis of rotation to the layer thickness. The faster the rotation, the lower δ. In the case of the liquid Earth core, δ ~ 10{sup –3} substitutes for the generally accepted Ekman number (E ~ 10{sup –15}) and s ~ 10{sup –6} substitutes for the inverse Rayleigh number 1/Ra ~ 10{sup –30}. It is found that, at turbulent transport coefficients, number s and the Prandtl number are on the order of unity for any objects and δ is independent of transport coefficients. As a result of expansion in powers of δ, an initially 3D system of six variables is simplified to an almost 2D system of four variables without δ. The problem of convection excitation in the main volume is algebraically solved and this problem for critical values is analytically solved. Dispersion relations and general expressions for critical wavenumbers, numbers s (which determine Rayleigh numbers), other critical parameters, and asymptotic solutions are derived. Numerical estimates are made for the liquid cores in the planets that resemble the Earth. Further possible applications of the results obtained are proposed for the interior of planets, moons, their oceans, stars, and experimental objects.
Generation of a symmetric magnetic field by thermal convection in a plane rotating layer
Zheligovsky, V
2010-01-01
We investigate numerically magnetic field generation by thermal convection with square periodicity cells in a rotating horizontal layer of electrically-conducting fluid with stress-free electrically perfectly conducting boundaries for Rayleigh numbers in the interval 5100\\le R\\le 5800. Dynamos of three kinds, apparently not encountered before, are presented: 1) Steady and time-periodic regimes, where the flow and magnetic field are symmetric about a vertical axis. In regimes with this symmetry, the global alpha-effect is insignificant, and the complex structure of the system of amplitude equations controlling weakly nonlinear stability of the system to perturbations with large spatial and temporal scales suggests that the perturbations are likely to exhibit uncommon complex patterns of behaviour, to be studied in the future work. 2) Periodic in time regimes, where magnetic field is always concentrated in the interior of the convective layer, in contrast to the behaviour first observed by St Pierre (1993) and ...
Are rotating planes of satellite galaxies ubiquitous?
Phillips, John I; Bullock, James S; Boylan-Kolchin, Michael
2015-01-01
We compare the dynamics of satellite galaxies in the Sloan Digital Sky Survey to simple models in order to test the hypothesis that a large fraction of satellites co-rotate in coherent planes. We confirm the previously-reported excess of co-rotating satellite pairs located near diametric opposition with respect to the host, but show that this signal is unlikely to be due to rotating discs (or planes) of satellites. In particular, no overabundance of co-rotating satellites pairs is observed within $\\sim 20^{\\circ}-50^{\\circ}$ of direct opposition, as would be expected for planar distributions inclined relative to the line-of-sight. Instead, the excess co-rotation for satellite pairs within $\\sim 10^{\\circ}$ of opposition is consistent with random noise associated with undersampling of an underlying isotropic velocity distribution. We conclude that at most $10\\%$ of the hosts in our sample harbor co-rotating satellite planes (as traced by the luminous satellite population).
Head rotation and sound image localization in the median plane
Institute of Scientific and Technical Information of China (English)
RAO Dan; XIE Bosun
2005-01-01
The effect of head rotation on median plane sound source (or image) localization is studied. It is suggested that, at low frequency, the change of interaural time difference (ITD) caused by head rotation supplies information for determining sound source direction in the median plane. Based on the suggestion, the summed sound image localization equations for multiple loudspeakers arranged in the median plane are derived. Especially, for a pair of loudspeakers arranged front-back symmetrically in the median plane, the localization equations are similar to that of stereophonic sound in horizontal plane. A sound image localization experiment was carried out to prove the theoretical analysis. The results of this paper are not only available to virtual spatial auditory, but also supply a quantitative validation of the hypothesis that head rotation is a cue for sound source localization in the median plane at low frequency.
Boundary layer control of rotating convection systems.
King, Eric M; Stellmach, Stephan; Noir, Jerome; Hansen, Ulrich; Aurnou, Jonathan M
2009-01-15
Turbulent rotating convection controls many observed features of stars and planets, such as magnetic fields, atmospheric jets and emitted heat flux patterns. It has long been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force. Here, however, we present results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. We formulate a predictive description of the transition between the two regimes on the basis of the competition between these two boundary layers. This transition scaling theory unifies the disparate results of an extensive array of previous experiments, and is broadly applicable to natural convection systems.
Kawata, Takuya; Alfredsson, P. Henrik
2016-07-01
Plane Couette flow under spanwise, anticyclonic system rotation [rotating plane Couette flow (RPCF)] is studied experimentally using stereoscopic particle image velocimetry for different Reynolds and rotation numbers in the fully turbulent regime. Similar to the laminar regime, the turbulent flow in RPCF is characterized by roll cells, however both instantaneous snapshots of the velocity field and space correlations show that the roll cell structure varies with the rotation number. All three velocity components are measured and both the mean flow and all four nonzero Reynolds stresses are obtained across the central parts of the channel. This also allows us to determine the wall shear stress from the viscous stress and the Reynolds stress in the center of the channel, and for low rotation rates the wall shear stress increases with increasing rotation rate as expected. The results show that zero absolute vorticity is established in the central parts of the channel of turbulent RPCF for high enough rotation rates, but also that the mean velocity profile for certain parameter ranges shows an S shape giving rise to a negative velocity gradient in the center of the channel. We find that from an analysis of the Reynolds stress transport equation using the present data there is a transport of the Reynolds shear stress towards the center of the channel, which may then result in a negative mean velocity gradient there.
Natural Convection in a Rotating Nanofluid Layer
Bhadauria B.S.; Agarwal Shilpi
2012-01-01
In this paper, we study the effect of rotation on the thermal instability in a horizontal layer of a Newtonian nanofluid. The nanofluid layer incorporates the effect of Brownian motion along with thermophoresis. The linear stability based on normal mode technique has been investigated.We observe that the value of Rayleigh number can be increased by a substantial amount on considering a bottom heavy suspension of nano particles. The effect of various parameters on Rayleigh number has been pres...
Directory of Open Access Journals (Sweden)
Asher Marc A
2010-08-01
Full Text Available Abstract Background We have occasionally observed clinically noticeable postoperative transverse plane pelvic rotation increase (TPPRI in the direction of direct thoracolumbar/lumbar rotational corrective load applied during posterior instrumentation and arthrodesis for double (Lenke 3 and 6 adolescent idiopathic scoliosis (AIS curves. Our purposes were to document this occurrence; identify its frequency, associated variables, and natural history; and determine its effect upon patient outcome. Methods Transverse plane pelvic rotation (TPPR can be quantified using the left/right hemipelvis width ratio as measured on standing posterior-anterior scoliosis radiographs. Descriptive statistics were done to determine means and standard deviations. Non-parametric statistical tests were used due to the small sample size and non-normally distributed data. Significance was set at P Results Seventeen of 21 (81% consecutive patients with double curves (7 with Lenke 3 curves and 10 with Lenke 6 instrumented with lumbar pedicle screw anchors to achieve direct rotation had a complete sequence of measurable radiographs. While 10 of these 17 had no postoperative TPPRI, 7 did all in the direction of the rotationally corrective thoracolumbar instrumentation load. Two preoperative variables were associated with postoperative TPPRI: more tilt of the vertebra below the lower instrumented vertebra (-23° ± 3.1° vs. -29° ± 4.6°, P = 0.014 and concurrent anterior thoracolumbar discectomy and arthrodesis (5 of 10 vs. 7 of 7, P = 0.044. Patients with a larger thoracolumbar/lumbar angle of trunk inclination or larger lower instrumented vertebra plus one to sacrum fractional/hemicurve were more likely to have received additional anterior thoracolumbar discectomy and arthrodesis (c = 0.90 and c = 0.833, respectively. Postoperative TPPRI resolved in 5 of the 7 by intermediate follow-up at 12 months. Patient outcome was not adversely affected by postoperative TPPRI
Natural Convection in a Rotating Nanofluid Layer
Directory of Open Access Journals (Sweden)
Bhadauria B. S.
2012-07-01
Full Text Available In this paper, we study the effect of rotation on the thermal instability in a horizontal layer of a Newtonian nanofluid. The nanofluid layer incorporates the effect of Brownian motion along with thermophoresis. The linear stability based on normal mode technique has been investigated.We observe that the value of Rayleigh number can be increased by a substantial amount on considering a bottom heavy suspension of nano particles. The effect of various parameters on Rayleigh number has been presented graphically.
Investigation of turbulent plane mixing layer using generalized differential quadrature
Energy Technology Data Exchange (ETDEWEB)
Basirat Tabrizi, H.; Rezaei Niya, S.M.; Fariborz, S.J. [Amirkabir Univ. of Tech., Mechanical Engineering Dept., Tehran (Iran, Islamic Republic of)]. E-mail: hbasirat@aut.ac.ir; H.Basirat@dal.ca
2004-07-01
There is considerable interest in two-dimensional turbulent mixing layer, to name a few e.g. nature, combustion chamber, premixers of gas turbine combustor and many other technological applications. There features are the presence of large vortical structure, free turbulent characteristics, asymptotic behavior, faster growth rate. Some of the parameters that are known to affect the mixing layer behavior are investigated through the numerical models and experimental analysis during these past decades. A suitable solution for turbulent plane mixing layer requires the use of variable mesh size and an appropriate discretization scheme. The Generalized Differential Quadrature (GDQ) method is utilized to solve the problem. It can be a tool for evaluating the equations obtained for plane mixing layer. The present approach works well by refining mesh size, simplifying the calculation algorithms and less time for calculation anticipated. The numerical simulation is compared with the reported numerical and experimental results of others. (author)
RoboPol: optical polarization-plane rotations and flaring activity in blazars
Blinov, D; Papadakis, I E; Hovatta, T; Pearson, T J; Liodakis, I; Panopoulou, G V; Angelakis, E; Baloković, M; Das, H; Khodade, P; Kiehlmann, S; King, O G; Kus, A; Kylafis, N; Mahabal, A; Marecki, A; Modi, D; Myserlis, I; Paleologou, E; Papamastorakis, I; Pazderska, B; Pazderski, E; Rajarshi, C; Ramaprakash, A; Readhead, A C S; Reig, P; Tassis, K; Zensus, J A
2016-01-01
We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane...
Boundary layers interactions in the plane parallel incompressible flows
Nguyen, Toan
2011-01-01
We study the inviscid limit problem of the incompressible flows in the presence of both impermeable regular boundaries and a hypersurface transversal to the boundary across which the inviscid flow has a discontinuity jump. In the former case, boundary layers have been introduced by Prandtl as correctors near the boundary between the inviscid and viscous flows. In the latter case, the viscosity smoothes out the discontinuity jump by creating a transition layer which has the same amplitude and thickness as the Prandtl layer. In the neighborhood of the intersection of the impermeable boundary and of the hypersurface, interactions between the boundary and the transition layers must then be considered. In this paper, we initiate a mathematical study of this interaction and carry out a strong convergence in the inviscid limit for the case of the plane parallel flows introduced by Di Perna and Majda in \\cite{DM}.
Experimental evidence of a triadic resonance of plane inertial waves in a rotating fluid
Bordes, Guilhem; Dauxois, Thierry; Cortet, Pierre-Philippe
2011-01-01
Plane inertial waves are generated using a wavemaker, made of oscillating stacked plates, in a rotating water tank. Using particle image velocimetry, we observe that, after a transient, the primary plane wave is subject to a subharmonic instability and excites two secondary plane waves. The measured frequencies and wavevectors of these secondary waves are in quantitative agreement with the predictions of the triadic resonance mechanism. The secondary wavevectors are found systematically more normal to the rotation axis than the primary wavevector: this feature illustrates the basic mechanism at the origin of the energy transfers towards slow, quasi two-dimensional, motions in rotating turbulence.
Zero-field spin-transfer oscillators combining in-plane and out-of-plane magnetized layers
Fowley, Ciarán; Sluka, Volker; Bernert, Kerstin; Lindner, Jürgen; Fassbender, Jürgen; Rippard, William H.; Pufall, Matthew R.; Russek, Stephen E.; Deac, Alina M.
2014-04-01
Excited magnetization dynamics in a spin-valve device consisting of an in-plane polarizer and an out-of-plane free layer were studied numerically. In the case where the free layer is assumed to lack any in-plane anisotropy components, a finite external field is required to generate steady-state dynamics, in agreement with previous reports. We demonstrate that this constraint can be removed and precession can be stabilized in zero applied field by introducing an additional in-plane anisotropy axis. Moreover, the in-plane anisotropy offers an additional degree of freedom for tuning the frequency response of the device.
Plane Couette-Poiseuille flow past a homogeneous poroelastic layer
Alexiou, Terpsichori S.; Kapellos, George E.
2013-07-01
An analytical solution is presented for the problem of fully developed plane Couette-Poiseuille flow past a homogeneous, permeable poroelastic layer. Main novel feature of this work is that the compressibility, which is related to the action of the free-fluid pressure on the poroelastic layer, is taken into account. Therefore, the solid stress problem is two-dimensional, although the fluid flow problem remains one-dimensional in the limit of infinitesimal strain. The pressure-related compressibility affects strongly the distribution of the von Mises stress in the poroelastic layer by shifting the local maximum towards the high-pressure region of the channel. Furthermore, the established analytical solution is used to investigate some aspects of the mechanotransducing role of the endothelial surface layer. A compressible surface layer might serve as a "bumper'' by reducing the magnitude of the overall shearing force (viscous and elastic) acting on endothelial cells, as compared to the magnitude of the fluid shear force that would be exerted in its absence.
RoboPol: optical polarization-plane rotations and flaring activity in blazars
Blinov, D.; Pavlidou, V.; Papadakis, I. E.; Hovatta, T.; Pearson, T. J.; Liodakis, I.; Panopoulou, G. V.; Angelakis, E.; Baloković, M.; Das, H.; Khodade, P.; Kiehlmann, S.; King, O. G.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Modi, D.; Myserlis, I.; Paleologou, E.; Papamastorakis, I.; Pazderska, B.; Pazderski, E.; Rajarshi, C.; Ramaprakash, A.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Zensus, J. A.
2016-04-01
We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane in the jet rest frame; (4) it is likely that distributions of amplitudes and durations of the rotations have physical upper bounds, so arbitrarily long rotations are not realized in nature.
In-plane rotation of the doubly coupled photonic crystal nanobeam cavities
Lin, Tong; Tian, Feng; Zhang, Wei; Zou, Yongchao; Chau, Fook Siong; Deng, Jie; Zhou, Guangya
2016-05-01
In this letter, a nano-electro-mechanical-systems (NEMS) mechanism is proposed to drive the in-plane rotation of the doubly coupled photonic crystal (PhC) nanobeam cavities. The corresponding interactions between optical resonances and rotations are investigated. This is the first in-plane rotational tuning of the PhC cavities, which benefits from the flexible design of NEMS actuators. In experiments, more than 18 linewidths of the third order TE even mode corresponding to 0.037 mrad of the shrinking angle between the two nanobeam cavities are demonstrated; this study provides one more mechanical degree of freedom for the practical optomechanical interactions.
Sums of Laplace eigenvalues - rotationally symmetric maximizers in the plane
Laugesen, R S
2010-01-01
The sum of the first $n \\geq 1$ eigenvalues of the Laplacian is shown to be maximal among triangles for the equilateral triangle, maximal among parallelograms for the square, and maximal among ellipses for the disk, provided the ratio $\\text{(area)}^3/\\text{(moment of inertia)}$ for the domain is fixed. This result holds for both Dirichlet and Neumann eigenvalues, and similar conclusions are derived for Robin boundary conditions and Schr\\"odinger eigenvalues of potentials that grow at infinity. A key ingredient in the method is the tight frame property of the roots of unity. For general convex plane domains, the disk is conjectured to maximize sums of Neumann eigenvalues.
Hip rotation angle is associated with frontal plane knee joint mechanics during running.
Sakaguchi, Masanori; Shimizu, Norifumi; Yanai, Toshimasa; Stefanyshyn, Darren J; Kawakami, Yasuo
2015-02-01
Inability to control lower extremity segments in the frontal and transverse planes resulting in large knee abduction angle and increased internal knee abduction impulse has been associated with patellofemoral pain (PFP). However, the influence of hip rotation angles on frontal plane knee joint kinematics and kinetics remains unclear. The purpose of this study was to explore how hip rotation angles are related to frontal plane knee joint kinematics and kinetics during running. Seventy runners participated in this study. Three-dimensional marker positions and ground reaction forces were recorded with an 8-camera motion analysis system and a force plate while subjects ran along a 25-m runway at a speed of 4m/s. Knee abduction, hip rotation and toe-out angles, frontal plane lever arm at the knee, internal knee abduction moment and impulse, ground reaction forces and the medio-lateral distance from the ankle joint center to the center of pressure (AJC-CoP) were quantified. The findings of this study indicate that greater hip external rotation angles were associated with greater toe-out angles, longer AJC-CoP distances, smaller internal knee abduction impulses with shorter frontal plane lever arms and greater knee abduction angles. Thus, there appears to exist a conflict between kinematic and kinetic risk factors of PFP, and hip external rotation angle may be a key factor to control frontal plane knee joint kinematics and kinetics. These results may help provide an appropriate manipulation and/or intervention on running style to reduce the risk of PFP.
Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: Two faces of one coin
Krivoruchenko, M I
2008-01-01
Using elementary geometric tools, we derive essentially in the same way expressions for rotation angle of the swing plane of Foucault's pendulum and rotation angle of spin of relativistic particle moving along circular orbit (Thomas precession effect).
A Nonlinear Stability Theory for Plane Boundary-Layer Flows
1980-07-01
flows , Poiseuille flows and Couette flows . For example, 3 for plane Polseutlle flow with...published results for plane Poiseuille flow and the Orr-Sonunerfeld solutions for ~lasius flow and a numerical solution of Navier-Stokes flow along a flat...TWO-POINT BOUNDARY-VALUE PROBLEM .......... 21 4. NUMERICAL RESULTS ............................................. 44 4.1 Plane Poiseuille Flow
Period tripling causes rotating spirals in agitated wet granular layers.
Huang, Kai; Rehberg, Ingo
2011-07-08
Pattern formation of a thin layer of vertically agitated wet granular matter is investigated experimentally. Rotating spirals with three arms, which correspond to the kinks between regions with different colliding phases, are the dominating pattern. This preferred number of arms corresponds to period tripling of the agitated granular layer, unlike predominantly subharmonic Faraday crispations in dry granular matter. The chirality of the spatiotemporal pattern corresponds to the rotation direction of the spirals.
Effects of a covering layer in a circular-arc canyon on incident plane SV waves
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
An analytical solution for scattering of incident plane SV waves by a circular-arc canyon with a covering layer was derived by Fourier-Bessel series expansion technique, and the solution was utilized to analyze the effects of the covering layer on incident plane SV waves. It was shown that the covering layer in a canyon, even if it is very thin, amplifies incident plane SV waves tremendously, and the amplification can be two and half times more than that for a simple canyon; the stiffness and thickness of the covering layer also have great effects on incident plane SV waves.
Retraction pattern of delaminated rotator cuff tears: dual-layer rotator cuff repair
Cha, Sang-Won; Lee, Choon-Key; Sugaya, Hiroyuki; Kim, Taegyun; Lee, Su-Chan
2016-01-01
Background There has been no report to date regarding retraction patterns of delaminated rotator cuff tears. The purpose of this study was to evaluate the incidence and tearing patterns of delamination and repair integrity after the dual-layer repair of delaminated cuff tears. Methods/design A consecutive series of 64 patients with posterosuperior rotator cuff tears underwent arthroscopic rotator cuff repair from August 2011 to September 2012. Among the patients, 53 who received either dual-l...
Analysis of flow structures in supersonic plane mixing layers using the POD method
Institute of Scientific and Technical Information of China (English)
YANG Qin; FU Song
2008-01-01
The proper orthogonal decomposition (POD) method was applied to analyzing the database obtained from the direct numerical simulation (DNS) of supersonic plane mixing layers. The effect of different forms of the inner products in the POD method was investigated. It was observed that the mean flow contributes to a predominant part of the total flow energy, and the energy spectrum of the turbulence fluctuations covers a wide range of POD modes. The patterns of leading (high energy) POD modes reveal that the flow structures exhibit spanwise counter rotating rolls, as well as oblique vortices. These flow patterns are insensitive to the velocity of the observer. As the convective Mach number increases, the energy spectrum be-comes wider, the leading POD modes contain more complicated structures, and the flow becomes more chaotic.
Analysis of flow structures in supersonic plane mixing layers using the POD method
Institute of Scientific and Technical Information of China (English)
2008-01-01
The proper orthogonal decomposition(POD) method was applied to analyzing the database obtained from the direct numerical simulation(DNS) of supersonic plane mixing layers.The effect of different forms of the inner products in the POD method was investigated.It was observed that the mean flow contributes to a predominant part of the total flow energy,and the energy spectrum of the turbulence fluctuations covers a wide range of POD modes.The patterns of leading(high energy) POD modes reveal that the flow structures exhibit spanwise counter rotating rolls,as well as oblique vortices.These flow patterns are insensitive to the velocity of the observer.As the convective Mach number increases,the energy spectrum be-comes wider,the leading POD modes contain more complicated structures,and the flow becomes more chaotic.
Imaging the transient boundary layer on a free rotating disc.
Matijasević, Branimir; Guzović, Zvonimir; Martinis, Vinko
2002-10-01
This report presents a visual study of the transition process of the laminar boundary layer (BL) in a turbulent BL on a free rotating disc. The imaging is based on an experimental investigation that aimed to analyze the structure of the BL by relating it to the ratio between turbulent energy and vortex energy, the critical and the transient Reynolds numbers (Re), the vortex numbers and their dependence on Re, and on the distance from the rotating disc.
Ultra-thin, single-layer polarization rotator
Energy Technology Data Exchange (ETDEWEB)
Son, T. V.; Truong, V. V., E-mail: Truong.Vo-Van@Concordia.Ca [Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6 (Canada); Do, P. A.; Haché, A. [Département de Physique et d’Astronomie, Université de Moncton, Moncton, New Brunswick, E1A 3E9 (Canada)
2016-08-15
We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 10{sup 3} when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.
The effects of rotation on a double-diffusive layer in a rotating spherical shell
Blies, Patrick; Zaussinger, Florian; Hollerbach, Rainer
2014-01-01
So far, numerical studies of double-diffusive layering in turbulent convective flows have neglected the effects of rotation. We undertake a first step into that direction by investigating how Coriolis forces affect a double-diffusive layer inside a rotating spherical shell. For this purpose we have run simulations in a parameter regime where these layers are expected to form and successively increased the rate of rotation with the result that fast rotation is found to have a similar stabilising effect on the overall convective flux as an increase of the stability ratio $R_{\\rho}$ has in a non-rotating setup. We have also studied to what extent the regimes of rotational constraints suggested by King, Stellmach, and Buffett (2013) for rotation in the case of Rayleigh-B\\'enard convection are influenced by double-diffusive convection: their classification could also be applicable to the case of double-diffusive convection in a spherical shell if it is extended to be also a function of the stability ratio $R_{\\rho...
Anisotropic in-Plane Thermal Conductivity Observed in Few-Layer Black Phosphorus
2015-10-16
report the anisotropic in-plane thermal conductivity of suspended few-layer black phosphorus measured by micro-Raman spectroscopy. The armchair and...transport particularly in few-layer BP. Here we report the anisotropic in-plane thermal conductivity of suspended few-layer BP measured by micro-Raman spectro...are all anisotropic quantities (Fig. 3c), owing to anisotropic optical conductivity , and our measured absorptivity of the 9.5-nm-thick suspended film
Interfacial Refraction Through Curved and Plane-Layered Media
Energy Technology Data Exchange (ETDEWEB)
Kehoe, A.B.
2001-07-17
Two laser beam tracing codes, AXIAL and CYLINDER, have been written to determine a laser beam path through plane and cylindrical interfaces. For cylindrical interfaces, an equation set was derived which describes the path of the laser beam. For plane interfaces, it was not possible to derive a single equation set. Instead, it was necessary to divide the domain up into small elements or regions. The laser beam path was then determined by calculating the path of the laser beam through each region. AXIAL and CYLINDER can be used to determine where an LDA should be positioned so that velocity measurements can be made at a specified point.
Institute of Scientific and Technical Information of China (English)
Zhang Jin-Feng; Xu Sheng-Rui; Zhang Jin-Cheng; Hao Yue
2011-01-01
Nonpolar a-plane GaN epilayers are grown on several r-plane sapphire substrates by metal organic chemical vapour deposition using different nucleation layers: (A) a GaN nucleation layer deposited at low temperature (LT); (B) an A1N nucleation layer deposited at high temperature; or (C) an LT thin A1N nucleation layer with an A1N layer and an AIN/AlGaN superlattice both subsequently deposited at high temperature. The samples have been characterized by Xray diffraction (XRD), atomic force microscopy and photoluminescence. The GaN layers grown using nucleation layers B and C show narrower XRD rocking curves than that using nucleation layer A, indicating a reduction in crystal defect density. Furthermore, the GaN layer grown using nucleation layer C exhibits a surface morphology with triangular defect pits eliminated completely. The improved optical property, corresponding to the enhanced crystal quality, is also confirmed by temperature-dependent and excitation power-dependent photoluminescence measurements.
Zero absolute vorticity: insight from experiments in rotating laminar plane Couette flow.
Suryadi, Alexandre; Segalini, Antonio; Alfredsson, P Henrik
2014-03-01
For pressure-driven turbulent channel flows undergoing spanwise system rotation, it has been observed that the absolute vorticity, i.e., the sum of the averaged spanwise flow vorticity and system rotation, tends to zero in the central region of the channel. This observation has so far eluded a convincing theoretical explanation, despite experimental and numerical evidence reported in the literature. Here we show experimentally that three-dimensional laminar structures in plane Couette flow, which appear under anticyclonic system rotation, give the same effect, namely, that the absolute vorticity tends to zero if the rotation rate is high enough. It is shown that this is equivalent to a local Richardson number of approximately zero, which would indicate a stable condition. We also offer an explanation based on Kelvin's circulation theorem to demonstrate that the absolute vorticity should remain constant and approximately equal to zero in the central region of the channel when going from the nonrotating fully turbulent state to any state with sufficiently high rotation.
Global stability behaviour for the BEK family of rotating boundary layers
Davies, Christopher; Thomas, Christian
2016-09-01
Numerical simulations were conducted to investigate the linear global stability behaviour of the Bödewadt, Ekman, von Kármán (BEK) family of flows, for cases where a disc rotates beneath an incompressible fluid that is also rotating. This extends the work reported in recent studies that only considered the rotating-disc boundary layer with a von Kármán configuration, where the fluid that lies above the boundary layer remains stationary. When a homogeneous flow approximation is made, neglecting the radial variation of the basic state, it can be shown that linearised disturbances are susceptible to absolute instability. We shall demonstrate that, despite this prediction of absolute instability, the disturbance development exhibits globally stable behaviour in the BEK boundary layers with a genuine radial inhomogeneity. For configurations where the disc rotation rate is greater than that of the overlying fluid, disturbances propagate radially outwards and there is only a convective form of instability. This replicates the behaviour that had previously been documented when the fluid did not rotate beyond the boundary layer. However, if the fluid rotation rate is taken to exceed that of the disc, then the propagation direction reverses and disturbances grow while convecting radially inwards. Eventually, as they approach regions of smaller radii, where stability is predicted according to the homogeneous flow approximation, the growth rates reduce until decay takes over. Given sufficient time, such disturbances can begin to diminish at every radial location, even those which are positioned outwards from the radius associated with the onset of absolute instability. This leads to the confinement of the disturbance development within a finitely bounded region of the spatial-temporal plane.
Energy Technology Data Exchange (ETDEWEB)
Sun, H.Y. E-mail: hysun@165e.com; Hu, H.N.; Sun, Y.P.; Nie, X.F
2004-08-01
Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains (IIDs) was investigated, and a critical in-plane field range [H{sub ip}{sup 1},H{sub ip}{sup 2}] of which vertical-Bloch lines (VBLs) annihilated in IIDs is found under rotating in-plane field (H{sub ip}{sup 1} is the maximal critical in-plane-field of which hard domains remain stable, H{sub ip}{sup 2} is the minimal critical in-plane-field of which all of the hard domains convert to soft bubbles (SBs, without VBLs)). It shows that the in-plane field range [H{sub ip}{sup 1}, H{sub ip}{sup 2}] changes with the change of the rotating angle {delta}{phi} H{sub ip}{sup 1} maintains stable, while H{sub ip}{sup 2} decreases with the decreasing of rotating angle {delta}{phi}. Comparing it with the spontaneous shrinking experiment of IIDs under both bias field and in-plane field, we presume that under the application of in-plane field there exists a direction along which the VBLs in the domain walls annihilate most easily, and it is in the direction that domain walls are perpendicular to the in-plane field.
Brotman, David; Zhang, Ziheng; Sampath, Smita
2012-01-01
Non-invasive quantification of regional left ventricular (LV) rotation may improve understanding of cardiac function. Current methods employed to quantify rotation typically acquire data on a set of prescribed short-axis slices, neglecting effects due to through-plane myocardial motion. We combine principles of slice-following tagged imaging with harmonic phase analysis methods to account for through-plane motion in regional rotation measurements. We compare rotation and torsion measurements obtained using our method to those obtained from imaging datasets acquired without slice-following. Our results in normal volunteers demonstrate differences in the general trends of average and regional rotation-time plots in mid-basal slices, and of the rotation versus circumferential strain loops. We observe substantial errors in measured peak average rotation of the order of 58% for basal slices (due to change in the pattern of the curve), −6.6% for mid-ventricular slices, and −8.5% for apical slices; and an average error in base-to-apex torsion of 19% when through-plane motion is not considered. This study concludes that due to an inherent base-to-apex gradient in rotation that exists in the LV, accounting for through-plane motion is critical to the accuracy of LV rotation quantification. PMID:22700308
Turbulent statistics and flow structures in spanwise-rotating turbulent plane Couette flows
Gai, Jie; Xia, Zhenhua; Cai, Qingdong; Chen, Shiyi
2016-09-01
A series of direct numerical simulations of spanwise-rotating turbulent plane Couette flows at a Reynolds number of 1300 with rotation numbers Ro between 0 and 0.9 is carried out to investigate the effects of anticyclonic rotation on turbulent statistics and flow structures. Several typical turbulent statistics are presented, including the mean shear rate at the centerline, the wall-friction Reynolds number, and volume-averaged kinetic energies with respect to the secondary flow field, turbulent field, and total fluctuation field. Our results show that the rotation changes these quantities in different manners. Volume-averaged balance equations for kinetic energy are analyzed and it turns out that the interaction term acts as a kinetic energy bridge that transfers energy from the secondary flow to the turbulent fluctuations. Several typical flow regimes are identified based on the correlation functions across the whole channel and flow visualizations. The two-dimensional roll cells are observed at weak rotation Ro=0.01 , where alternant clustering of vortices appears. Three-dimensional roll cells emerge around Ro≈0.02 , where the clustering of vortices shows the meandering and bifurcating behavior. For moderate rotation 0.07 ≲Ro≲0.36 , well-organized structures are observed, where the herringbonelike vortices are clustered between streaks from the top view of three-dimensional flow visualization and form annuluses. More importantly, the vortices are rather confined to one side of the walls when Ro≤0.02 and are inclined from the bottom to upper walls when Ro≥0.07 .
Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin
Energy Technology Data Exchange (ETDEWEB)
Krivoruchenko, Mikhail I [Alikhanov Institute for Theoretical and Experimental Physics, Russian Federation State Scientific Center, Moscow (Russian Federation)
2009-08-31
Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect). (methodological notes)
The optimum layer number of multi-layer pyramidal core sandwich columns under in-plane compression
Institute of Scientific and Technical Information of China (English)
Li-Jia Feng; Lin-Zhi Wu∗; Guo-Cai Yu
2016-01-01
The effect of the face thickness to core height ratio on different multi-layer pyramidal core sandwich columns under in-plane compression is investigated theoretically and numerically. Numerical simulation is in good agreement with theory. Results indicate that one specified face thickness to core height ratio corresponds to one optimum layer number of multi-layer pyramidal core sandwich columns in consideration of engineering application. This result can guide the sandwich structure design.
Direct numerical simulation of three-dimensional coherent structure in plane mixing layer
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The three-dimensional temporally evolving plane mixing layer is sinulated by directly solying the Navier-Stokes equations using pseudo-spectral method. The process of loss of stability, and the formation paring, and development of vortex are presented. The simulated result shows that the evolving characteristics of coherent structure are important mechanism of growing and entrainment of mixing layer.
Basu, Rajratan; Kinnamon, Daniel; Skaggs, Nicole; Womack, James
2016-05-01
The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.
Magnetoelastic plane waves in rotating media in thermoelasticity of type II (G-N model
Directory of Open Access Journals (Sweden)
S. K. Roychoudhuri
2004-01-01
Full Text Available A study is made of the propagation of time-harmonic plane waves in an infinite, conducting, thermoelastic solid permeated by a uniform primary external magnetic field when the entire medium is rotating with a uniform angular velocity. The thermoelasticity theory of type II (G-N model (1993 is used to study the propagation of waves. A more general dispersion equation is derived to determine the effects of rotation, thermal parameters, characteristic of the medium, and the external magnetic field. If the primary magnetic field has a transverse component, it is observed that the longitudinal and transverse motions are linked together. For low frequency (χ≪1, χ being the ratio of the wave frequency to some standard frequency ω∗, the rotation and the thermal field have no effect on the phase velocity to the first order of χ and then this corresponds to only one slow wave influenced by the electromagnetic field only. But to the second order of χ, the phase velocity, attenuation coefficient, and the specific energy loss are affected by rotation and depend on the thermal parameters cT, cT being the nondimensional thermal wave speed of G-N theory, and the thermoelastic coupling εT, the electromagnetic parameters εH, and the transverse magnetic field RH. Also for large frequency, rotation and thermal field have no effect on the phase velocity, which is independent of primary magnetic field to the first order of (1/χ (χ≫1, and the specific energy loss is a constant, independent of any field parameter. However, to the second order of (1/χ, rotation does exert influence on both the phase velocity and the attenuation factor, and the specific energy loss is affected by rotation and depends on the thermal parameters cT and εT, electromagnetic parameter εH, and the transverse magnetic field RH, whereas the specific energy loss is independent of any field parameters to the first order of (1/χ.
Semi-analytical solution to plane strain loading of elastic layered coating on an elastic substrate
Indian Academy of Sciences (India)
Thamarai Selvan Vasu; Tanmay K Bhandakkar
2015-10-01
The plane strain loading of a linear elastic layered coating halfspace is solved semi-analytically through a combination of Airy stress function and Fourier transforms and highly simplified and compact expressions for displacement and stresses in layer and substrate are presented in terms of pressure distribution in the loaded region. The results are applied to study the influence of layer thickness and mismatch in elastic modulus between layer and substrate on the stresses and displacement during loading of layered coating system. Lastly the effect of degree of smoothness of the pressure profile on the plane strain loading response of layered coating system is simulated through three different pressure profiles for a fixed total load and loading zone length.
Plasmon analysis and homogenization in plane layered photonic crystals and hyperbolic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Davidovich, M. V., E-mail: davidovichmv@info.sgu.ru [Saratov State University (Russian Federation)
2016-12-15
Dispersion equations are obtained and analysis and homogenization are carried out in periodic and quasiperiodic plane layered structures consisting of alternating dielectric layers, metal and dielectric layers, as well as graphene sheets and dielectric (SiO{sub 2}) layers. Situations are considered when these structures acquire the properties of hyperbolic metamaterials (HMMs), i.e., materials the real parts of whose effective permittivity tensor have opposite signs. It is shown that the application of solely dielectric layers is more promising in the context of reducing losses.
Plasmon analysis and homogenization in plane layered photonic crystals and hyperbolic metamaterials
Davidovich, M. V.
2016-12-01
Dispersion equations are obtained and analysis and homogenization are carried out in periodic and quasiperiodic plane layered structures consisting of alternating dielectric layers, metal and dielectric layers, as well as graphene sheets and dielectric (SiO2) layers. Situations are considered when these structures acquire the properties of hyperbolic metamaterials (HMMs), i.e., materials the real parts of whose effective permittivity tensor have opposite signs. It is shown that the application of solely dielectric layers is more promising in the context of reducing losses.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The magnetic anisotropy field in thin films with in-plane uniaxial anisotropy can be deduced from the VSM magnetization curves measured in magnetic fields of constant magnitudes. This offers a new possibility of applying rotational magnetization curves to determine the firstand second-order anisotropy constant in these films. In this paper we report a theoretical derivation of rotational magnetization curve in hexagonal crystal system with easy-plane anisotropy based on the principle of the minimum total energy. This model is applied to calculate and analyze the rotational magnetization process for magnetic spherical particles with hexagonal easy-plane anisotropy when rotating the external magnetic field in the basal plane. The theoretical calculations are consistent with Monte Carlo simulation results. It is found that to well reproduce experimental curves, the effect of coercive force on the magnetization reversal process should be fully considered when the intensity of the external field is much weaker than that of the anisotropy field. Our research proves that the rotational magnetization curve from VSM measurement provides an effective access to analyze the in-plane anisotropy constant K3 in hexagonal compounds, and the suitable experimental condition to measure K3 is met when the ratio of the magnitude of the external field to that of the anisotropy field is around 0.2.
Institute of Scientific and Technical Information of China (English)
WANG AiMin; PANG Hua
2009-01-01
The magnetic anisotropy field in thin films with in-plane uniaxial anisotropy can be deduced from the VSM magnetization curves measured in magnetic fields of constant magnitudes. This offers a new possibility of applying rotational magnetization curves to determine the first- and second-order ani-aotropy constant in these films. In this paper we report a theoretical derivation of rotational magnetiza-tion curve in hexagonal crystal system with easy-plane anisotropy based on the principle of the minimum total energy. This model is applied to calculate and analyze the rotational magnetization process for magnetic spherical particles with hexagonal easy-plane anisotropy when rotating the external magnetic field in the basal plane. The theoretical calculations are consistent with Monte Carlo simulation results. It is found that to well reproduce experimental curves, the effect of coercive force on the magnetization reversal process should be fully considered when the intensity of the ex-ternal field is much weaker than that of the anisotropy field. Our research proves that the rotational magnetization curve from VSM measurement provides an effective access to analyze the in-plane anisotropy constant K3 in hexagonal compounds, and the suitable experimental condition to measure K3 is met when the ratio of the magnitude of the external field to that of the anisotropy field is around 0.2.
Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations
Energy Technology Data Exchange (ETDEWEB)
Nika, Denis L. [E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Physics and Engineering, Moldova State University, Chisinau MD-2009, Republic of Moldova (Moldova, Republic of); Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of California—Riverside, Riverside, California, 92521 (United States); Cocemasov, Alexandr I. [E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Physics and Engineering, Moldova State University, Chisinau MD-2009, Republic of Moldova (Moldova, Republic of); Balandin, Alexander A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of California—Riverside, Riverside, California, 92521 (United States)
2014-07-21
We have studied the phonon specific heat in single-layer, bilayer, and twisted bilayer graphene. The calculations were performed using the Born-von Karman model of lattice dynamics for intralayer atomic interactions and spherically symmetric interatomic potential for interlayer interactions. We found that at temperature T < 15 K, specific heat varies with temperature as T{sup n}, where n = 1 for graphene, n = 1.6 for bilayer graphene, and n = 1.3 for the twisted bilayer graphene. The phonon specific heat reveals an intriguing dependence on the twist angle in bilayer graphene, which is particularly pronounced at low temperature. The results suggest a possibility of phonon engineering of thermal properties of layered materials by twisting the atomic planes.
Interlayer exchange coupling between layers with perpendicular and easy-plane magnetic anisotropies
Fallarino, Lorenzo; Sluka, Volker; Kardasz, Bartek; Pinarbasi, Mustafa; Berger, Andreas; Kent, Andrew D.
2016-08-01
Interlayer exchange coupling between layers with perpendicular and easy-plane magnetic anisotropies separated by a non-magnetic spacer is studied using ferromagnetic resonance. The samples consist of a Co/Ni multilayer with perpendicular magnetic anisotropy and a CoFeB layer with easy-plane anisotropy separated by a variable thickness Ru layer. At a fixed frequency, we show that there is an avoided crossing of layer ferromagnetic resonance modes providing direct evidence for interlayer coupling. The mode dispersions for different Ru thicknesses are fit to a Heisenberg-type model to determine the interlayer exchange coupling strength and layer properties. The resulting interlayer exchange coupling varies continuously from antiferromagnetic to ferromagnetic as a function of the Ru interlayer thickness. These results show that the magnetic layer single domain ground state consists of magnetizations that can be significantly canted with respect to the layer planes and the canting can be tuned by varying the Ru thickness and the layer magnetic characteristics, a capability of interest for applications in spin-transfer torque devices.
On the evolution of rotation of a solid under inelastic collisions with a plane
Markeev, A. P.
2013-11-01
The motion of a solid in a homogeneous gravity field under inelastic collisions with an immovable absolutely smooth horizontal plane is considered. The body is a homogeneous ellipsoid of revolution. There exists a motion in which the ellipsoid symmetry axis is directed along a fixed vertical, the ellipsoid itself rotates about this axis at a constant angular velocity, and the ellipsoid bounce height over the plane decreases from impact to impact because of the collisions. We study the motion of the ellipsoid in a small neighborhood of the motion corresponding to this infinite-impact process. The main goal is to compute the angle between the ellipsoid symmetry axis and the vertical at the discrete time instants corresponding to the collisions. The problem is solved in the first (linear) approximation. The analysis is based on the canonical transformation method used earlier in [1] to solve problems with absolutely elastic collisions. There are quite a few studies dealing with infinite-impact processes (e.g., see the monographs [2, 3]). A method for continuous representation of systems with inelastic collisions was proposed in [4] and efficiently used in [3-5] when analyzing specific mechanical systems.
Directory of Open Access Journals (Sweden)
A. A. Lubchich
2005-07-01
Full Text Available Characteristics of small amplitude plane waves within the medium separated by the plane discontinuity into two half spaces are analysed. The approximation of the ideal one-fluid magnetohydrodynamics (MHD is used. The discontinuities with the nonzero mass flux across them are mainly examined. These are fast or slow shock waves and rotational discontinuities. The dispersion equation for MHD waves within each of half space is obtained in the reference frame connected with the discontinuity surface. The solution of this equation permits one to determine the wave vectors versus the parameter c_{p}, which is the phase velocity of surface discontinuity oscillations. This value of c_{p} is common for all MHD waves and determined by an incident wave or by spontaneous oscillations of the discontinuity surface. The main purpose of the study is a detailed analysis of the dispersion equation solution. This analysis let us draw the following conclusions. (I For a given c_{p}, ahead or behind a discontinuity at most, one diverging wave can transform to a surface wave damping when moving away from the discontinuity. The surface wave can be a fast one or, in rare cases, a slow, magnetoacoustic one. The entropy and Alfvén waves always remain in a usual homogeneous mode. (II For certain values of c_{p} and parameters of the discontinuity behind the front of the fast shock wave, there can be four slow magnetoacoustic waves, satisfying the dispersion equation, and none of the fast magnetoacoustic waves. In this case, one of the four slow magnetoacoustic waves is incident on the fast shock wave from the side of a compressed medium. It is shown that its existence does not contradict the conditions of the evolutionarity of MHD shock waves. The four slow magnetoacoustic waves, satisfying the dispersion equation, can also exist from either side of a slow shock wave or rotational discontinuity. (III The
Energy Technology Data Exchange (ETDEWEB)
Lok, Yian Yian [Academic Service Center, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, Norsarahaida [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, Ioan [Faculty of Mathematics, University of Cluj, R-3400, CP 253, Cluj (Romania)
2003-11-01
The growth of the boundary layer flow of a viscous and incompressible micro-polar fluid started impulsively from rest near the rear stagnation point of a two-dimensional plane surface is studied theoretically. The transformed non-similar boundary-layer equations are solved numerically using a very efficient finite-difference method known as Keller-box method. This method may present well-behaved solutions for the transient (small time) solution up to the separation boundary layer flow. Numerical results are given for the reduced velocity and micro-rotation profiles, as well as for the skin friction coefficient when the material parameter K takes the values K=0 (Newtonian fluid), 0.5, 1, 1.1, 1.5, 2, 2.5 and 3 with the boundary condition for micro-rotation n=0 (strong concentration of microelements) and n=1/2 (weak concentration of microelements), respectively. Important features of these flow characteristics are shown on graphs and in tables. (authors)
High-quality InN films on MgO (100) substrates: The key role of 30° in-plane rotation
Energy Technology Data Exchange (ETDEWEB)
Compeán García, V. D.; López Luna, E.; Rodríguez, A. G.; Vidal, M. A. [Coordinación para la Innovación y Aplicación de la Ciencia y Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí (UASLP), Álvaro Obregón 64, 78000 San Luis Potosí (Mexico); Orozco Hinostroza, I. E. [Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí (Mexico); Escobosa Echavarría, A. [Electric Engineering Department, Centro de Investigación y Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México D.F. (Mexico)
2014-05-12
High crystalline layers of InN were grown on MgO(100) substrates by gas source molecular beam epitaxy. Good quality films were obtained by means of an in-plane rotation process induced by the annealing of an InN buffer layer to minimize the misfit between InN and MgO. In situ reflection high-energy electron diffraction showed linear streaky patterns along the [011{sup ¯}0] azimuth and a superimposed diffraction along the [112{sup ¯}0] azimuth, which correspond to a 30° α-InN film rotation. This rotation reduces the mismatch at the MgO/InN interface from 19.5% to less than 3.5%, increasing the structural quality, which was analyzed by high-resolution X-ray diffraction and Raman spectroscopy. Only the (0002) c plane diffraction of α-InN was observed and was centered at 2θ = 31.4°. Raman spectroscopy showed two modes corresponding to the hexagonal phase: E1(LO) at 591 cm{sup −1} and E2(high) at 488 cm{sup −1}. Hall effect measurements showed a carrier density of 9 × 10{sup 18} cm{sup −3} and an electron Hall mobility of 340 cm{sup 2}/(V s) for a film thickness of 140 nm.
The in-plane free vibration of an elastically supported thin ring rotating at high speeds revisited
Lu, T.; Tsouvalas, A.; Metrikine, A. V.
2017-08-01
The in-plane free vibration of a rotating thin ring is revisited in this paper. A new model is proposed which accounts for the elastic foundation and the through-thickness variation of the radial stress. The emphasis is placed on a proper consideration of the geometrical nonlinearity, which is essential for the consistent modelling of the ring stiffening resulting from the radial expansion caused by rotation. The in-plane stability of a thin ring rotating at relatively high speeds is analysed thoroughly. It is shown that the ring can become unstable should the rotational speed exceed a critical value. This result is new as in most known to the authors previous studies the stability problem is either not considered or it is stated that the in-plane vibration of a rotating ring is stable. In the studies which did address the instability, the conclusions and the employed models are prone to criticism. A parametric study is conducted to illustrate the effects of the ring properties on the in-plane stability. Finally, modes, which appear as stationary displacement patterns of the ring to an observer in the space-fixed reference system, are investigated. It is shown that the stationary patterns can occur prior to the onset of the instability for certain ring parameters.
Institute of Scientific and Technical Information of China (English)
宋海斌; 马在田; 张关泉
1996-01-01
A layer-stripping method is presented for simultaneous inversion of compressional velocity and shear velocity in layered medium from single precritical-incident-angle data of P-P and P-SV plane wave seismogram. A finite bandwidth algorithm is provided and results obviously better than previous research work are obtained by the numerical experiments for band-limited seismogram and synthetic data including noise.
The Acoustic Performance of Plane Laggings and Similar Multi-Layer Acoustic Structures.
Au, Chak Kuen
Acoustic laggings are used to inhibit the transmission of the sound radiated from the vibrating surfaces of machines, ducts, pipes, etc. They are formed of layers of porous materials such as fibreglass or mineral wool, layers of impervious materials such as metal cladding sheets and sometimes airspaces. A novel procedure for estimating the diffuse field 1/3 octave band insertion loss which a plane acoustic lagging produces when applied to a plane structure is developed. This novel procedure, which constitutes the major contribution of the work described in the thesis to new knowledge, is based on sets of formulae which describe how obliquely incident plane sound waves interact with the different basic layers, such as the porous layers and the impervious layers which form the lagging. The validity of the procedure is demonstrated by comparing the results it produces with measured results. The procedure is then used to undertake a parametric study to assess the effect of the properties of the various types of layers. Often the cladding sheet of a lagging is fastened to the base structure which is being lagged and an approximate analysis to consider the effect of such fastening is presented. The influence of corrugated cladding sheets is also considered. The principles used to predict the performance of plane acoustic laggings can be adapted to predict other acoustic properties such as the acoustic absorption of plane acoustic structures and this is done in the final part of the thesis. A comparison is made between the predicted and the measured performances of various types of acoustic structures.
Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations
Schröttle, Josef; Piotrowski, Zbigniew; Gerz, Thomas; Englberger, Antonia; Dörnbrack, Andreas
2016-09-01
Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.
The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet
Yuan, Wenjing; Zhou, Yu; Li, Yingru; Li, Chun; Peng, Hailin; Zhang, Jin; Liu, Zhongfan; Dai, Liming; Shi, Gaoquan
2013-01-01
Graphene has a unique atom-thick two-dimensional structure and excellent properties, making it attractive for a variety of electrochemical applications, including electrosynthesis, electrochemical sensors or electrocatalysis, and energy conversion and storage. However, the electrochemistry of single-layer graphene has not yet been well understood, possibly due to the technical difficulties in handling individual graphene sheet. Here, we report the electrochemical behavior at single-layer graphene-based electrodes, comparing the basal plane of graphene to its edge. The graphene edge showed 4 orders of magnitude higher specific capacitance, much faster electron transfer rate and stronger electrocatalytic activity than those of graphene basal plane. A convergent diffusion effect was observed at the sub-nanometer thick graphene edge-electrode to accelerate the electrochemical reactions. Coupling with the high conductivity of a high-quality graphene basal plane, graphene edge is an ideal electrode for electrocatalysis and for the storage of capacitive charges. PMID:23896697
Dispersion of circumferential waves in cylindrically anisotropic layered pipes in plane strain.
Vasudeva, R Y; Sudheer, G; Vema, Anu Radha
2008-06-01
Dispersion spectra of circumferential waves along the periphery of circular pipes made of layered anisotropic materials do not seem to be available in literature. This note attempts to partially fill this gap by providing the dispersion spectra in two and three layered cylindrically anisotropic pipes in plane strain motion. The spectra for pipes executing time harmonic vibrations in plane strain condition are obtained as roots of a numerical characteristic equation derived extending a weighted residual method of solution of the governing equations for a single layer pipe [Towfighi et al., J. Appl. Mech. 69, 283-291 (2002)] to a general N layered pipe. The anisotropic elastic coefficients are considered to be independent of position coordinates and the bond condition at interfaces of the layers is assumed to be perfect. Numerical illustrations are presented for two and three layered pipes with anisotropy directions differing in adjacent layers. Increase in curvature of the pipe and inclination of the fiber orientation in the outermost layers to propagation direction are factors that seem to influence the mode number and pattern within the limited examples worked out.
Ibata, Rodrigo A; Lewis, Geraint F; Martin, Nicolas F; Conn, Anthony; Elahi, Pascal; Arias, Veronica; Fernando, Nuwanthika
2014-01-01
In a recent contribution, Bahl \\& Baumgardt investigated the incidence of planar alignments of satellite galaxies in the Millennium-II simulation, and concluded that vast thin planes of dwarf galaxies, similar to that observed in the Andromeda galaxy (M31), occur frequently by chance in $\\Lambda$-Cold Dark Matter cosmology. However, their analysis did not capture the essential fact that the observed alignment is simultaneously radially extended, yet thin, and kinematically unusual. With the caveat that the Millennium-II simulation may not have sufficient mass resolution to identify confidently simulacra of low-luminosity dwarf galaxies, we re-examine that simulation for planar structures, using the same method as employed by Ibata et al. (2013) on the real M31 satellites. We find that 0.04\\% of host galaxies display satellite alignments that are at least as extreme as the observations, when we consider their extent, thickness and number of members rotating in the same sense. We further investigate the ang...
Karagodova, Tamara Y.; Kuptsova, Anna V.
1998-10-01
The method of computer simulations on nonlinear resonant magneto-optical effects developed for real multi-level atoms in the two laser fields of arbitrary intensity and external magnetic field is applied for the polarization effects of different types calculations and investigations of the dependence of the characteristics of these effects on magnetic field strength, intensities, polarizations and detunings of laser fields for alkaline atoms. The essence of the method consists in simulations and analysis of the plots of dependence of quasienergies on parameters (detunings and intensities of radiation fields, magnetic field strength), which are obtained with the help of sorting subprogram, and selection of suitable algorithms for calculations of characteristics of nonlinear resonant magneto-optical effects. One-photon and two photon resonant effects are investigated for wide range of magnetic field strength from Zeeman to Paschen Back effects. Some new features in the spectra of rotation of plane of polarization and circular dicohroizm of different types are predicted. The results show the agreement with known experiments. Such calculations of nonlinear resonant magneto-optical effects in the intense laser fields resonant to adjacent transitions and magnetic field show the opportunity of investigation the modifications of electronic structure due to intense radiation fields and strong external magnetic field in atomic gases and also may be used for the treatment of new methods of phase-polarization selection of modes of tunable lasers.
Energy Technology Data Exchange (ETDEWEB)
Fosco, César D. [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, R8402AGP, Bariloche (Argentina); Lombardo, Fernando C., E-mail: lombardo@df.uba.ar [Departamento de Física Juan José Giambiagi, FCEyN UBA and IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)
2015-12-17
We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation.
Energy Technology Data Exchange (ETDEWEB)
Fosco, Cesar D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, Instituto Balseiro, Bariloche (Argentina); Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA y IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2015-12-15
We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)
Ainala, Khartik; Mekuria, Rufael N.; Khathariya, Birendra; Li, Zhu; Wang, Ye-Kui; Joshi, Rajan
2016-09-01
Recent advances in point cloud capture and applications in VR/AR sparked new interests in the point cloud data compression. Point Clouds are often organized and compressed with octree based structures. The octree subdivision sequence is often serialized in a sequence of bytes that are subsequently entropy encoded using range coding, arithmetic coding or other methods. Such octree based algorithms are efficient only up to a certain level of detail as they have an exponential run-time in the number of subdivision levels. In addition, the compression efficiency diminishes when the number of subdivision levels increases. Therefore, in this work we present an alternative enhancement layer to the coarse octree coded point cloud. In this case, the base layer of the point cloud is coded in known octree based fashion, but the higher level of details are coded in a different way in an enhancement layer bit-stream. The enhancement layer coding method takes the distribution of the points into account and projects points to geometric primitives, i.e. planes. It then stores residuals and applies entropy encoding with a learning based technique. The plane projection method is used for both geometry compression and color attribute compression. For color coding the method is used to enable efficient raster scanning of the color attributes on the plane to map them to an image grid. Results show that both improved compression performance and faster run-times are achieved for geometry and color attribute compression in point clouds.
Shui, Xiaolong; Ying, Xiaozhou; Kong, Jianzhong; Feng, Yongzeng; Hu, Wei; Guo, Xiaoshan; Wang, Gang
2015-08-01
Our objective was to measure the sagittal plane rotational (flexion and extension) displacement of hemipelvis radiologically and analyze the ratio of flexion and extension displacement of unstable pelvic fractures. We used 8 cadaveric models to study the radiographic evidence of pelvic fractures in the sagittal plane. We performed pelvic osteotomy on 8 cadavers to simulate anterior and posterior pelvic ring injury. Radiological data were measured in the flexion and extension group under different angles (5°, 10°, 15°, 20°, and 25°). We retrospectively reviewed 164 patients who were diagnosed with a unilateral fracture of the pelvis. Pelvic ring displacement was identified and recorded radiographically in cadaveric models. The flexion and extension displacement of pelvic fractures was measured in terms of the vertical distance of fracture from the top of iliac crest to the pubic tubercle (CD) or from the top of iliac crest to the lowest point of ischial tuberosity (AB). Fifty-seven pelves showed flexion displacement and 15 showed extension displacement. Closed reduction including internal fixation and external fixation was successfully used in 141 cases (86.0 %). The success rates of closed reduction in flexion and extension displacement groups were 77 and 73 %, respectively, which were lower than in unstable pelvic ring fractures. The sagittal plane rotation (flexion and extension) displacement of pelvic fractures could be measured by special points and lines on the radiographs. Minimally invasive reduction should be based on clearly identified differences between the sagittal plane rotation and the vertical displacement of pelvic fractures.
Fosco, César D
2015-01-01
We study the properties of the classical electromagnetic (EM) radiation produced by two phys- ically different yet closely related systems, which may be regarded as classical analogues of the Dynamical Casimir Effect (DCE). They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect conductor boundary conditions, while the other performs a rigid oscil- latory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written i...
Directory of Open Access Journals (Sweden)
Maity N.
2017-06-01
Full Text Available The article is concernedwith the possibility of plane wave propagation in a rotating elastic medium under the action of magnetic and thermal fields. The material is assumed to be fibre-reinforced with increased stiffness, strength and load bearing capacity. Green and Nagdhi’s concepts of generalized thermoelastic models II and III have been followed in the governing equations expressed in tensor notation. The effects of various parameters of the applied fields on the plane wave velocity have been shown graphically.
Jang, Jun-Hyeok; Oh, Jae-Seop
2014-01-01
[Purpose] The aim of this study was to investigate changes in electromyographic (EMG) activity of the infraspinatus and posterior deltoid muscles during shoulder external rotation under different shoulder flexion angles. [Subjects] Thirteen participants were included in this study. [Methods] The participants performed isometric shoulder external rotation at 45°, 90°, and 135° of shoulder flexion. A surface EMG system recorded the EMG activity of the infraspinatus and posterior deltoid muscles...
Analysis of Properties for Radiowave Polarization Plane Rotation%电波极化面旋转特性研究
Institute of Scientific and Technical Information of China (English)
赵红梅; 江长荫; 王健
2011-01-01
推导了电波极化面旋转角表达式,利用实测电子浓度、地磁场磁感应强度模与磁倾角剖面,对定高载体、不同天线侧视方向与地球法线夹角、不同地区、不同频段、不同时段、不同太阳活动情况下的电波极化面旋转角进行了仿真,并对仿真结果进行了分析,得出了电波极化面旋转角的时域、地域、频域等规律和特性.为这一领域的深入研究提供了参考.%The radiowave polarization plane rotation is caused by the ionospheric dispersion and the double refraction. Begin with the ionosphere refraction index, the formula of radiaowave polarization plane rotation angle is derived in this paper. Using the measured electron density, magnetic induction intensity module of geomagnetic field, and magnetic obliquity profiles, the radiaowave polarization plane rotation angle is simulated for fixed height carrier under different angles between antenna sideview and earth normal, different regions, different frequency bands, different time slots, and different solar activity cases, which is described by column diagraphs and tables. The simulation results and the rules and properties of radiowave polarization plane rotation angle are analyzed and summarized in its seasonal, temporal, regional, frequency-domain aspects. (1) The rotation angle will decrease as the frequency arises, and will increase as the angle between antenna side-view and earth normal arises. (2) The rotation angle will increase as the sun polar activity arises, larger in the day and smaller at night. (3) At night, the rotation angle in summer is the largest and in winter is the smallest as in high and middle latitude, larger in spring and autumn and smaller in summer and winter as in low latitude. (4) In the day, the rotation angle in winter and spring is larger that in summer and autumn as in high latitude, larger in spring and autumn and smaller in summer and autumn.
van den Hoorn, W; Bruijn, S M; Meijer, O G; Hodges, P W; van Dieën, J H
2012-01-10
This study investigated whether people with low back pain (LBP) reduce variability of movement between the pelvis and thorax (trunk) in the transverse plane during gait at different speeds compared to healthy controls. Thirteen people with chronic LBP and twelve healthy controls walked on a treadmill at speeds from 0.5 to 1.72 m/s, with increments of 0.11 m/s. Step-to-step variability of the trunk, pelvis, and thorax rotations were calculated. Step-to-step deviations of pelvis and thorax rotations from the average pattern (residual rotations) were correlated to each other, and the linear regression coefficients between these deviations calculated. Spectral analysis was used to determine the frequencies of the residual rotations, to infer the relation of reduced trunk variability to trunk stiffness and/or damping. Variability of trunk motion (thorax relative to pelvis) was lower (P=0.02), covariance between the residual rotations of pelvis and thorax motions was higher (P=0.03), and the linear regression coefficients were closer to 1 (P=0.05) in the LBP group. Most power of segmental residual rotations was below stride frequency (~1 Hz). In this frequency range, trunk residual rotations had less power than pelvis or thorax residual rotations. These data show that people with LBP had lower variability of trunk rotations, as a result of the coupling of deviations of residual rotations in one segment to deviations of a similar shape (correlation) and amplitude (regression coefficient) in the other segment. These results support the argument that people with LBP adopt a protective movement strategy, possibly by increased trunk stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.
Maity, Narottam; Barik, S. P.; Chaudhuri, P. K.
2016-09-01
In this paper, plane wave propagation in a rotating anisotropic material of general nature under the action of a magnetic field of constant magnitude has been investigated. The material is supposed to be porous in nature and contains voids. Following the concept of [Cowin S. C. and Nunziato, J. W. [1983] “Linear elastic materials with voids,” J. Elasticity 13, 125-147.] the governing equations of motion have been written in tensor notation taking account of rotation, magnetic field effect and presence of voids in the medium and the possibility of plane wave propagation has been examined. A number of particular cases have been derived from our general results to match with previously obtained results in this area. Effects of various parameters on the velocity of wave propagation have been presented graphically.
Sereno, M; Debiossac, M; Kalashnyk, N; Roncin, P
2016-01-01
A procedure to measure the residual tilt angle $\\tau$ between a flat surface and the azimuthal rotation axis of the sample holder is described. When the incidence angle $\\theta$ and readout of the azimuthal angle $\\phi$ are controlled by motors, an active compensation mechanism can be implemented to reduce the effect of the tilt angle during azimuthal motion. After this correction, the effective angle of incidence is kept fixed, and only the small residual oscillation of the scattering plane remains.
Directory of Open Access Journals (Sweden)
Fernanda Regina Godoy ROCHA
2015-01-01
Full Text Available Mechanical instrumentation of the root surface causes the formation of a smear layer, which is a physical barrier that can affect periodontal regeneration. Although different procedures have been proposed to remove the smear layer, there is no information concerning how long the smear layer persists on root surfaces after instrumentation in vivo. This study assessed the presence of the smear layer on root surfaces over a 28-day period after subgingival instrumentation with hand instruments. Fifty human teeth that were referred for extraction because of advanced periodontal disease were scaled and root planed (SRP by a single experienced operator. Ten teeth were randomly assigned to be extracted 7, 14, 21, and 28 days after SRP. Another 10 teeth were extracted immediately after instrumentation (Day 0, control group. The subgingival area of the instrumented roots was evaluated with scanning electron microscopy. Representative photomicrographs were assessed by a blinded and calibrated examiner according to a scoring system. A rapid and significant (p < 0.05, Z test initial reduction in the amount of smear layer was observed at 7 days, and a further significant (p < 0.05 decrease was observed 28 days after SRP. Interestingly, even 28 days after SRP, the smear layer was still present on root surfaces. This study showed that the physiological elimination of the smear layer occurred in a biphasic manner: a rapid initial reduction was observed 7 days after instrumentation, which was followed by a slow process leading to a significant decrease 28 days after instrumentation.
The radiation of sound by the instability waves of a compressible plane turbulent shear layer
Tam, C. K. W.; Morris, P. J.
1980-01-01
The problem of acoustic radiation generated by instability waves of a compressible plane turbulent shear layer is solved. The solution provided is valid up to the acoustic far-field region. It represents a significant improvement over the solution obtained by classical hydrodynamic-stability theory which is essentially a local solution with the acoustic radiation suppressed. The basic instability-wave solution which is valid in the shear layer and the near-field region is constructed in terms of an asymptotic expansion using the method of multiple scales. This solution accounts for the effects of the slightly divergent mean flow. It is shown that the multiple-scales asymptotic expansion is not uniformly valid far from the shear layer. Continuation of this solution into the entire upper half-plane is described. The extended solution enables the near- and far-field pressure fluctuations associated with the instability wave to be determined. Numerical results show that the directivity pattern of acoustic radiation into the stationary medium peaks at 20 degrees to the axis of the shear layer in the downstream direction for supersonic flows. This agrees qualitatively with the observed noise-directivity patterns of supersonic jets.
Reimer, Oliver; Meier, Daniel; Bovender, Michel; Helmich, Lars; Dreessen, Jan-Oliver; Krieft, Jan; Shestakov, Anatoly S; Back, Christian H; Schmalhorst, Jan-Michael; Hütten, Andreas; Reiss, Günter; Kuschel, Timo
2017-01-17
A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect.
In-Plane Switching Mode for Liquid Crystal Displays Using a DNA Alignment Layer.
Cha, Yun Jeong; Gim, Min-Jun; Oh, Kyunghwan; Yoon, Dong Ki
2015-06-24
We successfully fabricated the in-plane switching mode (IPS) LC display (LCD) based on a double stranded DNA (dsDNA) alignment layer. As widely known, the DNA has the right-handed double helical structure that has naturally grown grooves with a very regular period, which can be used as an alignment layer to control the orientation of liquid crystal (LC) molecules. The LC molecules on this topographical layer of DNA material align obliquely at a specific angle with respect to the direction of DNA chains, providing an instant and convenient tool for the fabrication of the IPS display compared to the conventional ways such as rubbing and mechanical shearing methods. The electro-optical performance and response time of this device were also investigated. Our result will be of great use in further exploration of the electro-optical properties of the other biomaterials.
Plane strain deformation of a multi-layered poroelastic half-space by surface loads
Indian Academy of Sciences (India)
Sarva Jit Singh; Sunita Rani
2006-12-01
The Biot linearized quasi-static theory of ﬂuid-inﬁltrated porous materials is used to formulate the problem of the two-dimensional plane strain deformation of a multi-layered poroelastic half-space by surface loads. The Fourier–Laplace transforms of the stresses, displacements, pore pressure and ﬂuid ﬂux in each homogeneous layer of the multi-layered half-space are expressed in terms of six arbitrary constants. Generalized Thomson–Haskell matrix method is used to obtain the deformation ﬁeld. Simpliﬁed explicit expressions for the elements of the 6 × 6 propagator matrix for the poroelastic medium are obtained. As an example of the possible applications of the analytical formulation developed, formal solution is given for normal strip loading, normal line loading and shear line loading.
Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection.
Miron, Ioan Mihai; Garello, Kevin; Gaudin, Gilles; Zermatten, Pierre-Jean; Costache, Marius V; Auffret, Stéphane; Bandiera, Sébastien; Rodmacq, Bernard; Schuhl, Alain; Gambardella, Pietro
2011-08-11
Modern computing technology is based on writing, storing and retrieving information encoded as magnetic bits. Although the giant magnetoresistance effect has improved the electrical read out of memory elements, magnetic writing remains the object of major research efforts. Despite several reports of methods to reverse the polarity of nanosized magnets by means of local electric fields and currents, the simple reversal of a high-coercivity, single-layer ferromagnet remains a challenge. Materials with large coercivity and perpendicular magnetic anisotropy represent the mainstay of data storage media, owing to their ability to retain a stable magnetization state over long periods of time and their amenability to miniaturization. However, the same anisotropy properties that make a material attractive for storage also make it hard to write to. Here we demonstrate switching of a perpendicularly magnetized cobalt dot driven by in-plane current injection at room temperature. Our device is composed of a thin cobalt layer with strong perpendicular anisotropy and Rashba interaction induced by asymmetric platinum and AlOx interface layers. The effective switching field is orthogonal to the direction of the magnetization and to the Rashba field. The symmetry of the switching field is consistent with the spin accumulation induced by the Rashba interaction and the spin-dependent mobility observed in non-magnetic semiconductors, as well as with the torque induced by the spin Hall effect in the platinum layer. Our measurements indicate that the switching efficiency increases with the magnetic anisotropy of the cobalt layer and the oxidation of the aluminium layer, which is uppermost, suggesting that the Rashba interaction has a key role in the reversal mechanism. To prove the potential of in-plane current switching for spintronic applications, we construct a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures. This device is simple
Directory of Open Access Journals (Sweden)
R. Patra
2014-01-01
Full Text Available This paper is concerned with an internal crack problem in an infinite functionally graded elastic layer. The crack is opened by an internal uniform pressure p0 along its surface. The layer surfaces are supposed to be acted on by symmetrically applied concentrated forces of magnitude P/2 with respect to the centre of the crack. The applied concentrated force may be compressive or tensile in nature. Elastic parameters λ and μ are assumed to vary along the normal to the plane of crack. The problem is solved by using integral transform technique. The solution of the problem has been reduced to the solution of a Cauchy-type singular integral equation, which requires numerical treatment. The stress-intensity factors and the crack opening displacements are determined and the effects of graded parameters on them are shown graphically.
Multi-layer film flow down an inclined plane: experimental investigation
Henry, Daniel
2014-11-19
We report the results from an experimental study of the flow of a film down an inclined plane where the film itself is comprised of up to three layers of different liquids. By measuring the total film thickness for a broad range of parameters including flow rates and liquid physical properties, we provide a thorough and systematic test of the single-layer approximation for multi-layer films for Reynolds numbers Re = ρQ/μ≈0.03-60. In addition, we also measure the change in film thickness of individual layers as a function of flow rates for a variety of experimental configurations. With the aid of high-speed particle tracking, we derive the velocity fields and free-surface velocities to compare to the single-layer approximation. Furthermore, we provide experimental evidence of small capillary ridge formations close to the point where two layers merge and compare our experimental parameter range for the occurrence of this phenomenon to those previously reported.
Papadakis, Panagiotis I; Piperakis, George S; Kalogerakis, Michael A
2015-02-01
This work studies the reflection coefficient of a plane wave incident on a seafloor consisting of two layers (sediment and substrate), whose interface is linear but not parallel to the water-sediment interface. This is an extension of the well-established and studied reflection coefficient concept for seafloors with parallel layers. Moreover this study introduces the concept of the Coherent Reflection Coefficient (CRC) that extends the usual Rayleigh reflection coefficient definition not only at the water-sediment interface but inside the water column as well. The mathematical formulation of the CRC is derived and its numerical implementation is explained. Based on this implementation a numerical code is developed and incorporated-among other codes-in a user-friendly graphics toolbox that was built to facilitate CRC calculations. Numerical examples for realistic seafloors are presented and the derived results are compared to similar ones for parallel layers, indicating that even for small inclination angles the reflection coefficient difference between parallel and slanted interface layers is substantial, hence cannot be ignored. An imminent application of the extended seafloor model and the CRC introduced in this work is the enhancement of geophysics inversion schemes for the estimation of the seafloor parameters.
Effects of Nano- and Microscale SiO2 Masks on the Growth of a-Plane GaN Layers on r-Plane Sapphire
Son, Ji-Su; Miao, Cao; Honda, Yoshio; Yamaguchi, Masahito; Amano, Hiroshi; Seo, Yong Gon; Hwang, Sung-Min; Baik, Kwang Hyeon
2013-08-01
We report on the combined effects of a-plane GaN layers on a nanoscale patterned insulator on an r-plane sapphire substrate and epitaxial lateral overgrowth (ELOG) techniques. The fully coalescent a-plane GaN layer using nano- and microscale SiO2 masks showed the formation of nano- and microscale voids on the masks, respectively. Atomic force microscopy (AFM) measurements revealed a surface roughness of 0.63 nm and a submicron pit density of ˜7.8 ×107 cm-2. Photoluminescence (PL) intensity was enhanced by a factor of 9.0 in comparison with that of a planar sample. Omega full-width at half-maximum (FWHM) values of the (11bar 20) X-ray rocking curve along the c- and m-axes were 553 and 788 arcsec, respectively. A plan-view cathodoluminescence (CL) mapping image showed high luminescence intensity on the SiO2 masks.
Energy Technology Data Exchange (ETDEWEB)
Caston, Terry B.; Murphy, Andrew R.; Harris, Tequila A.L. [Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA (United States)
2011-01-15
In this study, woven gas diffusion layers (GDLs) with varying weave type and tightness are investigated. Plain and twill weave patterns were manufactured in-house. The in-plane and through-plane air permeability of the woven samples were tested, and mercury intrusion porosimetry (MIP) tests were performed to study the pore structure. It was found that the twill weave has a higher permeability than the plain weave, which is consistent with literature. Like non-woven carbon papers, woven GDLs have higher in-plane permeability than through-plane permeability; however it has been shown that it is possible to manufacture a GDL with higher through-plane permeability than in-plane permeability. It was also concluded that the percentage of macropores in the weave is the driving factor in determining the through-plane air permeability. This work lays the groundwork for future studies to attempt to characterize the relationship between the weave structure and the air permeability in woven GDLs. (author)
National Aeronautics and Space Administration — Dualband focal plane arrays (FPAs) based on gallium-free Type-II strained layer superlattice (SLS) photodiodes have recently experienced significant advances. We...
The three-dimensional evolution of a plane mixing layer - The Kelvin-Helmholtz rollup
Rogers, Michael M.; Moser, Robert D.
1992-01-01
The hydrodynamic evolution of an incompressible plane mixing layer is addressed to elucidate scalar mixing in free shear flows. A detailed description of the onset of three-dimensionality in a mixing layer before or in the absence of pairing is presented. Various simulations were performed to investigate the sensitivity of these results to variations in initial conditions. These variations included changes in amplitude, wavelength, functional form, and relative phasing of the initial low-wavenumber disturbances. Pierrehumber and Widnall's (1982) translative instability eigenfunctions are found to include rib vortices in the braid region and oppositely signed streamwise vorticity in the roller core. The translative instability is an instability of the late-time oversaturated flow. Three-dimensional perturbation growth similar to that of the translative instability can occur whenever spanwise vorticity is present in the braid region. The nonlinear effects that occur when the initial rib circulation is sufficiently high are discussed.
Determining the imaging plane of a retinal capillary layer in adaptive optical imaging
Yang, Le-Bao; Hu, Li-Fa; Li, Da-Yu; Cao, Zhao-Liang; Mu, Quan-Quan; Ma, Ji; Xuan, Li
2016-09-01
Even in the early stage, endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm. However, the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter. The human retina is a thin and multiple layer tissue, and the layer of capillaries less than 10 μm in diameter only exists in the inner nuclear layer. The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers, which varies from person to person. Therefore, determining reasonable capillary layer (CL) position in different human eyes is very difficult. In this paper, we propose a method to determine the position of retinal CL based on the rod&cone cell layer. The public positions of CL are recognized with 15 subjects from 40 to 59 years old, and the imaging planes of CL are calculated by the effective focal length of the human eye. High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system (LCAOS) validate our method. All of the subjects’ CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer, which is influenced by the depth of focus. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194).
THE CONNECTION BETWEEN EKMAN AND STEWARTSON LAYERS FOR A ROTATING-DISK
When a disk of finite radius and the surrounding medium rotate coaxially with slightly different angular velocities, a so-called Stewartson layer exists at the edge of the disk. The properties of this layer outside the boundary layer of the disk have been given in a previous publication. In the
Hysteretic rotational magnetization of pinned layer in NiO spin-valve
Kim, C G; Hwang, D G; Lee, S S; Kim, C O
2002-01-01
The magnetoresistance (MR) curves during the rotation of magnetic field in NiO spin-valve are well described by taking into account the involved magnetization process of free and pinned layers according to rotating field strength. In particular, hysteretic MR characteristics pronounced in a field strength of 1.5 times the exchange field are ascribed for by the viscosity effect on magnetization rotation of pinned layer. These analyses of MR curves provide a basis decomposing the MR components from each magnetization process of free and pinned layers.
Institute of Scientific and Technical Information of China (English)
HU Bo; YUE Jian-hua; YANG Hai-yan
2009-01-01
For some time, whole space feature as a theoretical problem has been a puzzle in mining transient electromagnetic method (TEM). We have introduced a detailed method of calculating the transient response of a vertical magnetic bipolar source in a whole space plane layered medium in order to obtain whole space features. After designing a whole space plane layered medium model, equations were established based on boundary conditions in terms of electromagnetic vector potential. Expressions of electromag-netic fields were obtained by solving these equations. The expressions were computed by the Hankel transform after dispersion. The results in a frequency domain were changed into a time domain by using a multinomial cosine transform method. The expressions were correctly validated by comparing them with the analytical solution in half space. The half space and whole space results show that the whole space features are clear, suggesting that the theory of half space is not suitable for the whole space. Our algorithm supplied the technical instrument for studying the distributed features of whole space transient electromagnetic fields.
Matsumoto, R.; Imamura, H.
2016-12-01
Spin-torque induced magnetization dynamics in a spin-torque oscillator with an in-plane (IP) magnetized free layer and an out-of-plane (OP) magnetized polarizer under IP shape-anisotropy field (Hk) and applied IP magnetic field (Ha) was theoretically studied based on the macrospin model. The rigorous analytical expression of the critical current density (Jc1) for the OP precession was obtained. The obtained expression successfully reproduces the experimentally obtained Ha-dependence of Jc1 reported in [D. Houssameddine et al., Nat. Mater. 6, 447 (2007)].
Directory of Open Access Journals (Sweden)
R. Matsumoto
2016-12-01
Full Text Available Spin-torque induced magnetization dynamics in a spin-torque oscillator with an in-plane (IP magnetized free layer and an out-of-plane (OP magnetized polarizer under IP shape-anisotropy field (Hk and applied IP magnetic field (Ha was theoretically studied based on the macrospin model. The rigorous analytical expression of the critical current density (Jc1 for the OP precession was obtained. The obtained expression successfully reproduces the experimentally obtained Ha-dependence of Jc1 reported in [D. Houssameddine et al., Nat. Mater. 6, 447 (2007].
RoboPol: First season rotations of optical polarization plane in blazars
Blinov, D; Papadakis, I; Kiehlmann, S; Panopoulou, G; Liodakis, I; King, O G; Angelakis, E; Baloković, M; Das, H; Feiler, R; Fuhrmann, L; Hovatta, T; Khodade, P; Kus, A; Kylafis, N; Myserlis, I; Modi, D; Pazderska, B; Pazderski, E; Papamastorakis, I; Pearson, T J; Rajarshi, C; Ramaprakash, A; Reig, P; Readhead, A C S; Tassis, K; Zensus, J A
2015-01-01
We present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring program of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma rays is investigated using the dataset obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations have significantly larger amplitude and faster variations of polarization angle in optical than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability $\\le 1.5 \\times 10^{-2}$) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely ($\\sim 5 \\times 10^{-5}$) that none of o...
Suess, D.; Vogler, C.; Bruckner, F.; Sepehri-Amin, H.; Abert, C.
2017-06-01
One essential feature in magnetic random access memory cells is the spin torque efficiency, which describes the ratio of the critical switching current to the energy barrier. In this paper, it is reported that the spin torque efficiency can be improved by a factor of 3.2 by the use of a dual free layer device, which consists of one layer with perpendicular crystalline anisotropy and another layer with in-plane crystalline anisotropy. Detailed simulations solving the spin transport equations simultaneously with the micromagnetics equation were performed in order to understand the origin of the switching current reduction by a factor of 4 for the dual layer structure compared to a single layer structure. The main reason could be attributed to an increased spin accumulation within the free layer due to the dynamical tilting of the magnetization within the in-plane region of the dual free layer.
Angus, Garry W; Gentile, Gianfranco; Diaferio, Antonaldo
2016-01-01
The Andromeda galaxy is observed to have a system of two large dwarf ellipticals and ~13 smaller satellite galaxies that are currently co-rotating in a thin plane, in addition to 2 counter-rotating satellite galaxies. We explored the consistency of those observations with a scenario where the majority of the co-rotating satellite galaxies originated from a subhalo group, where NGC 205 was the host and the satellite galaxies occupied dark matter sub-subhalos. We ran N-body simulations of a close encounter between NGC 205 and M31. In the simulations, NGC 205 was surrounded by massless particles to statistically sample the distribution of the sub-subhalos expected in a subhalo that has a mass similar to NGC 205. We made Monte Carlo samplings and found that, using a set of reference parameters, the probability of producing a thinner distribution of sub-subhalos than the observed NGC 205 + 15 smaller satellites (thus including the 2 counter-rotators, but excluding M32) increased from <1e-8 for the initial distr...
The effect of habituation and plane of rotation on vestibular perceptual responses.
Grunfeld, E A; Okada, T; Jáuregui-Renaud, K; Bronstein, A M
2000-01-01
A technique was applied to assess vestibular sensation without reference to external spatial, position cues. The stimuli were stopping responses to velocity-steps of 90 deg/s in the dark. Subjects indicated their perceived angular velocity by turning a flywheel connected to a tachogenerator. Two separate experiments were conducted. In one, subjects were rotated in yaw about an earth-vertical axis before and after prolonged rotational or visual (optokinetic) stimuli. In the second experiment, subjects were rotated in roll supine, with either the head ('roll centred') or the feet ('roll eccentric') on the axis of rotation. The two aims of the paper were to (i) examine the effect of repetitive vestibular and optokinetic stimulation on the time constant of decay of vestibular sensation in yaw; (ii) to compare vestibular sensation responses to rotation in roll both with and without the addition of a Z-axis centrifugal force. The pre-habituation sensation response in yaw decayed exponentially with a median time constant of 12.8 s. The duration of the sensation responses were significantly reduced following both prolonged vestibular and optokinetic stimulation. The reduction in vestibular responses following prolonged visual and vestibular stimuli, 1) is likely to occur in velocity storage mechanisms mediating ocular and perceptual responses, 2) may represent a mechanism for reducing the disorientating consequences of visual-vestibular conflict and 3) supports the use of optokinetic stimuli as a treatment for vestibular patients. The time constant of the sensation responses in roll was shorter and not significantly influenced by head position: 5.7 s in the head-centred position compared to 4.7 s in the eccentric head position. Therefore, perceptual as well as ocular responses to rotation in roll are determined primarily by cupula dynamics and not influenced by velocity storage.
Enhanced Faraday Rotation via Resonant Tunnelling in Tri-Layers Containing Magneto-Optical Metals
Moccia, Massimo; Galdi, Vincenzo; Alu', Andrea; Engheta, Nader
2013-01-01
We study resonant tunnelling effects that can occur in tri-layer structures featuring a dielectric layer sandwiched between two magneto-optical-metal layers. We show that the resonance splitting associated with these phenomena can be exploited to enhance Faraday rotation at optical frequencies. Our results indicate that, in the presence of realistic loss levels, a tri-layer structure of sub-wavelength thickness is capable of yielding sensible (~10{\\deg}) Faraday rotation with transmittance levels that are an order of magnitude larger than those attainable with a standalone slab of magneto-optical metal of same thickness.
Raman and Photoluminescence Studies of In-plane Anisotropic Layered Materials
Pant, Anupum
This thesis presents systematic studies on angle dependent Raman and Photoluminescence (PL) of a new class of layered materials, Transition Metal Trichalcogenides (TMTCs), which are made up of layers possessing anisotropic structure within the van-der-Waals plane. The crystal structure of individual layer of MX3 compounds consists of aligned nanowire like 1D chains running along the b-axis direction. The work focuses on the growth of two members of this family - ZrS3 and TiS3 - through Chemical Vapor Transport Method (CVT), with consequent angle dependent Raman and PL studies which highlight their in-plane optically anisotropic properties. Results highlight that the optical properties of few-layer flakes are highly anisotropic as evidenced by large PL intensity variation with polarization direction (in ZrS3) and an intense variation in Raman intensity with variation in polarization direction (in both ZrS3 and TiS3). Results suggest that light is efficiently absorbed when E-field of the polarized incident excitation laser is polarized along the chain (b-axis). It is greatly attenuated and absorption is reduced when field is polarized perpendicular to the length of 1D-like chains, as wavelength of the exciting light is much longer than the width of each 1D chain. Observed PL variation with respect to the azimuthal flake angle is similar to what has been previously observed in 1D materials like nanowires. However, in TMTCs, since the 1D chains interact with each other, it gives rise to a unique linear dichroism response that falls between 2D and 1D like behavior. These results not only mark the very first demonstration of high PL polarization anisotropy in 2D systems, but also provide a novel insight into how interaction between adjacent 1D-like chains and the 2D nature of each layer influences the overall optical anisotropy of Quasi-1D materials. The presented results are anticipated to have impact in technologies involving polarized detection, near-field imaging
Reflection and Transmission of Plane Electromagnetic Waves by a Geologic Layer.
Energy Technology Data Exchange (ETDEWEB)
Aldridge, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-04-01
Electric field and magnetic field reflection and transmission responses generated by a plane wave normally incident onto a finite - thickness geologic layer are mathematically derived and numerically evaluated. A thin layer with enhanced electric current conductivity and/or magnetic permeability is a reasonable geophysical representation of a hydraulic fracture inject ed with a high - contrast proppant pack. Both theory and numerics indicate that backward - and forward - scattered electromagnetic wavefields are potentially observable in a field experiment, despite the extreme thinness of a fracture compared to a typical low - frequency electromagnetic wavelength. The First Born Approximation (FBA) representation of layer scattering, significant for inversion studies, is shown to be accurate for a thin layer with mild medium parameter (i.e., conductivity, permeability, and per mittivity) contrasts with the surrounding homogeneous wholespace. However, FBA scattering theory breaks down for thick layers and strong parameter contrasts. ACKNOWLEDGEMENTS Sandia National Laboratories is a multi - mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. This research is conducted under the auspices of CRADA (Cooperative Research and Development Agreement) SC11/01780.00 between Carbo Ceramics Inc. and Sandia National Laboratories. The author acknowledges former Carbo R&D Vic e - President Mr. Chad Cannan and former SNL Geophysics Department manage r Ms. Amy Halloran for their interest i n and support of this work. Technical discussions with Project Manager and Principal Investigator Dr. Chester J. Weiss of the SNL Geophysics Department greatly benefited this work. Dr. Lewis C. Bartel, formerly with S NL and presently a consultant to Carbo Ceramics, provided many useful and intuitive insights, and
UNSTEADY PLANE MHD BOUNDARY LAYER FLOW OF A FLUID OF VARIABLE ELECTRICAL CONDUCTIVITY
Directory of Open Access Journals (Sweden)
Zoran B Boričić
2010-01-01
Full Text Available This paper is devoted to the analysis of unsteady plane laminar magnetohydrodynamic (MHD boundary layer flow of incompressible and variable electrical conductivity fluid. The present magnetic field is homogenous and perpendicular to the body surface. Outer electric filed is neglected and magnetic Reynolds number is significantly lower then one i.e. considered problem is in induction-less approximation. Free stream velocity is an arbitrary differentiable function. Fluid electrical conductivity is decreasing function of velocity ratio. In order to solve the described problem multiparametric (generalized similarity method is used and so-called universal equations are obtained. Obtained universal equations are solved numerically in appropriate approximation and a part of obtained results is given in the form of figures and corresponding conclusions.
THREE-DIMENSIONAL PAIRING OF COHERENT STRUCTURES IN A PLANE MIXING LAYER
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The three-dimensional (3D) pairing process of coherent structures in a plane mixing layer was simulated numerically with the pseudo-spectral method. The behaviors of spanwise cup-shaped vortices, streamwise rib-shaped vortices and quadrupoles were obtained in terms of their iso-surfaces. The results show that three-dimensional structures are strongly influenced by the initial ampiitude of the 3D disturbance, and that in most cases the local pairing finishes in a roughly two-dimensional manner. In pairing region, the streamwise vortices are chaotic after pairing due to the breakdown of the engulfed ribs and especially the subsequent breakdown of the quadrupoles. The surviving ribs extend to the top (or bottom) of the paired vortices under the stretch of them. In addition, it is revealed that three dimensional vortices pairing can enhance the mixing of fluid. Finally, some patterns of numerical flow visualization are presented by computing the passive scalar.
Ghosh, Sourov; Ohashi, Hidenori; Tabata, Hiroshi; Hashimasa, Yoshiyuki; Yamaguchi, Takeo
2017-09-01
The impact of electrochemical carbon corrosion via potential cycling durability tests mimicking start-stop operation events on the microstructure of the cathode catalyst layer in polymer electrolyte fuel cells (PEFCs) is investigated using focused ion beam (FIB) fabrication without/with the pore-filling technique and subsequent scanning electron microscope (SEM) observations. FIB/SEM investigations without pore-filling reveals that the durability test induces non-uniform cathode shrinking across the in-plane direction; the thickness of the catalyst layer decreases more under the gas flow channel compared to the area under the rim of the flow field. Furthermore, FIB/SEM investigations with the pore-filling technique reveal that the durability test also induces non-uniform cathode shrinking in the through-plane direction; the pores in the area close to the membrane are more shrunken compared with those close to the microporous layer. In particular, a thin area (1-1.5 μm) close to the membrane is found to be severely damaged; it includes closed pores that hinder mass transport through the catalyst layer. It is suggested that uneven carbon corrosion and catalyst layer compaction are responsible for the performance loss during potential cycling operation of PEFCs.
Crystal morphology of sucrose influenced by rotation axes parallel to growth planes
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Three different types of growth forms of sucrose (P21) were found by calculating with the Fourier transform method of crystal morphology. The observed central distances of the (100) and (001) faces are smaller than those calculated. It will be shown that the two-fold screw axis, which runs parallel to these faces, influences the rate of growth. The effectiveness of these symmetry elements is relative to the rotation angle around the face normal.
Scattering and Absorption of Gravitational Plane Waves by Rotating Black Holes
Dolan, Sam R
2008-01-01
In this study, we investigate scattering and absorption of planar gravitational waves by a Kerr black hole in vacuum. We compute cross sections for radiation incident along the rotation axis, and consider both co- and counter-rotating circular polarizations. We show that, if a novel series reduction method is employed, the partial wave approach developed by Matzner and coworkers yields accurate results. Phase shifts are computed via a Sasaki-Nakamura transformation, and spheroidal harmonics via a spectral decomposition method. A catalogue of cross sections is presented for a range of parameters ($M\\omega \\le 4$ and $a \\le 0.99M$). In the long- and short-wavelength regimes we find good agreement with perturbative and semi-classical approximations. We confirm that helicity is not conserved: flux scattered in the backward direction has the opposite polarization to the incident radiation. At low frequencies, fast-rotating holes generate superradiance in the $l = 2$, $m = 2$ mode which enhances the back-scattered ...
Oscillatory and Steady Flows in the Annular Fluid Layer inside a Rotating Cylinder
Directory of Open Access Journals (Sweden)
Veronika Dyakova
2016-01-01
Full Text Available The dynamics of a low-viscosity fluid inside a rapidly rotating horizontal cylinder were experimentally studied. In the rotating frame, the force of gravity induces azimuthal fluid oscillations at a frequency equal to the velocity of the cylinder’s rotation. This flow is responsible for a series of phenomena, such as the onset of centrifugal instability in the Stokes layer and the growth of the relief at the interface between the fluid and the granular medium inside the rotating cylinder. The phase inhomogeneity of the oscillatory fluid flow in the viscous boundary layers near the rigid wall and the free surface generates the azimuthal steady streaming. We studied the relative contribution of the viscous boundary layers in the generation of the steady streaming. It is revealed that the velocity of the steady streaming can be calculated using the velocity of the oscillatory fluid motion.
Li, Shuang; Su, Yewang; Li, Rui
2016-06-01
Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics.
Li, Shuang; Su, Yewang; Li, Rui
2016-06-01
Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics.
Kovalenko, V. M.; Byehkov, N. M.; Kisel, G. A.; Dikovskaia, N. D.
1984-03-01
Measurements have been made of pressure distributions and pulsations in a cross flow past a circular cylinder placed near a plane screen of finite length. The experiments reported here have been carried out under low turbulence conditions over a range of Reynolds numbers that includes the critical values. The boundary layer separation points and the evolution of the front critical point and other characteristic zones with the distance to the screen are determined. The components of the aerodynamic force acting on the cylinder and the Strouhal number are calculated on the basis of the predominant pulsation frequencies on the cylinder.
DEFF Research Database (Denmark)
Bandholm, Thomas; Thorborg, Kristian; Andersson, Elin;
2011-01-01
The purpose of the present study was to examine the relationship between hip muscle strength (abduction and external rotation) and frontal-plane knee control during drop jumping in recreational female athletes. Thirty-three healthy young recreational female athletes were included. Maximal isometric...... hip abduction and external rotation torque were measured using hand-held dynamometry, and frontal-plane knee control during drop jumping was assessed using three-dimensional motion analysis. Frontal-plane knee control during drop jumping was expressed as the absolute (cm) and relative (cm/cm body...... in knee marker distance during drop jumping. Maximal hip-abduction torque did not correlate with the absolute (r=0.18, P=0.31) or relative (r=0.19, P=0.29) change in knee marker distance during drop jumping. Contrary to our expectations, greater maximal external hip-rotation torque was related to greater...
Taylor, Jane; Boutong, Sara; Brett, Sarah; Louis, Amal; Heppenstall, James; Morton, Allison C.; Gunn, Julian P.
2015-01-01
Objectives To investigate the value of rotational coronary angiography (RoCA) in the context of percutaneous coronary intervention (PCI) planning. Background As a diagnostic tool, RoCA is associated with decreased patient irradiation and contrast use compared with conventional coronary angiography (CA) and provides superior appreciation of three‐dimensional anatomy. However, its value in PCI remains unknown. Methods We studied stable coronary artery disease assessment and PCI planning by interventional cardiologists. Patients underwent either RoCA or conventional CA pre‐PCI for planning. These were compared with the referral CA (all conventional) in terms of quantitative lesion assessment and operator confidence. An independent panel reanalyzed all parameters. Results Six operators performed 127 procedures (60 RoCA, 60 conventional CA, and 7 crossed‐over) and assessed 212 lesions. RoCA was associated with a reduction in the number of lesions judged to involve a bifurcation (23 vs. 30 lesions, P RoCA improved confidence assessing lesion length (P = 0.01), percentage stenosis (P = 0.02), tortuosity (P RoCA augments quantitative lesion assessment, enhances confidence in the assessment of coronary artery disease and the precise details of the proposed procedure, but does not affect X‐ray dose, contrast agent volume, or procedure duration. © 2015 Wiley Periodicals, Inc. PMID:26012725
Directory of Open Access Journals (Sweden)
Y. Kaahwa
2012-05-01
Full Text Available This study presents results of a recent study done in Norway from Bergen University, to determine temperature dependence of linear birefringence in mineral oil and linear and induced birefringence in vegetable oils. The study was done between the temperature range of 6 and 45ºC in magnetic field up to 140 mT. It found the intrinsic birefringences responsible for optical activity in vegetable oils with impurities and all mineral oils. The results of optical activity in both oils obeyed the equation f = A + aw (1 where aw is the angle at which minimum irradiance Imin occurs in water and other substances which are optically inactive. Heavy oils like red diesel, Esso diesel and Fina diesel No. 2 rotate more the vibration plane and they possess more intrinsic birefringences than light diesel. The research team found that the temperature effect on rotation in both mineral and vegetable oils with impurities, yielded results that obeyed the equation f1 = A - bT (3 where b is positive. In vegetable oils for human consumption, application of magnetic field causes induced birefringences responsible for f given by f2 = VHL + aw (4 where V is Verdet’s constant in rad T-1m-1 and H is the magnetic field intensity in Am-1. Also the temperature dependence on rotation in vegetable oils free from impurities obeyed the relationship given by equation = VHL–bT (5. This method can be used to determine the level of refinement of mineral and vegetable oils.
Response to rotating forcing of the von-Karman disk boundary layer
Energy Technology Data Exchange (ETDEWEB)
Vasudevan, Mukund; Siddiqui, M Ehtisham; Pier, Benoit; Scott, Julian; Azouzi, Alexandre; Michelet, Roger; Nicot, Christian, E-mail: benoit.pier@ec-lyon.fr [Laboratoire de mecanique des fluides et d' acoustique (CNRS-Universite de Lyon) Ecole centrale de Lyon, 36 avenue Guy-de-Collongue, 69134 Ecully (France)
2011-12-22
In the present experimental investigation of the three-dimensional boundary layer due to a disk rotating in otherwise still air, the aim is to study the response to a radially localized perturbation applied with a prescribed relative frequency with respect to the disk. The response to localized rotating forcing is measured with a hot-wire probe. The rotation rate of the forcing element is controlled independently of the disk rotation rate, and the dynamics of the spatial response is studied as a function of the ratio between the two rotation rates. The theoretically expected disturbance trajectories are derived from an instability analysis based on the exact local dispersion relations computed from the complete linearized Navier-Stokes equations. Theoretical predictions and experimental measurements are shown to be in good agreement.
Kuświk, Piotr; Ehresmann, Arno; Tekielak, Maria; Szymański, Bogdan; Sveklo, Iosif; Mazalski, Piotr; Engel, Dieter; Kisielewski, Jan; Lengemann, Daniel; Urbaniak, Maciej; Schmidt, Christoph; Maziewski, Andrzej; Stobiecki, Feliks
2011-03-04
Regularly arranged magnetic out-of-plane patterns in continuous and flat films are promising for applications in data storage technology (bit patterned media) or transport of individual magnetic particles. Whereas topographic magnetic structures are fabricated by standard lithographical techniques, the fabrication of regularly arranged artificial domains in topographically flat films is difficult, since the free energy minimization determines the existence, shape, and regularity of domains. Here we show that keV He(+) ion bombardment of Au/Co/Au layer systems through a colloidal mask of hexagonally arranged spherical polystyrene beads enables magnetic patterning of regularly arranged cylindrical magnetic monodomains with out-of-plane magnetization embedded in a ferromagnetic matrix with easy-plane anisotropy. This colloidal domain lithography creates artificial domains via periodic lateral anisotropy variations induced by periodic defect density modulations. Magnetization reversal of the layer system observed by magnetic force microscopy shows individual disc switching indicating monodomain states.
Energy Technology Data Exchange (ETDEWEB)
Chaves-O' Flynn, Gabriel D., E-mail: gdc229@nyu.edu; Wolf, Georg; Pinna, Daniele; Kent, Andrew D. [Department of Physics, New York University, New York, New York 10003 (United States)
2015-05-07
We present the results of zero temperature macrospin and micromagnetic simulations of spin transfer switching of thin film nanomagnets in the shape of an ellipse with a spin-polarization tilted out of the layer plane. The perpendicular component of the spin-polarization is shown to increase the reversal speed, leading to a lower current for switching in a given time. However, for tilt angles larger than a critical angle, the layer magnetization starts to precess about an out-of-plane axis, which leads to a final magnetization state that is very sensitive to simulation conditions. As the ellipse lateral size increases, this out-of-plane precession is suppressed, due to the excitation of spatially non-uniform magnetization modes.
Lu, Guan-Yang; Ikeya, Kosuke; Watanabe, Akira
2016-11-01
Biochar application to soil is a strategy to decelerate the increase in the atmospheric carbon concentration. The composition of condensed aromatic clusters appears to be an important determinant of the degradation rate of char in soil. The objective of the present study was to determine the size distribution of carbon layer planes in biochars produced from different types of feedstock (a broadleaf and a coniferous tree and two herbs) using different heating treatment temperatures (HTT; 400 °C-800 °C) using X-ray diffraction 11 band profile analysis. (13)C nuclear magnetic resonance with the phase-adjusted spinning side bands of the chars indicated different spectral features depending on the HTT and similar carbon composition among the plant types at each HTT. Both the content and composition of carbon layer planes in biochar produced using the same HTT were also similar among the plant types. The carbon layer plane size in the 400 °C and 600 °C chars was distributed from 0.24 to 1.68 or 1.92 nm (corresponding to 37 or 52 rings) with the mean size of 0.79-0.92 and 0.80-1.14 nm, respectively. The carbon layer planes in the 800 °C chars ranged from 0.72-0.96 nm (7-14 rings) to 2.64-3.60 nm (91-169 rings) and the mean values were 1.47-1.89 nm. The relative carbon layer plane content in the 600 °C and 800 °C chars was typically 2 and 3 times that in the 400 °C chars. These results indicate the progression of the formation and/or the size development of graphite-like structures, suggesting that a char produced at a higher HTT would have better carbon sequestrating characteristics.
Kurakin, Leonid G.; Ostrovskaya, Irina V.; Sokolovskiy, Mikhail A.
2016-05-01
A two-layer quasigeostrophic model is considered in the f-plane approximation. The stability of a discrete axisymmetric vortex structure is analyzed for the case when the structure consists of a central vortex of arbitrary intensity Γ and two/three identical peripheral vortices. The identical vortices, each having a unit intensity, are uniformly distributed over a circle of radius R in a single layer. The central vortex lies either in the same or in another layer. The problem has three parameters ( R, Γ, α), where α is the difference between layer thicknesses. A limiting case of a homogeneous fluid is also considered. A limiting case of a homogeneous fluid is also considered. The theory of stability of steady-state motions of dynamic systems with a continuous symmetry group G is applied. The two definitions of stability used in the study are Routh stability and G-stability. The Routh stability is the stability of a one-parameter orbit of a steady-state rotation of a vortex multipole, and the G-stability is the stability of a three-parameter invariant set O G , formed by the orbits of a continuous family of steady-state rotations of a multipole. The problem of Routh stability is reduced to the problem of stability of a family of equilibria of a Hamiltonian system. The quadratic part of the Hamiltonian and the eigenvalues of the linearization matrix are studied analytically. The cases of zero total intensity of a tripole and a quadrupole are studied separately. Also, the Routh stability of a Thomson vortex triangle and square was proved at all possible values of problem parameters. The results of theoretical analysis are sustained by numerical calculations of vortex trajectories.
Directory of Open Access Journals (Sweden)
Ryotaro Ozaki
2015-09-01
Full Text Available Polarization characteristics of defect mode peaks in a one-dimensional (1D photonic crystal (PC with a nematic liquid crystal (NLC defect layer have been investigated. Two different polarized defect modes are observed in a stop band. One group of defect modes is polarized along the long molecular axis of the NLC, whereas another group is polarized along its short axis. Polarizations of the defect modes can be tuned by field-induced in-plane reorientation of the NLC in the defect layer. The polarization properties of the 1D PC with the NLC defect layer is also investigated by the finite difference time domain (FDTD simulation.
Ponchak, George E.; Dalton, Edan; Tentzeris, Emmanouil M.; Papapolymerou, John; Williams, W. Dan (Technical Monitor)
2001-01-01
Three-dimensional circuits built upon multiple layers of polyimide are required for constructing Si/SiGe monolithic microwave/millimeter-wave integrated circuits on complementary metal oxide semiconductor (CMOS) (low resistivity) Si wafers. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines are susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements are used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions.
Tidal synchronization of an anelastic multi-layered body: Titan's synchronous rotation
Folonier, Hugo A.; Ferraz-Mello, Sylvio
2017-09-01
Tidal torque drives the rotational and orbital evolution of planet-satellite and star-exoplanet systems. This paper presents one analytical tidal theory for a viscoelastic multi-layered body with an arbitrary number of homogeneous layers. Starting with the static equilibrium figure, modified to include tide and differential rotation, and using the Newtonian creep approach, we find the dynamical equilibrium figure of the deformed body, which allows us to calculate the tidal potential and the forces acting on the tide generating body, as well as the rotation and orbital elements variations. In the particular case of the two-layer model, we study the tidal synchronization when the gravitational coupling and the friction in the interface between the layers is added. For high relaxation factors (low viscosity), the stationary solution of each layer is synchronous with the orbital mean motion (n) when the orbit is circular, but the rotational frequencies increase if the orbital eccentricity increases. This behavior is characteristic in the classical Darwinian theories and in the homogeneous case of the creep tide theory. For low relaxation factors (high viscosity), as in planetary satellites, if friction remains low, each layer can be trapped in different spin-orbit resonances with frequencies n/2,n,3n/2,2n,\\ldots . When the friction increases, attractors with differential rotations are destroyed, surviving only commensurabilities in which core and shell have the same velocity of rotation. We apply the theory to Titan. The main results are: (i) the rotational constraint does not allow us to confirm or reject the existence of a subsurface ocean in Titan; and (ii) the crust-atmosphere exchange of angular momentum can be neglected. Using the rotation estimate based on Cassini's observation (Meriggiola et al. in Icarus 275:183-192, 2016), we limit the possible value of the shell relaxation factor, when a deep subsurface ocean is assumed, to γ _s≲10^{-9} s^{-1} , which
THE STEWARTSON LAYER OF A ROTATING-DISK OF FINITE RADIUS
1992-01-01
It is shown that if a disk of finite radius and the surrounding medium rotate coaxially with slightly different angular velocities, an axial layer in the form of a cylindrical shell exists at the edge of the disk. This shell of thickness O(E1/3) has length O(E-1) in axial direction, where E is the E
Amel'kin, N. I.
2009-01-01
The set of steady motions of the system named in the title is represented parametrically via the gyro gimbal rotation angle for an arbitrary position of the gimbal axis. We study the set of steady motions for a system in which the gyro gimbal axis is parallel to a principal plane of inertia as well
Smith, Clifford B.; Wereley, Norman M.
1996-10-01
The first objective of this paper is to evaluate the performance of damping identification algorithms. The second objective is to determine the feasibility of damping augmentation in rotating composite beams via passive constrained layer damping (PCLD). Damping identification schemes were applied to four rectangular cross-section laminated composite beams with cocured integral damping layers over the span of the beam. The cocured beam consisted of a twenty-ply balanced and symmetric cross-ply Gr/Ep composite host structure, a top and bottom damping layer of viscoelastic material (VEM), and a 2-ply Gr/Ep constraining layer sandwiching the viscoelastic material to the host structure. Four VEM thicknesses were considered: 0, 5, 10, and 15 mils. The cantilevered beams were tested at rotational speeds ranging from 0 to 900 RPM in a vacuum chamber. Excitation in bending was provided using piezo actuators, and the bending response was measured using full strain gauge bridges. Transient data were analysed using logarithmic decrement, a Hilbert transform technique, and an FFT- based moving block analysis. When compared to the beam with no VEM, a 19.2% volume fraction (15 mil layer) of viscoelastic in the beam produced a 400% increase in damping ratio in the non-rotating case, while at 900 RPM, the damping ratio increased only 360%. Overall structural damping was reduced as a function of RPM, due to centrifugal stiffening.
Energy Technology Data Exchange (ETDEWEB)
Maruyama, R., E-mail: ryuji.maruyama@j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Bigault, T.; Wildes, A.R.; Dewhurst, C.D. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble (France); Soyama, K. [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Courtois, P. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble (France)
2016-05-21
The in-plane magnetic structure of a layered system with a polycrystalline grain size less than the ferromagnetic exchange length was investigated using polarized neutron off-specular scattering and grazing incidence small angle scattering measurements to gain insight into the mechanism that controls the magnetic properties which are different from the bulk. These complementary measurements with different length scales and the data analysis based on the distorted wave Born approximation revealed the lateral correlation on a length scale of sub- μm due to the fluctuating orientation of the magnetization in the layer. The obtained in-plane magnetic structure is consistent with the random anisotropy model, i.e. competition between the exchange interactions between neighboring spins and the local magnetocrystalline anisotropy.
Institute of Scientific and Technical Information of China (English)
Licheng Guo; Linzhi Wu; Yuguo Sun; Li Ma
2005-01-01
The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally graded interlayer with a crack perpendicular to the boundaries. The impact load is applied on the face of the crack. Fourier transform and Laplace transform methods are used to formulate the present problem in terms of a singular integral equation in Laplace transform domain. Considering variations of parameters such as the nonhomogeneity constant, the thickness ratio and the crack length, the dynamic stress intensity factors (DSIFs) in time domain are studied and some meaningful conclusions are obtained.
Vortex pinning and lock-in effect in a layered superconductor with large in-plane anisotropy
Energy Technology Data Exchange (ETDEWEB)
Mansky, P.A.; Danner, G.; Chaikin, P.M. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)
1995-09-01
We use ac susceptibility to study the vortex pinning force anisotropy and the magnetic lock-in effect in the organic superconductor (TMTSF){sub 2}ClO{sub 4}, which is believed to have an in-plane anisotropy of {gamma}{sub {ital b}{ital a}}{similar_to}10 and a maximum out-of-plane anisotropy {gamma}{sub {ital c}{ital a}}{similar_to}100. Our measurements show only weak effects of the in-plane anisotropy. The pinning force for Josephson vortices (parallel to the conducting planes) is nearly independent of their orientation, except for a small but narrow peak (full width at half maximum {congruent}6{degree}) when the vortices are parallel to the TMTSF stacks ({ital a} axis). The pinning force initially {ital decreases} {ital as} {ital the} {ital vortices} {ital unlock} {ital from} {ital the} {ital layers}, contrary to the behavior previously observed in the organic superconductor (BEDT-TTF){sub 2}Cu(SCN){sub 2}. The lock-in threshold field is only weakly dependent on the initial angle of the Josephson vortices in the {ital ab} plane.
Developments in the Taxonomy of Structures in Rotating Turbulent Boundary Layers
Kaiser, B.; Clayson, C. A.; Jayne, S. R.
2016-12-01
The creation, migration, and destruction of coherent flow structures within rotating turbulent boundary layers has received far less attention than statistical descriptions of the dynamics, but identification of coherent structures can yield physical insights for improved modelling efforts. The broad range of dynamical scales with turbulent boundary layers makes instantaneous flow structure data difficult to collect either by observations or direct numerical simulations, and the lack of a standard definition of a vortex renders the definition of flow structures a qualitative endeavor. However, the formation and evolution of a menagerie of coherent structures, such as high/low momentum streaks and hairpin vorticies, has been documented and widely accepted for canonical non-rotating turbulent boundary layers. How do turbulent structures form and evolve as the Reynolds number increases in Ekman layers? Are turbulent Ekman layer structures similar to turbulent internal flow boundary layers, which are also constrained vertically? How does buoyancy or sloping topography alter, destroy, or generate flow structures? In this study flow structure descriptions from experiments, observations, and simulations are reviewed.
Sainath, Kamalesh; Teixeira, Fernando L
2014-05-01
We discuss the application of complex-plane Gauss-Laguerre quadrature (CGLQ) to efficiently evaluate two-dimensional Fourier integrals arising as the solution to electromagnetic fields radiated by elementary dipole antennas embedded within planar-layered media exhibiting arbitrary material parameters. More specifically, we apply CGLQ to the long-standing problem of rapidly and efficiently evaluating the semi-infinite length "tails" of the Fourier integral path while simultaneously and robustly guaranteeing absolute, exponential convergence of the field solution despite diversity in the doubly anisotropic layer parameters, source type (i.e., electric or equivalent magnetic dipole), source orientation, observed field type (magnetic or electric), (nonzero) frequency, and (nonzero) source-observer separation geometry. The proposed algorithm exhibits robustness despite unique challenges arising for the fast evaluation of such two-dimensional integrals. Herein we develop the mathematical treatment to rigorously evaluate the tail integrals using CGLQ, as well as discuss and address the specific issues posed to the CGLQ method when anisotropic, layered media are present. To empirically demonstrate the CGLQ algorithm's computational efficiency, versatility, and accuracy, we perform a convergence analysis along with two case studies related to modeling of electromagnetic resistivity tools employed in geophysical prospection of layered, anisotropic Earth media and validating the ability of isoimpedance substrates to enhance the radiation performance of planar antennas placed in close proximity to metallic ground planes.
Directory of Open Access Journals (Sweden)
Kazimierz Zaleski
2014-06-01
Full Text Available This study presents the results of tests on impact of vibratory and rotational shot peening of the Ti6A12Mo2Cr titanium alloy onto the processed object surface roughness and surface layer microhardness. The external surfaces of ring-shaped samples were shot peened. The preceding process consisted of turning with a cubic boron nitride blade knife. Steel beads, having a diameter of 6 mm, were used as a processing medium. The variable parameters of shot peening were vibrator amplitude and shot peening time. The range of recommended technological parameters for vibratory and rotational shot peening was determined. As a result of shot peening, the surface roughness could be reduced by approximately 4 times and the surface layer could be hardened to the depth of approximately 0.4 mm.
Mackowski, Daniel
2017-03-01
A formulation and computational algorithm, based on the discrete dipole approximation (DDA), is presented for directly simulating the electromagnetic wave reflection, transmission, and absorption properties of plane parallel layers of random particulate media. The method is intended for situations in which the characteristic size of the particles is comparable to the radiation wavelength, yet no restriction is made regarding the concentration of the particles. In particular, the application is specifically intended for high particle concentrations characteristic of regolith, pigment layers, functional thin films, and so on. Strategies for reducing the memory and time requirements of the computations are developed. Test calculations show that the method can reproduce direct simulation predictions of hemispherical reflectance from layers of spherical particles as calculated by multiple sphere superposition solution. The method also correctly asymptotes to the radiative transport regime in the limit of small particle volume fraction. The connection of the formulation to those for discrete particle scattering, and the radiative transport equation (RTE), is discussed.
Institute of Scientific and Technical Information of China (English)
SUN Jian-liang; ZHOU Zhen-gong; WANG Biao
2005-01-01
The dynamic behavior of two unequal parallel permeable interface cracks in a piezoelectric layer bonded to two half-piezoelectric material planes subjected to harmonic anti-plane shear waves is investigated. By using the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables were the jumps of the displacements across the crack surfaces. Numerical results are presented graphically to show the effects of the geometric parameters, the frequency of the incident wave on the dynamic stress intensity factors and the electric displacement intensity factors. Especially, the present problem can be returned to static problem of two parallel permeable interface cracks. Compared with the solutions of impermeable crack surface condition, it is found that the electric displacement intensity factors for the permeable crack surface conditions are much smaller.
Energy Technology Data Exchange (ETDEWEB)
Yang, S.; Kuo, C. C.; Hsieh, W. F. [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Liu, W.-R. [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Lin, B. H. [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Hsu, H.-C. [Institute of Electro-Optical Science and Engineering and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Hsu, C.-H. [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China)
2012-03-05
Basal plane stacking faults (BSFs) with density of {approx}1 x 10{sup 6} cm{sup -1} are identified as the dominant defect in the annealed ZnO thin films grown on c-plane sapphire by atomic layer deposition. The dominant peak centered at 3.321 eV in low-temperature photoluminescence measurements is attributed to the emission from the BSFs. The emission mechanism is considered to be the confined indirect excitons in the region of quantum-well-like structure formed by the BSFs. The observed energy shift of 19 meV with respect to the BSF-bounded exciton at low temperature may be caused by the localization effect associated with the coupling between BSF quantum wells.
Baba, Masaaki; Hanazaki, Ichiro; Nagashima, Umpei
1985-05-01
Fluorescence excitation spectra of CH3CHO, CH3CDO, (CH3)2CO, and (CD3)2CO have been observed in an Ar supersonic nozzle beam. Vibrational analyses have been performed for vibronic bands in the region at wavelengths longer than 313 nm. The 0-0 bands of the S1(n, π*) states were located at 29 771, 29 813, 30 435, and 30 431 cm-1, respectively. The spectra could be analyzed taking the C=O out-of-plane wagging and the CH3 internal rotation as active modes. By fitting a double minimum potential function to the observed vibrational levels, it has been shown that these molecules are pyramidally distorted in the S1(n, π*) state with barrier heights to inversion of 541, 578, 468, and 480 cm-1, respectively. Similar analyses using the Mathieu function gave threefold potential functions for the methyl internal rotation with barrier heights to rotation of 691, 645, 740, and 720 cm-1 for CH3CHO, CH3CDO, (CH3)2CO, and (CD3)2CO, respectively. High resolution measurements of rotational envelopes have shown that the out-of-plane polarization dominates in the acetone spectrum. This result, together with a detailed investigation of the vibronic intensity borrowing mechanism, has led us to conclude that the second order interaction dominates in which the methyl torsion and the C=O out-of-plane wagging are active. The origin of the methyl rotational barrier in the S1 state is discussed on the basis of our recent ab initio calculations. The hyperconjugative interaction is suggested to be important in determining the barrier.
Boundary layer development in the flow field between a rotating and a stationary disk
van Eeten, K. M. P.; van der Schaaf, J.; Schouten, J. C.; van Heijst, G. J. F.
2012-03-01
This paper discusses the development of boundary layers in the flow of a Newtonian fluid between two parallel, infinite disks. One of the disks is rotating at a constant angular velocity while the other remains stationary. An analytical series approximation and a numerical solution method are used to describe the velocity profiles of the flow. Both methods rely on the commonly used similarity transformation first proposed by Von Kármán [T. von Kármán, ZAMM 1, 233 (1921)], 10.1002/zamm.19210010401. For Reh Batchelor type of flow was observed for Reh > 300, with two boundary layers near the disks and a non-viscous core in the middle. A remarkable conclusion of the current work is the coincidence of the power series' radius of convergence, a somewhat abstract mathematical notion, with the physically tangible concept of the boundary layer thickness. The coincidence shows a small deviation of only 2% to 4%.
Dixit, Ripudaman; Tyagi, Prashant; Kushvaha, Sunil Singh; Chockalingam, Sreekumar; Yadav, Brajesh Singh; Sharma, Nita Dilawar; Kumar, M. Senthil
2017-04-01
We have investigated the influence of growth temperature on the in-plane strain, structural, optical and mechanical properties of heteroepitaxially grown GaN layers on sapphire (0001) substrate by laser molecular beam epitaxy (LMBE) technique in the temperature range 500-700 °C. The GaN epitaxial layers are found to have a large in-plane compressive stress of about 1 GPa for low growth temperatures but the strain drastically reduced in the layer grown at 700 °C. The nature of the in-plane strain has been analyzed using high resolution x-ray diffraction, atomic force microscopy (AFM), Raman spectroscopy and photoluminescence (PL) measurements. From AFM, a change in GaN growth mode from grain to island is observed at the high growth temperature above 600 °C. A blue shift of 20-30 meV in near band edge PL emission line has been noticed for the GaN layers containing the large in-plane strain. These observations indicate that the in-plane strain in the GaN layers is dominated by a biaxial strain. Using nanoindentation, it is found that the indentation hardness and Young's modulus of the GaN layers increases with increasing growth temperature. The results disclose the critical role of growth mode in determining the in-plane strain and mechanical properties of the GaN layers grown by LMBE technique.
Hildreth, Owen J; Rykaczewski, Konrad; Fedorov, Andrei G; Wong, Ching P
2013-02-07
Metal-assisted Chemical Etching of silicon has recently emerged as a powerful technique to fabricate 1D, 2D, and 3D nanostructures in silicon with high feature fidelity. This work demonstrates that out-of-plane rotational catalysts utilizing polymer pinning structures can be designed with excellent control over rotation angle. A plastic deformation model was developed establishing that the catalyst is driven into the silicon substrate with a minimum pressure differential across the catalyst thickness of 0.4-0.6 MPa. Force-displacement curves were gathered between an Au tip and Si or SiO(2) substrates under acidic conditions to show that Derjaguin and Landau, Verwey and Overbeek (DLVO) based forces are capable of providing restorative forces on the order of 0.2-0.3 nN with a calculated 11-18 MPa pressure differential across the catalyst. This work illustrates that out-of-plane rotational structures can be designed with controllable rotation and also suggests a new model for the driving force for catalyst motion based on DLVO theory. This process enables the facile fabrication of vertically aligned thin-film metallic structures and scalloped nanostructures in silicon for applications in 3D micro/nano-electromechanical systems, photonic devices, nanofluidics, etc.
Nakai, Takashi; Tanaka, Daisuke; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro
2016-01-26
To date, reversible alignment controls of liquid crystalline materials have widely been achieved by photoreactive layers on solid substrates. In contrast, this work demonstrates the reversible out-of-plane photocontrols of liquid crystalline polymer films by using a photoresponsive skin layer existing at the free surface. A polymethacrylate containing a cyanobiphenyl side-chain mesogen adopts the planar orientation. Upon blending a small amount of azobenzene-containing side-chain polymer followed by successive annealing, segregation of the azobenzene polymer at the free surface occurs and induces a planar to homeotropic orientation transition of cyanobiphenyl mesogens underneath. By irradiation with UV light, the mesogen orientation turns into the planar orientation. The orientation reverts to the homeotropic state upon visible light irradiation or thermally, and such cyclic processes can be repeated many times. On the basis of this principle, erasable optical patterning is performed by irradiating UV light through a photomask.
Deng, Zhiyong
2013-05-01
A simple and reproducible method is presented for preparing b-oriented MFI films on plane (disc) and curved (hollow fiber) supports by in situ hydrothermal synthesis. A mesoporous silica (sub-)layer was pre-coated on the supports by dip coating followed by a rapid thermal calcination step (973 K during 1 min) to reduce the number of grain boundaries while keeping the hydrophilic behavior of silica. The role of the silica sub-layer is not only to smoothen the substrate surface, but also to provide a silica source to promote the nucleation and growth of zeolite crystals via a heterogeneous nucleation mechanism (zeolitization), and adsorb zeolite moieties generated in the synthesis solution via a homogeneous nucleation mechanism. A monolayer of b-oriented MFI crystals was obtained on both supports after 3 h synthesis time with a moderate degree of twinning on the surface. © 2013 Elsevier Ltd.
Sainath, Kamalesh
2014-01-01
We discuss the application of Complex-Plane Gauss-Laguerre Quadrature (CGLQ) to efficiently evaluate two-dimensional Fourier integrals arising as the solution to electromagnetic fields radiated by elementary dipole antennas embedded within planar-layered media with arbitrary material parameters. More specifically, we apply CGLQ to the long-standing problem of rapidly and efficiently evaluating the semi-infinite length "tails" of the Fourier integral path while simultaneously and robustly guaranteeing absolute, exponential convergence of the field solution despite diversity in the doubly anisotropic layer parameters, source type (i.e., electric or equivalent magnetic dipole), source orientation, observed field type (magnetic or electric), (non-zero) frequency, and (non-zero) source-observer separation geometry. The proposed algorithm exhibits robustness despite unique challenges arising for the fast evaluation of such two-dimensional integrals. Herein, we (1) develop the mathematical treatment to rigorously ev...
INFLUENCE OF LARGE-SCALE VORTICAL STRUCTURES ON THE PARTICLE DISPERSION IN A PLANE MIXING LAYER
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The present study considers the developing mixing layer that is formed by merging of two free streams initially separated by a splitter plate. To investigate the influence of the vortical structures on the particle dispersion, numerical simulation was conducted when the velocity ratio, defined as R=(U∞-U-∞)/(U∞+U-∞), is 0.5. Large-Eddy Simulation (LES) was employed to understand the effect of large-scale vortical structures originated by the Kelvin-Helmholtz instability on the partical dispersion. The flyash with the particle sizes 10, 50, 100, 150, and 200μm respectively were loaded at the origin of the two-dimensional mixing layer. It is confirmed that the particle dispersion depends strongly on the motion of large-scale vortical structures. The particle dispersion is visualized numerically by following the particle trajectories in the mixing layer undergoing pairing interaction.
Plane-polarized Raman continuum in the insulating and superconducting layered cuprates
Reznik, D.; Cooper, S. L.; Klein, M. V.; Lee, W. C.; Ginsberg, D. M.; Maksimov, A. A.; Puchkov, A. V.; Tartakovskii, I. I.; Cheong, S.-W.
1993-09-01
Electronic properties of copper oxygen planes (and chains in Y-Ba-Cu-O) were studied with Raman spectroscopy of plane-polarized photons. The electronic continuum was found to be independent of doping in 2:1:4 and 1:2:3 materials at energies above ~1000 cm-1. Temperature dependence at low energies differs significantly in undoped, lightly doped, and fully doped YBa2Cu3O6+x. A feature consistent with the superconducting gap was observed below Tc in YBa2Cu3O6.9 in all scattering geometries. However, the gaplike redistribution was not complete, with 40-60 % of states not shifted to higher energies at temperatures well below Tc. Above Tc the temperature dependence strongly depends on scattering geometry: the continuum is temperature independent (marginal-Fermi-liquid-like) in XX (x2) and X'X' (x2+y2) geometry; it has a Bose-factor temperature dependence in X'Y' (x2-y2) geometry, and a weak temperature dependence somewhat smaller than the Bose factor in YY (y2) geometry. A two-boson-like temperature dependence of the low-energy continuum is found in YBa2Cu3O6.1 and Sm2CuO4. It becomes one-particle-like in Y-Ba-Cu-O once small doping levels are introduced. Constraints these results place on theoretical models are discussed.
Band Gap Tuning in 2D Layered Materials by Angular Rotation
Directory of Open Access Journals (Sweden)
Javier Polanco-Gonzalez
2017-02-01
Full Text Available We present a series of computer-assisted high-resolution transmission electron (HRTEM simulations to determine Moiré patters by induced twisting effects between slabs at rotational angles of 3°, 5°, 8°, and 16°, for molybdenum disulfide, graphene, tungsten disulfide, and tungsten selenide layered materials. In order to investigate the electronic structure, a series of numerical simulations using density functional methods (DFT methods was completed using Cambridge serial total energy package (CASTEP with a generalized gradient approximation to determine both the band structure and density of states on honeycomb-like new superlattices. Our results indicated metallic transitions when the rotation approached 8° with respect to each other laminates for most of the two-dimensional systems that were analyzed.
A note on relative equilibria in a rotating shallow water layer
Ait Abderrahmane, Hamid
2013-05-08
Relative equilibria of two and three satellite vortices in a rotating shallow water layer have been recorded via particle image velocimetry (PIV) and their autorotation speed was estimated. This study shows that these equilibria retain the fundamental characteristics of Kelvin\\'s equilibria, and could be adequately described by the classical idealized point vortex theory. The same conclusion can also be inferred using the experimental dataset of Bergmann etÂ al.Â (J.Â FluidÂ Mech., vol. 679, 2011, pp. 415-431; J. Fluid Mech., vol. 691, 2012, pp. 605-606) if the assigned field\\'s contribution to pattern rotation is included. © 2013 Cambridge University Press.
Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures
Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József
2016-09-01
To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.
Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.
Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József
2016-09-21
To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.
Froessling, Nils
1958-01-01
The fundamental boundary layer equations for the flow, temperature and concentration fields are presented. Two dimensional symmetrical and unsymmetrical and rotationally symmetrical steady boundary layer flows are treated as well as the transfer boundary layer. Approximation methods for the calculation of the transfer layer are discussed and a brief survey of an investigation into the validity of the law that the Nusselt number is proportional to the cube root of the Prandtl number is presented.
Routes to turbulence in the rotating disk boundary-layer of a rotor-stator cavity
Yim, Eunok; Serre, Eric; Martinand, Denis; Chomaz, Jean-Marc
2016-11-01
The rotating disk is an important classical problem, due to the similarities between the 3D boundary layers on a disk and a swept aircraft wing. It is nowadays admitted that a direct transition to turbulence may exist through a steep-fronted nonlinear global mode located at the boundary between the locally connectively and absolutely unstable regions (Pier 2003; Viaud et al. 2008, 2011; Imayama et al. 2014 and others). However, recent studies (Healey 2010; Harris et al. 2012; Imayama et al. 2013) suggest that there may be an alternative route starting at lower critical Reynolds number, based on convective travelling waves but this scenario is still not fully validated and proven. To better characterize such transition, direct numerical simulations are performed in a closed cylindrical rotor-stator cavity (without hub) up to Re = O (105) . All boundaries are no slip and for the stable region around the rotation axis prevents the disturbances coming from the very unstable stator boundary to disturb the rotor boundary layer. Different transition scenarii to turbulence are investigated when the rotor boundary layer is forced at different positions and forcing amplitude. The associated dynamics of coherent structures in various flow regions are also investigated when increasing Re .
Ardakani, Abbas Ghasempour
2014-12-20
We propose a one-dimensional conjugated photonic crystal single heterojunction infiltrated with a single graphene layer to achieve large Faraday rotation (FR) angles as well as high transmission simultaneously. The effects of the external magnetic field values, incidence angle, number of unit cells, layer thickness of constituents of the conjugated photonic crystals, chemical potential of graphene, and ambient temperature on the Faraday rotation angle and transmission are investigated. Our results reveal that both the sign reversal and shifting of the FR peak can be obtained by changing the width of layers in the conjugated photonic crystal. In the case of negative FR angle, an increase of magnetic field enhances the FR angle and degrades the transmission. However, in the case of positive FR angle, when the magnetic field increases to a certain value, the FR angle is improved too. Further increase of the magnetic field leads to a decrease of FR angle. With increasing the number of unit cells, the FR angle is enhanced at the cost of decreasing the transmission. It is shown that normal incidence results in higher FR angle and transmission. It is also demonstrated that sign reversal and change of the FR angle is possible by manipulating the chemical potential of graphene and the ambient temperature.
Lin, P.; Pratt, D. T.
1987-01-01
A hybrid method has been developed for the numerical prediction of turbulent mixing in a spatially-developing, free shear layer. Most significantly, the computation incorporates the effects of large-scale structures, Schmidt number and Reynolds number on mixing, which have been overlooked in the past. In flow field prediction, large-eddy simulation was conducted by a modified 2-D vortex method with subgrid-scale modeling. The predicted mean velocities, shear layer growth rates, Reynolds stresses, and the RMS of longitudinal velocity fluctuations were found to be in good agreement with experiments, although the lateral velocity fluctuations were overpredicted. In scalar transport, the Monte Carlo method was extended to the simulation of the time-dependent pdf transport equation. For the first time, the mixing frequency in Curl's coalescence/dispersion model was estimated by using Broadwell and Breidenthal's theory of micromixing, which involves Schmidt number, Reynolds number and the local vorticity. Numerical tests were performed for a gaseous case and an aqueous case. Evidence that pure freestream fluids are entrained into the layer by large-scale motions was found in the predicted pdf. Mean concentration profiles were found to be insensitive to Schmidt number, while the unmixedness was higher for higher Schmidt number. Applications were made to mixing layers with isothermal, fast reactions. The predicted difference in product thickness of the two cases was in reasonable quantitative agreement with experimental measurements.
Pearson, J. C.; Pickett, Herbert M.; Sastry, K. V. L. N.
2000-01-01
C2H5CN (Propionitrile or ethyl cyanide) is a well known interstellar species abundantly observed in hot cores during the onset of star formation. The onset of star formation generally results in elevated temperature, which thermally populates may low lying vibrational states such as the 206/cm in-plane bend and the 212/cm first excited torsional state in C2H5CN. Unfortunately, these two states are strongly coupled through a complex series of torsion-vibration-rotation interactions, which dominate the spectrum. In order to understand the details of these interactions and develop models capable of predicting unmeasured transitions for astronomical observations in C2H5CN and similar molecules, several thousand rotational transitions in the lowest excited in-plane bend and first excited torsional state have been recorded, assigned and analyzed. The analysis reveals very strong a- and b-type Coriolis interactions and a number of other smaller interactions and has a number of important implications for other C3V torsion-rotation-vibration systems. The relative importance and the physical origins of the coupling among the rotational, vibrational and torsional motions will be presented along with a full spectroscopic analysis and supporting astronomical observations.
Schulte, K. L.; France, R. M.; McMahon, W. E.; Norman, A. G.; Guthrey, H. L.; Geisz, J. F.
2017-04-01
In this work we develop control over dislocation glide dynamics in GaxIn1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in GaxIn1-xP CGBs. When ordered GaxIn1-xP is graded from the GaAs lattice constant to InP, the order parameter η decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a GaxIn1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage GaxIn1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.
Energy Technology Data Exchange (ETDEWEB)
Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; Norman, Andrew G.; Guthrey, Harvey L.; Geisz, John F.
2016-11-17
In this work we develop control over dislocation glide dynamics in GaxIn1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in GaxIn1-xP CGBs. When ordered GaxIn1-xP is graded from the GaAs lattice constant to InP, the order parameter ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a GaxIn1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage GaxIn1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.
Linear stability of plane Poiseuille flow over a generalized Stokes layer
Energy Technology Data Exchange (ETDEWEB)
Quadrio, Maurizio [Dip. Ing. Aerospaziale, Politecnico di Milano, Campus Bovisa, I-20156 Milano (Italy); Martinelli, Fulvio; Schmid, Peter J, E-mail: maurizio.quadrio@polimi.it [Laboratoire d' Hydrodynamique (LadHyX), CNRS-Ecole Polytechnique, F-91128 Palaiseau (France)
2011-12-22
Linear stability of plane Poiseuille flow subject to spanwise velocity forcing applied at the wall is studied. The forcing is stationary and sinusoidally distributed along the streamwise direction. The long-term aim of the study is to explore a possible relationship between the modification induced by the wall forcing to the stability characteristic of the unforced Poiseuille flow and the signifcant capabilities demonstrated by the same forcing in reducing turbulent friction drag. We present in this paper the statement of the mathematical problem, which is considerably more complex that the classic Orr-Sommerfeld-Squire approach, owing to the streamwise-varying boundary condition. We also report some preliminary results which, although not yet conclusive, describe the effects of the wall forcing on modal and non-modal characteristics of the flow stability.
Direct spatial resonance in the laminar boundary layer due to a rotating-disk
Indian Academy of Sciences (India)
M Turkyilmazoglu; J S B Gajjar
2000-12-01
Numerical treatment of the linear stability equations is undertaken to investigate the occurrence of direct spatial resonance events in the boundary layer flow due to a rotating-disk. A spectral solution of the eigenvalue problem indicates that algebraic growth of the perturbations shows up, prior to the amplification of exponentially growing instability waves. This phenomenon takes place while the flow is still in the laminar state and it also tends to persist further even if the non-parallelism is taken into account. As a result, there exists the high possibility of this instability mechanism giving rise to nonlinearity and transition, long before the unboundedly growing time-amplified waves.
Measurement of the air boundary layer on the periphery of a rotating grinding wheel using LDA
Energy Technology Data Exchange (ETDEWEB)
Wu, H [AMTReL, GERI, Liverpool John Moores University, Liverpool (United Kingdom); Lin, B [School of Mechanical Engineering, Tianjin University, Tianjin (China); Cai, R [AMTReL, GERI, Liverpool John Moores University, Liverpool (United Kingdom); Morgan, M N [AMTReL, GERI, Liverpool John Moores University, Liverpool (United Kingdom)
2007-07-15
In this paper, the velocity profile of the air boundary layer around a rotating grinding wheel was measured using the Laser Doppler Anemometry technique. Experimental results show that the tangential velocity of the air decreases greatly with increasing distance from the wheel surface. The distribution of the tangential velocity is also found to be almost uniform near to the centre of the wheel width, and decreases greatly as the wheel edge is approached. Generally, the radial velocity of air in the area close to the wheel surface is small, and then increases with the increasing distance from wheel surface.
MHD-convection in a plane horizontal layer with surface tension
Energy Technology Data Exchange (ETDEWEB)
Liyepinya, V.R.
1978-01-01
The relation between critical values of the Marangoni number, the Rayleigh number, and the Hartmann number, expressed in terms of series whose convergence becomes slower with higher values of the Hartmann number, is extended to the case of thermal contact without perturbations between a horizontal layer of fluid and a solid heat conductor of finite thickness underneath. Heat transfer at the free upper boundary of this layer occurs according to Newton's law, and the boundary conditions here take into account surface tension as well as its temperature dependence. The limits of monotonic instability in a magnetic field are calculated from a numerical solution to this problem. 5 references, 1 figure, 1 table.
Hendren, W. R.; Atkinson, R.; Pollard, R. J.; Salter, I. W.; Wright, C. D.; Clegg, W. W.; Jenkins, D. F. L.
2004-10-01
The effect of adjacent dielectric layers on sputter deposited GdFeCo, of thickness 10-30 nm, suitable as the readout layer for in-plane magnetic amplifying magneto-optic systems, was investigated by measuring the magnetic hysteresis using magneto-optical Kerr effect at room temperature and above. It was found that the magnetic properties were sensitive to the GdFeCo thickness and the presence of the dielectric layer material. Although alternative materials, ZnS and SiN, were also considered, the paper concentrates on the effects of reactively sputtered AlN, which was the only dielectric that produced the required properties for such thin GdFeCo layers of this type. The effect of reducing GdFeCo thickness was similar to that of reducing Gd content. The percentage of nitrogen used in the sputtering gas during AlN deposition was seen to be crucial to the magnetic properties and to the stability of the films. Films 10 nm thick were particularly affected, the best results requiring less nitrogen than was needed for the thicker films.
Hotta, H.; Rempel, M.; Yokoyama, T.
2015-01-01
We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation to 0.99 R ⊙ and include, near the top of our domain, small-scale convection with short timescales that is only weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range of r = 0.95-0.975 R ⊙. The maintenance mechanisms are summarized as follows. Convection under the weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the meridional plane by forces resulting from the correlation of turbulent velocities. The origin of the required correlations depends to some degree on latitude. In high latitudes, a positive correlation is induced in the NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation results from rotationally aligned convection cells ("banana cells"). The force caused by these Reynolds stresses is in balance with the Coriolis force in the NSSL.
Wosnik, Martin
2015-11-01
Recently an analytical and experimental investigation of the turbulent axisymmetric wake with rotation found a new asymptotic scaling function for the mean swirl, Wmax ~Uo3/ 2 ~x-1 (Dufresne and Wosnik, Mar Technol Soc J, 47, no.4, 193-205, 2013). An equilibrium similarity theory derived scaling functions from the conditions for the existence of similarity directly from the equations of motion. Axial and azimuthal (swirl) velocities were measured in the wake of a single 3-bladed wind turbine in a free stream up to 20 diameters downstream, and the data were found to support the theoretical results. The scaling implies that the mean swirl decays faster, with x-1, than the mean velocity deficit, with x - 2 / 3. Real wind turbines, however, operate in the atmospheric boundary layer. They are subjected to mean shear and turbulence, both have been observed to improve wake recovery. Similarity considerations are extended to place a turbulent axisymmetric wake with rotation in a boundary layer flow, and the scaling implications are examined. Corresponding experiments were carried out in the UNH Flow Physics Facility, using model wind turbines of various sizes as swirling wake generators. Supported by NSF CBET grant 1150797.
Institute of Scientific and Technical Information of China (English)
刘官厅; 范天佑
2003-01-01
The complex method of the plane elasticity in 2D quasicrystal with point group 10 mm tenfold rotational symmetry is established. First displacement potential function in the quasicrystal is represented by four analytic functions. Then by utilizing the properties of analytic function and through a great deal of derivation, the complex representations of stresses and displacements components of phonon fields and phason fields in the quasicrystal are given, which are the theoretical foundation for this method. From this theory, and by the help of conformal transformations in the theory of complex function, the problems of elliptic hole in the quasicrystal are solved. Its special cases are the solutions of well-known crack problem. Meanwhile, the results show that even if under the self-counterbalance force in the quasicrystal plane with elliptic hole, the stress components of phonon fields are also related to material constants of the quasicrystal when the phonon fields and phason fields are coupled, which is another distinctive difference from the properties of classical elastic theory. Besides, the present work is generalization and application of the complex method in the classical elastic theory established by Muskhelishvili to 2D quasicrystal. As in the classical elastic theory, if only conformal transformation from the quasicrystal plane to unit circle is found, any holey and crack problem in the quasicrystal plane could be solved.
An experimental investigation of the three-dimensional boundary layer on a rotating disk
Littell, Howard Steven
The velocity field above a large spinning disk has been studied using pressure probes and hotwire anemometers. The flowfield consists of a three-dimensional boundary layer due to a crossflow caused by centrifugal forces. The disk was 1 m in diameter and was spun at speeds up to 1500 rpm, giving momentum thickness Reynolds numbers in excess of 6000. The mean flow in both the laminar and turbulent regimes compares well with previous studies of 'infinite' smooth rotating disks. All six Reynolds stresses and the ten triple products have been measured using established crosswire anemometry techniques. These results are compared to previous three-dimensional boundary layer measurements and several key differences are noted. The ratio of the shear stress vector magnitude to the turbulent kinetic energy is a common descriptor of boundary layer flow and is used in many modeling efforts because it is usually a constant over most of a two-dimensional boundary layer. Three-dimensionality has been observed to depress this parameter near the wall in many pressure-driven boundary layers. In the disk flow, this parameter was at a maximum near the wall at close to the 2-D value, but dropped off almost linearly away from the wall. Two-point velocity correlations were also measured using a pair of crosswire anemometers to gain insight into the structure of the turbulence. These measurements were obtained at two different heights at momentum thickness Reynolds numbers of 2650 and 5000 to test for possible scaling effects. These measurements showed that the turbulence exhibits asymmetry in the crossflow direction, which cannot occur in two-dimensional boundary layers. A mechanism by which the crossflow may be modifying the turbulence structure is proposed which exhibits several features of the asymmetric two-point correlations.
A 1D time-domain method for in-plane wave motions in a layered half-space
Institute of Scientific and Technical Information of China (English)
Jingbo Liu; Yan Wang
2007-01-01
A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the layered half-space is discretized on the basis of the propagation cha-racteristic of elastic wave according to the Snell law. Then, the finite element method with lumped mass and the cen-tral difference method are incorporated to establish 2D wave motion equations, which can be transformed into 1D equa-tions by discretization principle and explicit finite element method. By solving the 1D equations, the displacements of nodes in any vertical line can be obtained, and the wave motions in layered half-space are finally determined based on the characteristic of traveling wave. Both the theoretical ana-lysis and the numerical results demonstrate that the proposed method has high accuracy and good stability.
Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear
Duan, Wen Hui
2011-08-01
The initiation and development of wrinkles in a single layer graphene sheet subjected to in-plane shear displacements are investigated. The dependence of the wavelength and amplitude of wrinkles on the applied shear displacements is explicitly obtained with molecular mechanics simulations. A continuum model is developed for the characteristics of the wrinkles which show that the wrinkle wavelength decreases with an increase in shear loading, while the amplitude of the wrinkles is found to initially increase and then become stable. The propagation and growth process of the wrinkles in the sheet is elucidated. It is expected that the research could promote applications of graphenes in the transportation of biological systems, separation science, and the development of the fluidic electronics. © 2011 Elsevier Ltd. All rights reserved.
Omote, Kazuhiko
2010-12-01
We have measured the strain of a thin Si layer deposited on a SiGe layer using a high resolution x-ray diffraction system. The Si layer was deposited on the SiGe layer in order to introduce a tensile strain to the Si layer. To measure the in-plane lattice constant accurately, we have employed so-called grazing-incidence in-plane diffraction. For this measurement, we have made a new five-axis x-ray goniometer which has four ordinal circles (ω, 2θ, χ, φ) plus a counter-χ-axis for selecting the exit angle of the diffracted x-rays. In grazing-incidence geometry, an incident x-ray is focused on the sample surface in order to obtain good diffraction intensity even though the layer thickness is less than 5 nm. Because diffracted x-rays are detected through analyzer crystals, the diffraction angle can be determined with an accuracy of ± 0.0003°. This indicates that the strain sensitivity is about 10( - 5) when we measure in-plane Si 220 diffraction. Use of x-ray diffraction could be the best standard metrology method for determining strain in thin layers. Furthermore, we have demonstrated that incident/exit angle selected in-plane diffraction is very useful for height/depth selective strain determination.
RESEARCH ON PARTICLE DISPERSION IN A PLANE MIXING LAYER WITH COHERENT STRUCTURES
Institute of Scientific and Technical Information of China (English)
林建忠; 林江; 邵雪明; 石兴
2003-01-01
The numerical simulation with two-way coupling was performed in a liquid -particle mixing layer and the corresponding experiment study was made. In the process of vortex rolling up and vortices pairing, the particles with different St number have a very different pattern of dispersion. The mean velocity of particle with St = 1 is higher than that of the fluid phase on the low-speed side, and lower than that of the fluid phase on the high-speed side. The RMS of particle approaches that of the fluid phase with decreasing particle St number. The RMS in the transverse direction is smaller than that in the streamwise direction. The velocity fluctuation correlation of particle is smaller than the Reynolds shear stress, the "overshoot" phenomenon that the velocity fluctuation correlation of particle is larger than the Reynolds shear stress does not appear. The larger the St number of particle is, the wider the range of the particle dispersion will be. The computed results are in agreement with the experimental ones.
Park, Se Yeon; Choi, Bum Ho; Lee, Jong Ho
2015-01-01
In this study, single- and multi-layered thin films were prepared on a glass substrate using a newly developed rotating hexagonal sputtering cathode in a single chamber. The rotatinghexagonal sputtering cathode can install up to six different sputtering targets or six single targets in a cathode. Using the rotating hexagonal cathode, we prepared a single-layered AZO film and a multi-layer film to evaluate the performance of hexagonal gun. Cross-contamination, which is often observed in multi-layer thin film preparation, was suppressed to nearly zero by controlling process parameters and revising hardware. Energy-saving effects of five-layered glass were also verified by measuring the temperature.
Large-scale weakly nonlinear perturbations of convective magnetic dynamos in a rotating layer
Chertovskih, Roman
2015-01-01
We present a new mechanism for generation of large-scale magnetic field by thermal convection which does not involve the alpha-effect. We consider weakly nonlinear perturbations of space-periodic steady convective magnetic dynamos in a rotating layer that were identified in our previous work. The perturbations have a spatial scale in the horizontal direction that is much larger than the period of the perturbed convective magnetohydrodynamic state. Following the formalism of the multiscale stability theory, we have derived the system of amplitude equations governing the evolution of the leading terms in expansion of the perturbations in power series in the scale ratio. This asymptotic analysis is more involved than in the cases considered earlier, because the kernel of the operator of linearisation has zero-mean neutral modes whose origin lies in the spatial invariance of the perturbed regime, the operator reduced on the generalised kernel has two Jordan normal form blocks of size two, and simplifying symmetri...
Stellmach, S; Julien, K; Vasil, G; Cheng, J S; Ribeiro, A; King, E M; Aurnou, J M
2014-01-01
Rapidly rotating Rayleigh-B\\'enard convection is studied by combining results from direct numerical simulations (DNS), laboratory experiments and asymptotic modeling. The asymptotic theory is shown to provide a good description of the bulk dynamics at low, but finite Rossby number. However, large deviations from the asymptotically predicted heat transfer scaling are found, with laboratory experiments and DNS consistently yielding much larger Nusselt numbers than expected. These deviations are traced down to dynamically active Ekman boundary layers, which are shown to play an integral part in controlling heat transfer even for Ekman numbers as small as $10^{-7}$. By adding an analytical parameterization of the Ekman transport to simulations using stress-free boundary conditions, we demonstrate that the heat transfer jumps from values broadly compatible with the asymptotic theory to states of strongly increased heat transfer, in good quantitative agreement with no-slip DNS and compatible with the experimental d...
A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator.
Morita, T; Yoshida, R; Okamoto, Y; Kurosawa, M K; Higuchi, T
1999-01-01
A smooth impact rotation motor was fabricated and successfully operated using a torsional piezo actuator. Yoshida et al. reported a linear type smooth impact motor in 1997. This linear motor demonstrated a high output force and a long stroke. A superior feature of the smooth impact drive is a high positioning resolution compared with an impact drive. The positioning resolution of SIDM (smooth impact drive mechanism) is equal to the piezo displacement. The reported positioning resolution of the linear type was 5 nm. Our rotation motor utilized a torsional actuator containing multi-layered piezoelectric material. The torsional actuator was cylindrical in shape with an outer diameter of 15 mm, an inner diameter of 10 mm, and a length of 11 mm. Torsional vibration performance was measured with a laser Doppler vibrometer. The obtained torsional displacement agreed with the calculated values and was sufficient to drive a rotor. The rotor was operated with a saw-shaped input voltage (180 V; 8 kHz). The revolution direction was reversible. The maximum revolution speed was 27 rpm, and the maximum output torque was 56 gfcm. In general, smooth-impact drives do not show high efficiency; however, the level of efficiency of our results (max., 0.045%) could be increased by improving the contact surface material. In addition, we are studying quantitative consideration, for example, about the optimum pre-load or frictional force.
Hotta, H; Yokoyama, T
2014-01-01
We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique we can extend our global convection simulation to $0.99\\,R_{\\odot}$ and include near the top of our domain small-scale convection with short time scales that is only weakly influenced by rotation. We find the formation of a NSSL preferentially in high latitudes in the depth range $r=0.95-0.975R_\\odot$. The maintenance mechanisms are summarized as follows. Convection under weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward directed meridional flow and a NSSL, which is balanced in the meridional plane by forces resulting from the $\\langle v'_r v'_\\theta\\rangle$ correlation of turbulent velocities. The orig...
Directory of Open Access Journals (Sweden)
Eric Mucunguzi-Rugwebe
2013-09-01
Full Text Available In this study, the results of the effect of water-flow rate and air fraction component on intensity, I, are presented and discussed. The study which was carried out at Bergen University in Norway, presents the impact of monochromatic defects on polarization and measurements of small oil fractions of various crude oils are presented. When there was refraction, it was observed that in static sea-water &mustatic = 0.38 and in running water &muflow = 0.42 When refraction was eliminated by grafting windows in the pipe, &mustatic = 0, &muflow = 0.11 and in both cases &muflow was independent of the flow rate. Air fraction component, &alpha> = 0.12 reduced light intensity. With rate flow Q = 13.6m3/h and Q = 27.2 m3/h critical air fraction was found at &alphac = 0.18 and &alphac = 0.12 respectively. For &alphac = 0.18 up to &alpha 0.87 at Q = 13.6m3/h and &alphac = 0.12 up to &alpha = 0.78 at Q = 27.2 m3/h light intensity was found independent of &alpha. The highest rotation was found in Gullfaks crude oil, followed by Heidrun, the rotation is Statfjord crude oil was less than one in Heidrun and the least rotation was observed in 0A sg 0a rd crude oil. At 40ppm, the rotation was as follows: Gullfaks &empty = 27.0±0.20, Heidrun &empty = 23.9±0.20, Statfjord &empty = 20.0±0.20 and 0Asg 0ard &empty = 10.0±0.10. This method studys very well when small oil fractions from 5.0-70 ppm are in sea-water flow. This technique can be deployed to monitor the environment and to control the re-injected process water.
Directory of Open Access Journals (Sweden)
B.S. Bhadauria
2014-12-01
Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.
Eltayeb, I. A.; Elbashir, T. B. A.
2017-08-01
The linear and nonlinear stabilities of second sound waves in a rotating porous Darcy-Brinkman layer in local thermal non-equilibrium are studied when the heat flux in the solid obeys the Cattaneo law. The simultaneous action of the Brinkman effect (effective viscosity) and rotation is shown to destabilise the layer, as compared to either of them acting alone, for both stationary and overstable modes. The effective viscosity tends to favour overstable modes while rotation tends to favour stationary convection. Rapid rotation invokes a negative viscosity effect that suppresses the stabilising effect of porosity so that the stability characteristics resemble those of the classical rotating Benard layer. A formal weakly nonlinear analysis yields evolution equations of the Landau-Stuart type governing the slow time development of the amplitudes of the unstable waves. The equilibrium points of the evolution equations are analysed and the overall development of the amplitudes is examined. Both overstable and stationary modes can exhibit supercritical stability; supercritical instability, subcritical instability and stability are not possible. The dependence of the supercritical stability on the relative values of the six dimensionless parameters representing thermal non-equilibrium, rotation, porosity, relaxation time, thermal diffusivities and Brinkman effect is illustrated as regions in regime diagrams in the parameter space. The dependence of the heat transfer and the mean heat flux on the parameters of the problem is also discussed.
Lu, Xuefeng; La, Peiqing; Guo, Xin; Wei, Yupeng; Nan, Xueli; He, Ling
2013-06-01
We report molecular dynamics simulations of the nanomechanical properties and fracture mechanisms of β-Si3N4 thin layers in a prismatic plane under uniaxial tension. It is found that the thin layers in the y loading direction display a linear stress-strain relationship at ε thin layers increase with strain rates both in both directions. The thin layers exhibit the higher Young's modulus of 0.345 TPa in the z direction, higher than that in the y direction. The origins of crack derive from N(2c-1)-Si and N(6h-1)-Si bonds for the y and z loading directions, respectively.
Experimental characterization of transition region in rotating-disk boundary layer
Siddiqui, M. E.; Mukund, V.; Scott, J.; Pier, B.
2013-03-01
The three-dimensional boundary layer due to a disk rotating in otherwise still fluid is well known for its sudden transition from a laminar to a turbulent regime, the location of which closely coincides with the onset of local absolute instability. The present experimental investigation focuses on the region around transition and analyses in detail the features that lead from the unperturbed boundary layer to a fully turbulent flow. Mean velocity profiles and high-resolution spectra are obtained by constant-temperature hot-wire anemometry. By carefully analysing these measurements, regions in the flow are identified that correspond to linear, weakly nonlinear, or turbulent dynamics. The frequency that dominates the flow prior to transition is explained in terms of spatial growth rates, derived from the exact linear dispersion relation. In the weakly nonlinear region, up to six clearly identifiable harmonic peaks are found. High-resolution spectra reveal the existence of discrete frequency components that are deemed to correspond to fluctuations stationary with respect to the disk surface. These discrete components are only found in the weakly nonlinear region. By systematically acquiring low- and high-resolution spectra over a range of narrowly spaced radial and axial positions, it is shown that while the transition from laminar to turbulent regimes occurs sharply at some distance from the disk surface, a complex weakly nonlinear region of considerable radial extent continues to prevail close to the disk surface.
Dubrulle, B; Daviaud, F; Longaretti, P-Y; Richard, D; Zahn, J-P
2011-01-01
This paper provides a prescription for the turbulent viscosity in rotating shear flows for use e.g. in geophysical and astrophysical contexts. This prescription is the result of the detailed analysis of the experimental data obtained in several studies of the transition to turbulence and turbulent transport in Taylor-Couette flow. We first introduce a new set of control parameters, based on dynamical rather than geometrical considerations, so that the analysis applies more naturally to rotating shear flows in general and not only to Taylor-Couette flow. We then investigate the transition thresholds in the supercritical and the subcritical regime in order to extract their general dependencies on the control parameters. The inspection of the mean profiles provides us with some general hints on the mean to laminar shear ratio. Then the examination of the torque data allows us to propose a decomposition of the torque dependence on the control parameters in two terms, one completely given by measurements in the ca...
Directory of Open Access Journals (Sweden)
Magnus Fredriksson
2013-12-01
Full Text Available In this paper, a method for utilizing knot information from computed tomography (CT scanning of Scots pine (Pinus sylvestris L. logs was evaluated. A high speed industrial CT scanner is being developed, which will enable scanning of logs in sawmills at production speed. This development calls for the ability to optimize breakdown parameters in a quick manner because there are many decisions to be made and the timeframe for these production decisions is short. One of the important breakdown parameters is in which rotational position to saw a log. The presented method used CT data to create a two-dimensional projection of knot information from a log, in order to minimize the amount of data to analyze. The center of mass of the knot projection relative to the center of the sawing pattern was chosen as the rotational position of the log. The aim was to put large knots on the flat surfaces of the boards, as knots on edge surfaces have a more negative effect on board quality in the sorting rules used in this study. The method was tested by sawing simulation and was compared with the industrial praxis of sawing logs horns down. The results show an increase in board quality and value, albeit for a selected group of Scots pine logs. The method is very sensitive to positioning errors, but it has some potential if sawlog positioning accuracy is improved.
Bekeraité, S.; Walcher, C. J.; Falcón-Barroso, J.; Garcia Lorenzo, B.; Lyubenova, M.; Sánchez, S. F.; Spekkens, K.; van de Ven, G.; Wisotzki, L.; Ziegler, B.; Aguerri, J. A. L.; Barrera-Ballesteros, J.; Bland-Hawthorn, J.; Catalán-Torrecilla, C.; García-Benito, R.
2016-10-01
We measured the distribution in absolute magnitude - circular velocity space for a well-defined sample of 199 rotating galaxies of the Calar Alto Legacy Integral Field Area Survey (CALIFA) using their stellar kinematics. Our aim in this analysis is to avoid subjective selection criteria and to take volume and large-scale structure factors into account. Using stellar velocity fields instead of gas emission line kinematics allows including rapidly rotating early-type galaxies. Our initial sample contains 277 galaxies with available stellar velocity fields and growth curve r-band photometry. After rejecting 51 velocity fields that could not be modelled because of the low number of bins, foreground contamination, or significant interaction, we performed Markov chain Monte Carlo modelling of the velocity fields, from which we obtained the rotation curve and kinematic parameters and their realistic uncertainties. We performed an extinction correction and calculated the circular velocity vcirc accounting for the pressure support of a given galaxy. The resulting galaxy distribution on the Mr-vcirc plane was then modelled as a mixture of two distinct populations, allowing robust and reproducible rejection of outliers, a significant fraction of which are slow rotators. The selection effects are understood well enough that we were able to correct for the incompleteness of the sample. The 199 galaxies were weighted by volume and large-scale structure factors, which enabled us to fit a volume-corrected Tully-Fisher relation (TFR). More importantly, we also provide the volume-corrected distribution of galaxies in the Mr-vcirc plane, which can be compared with cosmological simulations. The joint distribution of the luminosity and circular velocity space densities, representative over the range of -20 > Mr > -22 mag, can place more stringent constraints on the galaxy formation and evolution scenarios than linear TFR fit parameters or the luminosity function alone. Galaxies main
Yamamoto, Masaru; Takahashi, Masaaki
2016-04-01
A high significance of planetary rotation and poleward eddy heat fluxes is determined for general circulation driven by baroclinic forcing due to cloud layer heating. In a high-resolution simplified Venus general circulation model, a planetary-scale mixed Rossby-gravity wave with meridional winds across the poles produces strong poleward heat flux and indirect circulation. This strong poleward heat transport induces downward momentum transport of indirect cells in the regions of weak high-latitude jets. It also reduces the meridional temperature gradient and vertical shear of the high-latitude jets in accordance with the thermal wind relation below the cloud layer. In contrast, strong equatorial superrotation and midlatitude jets form in the cloud layer in the absence of polar indirect cells in an experiment involving Titan's rotation. Both the strong midlatitude jet and meridional temperature gradient are maintained in the situation that eddy horizontal heat fluxes are weak. The presence or absence of strong poleward eddy heat flux is one of the important factors determining the slow or fast superrotation state in the cloud layer through the downward angular momentum transport and the thermal wind relation. For fast Earth rotation, a weak global-scale Hadley circulation of the low-density upper atmosphere maintains equatorial superrotation and midlatitude jets above the cloud layer, whereas multiple meridional circulations suppress the zonal wind speed below the cloud layer.
Liberzon, Alex; Gurka, Roi; Hetsroni, Gad
2011-12-01
A comparison between two- and three-dimensional analyses using proper orthogonal decomposition (POD) is performed. The investigated flow field is a turbulent boundary layer in a flume. The decomposition is applied to the vorticity fields measured using a multi-plane stereoscopic particle image velocimetry (PIV) measurement system. The decomposition was applied using two methods: A) two-dimensional slices of the data that were used separately in a so-called slice-POD, and B) as a volumetric dataset that provides 3D-POD modes. Linear combination of the first three modes, energy distribution and reconstruction of snapshots are compared. Both decompositions capture most of the turbulent flow patterns; yet, the lower order modes show significant discrepancies between the slice-POD and 3D-POD. Therefore, in order to characterize coherent structures in turbulent flows, it is essential to perform both two- and three-dimensional decompositions. These two methods complement each other and can provide an improved interpretation of various flow features.
Energy Technology Data Exchange (ETDEWEB)
Liberzon, Alex [School of Mechanical Engineering, Tel Aviv University, Ramat Aviv 69978 (Israel); Gurka, Roi [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel); Hetsroni, Gad, E-mail: alexlib@eng.tau.ac.il [Faculty of Mechanical Engineering, Technion, Haifa 32000 (Israel)
2011-12-22
A comparison between two- and three-dimensional analyses using proper orthogonal decomposition (POD) is performed. The investigated flow field is a turbulent boundary layer in a flume. The decomposition is applied to the vorticity fields measured using a multi-plane stereoscopic particle image velocimetry (PIV) measurement system. The decomposition was applied using two methods: A) two-dimensional slices of the data that were used separately in a so-called slice-POD, and B) as a volumetric dataset that provides 3D-POD modes. Linear combination of the first three modes, energy distribution and reconstruction of snapshots are compared. Both decompositions capture most of the turbulent flow patterns; yet, the lower order modes show significant discrepancies between the slice-POD and 3D-POD. Therefore, in order to characterize coherent structures in turbulent flows, it is essential to perform both two- and three-dimensional decompositions. These two methods complement each other and can provide an improved interpretation of various flow features.
Out-of-plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nano-flakes
Zhou, Yu
2017-08-25
Piezoelectric and ferroelectric properties in the two dimensional (2D) limit are highly desired for nanoelectronic, electromechanical, and optoelectronic applications. Here we report the first experimental evidence of out-of-plane piezoelectricity and ferroelectricity in van der Waals layered α-In2Se3 nano-flakes. The non-centrosymmetric R3m symmetry of the α-In2Se3 samples is confirmed by scanning transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements. Domains with opposite polarizations are visualized by piezo-response force microscopy. Single-point poling experiments suggest that the polarization is potentially switchable for α-In2Se3 nano-flakes with thicknesses down to ~ 10 nm. The piezotronic effect is demonstrated in two-terminal devices, where the Schottky barrier can be modulated by the strain-induced piezopotential. Our work on polar α-In2Se3, one of the model 2D piezoelectrics and ferroelectrics with simple crystal structures, shows its great potential in electronic and photonic applications.
The three-dimensional evolution of a plane mixing layer. Part 1: The Kelvin-Helmholtz roll-up
Rogers, Michael M.; Moser, Robert D.
1991-01-01
The Kelvin Helmholtz roll up of three dimensional, temporally evolving, plane mixing layers were simulated numerically. All simulations were begun from a few low wavenumber disturbances, usually derived from linear stability theory, in addition to the mean velocity profile. The spanwise disturbance wavelength was taken to be less than or equal to the streamwise wavelength associated with the Kelvin Helmholtz roll up. A standard set of clean structures develop in most of the simulations. The spanwise vorticity rolls up into a corrugated spanwise roller, with vortex stretching creating strong spanwise vorticity in a cup shaped region at the vends of the roller. Predominantly streamwise rib vortices develop in the braid region between the rollers. For sufficiently strong initial three dimensional disturbances, these ribs collapse into compact axisymmetric vortices. The rib vortex lines connect to neighboring ribs and are kinked in the opposite direction of the roller vortex lines. Because of this, these two sets of vortex lines remain distinct. For certain initial conditions, persistent ribs do not develop. In such cases the development of significant three dimensionality is delayed. When the initial three dimensional disturbance energy is about equal to, or less than, the two dimensional fundamental disturbance energy, the evolution of the three dimensional disturbance is nearly linear (with respect to the mean and the two dimensional disturbances), at least until the first Kelvin Helmholtz roll up is completed.
Sainath, Kamalesh; Donderici, Burkay
2013-01-01
We propose the complex-plane generalization of a powerful algebraic sequence acceleration algorithm, the Method of Weighted Averages (MWA), to guarantee \\emph{exponential-cum-algebraic} convergence of Fourier and Fourier-Hankel (F-H) integral transforms. This "complex-plane" MWA, effected via a linear-path detour in the complex plane, results in rapid, absolute convergence of field/potential solutions in multi-layered environments \\emph{regardless} of the source-observer geometry and anisotropy/loss of the media present. In this work, we first introduce a new integration path used to evaluate the field contribution arising from the radiation spectra. Subsequently, we (1) exhibit the foundational relations behind the complex-plane extension to a general Levin-type sequence convergence accelerator, (2) specialize this analysis to one member of the Levin transform family (the MWA), (3) address and circumvent restrictions, arising for two-dimensional integrals associated with wave dynamics problems, through minim...
Energy Technology Data Exchange (ETDEWEB)
Hotta, H.; Rempel, M. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Yokoyama, T., E-mail: hotta@ucar.edu [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
2015-01-01
We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation to 0.99 R {sub ☉} and include, near the top of our domain, small-scale convection with short timescales that is only weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range of r = 0.95-0.975 R {sub ☉}. The maintenance mechanisms are summarized as follows. Convection under the weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the meridional plane by forces resulting from the 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 correlation of turbulent velocities. The origin of the required correlations depends to some degree on latitude. In high latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 is induced in the NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 results from rotationally aligned convection cells ({sup b}anana cells{sup )}. The force caused by these Reynolds stresses is in balance with the Coriolis force in the NSSL.
Experimental investigation of absolute instability of a rotating-disk boundary layer
Othman, H.; Corke, T. C.
2006-10-01
A series of experiments were performed to study the absolute instability of Type I travelling crossflow modes in the boundary layer on a smooth disk rotating at constant speed. The basic flow agreed with analytic theory, and the growth of natural disturbances matched linear theory predictions. Controlled temporal disturbances were introduced by a short-duration air pulse from a hypodermic tube located above the disk and outside the boundary layer. The air pulse was positioned just outboard of the linear-theory critical radius for Type I crossflow modes. A hot-wire sensor primarily sensitive to the azimuthal velocity component, was positioned at different spatial (r,theta) locations on the disk to document the growth of disturbances produced by the air pulses. Ensemble averages conditioned on the air pulses revealed wave packets that evolved in time and space. Two amplitudes of air pulses were used. The lower amplitude was verified to produced wave packets with linear amplitude characteristics. The space time evolution of the leading and trailing edges of the wave packets were followed past the critical radius for the absolute instability, r_{c_{A}}. With the lower amplitudes, the spreading of the disturbance wave packets did not continue to grow in time as r_{c_{A}} was approached. Rather, the spreading of the trailing edge of the wave packet decelerated and asymptotically approached a constant. This result supports previous linear DNS simulations where it was concluded that the absolute instability does not produce a global mode and that linear disturbance wave packets are dominated by the convective instability. The larger-amplitude disturbances were found to produce larger temporal spreading of the wave packets. This was accompanied by a sharp growth in the wave packet amplitude past r_{c_{A}}. Explanations for this are discussed.
The role of Stewartson and Ekman layers in turbulent rotating Rayleigh-Bénard convection
Kunnen, Rudie P.J.; Stevens, Richard Johannes Antonius Maria; Overkamp, Jim; Sun, Chao; van Heijst, GertJan F.; Clercx, H.J.H.
2011-01-01
When the classical Rayleigh–Bénard (RB) system is rotated about its vertical axis roughly three regimes can be identified. In regime I (weak rotation) the largescale circulation (LSC) is the dominant feature of the flow. In regime II (moderate rotation) the LSC is replaced by vertically aligned
Energy Technology Data Exchange (ETDEWEB)
Gadomsky, O. N., E-mail: gadomsky@mail.ru; Shchukarev, I. A., E-mail: blacxpress@gmail.com [Ul’yanovsk State University (Russian Federation)
2016-08-15
It is shown that external optical radiation in the 450–1200 nm range can be efficiently transformed under the action of bounded light beams to a surface wave that propagates along the external and internal boundaries of a plane-parallel layer with a quasi-zero refractive index. Reflection regimes with complex and real angles of refraction in the layer are considered. The layer with a quasi-zero refractive index in this boundary problem is located on a highly reflective metal substrate; it is shown that the uniform low reflection of light is achieved in the wavelength range under study.
Distance equation of infrared focal plane array rotation search system%红外面阵旋转搜索系统作用距离方程
Institute of Scientific and Technical Information of China (English)
钱惟贤; 陈钱; 顾国华
2011-01-01
The infrared focal plane array rotation search system(IFPARSS) is controversial and denied by the mainstream view. In this paper, the multiple pixels' correlation (MPC) of IFPARSS in space domain and time doamin was studied. MPC was used to increase the SNR of the target effectively after the process of pixel's gray accumulation, and thus improve the target detecting distance. Moreover, according the MPC, the IFPARSS point target detecting distance equation was deduced. And through this equation, the superiorty of IFPARSS was proven. Then the simulations of distance equation were carried out. And the focal plane array search system with rotation and static state by distance range, the focal plane array search system and the linear array search system by the distance equation were compared. The simulation results show that the IFPARSS is useful and the view that denies the IFPARSS is wrong.%红外面阵旋转搜索系统一直倍受争议,文中对此进行了讨论.研究了红外面阵旋转搜索系统存在的多像元探测相关性,对多像元相关性进行相关像素灰度积累可以有效提高目标探测信噪比,并最终提升探测作用距离.基于多像元相关性,文中推导了面阵旋转搜索系统考虑多像元相关性的点源探测作用距离方程,以及考虑数据关联等作用的有效作用距离方程.对面阵旋转的作用距离方程、有效作用距离方程进行了仿真,同时对面阵旋转与静止时的作用距离、面阵旋转搜索系统和线阵旋转搜索系统的性能进行了比较.最终通过仿真数据证明了面阵旋转搜索系统的实用价值.
Hasheminejad, S. M.
2016-01-05
A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out for a Reynolds number based on the pattern wavelength (λ) of 3080. The results depict the onset, development and breakdown of the vortical structures within the flat plate boundary layer. Moreover, the effect of one spanwise array of holes with diameter of 0.2λ (=3 mm) was examined. This investigation was done on two different flat plates with holes placed at the location x/λ = 2 downstream of the troughs and peaks. The presence of holes after troughs does not show any significant effect on the vortical structures. However, the plate with holes after peaks noticeably delays the vortex breakdown. In this case, the “mushroom-like” vortices move away from the wall and propagate downstream with stable vortical structures. The vortex growth is halted further downstream but start to tilt aside.
Breen, Alexander; Breen, Alan
2016-07-01
Quantitative fluoroscopy (QF) was developed to measure intervertebral mechanics in vivo and has been found to have high repeatability and accuracy for the measurement of intervertebral rotations. However, sagittal plane translation and finite centre of rotation (FCR) are potential measures of stability but have not yet been fully validated for current QF. This study investigated the repeatability and accuracy of QF for measuring these variables. Repeatability was assessed from L2-S1 in 20 human volunteers. Accuracy was investigated using 10 consecutive measurements from each of two pairs of linked and instrumented dry human vertebrae as reference; one which tilted without translation and one which translated without tilt. The results found intra- and inter-observer repeatability for translation to be 1.1mm or less (SEM) with fair to substantial reliability (ICC 0.533-0.998). Intra-observer repeatability of FCR location for inter-vertebral rotations of 5° and above ranged from 1.5mm to 1.8mm (SEM) with moderate to substantial reliability (ICC 0.626-0.988). Inter-observer repeatability for FCR ranged from 1.2mm to 5.7mm, also with moderate to substantial reliability (ICC 0.621-0.878). Reliability was substantial (ICC>0.81) for 10/16 measures for translation and 5/8 for FCR location. Accuracy for translation was 0.1mm (fixed centre) and 2.2mm (moveable centre), with an FCR error of 0.3mm(x) and 0.4mm(y) (fixed centre). This technology was found to have a high level of accuracy and with a few exceptions, moderate to substantial repeatability for the measurement of translation and FCR from fluoroscopic motion sequences.
Suryanarayanan, Saikishan; Narasimha, Roddam
2017-02-01
Although the free-shear or mixing layer has been a subject of extensive research over nearly a century, there are certain fundamental issues that remain controversial. These include the influence of initial and downstream conditions on the flow, the effect of velocity ratio across the layer, and the nature of any possible coupling between small scale dynamics and the large scale evolution of layer thickness. In the spirit of the temporal vortex-gas simulations of Suryanarayanan et al. ["Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics," Phys. Rev. E 89, 013009 (2014)], we revisit the simple 2D inviscid vortex-gas model with extensive computations and detailed analysis, in order to gain insights into some of the above issues. Simulations of the spatially evolving vortex-gas shear layer are carried out at different velocity ratios using a computational model based on the work of Basu et al. ["Vortex sheet simulation of a plane canonical mixing layer," Comput. Fluids 21, 1-30 (1992) and "Modelling plane mixing layers using vortex points and sheets," Appl. Math. Modell. 19, 66-75 (1995)], but with a crucial improvement that ensures conservation of global circulation. The simulations show that the conditions imposed at the origin of the free shear layer and at the exit to the computational domain can affect flow evolution in their respective downstream and upstream neighbourhoods, the latter being particularly strong in the single stream limit. In between these neighbourhoods at the ends is a regime of universal self-preserving growth rate given by a universal function of velocity ratio. The computed growth rates are generally located within the scatter of experimental data on plane mixing layers and closely agree with recent high Reynolds number experiments and 3D large eddy simulation studies. These findings support the view that observed free-shear layer growth can be largely explained by the 2D vortex dynamics of
Energy Technology Data Exchange (ETDEWEB)
Zhu, M., E-mail: mzhu@sunycnse.com; Chong, H.; Vu, Q. B.; Vo, T.; Brooks, R.; Stamper, H.; Bennett, S.; Piccirillo, J. [Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203 (United States)
2015-05-25
We report a stack structure which utilizes an in-plane exchange-biased magnetic layer to influence the coercivity of the bottom CoFeB layer in a CoFeB/MgO/CoFeB perpendicular magnetic tunnel junction. By employing a thickness wedge deposition technique, we were able to study various aspects of this stack using vibrating sample magnetometer including: (1) the coupling between two CoFeB layers as a function of MgO thickness; and (2) the coupling between the bottom CoFeB and the in-plane magnetic layer as a function of Ta spacer thickness. Furthermore, modification of the bottom CoFeB coercivity allows one to measure tunneling magnetoresistance and resistance-area product (RA) of CoFeB/MgO/CoFeB in this pseudo-spin-valve format using current-in-plane-tunneling technique, without resorting to (Co/Pt){sub n} or (Co/Pd){sub n} multilayer pinning.
Boundary Layer Transition Detection on a Rotor Blade Using Rotating Mirror Thermography
Heineck, James T.; Schuelein, Erich; Raffel, Markus
2014-01-01
Laminar-to-turbulent transition on a rotor blade in hover has been imaged using an area-scan infrared camera. A new method for tracking a blade using a rotating mirror was employed. The mirror axis of rotation roughly corresponded to the rotor axis of rotation and the mirror rotational frequency is 1/2 that of the rotor. This permitted the use of cameras whose integration time was too long to prevent image blur due to the motion of the blade. This article will show the use of this method for a rotor blade at different collective pitch angles.
CFD-RANS analysis of the rotational effects on the boundary layer of wind turbine blades
DEFF Research Database (Denmark)
Carcangiu, Carlo Enrico; Sørensen, Jens Nørkær; Cambuli, Francesco
2007-01-01
The flow field past the rotating blade of a horizontal axis wind turbine has been modeled with a full 3-D steady-RANS approach. Flow computations have been performed using the commercial finite-volume solver Fluent. A number of blade sections from the 3-D rotating geometry were chosen and the cor......The flow field past the rotating blade of a horizontal axis wind turbine has been modeled with a full 3-D steady-RANS approach. Flow computations have been performed using the commercial finite-volume solver Fluent. A number of blade sections from the 3-D rotating geometry were chosen...
Filippov, A. I.; Akhmetova, O. V.; Koval‧skii, A. A.
2016-11-01
The filtration-wave process in the central layer of a three-layer anisotropic medium is described as an equivalent plane wave with a modified asymptotic method accurate in the mean. The initial problem is parametrized and broken down into simpler problems for the coefficients of expansion in an asymptotic parameter. The zero expansion coefficient describes the sought plane wave, whereas the first coefficient ensures refinement of the wave-front geometry. The exact solution of the parametrized problem is obtained on the basis of the Fourier sine transformation. The correctness of the developed method is confirmed by comparing the obtained asymptotic solutions and the coefficients of Maclaurin-series expansion of the exact solution of the parametrized problem in a formal parameter.
Institute of Scientific and Technical Information of China (English)
周振功; 王彪
2003-01-01
The dynamic behavior of two collinear anti-plane shear cracks in a piezoelectriclayer bonded to two half spaces subjected to the harmonic waves is investigated by a newmethod. The cracks are parallel to the interfaces in the mid-plane of the piezoelectric layer.By using the Fourier transform, the problem can be solved with two pairs of triple integralequations. These equations are solved by using Schmidt's method. This process is quitedifferent from that adopted previously. Numerical examples are provided to show the effectof the geometry of cracks, the frequency of the incident wave, the thickness of thepiezoelectric layer and the constants of the materials upon the dynamic stress intensity factorof cracks.
SCHLEGEL, FABRICE
2011-04-08
Using high-resolution 3-D vortex simulations, this study seeks a mechanistic understanding of vorticity dynamics in transverse jets at a finite Reynolds number. A full no-slip boundary condition, rigorously formulated in terms of vorticity generation along the channel wall, captures unsteady interactions between the wall boundary layer and the jet - in particular, the separation of the wall boundary layer and its transport into the interior. For comparison, we also implement a reduced boundary condition that suppresses the separation of the wall boundary layer away from the jet nozzle. By contrasting results obtained with these two boundary conditions, we characterize near-field vortical structures formed as the wall boundary layer separates on the backside of the jet. Using various Eulerian and Lagrangian diagnostics, it is demonstrated that several near-wall vortical structures are formed as the wall boundary layer separates. The counter-rotating vortex pair, manifested by the presence of vortices aligned with the jet trajectory, is initiated closer to the jet exit. Moreover tornado-like wall-normal vortices originate from the separation of spanwise vorticity in the wall boundary layer at the side of the jet and from the entrainment of streamwise wall vortices in the recirculation zone on the lee side. These tornado-like vortices are absent in the case where separation is suppressed. Tornado-like vortices merge with counter-rotating vorticity originating in the jet shear layer, significantly increasing wall-normal circulation and causing deeper jet penetration into the crossflow stream. © 2011 Cambridge University Press.
DEFF Research Database (Denmark)
Foucaut, J.M.; Coudert, S.; Braud, C.
2012-01-01
The Stereoscopic PIV is nowadays a well established measurement technique for turbulent flows. However, the accuracy and the spatial resolution are still highly questionable in presence of complex flow with both strong gradients and out of plane motions. To give guidelines for both setup and meas......The Stereoscopic PIV is nowadays a well established measurement technique for turbulent flows. However, the accuracy and the spatial resolution are still highly questionable in presence of complex flow with both strong gradients and out of plane motions. To give guidelines for both setup...
Directory of Open Access Journals (Sweden)
Jiamin Chen
2016-05-01
Full Text Available In this letter, we report a NiAl buffer layer as a template for the integration of epitaxial current-perpendicular-plane-giant magnetoresistive (CPP-GMR devices on a Si(001 single crystalline substrate. By depositing NiAl on a Si wafer at an elevated temperature of 500 °C, a smooth and epitaxial B2-type NiAl(001 layer was obtained. The surface roughness was further improved by depositing Ag on the NiAl layer and applying subsequent annealing process. The epitaxial CPP-GMR devices grown on the buffered Si(001 substrate present a large magnetoresistive output comparable with that of the devices grown on an MgO(001 substrate, demonstrating the possibility of epitaxial spintronic devices with a NiAl templated Si wafer for practical applications.
Sainath, Kamalesh; Teixeira, Fernando L.; Donderici, Burkay
2014-07-01
We propose the complex-plane generalization of a powerful algebraic sequence acceleration algorithm, the method of weighted averages (MWA), to guarantee exponential-cum-algebraic convergence of Fourier and Fourier-Hankel (F-H) integral transforms. This “complex-plane” MWA, effected via a linear-path detour in the complex plane, results in rapid, absolute convergence of field and potential solutions in multi-layered environments regardless of the source-observer geometry and anisotropy/loss of the media present. In this work, we first introduce a new integration path used to evaluate the field contribution arising from the radiation spectra. Subsequently, we (1) exhibit the foundational relations behind the complex-plane extension to a general Levin-type sequence convergence accelerator, (2) specialize this analysis to one member of the Levin transform family (the MWA), (3) address and circumvent restrictions, arising for two-dimensional integrals associated with wave dynamics problems, through minimal complex-plane detour restrictions and a novel partition of the integration domain, (4) develop and compare two formulations based on standard/real-axis MWA variants, and (5) present validation results and convergence characteristics for one of these two formulations.
An experimental study of the edge effect on transition of the rotating-disk boundary-layer flow
Imayama, Shintaro; Lingwood, R. J.; Alfredsson, P. Henrik
2011-11-01
Lingwood [J. Fluid Mech., 299, 17 (1995)] showed that the flow instability in the rotating-disk boundary layer is not only of convective nature but also that the flow becomes absolutely unstable. Furthermore, in the absence of bypass mechanisms, the absolute instability triggers nonlinearity and transition to turbulence at a fixed Reynolds number (Re). Healey [J. Fluid Mech., 663, 148 (2010)] suggested that the observed spread (albeit small) in transition Re in different experiments is an effect of the Re at the disk edge and provided a nonlinear model to take this effect into account. Here, we further investigate this problem experimentally with hot-wire measurements on a rotating polished glass disk with a diameter of 474 mm and a total imbalance and surface roughness less than 10 μm. To investigate the influence of the disk edge, we vary Re at the disk edge by changing the rotational speed and map the development of the disturbance velocity in the radial direction. Furthermore, the effect of a stationary annular plate around the edge of the rotating disk is also investigated. Our experiments show no effect of the disk edge Re on the stability and transition, however there was a shift of both the growth curve and the transition Re by about 10 units with and without the outer stationary plate, with the lower Re observed with the plate.
The role of Stewartson and Ekman layers in turbulent rotating Rayleigh-B\\'enard convection
Kunnen, Rudie P J; Overkamp, Jim; Sun, Chao; van Heijst, GertJan F; Clercx, Herman J H
2011-01-01
When the classical Rayleigh-B\\'enard (RB) system is rotated about its vertical axis roughly three regimes can be identified. In regime I (weak rotation) the large scale circulation (LSC) is the dominant feature of the flow. In regime II (moderate rotation) the LSC is replaced by vertically aligned vortices. Regime III (strong rotation) is characterized by suppression of the vertical velocity fluctuations. Using results from experiments and direct numerical simulations of RB convection for a cell with a diameter-to-height aspect ratio equal to one at $Ra \\sim 10^8-10^9$ ($Pr=4-6$) and $0 \\lesssim 1/Ro \\lesssim 25$ we identified the characteristics of the azimuthal temperature profiles at the sidewall in the different regimes. In regime I the azimuthal wall temperature profile shows a cosine shape and a vertical temperature gradient due to plumes that travel with the LSC close to the sidewall. In regime II and III this cosine profile disappears, but the vertical wall temperature gradient is still observed. It t...
DEFF Research Database (Denmark)
Scherner, Ananda; Melander, Bo; Kudsk, Per
2016-01-01
Tillage methods and crop rotation are probably the two most important cropping factors affecting weed communities, particularly when herbicide use is restricted. This study examined weed dynamics following eleven years of different tillage and crop rotation treatments. The aboveground grass weed...... in a more even distribution between the three layers. It is suggested that in cases where severe grass weed problems have built up in a non-inversion tillage system and where changes in crop rotation are ineffective or undesirable, inversion of the upper soil layer with the lower one could be considered...... by frequent cropping of winter cereals. The two non-inversion tillage treatments caused a strong stratification of weed seeds within the plough layer, with the majority of the seeds being accumulated in the upper soil layers, at 0–5 and 5–10 cm, and markedly less so in the 10–20 cm layer. Ploughing resulted...
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Romero, L M; Blazquez-Salcedo, J L, E-mail: mgromero@fis.ucm.es, E-mail: joseluis.blazquez@fis.ucm.es [Depto. Fisica Teorica II, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040-Madrid (Spain)
2011-09-22
Introducing a surface layer of matter on the edge of a neutron star in slow rigid rotation, we analyze, from an intrinsic point of view, the junction conditions that must be satisfied between the interior and exterior solutions of the Einstein equations. In our model the core-crust transition pressure arise as an essential parameter in the description of a configuration. As an application of this formalism, we describe giant glitches of the Vela pulsar as a result of variations in the transition pressure, finding that these small changes are compatible with the expected temperature variations of the inner crust during glitch time
Lu, Xuefeng; Wang, Hongjie; Wei, Yin; Wen, Jiangbo; Niu, Min; Jia, Shuhai
2014-08-01
Molecular dynamics simulations are performed to clarify the extreme strain rate and temperature dependence of the mechanical behaviors of nano silicon nitride thin layers in a basal plane under tension. It is found that fracture stresses show almost no change with increasing strain rate. However, fracture strains decrease gradually due to the appearance of additional N(2c)-Si bond breaking defects in the deformation process. With increasing loading temperature, there is a noticeable drop in fracture stress and fracture strain. In the low temperature range, roughness phases can be observed owing to a combination of factors such as configuration evolution and energy change.
Axial symmetric rotation of a partially immersed body in a liquid with a surfactant layer
Indian Academy of Sciences (India)
Sunil Datta; Nidhi Pandya
2001-08-01
This paper gives a simple integral formula to evaluate the torque on a slowly rotating symmetric body partially immersed in a viscous liquid covered by an adsorbed surface ﬁlm. Besides the results known earlier, new results have also been derived for small values of the surface shear viscosity parameter . It is seen that the effect of in all cases is to increase the torque.
Lu, Xuefeng; Guo, Xin; La, Peiqing; Wei, Yupeng; Nan, Xueli; He, Ling
2014-09-21
Molecular dynamics simulations were performed to clarify the nanomechanical responses of β-Si3N4 nano-thin layers in the basal plane for indenters of various radii, different indentation velocities and at different temperatures. It was found that the maximum loading stress and indenter displacement both increase with increasing radius of the indenter. A large number of N(6h)-Si bond-breaking defects and one N(2c)-Si bond-breaking defects are responsible for the initiation of fracturing. With increasing loading velocity, the maximum loading stresses show almost no change; however, a high loading velocity can shorten the displacement of the indenter and contributes to the formation of new N(2c)-Si bond-breaking defects. Thermal fluctuations can decrease the mechanical properties of the thin layer. The maximum loading stresses and indenter displacements are sensitive to both the radius of the indenter and the loading temperature.
Energy Technology Data Exchange (ETDEWEB)
Hou Zhilin [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)], E-mail: zhilin.hou@lpmi.uhp-nancy.fr; Assouar, Badreddine M. [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)
2008-03-17
We show that the conversional three-dimensional plane wave expansion method can be revised to investigate the lamb wave propagation in the plate with two-dimensional phononic crystal layer coated on uniform substrate. We find that an imaginary three-dimensional periodic system can be constructed by stacking the studied plates and vacuum layers alternately, and then the Fourier series expansion can be performed. The difference between our imaginary periodic system and the true three-dimensional one is that, in our system, the Bloch feature of the wave along the thickness direction is broken. Three different systems are investigated by the proposed method as examples. The principle and reliability of the method are also discussed.
Mihajlović, G.; Mosendz, O.; Wan, L.; Smith, N.; Choi, Y.; Wang, Y.; Katine, J. A.
2016-11-01
We introduce a differential planar Hall effect method that enables the experimental study of spin orbit torque switching of in-plane magnetized free layers in a simple Hall bar device geometry. Using this method, we study the Pt thickness dependence of switching currents and show that they decrease monotonically down to the minimum experimental thickness of ˜5 nm, while the critical current and power densities are very weakly thickness dependent, exhibiting the minimum values of Jc0 = 1.1 × 108 A/cm2 and ρJc0 2=0.6 ×1012 W/cm 3 at this minimum thickness. Our results suggest that a significant reduction of the critical parameters could be achieved by optimizing the free layer magnetics, which makes this technology a viable candidate for fast, high endurance and low-error rate applications such as cache memories.
Coriolis effect on thermal convection in a couple-stress fluid-saturated rotating rigid porous layer
Energy Technology Data Exchange (ETDEWEB)
Shivakumara, I.S.; Devaraju, N. [Bangalore University, UGC-Centre for Advanced studies in Fluid Mechanics, Department of Mathematics, Bangalore (India); Sureshkumar, S. [Siddaganga Institute of Technology, Department of Mathematics, Tumkur (India)
2011-04-15
Both linear and weakly nonlinear stability analyses are performed to study thermal convection in a rotating couple-stress fluid-saturated rigid porous layer. In the case of linear stability analysis, conditions for the occurrence of possible bifurcations are obtained. It is shown that Hopf bifurcation is possible due to Coriolis force, and it occurs at a lower value of the Rayleigh number at which the simple bifurcation occurs. In contrast to the nonrotating case, it is found that the couple-stress parameter plays a dual role in deciding the stability characteristics of the system, depending on the strength of rotation. Nonlinear stability analysis is carried out by constructing a set of coupled nonlinear ordinary differential equations using truncated representation of Fourier series. Sub-critical finite amplitude steady motions occur depending on the choice of physical parameters but at higher rotation rates oscillatory convection is found to be the preferred mode of instability. Besides, the stability of steady bifurcating equilibrium solution is discussed using modified perturbation theory. Heat transfer is calculated in terms of Nusselt number. Also, the transient behavior of the Nusselt number is investigated by solving the nonlinear differential equations numerically using the Runge-Kutta-Gill method. It is noted that increase in the value of Taylor number and the couple-stress parameter is to dampen the oscillations of Nusselt number and thereby to decrease the heat transfer. (orig.)
Institute of Scientific and Technical Information of China (English)
CHEN Hao; WANG Xiuming; ZHAO Haibo
2006-01-01
A rotated staggered grid finite-difference (FD) method with a perfectly matched layer (PML) method is proposed for numerically solving elastic wave equations in inhomogeneous elastic and poroe- lastic media. Compared with a standard staggered- grid FD, the former has the advantage over the latter in that its physical variables need only to be defined at two locations. In the rotated staggered grid, stress and strain components (or particle velocity and displacement components) are defined at elementary cell centers, and the velocity or displacement components (or the stress and strain components) are defined at vertexes. In this way, no elastic moduli need to be interpolated or averaged. Numerical results from the proposed method have been compared with the standard staggered FD method. The results are in good agreement with each other. Our numerical results show that the proposed algorithm can handle much stronger impedance contrast. This is especially true when simulating fractured medium filled with fluids such as water or gas without giving special treatment. On the other hand, the implemented PML absorbing boundary condition works well in efficiently reducing reflected waves from the artificial interfaces. It generates almost no reflection at artificial interfaces with a boundary of PML thickness of half a wavelength. Our theoretical analysis and numerical tests proved that the PML absorbing algorithm in the rotated staggered grid is almost identical to those in the standard staggered grid. In this paper, we also presented all of the formulations of the PML implementation and modeling examples in elastic, poroelastic, and anisotropic media.
Xia, Yudong; Tao, Bowan; Xiong, Jie; Zhang, Xin; Zhao, Yong
2016-03-01
The Y2O3 films were deposited on biaxially textured Ni-5%W (NiW) substrates at different substrate temperatures (Ts). The microstructures of the Y2O3 films were characterized by X-ray diffraction (XRD) θ-2θ scans and ω-scans. The Y2O3 lattice parameters and residual stress were measured and calculated by high-resolution reciprocal space mapping (HR-RSM). Results showed that the Y2O3 films deposited on the NiW substrate exhibited different growth mechanisms at different Ts. At a low temperature range, the Y2O3 films grew via the tilt growth mechanism. The Y2O3 film grown at Ts=620 °C exhibited the highest residual stress and sharpest out-of-plane texture. With the increase in Ts, the growth mechanism changed to the epitaxial growth mechanism. At Ts=720 °C, the Y2O3 underwent epitaxial growth on the NiW substrates, and the out-of-plane textures of Y2O3 and NiW were almost identical.
Akbarov, Surkay D.; Cafarova, Fazile I.; Yahnioglu, Nazmiye
2017-02-01
The axisymmetric buckling delamination of the piezoelectric circular sandwich plate with piezoelectric face and elastic (metal) core layers around the interface penny-shaped cracks is investigated. The case is considered where short-circuit conditions with respect to the electrical potential on the upper and lower and also lateral surfaces of face layers are satisfied. It is assumed that the edge surfaces of the cracks have an infinitesimal rotationally symmetric initial imperfection and the development of this imperfection with rotationally symmetric compressive forces acting on the lateral surface of the plate is studied by employing the exact geometrically non-linear field equations and relations of electro-elasticity for piezoelectric materials. Solution to the considered nonlinear problem is reduced to solution of the series boundary value problems derived by applying the linearization procedure with respect to small imperfection of the sought values. Numerical results reveal the effect of piezoelectricity as well as geometrical and material parameters on the critical values are determined numerically by employing finite element method (FEM).
Plasmonic Bandgaps in 1D Arrays of Slits on Metal Layers Excited by Out-of-Plane Sources
Directory of Open Access Journals (Sweden)
Roberto Marani
2012-01-01
Full Text Available We analyze the effective opening of finite bands of inhibited transmission in realistic systems excited by actual out-of-plane sources. We first observe how the excitation of surface plasmon polaritons in one-dimensional arrays of metal slits depends on the angle of incidence of the source field. Then, the well-known grating-coupling equation is revised in order to find an asymmetric structure with equivalent parameters which, under perfectly normal excitation, is able to exhibit surface plasmon polariton modes at the same wavelengths of the original structure which undergoes a nonorthogonal incidence of the light. In this way we demonstrate through finite-element simulations that a realistic system, probed by a source beam in a finite light-cone, can be effectively decomposed in several equivalent systems with different physical and geometrical parameters, with results in the enlargement of the theoretically expected punctual minimum of transmission.
Ba, Zhenning; Yin, Xiao
2016-06-01
A multidomain indirect boundary element method (IBEM) is proposed to study the wave scattering of plane SH waves by complex local site in a layered half-space. The new method, using both the full-space and layered half-space Green's functions as its fundamental solutions can also be regarded as a coupled method of the full-space IBEM and half-space IBEM. First, the whole model is decomposed into independent closed regions and an opened layered half-space region with all of the irregular interfaces; then, fictitious uniformly distributed loads are applied separately on the boundaries of each region, and scattered fields of the closed regions and the opened layered half-space region are constructed by calculating the full-space and layered half-space Green's functions, respectively; finally, all of the regions are assembled to establish the linear algebraic system that arises from discretization. The densities of the distributed loads are determined directly by solving the algebraic system. The accuracy and capability of the new approach are verified extensively by comparing its results with those of published approaches for a class of hills, valleys and embedded inclusions. And the capability of the new method is further displayed when it is used to investigate a hill-triple layered valley-hill coupled topography in a multilayered half-space. All of the numerical calculations presented in this paper demonstrate that the new method is very suitable for solving multidomain coupled multilayered wave scattering problems with the merits of high accuracy and representing the scattered fields in different kinds of regions more reasonably and flexibly.
Ogura, Hiroshi; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N
2008-01-08
The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.
Institute of Scientific and Technical Information of China (English)
刘璐璐; 张军; 翟树成; 张国平
2015-01-01
The analysis of detailed flow structure of a turbulent boundary layer is of great significance for establishing the link among the detailed flow structure characteristics, flow noise and wall friction, which can help lay the foundation for deeper research of the drag and noise reduction mechanism. PIV (particle image velocimetry) technique is applied in this paper to study the hairpin vortex signatures in the streamwise-spanwise plane in turbulent boundary layer flow on a flat plate. The experiment successfully identifies low-speed streaks from PIV instantaneous velocity field and the distributions of spanwise spacing of low-speed streaks along with wall-normal distance and Reynolds number are obtained through statistical analysis in the logarithmic layer. Meanwhile, the counter-rotating vortices surrounding the long low-speed streaks in the streamwise-spanwise plane are extracted through vortex identification criterion, which reveals the relationship between hairpin packets and long low-speed streaks. Besides, this paper performs a research about the distribution of spanwise spacing of hairpin vortex legs, considering various wall-normal distances and the effect of Reynolds numbers.%研究湍流边界层精细流动结构特征，有助于建立流动结构特征与壁面摩阻、流噪声之间的关联，从而为湍流边界层减阻降噪机理的深层次研究奠定基础。该文应用PIV（粒子图像测速）技术，对平板湍流边界层中发卡涡在流向-展向平面的涡迹特征进行研究。利用PIV瞬时速度场，捕捉到明显的低速条带，通过统计分析获得对数层范围低速条带间距随壁面法向距离的变化以及雷诺数的影响规律。同时，通过涡识别准则，提取在流向-展向平面内长低速条带两侧的反向漩涡带，揭示了发卡涡包与长低速条带的内在关系。此外，还研究了流向-展向平面发卡涡涡腿间距随壁面法向距离的变化规律以及雷诺数的影响。
Color and Kerr rotation in a dielectric/ferromagnetic double layers structure
Directory of Open Access Journals (Sweden)
Jing Zhang
2017-02-01
Full Text Available By the multiple reflections and transmissions in a dielectric on a ferromagnetic metal, color and Kerr rotation correlate with each other. It is revealed that the real refractive index of dielectric plays a major role on the variations of color and Kerr signal, while the absorbing term adjusts the intensive color exhibition and Kerr enhancement at much thinner dielectric thickness. The intensive Kerr signal variation is always accompanied by the color transition with the dielectric thickness changing. Experimental results observed in silicon(or silica/iron samples are well consistent with calculations. Nanometer dielectric optical coating can not only enhance Kerr effect but also endow magnetic surface with chromatics, which has promising potential applications in anti-fake brands, colorful decorations, camouflages, and even bionics.
Directory of Open Access Journals (Sweden)
V. T. Erofeenko
2016-01-01
Full Text Available A method of analytical solution of the boundary-value problem of electromagnetic field penetration of point magnetic dipole through the infinite planar leans (screen from the focusing metamaterials is suggested. It is demonstrated, that for the lenses with special combinations of material parameters in layers the series of focuses are formed: one is over the screen and three is in front of the screen in the half-space of point source of the excitation field. The summary field of focuses in front of the lens is equal to the sum of fields of magnetic and electric dipoles.
Energy Technology Data Exchange (ETDEWEB)
Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp [Department of Physics, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521 (Japan)
2015-12-15
Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.
Institute of Scientific and Technical Information of China (English)
陈出新; 郭孝城
2003-01-01
Magnetoconvective instabilities in a rapidly rotating, electrically conducting fluid layer heated from below in the presence of a non-uniform, horizontal magnetic field are investigated. It was first shown by Chandrasekhar that an overall minimum of the Rayleigh number may be reached at the onset of magnetoconvection when a uniform basic magnetic field is imposed. In this paper, we show that the properties of instability can be quite different when a non-uniform basic magnetic field is applied. It is shown that there is an optimum value of the Elsasser number provided that the basic magnetic field is a monotonically decreasing or increasing function of the vertical coordinate. However,there exist no optimum values of the Elsasser number that can give rise to an overall minimum of the Rayleigh number at the onset of magnetoconvection if the imposed basic magnetic field has an infiexion point.
Hasheminejad, S.M.
2017-04-03
Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns with the same pattern wavelength λ of 15mm and the same pattern amplitude A of 7.5mm were examined for free-stream velocity of 3m/s. The results show a good agreement with earlier studies. The inflection point on the velocity profile downstream of the trough of the patterns at the beginning of the vortex formation indicates that the vortices non-linearly propagate downstream. An additional vortex structure was also observed between the troughs of the notched pattern.
The vibration of a layered rotating planet and Bryan’s effect
CSIR Research Space (South Africa)
Shatalov, MY
2011-12-01
Full Text Available 0 11.1? 103 8.4? 103 0 ?Inner Core? 115? 1010 206? 109 12.9? 103 11.0? 103 4.00? 103 Table 1. Physical properties of the moon?s layers and the phase velocities ?i and ?i of the P- and S- waves respectively. Consider the following fictional... effect occurs for both modes. Table 1 provides feasible physical properties for a fictional moon and gives possible phase velocities for both P- and S-waves. 422 Advances in Geotechnical Earthquake Engineering ? Soil Liquefaction and Seismic Safety...
Mazraati, Hamid; Le, Tuan Q.; Awad, Ahmad A.; Chung, Sunjae; Hirayama, Eriko; Ikeda, Shoji; Matsukura, Fumihiro; Ohno, Hideo; Åkerman, Johan
2016-09-01
We study the magnetodynamic modes of a magnetic tunnel junction with perpendicular magnetic easy axis (p-MTJ) in in-plane magnetic fields using device-level ferromagnetic resonance spectroscopy. We compare our experimental results to those of micromagnetic simulations of the entire p-MTJ. Using an iterative approach to determine the material parameters that best fit our experiment, we find excellent agreement between experiments and simulations in both the static magnetoresistance and magnetodynamics in the free and reference layers. From the micromagnetic simulations, we determine the spatial mode profiles, the localization of the modes and, as a consequence, their distribution in the frequency domain due to the inhomogeneous internal field distribution inside the p-MTJ under different applied field regimes. We also conclude that the excitation mechanism is a combination of the microwave voltage modulated perpendicular magnetic anisotropy, the microwave Oersted field, and the spin-transfer torque generated by the microwave current.
Belanger, R.; Venus, D.
2017-02-01
A two-dimensional (2D) percolation transition in Fe/W(110) ultrathin magnetic films occurs when islands in the second atomic layer percolate and resolve a frustrated magnetic state to produce long-range in-plane ferromagnetic order. Novel measurements of percolation using the magnetic susceptibility χ (θ ) as the films are deposited at a constant temperature, allow the long-range percolation transition to be observed as a sharp peak consistent with a critical phase transition. The measurements are used to trace the paramagnetic-to-ferromagnetic phase boundary between the T =0 percolation magnetic transition and the thermal Curie magnetic transition of the undiluted film. A quantitative comparison to critical scaling theory is made by fitting the functional form of the phase boundary. The fitted parameters are then used in theoretical expressions for χ (T ) in the critical region of the paramagnetic state to provide an excellent, independent representation of the experimental measurements.
Solomou, Alexandros G.; Machairas, Theodoros T.; Karakalas, Anargyros A.; Saravanos, Dimitris A.
2017-06-01
A thermo-mechanically coupled finite element (FE) for the simulation of multi-layered shape memory alloy (SMA) beams admitting large displacements and rotations (LDRs) is developed to capture the geometrically nonlinear effects which are present in many SMA applications. A generalized multi-field beam theory implementing a SMA constitutive model based on small strain theory, thermo-mechanically coupled governing equations and multi-field kinematic hypotheses combining first order shear deformation assumptions with a sixth order polynomial temperature field through the thickness of the beam section are extended to admit LDRs. The co-rotational formulation is adopted, where the motion of the beam is decomposed to rigid body motion and relative small deformation in the local frame. A new generalized multi-layered SMA FE is formulated. The nonlinear transient spatial discretized equations of motion of the SMA structure are synthesized and solved using the Newton-Raphson method combined with an implicit time integration scheme. Correlations of models incorporating the present beam FE with respective results of models incorporating plane stress SMA FEs, demonstrate excellent agreement of the predicted LDRs response, temperature and phase transformation fields, as well as, significant gains in computational time.
Khasanov, R.; Shengelaya, A.; Conder, K.; Morenzoni, E.; Savic, I. M.; Keller, H.
2003-01-01
The oxygen-isotope (16O/18O) effect (OIE) on the in-plane penetration depth lambdaab (0) in underdoped Y1-x Prx Ba2 Cu3 O7-delta was studied by means of muon-spin rotation. A pronounced OIE on lambdaab-2 (0) was observed with a relative isotope shift of Deltalambdaab-2 /lambda ab-2 = -5(2)% for x = 0.3 and -9(2)% for x = 0.4. The OIE exponents of Tc and of lambdaab-2 (0) exhibit a relation that appears to be generic for cuprate superconductors.
Institute of Scientific and Technical Information of China (English)
顾国庆; 王开福; 许星
2012-01-01
基于刚体面内微小转动测量在实验力学测量中的必要性和重要性,开展了利用数字图像相关方法(DICM)定量测量转动角度和准确定位转动中心的研究.从理论上分析了刚体面内转动角度与面内位移分量之间的关系,运用计算机仿真散斑图进行数值模拟研究,得到的转动角度和转动中心位置测量误差都在2％以内,模拟结果验证了数字图像相关法进行刚体面内微小转动定量测量的可行性.运用数字图像相关法对刚体面内未知微小转动进行了实测,并与几何光学实验方法所得到的结果进行了比较,两者结果误差为3.1％,符合较好.实验结果表明数字图像相关方法可以作为定量测量刚体面内微小转动的有效方法.%Due to the necessity and importance of the measurement of in-plane micro-rotations of a rigid body in the field of experimental mechanics < an investigation of quantitative measurement of rotation angle and rotation-center location is developed with digital image correlation method (DICM). The relation between the rotation angle and the in-plane displacement components is analyzed through theoretical analysis. The study of numerical simulation is carried out by specklegram produced by computer simulation. The measurement errors of both rotation angle and rotation-center location are within 2%. It shows that digital image correlation method is quite competent for the quantitative measurement of in-plane micro-rotations. The unknown in-plane rotation of a rigid body is practically measured by using digital image correlation method. The obtained rotation angle is compared with the result obtained from the geometrical optics experiment. The relative error is 3. 1%. It shows that they are in good agreement. Experimental results indicate that digital image correlation method can be regarded as an efficient method to measure in-plane micro-rotations of a rigid body quantitatively.
Institute of Scientific and Technical Information of China (English)
傅贤超; 唐英; 曹文
2016-01-01
Bridge rotation construction is commonly used to date. Hinge is the key structure. Currently,plane hinge and spherical hinge are both used. The latter is more widely applied while the former is mainly used in light bridge. In this paper,these two hinges were compared in terms of hinge structure design,fabrication,installation,and rotation construction. In this case,plane hinge outweighs spherical hinge in terms of mechanic characteristics and operation properties.%我国采用转体施工工艺的桥梁日益增多,转铰是实现其转体功能的关键结构.目前桥梁平转法施工中转铰一般采用球铰和平面铰,球铰运用比较广泛,而平面铰主要运用于轻型桥梁.本文从转铰结构设计、制作安装、转体施工等方面对两种转铰进行对比分析,论证了平面铰的受力特性和使用性能更加合理.
Energy Technology Data Exchange (ETDEWEB)
Strayer, Megan E.; Gupta, Arnab Sen; Akamatsu, Hirofumi; Lei, Shiming; Benedek, Nicole A.; Gopalan, Venkatraman; Mallouk, Thomas E. (Texas); (Penn State)
2016-04-29
We demonstrate the loss of centrosymmetry via oxygen octahedral rotations in the n = 2 Dion–Jacobson family of layered oxide perovskites, A'LaB_{2}O_{7} (A' = Rb, Cs; B = Nb, Ta). Ab initio density functional theory calculations predict that all four materials should adopt polar space groups, in contrast to the results of previous experimental studies that have assigned these materials to the centrosymmetric P4/mmm space group. Optical second harmonic generation experiments confirm the presence of a noncentrosymmetric phase at ambient temperature. Piezoresponse force microscopy experiments also show that this phase is piezoelectric. Moreover, to elucidate the symmetry-breaking and assign the appropriate space groups, the crystal structure of CsLaNb_{2}O_{7}is refined as a function of temperature from synchrotron X-ray diffraction data. Above 550 K, CsLaNb_{2}O_{7} adopts the previously determined centrosymmetric P4/mmm space group. Between 550 and 350 K, the symmetry is lowered to the noncentrosymmetric space group Amm2. Below 350 K, additional symmetry lowering is observed as peak splitting, but the space group cannot be unambiguously identified.
Geometry of magnetosonic shocks and plane-polarized waves: Coplanarity Variance Analysis (CVA)
Scudder, J. D.
2005-02-01
Minimum Variance Analysis (MVA) is frequently used for the geometrical organization of a time series of vectors. The Coplanarity Variance Analysis (CVA) developed in this paper reproduces the layer geometry involving coplanar magnetosonic shocks or plane-polarized wave trains (including normals and coplanarity directions) 300 times more precisely (CVA technique exploits the eigenvalue degeneracy of the covariance matrix present at planar structures to find a consistent normal to the coplanarity plane of the fluctuations. Although Tangential Discontinuities (TDs) have a coplanarity plane, the eigenvalues of their covariance matrix are usually not degenerate; accordingly, CVA does not misdiagnose TDs as shocks or plane-polarized waves. Together CVA and MVA may be used to sort between the hypotheses that the time series is caused by a one-dimensional current layer that has magnetic disturbances that are (1) coplanar, linearly polarized (shocks/plane waves), (2) intrinsically helical (rotational/tangential discontinuities), or (3) neither 1 nor 2.
Wirgin, A
2006-01-01
We treat the case of a flat stress-free surface (i.e., the ground in seismological applications) separating air from a homogeneous, isotropic, solid substratum overlain by a homogeneous, isotropic, solid layer (in contact with the ground) solicited by a SH plane body wave incident in the substratum. The analysis is first carried out in the frequency domain and subsequently in the time domain. The frequency domain response is {\\it normal} in that no resonances are excited (a resonance is here understood to be a situation in which the response is infinite in the absence of dissipation). The translation of this in the time domain is that the scattered pulse is of relatively-short duration. The duration of the pulse is shown to be largely governed by radiation damping which shows up in the imaginary parts of the complex eigenfrequencies of the configuration. Three methods are elaborated for the computation of the time history and give rise to the same numerical solutions for a large variety of configurations of i...
Energy Technology Data Exchange (ETDEWEB)
Furubayashi, T., E-mail: furubayashi.takao@nims.go.jp; Takahashi, Y. K.; Sasaki, T. T.; Hono, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan)
2015-10-28
Enhancement of magnetoresistance output was attained in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices by using a bcc CuZn alloy for the spacer. Pseudo spin valves that consisted of the Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5}) Heusler alloy for ferromagnetic layers and CuZn alloy with the composition of Cu{sub 52.4}Zn{sub 47.6} for a spacer showed the large change of the resistance-area products, ΔRA, up to 8 mΩ·μm{sup 2} for a low annealing temperature of 350 °C. The ΔRA value is one of the highest reported so far for the CPP-GMR devices for the low annealing temperature, which is essential for processing read heads for hard disk drives. We consider that the enhancement of ΔRA is produced from the spin-dependent resistance at the Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5})/CuZn interfaces.
Energy Technology Data Exchange (ETDEWEB)
Vishnyakov, A. V.; Stuchinsky, V. A., E-mail: stuchin@isp.nsc.ru; Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A. [Institute of Semiconductor Physics, Russian Academy of Science, Siberian Division, 13, Acad. Lavrent' ev Avenue, Novosibirsk 630090 (Russian Federation)
2014-03-03
In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents j{sub ph} being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at j{sub ph} ≠ 0) charge-carrier diffusion length l{sub d} {sub eff} as a function of j{sub ph} for j{sub ph} → 0 inferred from our experimental data proved to be consistent with the behavior of l{sub d} {sub eff} vs j{sub ph} as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.
2015-01-01
Epitaxial m-plane ZnO thin films have been deposited on m-plane sapphire substrates at a low temperature of 200°C by atomic layer deposition. A 90° in-plane rotation is observed between the m-plane ZnO thin films and the sapphire substrates. Moreover, the residual strain along the ZnO [−12-10] direction is released. To fabricate metal-insulator-semiconductor devices, a 50-nm Al2O3 thin film is deposited on the m-plane ZnO thin films. It is interesting to observe the near-infrared random lasin...
Park, Won-Hwa
2016-09-01
The author investigates an intra-layer coupling effect through transverse acoustic (TA) phonon modes along the z-direction at Au nanoparticle (NP)-graphene monolayer (GM)-Au thin film (TF) plasmonic junctions in regard with sp3 type defect effect. The oxidation and resulting disorder of GM with breaking of six-fold symmetry have been explored. Because a Raman-forbidden D peak can be activated due to unwanted single-phonon inter-valley and intra-valley scattering processes, the quantitative estimation of the sp3 type defect is being performed by the intensity ratio between G and D peaks. By exploring the difference of the maximum peak position (TA3-TA1) and the intensity ratio, (TA1/TA3) the author can reveal that a lower z-protruded GM accompanied with weak intra-coupling and a weaker RBLM intensity show relatively high D/G. It means that larger surface area of a GM to be functionalized by oxidization can secure more easily than the higher z-protruded. This investigation presents the importance of controlling the degree of z-protrusion of GM surface in terms of not only the presence of high D/G but also its related and detailed nano-structural surface shape, leading to the enhancement of electrical properties such as a carrier mobility and sheet resistance value. The out-of-plane phonon modes will be considered as a key factor in further exploring nano-physical deformation of 2D materials in sync with its electrical performance.
Vassiliev, Dmitri
2017-04-01
We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833
Noll, Stefan
2016-07-01
Rotational temperatures derived from hydroxyl (OH) line emission are frequently used to study atmospheric temperatures at altitudes of about 87 km. While the measurement only requires intensities of a few bright lines of an OH band, the interpretation can be complicated. Ground-based temperatures are averages for the entire, typically 8 km wide emission layer. Variations in the rotational temperature are then caused by changes of the kinetic temperature and the OH emission profile. The latter can also be accompanied by differences in the layer-averaged efficiency of the thermalisation of the OH rotational level populations. Since this especially depends on the frequency of collisions with O_2, which is low at high altitudes, the non-local thermodynamic equilibrium (non-LTE) contribution to the measured temperatures can be significant and variable. In order to understand the impact of the different sources of OH rotational temperature variations from time scales of hours to a solar cycle, we have studied spectra from the astronomical echelle spectrographs X-shooter and UVES located at Cerro Paranal in Chile. While the X-shooter data spanning 3.5 years allowed us to measure temperatures for 25 OH and two O_2 bands, the UVES spectra cover no more than 10 OH bands simultaneously but a period of about 15 years. These data have been complemented by kinetic temperature and OH and O_2 emission profiles from the multi-channel radiometer SABER on the TIMED satellite. Taking the O_2 and SABER kinetic temperatures as reference and considering the different band-dependent emission profiles, we could evaluate the contribution of non-LTE effects to the measured OH rotational temperatures depending on line set, band, and time. Non-LTE contributions are significant for most bands and can exceed 10 K. The amplitudes of their average nocturnal and seasonal variation are of the order of 1 to 2 K.
Reversible Polarization Rotation in Epitaxial Ferroelectric Bilayers
DEFF Research Database (Denmark)
Liu, Guangqing; Zhang, Qi; Huang, Hsin-Hui
2016-01-01
Polarization rotation engineering is a promising path to giant dielectric and electromechanical responses in ferroelectric materials and devices. This work demonstrates robust and reversible in- to out-of-plane polarization rotation in ultrathin (nanoscale) epitaxial (001) tetragonal PbZr0.3Ti0.7O3...... (PZT-T)/rhombohedral PbZr0.55Ti0.45O3 (PZT-R) ferroelectric bilayers. An underlying 20 nm thick PZT-R layer reduces the symmetry in a 5 nm thick PZT-T layer by imposing an in-plane tensile strain while simultaneously decoupling the PZT-T layer from the substrate. This prevents clamping and facilitates...... large-scale polarization rotation switching (≈60 μC cm−2) and an effective d 33 response 500% (≈250 pm V−1) larger than the PZT-R layer alone. Furthermore, this enhancement is stable for more than 107 electrical switching cycles. These bilayers present a simple and highly controllable means to design...
Khurana, Meenakshi; Rana, Puneet; Srivastava, Sangeet
2016-12-01
In the present paper, we present both linear and nonlinear analyses to investigate thermal instability on a rotating non-Newtonian viscoelastic nanofluid layer under the influence of a magnetic field. In the linear stability analysis, the stationary and oscillatory modes of convection are obtained for various controlling parameters using the normal mode technique. Both Nusselt and Sherwood numbers are calculated after employing the minimal truncated Fourier series to steady and unsteady state. The main findings conclude that rotation and strain retardation parameter increase the value of the critical Rayleigh number in the neutral stability curve which delays the onset of convection in the nanofluid layer while the stress relaxation parameter enhances the convection. The magnetic field stabilizes the system for low values of the Taylor number (rotation) but an inverse trend is observed for high Taylor number. Both Nusselt and Sherwood numbers initially oscillate with time until the steady state prevails and they decrease with both Chandrasekhar and Taylor numbers. The magnitude of the streamlines and the contours of both isotherms and iso-nanohalines concentrate near the boundaries for large values of Ra, indicating an increase in convection.
DEFF Research Database (Denmark)
Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard
2013-01-01
to identify the specific tissue region under study. In order to use the spatial rotator in practice, however, it is necessary to be able to identify intersection points between cell boundaries and test rays in a series of parallel focal planes, also at the peripheral parts of the cell boundaries. In cases......This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...... the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient...
Instabilities in Coaxial Rotating Jets
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The aim of this study is the characterization of the cylindrical mixing layer resulting layer resulting from the interaction of two coaxial swirling jets.The experimental part of this study was performed in a cylindrical water tunnel,permitting an independent rotation of two coaxial jets.The rotations are generated by means of 2×36 blades localized in two swirling chambers.As expected,the evolution of the main instabiltiy modes presents certain differences compared to the plane-mixing-layer case ,Experimental results obtained by tomography showed the existence of vortex rings and streamwise vortex paris in the near field region.This method also permitted the observation of the evolution and interaction of different modes.PIV velocity measurements realized in the meridian plans and the plans perpendicular to the jet axis show that rotation distrots the typical top-hat axial velocity profile.The transition of the the axial velocity profile from jet-like into wake-like is also observed.
Energy Technology Data Exchange (ETDEWEB)
Saravanan, P. [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw; Tsai, C. L. [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Tsai, C. Y.; Lin, Y. H. [Graduate Institute of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China); Kuo, C. Y.; Wu, J.-C. [Department of Physics, National Chang Hua University of Education, Chang Hua 50000, Taiwan (China); Lee, C.-M. [Graduate School of Materials Science, National Yunlin University of Science and Technology, Douliou 64002, Taiwan (China)
2014-06-28
Films of L1{sub 1}-type CoPt/NiFe exchange springs were grown with different NiFe (Permalloy) layer thickness (t{sub NiFe} = 0–10 nm). X-ray diffraction analysis reveals that the characteristic peak position of NiFe(111) is not affected by the CoPt-layer—confirming the absence of any inter-diffusion between the CoPt and NiFe layers. Magnetic studies indicate that the magnetization orientation of NiFe layer can be tuned through varying t{sub NiFe} and the perpendicular magnetic anisotropy of L1{sub 1}-type CoPt/NiFe films cannot sustain for t{sub NiFe} larger than 3.0 nm due to the existence of exchange interaction at the interface of L1{sub 1}-CoPt and NiFe layers. Magnetic force microscopy analysis on the as-grown samples shows the changes in morphology from maze-like domains with good contrast to hazy domains when t{sub NiFe} ≥ 3.0 nm. The three-dimensional micro-magnetic simulation results demonstrate that the magnetization orientation in NiFe layer is not uniform, which continuously increases from the interface to the top of NiFe layer. Furthermore, the tilt angle of the topmost NiFe layers can be changed over a very wide range from a small number to about 75° by varying t{sub NiFe} from 1 to 10 nm. It is worth noting that there is an abrupt change in the magnetization direction at the interface, for all the t{sub NiFe} investigated. The results of present study demonstrate that the tunable tilted exchange springs can be realized with L1{sub 1}-type CoPt/NiFe bilayers for future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy.
Directory of Open Access Journals (Sweden)
S.N. Gaikwad
2014-01-01
Full Text Available In this paper, we have investigated theoretically the effect of Soret parameter on the onset of double diffusive rotating anisotropic convection in a horizontal sparsely packed porous layer using linear stability theory which is based on the usual normal mode technique. The Brinkman model that includes the Coriolis term is employed for the momentum equation. The effect of anisotropy parameters, Soret parameter, solute Rayleigh number, Taylor number, Lewis number, Darcy and Darcy Prandtl number on stationary and oscillatory convection is shown graphically.
A nonlinear model for rotationally constrained convection with Ekman pumping
Julien, Keith; Calkins, Michael A; Knobloch, Edgar; Marti, Philippe; Stellmach, Stephan; Vasil, Geoffrey M
2016-01-01
It is a well established result of linear theory that the influence of differing mechanical boundary conditions, i.e., stress-free or no-slip, on the primary instability in rotating convection becomes asymptotically small in the limit of rapid rotation. This is accounted for by the diminishing impact of the viscous stresses exerted within Ekman boundary layers and the associated vertical momentum transport by Ekman pumping. By contrast, in the nonlinear regime recent experiments and supporting simulations are now providing evidence that the efficiency of heat transport remains strongly influenced by Ekman pumping in the rapidly rotating limit. In this paper, a reduced model is developed for the case of low Rossby number convection in a plane layer geometry with no-slip upper and lower boundaries held at fixed temperatures. A complete description of the dynamics requires the existence of three distinct regions within the fluid layer: a geostrophically balanced interior where fluid motions are predominately ali...
Vortex Generator Induced Flow in a High Re Boundary Layer
DEFF Research Database (Denmark)
Velte, Clara Marika; Braud, C.; Coudert, S.
2012-01-01
Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...
Vortex Generator Induced Flow in a High Re Boundary Layer
DEFF Research Database (Denmark)
Velte, Clara Marika; Braud, C.; Coudert, S.
2014-01-01
Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...
Energy Technology Data Exchange (ETDEWEB)
Ishino, Y.; Kojima, T.; Oiwa, N.; Yamaguchi, S. [Nagoya Institute of Technology, Nagoya (Japan)
1993-10-25
This paper reports on experiments for acoustic excitation of plane shear structured flame. Flows of air separated into the higher velocity side and the lower velocity side by a partition on the center of a flow path merge at the measuring point to form a mixed layer with coherent structure. Fuel is supplied to this mixed layer with the flows so adjusted that the generated flame will attach to the partition on the lower velocity side. Acoustic excitation (at a sound pressure level of 100 dB to 120 dB) is performed in a speaker fitted on a wall on the higher velocity side. The paper mentions the results of the experiments as follows: the acoustic excitation produces such changes to diffusion flame in the plane shear layer as shorter flame and blue flame combustion and clarification of flame structures; as seen from spectral characteristics of temperature change in the flames, a flame acoustically excited strongly presents remarkable improvements in periodicity of the structure; as seen from sound pressure distribution in the flow direction at the measuring point, the flame zone of the flame acoustically excited strongly is positioned at the middle of the node and loop of a standing wave. 6 refs., 9 figs., 1 tab.
Energy Technology Data Exchange (ETDEWEB)
Yan, T. [Department of Materials and Optoelectronic Science/Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China); Lu, C.-Y.J. [Department of Materials and Optoelectronic Science/Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Schuber, R. [Institute of Applied Physics/DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, DE-76131 Karlsruhe (Germany); Chang, L., E-mail: lwchang@mail.nsysu.edu.tw [Department of Materials and Optoelectronic Science/Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Schaadt, D.M. [Institute of Applied Physics/DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, DE-76131 Karlsruhe (Germany); Institute of Energy Research and Phyiscal Technologies, Clausthal Technical University, Am Stollen 19B, D-38640 Goslar (Germany); Chou, M.M.C.; Ploog, K.H. [Department of Materials and Optoelectronic Science/Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Chiang, C.-M. [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China)
2015-10-01
Highlights: • ZnO epilayers were grown on LiAlO{sub 2} (1 0 0) substrate with a GaN buffer layer by MBE. • A high Zn/O flux ratio is beneficial for reducing the density of screw dislocations. • Reciprocal space maps demonstrate that the misfit strain in ZnO has been relaxed. • No interfacial layer is formed at ZnO/GaN interface using a Zn pre-exposure strategy. - Abstract: C-plane ZnO epilayers were grown on LiAlO{sub 2} (1 0 0) substrate with a GaN buffer layer by plasma assisted molecular beam epitaxy. Both the X-ray rocking curves and the transmission electron microscopy analyses indicate that the ZnO epilayers exhibit a lower threading dislocation density (∼1 × 10{sup 10} cm{sup −2}) as compared to those grown on LiAlO{sub 2} substrate without the buffer layer. A high Zn/O flux ratio is beneficial for reducing the density of screw-type dislocations. Reciprocal space maps demonstrate that the misfit strain has been relaxed. No interfacial layer is formed at the ZnO/GaN interface by using a Zn pre-exposure strategy. The ZnO epilayers exhibit a strong near band edge emission at 3.28 eV at room temperature with a negligible green band emission.
2013-07-21
optimized operation characteristics. PACS numbers: 85.75.-d, 07.57.Hm, 84.40.-x I. INTRODUCTION The spin-transfer torque ( STT ) effect [1–4] in mag- netic...magnetic systems [5, 6]. The spin-torque nano-oscillators (STNOs), based on the STT effect, are now considered as promising base elements for various nano...was pushed out of plane by STT from the polarizer and at a sufficiently large bias current it was precessing along a large amplitude trajectory around
Directory of Open Access Journals (Sweden)
I. K. Khalid
2017-01-01
Full Text Available A linear stability analysis has been carried out to examine the effect of internal heat source on the onset of Rayleigh–Bénard convection in a rotating nanofluid layer with double diffusive coefficients, namely, Soret and Dufour, in the presence of feedback control. The system is heated from below and the model used for the nanofluid layer incorporates the effects of thermophoresis and Brownian motion. Three types of bounding systems of the model have been considered which are as follows: both the lower and upper bounding surfaces are free, the lower is rigid and the upper is free, and both of them are rigid. The eigenvalue equations of the perturbed state were obtained from a normal mode analysis and solved using the Galerkin method. It is found that the effect of internal heat source and Soret parameter destabilizes the nanofluid layer system while increasing the Coriolis force, feedback control, and Dufour parameter helps to postpone the onset of convection. Elevating the modified density ratio hastens the instability in the system and there is no significant effect of modified particle density in a nanofluid system.
Application of layered poly (L-lactic acid cell free scaffold in a rabbit rotator cuff defect model
Directory of Open Access Journals (Sweden)
Inui Atsuyuki
2011-12-01
Full Text Available Abstract Background This study evaluated the application of a layered cell free poly (L-lactic acid (PLLA scaffold to regenerate an infraspinatus tendon defect in a rabbit model. We hypothesized that PLLA scaffold without cultivated cells would lead to regeneration of tissue with mechanical properties similar to reattached infraspinatus without tendon defects. Methods Layered PLLA fabric with a smooth surface on one side and a pile-finished surface on the other side was used. Novel form of layered PLLA scaffold was created by superimposing 2 PLLA fabrics. Defects of the infraspinatus tendon were created in 32 rabbits and the PLLA scaffolds were transplanted, four rabbits were used as normal control. Contralateral infraspinatus tendons were reattached to humeral head without scaffold implantation. Histological and mechanical evaluations were performed at 4, 8, and 16 weeks after operation. Results At 4 weeks postoperatively, cell migration was observed in the interstice of the PLLA fibers. Regenerated tissue was directly connected to the bone composed mainly of type III collagen, at 16 weeks postoperatively. The ultimate failure load increased in a time-dependent manner and no statistical difference was seen between normal infraspinatus tendon and scaffold group at 8 and 16 weeks postoperatively. There were no differences between scaffold group and reattach group at each time of point. The stiffness did not improve significantly in both groups. Conclusions A novel form of layered PLLA scaffold has the potential to induce cell migration into the scaffold and to bridge the tendon defect with mechanical properties similar to reattached infraspinatus tendon model.
Energy Technology Data Exchange (ETDEWEB)
Beaumont, A.; Leroy, J.; Crunteanu, A., E-mail: aurelian.crunteanu@xlim.fr [XLIM Research Institute UMR 7252, CNRS/University of Limoges, 123 avenue Albert Thomas, 87060 Limoges (France); Orlianges, J.-C. [SPCTS UMR 7513, CNRS/University of Limoges, 12 rue Atlantis, 87068 Limoges (France)
2014-04-21
Electrically activated metal-insulator transition (MIT) in vanadium dioxide (VO{sub 2}) is widely studied from both fundamental and practical points of view. It can give valuable insights on the currently controversial phase transition mechanism in this material and, at the same time, allows the development of original MIT-based electronic devices. Electrically triggered insulator-metal transitions are demonstrated in novel out-of-plane, metal-oxide-metal type devices integrating a VO{sub 2} thin film, upon applying moderate threshold voltages. It is shown that the current-voltage characteristics of such devices present clear negative differential resistance effects supporting the onset of continuous, current-driven phase oscillations across the vanadium dioxide material. The frequencies of these self-sustained oscillations are ranging from 90 to 300 kHz and they may be tuned by adjusting the injected current. A phenomenological model of the device and its command circuit is developed, and allows to extract the analytical expressions of the oscillation frequencies and to simulate the electrical oscillatory phenomena developed across the VO{sub 2} material. Such out-of-plane devices may further contribute to the general understanding of the driving mechanism in metal-insulator transition materials and devices, a prerequisite to promising applications in high speed/high frequency networks of oscillatory or resistive memories circuits.
Beaumont, A.; Leroy, J.; Orlianges, J.-C.; Crunteanu, A.
2014-04-01
Electrically activated metal-insulator transition (MIT) in vanadium dioxide (VO2) is widely studied from both fundamental and practical points of view. It can give valuable insights on the currently controversial phase transition mechanism in this material and, at the same time, allows the development of original MIT-based electronic devices. Electrically triggered insulator-metal transitions are demonstrated in novel out-of-plane, metal-oxide-metal type devices integrating a VO2 thin film, upon applying moderate threshold voltages. It is shown that the current-voltage characteristics of such devices present clear negative differential resistance effects supporting the onset of continuous, current-driven phase oscillations across the vanadium dioxide material. The frequencies of these self-sustained oscillations are ranging from 90 to 300 kHz and they may be tuned by adjusting the injected current. A phenomenological model of the device and its command circuit is developed, and allows to extract the analytical expressions of the oscillation frequencies and to simulate the electrical oscillatory phenomena developed across the VO2 material. Such out-of-plane devices may further contribute to the general understanding of the driving mechanism in metal-insulator transition materials and devices, a prerequisite to promising applications in high speed/high frequency networks of oscillatory or resistive memories circuits.
Agarwal, Shilpi; Rana, Puneet
2016-04-01
In this paper, we examine a layer of Oldroyd-B nanofluid for linear and nonlinear regimes under local thermal non-equilibrium conditions for the classical Rayleigh-Bénard problem. The free-free boundary condition has been implemented with the flux for nanoparticle concentration being zero at edges. The Oberbeck-Boussinesq approximation holds good and for the rotational effect Coriolis term is included in the momentum equation. A two-temperature model explains the effect of local thermal non-equilibrium among the particle and fluid phases. The criteria for onset of stationary convection has been derived as a function of the non-dimensionalized parameters involved including the Taylor number. The assumed boundary conditions negate the possibility of overstability due to the absence of opposing forces responsible for it. The thermal Nusselt number has been obtained utilizing a weak nonlinear theory in terms of various pertinent parameters in the steady and transient mode, and has been depicted graphically. The main findings signify that the rotation has a stabilizing effect on the system. The stress relaxation parameter λ_1 inhibits whereas the strain retardation parameter λ_2 exhibits heat transfer utilizing Al2O3 nanofluids.
Energy Technology Data Exchange (ETDEWEB)
Guer, Emre [Department of Physics, Faculty of Science, Atatuerk University, Erzurum 25240 (Turkey); 205 Dreese Laboratory, Department of Electrical and Computer Engineering, The Ohio State University, 2015 Neil Avenue, Columbus, Ohio 43210-1272 (United States); Tabares, G.; Hierro, A. [Dpto. Ingenieria Electronica and ISOM, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Arehart, A.; Ringel, S. A. [205 Dreese Laboratory, Department of Electrical and Computer Engineering, Ohio State University, 2015 Neil Avenue, Columbus, Ohio 43210-1272 (United States); Chauveau, J. M. [CRHEA-CNRS, 06560 Valbonne (France); University of Nice Sophia Antipolis, ParcValrose, 06102 Nice Cedex 2 (France)
2012-12-15
Deep level defects in n-type unintentionally doped a-plane Mg{sub x}Zn{sub 1-x}O, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of Mg{sub x}Zn{sub 1-x}O were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of E{sub c} - 1.4 eV, 2.1 eV, 2.6 V, and E{sub v} + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at E{sub c} - 2.1 eV, E{sub v} + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at E{sub v} + 0.3 eV and E{sub c} - 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the E{sub v} + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the E{sub c} - 1.4 eV and E{sub c} - 2.6 eV levels in Mg alloyed samples.
Cardone, V F; Diaferio, A; Tortora, C; Molinaro, R
2010-01-01
Modified Newtonian Dynamics (MOND) has been shown to be able to fit spiral galaxy rotation curves as well as giving a theoretical foundation for empirically determined scaling relations, such as the Tully - Fisher law, without the need for a dark matter halo. As a complementary analysis, one should investigate whether MOND can also reproduce the dynamics of early - type galaxies (ETGs) without dark matter. As a first step, we here show that MOND can indeed fit the observed central velocity dispersion $\\sigma_0$ of a large sample of ETGs assuming a simple MOND interpolating functions and constant anisotropy. We also show that, under some assumptions on the luminosity dependence of the Sersic n parameter and the stellar M/L ratio, MOND predicts a fundamental plane for ETGs : a log - linear relation among the effective radius $R_{eff}$, $\\sigma_0$ and the mean effective intensity $\\langle I_e \\rangle$. However, we predict a tilt between the observed and the MOND fundamental planes.
Directory of Open Access Journals (Sweden)
Linga Raju T.
2016-05-01
Full Text Available An unsteady MHD two-layered fluid flow of electrically conducting fluids in a horizontal channel bounded by two parallel porous plates under the influence of a transversely applied uniform strong magnetic field in a rotating system is analyzed. The flow is driven by a common constant pressure gradient in a channel bounded by two parallel porous plates, one being stationary and the other oscillatory. The two fluids are assumed to be incompressible, electrically conducting with different viscosities and electrical conductivities. The governing partial differential equations are reduced to the linear ordinary differential equations using two-term series. The resulting equations are solved analytically to obtain exact solutions for the velocity distributions (primary and secondary in the two regions respectively, by assuming their solutions as a combination of both the steady state and time dependent components of the solutions. Numerical values of the velocity distributions are computed for different sets of values of the governing parameters involved in the study and their corresponding profiles are also plotted. The details of the flow characteristics and their dependence on the governing parameters involved, such as the Hartmann number, Taylor number, porous parameter, ratio of the viscosities, electrical conductivities and heights are discussed. Also an observation is made how the velocity distributions vary with the rotating hydromagnetic interaction in the case of steady and unsteady flow motions. The primary velocity distributions in the two regions are seen to decrease with an increase in the Taylor number, but an increase in the Taylor number causes a rise in secondary velocity distributions. It is found that an increase in the porous parameter decreases both the primary and secondary velocity distributions in the two regions.
Energy Technology Data Exchange (ETDEWEB)
Yang, Hao; Apai, Dániel; Karalidi, Theodora [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, Naval Air Station, Moffett Field, Mountain View, CA 94035 (United States); Saumon, Didier [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Morley, Caroline V. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Buenzli, Esther [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Artigau, Étienne [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada); Radigan, Jacqueline [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Metchev, Stanimir [Department of Physics and Astronomy, Western University, 1151 Richmond Street, London, ON N6A 3K7 (Canada); Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Mohanty, Subhanjoy [Imperial College London, 1010 Blackett Lab, Prince Consort Road, London SW7 2AZ (United Kingdom); Lowrance, Patrick J. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Showman, Adam P.; Flateau, Davin [Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Heinze, Aren N., E-mail: haoyang@email.arizona.edu [Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 (United States)
2015-01-01
We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759–1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon and Marley and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers—the driver of the variability—must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.
Three-Dimensional Structure of Boundary Layers in Transition to Turbulence
1989-03-01
basic flows are boundary layers (flat plate, curved wall, Falkner-Skan, rotating disk, Falkner-Skan-Cook), plane and circular Couette and Poiseuille ...metric), the viscous normal shock, and the compressible plane Couette flow . The code and selected insert files have been distributed to students, various...that depend on a single independent variable 9, e.g. a stratified fluid with density p(U), 9 pointing opposite to gravity, circular Couette flow with
Flow field investigation in rotating rib-roughened channel by means of particle image velocimetry
Energy Technology Data Exchange (ETDEWEB)
Coletti, Filippo [Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Rhode-Saint-Genese (Belgium); Stanford University, Mechanical Engineering Department, Stanford, CA (United States); Maurer, Thomas [Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Rhode-Saint-Genese (Belgium); Stuttgart University, Institute of Aerospace Thermodynamics, Stuttgart (Germany); Arts, Tony [Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Rhode-Saint-Genese (Belgium); Di Sante, Alberto [Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Rhode-Saint-Genese (Belgium); General Electric, Florence (Italy)
2012-04-15
The turbulent velocity field over the rib-roughened wall of an orthogonally rotating channel is investigated by means of two-dimensional particle image velocimetry (PIV). The flow direction is outward, with a bulk Reynolds number of 1.5 x 10{sup 4} and a rotation number ranging from 0.3 to 0.38. The measurements are obtained along the wall-normal/streamwise plane at mid-span. The PIV system rotates with the channel, allowing to measure directly the relative flow velocity with high spatial resolution. Coriolis forces affect the stability of the boundary layer and free shear layer. Due to the different levels of shear layer entrainment, the reattachment point is moved downstream (upstream) under stabilizing (destabilizing) rotation, with respect to the stationary case. Further increase in rotation number pushes further the reattachment point in stabilizing rotation, but does not change the recirculation length in destabilizing rotation. Turbulent activity is inhibited along the leading wall, both in the boundary layer and in the separated shear layer; the opposite is true along the trailing wall. Coriolis forces affect indirectly the production of turbulent kinetic energy via the Reynolds shear stresses and the mean shear. Two-point correlation is used to characterize the coherent motion of the separated shear layer. Destabilizing rotation is found to promote large-scale coherent motions and accordingly leads to larger integral length scales; on the other hand, the spanwise vortices created in the separating shear layer downstream of the rib are less organized and tend to be disrupted by the three-dimensional turbulence promoted by the rotation. The latter observation is consistent with the distributions of span-wise vortices detected in instantaneous flow realizations. (orig.)
Cai, DongSheng; Lembege, Bertrand; Nishikawa, Ken-ichi
2017-04-01
Using a global 3D PIC simulation, the solar-terrestrial magnetosphere interaction has been analyzed focusing on the 3D magnetic cusp region. Our recent global simulation results (Cai et al., JGR 2015) have reproduced the main features of the magnetic cusp under a northward IMF configuration comparing with the three-year statistical observations of Cluster satellites (Lavraud et al., JGR, 2005). One of the most important features found in our simulation is the existence of the Alfven Transition Layer (ATL) where Alfven Mach number is nearly zero almost adjacent to the upper stagnant exterior cusp (SEC). Its width measured near the SEC within the meridian plane varies from 1 to 4 Re. From the magnetosheath to SEC, the plasma flows transit from super to sub-Alfvenic regime. Striking features observed in the simulation is the unique depleted funnel shape ATL starting from the high altitude dusk to low altitude dawn above the magnetic cusp in a northward IMF. Both the ion and electron flux enter and spiral into the cups region through this depleted ATL with possibly a curvature drift. Varying IMF from north to south through dusk-dawn direction, this ATL persists although it drastically shrinks. Especially, in the southward IMF, the ion flux enters into the cusp region through the complicated ATL and bounce back to the magnetosheath. ATL can help us to investigate the complex structures of the magnetic cusp.
Institute of Scientific and Technical Information of China (English)
杨宣; 陈浚; 朱滨欢; 于佳佳; 陈建孟
2013-01-01
The nitric oxide (NO) emission could be removed effectively by rotating drum biofilter. In order to enhance the performance of rotating drum biofilter, the effect of medium configuration on the NO removal efficiency was investigated. The results showed that compared with the single-layer rotating-drum biofilter, the multi-layer rotating-drum biofilter was operated more stablely and achieved higher removal efficiencies. The experimental data demonstrated that the NO removal efficiency of the multi-layer rotating-drum biofilter was maintained between 53. 9% and 93. 4% . Compared with 68. 7% average NO removal efficiency of the single-layer rotating-drum biofilter, the NO removal efficiency of the multi-layer rotating-drum biofilter could reached 79. 8% . Under the same experimental conditions, the empty bed residence time of the multi-layer rotating-drum biofilter dropped from 86.4 s to 57. 6 s of the single-layer rotating-drum biofilter. The optimum conditions for the multi-layer rotating-drum biofilter were the amount of nutrient solution between 1.3 L to 3 L and the rotating speed 0. 75 r·min-1. The experimental data also illustrated that the removal efficiency maintained stable when TOC exceeded 1250 mg·L-1 using glucose as the carbon source.%生物转鼓过滤器能有效去除一氧化氮(NO)废气,为进一步提高生物转鼓过滤器的去除效能,实验改变了生物转鼓的填料结构,并与单层填料的生物转鼓进行了比较研究.结果表明,多层填料生物转鼓比单层填料生物转鼓更能有效去除NO,运行也更加稳定.8个月的连续运行实验表明,多层填料生物转鼓对NO去除率稳定在53.9％ ～93.4％之间,平均去除效率79.8％,而单层填料生物转鼓的平均去除率仅有68.7％;在相同实验条件下,空床停留时间(EBRT)可从单层填料生物转鼓的86.4 s降至多层填料生物转鼓的57.6 s.多层填料生物转鼓的最优工艺条件为,营养液量为1.3～3L,转速为0.75 r
Manolopoulou, Maria
2016-01-01
We study the possible rotation of cluster galaxies, developing, testing and applying a novel algorithm which identifies rotation, if such does exits, as well as its rotational centre, its axis orientation, rotational velocity amplitude and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte-Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z<~0.1 with member galaxies selected from the SDSS DR10 spectroscopic database. We find that ~35% of our clusters are rotating when using a set of strict criteria, while loosening the criteria we find this fraction increasing to ~48%. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation that the significance and strength of their...
Directory of Open Access Journals (Sweden)
M. Navabpour
2005-08-01
Full Text Available Introduction & Background: Tomography or plani-graphy is an x-ray imaging system for preserving a certain plane of a radiography object by diffusing the other planes; however, the desired plane does not obtain an optimum sharpness. Meanwhile, relatively nearer points to the rotating axes fixed point have lesser liner velocity than those lying further from the fixed point. Consequently, unwanted obscuring planes occur gradually, that then render the wanted plane somehow blurred, hence the phenomenon known as "tomographic blurring", which diminishes the clinical value of the image. Thus, computerized imaging is uncertain especially to medical authorities. Besides, there is a possibility of dismissing the lesion in some cases, because of the relatively undesirable deep resolution of the system. The present innovation could be an approach to improve current tomography systems by increasing image resolution, obtaining optimum deep resolution, rapid operation, and cost reduction. Material and Methods: Micro-layer tomography has been designed with the benefit of fast x-ray rotating velocity without tube movement, to make images with deep resolution of millimeter fraction, while there is no need of digital images reconstruction in-struments that allows statistical errors to fall to about zero. Furthermore, high-resolution images could be prepared in all planes, including coronal, sagittal, and transverse ones. Likewise, patient treatment and sys-tem maintenance costs are by far less than those in CT scan and MRI. Results & Conclusion: The system quick operation is highly exceptional; therefore, the tomographic slices could be prepared in about less than 0.02 second. The laboratory samples experienced by this system showed a unique result, suggesting the new device preference.
Indian Academy of Sciences (India)
M Turkyilmazoglu
2009-12-01
Direct spatial resonance phenomenon occurring in the viscous incompressible boundary layer ﬂow due to a rotating-disk is investigated in this paper based on the linear stability theory. The possible effects of suction and injection are explored on the direct spatial resonance instability mechanism detected earlier in the case of zero-suction. This instability leads to an algebraic growth of disturbances while the ﬂow is yet in the laminar regime and this in turn, may initiate the non-linearity and transition, competing with the unboundedly growing time-amplified perturbations. In line with the physical intuition, results show that suction delays the onset of resonance instability by increasing the critical Reynolds number, whereas it is enhanced by the presence of injection. The critical parameter for direct spatial resonance instability always precedes the onset value for absolute instability mechanism, after a comparison with the previous work. Therefore, in the case of suction, the onset parameter is close to the transition value as determined from the earlier experimental observations. It is further examined the inviscid nature of both absolute as well as direct spatial resonance instabilities when suction or injection is applied through the disk, and is demonstrated that these instability mechanisms are not in any way an artifact of the parallel ﬂow approximation assumed during the linearization of viscous incompressible stability equations.
Linga Raju, T.; Neela Rao, B.
2016-08-01
The paper aims to analyze the heat transfer aspects of a two-layered fluid flow in a horizontal channel under the action of an applied magnetic and electric fields, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a common constant pressure gradient in the channel bounded by two parallel porous insulating plates, one being stationary and the other one oscillatory. The fluids in the two regions are considered electrically conducting, and are assumed to be incompressible with variable properties, namely, different densities, viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperature. The governing partial differential equations are then reduced to the ordinary linear differential equations by using a two-term series. The temperature distributions in both fluid regions of the channel are derived analytically. The results are presented graphically to discuss the effect on the heat transfer characteristics and their dependence on the governing parameters, i.e., the Hartmann number, Taylor number, porous parameter, and ratios of the viscosities, heights, electrical and thermal conductivities. It is observed that, as the Coriolis forces become stronger, i.e., as the Taylor number increases, the temperature decreases in the two fluid regions. It is also seen that an increase in porous parameter diminishes the temperature distribution in both the regions.
Energy Technology Data Exchange (ETDEWEB)
Ulian, Gianfranco; Valdrè, Giovanni, E-mail: giovanni.valdre@unibo.it [Dipartimento di Scienze Biologiche e Geologico-Ambientali, Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali, Università di Bologna “Alma Mater Studiorum” Piazza di Porta San Donato 1, 40126 Bologna (Italy); Tosoni, Sergio [Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain)
2013-11-28
The quantum chemical characterization of solid state systems is conducted with many different approaches, among which the adoption of periodic boundary conditions to deal with three-dimensional infinite condensed systems. This method, coupled to the Density Functional Theory (DFT), has been proved successful in simulating a huge variety of solids. Only in relatively recent years this ab initio quantum-mechanic approach has been used for the investigation of layer silicate structures and minerals. In the present work, a systematic comparison of different DFT functionals (GGA-PBEsol and hybrid B3LYP) and basis sets (plane waves and all-electron Gaussian-type orbitals) on the geometry, energy, and phonon properties of a model layer silicate, talc [Mg{sub 3}Si{sub 4}O{sub 10}(OH){sub 2}], is presented. Long range dispersion is taken into account by DFT+D method. Results are in agreement with experimental data reported in literature, with minimal deviation given by the GTO/B3LYP-D* method regarding both axial lattice parameters and interaction energy and by PW/PBE-D for the unit-cell volume and angular values. All the considered methods adequately describe the experimental talc infrared spectrum.
Barkin, Yu. V.; Ferrandiz, J. M.
2009-04-01
theory of Mercury librations in longitude by using three characteristics of Mercury rotation determined in the paper [3]. Two from these parameters are values of angle of librations in longitude and angular velocity in moment of passage of perihelion of Mercury orbit on 17 April 2002: (^g)0 = 0007 ± 0001, (^?? )0 = (2.10± 0.06)? ars/d. Third parameter determined in [3] is a dynamical coefficient: K = (B -A)(4Cm ) = (5.08± 0.30) × 10-5. B > A are principal moment of inertia, corresponding to equatorial axes of inertia; Cm is a polar moment of inertia of the mantle of Mercury. 1 Analytical theory of plane Mercury librations. This theory describes forced and free librations of Mercury in longitude in the frame of plane problem about resonant librations of Mercury considered or as non-spherical rigid body, or as system of rigid non-spherical mantle and liquid ellipsoidal core. Saving the main terms for the perturbations of angle of librations ^g and angular velocity ^? in both mentioned cases we will have formulae [6]: ^g = K(E sin M + E sin2M + E sin 3M + E sin4M + E sin5M ) 1 2 3 4 5+K0 sin(E KM- - φ) (A)
Yosano, Akira; Katakura, Akira; Takaki, Takashi; Shibahara, Takahiko
2009-05-01
In this study, we investigated how method of mandibular fixation influenced longterm postoperative stability of the maxilla in Class III cases. In particular, we investigated change in the maxillary occlusal plane after Occlusal Plane Alteration. Therefore, we focused on change in the palatal plane to evaluate stability of the maxillary occlusal plane, as the position of the palatal plane affects the maxillary occlusal plane. This study included 16 patients diagnosed with mandibular protrusion. Alteration of the occlusal plane was achieved by clockwise rotation of the maxilla by Le Fort I osteotomy and mandibular setback was performed by bilateral sagittal split ramus osteotomy. We analyzed and examined lateral cephalometric radiographs taken at 1 month, 3 months, 6 months, and 1 year after surgery. Stability achieved by two methods of mandibular fixation was compared. In one group of patients (group S) titanium screws were used, and in the other group (group P) titanium-locking mini-plates were used. No significant displacement was recognized in group S, whereas an approximately 0.7mm upward vertical displacement was recognized in the anterior nasal spine in group P. As a result, not only the angle of the palatal plane and S-N plane, but also occlusal plane angle in group P showed a greater decrease than that in group S. The results suggest that fixing the mandible with screws yielded greater stability of the maxilla and maxillary occlusal plane than fixing the mandible with titanium plates.
Fixed Sagittal Plane Imbalance
Savage, Jason W.; Patel, Alpesh A.
2014-01-01
Study Design Literature review. Objective To discuss the evaluation and management of fixed sagittal plane imbalance. Methods A comprehensive literature review was performed on the preoperative evaluation of patients with sagittal plane malalignment, as well as the surgical strategies to address sagittal plane deformity. Results Sagittal plane imbalance is often caused by de novo scoliosis or iatrogenic flat back deformity. Understanding the etiology and magnitude of sagittal malalignment is ...
Directory of Open Access Journals (Sweden)
A. Behrendt
2014-11-01
Full Text Available The rotational Raman lidar of the University of Hohenheim (UHOH measures atmospheric temperature profiles during daytime with high resolution (10 s, 109 m. The data contain low noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz and a very efficient interference-filter-based polychromator. In this paper, we present the first profiling of the second- to forth-order moments of turbulent temperature fluctuations as well as of skewness and kurtosis in the convective boundary layer (CBL including the interfacial layer (IL. The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56′′ N, 6°27'50.39′′ E, 110 m a.s.l. within one hour around local noon on 24 April 2013 during the Intensive Observations Period (IOP 6 of the HD(CP2 Observational Prototype Experiment (HOPE, which is embedded in the German project HD(CP2 (High-Definition Clouds and Precipitation for advancing Climate Prediction. First, we investigated profiles of the noise variance and compared it with estimates of the statistical temperature measurement uncertainty Δ T based on Poisson statistics. The agreement confirms that photon count numbers obtained from extrapolated analog signal intensities provide a lower estimate of the statistical errors. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1000 m a.g.l.. Then we confirmed by autocovariance and spectral analyses of the atmospheric temperature fluctuations that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the profile of the integral scale of the temperature fluctuations, which was in the range of 40 to 120 s in the CBL. Analyzing then
Numerical control matrix rotation for the LINC-NIRVANA multiconjugate adaptive optics system
Arcidiacono, Carmelo; Bertram, Thomas; Ragazzoni, Roberto; Farinato, Jacopo; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Puglisi, Alfio; Fini, Luca; Xompero, Marco; Busoni, Lorenzo; Quiros-Pacheco, Fernando; Briguglio, Runa
2010-07-01
LINC-NIRVANA will realize the interferometric imaging focal station of the Large Binocular Telescope. A double Layer Oriented multi-conjugate adaptive optics system assists the two arms of the interferometer, supplying high order wave-front correction. In order to counterbalance the field rotation, mechanical derotation for the two ground wave-front sensors, and optical derotators for the mid-high layers sensors fix the positions of the focal planes with respect to the pyramids aboard the wave-front sensors. The derotation introduces pupil images rotation on the wavefront sensors: the projection of the deformable mirrors on the sensor consequently change. The proper adjustment of the control matrix will be applied in real-time through numerical computation of the new matrix. In this paper we investigate the temporal and computational aspects related to the pupils rotation, explicitly computing the wave-front errors that may be generated.
Mean flow generation in rotating anelastic two-dimensional convection
Currie, Laura K
2016-01-01
We investigate the processes that lead to the generation of mean flows in two-dimensional anelastic convection. The simple model consists of a plane layer that is rotating about an axis inclined to gravity. The results are two-fold: firstly we numerically investigate the onset of convection in three-dimensions, paying particular attention to the role of stratification and highlight a curious symmetry. Secondly, we investigate the mechanisms that drive both zonal and meridional flows in two dimensions. We find that, in general, non-trivial Reynolds stresses can lead to systematic flows and, using statistical measures, we quantify the role of stratification in modifying the coherence of these flows.
Domino boudinage under layer-parallel simple shear
Dabrowski, Marcin; Grasemann, Bernhard
2014-11-01
The boudin segments of a torn competent layer experience synthetic rotation in layer-parallel simple shear. As long as the individual segments in a boudin train are constrained by their neighbors, even a highly viscous boudin deforms internally to create the necessary space for rotation. The rotation rate is then much smaller compared to the case of an isolated segment. Hence, a small tilt of boudin segments is not indicative of low strain. The rotation rate at this stage largely depends on the aspect ratio of the boudin segments and the scaled gap width. Once the tilted boudins are no longer constrained by their neighbors, the rotation rate greatly accelerates. In the case of a low viscosity ratio between the boudins and the host, the boudin segments develop complex shapes, which may give an impression of shear-band boudins forming under the opposite shear sense. We furthermore investigate the behavior of boudin trains of finite length. The terminal segments are displaced out of the shear plane, deforming into isoclinal folds, and separate into groups of boudin segments that rotate into the shear direction and eventually lead to an overall chaotic appearance of the structure. Natural examples of domino boudinage from a high shear -strain detachment zone in the Western Cyclades (Greece) show many similarities with the modeled structures suggesting that, under simple shear deformation, the rotation and separation of boudin segments is an indicator for high shear strain.
Plane Transformations in a Complex Setting III: Similarities
Dana-Picard, Thierry
2009-01-01
This is the third part of a study of plane transformations described in a complex setting. After the study of homotheties, translations, rotations and reflections, we proceed now to the study of plane similarities, either direct or inverse. Their group theoretical properties are described, and their action on classical geometrical objects is…
Spray coating apparatus having a rotatable workpiece holder
Smith, M.; Katvala, V. W.; Porter, E. E. (Inventor)
1982-01-01
A spray coating apparatus is provided for rotating a workpiece relative to a spray station to obtain a uniform coating of the workpiece. In a typical example, the workpiece comprises a ceramic tile which is to be coated with a ceramic coating and the tile is to be used as a reusable component of the thermal protection system for a space shuttle. The apparatus for rotating the workpiece includes a base support having a first rotatable stage for rotation in the horizontal plane and a second rotatable stage for rotation in a second plane inclined at an angle, such as 45 degrees, to the horizontal plane and the workpiece is supported on this second stage. Thus the workpiece is rotatable in both of two planes of rotation.
Two-Dimensional Rotating Stall Analysis in a Wide Vaneless Diffuser
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available We report a numerical study on the vaneless diffuser core flow instability in centrifugal compressors. The analysis is performed for the purpose of better understanding of the rotating stall flow mechanism in radial vaneless diffusers. Since the analysis is restricted to the two-dimensional core flow, the effect of the wall boundary layers is neglected. A commercial code with the standard incompressible viscous flow solver is applied to model the vaneless diffuser core flow in the plane parallel to the diffuser walls. At the diffuser inlet, rotating jet-wake velocity pattern is prescribed and at the diffuser outlet constant static pressure is assumed. Under these circumstances, two-dimensional rotating flow instability similar to rotating stall is found to exist. Performed parameter analysis reveals that this instability is strongly influenced by the diffuser geometry and the inlet and outlet flow conditions.
Eight plane IPND mechanical testing.
Energy Technology Data Exchange (ETDEWEB)
Zhao, A.; Guarino, V.; Wood, K.; Nephew, T.; Ayres, D.; Lee, A.; High Energy Physics; FNAL
2008-03-18
A mechanical test of an 8 plane IPND mechanical prototype, which was constructed using extrusions from the testing/tryout of the 16 cell prototype extrusion die in Argonne National Laboratory, was conducted. There were 4 vertical and 4 horizontal planes in this 8 plane IPND prototype. Each vertical plane had four 16 cell extrusions, while each horizontal plane had six 16 cell extrusions. Each plane was glued together using the formulation of Devcon adhesive, Devcon 60. The vertical extrusions used in the vertical planes shares the same dimensions as the horizontal extrusions in the horizontal planes with the average web thickness of 2.1 mm and the average wall thickness of 3.1 mm. This mechanical prototype was constructed with end-seals on the both ends of the vertical extrusions. The gaps were filled with epoxy between extrusions and end-seals. The overall dimension of IPND is 154.8 by 103.1 by 21.7 inches with the weight of approximately 1200 kg, as shown in a figure. Two similar mechanical tests of 3 layer and 11 layer prototypes have been done in order to evaluate the strength of the adhesive joint between extrusions in the NOvA detector. The test showed that the IPND prototype was able to sustain under the loading of weight of itself and scintillator. Two FEA models were built to verify the measurement data from the test. The prediction from FEA slice model seems correlated reasonably well to the test result, even under a 'rough' estimated condition for the wall thickness (from an untuned die) and an unknown property of 'garage type' extrusion. A full size of FEA 3-D model also agrees very well with the test data from strain gage readings. It is worthy to point out that the stress distribution of the structure is predominantly determined by the internal pressure, while the buckling stability relies more on the loading weight from the extrusions themselves and scintillate. Results of conducted internal pressure tests, including 3- cell, 11
Institute of Scientific and Technical Information of China (English)
刘非; 喻国良
2012-01-01
Based on numerical and experimental methods, it is intended to study the deviation characteristics of solid particles moving in rotational flow herein; for which the deviation angles between the movement direction of solid particles and the water flow direction at different moments are found out through solving the motion equation of solid particles with the Fourth-Order Runge-Kutta Method, and then, the experiments on various parameter combinations for various particle sizes, densities and platform revolutions are made on a column rotating platform with uniform speed. The experiment results coincide closely with those from the relevant numerical solution. Finally, a predictor formula with an error about 25% is put forward with the multiple regre-sion method concerned.%本文旨在通过数值和实验方法,研究固体颗粒在旋转水流中发生分离运动的特性；通过4阶龙格—库塔法求解颗粒运动方程,求出不同时刻颗粒运动方向与水流运动方向的分离角度.然后,在一个匀速旋转的圆柱形平台上,对不同颗粒粒径、密度和平台转速,进行了不同参数组合的实验.实验结果与数值解吻合良好.最后,利用多元回归方法,提出了误差在25％左右的预估公式.
Khasanov, R; Conder, K; Morenzoni, E; Savic, I M; Keller, H
2003-01-01
The oxygen-isotope ( sup 1 sup 6 O/ sup 1 sup 8 O) effect (OIE) on the in-plane penetration depth lambda sub a sub b (0) in underdoped Y sub 1 sub - sub x Pr sub x Ba sub 2 Cu sub 3 O sub 7 sub - subdelta was studied by means of muon-spin rotation. A pronounced OIE on lambda sub a sub b sup - sup 2 (0) was observed with a relative isotope shift of DELTA lambda sub a sub b sup - sup 2 /lambda sub a sub b sup - sup 2 = -5(2)% for x=0.3 and -9(2)% for x=0.4. The OIE exponents of T sub c and of lambda sub a sub b sup - sup 2 (0) exhibit a relation that appears to be generic for cuprate superconductors. (letter to the editor)
Calkins, Michael A; Julien, Keith; Nieves, David; Driggs, Derek; Marti, Philippe
2015-01-01
The influence of fixed temperature and fixed heat flux thermal boundary conditions on rapidly rotating convection in the plane layer geometry is investigated for the case of stress-free mechanical boundary conditions. It is shown that whereas the leading order system satisfies fixed temperature boundary conditions implicitly, a double boundary layer structure is necessary to satisfy the fixed heat flux thermal boundary conditions. The boundary layers consist of a classical Ekman layer adjacent to the solid boundaries that adjust viscous stresses to zero, and a layer in thermal wind balance just outside the Ekman layers adjusts the temperature such that the fixed heat flux thermal boundary conditions are satisfied. The influence of these boundary layers on the interior geostrophically balanced convection is shown to be asymptotically weak, however. Upon defining a simple rescaling of the thermal variables, the leading order reduced system of governing equations are therefore equivalent for both boundary condit...
Hammer, François; Fouquet, Sylvain; Pawlowski, Marcel S; Kroupa, Pavel; Puech, Mathieu; Flores, Hector; Wang, Jianling
2013-01-01
The recent discovery by Ibata et al. (2013) of a vast thin disk of satellites (VTDS) around M31 offers a new challenge for the understanding of the Local Group properties. This comes in addition to the unexpected proximity of the Magellanic Clouds (MCs) to the Milky Way (MW), and to another vast polar structure (VPOS), which is almost perpendicular to our Galaxy disk. We find that the VTDS plane is coinciding with several stellar, tidally-induced streams in the outskirts of M31, and, that its velocity distribution is consistent with that of the Giant Stream (GS). This is suggestive of a common physical mechanism, likely linked to merger tidal interactions, knowing that a similar argument may apply to the VPOS at the MW location. Furthermore, the VTDS is pointing towards the MW, being almost perpendicular to the MW disk, as the VPOS is. We compare these properties to the modelling of M31 as an ancient, gas-rich major merger, which has been successfully used to predict the M31 substructures and the GS origin. W...
Turbulent Compressible Convection with Rotation. 2; Mean Flows and Differential Rotation
Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri
1998-01-01
The effects of rotation on turbulent, compressible convection within stellar envelopes are studied through three-dimensional numerical simulations conducted within a local f-plane model. This work seeks to understand the types of differential rotation that can be established in convective envelopes of stars like the Sun, for which recent helioseismic observations suggest an angular velocity profile with depth and latitude at variance with many theoretical predictions. This paper analyzes the mechanisms that are responsible for the mean (horizontally averaged) zonal and meridional flows that are produced by convection influenced by Coriolis forces. The compressible convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers encompassing both laminar and turbulent flow conditions under weak and strong rotational constraints. When the nonlinearities are moderate, the effects of rotation on the resulting laminar cellular convection leads to distinctive tilts of the cell boundaries away from the vertical. These yield correlations between vertical and horizontal motions that generate Reynolds stresses that can drive mean flows, interpretable as differential rotation and meridional circulations. Under more vigorous forcing, the resulting turbulent convection involves complicated and contorted fluid particle trajectories, with few clear correlations between vertical and horizontal motions, punctuated by an evolving and intricate downflow network that can extend over much of the depth of the layer. Within such networks are some coherent structures of vortical downflow that tend to align with the rotation axis. These yield a novel turbulent alignment mechanism, distinct from the laminar tilting of cellular boundaries, that can provide the principal correlated motions and thus Reynolds stresses and subsequently mean flows. The emergence of such coherent structures that can persist amidst more random motions is a characteristic of turbulence
Rotator cuff tendon connections with the rotator cable.
Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo
2017-07-01
The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.
The Vertical Structure of the Halo Rotation
Kinman, T D; Bragaglia, A; Buzzoni, A; Spagna, A
2002-01-01
New GSC-II proper motions of RR Lyrae and Blue Horizontal Branch (BHB) stars near the North Galactic Pole are used to show that the Galactic Halo 5 kpc above the Plane has a significantly retrograde galactic rotation.
Barwick, Susan
2008-01-01
Unitals are key structures in projective planes, and have connections with other structures in algebra. This book presents a monograph on unitals embedded in finite projective planes. It offers a survey of the research literature on embedded unitals. It is suitable for graduate students and researchers who want to learn about this topic
Solar rotation gravitational moments
Directory of Open Access Journals (Sweden)
A. Ajabshirizadeh
2005-09-01
Full Text Available Gravitational multipole moments of the Sun are still poorly known. Theoretically, the difficulty is mainly due to the differential rotation for which the velocity rate varies both on the surface and with the depth. From an observational point of view, the multipole moments cannot be directly measured. However, recent progresses have been made proving the existence of a strong radial differential rotation in a thin layer near the solar surface (the leptocline. Applying the theory of rotating stars, we will first compute values of J2 and J4 taking into account the radial gradient of rotation, then we will compare these values with the existing ones, giving a more complete review. We will explain some astrophysical outcomes, mainly on the relativistic Post Newtonian parameters. Finally we will conclude by indicating how space experiments (balloon SDS flights, Golf NG, Beppi-Colombo, Gaia... will be essential to unambiguously determine these parameters.
Fluid physics of a rotating membrane separator
Akonur, Alp
Rotating membrane separation is a powerful dynamic filtration technique used in separation and filtration of suspensions. Rotating membrane separation is superior compared to the conventional filtration techniques owing to the special character of the flow field, namely the supercritical cylindrical Couette flow, observed in the form of nonwavy and wavy toroidal vortices. The underlying physics are investigated by extending the previous particle image velocity (PIV) measurements performed in a radial-axial plane to a radial-azimuthal plane for nonwavy Taylor Couette flow and wavy cylindrical Couette flow. These measurements are matched to previous measurements to obtain the first time- resolved, three-dimensional, three-component velocity field for cylindrical Couette flow. The nonwavy toroidal vortices of Taylor-Couette flow become stronger with increasing Taylor number. The azimuthal velocity varies axially due to the redistribution of the azimuthal momentum by the vortical motion, which results in a substantial increase in the angular momentum at outflow regions and a decrease at inflow regions. For wavy vortex flow, the waviness of the vortices results in a variation of the azimuthal velocity in any given latitudinal place. Streams of axial flow carry fluid along the length of the annulus winding around the vortices radially from the inner cylinder to the outer cylinder, and azimuthally about one-half wavelength. The azimuthal velocity near the centers of the vortices is similar to the velocity of the traveling azimuthal wave. Large shear stresses occur near the inner and outer cylinders especially at the high Taylor numbers. In the middle of the annulus, the shear stress is substantially less. In filtration flow, where radial and axial flows are imposed on cylindrical Couette flow, simultaneous use of particle image velocimetry (PIV) and particle tracking velocimetry (PTV) provides fluid and particle velocities. Results indicate no major differences in the
Childs, Peter R N
2010-01-01
Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics
An Improved Triangular Element With Drilling Rotations
DEFF Research Database (Denmark)
Damkilde, Lars; Grønne, Mikael
2002-01-01
by rotations in the corner nodes. Compared to Allman's plane element which was the first succesfull implementation of drilling rotations the proposed element has extra displacements in the mid-side nodes parallel to the element sides. The performance should therefore be better and closer to the LST...
Tachyon Condensation in Rotated Brane Configurations
de Alwis, S P
1999-01-01
The decay of rotated brane configurations and the corresponding condensation of tachyons is discussed. In a certain IIB orbifold case a heuristic argument about the mass of the state living on the fixed plane is made. When the rotation angle is $\\pi$ this mass agrees with that obtained by Sen.
Determination of Faraday rotation in a ferrofluid
Yusuf, Nihad A.; Rousan, Akram A.; El-Ghanem, Hassan M.
1987-03-01
Transmission of plane polarised light through ferrofluids in the presence of a magnetic field parallel to the direction of propagation depends on both chain formation and Faraday rotation. A procedure is proposed to separate between both factors. Faraday rotation in a dilute Fe 3O 4 ferrofluid measured by this procedure does not show saturation in fields up to 4000 G.
Fixed sagittal plane imbalance.
Savage, Jason W; Patel, Alpesh A
2014-12-01
Study Design Literature review. Objective To discuss the evaluation and management of fixed sagittal plane imbalance. Methods A comprehensive literature review was performed on the preoperative evaluation of patients with sagittal plane malalignment, as well as the surgical strategies to address sagittal plane deformity. Results Sagittal plane imbalance is often caused by de novo scoliosis or iatrogenic flat back deformity. Understanding the etiology and magnitude of sagittal malalignment is crucial in realignment planning. Objective parameters have been developed to guide surgeons in determining how much correction is needed to achieve favorable outcomes. Currently, the goals of surgery are to restore a sagittal vertical axis Sagittal plane malalignment is an increasingly recognized cause of pain and disability. Treatment of sagittal plane imbalance varies according to the etiology, location, and severity of the deformity. Fixed sagittal malalignment often requires complex reconstructive procedures that include osteotomy correction. Reestablishing harmonious spinopelvic alignment is associated with significant improvement in health-related quality-of-life outcome measures and patient satisfaction.
Observation of a free-Shercliff-layer instability in cylindrical geometry.
Roach, Austin H; Spence, Erik J; Gissinger, Christophe; Edlund, Eric M; Sloboda, Peter; Goodman, Jeremy; Ji, Hantao
2012-04-13
We report on observations of a free-Shercliff-layer instability in a Taylor-Couette experiment using a liquid metal over a wide range of Reynolds numbers, Re∼10(3)-10(6). The free Shercliff layer is formed by imposing a sufficiently strong axial magnetic field across a pair of differentially rotating axial end cap rings. This layer is destabilized by a hydrodynamic Kelvin-Helmholtz-type instability, characterized by velocity fluctuations in the r-θ plane. The instability appears with an Elsasser number above unity, and saturates with an azimuthal mode number m which increases with the Elsasser number. Measurements of the structure agree well with 2D global linear mode analyses and 3D global nonlinear simulations. These observations have implications for a range of rotating MHD systems in which similar shear layers may be produced.
Observation of a Free-Shercliff-Layer Instability in Cylindrical Geometry
Roach, Austin; Gissinger, Christophe; Edlund, Eric; Sloboda, Peter; Goodman, Jeremy; Ji, Hantao; 10.1103/PhysRevLett.108.154502
2012-01-01
We report on observations of a free-Shercliff-layer instability in a Taylor-Couette experiment using a liquid metal over a wide range of Reynolds numbers, $Re\\sim 10^3-10^6$. The free Shercliff layer is formed by imposing a sufficiently strong axial magnetic field across a pair of differentially rotating axial endcap rings. This layer is destabilized by a hydrodynamic Kelvin-Helmholtz-type instability, characterized by velocity fluctuations in the $r-\\theta$ plane. The instability appears with an Elsasser number above unity, and saturates with an azimuthal mode number $m$ which increases with the Elsasser number. Measurements of the structure agree well with 2D global linear mode analyses and 3D global nonlinear simulations. These observations have implications for a range of rotating MHD systems in which similar shear layers may be produced.
Energy Technology Data Exchange (ETDEWEB)
Shchukarev, Andrei; Boily, Jean F.; Felmy, Andrew R.
2007-12-13
The influence of the {001} basal plane of hematite on the composition of fast-frozen centrifuged wet pastes of hematite prepared at pH 4 and 9 and at ionic strengths of 0, 10 and 100 mM NaCl was investigated by x-ray photoelectron spectroscopy. Two hematite preparations consisted of micrometer-sized platelets with 42% (HEM-1) and 95% (HEM-8) of the surface terminated by the {001} basal plane. A third preparation of spherical shape with no recognizable crystal plane (HEM-control) was used as a control to these experiments. All hematite samples responded to changes in pH and ionic strength, showing that acid/base reactions of surface hydroxyl groups control the composition of the paste. The HEM-1 and HEM-8 sample exhibited divergent properties at the highest ionic strength (100 mM) with energy loss features in the Na 1s and Cl 2p spectra and an important water content. As the spectra were typical of hydrated Na+ and Cl- ions and that the surface concentrations were unusually large, the HEM-1 and HEM-8 samples are proposed to induce the formation of a three-dimensional distribution of these ions in the paste. The sodium, chloride and water content was also correlated to the fraction of the {001} basal plane present in the sample and provided evidence for an approximate stochiometric Na:Cl:H2O ratio of 1:1:2. The {001} basal plane of hematite is consequently proposeD to be the cause of this feature.
Lekner, John
2008-01-01
Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…
Energy Technology Data Exchange (ETDEWEB)
Inamura, T., E-mail: inamura.t.aa@m.titech.ac.jp [Precision and Intelligence Laboratory, Tokyo Institute of Technology (Japan); Kim, H.Y. [Institute of Materials Science, University of Tsukuba (Japan); Hosoda, H. [Precision and Intelligence Laboratory, Tokyo Institute of Technology (Japan); Miyazaki, S. [Institute of Materials Science, University of Tsukuba (Japan)
2013-11-15
Highlights: ► Kinematic compatibility (KC) among martensite variants in Ti-Nb-Al is evaluated. ► Rotation Q is necessary to keep KC at any junction plane (JP). ► The rotation Q is equivalent to the rotation to form the exact twin-relationship. ► The JP preferentially observed in experiment is the JP with the smaller Q. ► We propose two preferential JPs with {1 1 1} type I and 〈2 1 1〉 type II twin in Ti-Nb-Al. -- Abstract: The invariant plane (IP) condition at a habit plane (HP) and the kinematic compatibility (KC) condition at a junction plane (JP) are quantitatively evaluated by the geometrically nonlinear theory of martensite and the origin of the twin orientation relationship (OR) at a JP is revealed in a β titanium shape memory alloy. Exact twin OR at a JP is impossible among the habit plane variants (HPVs). A nonzero rotation is necessary to maintain the compatibility at a JP between the HPVs. The fully compatible HPV cluster in which IP at a HP and KC at a JP are maintained simultaneously is impossible in this alloy. However, it was found that twin OR and KC can be maintained simultaneously. The preferentially observed HPV clusters in transmission electron microscopy are the clusters with a smaller rotation to maintain KC at a JP.
Wang, Bin; Qian, Zhenghua; Li, Nian; Sarraf, Hamid
2016-01-01
We propose the use of thickness-twist (TT) wave modes of an AT-cut quartz crystal plate resonator for measurement of material parameters, such as stiffness, density and material gradient, of a functionally graded material (FGM) layer on its surface, whose material property varies exponentially in thickness direction. A theoretical analysis of dispersion relations for TT waves is presented using Mindlin's plate theory, with displacement mode shapes plotted, and the existence of face-shear (FS) wave modes discussed. Through numerical examples, the effects of material parameters (stiffness, density and material gradient) on dispersion curves, cutoff frequencies and mode shapes are thoroughly examined, which can act as a theoretical reference for measurements of unknown properties of FGM layer.
Effects of confinement on a rotating sphere
Liu, Qianlong; Prosperetti, Andrea
2009-11-01
The hydrodynamic force and couple acting on a rotating sphere in a quiescent fluid are modified by nearby boundaries with possible consequences on spin-up and spin-down times of particles uspended in a fluid, their wall deposition, entraiment and others. Up to now, the vast majority of papers dealing with these problems have considered the low-Reynolds-number regime. This paper focuses on the effect of inertia on the hydrodynamic interaction of a spinning sphere with nearby boundaries. Rotation axes parallel and perpendicular to a plane boundary as well as other situations are studied. Several steady and transient numerical results are presented and interptreted in terms of physical scaling arguments. The Navier-Stokes equations for an incompressible, constant-property Newtonian fluid are solved by the finite-difference PHYSALIS method. Among the noteworthy features of this method are the fact that the no-slip condition at the particle surface is satisfied exactly and that the force and torque on the sphere are obtained directly as a by-product of the computation. This feature avoids the need to integrate the stress over the particle surface, which with other methods is a step prone to numerical inaccuracies. A locally refined mesh surrounding the particle is used to enhance the resolution of boundary layers maintaining a manageable overall computational cost.
Energy Technology Data Exchange (ETDEWEB)
Lampton, Michael L.; Kim, A.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Berkovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro,R.; Ealet, A.; Ellis, R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland, S.E.; Huterer, D.; Karcher, A.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder,E.V.; Loken, S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.
2002-07-29
The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square-degree field sensitive in the visible and near-infrared wavelength regime. We describe the requirements for the instrument suite and the evolution of the focal plane design to the present concept in which all the instrumentation--visible and near-infrared imagers, spectrograph, and star guiders--share one common focal plane.
Deep plane facelifting for facial rejuvenation.
Gordon, Neil; Adam, Stewart
2014-08-01
The purpose of this article is to provide the facial plastic surgeon with anatomical and embryologic evidence to support the use of the deep plane technique for optimal treatment of facial aging. A detailed description of the procedure is provided to allow safe and consistent performance. Insights into anatomical landmarks, technical nuances, and alternative approaches for facial variations are presented. The following points will be further elucidated in the article. The platysma muscle/submuscular aponeurotic system/galea are the continuous superficial cervical fascia encompassing the majority of facial fat, and this superficial soft tissue envelope is poorly anchored to the face. The deep cervical fascia binds the structural aspects of the face and covers the facial nerve and buccal fat pad. Facial aging is mainly due to gravity's long-term effects on the superficial soft tissue envelope, with more subtle effects on the deeper structural compartments. The deep plane is the embryologic cleavage plane between these fascial layers, and is the logical place for facial dissection. The deep plane allows access to the buccal fat pad for treatment of jowling. Soft tissue mobilization is maximized in deep plane dissections and requires careful hairline planning. Flap advancement creates tension only at the fascia level allowing natural, tension-free skin closure, and long-lasting outcomes. The deep plane advancement flap is well vascularized and resistant to complications.
On plane submerged laminar jets
Coenen, Wilfried; Sanchez, Antonio L.
2016-11-01
We address the laminar flow generated when a developed stream of liquid of kinematic viscosity ν flowing along channel of width 2 h discharges into an open space bounded by two symmetric plane walls departing from the channel rim with an angle α 1 . Attention is focused on values of the jet volume flux 2 Q such that the associated Reynolds number Re = Qh / ν is of order unity. The formulation requires specification of the boundary conditions far from the channel exit. If the flow is driven by the volume flux, then the far-field solution corresponds to Jeffery-Hamel self-similar flow. However, as noted by Fraenkel (1962), such solutions exist only for α potential flow driven by the jet entrainment, and a Falkner-Skan near-wall boundary layer. Numerical integrations of the Navier-Stokes equations are used to ascertain the existence of these different solutions.
Yang, Hao; Marley, Mark S; Saumon, Didier; Morley, Caroline V; Buenzli, Esther; Artigau, Etienne; Radigan, Jacqueline; Metchev, Stanimir; Burgasser, Adam J; Mohanty, Subhanjoy; Lowrance, Patrick L; Showman, Adam P; Karalidi, Theodora; Flateau, Davin; Heinze, Aren N
2014-01-01
We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 $\\mu$m and 1.7 $\\mu$m. We find that the water absorption bands of the two L5 dwarfs at 1.15 $\\mu$m and 1.4 $\\mu$m vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 $\\mu$m displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altit...
Beamlet focal plane diagnostic
Energy Technology Data Exchange (ETDEWEB)
Caird, J.A.; Nielsen, N.D.; Patton, H.G.; Seppala, L.G.; Thompson, C.E.; Wegner, P.J.
1996-12-01
This paper describes the major optical and mechanical design features of the Beamlet Focal Plane Diagnostic system as well as measurements of the system performance, and typical data obtained to date. We also discuss the NIF requirements on the focal spot that we are interested in measuring, and some of our plans for future work using this system.
Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro
2016-07-01
Numerical analysis of the rotation of an ultrasonically levitated droplet with a free surface boundary is discussed. The ultrasonically levitated droplet is often reported to rotate owing to the surface tangential component of acoustic radiation force. To observe the torque from an acoustic wave and clarify the mechanism underlying the phenomena, it is effective to take advantage of numerical simulation using the distributed point source method (DPSM) and moving particle semi-implicit (MPS) method, both of which do not require a calculation grid or mesh. In this paper, the numerical treatment of the viscoacoustic torque, which emerges from the viscous boundary layer and governs the acoustical droplet rotation, is discussed. The Reynolds stress traction force is calculated from the DPSM result using the idea of effective normal particle velocity through the boundary layer and input to the MPS surface particles. A droplet levitated in an acoustic chamber is simulated using the proposed calculation method. The droplet is vertically supported by a plane standing wave from an ultrasonic driver and subjected to a rotating sound field excited by two acoustic sources on the side wall with different phases. The rotation of the droplet is successfully reproduced numerically and its acceleration is discussed and compared with those in the literature.
A quantum Cherry theorem for perturbations of the plane rotator
Barone, Fiorella; Graffi, Sandro
2013-12-01
We consider on L^2({T}^2) the Schrödinger operator family L_\\varepsilon : \\varepsilon in {R} with domain and action defined as D(L_\\varepsilon )=H^2({T}^2), L_\\varepsilon u=-1/2hbar ^2(α _1partial _{φ _1}^2+α _2partial _{φ _2}^2)u-ihbar (γ _1partial _{φ _1}+γ _2partial _{φ _2})u+\\varepsilon Vu. Here \\varepsilon in {R}, α = (α1, α2), γ = (γ1, γ2) are vectors of complex non-real frequencies, and V a pseudodifferential operator of order zero. Lɛ represents the Weyl quantization of the Hamiltonian family {L}_\\varepsilon (ξ,x)=1/2(α _1ξ _1^2+α _2ξ _2^2)+γ _1ξ _1+γ _2ξ _2+\\varepsilon {V}(ξ,x) defined on the phase space {R}^2× {T}^2, where {V}(ξ,x)in C^2({R}^2× {T}^2;{R}). We prove the uniform convergence with respect to ℏ ∈ [0, 1] of the quantum normal form, which reduces to the classical one for ℏ = 0. This result simultaneously entails an exact quantization formula for the quantum spectrum as well as a convergence criterion for the classical Birkhoff normal form generalizing a well known theorem of Cherry.
Stellar rotation effects in polarimetric microlensing
Sajadian, Sedighe
2016-01-01
It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rapidly rotate around their stellar axes. The stellar rotation makes ellipticity and gravity-darkening effects which break the spherical symmetry of the source shape and the circular symmetry of the source surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetry microlensing of fast rotating stars. For moderate rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation through polarimetry observations. The gravity-darkening effect due to a rotating source star makes asymmetric perturbations in polarimetry and photometry microlensing curves whose maximum happens when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity makes a time shift (i) in the position of ...
Wu, R.; Yun, C.; Ding, S. L.; Wen, X.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L.; Yang, J. B.
2016-08-01
The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n-1/2 function. A larger CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.
Energy Technology Data Exchange (ETDEWEB)
Wu, R. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Yun, C.; Ding, S. L.; Wen, X.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Yang, J. B., E-mail: jbyang@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)
2016-08-07
The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n{sup −1/2} function. A larger CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.
Electric polarization in bi-layered ferromagnetic film with combined magnetic anisotropy
Energy Technology Data Exchange (ETDEWEB)
Gareeva, Z.V., E-mail: gzv@anrb.ru [Institute of Molecule and Crystal Physics, Academy of Sciences, 151, prospect Octobrya, Ufa 450075 (Russian Federation); Doroshenko, R.A. [Institute of Molecule and Crystal Physics, Academy of Sciences, 151, prospect Octobrya, Ufa 450075 (Russian Federation); Mazhitova, F.A. [Bashkir State University, 32 Z. Validi str., Ufa 450076 (Russian Federation); Shulga, N.V. [Institute of Molecule and Crystal Physics, Academy of Sciences, 151, prospect Octobrya, Ufa 450075 (Russian Federation)
2015-07-01
Magnetoelectric phenomena become one of the most attractive fields of magnetism. One of discussable items is inhomogeneous magnetoelectricity leading to appearance of electric polarization of magnetic domain walls, improper polarization of multiferroics etc. In our article we attract attention to the modulation of electric polarization by magnetic inhomogeneity in exchange coupled ferromagnetic film whose layers differ by magnetic anisotropy. Our goal is to explore the influence of combined magnetic anisotropy (especially its cubic component) on the behavior of electric polarization of bi-layered film placed in magnetic field. We perform theoretical analysis in a frame of phenomenological modeling of spins structures considering two geometries of magnetic field (magnetic field oriented perpendicular to a film plane and magnetic field oriented in a film plane along “hard magnetization” axis). Our results show that the presence of cubic magnetic anisotropy (K{sub c}<0) in the layers allocates the planes of magnetic inhomogeneities and correspondingly the directions of electric polarization. We demonstrate that magnetic field applied along the “hard magnetization” axis leads to the rotation of electric polarization in the 45° range and magnetic field applied along normal to a film influences the magnitude of electric polarization leading to the lowering of polarization after attaining the maximum value. - Highlights: • Magnetic inhomogeneity in bi-layered ferromagnetic film generates electric polarization. • Cubic magnetic anisotropy allocates the direction of electric polarization. • Magnetic field applied along “hard magnetization” axis rotates electric polarization.
Effect of the Quadrupole Moment of a Rotating Massive Object on the Gravitational Faraday Rotation
Institute of Scientific and Technical Information of China (English)
陈贻汉; 邵常贵
2002-01-01
We study the rotation of the polarization plane for a ray of electromagnetic radiation propagating in the grav-itoelectromagnetic field caused by a rotating massive object with the quadrupole moment. The effect of thequadrupole moment on the gravitational Faraday rotation is investigated. It is found that the gravitational Fara-day effect of the quadrupole moment is negligible for Kerr black holes, but this effect is important for rapidlyrotating neutron stars.
Institute of Scientific and Technical Information of China (English)
李玉清
1996-01-01
The characteristics of planed defects in (Cr,Fe)7C3 in a chromium steel and two kinds of cast alloys have been delineated.Combining matrix analysis of electron diffraction pattern with calculated angle between planed detect traces and using compound reciprocal space composed of matrix cell and two rotative cells,the [011] and [013] planed defects in (Cr,Fe)-C3 have been determined in an all-round way.A crystallographic model for (Cr.Fe)2C3 has been proposed.
Burmann, Britta; Dehnhardt, Guido; Mauck, Björn
2005-01-01
Mental rotation is a widely accepted concept indicating an image-like mental representation of visual information and an analogue mode of information processing in certain visuospatial tasks. In the task of discriminating between image and mirror-image of rotated figures, human reaction times increase with the angular disparity between the figures. In animals, tests of this kind yield inconsistent results. Pigeons were found to use a time-independent rotational invariance, possibly indicating a non-analogue information processing system that evolved in response to the horizontal plane of reference birds perceive during flight. Despite similar ecological demands concerning the visual reference plane, a sea lion was found to use mental rotation in similar tasks, but its processing speed while rotating three-dimensional stimuli seemed to depend on the axis of rotation in a different way than found for humans in similar tasks. If ecological demands influence the way information processing systems evolve, hominids might have secondarily lost the ability of rotational invariance while retreating from arboreal living and evolving an upright gait in which the vertical reference plane is more important. We therefore conducted mental rotation experiments with an arboreal living primate species, the lion-tailed macaque. Performing a two-alternative matching-to-sample procedure, the animal had to decide between rotated figures representing image and mirror-image of a previously shown upright sample. Although non-rotated stimuli were recognized faster than rotated ones, the animal's mean reaction times did not clearly increase with the angle of rotation. These results are inconsistent with the mental rotation concept but also cannot be explained assuming a mere rotational invariance. Our study thus seems to support the idea of information processing systems evolving gradually in response to specific ecological demands.
Directory of Open Access Journals (Sweden)
Efim Khalimsky
1990-01-01
Full Text Available The importance of topological connectedness properties in processing digital pictures is well known. A natural way to begin a theory for this is to give a definition of connectedness for subsets of a digital plane which allows one to prove a Jordan curve theorem. The generally accepted approach to this has been a non-topological Jordan curve theorem which requires two different definitions, 4-connectedness, and 8-connectedness, one for the curve and the other for its complement.
Energy Technology Data Exchange (ETDEWEB)
Foda, Omar; Wheeler, Michael [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)
2007-01-15
Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another.
George, T.; Pike, W. T.; Khan, M. A.; Kuznia, J. N.; Chang-Chien, P.
1994-01-01
The initial growth by low pressure metalorganic chemical vapor deposition and subsequent thermal annealing of AIN and GaN epitaxial layers on SiC and sapphire substrates is examined using high resolution transmission electron microscopy and atomic force microscopy.
Rotational superradiance in fluid laboratories
Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke
2016-01-01
Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.
Counter-Rotating Accretion Discs
Dyda, Sergei; Ustyugova, Galina V; Romanova, Marina M; Koldoba, Alexander V
2014-01-01
Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud onto the surface of an existing co-rotating disc or from the counter-rotating gas moving radially inward to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc center. We discuss high-resolution axisymmetric hydrodynamic simulations of a viscous counter-rotating disc for cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic $\\alpha-$viscosity including all terms in the viscous stress tensor. For the vertically separated components a shear layer forms between them. The middle of this layer free-falls to the disk center. The accretion rates are increased by factors $\\sim 10^2-10^4$ over that of a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dep...
Pan, Y; Nikitin, A M; Araizi, G K; Huang, Y K; Matsushita, Y; Naka, T; de Visser, A
2016-01-01
Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms.
Optimal multiple-pass aeroassisted plane change
Vinh, Nguyen X.; Ma, Der-Ming
1990-01-01
This paper presents the exact dimensionless equation of motion and the necessary conditions for the computation of the optimal trajectories of a hypervelocity vehicle flying through a non-rotating spherical planetary atmosphere. Numerical solution is then presented for the case when the vehicle makes several passages through the atmosphere near the perigee of its orbit. While the orbit is slowly contracting, aerodynamic maneuver is performed to obtain the maximum plane change. Several plots were presented to show the optimal variations of the lift coefficient and the bank angle and the various elements of the orbit.
Blackfolds, plane waves and minimal surfaces
Armas, Jay; Blau, Matthias
2015-01-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and comp...
Gravitational Faraday Rotation of the Earth and Its Possible Test
Institute of Scientific and Technical Information of China (English)
LIU Lin-Xia; SHAO Cheng-Gang; LUO Jun
2005-01-01
@@ It is shown that the rotation of the polarization plane of rays induced by a rotating body can be accumulated by means of a long baseline optical cavity. Theoretical analysis shows that the presently proposal experimental scheme is possible to test this gravitational Faraday rotation effect on the Earth, especially including how to effectively suppress the dominant part of the Sagnac effect due to the rotation of the Earth with a reasonable experimental configuration.
Hand-Eye LRF-Based Iterative Plane Detection Method for Autonomous Robotic Welding
Directory of Open Access Journals (Sweden)
Sungmin Lee
2015-12-01
Full Text Available This paper proposes a hand-eye LRF-based (laser range finder welding plane-detection method for autonomous robotic welding in the field of shipbuilding. The hand-eye LRF system consists of a 6 DOF manipulator and an LRF attached to the wrist of the manipulator. The welding plane is detected by the LRF with only the wrist's rotation to minimize a mechanical error caused by the manipulator's motion. A position on the plane is determined as an average position of the detected points on the plane, and a normal vector to the plane is determined by applying PCA (principal component analysis to the detected points. In this case, the accuracy of the detected plane is analysed by simulations with respect to the wrist's angle interval and the plane angle. As a result of the analysis, an iterative plane-detection method with the manipulator's alignment motion is proposed to improve the performance of plane detection. For verifying the feasibility and effectiveness of the proposed plane-detection method, experiments are carried out with a prototype of the hand-eye LRF-based system, which consists of a 1 DOF wrist's joint, an LRF system and a rotatable plane. In addition, the experimental results of the PCA-based plane detection method are compared with those of the two representative plane-detection methods, based on RANSAC (RANdom SAmple Consensus and the 3D Hough transform in both accuracy and computation time's points of view.
Energy Technology Data Exchange (ETDEWEB)
Duan, Chen-Long; Deng, Zhang; Cao, Kun [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Yin, Hong-Feng [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Shan, Bin [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Chen, Rong, E-mail: rongchen@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)
2016-07-15
Iron(II,III) oxide (Fe{sub 3}O{sub 4}) nanoparticles have shown great promise in many magnetic-related applications such as magnetic resonance imaging, hyperthermia treatment, and targeted drug delivery. Nevertheless, these nanoparticles are vulnerable to oxidation and magnetization loss under ambient conditions, and passivation is usually required for practical applications. In this work, a home-built rotating fluidized bed (RFB) atomic layer deposition (ALD) reactor was employed to form dense and uniform nanoscale Al{sub 2}O{sub 3} passivation layers on Fe{sub 3}O{sub 4} nanoparticles. The RFB reactor facilitated the precursor diffusion in the particle bed and intensified the dynamic dismantling of soft agglomerates, exposing every surface reactive site to precursor gases. With the aid of in situ mass spectroscopy, it was found that a thicker fluidization bed formed by larger amount of particles increased the residence time of precursors. The prolonged residence time allowed more thorough interactions between the particle surfaces and the precursor gas, resulting in an improvement of the precursor utilization from 78% to nearly 100%, even under a high precursor feeding rate. Uniform passivation layers around the magnetic cores were demonstrated by both transmission electron microscopy and the statistical analysis of Al mass concentrations. Individual particles were coated instead of the soft agglomerates, as was validated by the specific surface area analysis and particle size distribution. The results of thermogravimetric analysis suggested that 5 nm-thick ultrathin Al{sub 2}O{sub 3} coatings could effectively protect the Fe{sub 3}O{sub 4} nanoparticles from oxidation. The x-ray diffraction patterns also showed that the magnetic core crystallinity of such passivated nanoparticles could be well preserved under accelerated oxidation conditions. The precise thickness control via ALD maintained the saturation magnetization at 66.7 emu/g with a 5 nm-thick Al
Johnson, Aylmer
2004-01-01
Plane and Geodetic Surveying blends theory and practice, conventional techniques and GPS, to provide the ideal book for students of surveying.Detailed guidance is given on how and when the principle surveying instruments (theodolites, Total Stations, levels and GPS) should be used. Concepts and formulae needed to convert instrument readings into useful results are explained. Rigorous explanations of the theoretical aspects of surveying are given, while at the same time a wealth of useful advice about conducting a survey in practice is provided. An accompanying least squares adjustment program
Directory of Open Access Journals (Sweden)
JM Toledo
2007-02-01
progression in internal rotation (IR and external rotation (ER exercises of the shoulder in the sagittal plane. METHOD: Six individuals were assessed using an isokinetic dynamometer and an electrogoniometer. From the data collected, the mean torque, mean resultant force and weighted mean moment arm were calculated using the SAD32 and Matlab® software. RESULTS: The angles at which the peak ER and IR torque occurred were -34° and 6º with values of 43 Nm and 69 Nm, respectively. The peaks for ER and IR muscle force were at 35º and -14º, and the values at these angles were 10227 N and 8464 N, respectively. The weighted mean moment arm for ER presented an increasing pattern over the whole range of motion (ROM and the peak was at the end of the ROM, i.e. at -50º (0.91 cm. The weighted mean moment arm for IR was almost constant with its peak at 50º (0.96 cm. CONCLUSION: The mechanical criteria for progression in internal and external rotation exercises of the shoulder are torque, force and weighted mean moment arm because different overloads on the muscle-tendon structure can be caused according to their patterns over the ROM.
Assessment of the rotator cable in various rotator cuff conditions using indirect MR arthrography.
Choo, Hye Jung; Lee, Sun Joo; Kim, Dong Wook; Park, Young-Mi; Kim, Jung-Han
2014-11-01
The rotator cable is an important structure providing stress shield to the rotator cuff, similar to the mechanism of suspension bridge. To evaluate the visibility and appearance of the rotator cable in various conditions of the rotator cuff, using indirect magnetic resonance (MR) arthrography. Indirect MR arthrography images from 27 patients (age range, 20-63 years) with normal rotator cuffs, and 47 (age range, 20-73 years) with tendinosis, 32 (age range, 49-71 years) with partial-thickness tears, and 55 (age range, 44-75 years) with full-thickness tears in the supraspinatus and infraspinatus tendons (SST-ISTs) were included in this study. In these various rotator cuff conditions, the visibility and appearance (thickness and width) of the rotator cable and the relationships between the rotator cable appearance, rotator cuff tear size, rotator cuff thickness, and patient's age were assessed. On the sagittal MR images, all rotator cables were visible in the normal rotator cuffs and tendinosis/partial-thickness tears of SST-ISTs. In the order of normal cuff, tendinosis, partial-thickness tear, and full-thickness tear of SST-ISTs, the rotator cable tended to become thicker (1.07, 1.27, 1.32, and 1.59 mm, respectively) and narrower (12.1, 10.68, 10.90, and 8.55 mm, respectively). The thickness of the rotator cable was significantly positively correlated with the rotator cuff thickness in the normal rotator cuffs (coefficient, 0.49; P = 0.010) and tendinosis of SST-ISTs (coefficient, 0.53; P < 0.001), but was not correlated with patients' age. On sagittal plane of indirect MR arthrography, most rotator cables were visible. The appearance of the rotator cable changed according to the rotator cuff condition. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.
1995-12-12
A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.
Zahm, A F
1924-01-01
This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.
Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.
1995-01-01
A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.
Calkins, Michael A.; Julien, Keith; Marti, Philippe
2015-01-01
The linear theory for rotating compressible convection in a plane layer geometry is presented for the astrophysically relevant case of low Prandtl number gases. When the rotation rate of the system is large, the flow remains geostrophically balanced for all stratification levels investigated and the classical (i.e. incompressible) asymptotic scaling laws for the critical parameters are recovered. For sufficiently small Prandtl numbers, increasing stratification tends to further destabilize the fluid layer, decrease the critical wavenumber and increase the oscillation frequency of the convective instability. In combination, these effects increase the relative magnitude of the time derivative of the density perturbation contained in the conservation of mass equation to non-negligible levels; the resulting convective instabilities occur in the form of compressional quasi-geostrophic oscillations. We find that the anelastic equations, which neglect this term, cannot capture these instabilities and possess spuriously growing eigenmodes in the rapidly rotating, low Prandtl number regime. It is shown that the Mach number for rapidly rotating compressible convection is intrinsically small for all background states, regardless of the departure from adiabaticity. PMID:25792951
Piezoelectric Love waves on rotated Y-cut mm2 substrates.
Collet, Bernard; Destrade, Michel
2006-11-01
Consider a layer consisting of a m3m dielectric crystal, with faces cut parallel to a symmetry plane. Then bond it onto a semi-infinite mm2 piezoelectric substrate. For a X- or Y-cut of the substrate, a Love wave can propagate in the resulting structure and the corresponding dispersion equation is derived analytically. It turns out that when the upper (free) face of the layer is metalized, a fully explicit treatment can also be conducted in the case of a Y-cut rotated about Z. In the case of a germanium layer over a potassium niobate substrate, the wave exists at any wavelength for X-and Y-cuts but this ceases to be the case for rotated cuts, with the appearance of forbidden ranges. By playing on the cut angle, the Love wave can be made to travel faster than, or slower than, or at the same speed as, the shear bulk wave of the layer. A by-product of the analysis is the derivation of the explicit secular equation for the Bleustein-Gulyaev wave in the substrate alone, which corresponds to an asymptotic behavior of the Love wave. The results are valid for other choices for the layer and for the substrate, provided they have the same, or more, symmetries.
Jung, J. W.; Sakuraba, Y.; Sasaki, T. T.; Miura, Y.; Hono, K.
2016-03-01
We have investigated the effects of insertion of a thin NiAl layer (≤0.63 nm) into a Co2FeGa0.5Ge0.5 (CFGG)/Ag interface on the magnetoresistive properties in CFGG/Ag/CFGG current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin valves (PSVs). First-principles calculations of ballistic transmittance clarified that the interfacial band matching at the (001)-oriented NiAl/CFGG interface is better than that at the (001)-Ag/CFGG interface. The insertion of 0.21-nm-thick NiAl layers at the Co2FeGa0.5Ge0.5/Ag interfaces effectively improved the magnetoresistance (MR) output; the observed average and the highest MR ratio (ΔRA) are 62% (25 mΩ μm2) and 77% (31 mΩ μm2) at room temperature, respectively, which are much higher than those without NiAl insertion. Microstructural analysis using scanning transmission electron microscopy confirmed the existence of thin NiAl layers at the Ag interfaces with only modest interdiffusion even after annealing at 550 °C. The improvement of the interfacial spin-dependent scattering by very thin NiAl insertion can be a predominant reason for the enhancement of the MR output.
Transitions in turbulent rotating convection
Rajaei, Hadi; Alards, Kim; Kunnen, Rudie; Toschi, Federico; Clercx, Herman; Fluid Dynamics Lab Team
2015-11-01
This study aims to explore the flow transition from one state to the other in rotating Rayleigh-Bènard convection using Lagrangian acceleration statistics. 3D particle tracking velocimetry (3D-PTV) is employed in a water-filled cylindrical tank of equal height and diameter. The measurements are performed at the center and close to the top plate at a Rayleigh number Ra = 1.28e9 and Prandtl number Pr = 6.7 for different rotation rates. In parallel, direct numerical simulation (DNS) has been performed to provide detailed information on the boundary layers. We report the acceleration pdfs for different rotation rates and show how the transition from weakly to strongly rotating Rayleigh-Bènard affects the acceleration pdfs in the bulk and boundary layers. We observe that the shapes of the acceleration PDFs as well as the isotropy in the cell center are largely unaffected while crossing the transition point. However, acceleration pdfs at the top show a clear change at the transition point. Using acceleration pdfs and DNS data, we show that the transition between turbulent states is actually a boundary layer transition between Prandtl-Blasius type (typical of non-rotating convection) and Ekman type.
Direct Growth of a-Plane GaN on r-Plane Sapphire Substrate by Metalorganic Vapor Phase Epitaxy
Araki, Masahiro; Mochimizo, Noriaki; Hoshino, Katsuyuki; Tadatomo, Kazuyuki
2007-02-01
We have investigated the direct growth of nonpolar a-plane GaN layers on an r-plane sapphire substrate by metalorganic vapor-phase epitaxy (MOVPE). A high-density nucleation of GaN islands was obtained on the r-plane sapphire substrate at the initial stage of the high-temperature growth without a buffer layer, which resulted in a two-dimensional (2D) growth mode. We studied the effects of V/III ratio growth conditions on the surface morphology and growth features of an a-plane GaN layer. The results showed that a high density of pits with an inverse-pyramidal shape were formed at a high V/III ratio, whereas a relatively low density of pits were formed at a low V/III ratio due to the increase in the rate of lateral growth along the c-axis direction. We successfully grew a-plane GaN layers with a flat and pit-free surface using the “two-step growth method”. The method consisted of growing a first layer at a high V/III ratio and growing a second layer at a low V/III ratio. We found that the first layer plays an important role in GaN layer growth. The formation of a void-free GaN layer with sidewall facets in the first step leads to a flat and pit-free layer grown at a high rate of lateral growth along the c-axis direction in the second step.
Plane symmetric cosmological models
Yadav, Anil Kumar; Ray, Saibal; Mallick, A
2016-01-01
In this work, we perform the Lie symmetry analysis on the Einstein-Maxwell field equations in plane symmetric spacetime. Here Lie point symmetries and optimal system of one dimensional subalgebras are determined. The similarity reductions and exact solutions are obtained in connection to the evolution of universe. The present study deals with the electromagnetic energy of inhomogeneous universe where $F_{12}$ is the non-vanishing component of electromagnetic field tensor. To get a deterministic solution, it is assumed that the free gravitational field is Petrov type-II non-degenerate. The electromagnetic field tensor $F_{12}$ is found to be positive and increasing function of time. As a special case, to validate the solution set, we discuss some physical and geometric properties of a specific sub-model.
Duality and noncommutative planes
DEFF Research Database (Denmark)
Jøndrup, Søren
2015-01-01
We study extensions of simple modules over an associative ring A and we prove that for twosided ideals mm and nn with artinian factors the condition ExtA1(A/m,A/n)≠0 holds for the left A -modules A/mA/m and A/nA/n if and only if it holds for the right modules A/nA/n and A/mA/m. The methods pro...... proving this are applied to show that noncommutative models of the plane, i.e. algebras of the form k〈x,y〉/(f)k〈x,y〉/(f), where f∈([x,y])f∈([x,y]) are noetherian only in case (f)=([x,y])...
Calculation of pediatric femoral fracture rotation from direct roentgenograms.
Ozel, M S; Ketenci, I E; Kaya, E; Tuna, S; Saygi, B
2013-12-01
Radiologic determination of pediatric femoral fracture rotation has been debated. Measuring the antetorsion angle of the fractured femur by computed tomography and comparing it with the opposite side has been the method of choice for this purpose. However, no simple method for direct measurement of femoral fracture rotation exists in the literature. In this study, our aim was to test a mathematical method of measuring the axial plane malrotation from direct roentgenograms. A pediatric femoral shaft fracture model was produced. The bone was secured to a wooden frame that allowed the distal part of the fracture to rotate around an axis. Radiographs were taken at known intervals of rotation ranging from the neutral position to 60° external rotation and to 60° internal rotation in 5° increments of rotation. Five independent, blinded observers measured the radiographs and calculated the fracture rotation according to a standard formula. Calculated rotation values were compared with known rotation values. Calculated rotation values were close to actual rotation values throughout the arc of rotation. The mean absolute error of five observers for all measurements of external and internal rotation was 3.97° (±0.83). The correlation coefficient between calculated and actual rotation values was 0.9927. The interobserver intraclass correlation coefficient for calculated rotation was 0.997. Absolute error and correlation coefficient values indicate that this method is accurate and reliable in determining the fracture rotation.
Rotating Rayleigh-Taylor turbulence
Boffetta, G.; Mazzino, A.; Musacchio, S.
2016-09-01
The turbulent Rayleigh-Taylor system in a rotating reference frame is investigated by direct numerical simulations within the Oberbeck-Boussinesq approximation. On the basis of theoretical arguments, supported by our simulations, we show that the Rossby number decreases in time, and therefore the Coriolis force becomes more important as the system evolves and produces many effects on Rayleigh-Taylor turbulence. We find that rotation reduces the intensity of turbulent velocity fluctuations and therefore the growth rate of the temperature mixing layer. Moreover, in the presence of rotation the conversion of potential energy into turbulent kinetic energy is found to be less effective, and the efficiency of the heat transfer is reduced. Finally, during the evolution of the mixing layer we observe the development of a cyclone-anticyclone asymmetry.
Blackfolds, Plane Waves and Minimal Surfaces
Armas, Jay
2015-01-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid...
Blackfolds, plane waves and minimal surfaces
Armas, Jay; Blau, Matthias
2015-07-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Effect of periodontal root planing on dentin permeability.
Fogel, H M; Pashley, D H
1993-10-01
The purpose of this study was to quantitate the effects of root planing on the permeability of human root dentin in vitro. Unerupted 3rd molars were used. The crowns were removed and longitudinal slices made of the root. The hydraulic conductance of the root dentin was measured before and after root planing, acid etching and potassium oxalate application using a fluid filtration method. The results showed that root planing creates a smear layer that reduces the permeability of the underlying dentin. However, this smear layer is acid labile. Thus, root planing may ultimately cause increased dentin permeability and the associated sequelae of sensitive dentin, bacterial invasion of tubules, reduced periodontal reattachment and pulpal irritation.
Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet
Harmand, Souad; Poncet, Sébastien; Shevchuk, Igor V; 10.1016/j.ijthermalsci.2012.11.009
2013-01-01
Fluid flow and convective heat transfer in rotor-stator configurations, which are of great importance in different engineering applications, are treated in details in this review. The review focuses on convective heat transfer in predominantly outward air flow in the rotor-stator geometries with and without impinging jets and incorporates two main parts, namely, experimental/theoretical methodologies and geometries/results. Experimental methodologies include naphthalene sublimation techniques, steady state (thin layer) and transient (thermochromic liquid crystals) thermal measurements, thermocouples and infra-red cameras, hot-wire anemometry, laser Doppler and particle image velocimetry, laser plane and smoke generator. Theoretical approaches incorporate modern CFD computational tools (DNS, LES, RANS etc). Geometries and results part being mentioned starting from simple to complex elucidates cases of a free rotating disk, a single disk in the crossflow, single jets impinging onto stationary and rotating disk,...
Rezvantalab, Hossein; Shojaei-Zadeh, Shahab
2014-01-01
We perform molecular dynamics simulations to understand the translational and rotational diffusion of Janus nanoparticles at the interface between two immiscible fluids. Considering spherical particles with different affinity to fluid phases, both their dynamics as well as the fluid structure around them are evaluated as a function of particle size, amphiphilicity, fluid density, and interfacial tension. We show that as the particle amphiphilicity increases due to enhanced wetting of each side with its favorite fluid, the rotational thermal motion decreases. Moreover, the in-plane diffusion of nanoparticles at the interface becomes slower for more amphiphilic particles, mainly due to formation of a denser adsorption layer. The particles induce an ordered structure in the surrounding fluid that becomes more pronounced for highly amphiphilic nanoparticles, leading to increased resistance against nanoparticle motion. A similar phenomenon is observed for homogeneous particles diffusing in bulk upon increasing the...
Selectivity of spatial filtering velocimetry of objective speckles for measuring out-of-plane motion
DEFF Research Database (Denmark)
Jakobsen, Michael Linde; Yura, H. T.; Hanson, Steen Grüner
2012-01-01
We probe the dynamics of objective laser speckles as the axial distance between the object and the observation plane changes. With the purpose of measuring out-of-plane motion in real time, we apply optical spatial filtering velocimetry to the speckle dynamics. To achieve this, a rotationally sym...
Baryons and their Effects on Planes of Satellites Around Milky Way-Mass Galaxies
Ahmed, Sheehan H.
2017-01-01
Both the Milky Way and Andromeda have thin, coherently rotating planes of satellites. In this study I try to find similar satellite planes around four different Milky Way-mass simulations, each run both as dark matter-only and with baryons included. In all halos I am able to identify a planar configuration that significantly maximizes the number of satellites that are members of a plane. The member satellites that make up this maximum plane are consistently different between the dark matter-only and baryonic versions of the same run. In the baryonic runs, satellites are more likely to be destroyed through interactions with the disk, and substructure tends to infall later. Hence, studying satellite planes in dark matter-only simulations is misleading, because they will be composed of different satellite members than those that would exist if baryons were included. Additionally, baryonic runs tend to have less radially concentrated satellite distributions. Since all planes pass through the center of the galaxy, it is much harder to create a plane containing a large number of satellites from a random distribution if the satellites have a low radial concentration. Andromeda’s low radial satellite concentration is possibly a key reason behind why the plane in Andromeda is highly significant. Despite this, when co-rotation is considered, none of the satellite planes identified for the simulated galaxies are as statistically significant as the observed planes around the Milky Way and Andromeda. I will then show that co-rotation in our satellite planes can be attributed to how the satellites are accreted through filaments from the cosmic web. When two sets of opposing filaments contribute, coherent planes are more likely to form, when there are no well-defined filaments, there is a lack of coherent satellite rotation.
Oscillatory Couette flow of rotating Sisko fluid
Institute of Scientific and Technical Information of China (English)
T.HAYAT; S.ABELMAN; M.HAMESE
2014-01-01
The oscillatory Couette flow of a magnetohydrodynamic (MHD) Sisko fluid between two infinite non-conducting parallel plates is explored in a rotating frame. The lower plate is fixed, and the upper plate is oscillating in its own plane. Using MATLAB, a numerical solution to the resulting nonlinear system is presented. The influence of the physical parameters on the velocity components is analyzed. It is found that the effect of rotation on the primary velocity is more significant than that on the secondary velocity. Further, the oscillatory character in the flow is also induced by rotation. The considered flow situation behaves inertialess when the Reynolds number is small.
Institute of Scientific and Technical Information of China (English)
张永利; 巨晓棠
2012-01-01
[目的]利用不同植物轮作,通过生物修复耗竭深层土壤剖面的累积硝态氮,从而控制集约化粮田过量施氮造成的硝酸盐淋洗.[方法]通过田间试验,比较小麦-玉米轮作、休闲-玉米、小麦-休闲、紫花苜蓿连作、紫花苜蓿+苇状羊茅间作、黑麦-苋菜轮作、黑麦-高丹草轮作、黑麦-甜高梁轮作对土壤剖面硝态氮累积和淋洗的降低效果.[结果]紫花苜蓿、高丹草、黑麦1-2m土体根系占0-2m土体总根系的比例最高;黑麦-苋菜、黑麦-高丹草和黑麦-甜高梁处理具有较高的年吸氮量(330-390kgN·hm-2);与小麦-玉米传统轮作相比,夏季休闲增加了土壤硝态氮淋洗.经过1年的田间试验,5个修复植物处理0-1m、1-2m的硝态氮累积量分别降低124.3和81.2kgN·hm-2,其中苋菜、甜高梁、高丹草对深层土壤中硝态氮的消减作用较大;甜高梁、高丹草、苋菜种植下1m处土壤溶液中硝态氮浓度一直处于最低水平,平均仅8.6mg·L-1.[结论]在本试验条件下,黑麦-高丹草轮作是一年内提取深层土壤累积硝态氮效果最好的种植模式.%[Objective] This study aimed to use plants in cropping systems for bioremediation, depleting nitrate nitrogen in deep soil profile to control nitrate leaching caused by excessive nitrogen fertilizer application. [Method] Different treatments were designed in a plot experiment, including conventional wheat-maize rotation system, fallow-summer maize system, winter wheat-fallow system, rye-amaranth rotation system, rye-sorghum hybrid sudan grass rotation system , rye-sweet sorghum rotation system, alfalfa continuous cropping and alfalfa+fescue inlercropping. The effects of each cropping system on the decrease of accumulation and leaching of soil nitrate nitrogen was analyzed. [Result] The results show that alfalfa, sorghum hybrid sudan grass and rye had the highest percentage of roots in 1-2 m soil profile. Annual plant N uptake under rye
Direct Growth of a-Plane GaN on r-Plane Sapphire by Metal Organic Chemical Vapor Deposition
Hsu, Hsiao-Chiu; Su, Yan-Kuin; Huang, Shyh-Jer; Wang, Yu-Jen; Wu, Chun-Ying; Chou, Ming-Chieh
2010-04-01
In this study, we had demonstrated the direct growth of nonpolar a-plane GaN on an r-plane sapphire by metal organic chemical vapor deposition (MOCVD) without any buffer layer. First, in this experiment, we had determined the optimum temperature for two-step growth, including obtaining three-dimensional (3D) GaN islands in the nucleation layer and coalescing with a further two-dimensional (2D) growth mode. The result shows that the nucleation layer grown under high temperature (1150 °C) leads to large islands with few grain boundaries. Under the same temperature, the effect of the V/III ratio on the growth of the overlaying GaN layer to obtain a flat and void free a-plane GaN layer is also studied. The result indicates one can directly grow a smooth epitaxial layer on an r-plane sapphire by changing the V/III ratio. The rms roughness decreases from 13.61 to 2.02 nm. The GaN crystal quality is verified using a mixed acid to etch the film surface. The etch pit density (EPD) is 3.16 ×107 cm-2.
Wall effects on a rotating sphere
Liu, Qianlong; Prosperetti, Andrea
2010-01-01
The flow induced by a spherical particle spinning in the presence of no-slip planar boundaries is studied by numerical means. In addition to the reference case of an infinite fluid, the situations considered include a sphere rotating near one or two infinite plane walls parallel or perpendicular to
Huang, Yue
Color group theory and molecular dynamics (MD) simulations were used to study the faceting and rotation of grains in nanocrystalline materials and their interactions. Color group arguments were used to determine symmetry-dictated extrema with respect to misorientation of the grains and with respect to grain boundary normal orientations. MD simulations were used to study the evolution of the system and to elucidate the interactions between grain rotation and faceting in nano-scale systems. The systems of study were fcc bicrystalline systems with two grains sharing their [110] directions. Two geometric parameters were studied: the misorientation between two grains with a common rotation axis in the [110] direction of both grains, and the grain boundary normal orientation of fcc (110) tilt grain boundaries. The symmetry-dictated extremum (SDE) with respect to misorientation around both grains' [110] direction is 90 degrees. The SDE with respect to GB normal orientations for (110) tilt GBs are located on top of the color and classical mirror planes of their dichromatic patterns. By using periodic boundary conditions and a cylindrical embedded grain structure in our simulations, grains are only free to vary the misorientation between grains around the common [110] direction, and the normal of the grain boundaries are always perpendicular to both grains [110] direction. All SDE studied in our simulation are observed to be local energy minimum states. We observed the systems reducing their excess energy through three main modes: forming facets at the boundaries, rotating between the two grains, and reduction of grain boundary area through grain shrinkage. Facets are formed in low-energy grain boundaries and oscillating rotation occurred when the initial misorientation was not a SDE. A new algorithm was developed to quantitatively measure the grain rotation. The ovsered rotations are not rigid-body rotations and have strong interaction with faceting. Systems with lower
Effects of spanwise rotation on turbulent channel flow
Brethouwer, Geert
2016-01-01
A study of fully developed plane turbulent channel flow subject to spanwise system rotation through direct numerical simulations is presented. In order to study both the influence of the Reynolds number and spanwise rotation on channel flow, the Reynolds number $Re = U_b h/\
Femoral bowing plane adaptation to femoral anteversion
Directory of Open Access Journals (Sweden)
Alp Akman
2017-01-01
Full Text Available Background: Femoral bowing plane (FBP is the unattended subject in the literature. More over the femoral shaft with its bowing is neglected in established anteversion determination methods. There is limited information about the relationship between FBP and anteversion. Thus we focused on this subject and hypothesized that there could be an adaptation of FBP to anteversion. Materials and Methods: FBP is determined on three-dimensional solid models derived from the left femoral computerized tomography data of 47 patients which were taken before for another reason and comparatively evaluated with anteversion. There were 20 women and 27 men. The mean age of patients was 56 years (range 21-84 years. Results: The anteversion values were found as the angle between a distal condylar axis (DCA and femoral neck anteversion axis (FNAA along an imaginary longitudinal femoral axis (LFA in the true cranio-caudal view. The FBP was determined as a plane that passes through the centre-points of three pre-determinated sections on the femoral shaft. The angles between DCA, FNAA and FBP were comparatively evaluated. The independent samples t-test was used for statistical analysis. At the end, it was found that FBP lies nearly perpendicular to the anteversion axis for the mean of our sample which is around 89° in females and 93° in males (range 78-102°. On the other hand, FBP does not lie close to the sagittal femoral plane (SFP; instead, there is an average 12.5° external rotation relative to the SFP. FBP is correlated well with anteversion in terms of FBP inclination from SFP and femoral torsion (i.e., angle between FBP and femoral neck anteversion axis (P0 < 0.001; r = 0.680 and r = −0.682, respectively. Combined correlation is perfect (R[2] = 1 as the FBP, SFP, and posterior femoral plane forms a triangle in the cranio-caudal view. Conclusions: We found that FBP adapts to anteversion. As FBP lies close to perpendicularity for the mean, femoral component
Femoral bowing plane adaptation to femoral anteversion
Akman, Alp; Demirkan, Fahir; Sabir, Nuran; Oto, Murat; Yorukoglu, Cagdas; Kiter, Esat
2017-01-01
Background: Femoral bowing plane (FBP) is the unattended subject in the literature. More over the femoral shaft with its bowing is neglected in established anteversion determination methods. There is limited information about the relationship between FBP and anteversion. Thus we focused on this subject and hypothesized that there could be an adaptation of FBP to anteversion. Materials and Methods: FBP is determined on three-dimensional solid models derived from the left femoral computerized tomography data of 47 patients which were taken before for another reason and comparatively evaluated with anteversion. There were 20 women and 27 men. The mean age of patients was 56 years (range 21–84 years). Results: The anteversion values were found as the angle between a distal condylar axis (DCA) and femoral neck anteversion axis (FNAA) along an imaginary longitudinal femoral axis (LFA) in the true cranio-caudal view. The FBP was determined as a plane that passes through the centre-points of three pre-determinated sections on the femoral shaft. The angles between DCA, FNAA and FBP were comparatively evaluated. The independent samples t-test was used for statistical analysis. At the end, it was found that FBP lies nearly perpendicular to the anteversion axis for the mean of our sample which is around 89° in females and 93° in males (range 78–102°). On the other hand, FBP does not lie close to the sagittal femoral plane (SFP); instead, there is an average 12.5° external rotation relative to the SFP. FBP is correlated well with anteversion in terms of FBP inclination from SFP and femoral torsion (i.e., angle between FBP and femoral neck anteversion axis (P < 0.001; r = 0.680 and r = −0.682, respectively). Combined correlation is perfect (R2 = 1) as the FBP, SFP, and posterior femoral plane forms a triangle in the cranio-caudal view. Conclusions: We found that FBP adapts to anteversion. As FBP lies close to perpendicularity for the mean, femoral component positioning
Gravitational Couplings for Gop-Planes and y-Op-Planes
Ospina-Giraldo, J F
2000-01-01
The Wess-Zumino actions for generalized orientifold planes (GOp-planes) and y-deformed orientifold planes (yOp-planes) are presented and two series power expantions are realized from whiches processes that involves GOp-planes,yOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard GOp-planes and y-Op-planes are showed.
Directory of Open Access Journals (Sweden)
David Dennis
2005-01-01
Full Text Available Given a bounded sequence of integers {d0,d1,d2,…}, 6≤dn≤M, there is an associated abstract triangulation created by building up layers of vertices so that vertices on the nth layer have degree dn. This triangulation can be realized via a circle packing which fills either the Euclidean or the hyperbolic plane. We give necessary and sufficient conditions to determine the type of the packing given the defining sequence {dn}.
Evolutes of Hyperbolic Plane Curves
Institute of Scientific and Technical Information of China (English)
Shyuichi IZUMIYA; Dong He PEI; Takashi SANO; Erika TORII
2004-01-01
We define the notion of evolutes of curves in a hyperbolic plane and establish the relationships between singularities of these subjects and geometric invariants of curves under the action of the Lorentz group. We also describe how we can draw the picture of an evolute of a hyperbolic plane curve in the Poincar(e) disk.
Conceptual Design of Wave Plane
DEFF Research Database (Denmark)
Frigaard, Peter; Trewers, Andrew; Kofoed, Jens Peter;
The Wave Plane is a patented Wave Energy device of the overtopping type, designed to capture potential as well as kinetic energy. This is as such different to other overtopping devices, who usually only focus on potential energy. If Wave Plane A/S can deliver the turbine technology to utilize both...
Transition from in-plane to out-of-plane azimuthal enhancement inAu+Au collisions
Energy Technology Data Exchange (ETDEWEB)
Andronic, A.; Stoicea, G.; Petrovici, M.; Simion, V.; Crochet,P.; Alard, J.P.; Averbeck, R.; Barret, V.; Basrak, Z.; Bastid, N.; Bendarag, A.; Berek, G.; Caplar, R.; Devismes, A.; Dupieux, Dzelalija M.; Eskef, M.; Finck, Ch.; Fodor, Z.; Gobbi, A.; Grishkin, Y.; Hartmann,O.N.; Herrmann, N.; Hildenbrand, K.D.; Hong, B.; Kecskemeti, J.; Kim,Y.J.; Kirejczyk, M.; Korolija, M.; Kotte, R.; Kress, T.; Kutsche, R.; Lebedev, A.; Lee, K.S.; Leifels, Y.; Manko, V.; Merlitz, H.; Neubert, W.; Pelte, D.; Plettner, C.; Rami, F.; Resdorf, W.; de Schauenberg, B.; Schull, D.; Seres, Z.; Sikora, B.; Sim, K.S.; Siwek-Wilczynska, K.; Smolyankin, V.; Stockmeier, M.R.; Vasiliev, M.; Wagner, P.; Wisniewski,K.; Wohlfarth, D.; Yushmanov, I.; Zhilin, A.
2000-08-09
The incident energy at which the azimuthal distributions in semi-central heavy ion collisions change from in-plane to out-of-plane enhancement--E{sub tran} is studied as a function of mass of emitted particles, their transverse momentum and centrality for Au+Au collisions. The analysis is performed in a reference frame rotated with the sidewards flow angle ({Theta}{sub flow}) relative to the beam axis. A systematic decrease of E{sub tran} as function of mass of the reaction products, their transverse momentum and collision centrality is evidenced. The predictions of a microscopic transport model (IQMD) are compared with the experimental results.
Transition from in-plane to out-of-plane azimuthal enhancement in Au+Au collisions
Andronic, A; Petrovici, M; Simion, V; Crochet, Philippe; Alard, J P; Averbeck, R; Barret, V; Basrak, Z; Bastid, N; Bendarag, A; Berek, G; Devismes, A; Dupieux, P; Dzelalija, M; Eskef, M; Finck, C; Fodor, Z; Gobbi, A; Grishkin, Yu L; Hartmann, O N; Herrmann, N; Hildenbrand, K D; Hong, B H; Kecskeméti, J; Kim, Y J; Kirejczyk, M; Korolija, M; Kotte, R; Kress, T; Kutsche, R; Lebedev, A; Lee, K S; Leifels, Y; Man'ko, V I; Merlitz, H; Neubert, W; Pelte, D; Plettner, C; Rami, F; Reisdorf, W; De Schauenburg, B; Schull, D; Seres, Z; Sikora, B; Sim, K S; Siwek-Wilczynska, K; Smolyankin, V T; Stockmeier, M R; Vasilev, M; Wagner, P; Wisniewski, K; Wohlfarth, D; Yushmanov, I E; Zhilin, A V
2001-01-01
The incident energy at which the azimuthal distributions in semi-central heavy ion collisions change from in-plane to out-of-plane enhancement, E_tran, is studied as a function of mass of emitted particles, their transverse momentum and centrality for Au+Au collisions. The analysis is performed in a reference frame rotated with the sidewards flow angle, Theta_flow, relative to the beam axis. A systematic decrease of E_tran as function of mass of the reaction products, their transverse momentum and collision centrality is evidenced. The predictions of a microscopic transport model (IQMD) are compared with the experimental results.
Institute of Scientific and Technical Information of China (English)
Ping Sun; Ruijin Liu; Qing Han; Xiaofeng Wang
2006-01-01
A carrier method for separating out-of-plane displacement from in-plane components based on large imageshearing shearography is presented. A reference surface is fixed on the side of a test object. They are illuminated by two expanded symmetric illuminations respectively. The carrier is introduced by rotating the reference surface to modulate the displacement of an object. By using Fourier transform to demodulate the modulated fringe pattern, two phase maps, which include out-of-plane and in-plane displacements, can be obtained. Then the out-of-plane displacement can be easily separated from in-plane displacement by subtraction and addition of the two unwrapped phase distributions. The principle of the method is presented and proved by a typical three-point-bending experiment. Experimental results show that the method enjoys high visibility of carrier fringes. The system does not need a special beam as a reference light and has simple optical setup.
Growth and Crystal Orientation of ZnTe on m-Plane Sapphire with Nanofaceted Structure
Nakasu, Taizo; Sun, Wei-Che; Kobayashi, Masakazu; Asahi, Toshiaki
2016-11-01
ZnTe thin films on sapphire substrate with nanofaceted structure have been studied. The nanofaceted structure of the m-plane (10-10) sapphire was obtained by heating the substrate at above 1100°C in air, and the r-plane (10-12) and S-plane (1-101) were confirmed. ZnTe layers were prepared on the nanofaceted m-plane sapphire substrates by molecular beam epitaxy (MBE). The effect of the nanofaceted structure on the orientation of the thin films was examined based on x-ray diffraction (XRD) pole figures. Transmission electron microscopy (TEM) was also employed to characterize the interface structures. The ZnTe layer on the nanofaceted m-plane sapphire substrate exhibited (331)-plane orientation, compared with (211)-plane without the nanofaceted structure. After thermal treatment, the m-plane surface vanished and (211) layer could not be formed because of the lack of surface lattice matching. On the other hand, (331)-plane thin film was formed on the nanofaceted m-plane sapphire substrate, since the (111) ZnTe domains were oriented on the S-facet. The orientation of the ZnTe epilayer depended on the atomic ordering on the surface and the influence of the S-plane.
The chaotic rotation of Hyperion
Wisdom, J.; Peale, S. J.; Mignard, F.
1984-01-01
Under the assumption that the satellite is rotating about a principal axis that is normal to its orbit plane, a plot of spin rate-versus-orientation for Hyperion at the pericenter of its orbit has revealed a large, chaotic zone surrounding Hyperion's synchronous spin-orbit state. The chaotic zone is so large that it surrounds the 1/2 and 2 states, and libration in the 3/2 state is not possible. Rotation in the chaotic zone is also attitude-unstable. As tidal dissipation drives Hyperion's spin toward a nearly synchronous value, Hyperion necessarily enters the large chaotic zone, becoming attitude-unstable and tumbling. It is therefore predicted that Hyperion will be found to be tumbling chaotically.
Time-dependent resonant magneto-optical rotation
Dziczek, Dariusz
2015-01-01
Results of a fairly straightforward experiment on resonant magneto-optical rotation by rubidium-87 atoms revealed strong time-dependence of the polarization plane of light emerging from atomic vapors following a sudden irradiation with a laser beam. The rotation of the plane appears as a not direct consequence of the influence of the magnetic field on atoms. Reported measurements conducted using a vapor cell without any buffer gas or an anti-relaxation wall coating show that transmitted light has initially the same (linear) polarization as the incident one. Rotation of the polarization plane caused by an axial magnetic field develops in time scales similar to the pace of establishing the optical pumping/relaxation equilibrium in the atomic ensemble. The traditional passive Faraday rotation picture providing working description for the resonant magneto-optical effects in steady-state conditions does not explain the observed sequence of evolution of the polarization. The picture has to be augmented with analysi...
Shoulder magnetic resonance arthrography in the sagittal oblique plane: pictorial essay
Energy Technology Data Exchange (ETDEWEB)
Andrews, G.; Forster, B.; Cheong, Y.; Sidhu, G. [Univ. of British Columbia, Dept. of Radiology, Vancouver, British Columbia (Canada); Hawkins, R.; Leith, J. [Univ. of British Columbia, Dept. of Orthopedics, Vancouver, British Columbia (Canada)
2003-06-01
Shoulder magnetic resonance (MR) arthrography is the imaging study of choice for investigating glenohumeral instability. The axial and coronal oblique planes have traditionally been used because it is on these planes that the glenoid labrum, as well as the biceps anchor and rotator cuff, are thought to be best evaluated. The purpose of this illustrative review is to demonstrate the diagnostic utility of the sagittal oblique plane in shoulder MR arthrography. Images identifying the normal and abnormal appearance of the labral, ligamentous, myotendinous and osteocartilaginous structures are presented, and comparisons to the axial and coronal oblique planes are made. (author)
... this page: //medlineplus.gov/ency/patientinstructions/000357.htm Rotator cuff exercises To use the sharing features on this ... gov/pubmed/25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder ...
Controllable rotating behavior of individual dielectric microrod in a rotating electric field.
Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Chen, Xiaoming
2017-06-01
We report herein controllable rotating behavior of an individual dielectric microrod driven by a background rotating electric field. By disposing or removing structured floating microelectrode, the rigid rod suspended in electrolyte solution accordingly exhibits cofield or antifield rotating motion. In the absence of the ideally polarizable metal surface, the dielectric rod rotates opposite to propagation of electric field, with the measured rotating rate much larger than predicted by Maxwell-Wager interfacial polarization theory incorporating surface conduction of fixed bond charge. Surprisingly, with floating electrode embedded, a novel kind of cofield rotation mode occurs in the presence of induced double-layer polarization, due to the action of hydrodynamic torque from rotating induced-charge electroosmosis. This method of achieving switchable spin modes of dielectric particles would direct implications in constructing flexible electrokinetic framework for analyzing 3D profile of on-chip biomicrofluidic samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three-dimensional modes of a symmetric nonlinear plane waveguide
Akhmediev, N. N.; Nabiev, R. F.; Popov, Yu. M.
1989-01-01
The three-dimensional problem of a symmetric nonlinear plane waveguide, which consist of a linear medium layer surrounded by nonlinear media, is investigated. The stationary solution of this problem is a mode whose field is falling to zero at infinity in all directions perpendicular to the propagation direction. The even, odd and assymetrical solutions of the problem are obtained.
Institute of Scientific and Technical Information of China (English)
巴振宁; 梁建文; 梅雄一
2013-01-01
The indirect boundary element method (IBEM) is proposed to study the three-dimensional scattering problem by a two-dimensional valley embedded in a fluid-saturated, poroelastic layered half-space for obliquely incident seismic waves. The wave-number transform is applied in the axial direction of the valley to reduce the three-dimensional problem to a two-dimensional plane strain problem. Then the dynamic problem is solved in one section perpendicular to the axis of the valley, and finally the three-dimensional responses of the valley and of the layered site are obtained through the inverse wave-number expansion. The validity of the method is confirmed by comparison with the results of the corresponding dry poroelastic case, and numerical calculation and analyses are performed by taking the amplification of obliquely incident plane waves by an alluvial valley in a uniformly saturated poroelastic half space and in a single saturated poroelastic soil layer overlying on elastic bedrock as examples. The results show that the three-dimensional responses are distinctively different from the two-dimensional responses, that the surface displacement amplitudes near the valley in dry poroelastic and saturated poroelastic half-spaces are very different, and that the displacement amplitudes around the valley in a uniform saturated poroelastic half space are obviously different from those in a saturated, poroelastic layered half-space.%为研究层状饱和场地中沉积谷地对斜入射地震波的三维散射问题,建立了求解问题的2.5维间接边界元方法.通过沿沉积谷地轴线方向的傅里叶变换将三维问题降为二维问题,进而在沉积谷地的截面内进行边界单元的离散和求解,求得沉积谷地截面内的动力响应,然后再将截面内计算结果沿沉积谷地轴线方向进行波数展开即可求得任意位置动力响应.通过与弹性情况的比较验证了方法的正确性,并以均匀饱和半空间和基岩上单
Pattern formation in rotating fluids
Bühler, Karl
2009-06-01
Flows in nature and technology are often associated with specific structures and pattern. This paper deals with the development and behaviour of such flow pattern. Flow structures are important for the mass, momentum and energy transport. The behaviour of different flow pattern is used by engineers to obtain an efficient mass and energy consumption. Mechanical power is transmitted via the momentum of rotating machine parts. Therefore the physical and mathematical knowledge of these basic concepts is important. Theoretical and experimental investigations of principle experiments are described in the following. We start with the classical problem of the flow between two concentric cylinders where the inner cylinder rotates. Periodic instabilities occur which are called Taylor vortices. The analogy between the cylindrical gap flow, the heat transfer in a horizontal fluid layer exposed to the gravity field and the boundary layer flow along concave boundaries concerning their stability behaviour is addressed. The vortex breakdown phenomenon in a cylinder with rotating cover is also described. A generalization to spherical sectors leads then to investigations with different boundary conditions. The spherical gap flow exhibits interesting phenomena concerning the nonlinear character of the Navier-Stokes equations. Multiple solutions in the nonlinear regime give rise to different routes during the laminar-turbulent transition. The interaction of two rotating spheres results in flow structures with separation and stagnation lines. Experimental results are confirmed by numerical simulations.
Rotating Cavitation Supression Project
National Aeronautics and Space Administration — FTT proposes development of a rotating cavitation (RC) suppressor for liquid rocket engine turbopump inducers. Cavitation instabilities, such as rotating...
Traveling Wave Modes of a Plane Layered Anelastic Earth
2016-05-20
variable in the standing wave free oscillation problem is the frequency , which makes the eigenvalue problem nonlinear. The choice of the wavenumber as...38) By making the assignment Irn = κn Iqn, (39) the quadratic generalized eigenvalue problem Eq. (34) can be converted to a linear generalized...elastic eigenfunctions and the complex frequency dependent elastic moduli. The lateral standing-wave nature of the earth free oscillation problem leads to
Bouremel, Yann
2016-11-01
Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.
Helical spin rotators and snakes for RHIC
Energy Technology Data Exchange (ETDEWEB)
Ptitsin, V.I.; Shatunov, Yu.M. [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation); Peggs, S. [Brookhaven National Lab., Upton, NY (United States)
1995-05-01
The RHIC collider, now under construction at BNL, will have the possibility of polarized proton-proton collisions up to a beam energy of 250 Gev. Polarized proton beams of such high energy can be only obtained with the use of siberian snakes, a special kind of spin rotator that rotates the particle spin by 180{degree} around an axis lying in the horizontal plane. Siberian snakes help to preserve the beam polarization while numerous spin depolarizing resonances are crossed, during acceleration. In order to collide longitudinally polarized beams, it is also planned to install spin rotators around two interaction regions. This paper discusses snake and spin rotator designs based on sequences of four helical magnets. The schemes that were chosen to be applied at RHIC are presented.
Protodiscs around Hot Magnetic Rotator Stars
Maheswaran, M
2008-01-01
We develop equations and obtain solutions for the structure and evolution of a protodisc region that is initially formed with no radial motion and super-Keplerian rotation speed when wind material from a hot rotating star is channelled towards its equatorial plane by a dipole-type magnetic field. Its temperature is around $10^7$K because of shock heating and the inflow of wind material causes its equatorial density to increase with time. The centrifugal force and thermal pressure increase relative to the magnetic force and material escapes at its outer edge. The protodisc region of a uniformly rotating star has almost uniform rotation and will shrink radially unless some instability intervenes. In a star with angular velocity increasing along its surface towards the equator, the angular velocity of the protodisc region decreases radially outwards and magnetorotational instability (MRI) can occur within a few hours or days. Viscosity resulting from MRI will readjust the angular velocity distribution of the pro...
Hand-eye LRF-based Iterative Plane Detection Method for Autonomous Robotic Welding
Directory of Open Access Journals (Sweden)
Sungmin Lee
2015-12-01
Full Text Available This paper proposes a hand-eye LRF-based (laser range finder welding plane-detection method for autonomous robotic welding in the field of shipbuilding. The hand-eye LRF system consists of a 6 DOF manipulator and an LRF attached to the wrist of the manipulator. The welding plane is detected by the LRF with only the wrist’s rotation to minimize a mechanical error caused by the manipulator’s motion. A position on the plane is determined as an average position of the detected points on the plane, and a normal vector to the plane is determined by applying PCA (principal component analysis to the detected points. In this case, the accuracy of the detected plane is analysed by simulations with respect to the wrist’s angle interval and the plane angle. As a result of the analysis, an iterative plane-detection method with the manipulator’s alignment motion is proposed to improve the performance of plane detection. For verifying the feasibility and effectiveness of the proposed plane-detection method, experiments are carried out with a prototype of the hand-eye LRF-based system, which consists of a 1 DOF wrist’s joint, an LRF system and a rotatable plane. In addition, the experimental results of the PCA-based plane detection method are compared with those of the two representative plane-detection methods, based on RANSAC (RANdom SAmple Consensus and the 3D Hough transform in both accuracy and computation time’s points of view.
Energy Transfer in Rotating Turbulence
Cambon, Claude; Mansour, Nagi N.; Godeferd, Fabien S.; Rai, Man Mohan (Technical Monitor)
1995-01-01
The influence or rotation on the spectral energy transfer of homogeneous turbulence is investigated in this paper. Given the fact that linear dynamics, e.g. the inertial waves regime tackled in an RDT (Rapid Distortion Theory) fashion, cannot Affect st homogeneous isotropic turbulent flow, the study of nonlinear dynamics is of prime importance in the case of rotating flows. Previous theoretical (including both weakly nonlinear and EDQNM theories), experimental and DNS (Direct Numerical Simulation) results are gathered here and compared in order to give a self-consistent picture of the nonlinear effects of rotation on tile turbulence. The inhibition of the energy cascade, which is linked to a reduction of the dissipation rate, is shown to be related to a damping due to rotation of the energy transfer. A model for this effect is quantified by a model equation for the derivative-skewness factor, which only involves a micro-Rossby number Ro(sup omega) = omega'/(2(OMEGA))-ratio of rms vorticity and background vorticity as the relevant rotation parameter, in accordance with DNS and EDQNM results fit addition, anisotropy is shown also to develop through nonlinear interactions modified by rotation, in an intermediate range of Rossby numbers (Ro(omega) = (omega)' and Ro(omega)w greater than 1), which is characterized by a marco-Rossby number Ro(sup L) less than 1 and Ro(omega) greater than 1 which is characterized by a macro-Rossby number based on an integral lengthscale L and the micro-Rossby number previously defined. This anisotropy is mainly an angular drain of spectral energy which tends to concentrate energy in tile wave-plane normal to the rotation axis, which is exactly both the slow and the two-dimensional manifold. In Addition, a polarization of the energy distribution in this slow 2D manifold enhances horizontal (normal to the rotation axis) velocity components, and underlies the anisotropic structure of the integral lengthscales. Finally is demonstrated the
Garnier, L.-C.; Eddrief, M.; Fin, S.; Bisero, D.; Fortuna, F.; Etgens, V. H.; Marangolo, M.
The magnetic properties of an iron nitride thin film obtained by ion implantation have been investigated. N2+ ions were implanted in a pristine iron layer epitaxially grown on ZnSe/GaAs(001). X-ray diffraction measurements revealed the formation of body-centered tetragonal N-martensite whose c-axis is perpendicular to the thin film plane and c-parameter is close to that of α‧-Fe8N. Magnetic measurements disclosed a weak perpendicular magnetic anisotropy (PMA) whose energy density KPMA was assessed to about 105J/m3. A sharp decline of the in-plane magnetocrystalline anisotropy (MCA) was also observed, in comparison with the body-centered cubic iron. The origin of the PMA is attributed to the MCA of N-martensite and/or stress-induced anisotropy. As a result of the PMA, weak magnetic stripe domains with a period of about 130nm aligned along the last saturating magnetic field direction were observed at remanence by magnetic force microscopy. The application of an increasing in-plane magnetic field transverse to the stripes Htrans highlighted a threshold value (μ0Htrans≈0.1T) above which these magnetic domains irreversibly rotated. Interestingly, below this threshold, the stripes do not rotate, leading to a zero remanent magnetization along the direction of the applied field. The interest of this system for magnetization dynamics is discussed.
Symmetry of oculomotor burst neuron coordinates about Listing's plane.
Crawford, J D; Vilis, T
1992-08-01
1. The purpose of this investigation was to determine the axes of eye rotation generated by oculomotor burst neuron populations and the coordinate system that they collectively define. In particular, we asked if such coordinates might be related to constraints in the emergent behavior, i.e., Listing's law for saccades. 2. The mesencephalic rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) was identified in four monkeys with the use of single-unit recording, and then explored with the use of electrical microstimulation and pharmacological inactivation with the inhibitory gamma-aminobutyric acid (GABA) agonist muscimol. Three-dimensional (3-D) eye positions and velocities were recorded in one or both eyes while alert animals made eye movements in response to visual stimuli and head rotation. 3. Unilateral stimulation of the riMLF (20 microA, 200 Hz, 300-600 ms) produced conjugate, constant velocity eye rotations, which then stopped abruptly and held their final positions. This is expected if the riMLF produces phasic signals upstream from the oculomotor integrator. 4. Units that burst before upward or downward saccades were recorded intermingled in each side of the riMLF. Unilateral stimulation of the same riMLF sites produced eye rotations about primarily torsional axes, clockwise (CW) during right riMLF stimulation and counterclockwise (CCW) during left stimulation. Only small and inconsistent vertical components were observed, supporting the view that the riMLF carries intermingled up and down signals. 5. The torsional axes of eye rotation produced by riMLF stimulation did not correlate to external anatomic landmarks. Instead, stimulation axes from both riMLF sides aligned with the primary gaze direction orthogonal to Listing's plane of eye positions recorded during saccades. 6. Injection of muscimol into one side of the riMLF produced a conjugate deficit in saccades and quick phases, including a 50% reduction in all vertical velocities
Mechanical design aspects of a soft X-ray plane grating monochromator
Vasina, R; Dolezel, P; Mynar, M; Vondracek, M; Chab, V; Slezak, J A; Comicioli, C; Prince, K C
2001-01-01
A plane grating monochromator based on the SX-700 concept has been constructed for the Materials Science Beamline, Elettra, which is attached to a bending magnet. The tuning range is from 35 to 800 eV with calculated spectral resolving power epsilon/DELTA epsilon better than 4000 in the whole range. The optical elements consist of a toroidal prefocusing mirror, polarization aperture, entrance slit, plane pre-mirror, single plane grating (blazed), spherical mirror, exit slit and toroidal refocusing mirror. The plane grating is operated in the fixed focus mode with C sub f sub f =2.4. Energy scanning is performed by rotation of the plane grating and simultaneous translation and rotation of the plane pre-mirror. A novel solution is applied for the motion of the plane pre-mirror, namely by a translation and mechanically coupling the rotation by a cam. The slits have no moving parts in vacuum to reduce cost and increase ruggedness, and can be fully closed without risk of damage. In the first tests, a resolving pow...
Electrostatic repulsive out-of-plane actuator using conductive substrate.
Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin
2016-10-07
A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0-4.5 μm for a dc driving voltage of 0-100 V, when compared with that in two-layer mode.
Rotating convection-driven dynamos at low Ekman number.
Rotvig, Jon; Jones, Chris A
2002-11-01
We present a fully 3D self-consistent convection-driven dynamo model with reference to the geodynamo. A relatively low Ekman number regime is reached, with the aim of investigating the dynamical behavior at low viscosity. This regime is computationally very demanding, which has prompted us to adopt a plane layer model with an inclined rotation vector, and to make use of efficiently parallelized code. No hyperdiffusion is used, all diffusive operators are in the classical form. Our model has infinite Prandtl number, a Rayleigh number that scales as E(-1/3) (E being the Ekman number), and a constant Roberts number. The optimized model allows us to study dynamos with Ekman numbers in the range [10(-5),10(-4)]. In this regime we find strong-field dynamos where the induced magnetic fields satisfy Taylor's constraint to good accuracy. The solutions are characterized by (i) a MAC balance within the bulk, i.e., Coriolis, pressure, Lorentz, and buoyancy forces are of comparable magnitude, while viscous forces are only significant in thin boundary layers, (ii) the Elsasser number is O(10), (iii) the strong magnetic fields cannot prevent small-scale structures from becoming dominant over the large-scale components, (iv) the Taylor-Proudman effect is detectable, (v) the Taylorization decreases as the Ekman number is lowered, and (vi) the ageostrophic velocity component makes up 80% of the flow.
Chaotic scattering off a rotating target
Energy Technology Data Exchange (ETDEWEB)
Meyer, N.; Benet, L.; Lipp, C.; Trautmann, D.; Jung, C.; Seligman, T.H. [Inst. fuer Theor. Phys., Basel Univ. (Switzerland)
1995-05-07
We study the classical scattering of a point particle from one and two rotating hard discs in a plane, as an idealization of the scattering off a rotating target. The system displays regular or chaotic behaviour depending on the value of the only constant of motion: the Jacobi integral. We present results on the transition between regular and chaotic behaviour in terms of the periodic orbits of the system. For certain ranges of the Jacobi integral the dynamics is fully hyperbolic. The number of symbols needed to characterize the invariant set is different in each of those intervals and may become arbitrarily high. (author)
Isosynchronous paths on a rotating surface
Ashby, Neil
2014-01-01
In special relativity, clock networks may be self-consistently synchronized in an inertial frame by slowly transporting clocks, or by exchanging electromagnetic signals between network nodes. However, clocks at rest in a rotating coordinate system--such as on the surface of the rotating earth--cannot be self-consistently synchronized by such processes, due to the Sagnac effect. Discrepancies that arise are proportional to the area swept out by a vector from the rotation axis to the portable clock or electromagnetic pulse, projected onto a plane normal to the rotation axis. This raises the question whether paths of minimal or extremal length can be found, for which the Sagnac discrepancies are zero. This paper discusses the variational problem of finding such "isosynchronous" paths on rotating discs and rotating spheres. On a disc, the problem resembles the classical isoperimetric problem and the paths turn out to be circular arcs. On a rotating sphere, however, between any two endpoints there are an infinite ...
Numerical simulations of rotating axisymmetric sunspots
Botha, G. J. J.; Busse, F.H.; Hurlburt, N. E.; Rucklidge, A.M.
2008-01-01
A numerical model of axisymmetric convection in the presence of a vertical magnetic flux bundle and rotation about the axis is presented. The model contains a compressible plasma described by the nonlinear MHD equations, with density and temperature gradients simulating the upper layer of the sun's convection zone. The solutions exhibit a central magnetic flux tube in a cylindrical numerical domain, with convection cells forming collar flows around the tube. When the numerical domain is rotat...
Detecting Rotational Superradiance in Fluid Laboratories
Cardoso, Vitor; Coutant, Antonin; Richartz, Mauricio; Weinfurtner, Silke
2016-12-01
Rotational superradiance was predicted theoretically decades ago, and is chiefly responsible for a number of important effects and phenomenology in black-hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behavior of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. Two types of instabilities are studied: one sets in whenever superradiant modes are confined near the rotating cylinder and the other, which does not rely on confinement, corresponds to a local excitation of the cylinder. Our findings are experimentally testable in existing fluid laboratories and, hence, offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.
Detecting Rotational Superradiance in Fluid Laboratories.
Cardoso, Vitor; Coutant, Antonin; Richartz, Mauricio; Weinfurtner, Silke
2016-12-30
Rotational superradiance was predicted theoretically decades ago, and is chiefly responsible for a number of important effects and phenomenology in black-hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behavior of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. Two types of instabilities are studied: one sets in whenever superradiant modes are confined near the rotating cylinder and the other, which does not rely on confinement, corresponds to a local excitation of the cylinder. Our findings are experimentally testable in existing fluid laboratories and, hence, offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.
Ashkenazi, J.; Kuper, C. G.
1989-12-01
The cuprate superconductors are modelled by two metallic CuO 2planes, separated by insulating layers, in an extended Hubbard Hamiltonian. Hybridization of O(2 p) and Cu( d) orbitals splits the wide bands of LDA theory, yielding a narrow conduction band of antibonding holes. Holes on the two CuO 2 planes are correlated via interplane hopping, giving a non-magnetic normal Fermi liquid. Charge exchange between the planes and the intervening layers generates attraction and a BCS condensation.
Securing SDN Southbound and Data Plane Communication with IBC
Directory of Open Access Journals (Sweden)
JunHuy Lam
2016-01-01
Full Text Available In software-defined network (SDN, the southbound protocol defines the communication between the control plane and the data plane. The agreed protocol, OpenFlow, suggests securing the southbound communication with Transport Layer Security (TLS. However, most current SDN projects do not implement the security segment, with only a few exceptions such as OpenDayLight, HP VAN SDN, and ONOS implementing TLS in the southbound communication. From the telecommunication providers’ perspective, one of the major SDN consumers besides data centers, the data plane becomes much more complicated with the addition of wireless data plane as it involves numerous wireless technologies. Therefore, the complicated resource management along with the security of such a data plane can hinder the migration to SDN. In this paper, we propose securing the distributed SDN communication with a multidomain capable Identity-Based Cryptography (IBC protocol, particularly for the southbound and wireless data plane communication. We also analyze the TLS-secured Message Queuing Telemetry Transport (MQTT message exchanges to find out the possible bandwidth saved with IBC.
Electron-phonon scattering and in-plane electric conductivity in twisted bilayer graphene
Ray, N.; Fleischmann, M.; Weckbecker, D.; Sharma, S.; Pankratov, O.; Shallcross, S.
2016-12-01
We have surveyed the in-plane transport properties of the graphene twist bilayer using (i) a low-energy effective Hamiltonian for the underlying electronic structure, (ii) an isotropic elastic phonon model, and (iii) the linear Boltzmann equation for elastic electron-phonon scattering. We find that transport in the twist bilayer is profoundly sensitive to the rotation angle of the constituent layers. Similar to the electronic structure of the twist bilayer, the transport is qualitatively different in three distinct angle regimes. At large angles (θ >≈10∘ ) and at temperatures below an interlayer Bloch-Grüneisen temperature of ≈10 K, the conductivity is independent of the twist angle, i.e., the layers are fully decoupled. Above this temperature the layers, even though decoupled in the ground state, are recoupled by electron-phonon scattering and the transport is different both from single-layer graphene as well as the Bernal bilayer. In the small-angle regime θ <≈2∘ , the conductivity drops by two orders of magnitude and develops a rich energy dependence, reflecting the complexity of the underlying topological changes (Lifshitz transitions) of the Fermi surface. At intermediate angles, the conductivity decreases continuously as the twist angle is reduced, while the energy dependence of the conductivity presents two sharp transitions, that occur at specific angle-dependent energies, and that may be related to (i) the well-studied van Hove singularity of the twist bilayer and (ii) a Lifshitz transition that occurs when trigonally placed electron pockets decorate the strongly warped Dirac cone. Interestingly, we find that, while the electron-phonon scattering is dominated by layer symmetric flexural phonons in the small-angle limit, at large angles, in contrast, it is the layer antisymmetric flexural mode that is most important. We examine the role of a layer perpendicular electric field finding that it affects the conductivity strongly at low temperatures
Belyaev, Mikhail A; Stone, James M
2012-01-01
Disk accretion onto a weakly magnetized central object, e.g. a star, is inevitably accompanied by the formation of a boundary layer near the surface, in which matter slows down from the highly supersonic orbital velocity of the disk to the rotational velocity of the star. We perform high resolution 2D hydrodynamical simulations in the equatorial plane of an astrophysical boundary layer with the goal of exploring the dynamics of non-axisymmetric structures that form there. We generically find that the supersonic shear in the boundary layer excites non-axisymmetric quasi-stationary acoustic modes that are trapped between the surface of the star and a Lindblad resonance in the disk. These modes rotate in a prograde fashion, are stable for hundreds of orbital periods, and have a pattern speed that is less than and of order the rotational velocity at the inner edge of the disk. The origin of these intrinsically global modes is intimately related to the operation of a corotation amplifier in the system. Dissipation...
The Vertical Structure of the Halo Rotation
Kinman, T. D.; Bragaglia, A.; Cacciari, C.; Buzzoni, A.; Spagna, A.
New GSC-II proper motions and radial velocities of RR Lyrae and Blue Horizontal Branch stars near the North Galactic Pole are used to show that the Galactic Halo 5 kpc above the Plane has a significantly retrograde galactic rotation. Streaming motions cannot be excluded. Based on observations collected at the Kitt Peak and TNG Observatories. Funded by MIUR-Cofin 2001 (PI: Gratton).
Scale interactions in compressible rotating fluids
Feireisl, Eduard; Novotny, Antonin
2013-01-01
We study a triple singular limit for the scaled barotropic Navier-Stokes system modeling the motion of a rotating, compressible, and viscous fluid, where the Mach and Rossby numbers are proportional to a small parameter, while the Reynolds number becomes infinite. If the fluid is confined to an infinite slab bounded above and below by two parallel planes, the limit behavior is identified as a purely horizontal motion of an incompressible inviscid fluid, the evolution of which is described by ...
Arnold's Projective Plane and -Matrices
Directory of Open Access Journals (Sweden)
K. Uchino
2010-01-01
Full Text Available We will explain Arnold's 2-dimensional (shortly, 2D projective geometry (Arnold, 2005 by means of lattice theory. It will be shown that the projection of the set of nontrivial triangular -matrices is the pencil of tangent lines of a quadratic curve on Arnold's projective plane.
Affine Contractions on the Plane
Celik, D.; Ozdemir, Y.; Ureyen, M.
2007-01-01
Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…
Distributed storage in the plane
Altman, Eitan; Avrachenkov, Konstatin; Goseling, Jasper
2013-01-01
We consider storage devices located in the plane according to a general point process and specialize the results for the homogeneous Poisson process. A large data file is stored at the storage devices, which have limited storage capabilities. Hence, they can only store parts of the data. Clients can
Distributed storage in the plane
Altman, Eitan; Avrachenkov, Konstatin; Goseling, Jasper
2014-01-01
We consider storage devices located in the plane according to a general point process and specialize the results for the homogeneous Poisson process. A large data file is stored at the storage devices, which have limited storage capabilities. Hence, they can only store parts of the data. Clients can
Plane and parabolic solar panels
Sales, J H O
2009-01-01
We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.
Distributed storage in the plane
Altman, Eitan; Avrachenkov, Konstatin; Goseling, Jasper
2013-01-01
We consider storage devices located in the plane according to a general point process and specialize the results for the homogeneous Poisson process. A large data file is stored at the storage devices, which have limited storage capabilities. Hence, they can only store parts of the data. Clients can
Distributed storage in the plane
Altman, Eitan; Avrachenkov, Konstatin; Goseling, Jasper
2014-01-01
We consider storage devices located in the plane according to a general point process and specialize the results for the homogeneous Poisson process. A large data file is stored at the storage devices, which have limited storage capabilities. Hence, they can only store parts of the data. Clients can
Gravitational Couplings for y-Gop-Planes
Ospina-Giraldo, J F
2000-01-01
The Wess-Zumino action for y deformed and generalized orientifold planes (yGOp-planes) is presented and one power expantion is realized from which processes that involves yGOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard yGOp-planes are showed.
Linear Instability of the Plane Couette and Plane Poiseuille Flows
Chefranov, Sergey G
2015-01-01
We show possibility of the Plane Couette (PC) flow instability for Reynolds number Re>Reth=140. This new result of the linear hydrodynamic stability theory is obtained on the base of refusal from the traditionally used assumption on longitudinal periodicity of the disturbances along the direction of the fluid flow. We found that earlier existing understanding on the linear stability of this flow for any arbitrary large Reynolds number is directly related with an assumption on the separation of the variables of the spatial variability for the disturbance field and their periodicity in linear theory of stability. By the refusal from the pointed assumptions also for the Plane Poiseuille (PP) flow, we get a new threshold Reynolds value Reth=1040 that with 4% accuracy agrees with the experiment contrary to more than 500% discrepancy for the earlier known estimate Reth=5772 obtained in the frame of the linear theory but when using the "normal" disturbance form (S. A. Orszag, 1971).
A strong viscous–inviscid interaction model for rotating airfoils
DEFF Research Database (Denmark)
Ramos García, Néstor; Sørensen, Jens Nørkær; Shen, Wen Zhong
2014-01-01
version, a parametric study on rotational effects induced by the Coriolis and centrifugal forces in the boundary-layer equations shows that the effects of rotation are to decrease the growth of the boundary-layer and delay the onset of separation, hence increasing the lift coefficient slightly while...... the viscous and inviscid parts. The inviscid part is modeled by a 2D panel method, and the viscous part is modeled by solving the integral form of the laminar and turbulent boundary-layer equations with extension for 3D rotational effects. Laminar-to-turbulent transition is either forced by employing...
CHALCOGENIDE MISFIT LAYER COMPOUNDS
ROUXEL, J; MEERSCHAUT, A; WIEGERS, GA
1995-01-01
Misfit layer chalcogenides (MX)(1+x)(TX(2))(m) (M=Sn, Pb, Sb, Bi, rare earth; T=Ti, V, Cr, Nb, Ta; X=S, Se; 0.08
Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes
Energy Technology Data Exchange (ETDEWEB)
Grin, A. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)
2014-09-01
The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues were discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.
Exact near-wall traveling waves of plane Poiseuille flow
Gibson, John; Brand, Evan
2013-11-01
We present several spatially-localized equilibrium and traveling-wave solutions of plane Couette and plane Poiseuille flow. The solutions consist of highly concentrated and spanwise-localized alternating streamwise rolls, centered over low-speed streamwise streaks and flanked on either side by high-speed streaks. For large Reynolds numbers the solutions develop critical layers that are concentrated at isolated points on the critical surface u = c . For several traveling-wave solutions of plane Poiseuille flow, the rolls are concentrated near one wall, producing streaks near the wall and larger reduction of the bulk flow in the core. These solutions form particularly isolated and elemental versions of near-wall coherent structures in shear flows and capture, as precise time-independent solutions of Navier-Stokes, the process by which near-wall rolls exchange momentum between the wall and core regions and thereby increase drag.
Algebraic disturbances and their consequences in rotating channel flow transition
Jose, Sharath; Pier, Benoît; Govindarajan, Rama
2016-01-01
It is now established that subcritical mechanisms play a crucial role in the transition to turbulence of non-rotating plane shear flows. The role of these mechanisms in rotating channel flow is examined here in the linear and nonlinear stages. Distinct patterns of behaviour are found: the transient growth leading to nonlinearity at low rotation rates $Ro$, a highly chaotic intermediate $Ro$ regime, a localised weak chaos at higher $Ro$, and complete stabilization of transient disturbances at very high $Ro$. At very low $Ro$, the transient growth amplitudes are close to those for non-rotating flow, but Coriolis forces already assert themselves by producing distinct asymmetry about the channel centreline. Nonlinear processes are then triggered, in a streak-breakdown mode of transition. The high $Ro$ regimes do not show these signatures, here the leading eigenmode emerges as dominant in the early stages. Elongated structures plastered close to one wall are seen at higher rotation rates. Rotation is shown to redu...
Rotational actuator of motor based on carbon nanotubes
Zettl, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.
2008-11-18
A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.
Comment on shear-rotation mechanism for martensitic transformations
Institute of Scientific and Technical Information of China (English)
CHEN Zi; GUO Zhenghong
2004-01-01
The "shear-rotation mechanism" for f.c.c.→b.c.c.(b.c.t.) martensitic transformation is further discussed in this paper. Although "shear-rotation mechanism" involves some valuable ideas which is based on the Nishiyama's model, the concept of "rotation" in "shear-rotation mechanism" may not be consistent with the general definition in crystallography. In addition, the mathematical expression of this mechanism is questionable. Furthermore, a detailed mathematical analysis given in the present paper indicates that the nature of "shear-rotation mechanism" is equivalent to the first two steps of Nishiyama's model, I.e. It is an invariant line strain (ILS) rather than an invariant plane strain (IPS). In other words, it is difficult to obtain the IPS based on the "shear-rotation mechanism" even though the isotropic contraction is involved. Therefore, a new method should be developed to explain the IPS based on Nishiyama's model.
Pattern Formation Around Interacting Bodies in Rotating Fluids
Institute of Scientific and Technical Information of China (English)
Karl B(U)HLER
2006-01-01
The interaction of bodies like spheres and disks in rotating fluids leads to novel flow structures. The primary swirling flow in circumferential direction is superimposed by a secondary motion in the meridional plane. The flow is visualized by introducing ink through a hole in the center of the axes and distributed radially in the central plane between the interacting bodies. The flow structure depends on the shape of the bodies, their geometrical arrangement and the Reynolds number given by the rotational speed. The observed flow structures gave rise to further investigations with PIV-measurements and numerical simulations.
The effect of magnetic field on mean flow generation by rotating two-dimensional convection
Currie, Laura K
2016-01-01
Motivated by the significant interaction of convection, rotation and magnetic field in many astrophysical objects, we investigate the interplay between large-scale flows driven by rotating convection and an imposed magnetic field. We utilise a simple model in two dimensions comprised of a plane layer that is rotating about an axis inclined to gravity. It is known that this setup can result in strong mean flows; we numerically examine the effect of an imposed horizontal magnetic field on such flows. We show that increasing the field strength in general suppresses the time-dependent mean flows, but in some cases it organises them leading to stronger time-averaged flows. Further, we discuss the effect of the field on the correlations responsible for driving the flows and the competition between Reynolds and Maxwell stresses. A change in behaviour is observed when the (fluid and magnetic) Prandtl numbers are decreased. In the smaller Prandtl number regime, it is shown that significant mean flows can persist even ...
Calculation of rotational deformity in pediatric supracondylar humerus fractures
Energy Technology Data Exchange (ETDEWEB)
Henderson, Eric R.; Egol, Kenneth A.; Bosse, Harold J.P. van; Schweitzer, Mark E.; Pettrone, Sarah K. [NYU Hospital for Joint Diseases, New York, NY (United States); Feldman, David S. [NYU Hospital for Joint Diseases, New York, NY (United States); NYU Hospital for Joint Diseases, Pediatric Orthopaedic Surgery, Center for Children, New York, NY (United States)
2007-03-15
Supracondylar humerus fractures (SCHF) are common in the pediatric population. Cubitus varus deformity (CVD) is the most common long-term complication of SCHFs and may lead to elbow instability and deficits in throwing or extension. Distal fragment malrotation in the axial plane disposes to fragment tilt and CVD; however, no simple method of assessing fracture malrotation exists. This study tested a mathematical method of measuring axial plane malrotation in SCHFs based on plain radiographs. A pediatric SCHF model was made, and x-rays were taken at known intervals of rotation. Five independent, blinded observers measured these films. Calculated rotation for each data set was compared to the known rotation. The identical protocol was performed for an aluminum phantom. The reliability and agreement of the rotation values were good for both models. This method is a reliable, accurate, and cost-effective means of calculating SCHF distal fragment malrotation and warrants clinical application. (orig.)
Quantitative experimental studies of spontaneous rotations of bismuth nanoparticles
Be'Er, Avraham; Kofman, Richard; Phillipp, Fritz; Lereah, Yossi
2006-12-01
A phenomenon of spontaneous rotations of Bi nanoparticles is reported. Fourier transform (FT) analysis of the high resolution electron microscopy (HREM) images indicates that the rotations occur by plane after plane gliding rather than a collective movement of the entire particle as a rigid body. The phenomenon rate was studied quantitatively by time resolved transmission electron microscopy (TEM). The origin of the phenomenon as a radiation effect of the high voltage electron beam was excluded by finding the same rates at 200kV and 1250kV electron beams, below and above the threshold for the knock-on process. The dependence of phenomenon rate on the particles’ size was found to be inversely proportional to the particle volume, with a threshold at particle radius of 5nm . The temperature was found to activate both the probability for a particle to be in the rotating state, and the rotation rate.
On the Structure Orientation in Rotating and Sheared Homogeneous Turbulence
Aguirre, Joylene C.; Moreau, Adam F.; Jacobitz, Frank G.
2016-11-01
The results of direct numerical simulations are used to study the effect of rotation on the orientation of structures and the evolution of the turbulent kinetic energy in homogeneous sheared turbulence. Shear flows without rotation, with moderate rotation, and with strong rotation are considered and the rotation axis is either parallel or anti-parallel to the mean flow vorticity. In the case of moderate rotation, an anti-parallel configuration increases the growth rate of the turbulent kinetic energy, while a parallel configuration decreases the growth rate as compared to the flow without rotation. The orientation of turbulent structures present in the flows are characterized using the three-dimensional, two-point autocorrelation coefficient of velocity magnitude and vorticity magnitude. An ellipsoid is fitted to the surface defined by a constant autocorrelation coefficient value and the major and minor axes are used to determine the inclination angle of flow structures in the plane of shear. It was found that the inclination angle assumes a maximum value for the anti-parallel configuration with moderate rotation. Again, the inclination angle for the parallel configuration with moderate rotation is reduced as compared to the case without rotation. The smallest inclination angles are found for the strongly rotating cases. Hence, the inclination angle is directly related to the growth rate of the turbulent kinetic energy. University of San Diego Shiley-Marcos School of Engineering and McNair Scholars.
Rotator cuff repair - slideshow
... this page: //medlineplus.gov/ency/presentations/100229.htm Rotator cuff repair - series—Normal anatomy To use the sharing ... to slide 4 out of 4 Overview The rotator cuff is a group of muscles and tendons that ...
Optimally growing boundary layer disturbances in a convergent nozzle preceded by a circular pipe
Uzun, Ali; Davis, Timothy B.; Alvi, Farrukh S.; Hussaini, M. Yousuff
2017-06-01
We report the findings from a theoretical analysis of optimally growing disturbances in an initially turbulent boundary layer. The motivation behind this study originates from the desire to generate organized structures in an initially turbulent boundary layer via excitation by disturbances that are tailored to be preferentially amplified. Such optimally growing disturbances are of interest for implementation in an active flow control strategy that is investigated for effective jet noise control. Details of the optimal perturbation theory implemented in this study are discussed. The relevant stability equations are derived using both the standard decomposition and the triple decomposition. The chosen test case geometry contains a convergent nozzle, which generates a Mach 0.9 round jet, preceded by a circular pipe. Optimally growing disturbances are introduced at various stations within the circular pipe section to facilitate disturbance energy amplification upstream of the favorable pressure gradient zone within the convergent nozzle, which has a stabilizing effect on disturbance growth. Effects of temporal frequency, disturbance input and output plane locations as well as separation distance between output and input planes are investigated. The results indicate that optimally growing disturbances appear in the form of longitudinal counter-rotating vortex pairs, whose size can be on the order of several times the input plane mean boundary layer thickness. The azimuthal wavenumber, which represents the number of counter-rotating vortex pairs, is found to generally decrease with increasing separation distance. Compared to the standard decomposition, the triple decomposition analysis generally predicts relatively lower azimuthal wavenumbers and significantly reduced energy amplification ratios for the optimal disturbances.
A Cool Tool for Deicing Planes
2001-01-01
Nicknamed the "ice zapper," the Electro Expulsive Separation System (EESS) is an aircraft ice removal system that "pulverizes ice and removes layers of ice as thin as frost or as thick as an inch of glaze," according to the principle inventor of the technology. Patented by NASA's Ames Research Center, the EESS consists of layers of conductors encased in materials that are bonded directly to the airframe structure. When ice accumulates on the aircraft, an electric current is sent through the conductors, causing them to pulse. Even though the conductors move less than a twenty-thousandth of an inch in just a millisecond, the movement is sufficient to pulverize the ice. It is this highly accelerated motion that shatters the ice into particles the size of table salt; too small to be harmful to the aircraft. When compared with other systems in use, such as thermal deicers and pneumatic boots, the ice zapper does very well. Thermal deicers are fairly common, although they use an enormous amount of energy and present the possibility of ice refreezing. Pneumatic boots are not always effective because they require an inflation device that is unable to work until a quarter inch of ice has accumulated. With both systems, the ice that is loosened may still be large enough to cause problems for the plane once dislodged.
Hybrid Inflation in the Complex Plane
Buchmuller, Wilfried; Kamada, Kohei; Schmitz, Kai
2014-01-01
Supersymmetric hybrid inflation is an exquisite framework to connect inflationary cosmology to particle physics at the scale of grand unification. Ending in a phase transition associated with spontaneous symmetry breaking, it can naturally explain the generation of entropy, matter and dark matter. Coupling F-term hybrid inflation to soft supersymmetry breaking distorts the rotational invariance in the complex inflaton plane---an important fact, which has been neglected in all previous studies. Based on the delta-N formalism, we analyze the cosmological perturbations for the first time in the full two-field model, also taking into account the fast-roll dynamics at and after the end of inflation. As a consequence of the two-field nature of hybrid inflation, the predictions for the primordial fluctuations depend not only on the parameters of the Lagrangian, but are eventually fixed by the choice of the inflationary trajectory. Recognizing hybrid inflation as a two-field model resolves two shortcomings often time...
Hybrid inflation in the complex plane
Buchmüller, W.; Domcke, V.; Kamada, K.; Schmitz, K.
2014-07-01
Supersymmetric hybrid inflation is an exquisite framework to connect inflationary cosmology to particle physics at the scale of grand unification. Ending in a phase transition associated with spontaneous symmetry breaking, it can naturally explain the generation of entropy, matter and dark matter. Coupling F-term hybrid inflation to soft supersymmetry breaking distorts the rotational invariance in the complex inflaton plane — an important fact, which has been neglected in all previous studies. Based on the δ N formalism, we analyze the cosmological perturbations for the first time in the full two-field model, also taking into account the fast-roll dynamics at and after the end of inflation. As a consequence of the two-field nature of hybrid inflation, the predictions for the primordial fluctuations depend not only on the parameters of the Lagrangian, but are eventually fixed by the choice of the inflationary trajectory. Recognizing hybrid inflation as a two-field model resolves two shortcomings often times attributed to it: the fine-tuning problem of the initial conditions is greatly relaxed and a spectral index in accordance with the PLANCK data can be achieved in a large part of the parameter space without the aid of supergravity corrections. Our analysis can be easily generalized to other (including large-field) scenarios of inflation in which soft supersymmetry breaking transforms an initially single-field model into a multi-field model.
DEFF Research Database (Denmark)
Gramkow, Claus
1999-01-01
In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...
Domain matching epitaxy of cubic In{sub 2}O{sub 3} on r-plane sapphire
Energy Technology Data Exchange (ETDEWEB)
Vogt, Patrick; Trampert, Achim; Ramsteiner, Manfred; Bierwagen, Oliver [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117, Berlin (Germany)
2015-07-15
Undoped, Sn-doped, and Mg-doped In{sub 2}O{sub 3} layers were grown on rhombohedral r-plane sapphire (α-Al{sub 2}O{sub 3} (10.2)) by plasma-assisted molecular beam epitaxy. X-ray diffraction and Raman scattering experiments demonstrated the formation of phase-pure, cubic (110)-oriented In{sub 2}O{sub 3} for Sn- and Mg-concentrations up to 2 x 10{sup 20} and 6 x 10{sup 20} cm{sup -3}, respectively. Scanning electron microscopy images showed facetted domains without any surface-parallel (110) facets. High Mg- or Sn-doping influenced surface morphology and the facet formation. X-ray diffraction Φ-scans indicated the formation of two rotational domains separated by an angle Φ = 86.6 due to the substrate mirror-symmetry around the in-plane-projected Al{sub 2}O{sub 3} c-axis. The in-plane epitaxial relationships to the substrate were determined for both domains. For the first domain it is Al{sub 2}O{sub 3}[01.0] parallel In{sub 2}O{sub 3}[3 anti 3 anti 4]. For the second domain the inplane epitaxial relation is Al{sub 2}O{sub 3}[01.0] parallel In{sub 2}O{sub 3}[3 anti 34]. A low-mismatch coincidence lattice of indium atoms from the film and oxygen atoms from the substrate rationalizes this epitaxial relation by domain-matched epitaxy. Cross-sectional transmission-electron microscopy showed a columnar domain-structure, indicating the vertical growth of the rotational domains after their nucleation. Coincidence structure of In{sub 2}O{sub 3} (110) (In atoms in red) grown on Al{sub 2}O{sub 3} (10.2) (O atoms in blue) showing two rotational domians. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Directory of Open Access Journals (Sweden)
Otto Bachmann
1984-01-01
Full Text Available In this paper we continue the study of projective planes which admit collineation groups of low rank (Kallaher [1] and Bachmann [2,3]. A rank 5 collineation group of a projective plane ℙ of order n≠3 is proved to be flag-transitive. As in the rank 3 and rank 4 case this implies that is ℙ not desarguesian and that n is (a prime power of the form m4 if m is odd and n=m2 with m≡0mod4 if n is even. Our proof relies on the classification of all doubly transitive groups of finite degree (which follows from the classification of all finite simple groups.
Hydrodynamics of planing monohull watercraft
Vorus, William S
2017-01-01
This book addresses the principles involved in the design and engineering of planing monohull power boats, with an emphasis on the theoretical fundamentals that readers need in order to be fully functional in marine design and engineering. Author William Vorus focuses on three topics: boat resistance, seaway response, and propulsion and explains the physical principles, mathematical details, and theoretical details that support physical understanding. In particular, he explains the approximations and simplifications in mathematics that lead to success in the applications of planing craft design engineering, and begins with the simplest configuration that embodies the basic physics. He leads readers, step-by-step, through the physical complications that occur, leading to a useful working knowledge of marine design and engineering. Included in the book are a wealth of examples that exemplify some of the most important naval architecture and marine engineering problems that challenge many of today’s engineers.
Forgács, Péter; Romańczukiewicz, Tomasz
2013-01-01
It is shown that in a large class of systems plane waves can act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode having a larger wave number, in which case excess momentum is created behind the scatterer. Such a tractor beam or negative radiation pressure effect arises naturally in systems where the coupling between the scattering channels is due to Aharonov-Bohm (AB) gauge potentials. It is demonstrated that this effect is also present if the AB potential is an induced, ("artificial") gauge potential such as the one found in J. March-Russell, J. Preskill, F. Wilczek, Phys. Rev. Lett. 58 2567 (1992).
Faraday resonance in dynamical bar instability of differentially rotating stars
Saijo, Motoyuki
2008-01-01
We investigate the nonlinear behaviour of the dynamically unstable rotating star for the bar mode by three-dimensional hydrodynamics in Newtonian gravity. We find that an oscillation along the rotation axis is induced throughout the growth of the unstable bar mode, and that its characteristic frequency is twice as that of the bar mode, which oscillates mainly along the equatorial plane. A possibility to observe Faraday resonance in gravitational waves is demonstrated and discussed.
DEFF Research Database (Denmark)
Rathkjen, Arne
A state of plane stress is illustrated by means of two families of curves, each family representing constant values of a derivative of Airy's stress function. The two families of curves form a map giving in the first place an overall picture of regions of high and low stress, and in the second...... place, the map comprises a complete graphic representation of the stress at any point....
Rotations with Rodrigues' Vector
Pina, E.
2011-01-01
The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…
DEFF Research Database (Denmark)
Gramkow, Claus
2001-01-01
In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...
Kim, Wansun; Lee, Inhwa; Kim, Dong Yoon; Yu, Youn-Yeol; Jung, Hae-Yoon; Kwon, Seyeoul; Park, Weon Seo; Kim, Taek-Soo
2017-05-01
To protect brittle layers in organic photovoltaic devices, the mechanical neutral plane strategy can be adopted through placing the brittle functional materials close to the neutral plane where stress and strain are zero during bending. However, previous research has been significantly limited in the location and number of materials to protect through using a single neutral plane. In this study, multiple neutral planes are generated using low elastic modulus adhesives and are controlled through quantitative analyses in order to protect the multiple brittle materials at various locations. Moreover, the protection of multiple brittle layers at various locations under both concave and convex bending directions is demonstrated. Multilayer structures that have soft adhesives are further analyzed using the finite element method analysis in order to propose guidelines for structural design when employing multiple neutral planes.
Generalization of the JTZ model to open plane wakes
Wu, Zuo-Bing
2011-01-01
The JTZ model [C. Jung, T. T\\'el and E. Ziemniak, Chaos {\\bf 3}, (1993) 555], as a theoretical model of a plane wake behind a circular cylinder in a narrow channel at a moderate Reynolds number, has previously been employed to analyze phenomena of chaotic scattering. It is extended here to describe an open plane wake without the confined narrow channel by incorporating a double row of shedding vortices into the intermediate and far wake. The extended JTZ model is found in qualitative agreement with both direct numerical simulations and experimental results in describing streamlines and vorticity contours. To further validate its applications to particle transport processes, the interaction between small spherical particles and vortices in an extended JTZ model flow is studied. It is shown that the particle size has significant influences on the features of particle trajectories, which have two characteristic patterns: one is rotating around the vortex centers and the other accumulating in the exterior of vort...
A multilayer neural network model for perception of rotational motion
Institute of Scientific and Technical Information of China (English)
郭爱克; 孙海坚; 杨先一
1997-01-01
A multilayer neural nerwork model for the perception of rotational motion has been developed usingReichardt’s motion detector array of correlation type, Kohonen’s self-organized feature map and Schuster-Wagner’s oscillating neural network. It is shown that the unsupervised learning could make the neurons on the second layer of the network tend to be self-organized in a form resembling columnar organization of selective directions in area MT of the primate’s visual cortex. The output layer can interpret rotation information and give the directions and velocities of rotational motion. The computer simulation results are in agreement with some psychophysical observations of rotation-al perception. It is demonstrated that the temporal correlation between the oscillating neurons would be powerful for solving the "binding problem" of shear components of rotational motion.
XPIV-Multi-plane stereoscopic particle image velocimetry
Liberzon, A.; Gurka, R.; Hetsroni, G.
We introduce the three-dimensional measurement technique (XPIV) based on a Particle Image Velocimetry (PIV) system. The technique provides three-dimensional and statistically significant velocity data. The main principle of the technique lies in the combination of defocus, stereoscopic and multi-plane illumination concepts. Preliminary results of the turbulent boundary layer in a flume are presented. The quality of the velocity data is evaluated by using the velocity profiles and relative turbulent intensity of the boundary layer. The analysis indicates that the XPIV is a reliable experimental tool for three-dimensional fluid velocity measurements.
XPIV-Multi-plane stereoscopic particle image velocimetry
Energy Technology Data Exchange (ETDEWEB)
Liberzon, A. [Multiphase Flow Laboratory, Faculty of Mechanical Engineering, Technion-IIT, 32000, Haifa (Israel); Institute of Hydromechanics and Water Resources Management, ETH, Zurich (Switzerland); Gurka, R. [Multiphase Flow Laboratory, Faculty of Mechanical Engineering, Technion-IIT, 32000, Haifa (Israel); Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD (United States); Hetsroni, G. [Multiphase Flow Laboratory, Faculty of Mechanical Engineering, Technion-IIT, 32000, Haifa (Israel)
2004-02-01
We introduce the three-dimensional measurement technique (XPIV) based on a Particle Image Velocimetry (PIV) system. The technique provides three-dimensional and statistically significant velocity data. The main principle of the technique lies in the combination of defocus, stereoscopic and multi-plane illumination concepts. Preliminary results of the turbulent boundary layer in a flume are presented. The quality of the velocity data is evaluated by using the velocity profiles and relative turbulent intensity of the boundary layer. The analysis indicates that the XPIV is a reliable experimental tool for three-dimensional fluid velocity measurements. (orig.)
Micro-imaging of buried layers and interfaces in ultrathin films by X-ray reflectivity
Jiang, Jinxing; Hirano, Keiichi; Sakurai, Kenji
2016-09-01
X-ray reflectivity is a promising technique for characterizing buried layers and interfaces in ultrathin films because of its ability to probe the electron density profile along the depth in a non-destructive manner. While routine X-ray reflectivity assumes the in-plane uniformity of the sample to be measured, it is also quite important to see buried inhomogeneous/patterned layers and interfaces. The present paper describes the addition of spatial resolution and imaging capability to an X-ray reflectivity technique to visualize surfaces and buried interfaces. To visualize quite wide viewing area size quickly, the image reconstruction scheme has been employed instead of the scanning of microbeam. Though the mathematics is quite close to X-ray computer tomography, the technique gives the image contrast caused by the difference in reflectivity at each in-plane point in the thin film sample. By choosing a grazing angle, the image gives inhomogeneity of X-ray reflectivity at the specific wavevector transfer. With a collimated monochromatic synchrotron X-ray beam of 0.05 mm (H) × 8 mm (V), the intensity profiles of X-ray reflection projections have been taken at many different in-plane rotation angles, from 0° to 180°. We have succeeded in visualizing buried layers and interfaces of the 8 mm dia area with the spatial resolution of better than 20 μm. Because of the brilliance of synchrotron radiation, the typical measuring time is shorter than 1 min. Three analytical cases have been discussed: (i) imaging of a buried layer and an interface covered by a protection layer, (ii) distinguishing different local parts of different thicknesses in an ultrathin film, and (iii) selective imaging of a specific metal in the thin film form.
Artificial impedance ground planes for low profile antenna applications
McMichael, Ian T.
Recent interest in artificial impedance surfaces for low-profile antennas has led to extensive research with the goal of optimizing the ground plane's characteristics for a given antenna configuration and broadening the operational bandwidth, or alternatively creating a multi-band functionality. A method of determining the optimal reflection phase for a low-profile dipole antenna over an electromagnetic band gap (EBG) ground plane has been developed based on image theory and is presented with experimental and numerical validation. A new artificial impedance surface has also been developed, which is composed of an annular slot ring on a thin grounded dielectric. The main difference between the proposed ground plane and a conventional EBG is that the high impedance condition exists only in the vicinity of the slot and is therefore best suited for antennas with a current distribution that has a similar shape as the annular slot ring. It is shown that a loop antenna positioned closely over an annular slot loaded ground plane exhibits approximately the same gain as a loop antenna over a conventional EBG ground plane. The advantage of the new structure is its lack of periodicity, which significantly eases manufacturing. Additionally, it is shown that multiple concentric slot rings can be designed into the ground plane, which excites multiple resonances in low-profile wideband antennas. The result is a multi-band high impedance ground plane constructed using a simple arrangement of annular slots. Finally, a manufacturing technique is presented for the application of arbitrarily configured EBG antennas to handheld dual-sensor landmine detection systems. It is shown that creating an EBG antenna using very thin layers of metal will enable it to be used for ground penetrating radar (GPR) when it is co-located with a low frequency metal detector without compromising the operation of the metal detector. The potential benefit of such an antenna would be a lower profile sensor
Geometric structure of pseudo-plane quadratic flows
Sun, Che
2017-03-01
Quadratic flows have the unique property of uniform strain and are commonly used in turbulence modeling and hydrodynamic analysis. While previous applications focused on two-dimensional homogeneous fluid, this study examines the geometric structure of three-dimensional quadratic flows in stratified fluid by solving a steady-state pseudo-plane flow model. The complete set of exact solutions reveals that steady quadratic flows have an invariant conic type in the non-rotating frame and a non-rotatory vertical structure in the rotating frame. Three baroclinic solutions with vertically non-aligned formulation disprove an earlier conjecture. All elliptic and hyperbolic solutions, except for the inertial ones, exhibit vertical concentricity. The rich geometry of quadratic flows stands in contrast to the depleted geometry of high-degree polynomial flows. A paradox in the steady solutions of shallow-water reduced-gravity models is also explained.
Heron, D O G; Ray, S J; Lister, S J; Aegerter, C M; Keller, H; Kes, P H; Menon, G I; Lee, S L
2013-03-08
Muon-spin rotation measurements, performed on the mixed state of the classic anisotropic superconductor Bi(2.15)Sr(1.85)CaCu(2)O(8+δ), obtain quantities directly related to two- and three-body correlations of vortices in space. A novel phase diagram emerges from such local probe measurements of the bulk, revealing an unusual glassy state at intermediate fields which appears to freeze continuously from the equilibrium vortex liquid but differs both from the lattice and the conventional high-field vortex glass state in its structure.
Dipolar nuclear spin relaxation in liquids and plane fluids undergoing chemical reactions
Fries, P. H.
We describe the correlated translational and rotational relative brownian motions of two reacting groups of atoms, alternatively bound and free, by the normalized solutions of a set of coupled diffusion equations. Under equilibrium conditions we calculate the spectral densities j(ω) characteristic of the fluctuations of the intermolecular dipolar coupling between spins of these diffusing groups of atoms. When ωτ density j2(ω) in three-dimensional liquids is j2(0) - α3ω1/2. The coefficient α3 is independent of the molecular local order, of the diffusional rotation speed of the spin-carrying groups of atoms and of their association and dissociation rates. In plane fluids, when ωτ density j(0)(ω) may be written as -a2 ln (ωτ) where the dependence of a2 on the average relative distribution of the interacting spins varies with the rate of the chemical reactions. In both three- and two-dimensional fluids spectral densities show an ω-3/2 or ω-2 behaviour for ωτ >> 1 according to the magnitude of the association rate of the reacting groups of atoms. In liquid glycerol we analyse the low- and high-frequency limits of the experimental proton relaxation rate 1/T1 and 1/T1ρ measured by Harmon, Harmon and Burnett, and Lenk. We also discuss the proton spin-lattice relaxation times measured by Kleinberg and Silbernagel in layered intercalation compounds TiS2-NH3 and TaS2-NH3.
Stochl, Jan; Croudace, Tim
2013-01-01
Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.
Dynamics of Rotation of Super-Earths
Callegari, Nelson
2012-01-01
We numerically investigate the dynamics of rotation of several close-in terrestrial exoplanets candidates. In our model, the rotation of the planet is disturbed by the torque of the central star due to the asymmetric equilibrium figure of the planet. We use surfaces of section to explore numerically the rotation phase space of the systems adopting different sets of parameters and initial conditions close to the main spin-orbit resonant states. We show that, depending on some parameters of the system like the radius and mass of the planet, orbital eccentricity etc, the rotation can be strongly perturbed and a chaotic layer around the synchronous state may occupy a significant region of the phase space. 55 Cnc e is an example.
Rotation planar extraction and rotation planar chromatography of oak (Quercus robur L.) bark.
Vovk, Irena; Simonovska, Breda; Andrensek, Samo; Vuorela, Heikki; Vuorela, Pia
2003-04-04
The versatile novel instrument for rotation planar extraction and rotation planar chromatography was exploited for the investigation of oak bark (Quercus robur L.). The same instrument enabled extraction of the bark, analytical proof of (+)-catechin directly in the crude extract and also its fractionation. Additionally, epimeric flavan-3-ols, (+)-catechin and (-)-epicatechin were separated by analytical ultra-micro rotation planar chromatography on cellulose plates with pure water as developing solvent. A comparison of the extraction of oak bark with 80% aqueous methanol by rotation planar extraction and medium pressure solid-liquid extraction was carried out and both techniques were shown to be suitable for the efficient extraction of oak bark. The raw extracts and fractions on thin-layer chromatography showed many compounds that possessed antioxidant activity after spraying with 1,1-diphenyl-2-picrylhydrazyl. Rotation planar fractionation of 840 mg of crude oak bark extract on silica gel gave 6.7 mg of pure (+)-catechin in one run.
Differentiating the differential rotation effect.
Boyarskaya, Evgenia; Hecht, Heiko
2012-07-01
As an observer views a picture from different viewing angles, objects in the picture appear to maintain their orientation relative to the observer. For instance, the eyes of a portrait appear to follow the observer as he or she views the image from different angles. We have explored this rotation effect, often called the Mona Lisa effect. We report three experiments that used portrait photographs to test variations of the Mona Lisa effect. The first experiment introduced picture displacements relative to the observer in directions beyond the horizontal plane. The Mona Lisa effect remained robust for vertical and/or diagonal observer displacements. The experiment also included conditions in which the portrait had averted gaze directions. An interaction between picture position relative to the observer and gaze direction was found. The second experiment followed up on very pronounced individual differences, suggesting that the Mona Lisa effect is even stronger than it should be for half of all observers (over-rotators). These individual differences do not correlate with any of the standard personality dimensions (Big Five) or with spatial intelligence. In the third experiment, we extended the experiment to virtual 3D heads using the same gaze directions and picture displacements as for the 2D portrait faces. Besides the picture displacements relative to the observer, we also added observer displacements relative to the picture. 3D pictures showed the Mona Lisa effect, but to a smaller extent than did 2D pictures. Copyright © 2012 Elsevier B.V. All rights reserved.
SNAP Satellite Focal Plane Development
Energy Technology Data Exchange (ETDEWEB)
Bebek, C.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bercovitz, J.; Bergstrom, L.; Berstein, G.P.; Bester, M.; Bohlin, R.; Bonissent, A.; Bower, C.; Campbell, M.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Ellis, R.; Emmett, W.; Eriksson, M.; Fouchez,D.; Fruchter, A.; Genat, J-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Holland, S.; Huterer, D.; Johnson, W.; Kadel, R.; Karcher,A.; Kim, A.; Kolbe, W.; Lafever, R.; Lamoureaux, J.; Lampton, M.; Lefevre, O.; Levi, M.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Roe, N.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Prieto, E.; Rabinowitz,D.; Refregier, A.; Rhodes, J.; Schubnell, M.; Sholl, M.; Smadja, G.; Smith, R.; Smoot, G.; Snyder, J.; Spadafora, A.; Szymkowiak, A.; Tarle,G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.
2003-07-07
The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R&D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics.
Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane
Chervenak, James; Wollack, Edward
2012-01-01
A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.
A visual understanding of optical rotation using corn syrup
Nixon, M.; Hughes, I. G.
2017-07-01
In this paper a visual demonstration of optical rotation is presented, with content appropriate for use in a lecture demonstration as well as quantitative techniques suitable for an undergraduate-laboratory experiment. Linearly polarised lasers of various wavelengths are propagated through a glass tube containing corn syrup. The rotation of the plane of polarisation of the light is visible with the naked eye, making the experiment dramatic and engaging and aiding understanding of the phenomenon of optical rotation. In addition, we present a simple approach to quantitatively analyse data using only equipment commonly found in undergraduate teaching laboratories.
On free fermions and plane partitions
Foda, O; Zuparic, M
2008-01-01
We use free fermion methods to re-derive a result of Okounkov and Reshetikhin relating charged fermions to random plane partitions, and to extend it to relate neutral fermions to strict plane partitions.
Directory of Open Access Journals (Sweden)
Tu Cheng-Xu
2014-01-01
Full Text Available The field characteristics of two side-by-side rotating circular cylinders in a cross-flow is investigated under different rotation types, at T/D = 1.11,1.6, and 3, respectively (T is the center spacing between the cylinders, and D is the cylinder diameter. A similar flow pattern which is the most efficient to narrow the lowpressure area is identified for rotation type A, independent of T/D ratio, and two typical flow patterns are found under different spacings for rotation type B and type C, respectively. It is confirmed that there is an optimal rotational speed of 1.7-2, under rotation type A to attenuate the vortices, velocity drop, and turbulence intensity tremendously. As rotational speed increases to the optimal value, both the velocity drop and turbulence intensity decrease and their distributions are smooth. The results indicate that the shear layers which are accelerated following the free-stream direction would have significant influence on the flow modification, and different rotation types actually arrange these shear layers in diverse ways to change the flow pattern. Pitch ratio is capable to transform the gap flow, which is usually including the shear layers referred, thus this parameter can modify the wake of the two cylinders at different rotation types.
Marcotte, Florence; Soward, Andrew
2016-01-01
The steady incompressible viscous flow in the wide gap between spheres rotating about a common axis at slightly different rates (small Ekman number E) has a long and celebrated history. The problem is relevant to the dynamics of geophysical and planetary core flows, for which, in the case of electrically conducting fluids, the possible operation of a dynamo is of considerable interest. A comprehensive asymptotic study, in the limit E<<1, was undertaken by Stewartson (J. Fluid Mech. 1966, vol. 26, pp. 131-144). The mainstream flow, exterior to the E^{1/2} Ekman layers on the inner/outer boundaries and the shear layer on the inner sphere tangent cylinder C, is geostrophic. Stewartson identified a complicated nested layer structure on C, which comprises relatively thick quasi-geostrophic E^{2/7} (inside C) and E^{1/4} (outside C) layers. They embed a thinner E^{1/3} ageostrophic shear layer (on C), which merges with the inner sphere Ekman layer to form the E^{2/5} Equatorial Ekman layer of axial length E^{...
Image plane sweep volume illumination.
Sundén, Erik; Ynnerman, Anders; Ropinski, Timo
2011-12-01
In recent years, many volumetric illumination models have been proposed, which have the potential to simulate advanced lighting effects and thus support improved image comprehension. Although volume ray-casting is widely accepted as the volume rendering technique which achieves the highest image quality, so far no volumetric illumination algorithm has been designed to be directly incorporated into the ray-casting process. In this paper we propose image plane sweep volume illumination (IPSVI), which allows the integration of advanced illumination effects into a GPU-based volume ray-caster by exploiting the plane sweep paradigm. Thus, we are able to reduce the problem complexity and achieve interactive frame rates, while supporting scattering as well as shadowing. Since all illumination computations are performed directly within a single rendering pass, IPSVI does not require any preprocessing nor does it need to store intermediate results within an illumination volume. It therefore has a significantly lower memory footprint than other techniques. This makes IPSVI directly applicable to large data sets. Furthermore, the integration into a GPU-based ray-caster allows for high image quality as well as improved rendering performance by exploiting early ray termination. This paper discusses the theory behind IPSVI, describes its implementation, demonstrates its visual results and provides performance measurements.
The INTEGRAL Galactic Plane Scanning
Fiocchi, Mariateresa
2013-01-01
After the first nine years of INTEGRAL operational life, the discovery of new sources and source types, a large fraction of which are highly transient or highly absorbed, is certainly one of the most compelling results and legacies of INTEGRAL. Frequent monitoring of the Galactic Plane in AO8 and AO9 campaigns allowed us to detect transient sources, both known and new, confirming that the gamma-ray sky is dominated by the extreme variability of different classes of objects. Regular scans of the Galactic Plane by INTEGRAL provide the most sensitive hard X-ray wide survey to date of our Galaxy, with flux limits of the order of 0.3 mCrab for an exposure time of ~2Ms. Many transient sources have been detected on a wide range of time scales (~hours to months) and identified by triggered followup observations, mainly by Swift/XRT and optical/infrared telescopes. These discoveries are very important to characterize the X-ray binary population in our Galaxy, that is necessary input for evolution studies. The transien...
The HAWC Galactic Plane Survey
Hui, Michelle
2016-03-01
The High Altitude Water Cherenkov (HAWC) Observatory is an all-sky surveying instrument that covers 2/3 of the sky in 24 hours. It is designed with an emphasis on continuous sky coverage for transient events, and on the measurement of extended and large-scale structures. The array is located in Sierra Negra, Mexico at an elevation of 4,100 m and was inaugurated in March 2015. The HAWC array consists of 300 water Cherenkov detectors and is sensitive to extensive air showers triggered by cosmic rays and gamma rays from 100 GeV to >100 TeV. Thanks to its modular design, data taking began in Summer 2013 with 1/3 of the array. Analysis of the first year of data with the partial array shows detections that are coincident with known TeV supernova remnants and pulsar wind nebulae along the Galactic plane. Spectral and morphological analyses are ongoing to study the particle population and acceleration mechanism of these objects. With a growing data set taken with the completed array, source searches are underway for both point-like and extended emission along the Galactic plane, which contain many objects such as pulsar wind nebulae, young star clusters, and binaries.
Lines, Circles, Planes and Spheres
Purdy, George B
2009-01-01
Let $S$ be a set of $n$ points in $\\mathbb{R}^3$, no three collinear and not all coplanar. If at most $n-k$ are coplanar and $n$ is sufficiently large, the total number of planes determined is at least $1 + k \\binom{n-k}{2}-\\binom{k}{2}(\\frac{n-k}{2})$. For similar conditions and sufficiently large $n$, (inspired by the work of P. D. T. A. Elliott in \\cite{Ell67}) we also show that the number of spheres determined by $n$ points is at least $1+\\binom{n-1}{3}-t_3^{orchard}(n-1)$, and this bound is best possible under its hypothesis. (By $t_3^{orchard}(n)$, we are denoting the maximum number of three-point lines attainable by a configuration of $n$ points, no four collinear, in the plane, i.e., the classic Orchard Problem.) New lower bounds are also given for both lines and circles.
Three-dimensional real-time synthetic aperture imaging using a rotating phased array transducer
DEFF Research Database (Denmark)
Nikolov, Svetoslav; Dufait, Remi; Schoisswohl, Armin
2002-01-01
the plane located directly below the transducer, but also from neighboring planes. A complete dataset for all elements for the whole rotation is acquired and stored. The volume is then focused from this complete data set in order to obtain dynamic transmit and receive focusing in all directions....
Rotation and Displacement Predict Adverse Events in Pediatric Supracondylar Fractures.
Flierl, Michael A; Carry, Patrick M; Scott, Frank; Georgopoulos, Gaia; Hadley-Miller, Nancy
2015-08-01
The goal of this study was to identify supracondylar fracture patterns that were predictive of adverse events and poor outcomes. The study consisted of a retrospective review of patients admitted for surgical treatment of a supracondylar humerus fracture between June 2008 and August 2010. Preoperative radiographs were assessed based on appearance (simple vs oblique vs comminuted), coronal plane displacement (angulated, posterior, posteromedial vs posterolateral), and rotation (rotation vs no rotation). Logistic regression models were used to examine the relationship between fracture pattern and clinical outcome parameters in 373 patients who were followed for 4 weeks or more postoperatively. Outcome parameters included postoperative complications (infection, delayed healing, pin migration, revision surgery), need for physical or occupational therapy, need for postoperative intravenous narcotics, and preoperative nerve injury. Rotation and coronal displacement patterns of the fracture segments were significantly associated with postoperative complications, postoperative need for physical or occupational therapy as a result of residual stiffness, and nerve injury (P<.05). Compared with posteriorly displaced fractures, posterolaterally displaced fractures were associated with significantly greater odds of complications (P=.045), need for physical or occupational therapy (P<.001), and nerve injury (P<.001). Additionally, fractures with rotation were associated with significantly greater odds of complications (P<.001), need for physical or occupational therapy (P<.001), and nerve injury (P<.001) compared with fractures without rotation. Rotation and coronal plane displacement were predictive of complications, need for physical or occupational therapy, and nerve injury, and thus should be considered as potential prognostic variables when evaluating the initial injury pattern.
Singularities from colliding plane gravitational waves
Tipler, Frank J.
1980-12-01
A simple geometrical argument is given which shows that a collision between two plane gravitational waves must result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily small energy density.
Singularities from colliding plane gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Tipler, F.J.
1980-12-15
A simple geometrical argument is given which shows that a collision between two plane gravitational waves must result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily small energy density.
Evolved stars in galactic plane surveys
Verbeek, K.
2013-01-01
For the first time in history the entire Galactic Plane is digitally mapped from La Palma and Chile by the European Galactic Plane surveys EGAPS (UVEX, IPHAS and VPHAS+, see http://www.uvexsurvey.org http://www.iphas.org and http://www.vphasplus.org). The complete Galactic plane (3600 square degrees
Homogeneity and plane-wave limits
Figueroa-O'Farrill, J M; Philip, S; Farrill, Jos\\'e Figueroa-O'; Meessen, Patrick; Philip, Simon
2005-01-01
We explore the plane-wave limit of homogeneous spacetimes. For plane-wave limits along homogeneous geodesics the limit is known to be homogeneous and we exhibit the limiting metric in terms of Lie algebraic data. This simplifies many calculations and we illustrate this with several examples. We also investigate the behaviour of (reductive) homogeneous structures under the plane-wave limit.
Energy Technology Data Exchange (ETDEWEB)
Schaeffeler, Christoph [Technische Universitaet Muenchen, Department of Radiology, Munich (Germany); Kantonsspital Graubuenden, Musculoskeletal Imaging, Chur (Switzerland); Waldt, Simone; Bauer, Jan S.; Rummeny, Ernst J.; Woertler, Klaus [Technische Universitaet Muenchen, Department of Radiology, Munich (Germany); Kirchhoff, Chlodwig [Technische Universitaet Muenchen, Department of Traumatology, Munich (Germany); Haller, Bernhard [Technische Universitaet Muenchen, Institute for Medical Statistics and Epidemiology, Munich (Germany); Schroeder, Michael [Center for Sports Orthopedics and Medicine, Orthosportiv, Munich (Germany); Imhoff, Andreas B. [Technische Universitaet Muenchen, Department of Orthopedic Sports Medicine, Munich (Germany)
2014-06-15
To evaluate diagnostic signs and measurements in the assessment of capsular redundancy in atraumatic multidirectional instability (MDI) of the shoulder on MR arthrography (MR-A) including abduction/external rotation (ABER) images. Twenty-one MR-A including ABER position of 20 patients with clinically diagnosed MDI and 17 patients without instability were assessed by three radiologists. On ABER images, presence of a layer of contrast between the humeral head (HH) and the anteroinferior glenohumeral ligament (AIGHL) (crescent sign) and a triangular-shaped space between the HH, AIGHL and glenoid (triangle sign) were evaluated; centring of the HH was measured. Anterosuperior herniation of the rotator interval (RI) capsule and glenoid version were determined on standard imaging planes. The crescent sign had a sensitivity of 57 %/62 %/48 % (observers 1/2/3) and specificity of 100 %/100 %/94 % in the diagnosis of MDI. The triangle sign had a sensitivity of 48 %/57 %/48 % and specificity of 94 %/94 %/100 %. The combination of both signs had a sensitivity of 86 %/90 %/81 % and specificity of 94 %/94 %/94 %. A positive triangle sign was significantly associated with decentring of the HH. Measurements of RI herniation, RI width and glenoid were not significantly different between both groups. Combined assessment of redundancy signs on ABER position MR-A allows for accurate differentiation between patients with atraumatic MDI and patients with clinically stable shoulders; measurements on standard imaging planes appear inappropriate. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Derks, Didi; Wisman, Hans; Blaaderen, Alfons van; Imhof, Arnout [Soft Condensed Matter, Debye Institute, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The (Netherlands)
2004-09-29
We report on novel possibilities for studying colloidal suspensions in a steady shear field in real space. Fluorescence confocal microscopy is combined with the use of a counter-rotating cone-plate shear cell. This allows imaging of individual particles in the bulk of a sheared suspension in a stationary plane. Moreover, this plane of zero velocity can be moved in the velocity gradient direction while keeping the shear rate constant. The colloidal system under study consists of rhodamine labelled PMMA spheres in a nearly density and refractive index matched mixture of cyclohexylbromide and cis-decalin. We show measured flow profiles in both the fluid and the crystalline phase and find indications for shear banding in the case of a sheared crystal. Furthermore, we show that, thanks to the counter-rotating principle of the cone-plate shear cell, a layer of particles in the bulk of a sheared crystalline suspension can be imaged for a prolonged time, with the result that their positions can be tracked.
Stability analysis on Tingzikou gravity dam along deep-seated weak planes during earthquake
Institute of Scientific and Technical Information of China (English)
2012-01-01
The stability of a gravity dam against sliding along deep-seated weak planes is a universal and important problem encountered in the construction of dams.There is no recommended method for stability analysis of the dam on deep-seated weak planes under earthquake condition in Chinese design codes.Taking Tingzikou dam as an example,the research in this paper is focused on searching a proper way to evaluate the seismic safety of the dam against sliding along deep-seated weak planes and the probable failure modes of dam on deep-seated weak planes during earthquake.It is concluded that there are two probable failure modes of the dam along the main weak geological planes in the foundation.In the first mode,the concrete tooth under the dam will be cut and then the dam together with part foundation will slide along the muddy layer;in the second mode,the dam together with part foundation will slide along the path consist of the weak rock layer under the tooth and the muddy layer downstream the tooth.While there is no geological structure planes to form the second slip surface,the intersection of the main and the second slip surface is 40 to 80 m downstream from dam toe,and the angle between the second slip surface and the horizontal plane probably be 25 to 45 degrees.
From solar-like to anti-solar differential rotation in cool stars
Gastine, T; Morin, J; Reiners, A; Wicht, J
2013-01-01
Stellar differential rotation can be separated into two main regimes: solar-like when the equator rotates faster than the poles and anti-solar when the polar regions rotate faster than the equator. We investigate the transition between these two regimes with 3-D numerical simulations of rotating spherical shells. We conduct a systematic parameter study which also includes models from different research groups. We find that the direction of the differential rotation is governed by the contribution of the Coriolis force in the force balance, independently of the model setup (presence of a magnetic field, thickness of the convective layer, density stratification). Rapidly-rotating cases with a small Rossby number yield solar-like differential rotation, while weakly-rotating models sustain anti-solar differential rotation. Close to the transition, the two kinds of differential rotation are two possible bistable states. This study provides theoretical support for the existence of anti-solar differential rotation i...
Modeling brain injury response for rotational velocities of varying directions and magnitudes.
Weaver, Ashley A; Danelson, Kerry A; Stitzel, Joel D
2012-09-01
An estimated 1.7 million people in the United States sustain a traumatic brain injury (TBI) annually. To investigate the effects of rotational motions on TBI risk and location, this study modeled rotational velocities of five magnitudes and 26 directions of rotation using the Simulated Injury Monitor finite element brain model. The volume fraction of the total brain exceeding a predetermined strain threshold, the Cumulative Strain Damage Measure (CSDM), was investigated to evaluate global model response. To evaluate regional response, this metric was computed relative to individual brain structures and termed the Structure Cumulative Strain Damage Measure (SCSDM). CSDM increased as input magnitude increased and varied with the direction of rotation. CSDM was 0.55-1.7 times larger in simulations with transverse plane rotation compared to those without transverse plane rotation. The largest SCSDM in the cerebrum and brainstem occurred with rotations in the transverse and sagittal planes, respectively. Velocities causing medial rotation of the cerebellum resulted in the largest SCSDM in this structure. For velocities of the same magnitude, injury risk calculated from CSDM varied from 0 to 97% with variations in the direction of rotation. These findings demonstrate injury risk, as estimated by CSDM and SCSDM, is affected by the direction of rotation and input magnitude, and these may be important considerations for injury prediction.
High-resolution MR imaging of the normal rotator cuff.
Middleton, W D; Kneeland, J B; Carrera, G F; Cates, J D; Kellman, G M; Campagna, N G; Jesmanowicz, A; Froncisz, W; Hyde, J S
1987-03-01
The shoulders of six normal volunteers were imaged with high-resolution MR in the axial, sagittal, and coronal planes. An angled pair of counter-rotating current loop-gap resonators designed specifically for the shoulder was used as a local coil. All images were compared with corresponding cryomicrotome sections from cadaver shoulders. The rotator cuff was analyzed in detail. It appeared as a complex, heterogeneous band to tissue superficial to the humeral head. The areas of low signal intensity corresponded to the central tendons of the four rotator cuff muscles. These tendons could be distinguished from each other as well as from the intervening components of the cuff, which have a moderate intensity. We concluded that MR is capable of imaging the normal rotator cuff and of separating the various components. This may allow for improved precision in the diagnosis of rotator cuff disorders.
Gillet, N; Knebe, A; Libeskind, N; Yepes, G; Gottlober, S; Hoffman, Y
2014-01-01
We search for vast planes of satellites (VPoS) in a high resolution simulation of the Local Group performed by the CLUES project, which improves significantly the resolution of former similar studies. We use a simple method for detecting planar configurations of satellites, and validate it on the known plane of M31. We implement a range of prescriptions for modelling the satellite populations, roughly reproducing the variety of recipes used in the literature, and investigate the occurence and properties of planar structures in these populations. The structure of the simulated satellite systems is strongly non-random and contains planes of satellites, predominantly co-rotating, with, in some cases, sizes comparable to the plane observed in M31 by Ibata et al.. However the latter is slightly richer in satellites, slightly thinner and has stronger co-rotation, which makes it stand out as overall more exceptional than the simulated planes, when compared to a random population. Although the simulated planes we fin...
Relativistic Rotating Vector Model
Lyutikov, Maxim
2016-01-01
The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.
The Galactic Plane Infrared Polarization Survey (GPIPS)
Clemens, Dan P.; Pinnick, A. F.; Pavel, M. D.; Taylor, B. W.
2012-06-01
The scientific motivation, data collection strategy, data reduction, and analysis methods are presented for the Galactic Plane Infrared Polarization Survey (GPIPS). The chief goal for the Survey was to reveal the nature of the magnetic field threading the Galactic disk, in particular through regions of low to moderate extinction (1-20 mag of AV ) and star formation in the cool interstellar medium. The Survey region spans 76 deg2 of the northern Milky Way disk, from l = 18° to 56° and b =-1° to +1°. Linear polarimetric imaging observations began in 2006 in the near-infrared H band (1.6 μm) using the Mimir instrument on the 1.8 m Perkins telescope, located outside Flagstaff, AZ. Mimir used a cold, fixed wire grid and a rotateable cold, compound half-wave plate to obtain "step-and-integrate" polarimetry over its full 10 × 10 arcmin field of view. The GPIPS bright and faint polarimetric limits are approximately 7th and 15th mag, respectively, set by saturation and photon noise. Polarimetric uncertainties track with stellar magnitude, from about 0.1% to 25%, on average, from the brightest to faintest stars. Across the 3237 field GPIPS region, approximately 0.5 million stars are estimated to show detectable linear polarization (P/σ P > 3); most of these have mH < 12. This represents many orders of magnitude improvement in the number of polarization measurements across this region. GPIPS observations are more than 90% complete and should finish in 2012.
Surface Broken Symmetry on Orthorhombic Double-layer Sr3(Ru1-xMnx)2 O7
Chen, Chen; Nascimento, V. B.; Diao, Zhenyu; Zhang, Jiandi; Jin, Rongying; Plummer, E. W.
The surface of double-layered ruthenate Sr3Ru2O7 exhibits octahedra tilt distortion and an enhanced rotational distortion caused by the broken symmetry. Previous LEED IV calculation reveals that the tilt angle is (2.5+/-1.7)°at 80 K (B. Hu et. al., Physical Review B 81, 184104 (2010). A glideline symmetry and a mirror symmetry along this direction are both broken. Results from LEED IV simulations show that both broken symmetries originate from the emergence of surface tilt. The degree of broken symmetry is more sensitive to the tilt angle, thus producing a smaller error than from conventional LEED IV calculation. When Mn doping is induced into the compound, the tilt is removed and the symmetry of the LEED pattern returns to what is expected for rotation, two glide planes and four-fold symmetry. Supported by NSF DMR-1002622.
An introduction to finite projective planes
Albert, Abraham Adrian
2015-01-01
Geared toward both beginning and advanced undergraduate and graduate students, this self-contained treatment offers an elementary approach to finite projective planes. Following a review of the basics of projective geometry, the text examines finite planes, field planes, and coordinates in an arbitrary plane. Additional topics include central collineations and the little Desargues' property, the fundamental theorem, and examples of finite non-Desarguesian planes.Virtually no knowledge or sophistication on the part of the student is assumed, and every algebraic system that arises is defined and
Calculating pure rotational transitions of water molecule with a simple Lanczos method
Indian Academy of Sciences (India)
Pranab Sarkar
2001-04-01
We have calculated pure rotational transitions of water molecule from a kinetic energy operator (KEO) with the -axis perpendicular to the molecular plane. We have used rotational basis functions which are linear combinations of symmetric top functions so that all matrix elements are real. The calculated spectra agree well with the observed values.
On gyroscopic effects in vibrating and axially rotating solid and annular discs
CSIR Research Space (South Africa)
Joubert, SV
2007-05-01
Full Text Available , such as cylindrical, hemispherical and planar circular disc rotational sensors. The model of a thin circular disc vibrating in its plane and subjected to inertial rotation is considered. The dynamics of the disc gyroscope are considered in terms of linear elasticity...
Use of a rotating cylinder to induce laminar and turbulent separation over a flat plate
Afroz, F.; Lang, A.; Jones, E.
2017-06-01
An innovative and easy technique using a rotating cylinder system has been implemented in a water tunnel experiment to generate an adverse pressure gradient (APG). The strength of the APG was varied through adjustment in the rotation speed and location of the cylinder. Then the technique was used for inducing a laminar separation bubble (LSB) and turbulent boundary layer (TBL) separation over a flat plate. A theoretical model to predict the pressure variation induced on the plate consists of an inviscid flow over a reverse doublet-like configuration of two counter rotating cylinders. This model quantified the pressure distribution with changes of cylinder speed and location. The dimensionless velocity ratio (VR) of the cylinder rotation rate to the mainstream velocity and gap to diameter ratio \\tfrac{G}{D} were chosen as the two main ways of varying the strength of the APG, which affects the nature and extent of the LSB as well as TBL separation. The experimental parametric study, using time-resolved digital particle image velocimetry, was then conducted in a water tunnel. The variation in height (h), length (l), and the separation point (S) of the LSB was documented due to the variation in the APG. The similar type of experimental parametric study was used to explore the unsteady, turbulent separation bubble in a 2D plane aligned with the flow and perpendicular to the plate. The mean detachment locations of TBL separation are determined by two different definitions: (i) back-flow coefficient (χ) = 50%, and (ii) location of start of negative mean skin friction coefficient (C f). They are in good agreement and separation bubble characteristics agreed well with results obtained using different methods thus proving the validity of the technique.
A New Rotation Phenomena of Cells Induced by Homegeneous Electric Field
Hatakeyama, Toyomasa; Yagi, Hiroshi
1990-05-01
When at least two plant protoplasts are located close to each other under homogeneous electric field, almost all of the cells rotate in the vicinity of its frequency of 10 kHz and specific cells in the vicinity of 10 MHz. The first rotation occurs in the plane constituted by the connecting line between two cells and the applied electric field line. This angular velocity increases with the square of the field strength. On the other hand, the second rotation or new rotation occurs in any plane and its angular velocity complicatedly depends on the field strength. Furthermore, when two cells are arranged in such a way that their connecting line is parallel to the applied field, the second rotation occurs but the first does not. The distinctive feature of the second rotation can be explained by the anisotropic dielectric in the cell due to the shape of its vacuole.
Avalanche dynamics on a rough inclined plane.
Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E
2008-07-01
The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.
Thermodynamics of black plane solution
Rodrigues, Manuel E; Houndjo, Stéphane J M
2012-01-01
We obtain a new phantom black plane solution in 4D of the Einstein-Maxwell theory coupled with a cosmological constant. We analyse their basic properties and obtain the extensive and intensive thermodynamic variables, as well as the specific heat and the first law. Through the specific heat and the so-called geometric methods, we analyse in detail their thermodynamic properties, the extreme and phase transition limits, as well as the local and global stabilities of the system. The normal case is shown with an extreme limit and the phantom one with a phase transition only for null mass. The systems present local and global stabilities for certain values of the entropy density with respect to the electric charge, for the canonical and grand canonical ensembles.
Thermodynamics of black plane solution
Rodrigues, Manuel E.; Jardim, Deborah F.; Houndjo, Stéphane J. M.; Myrzakulov, Ratbay
2013-11-01
We obtain a new phantom black plane solution in D of the Einstein-Maxwell theory coupled with a cosmological constant. We analyse their basic properties, as well as its causal structure, and obtain the extensive and intensive thermodynamic variables, as well as the specific heat and the first law. Through the specific heat and the so-called geometric methods, we analyse in detail their thermodynamic properties, the extreme and phase transition limits, as well as the local and global stabilities of the system. The normal case is shown with an extreme limit and the phantom one with a phase transition only for null mass, which is physically inaccessible. The systems present local and global stabilities for certain values of the entropy density with respect to the electric charge, for the canonical and grand canonical ensembles.
Instability of Taylor-Couette Flow between Concentric Rotating Cylinders
Dou, H S; Phan-Thien, N; Yeo, K S; Dou, Hua-Shu; Khoo, Boo Cheong; Phan-Thien, Nhan; Yeo, Koon Seng
2005-01-01
The energy gradient theory is used to study the instability of Taylor-Couette flow between concentric rotating cylinders. In our previous studies, the energy gradient theory was demonstrated to be applicable for wall bounded parallel flows. It was found that the critical value of the energy gradient parameter K at subcritical transition is about 370-389 for wall bounded parallel flows (which include plane Poiseuille flow, pipe Poiseuille flow and plane Couette flow) below which no turbulence occurs. In this paper, the detailed derivation for the calculation of the energy gradient parameter in the flow between concentric rotating cylinders is provided. The theoretical results for the critical condition of primary instability obtained are in very good agreement with the experiments found in literature. The mechanism of spiral vortices generation for counter-rotating of two cylinders is also explained using the energy gradient theory. The energy gradient theory can also serve to relate the condition of flow tran...
Effects of Clinostat Rotation on Aurelia Statolith Synthesis
Spangenberg, Dorothy B.; Davis, S.; Ross-Clunis, H., III
1991-01-01
Aurelia ephyrae develop eight graviceptors (rhopalia) during their metamorphosis from polyps, which are used for positional orientation with respect to gravity. In three experiments for each speed of 1/15, 1/8, 1/2, 1, and 24 rpm, groups of six polyps were rotated in the horizontal or vertical plane (control) using clinostats. Other controls were kept stationary in the two planes. Ten ephyrae from each group were collected after 5 to 6 days at 27 C in iodine and the number of statoliths per rhopalium were counted. Statistical analyses of statolith numbers revealed that horizontal clinostat rotation at 1/4 and 1/2 rpm caused the formation of significantly fewer statoliths per rhopalium than were found in controls. The finding that these slow rates of rotation reduces statolith numbers suggests that the developing ephyrae were disoriented with respect to gravity at these speeds, causing fewer statocytes to differentiate or to mineralize.
Turbulence in the Stable Atmospheric Boundary Layer
Fernando, Harindra; Kit, Eliezer; Conry, Patrick; Hocut, Christopher; Liberzon, Dan
2016-11-01
During the field campaigns of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program, fine-scale measurements of turbulence in the atmospheric boundary layer (ABL) were made using a novel sonic and hot-film anemometer dyad (a combo probe). A swath of scales, from large down to Kolmogorov scales, was covered. The hot-film was located on a gimbal within the sonic probe volume, and was automated to rotate in the horizontal plane to align with the mean flow measured by sonic. This procedure not only helped satisfy the requirement of hot-film alignment with the mean flow, but also allowed in-situ calibration of hot-films. This paper analyzes a period of nocturnal flow that was similar to an idealized stratified parallel shear flow. Some new phenomena were identified, which included the occurrence of strong bursts in the velocity records indicative of turbulence generation at finer scales that are not captured by conventional sonic anemometers. The spectra showed bottleneck effect, but its manifestation did not fit into the framework of previous bottleneck-effect theories and was unequivocally related to bursts of turbulence. The measurements were also used to evaluate the energetics of stratified shear flows typical of the environment. ONR # N00014-11-1-0709; NSF # AGS-1528451; ISF 408/15.
Pluto's plasma wake oriented away from the ecliptic plane
Pérez-de-Tejada, H.; Durand-Manterola, H.; Reyes-Ruiz, M.; Lundin, R.
2015-01-01
Conditions similar to those observed in the solar wind interaction with Venus and Mars where there is a planetary atmosphere in the absence of a global intrinsic magnetic field may also be applicable to Pluto. With up to 24 μbars inferred for the Pluto atmosphere it is possible that the feeble solar photon radiation flux that reaches by its orbit, equivalent to ∼10-3 that at Earth, is sufficient to produce an ionization component that can be eroded by the solar wind. In view of the reduced solar wind density (∼10-3 with respect to that at 1 AU) that should be available by Pluto its total kinetic energy will be significantly smaller than that at Earth. However, the parameter values that are implied for the interaction process between the solar wind and the local upper ionosphere are sufficient to produce a plasma wake that should extend downstream from Pluto. In view of its low gravity force the plasma wake should have a wider cross-section than that in the Venus and Mars plasma environment. Since Pluto rotates with the axis tilted ∼30° away from the ecliptic plane the plasma wake will be influenced by a Magnus force that has a large component is the north-south solar polar direction. That force will be responsible for propelling the plasma wake with a component that can be directed away from that plane. It is estimated that transport of solar wind momentum to the upper Pluto's ionosphere implies rotation periods smaller than that of the solid body, and thus large values of the Magnus force that can increase the orientation of the plasma wake away from the ecliptic plane.
Bypass transition and subcritical turbulence in plane Poiseuille flow
Zammert, Stefan
2015-01-01
Plane Poiseuille flow shows turbulence at a Reynolds number that is lower than the critical one for the onset of Tollmien-Schlichting waves. The transition to turbulence follows the same route as the by-pass transition in boundary layers, i.e. finite amplitude perturbations are required and the flow is dominated by downstream vortices and streaks in the transitional regime. In order to relate the phenomenology in plane Poiseuille flow to our previous studies of plane Couette flow (Kreilos & Eckhardt, 2012), we study a symmetric subspace of plane Poiseuille flow in which the bifurcation cascade stands out clearly. By tracing the edge state, which in this system is a travelling wave, and its bifurcations, we can trace the formation of a chaotic attractor, the interior crisis that increase the phase space volume affected by the flow, and the ultimate transition into a chaotic saddle in a crisis bifurcation. After the boundary crisis we can observe transient chaos with exponentially distributed lifetimes.
Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly
Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.
2012-01-01
A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.
Deconstructing Mental Rotation
DEFF Research Database (Denmark)
Larsen, Axel
2014-01-01
A random walk model of the classical mental rotation task is explored in two experiments. By assuming that a mental rotation is repeated until sufficient evidence for a match/mismatch is obtained, the model accounts for the approximately linearly increasing reaction times (RTs) on positive trials...... alignment take place during fixations at very high speed....
Philip E. Pope; Jeffery O. Dawson
1989-01-01
Short-rotation plantations offer several advantages over longer, more traditional rotations. They enhance the natural productivity of better sites and of tree species with rapid juvenile growth. Returns on investment are realized in a shorter period and the risk of loss is reduced compared with long term investments. Production of wood and fiber can be maximized by...
Faraday rotation measure synthesis
Brentjens, MA; de Bruyn, AG
2005-01-01
We extend the rotation measure work of Burn ( 1966, MNRAS, 133, 67) to the cases of limited sampling of lambda(2) space and non-constant emission spectra. We introduce the rotation measure transfer function (RMTF), which is an excellent predictor of n pi ambiguity problems with the lambda(2) coverag
Le Vine, David
2016-01-01
Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).
AC electric field induced dipole-based on-chip 3D cell rotation.
Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui
2014-08-01
The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.
The Effect of Rotation on Oscillatory Double-diffusive Convection (Semiconvection)
Moll, Ryan; Garaud, Pascale
2017-01-01
Oscillatory double-diffusive convection (ODDC, more traditionally called semiconvection) is a form of linear double-diffusive instability that occurs in fluids that are unstably stratified in temperature (Schwarzschild unstable), but stably stratified in chemical composition (Ledoux stable). This scenario is thought to be quite common in the interiors of stars and giant planets, and understanding the transport of heat and chemical species by ODDC is of great importance to stellar and planetary evolution models. Fluids unstable to ODDC have a tendency to form convective thermocompositional layers that significantly enhance the fluxes of temperature and chemical composition compared with microscopic diffusion. Although a number of recent studies have focused on studying properties of both layered and nonlayered ODDC, few have addressed how additional physical processes such as global rotation affect its dynamics. In this work, we study first how rotation affects the linear stability properties of rotating ODDC. Using direct numerical simulations, we then analyze the effect of rotation on properties of layered and nonlayered ODDC, and we study how the angle of the rotation axis with respect to the direction of gravity affects layering. We find that rotating systems can be broadly grouped into two categories based on the strength of rotation. The qualitative behavior in the more weakly rotating group is similar to nonrotating ODDC, but strongly rotating systems become dominated by vortices that are invariant in the direction of the rotation vector and strongly influence transport. We find that whenever layers form, rotation always acts to reduce thermal and compositional transport.
Generalized plane gravitational waves of non-symmetric unified field theories in plane symmetry
Directory of Open Access Journals (Sweden)
Sanjiv R. Bhoyar
2012-12-01
Full Text Available In this paper we investigated the plane wave solutions of both the weak and strong non-symmetric unified field equations of Einstein and Bonner in a generalized plane symmetric space-time in the sense of Taub [Ann. Math. 53, 472 (1951] for plane gravitational waves. We show that the plane wave solutions of Einstein and Bonner field equations exist in plane symmetry.
The Milky Way rotation curve revisited
Russeil, D.; Zavagno, A.; Mège, P.; Poulin, Y.; Molinari, S.; Cambresy, L.
2017-05-01
The Herschel survey of the Galactic Plane (Hi-GAL) is a continuum Galactic plane survey in five wavebands at 70, 160, 250, 350 and 500 μm. From such images, about 150 000 sources have been extracted for which the distance determination is a challenge. In this context the velocity of these sources has been determined thanks to a large number of molecular data cubes. But to convert the velocity to kinematic distance, one needs to adopt a rotation curve for our Galaxy. For three different samples of tracers, we test different analytical forms. We find that the power-law expression, θ(R)/θ0 = 1.022 (R/R0)0.0803 with R0, θ0 = 8.34 kpc, 240 km s-1 is a good and easily manipulated expression for the distance determination process.
MBE growth and characterization of ZnTe epilayers on m-plane sapphire substrates
Energy Technology Data Exchange (ETDEWEB)
Nakasu, Taizo; Sun, Wei-Che; Yamashita, Sotaro; Aiba, Takayuki; Taguri, Kosuke [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8555 (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26, Tokyo 169-0051 (Japan); Asahi, Toshiaki [Technology Development Center, JX Nippon Mining and Metals Corporation, Hitachi 317-0056 (Japan); Togo, Hiroyoshi [NTT Microsystem Integration Laboratories, Atsugi 243-0198 (Japan)
2014-07-15
ZnTe epilayers were grown on transparent (10-10) oriented (m -plane) sapphire substrates by molecular beam epitaxy (MBE). Pole figure imaging was used to study the domain distribution within the layer. (211)-oriented ZnTe domains were formed on m -plane sapphire. The presence of only one kind of (211) ZnTe domain formed on the 2 -tilted m -plane sapphire substrates was confirmed. Thus, single domain (211) ZnTe epilayers can be grown on the m -plane sapphire using MBE. Although differences in the crystal structure and lattice mismatch are large, precise control of the substrate surface lattice arrangement result in the formation of high-quality epitaxial layers. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
De Lorenci, V A
1996-01-01
We investigate which mapping we have to use to compare measurements made in a rotating frame to those made in an inertial frame. Using a "Lorentz-like" coordinate transformation we obtain that creation-anihilation operators of a massless scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state (a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. After this, introducing an apparatus device coupled linearly with the field we obtain that there is a strong correlation between number of rotating particles (in a given state) obtained via canonical quantization and via response function of the rotating detector. Finally, we analyse polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view.
Uniformly rotating neutron stars
Boshkayev, Kuantay
2016-01-01
In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...
Elliptical Galaxies: Rotationally Distorted, After All
Directory of Open Access Journals (Sweden)
Caimmi, R.
2009-12-01
Full Text Available On the basis of earlier investigations onhomeoidally striated Mac Laurin spheroids and Jacobi ellipsoids (Caimmi and Marmo2005, Caimmi 2006a, 2007, different sequences of configurations are defined and represented in the ellipticity-rotation plane, $({sf O}hat{e}chi_v^2$. The rotation parameter, $chi_v^2$, is defined as the ratio, $E_mathrm{rot}/E_mathrm{res}$, of kinetic energy related to the mean tangential equatorial velocity component, $M(overline{v_phi}^2/2$, to kineticenergy related to tangential equatorial component velocity dispersion, $Msigma_{phiphi}^2/2$, andresidual motions, $M(sigma_{ww}^2+sigma_{33}^2/2$.Without loss of generality (above a thresholdin ellipticity values, the analysis is restricted to systems with isotropic stress tensor, whichmay be considered as adjoint configurationsto any assigned homeoidally striated density profile with anisotropic stress tensor, different angular momentum, and equal remaining parameters.The description of configurations in the$({sf O}hat{e}chi_v^2$ plane is extendedin two respects, namely (a from equilibriumto nonequilibrium figures, where the virialequations hold with additional kinetic energy,and (b from real to imaginary rotation, wherethe effect is elongating instead of flattening,with respect to the rotation axis.An application is made toa subsample $(N=16$ of elliptical galaxies extracted from richer samples $(N=25,~N=48$of early type galaxies investigated within theSAURON project (Cappellari et al. 2006, 2007.Sample objects are idealized as homeoidallystriated MacLaurinspheroids and Jacobi ellipsoids, and theirposition in the $({sf O}hat{e}chi_v^2$plane is inferred from observations followinga procedure outlined in an earlier paper(Caimmi 2009b. The position of related adjoint configurations with isotropic stresstensor is also determined. With a singleexception (NGC 3379, slow rotators arecharacterized by low ellipticities $(0lehat{e}<0.2$, low anisotropy parameters$(0ledelta<0
Matsushima, Kyoji
2008-07-01
Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.
Rotation of single live mammalian cells using dynamic holographic optical tweezers
Bin Cao; Kelbauskas, Laimonas; Chan, Samantha; Shetty, Rishabh M.; Smith, Dean; Meldrum, Deirdre R.
2017-05-01
We report on a method for rotating single mammalian cells about an axis perpendicular to the optical system axis through the imaging plane using dynamic holographic optical tweezers (HOTs). Two optical traps are created on the opposite edges of a mammalian cell and are continuously transitioned through the imaging plane along the circumference of the cell in opposite directions, thus providing the torque to rotate the cell in a controlled fashion. The method enables a complete 360° rotation of live single mammalian cells with spherical or near-to spherical shape in 3D space, and represents a useful tool suitable for the single cell analysis field, including tomographic imaging.
Fourier-Bessel rotational invariant eigenimages.
Zhao, Zhizhen; Singer, Amit
2013-05-01
We present an efficient and accurate algorithm for principal component analysis (PCA) of a large set of two-dimensional images and, for each image, the set of its uniform rotations in the plane and its reflection. The algorithm starts by expanding each image, originally given on a Cartesian grid, in the Fourier-Bessel basis for the disk. Because the images are essentially band limited in the Fourier domain, we use a sampling criterion to truncate the Fourier-Bessel expansion such that the maximum amount of information is preserved without the effect of aliasing. The constructed covariance matrix is invariant to rotation and reflection and has a special block diagonal structure. PCA is efficiently done for each block separately. This Fourier-Bessel-based PCA detects more meaningful eigenimages and has improved denoising capability compared to traditional PCA for a finite number of noisy images.
Fourier–Bessel rotational invariant eigenimages
Zhao, Zhizhen; Singer, Amit
2013-01-01
We present an efficient and accurate algorithm for principal component analysis (PCA) of a large set of two-dimensional images and, for each image, the set of its uniform rotations in the plane and its reflection. The algorithm starts by expanding each image, originally given on a Cartesian grid, in the Fourier–Bessel basis for the disk. Because the images are essentially band limited in the Fourier domain, we use a sampling criterion to truncate the Fourier–Bessel expansion such that the maximum amount of information is preserved without the effect of aliasing. The constructed covariance matrix is invariant to rotation and reflection and has a special block diagonal structure. PCA is efficiently done for each block separately. This Fourier–Bessel-based PCA detects more meaningful eigenimages and has improved denoising capability compared to traditional PCA for a finite number of noisy images. PMID:23695317
Gravitational and rotational effects in quantum interference
Energy Technology Data Exchange (ETDEWEB)
Anandan, J.
1977-03-15
The phase shift due to gravitation and rotation in the quantum interference of two coherent beams is obtained relativistically and compared with the recent experiment of Colella, Overhauser, and Werner. A general expression relating the quantum phase shift to the transverse acceleration of a classical particle in the plane of interference for an arbitrary interaction with any external field is given. This can serve as a correspondence principle between quantum physics and classical physics. The phase shift due to the coupling of spin to curvature of space-time is deduced and written explicitly for the special case of a Schwarzschild field. The last result implies that a massless spinning particle can have at most two helicity states and its world line in a gravitational field is a null geodesic. Finally, new experiments are proposed to test the effect of rotation on quantum interference and to obtain direct evidence of the equivalence principle in quantum mechanics.