Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation
Energy Technology Data Exchange (ETDEWEB)
Mattingly, David M. [New Hamshire Univ., Durham, NH (United States); Maccione, Luca [DESY Hamburg (Germany). Theory Group; Galaverni, Matteo [INAF-IASF Bologna (Italy); Liberati, Stefano [INFN, Trieste (Italy); SISSA, Trieste (Italy); Sigl, Guenter [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2009-11-15
We study, within an effective field theory framework, O(E{sup 2}/M{sup 2}{sub Pl}) Planck-scale suppressed Lorentz invariance violation (LV) effects in the neutrino sector, whose size we parameterize by a dimensionless parameter {eta}{sub {nu}}. We find deviations from predictions of Lorentz invariant physics in the cosmogenic neutrino spectrum. For positive O(1) coefficients no neutrino will survive above 10{sup 19} eV. The existence of this cutoff generates a bump in the neutrino spectrum at energies of 10{sup 17} eV. Although at present no constraint can be cast, as current experiments do not have enough sensitivity to detect ultra-high-energy neutrinos, we show that experiments in construction or being planned have the potential to cast limits as strong as {eta}{sub {nu}}
New limits on Planck scale Lorentz violation in QED.
Jacobson, T; Liberati, S; Mattingly, D; Stecker, F W
2004-07-09
Constraints on possible Lorentz symmetry violation (LV) of order E/M(Planck) for electrons and photons in the framework of effective field theory (EFT) are discussed. Using (i) the report of polarized MeV emission from GRB021206 and (ii) the absence of vacuum Cerenkov radiation from synchrotron electrons in the Crab Nebula, we improve previous bounds by 10(-10) and 10(-2), respectively. We also show that the LV parameters for positrons and electrons are different, discuss electron helicity decay, and investigate how prior constraints are modified by the relations between LV parameters implied by EFT.
Planck-scale Lorentz violation constrained by ultra-high-energy cosmic rays
Energy Technology Data Exchange (ETDEWEB)
Maccione, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. Hamburg, II. Inst. fuer Theoretische Physik (Germany); Taylor, A.M. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Mattingly, D.M.; Liberati, S. [Scuola Internazionale Superiore di Studi Avanzati SISSA, Trieste (Italy); Istituto Nazionale di Fisica Nucleare INFN, Sezione di Trieste (Italy)
2009-09-15
We investigate the consequences of higher dimension Lorentz violating, CPT even kinetic operators that couple standard model fields to a non-zero vector field in an Effective Field Theory framework. Comparing the ultra-high energy cosmic ray spectrum reconstructed in the presence of such terms with data from the Pierre Auger observatory allows us to establish two sided bounds on the coefficients of the mass dimension five and six operators for the proton and pion. Our bounds imply that for both protons and pions, the energy scale of Lorentz symmetry breaking must be well above the Planck scale. In particular, the dimension five operators are constrained at the level of 10{sup -3}M{sup -1}{sub Planck}. The magnitude of the dimension six proton coefficient is bounded at the level of 10{sup -6}M{sup -2}{sub Planck} except in a narrow range where the pion and proton coefficients are both negative and nearly equal. In this small area, the magnitude of the dimension six proton coefficient must only be below 10{sup -3}M{sup -2}{sub Planck}. Constraints on the dimension six pion coefficient are found to be much weaker, but still below M{sup -2}{sub Planck}. (orig.)
A New Limit on Planck Scale Lorentz Violation from Gamma-ray Burst Polarization
Stecker, Floyd W.
2011-01-01
Constraints on possible Lorentz invariance violation (UV) to first order in E/M(sub Plank) for photons in the framework of effective field theory (EFT) are discussed, taking cosmological factors into account. Then. using the reported detection of polarized soft gamma-ray emission from the gamma-ray burst GRB041219a that is indicative' of an absence of vacuum birefringence, together with a very recent improved method for estimating the redshift of the burst, we derive constraints on the dimension 5 Lorentz violating modification to the Lagrangian of an effective local QFT for QED. Our new constraints are more than five orders of magnitude better than recent constraints from observations of the Crab Nebula.. We obtain the upper limit on the Lorentz violating dimension 5 EFT parameter absolute value of zeta of 2.4 x 10(exp -15), corresponding to a constraint on the dimension 5 standard model extension parameter. Kappa (sup 5) (sub (v)oo) much less than 4.2 X 10(exp -3)4 / GeV.
Kislat, Fabian; Krawczynski, Henric
2017-04-01
Lorentz invariance is the fundamental symmetry of Einstein's theory of special relativity and has been tested to a great level of detail. However, theories of quantum gravity at the Planck scale indicate that Lorentz symmetry may be broken at that scale, motivating further tests. While the Planck energy is currently unreachable by experiment, tiny residual effects at attainable energies can become measurable when photons propagate over sufficiently large distances. The Standard-Model extension (SME) is an effective field-theory approach to describe low-energy effects of quantum gravity theories. Lorentz- and C P T -symmetry-violating effects are introduced by adding additional terms to the Standard-Model Lagrangian. These terms can be ordered by the mass dimension of the corresponding operator, and the leading terms of interest have dimension d =5 . Effects of these operators are a linear variation of the speed of light with photon energy, and a rotation of the linear polarization of photons quadratic in photon energy, as well as anisotropy. We analyze optical polarization data from 72 active galactic nuclei and GRBs and derive the first set of limits on all 16 coefficients of mass dimension d =5 of the SME photon sector. Our constraints imply a lower limit on the energy scale of quantum gravity of 1 06 times the Planck energy, severely limiting the phase space for any theory that predicts a rotation of the photon polarization quadratic in energy.
Lorentz invariant ultraviolet cutoff and inhomogeneity of space at the Planck scale
Bose, Arko
2010-01-01
The suspicion that the existence of a minimal uncertainty in position measurements violates Lorentz invariance seems unfounded. It is shown that Lorentz invariance not only predicts the existence of such a minimal uncertainty in position, it also fixes the algebra between position and momentum which gives rise to this minimal uncertainty. We also investigate how this algebra affects the underlying quantum mechanical structure, and why, at the Planck scale, space can no longer be considered homogeneous.
Bose, Arko
2010-01-01
The suspicion that the existence of a minimal uncertainty in position measurements violates Lorentz invariance seems unfounded. It is shown that the existence of such a nonzero minimal uncertainty in position is not only consistent with Lorentz invariance, but that the latter also fixes the algebra between position and momentum which gives rise to this minimal uncertainty. We also investigate how this algebra affects the underlying quantum mechanical structure, and why, at the Planck scale, space can no longer be considered homogeneous.
Lorentz violation. Motivation and new constraints
Energy Technology Data Exchange (ETDEWEB)
Liberati, S. [Scuola Internazionale Superiore di Studi Avanzati SISSA, Trieste (Italy); Istituto Nazionale di Fisica Nucleare INFN, Sezione di Trieste (Italy); Maccione, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-09-15
We review the main theoretical motivations and observational constraints on Planck scale sup-pressed violations of Lorentz invariance. After introducing the problems related to the phenomenological study of quantum gravitational effects, we discuss the main theoretical frameworks within which possible departures from Lorentz invariance can be described. In particular, we focus on the framework of Effective Field Theory, describing several possible ways of including Lorentz violation therein and discussing their theoretical viability. We review the main low energy effects that are expected in this framework. We discuss the current observational constraints on such a framework, focusing on those achievable through high-energy astrophysics observations. In this context we present a summary of the most recent and strongest constraints on QED with Lorentz violating non-renormalizable operators. Finally, we discuss the present status of the field and its future perspectives. (orig.)
Search for anisotropic Lorentz invariance violation with {\\gamma}-rays
Kislat, Fabian
2015-01-01
While Lorentz invariance, the fundamental symmetry of Einstein's theory of General Relativity, has been tested to a great level of detail, Grand Unified Theories that combine gravity with the other three fundamental forces may result in a violation of Lorentz symmetry at the Planck scale. These energies are unattainable experimentally. However, minute deviations from Lorentz invariance may still be present at much lower energies. These deviations can accumulate over large distances, making astrophysical measurements the most sensitive tests of Lorentz symmetry. One effect of Lorentz invariance violation is an energy dependent photon dispersion of the vacuum resulting in differences of the light travel time from distant objects. The Standard-Model Extension (SME) is an effective theory to describe the low-energy behaviour of a more fundamental Grand Unified Theory, including Lorentz and CPT violating terms. In the SME the Lorentz violating operators can in part be classified by their mass-dimension d, with the...
Lorentz violation naturalness revisited
Belenchia, Alessio; Liberati, Stefano
2016-01-01
We revisit here the naturalness problem of Lorentz invariance violations on a simple toy model of a scalar field coupled to a fermion field via a Yukawa interaction. We first review some well-known results concerning the low-energy percolation of Lorentz violation from high energies, presenting some details of the analysis not explicitly discussed in the literature and discussing some previously unnoticed subtleties. We then show how a separation between the scale of validity of the effective field theory and that one of Lorentz invariance violations can hinder this low-energy percolation. While such protection mechanism was previously considered in the literature, we provide here a simple illustration of how it works and of its general features. Finally, we consider a case in which dissipation is present, showing that the dissipative behaviour does not percolate generically to lower mass dimension operators albeit dispersion does. Moreover, we show that a scale separation can protect from unsuppressed low-en...
Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction
Rovelli, Carlo; Speziale, Simone
2003-03-01
A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer can see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts, and give the conditions under which its action is unitary.
Lorentz violation naturalness revisited
Energy Technology Data Exchange (ETDEWEB)
Belenchia, Alessio; Gambassi, Andrea; Liberati, Stefano [SISSA - International School for Advanced Studies, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste, via Valerio 2, 34127 Trieste (Italy)
2016-06-08
We revisit here the naturalness problem of Lorentz invariance violations on a simple toy model of a scalar field coupled to a fermion field via a Yukawa interaction. We first review some well-known results concerning the low-energy percolation of Lorentz violation from high energies, presenting some details of the analysis not explicitly discussed in the literature and discussing some previously unnoticed subtleties. We then show how a separation between the scale of validity of the effective field theory and that one of Lorentz invariance violations can hinder this low-energy percolation. While such protection mechanism was previously considered in the literature, we provide here a simple illustration of how it works and of its general features. Finally, we consider a case in which dissipation is present, showing that the dissipative behaviour does not percolate generically to lower mass dimension operators albeit dispersion does. Moreover, we show that a scale separation can protect from unsuppressed low-energy percolation also in this case.
CPT violation implies violation of Lorentz invariance.
Greenberg, O W
2002-12-02
A interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal.
Lorentz violation and neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Mewes, Matthew [Marquette University, P.O. Box 1881, Milwaukee, WI 53201 (United States)
2011-12-15
Lorentz violation naturally leads to neutrino oscillations and provides an alternative mechanism that may explain current data. This contribution to the proceedings of The XXII International Conference on Neutrino Physics and Astrophysics provides a brief review of possible signals of Lorentz violation in neutrino-oscillation experiments.
Dynamical ambiguities in models with spontaneous Lorentz violation
Bonder, Yuri
2016-01-01
Spontaneous Lorentz violation is a viable mechanism to look for Planck scale physics. In this work, we study spontaneous Lorentz violation models, in flat spacetime, where a vector field produces such a violation and matter is modeled by a complex scalar field. We show that it is possible to construct a Hamilton density for which the evolution respects the dynamical constraints. However, we also find that the initial data, as required by standard field theory, does not determine the fields evolution in a unique way. In addition, we present some examples where the physical effects of such ambiguities can be recognized. As a consequence, the proposals in which the electromagnetic and gravitational interactions emerge from spontaneous Lorentz violation are challenged.
Lorentz-violating inflationary magnetogenesis
Energy Technology Data Exchange (ETDEWEB)
Campanelli, Leonardo [Universita di Bari, Dipartimento di Fisica, Bari (Italy)
2015-06-15
A non-conformally invariant coupling between the inflaton and the photon in the minimal Lorentz-violating standard model extension is analyzed. For specific forms of the Lorentz-violating background tensor, the strong-coupling and back-reaction problems of magnetogenesis in de Sitter inflation with scale ∝ 10{sup 16} GeV are evaded, the electromagnetic-induced primordial spectra of (Gaussian and non-Gaussian) scalar and tensor curvature perturbations are compatible with cosmic microwave background observations, and the inflation-produced magnetic field directly accounts for cosmic magnetic fields. (orig.)
Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale
Gorbunov, D S
2005-01-01
We present an extension of the Randall--Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam--Veltman--Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.
Lorentz violation, gravity, dissipation and holography
National Research Council Canada - National Science Library
Kiritsis, Elias
2013-01-01
We reconsider Lorentz Violation (LV) at the fundamental level. We argue that Lorentz Violation is intimately connected with gravity and that LV couplings in QFT must always be fields in a gravitational sector...
Nuclear beta decay with Lorentz violation
Noordmans, J.P.; Wilschut, H. W.; Timmermans, R. G. E.
2013-01-01
We consider the possibility of Lorentz-invariance violation in weak-decay processes. We present a general approach that entails modifying the W-boson propagator by adding a Lorentz-violating tensor to it. We describe the effects of Lorentz violation on nuclear beta decay in this scenario. In
Lorentz violation in supersymmetric field theories.
Nibbelink, Stefan Groot; Pospelov, Maxim
2005-03-04
We construct supersymmetric Lorentz violating operators for matter and gauge fields. We show that in the supersymmetric standard model the lowest possible dimension for such operators is five, and therefore they are suppressed by at least one power of an ultraviolet energy scale, providing a possible explanation for the smallness of Lorentz violation and its stability against radiative corrections. Supersymmetric Lorentz noninvariant operators do not lead to modifications of dispersion relations at high energies thereby escaping constraints from astrophysical searches for Lorentz violation.
Cosmological constraints on Lorentz violation in electrodynamics.
Kostelecký, V A; Mewes, M
2001-12-17
Infrared, optical, and ultraviolet spectropolarimetry of cosmological sources is used to constrain the pure electromagnetic sector of a general Lorentz-violating standard-model extension. The coefficients for Lorentz violation are bounded to less than 3 x 10(-32).
Lorentz violation and deep inelastic scattering
Directory of Open Access Journals (Sweden)
V. Alan Kostelecký
2017-06-01
Full Text Available The effects of quark-sector Lorentz violation on deep inelastic electron–proton scattering are studied. We show that existing data can be used to establish first constraints on numerous coefficients for Lorentz violation in the quark sector at an estimated sensitivity of parts in a million.
Lorentz violation and deep inelastic scattering
Kostelecký, V. Alan; Lunghi, E.; Vieira, A. R.
2017-06-01
The effects of quark-sector Lorentz violation on deep inelastic electron-proton scattering are studied. We show that existing data can be used to establish first constraints on numerous coefficients for Lorentz violation in the quark sector at an estimated sensitivity of parts in a million.
Lorentz violation and deep inelastic scattering
Kostelecky, Alan; Vieira, A R
2016-01-01
The effects of quark-sector Lorentz violation on deep inelastic electron-proton scattering are studied. We show that existing data can be used to establish first constraints on numerous coefficients for Lorentz violation in the quark sector at an estimated sensitivity of parts in a million.
Gluonic Lorentz violation and chiral perturbation theory
Noordmans, J. P.
2017-04-01
By applying chiral-perturbation-theory methods to the QCD sector of the Lorentz-violating Standard-Model Extension, we investigate Lorentz violation in the strong interactions. In particular, we consider the C P T -even pure-gluon operator of the minimal Standard-Model Extension. We construct the lowest-order chiral effective Lagrangian for three as well as two light quark flavors. We develop the power-counting rules and construct the heavy-baryon chiral-perturbation-theory Lagrangian, which we use to calculate Lorentz-violating contributions to the nucleon self-energy. Using the constructed effective operators, we derive the first stringent limits on many of the components of the relevant Lorentz-violating parameter. We also obtain the Lorentz-violating nucleon-nucleon potential. We suggest that this potential may be used to obtain new limits from atomic-clock or deuteron storage-ring experiments.
Lorentz violation and perpetual motion
Eling, Christopher; Foster, Brendan Z.; Jacobson, Ted; Wall, Aron C.
2007-05-01
We show that any Lorentz-violating theory with two or more propagation speeds is in conflict with the generalized second law of black hole thermodynamics. We do this by identifying a classical energy-extraction method, analogous to the Penrose process, which would decrease the black hole entropy. Although the usual definitions of black hole entropy are ambiguous in this context, we require only very mild assumptions about its dependence on the mass. This extends the result found by Dubovsky and Sibiryakov, which uses the Hawking effect and applies only if the fields with different propagation speeds interact just through gravity. We also point out instabilities that could interfere with their black hole perpetuum mobile, but argue that these can be neglected if the black hole mass is sufficiently large.
Lorentz violation and perpetual motion
Eling, C; Jacobson, T; Wall, A C; Eling, Christopher; Foster, Brendan Z.; Jacobson, Ted; Wall, Aron C.
2007-01-01
We show that any Lorentz violating theory with two or more propagation speeds is in conflict with the generalized second law of black hole thermodynamics. We do this by identifying a classical energy-extraction method, analogous to the Penrose process, which would decrease the black hole entropy. Although the usual definitions of black hole entropy are ambiguous in this context, we require only very mild assumptions about its dependence on the mass. This extends the result found by Dubovsky and Sibiryakov, which uses the Hawking effect and applies only if the fields with different propagation speeds interact just through gravity. We also point out instabilities that could interfere with their black hole {\\it perpetuum mobile}, but argue that these can be neglected if the black hole mass is sufficiently large.
Asymptotic behavior of Lorentz violation on orbifolds
Uekusa, Nobuhiro
2010-01-01
Momentum dependence of quantum corrections with higher-dimensional Lorentz violation is examined in electrodynamics on orbifolds. It is shown that effects of the Lorentz violation are not decoupled at high energy scales. Despite the loss of the higher-dimensional Lorentz invariance, a higher-dimensional Ward identity is found to be fulfilled for one-loop vacuum polarization. This implies that gauge invariance may be prior to Lorentz invariance as a guiding principle in higher-dimensional field theory. As a universal application of electrodynamics, an extra-dimensional aspect for Furry's theorem is emphasized.
Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects?
Energy Technology Data Exchange (ETDEWEB)
Gambini, Rodolfo; Rastgoo, Saeed [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Igua 4225, CP 11400 Montevideo (Uruguay); Pullin, Jorge [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)
2011-08-07
We discuss the applicability of the argument of Collins, Perez, Sudarsky, Urrutia and Vucetich to loop quantum gravity. This argument suggests that Lorentz violations, even ones that only manifest themselves at energies close to the Planck scale, have significant observational consequences at low energies when one considers perturbative quantum field theory and renormalization. We show that non-perturbative treatments like those of loop quantum gravity may generate deviations of Lorentz invariance of a different type than those considered by Collins et al (2004 Phys. Rev. Lett. 93 191301) that do not necessarily imply observational consequences at low energy.
Vacuum Cherenkov Radiation In Quantum Electrodynamics With High-Energy Lorentz Violation
Anselmi, Damiano
2011-01-01
We study phenomena predicted by a renormalizable, CPT invariant extension of the Standard Model that contains higher-dimensional operators and violates Lorentz symmetry explicitly at energies greater than some scale Lambda_{L}. In particular, we consider the Cherenkov radiation in vacuo. In a rather general class of dispersion relations, there exists an energy threshold above which radiation is emitted. The threshold is enhanced in composite particles by a sort of kinematic screening mechanism. We study the energy loss and compare the predictions of our model with known experimental bounds on Lorentz violating parameters and observations of ultrahigh-energy cosmic rays. We argue that the scale of Lorentz violation Lambda_{L} (with preserved CPT invariance) can be smaller than the Planck scale, actually as small as 10^{14}-10^{15} GeV. Our model also predicts the Cherenkov radiation of neutral particles.
Constrained gauge fields from spontaneous Lorentz violation
DEFF Research Database (Denmark)
Chkareuli, J. L.; Froggatt, C. D.; Jejelava, J. G.
2008-01-01
Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type AµAµ=M2 (M is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant...... theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory...... proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and CPT) violating...
Recent Progress in Lorentz and CPT Violation
Kostelecky, Alan
2016-01-01
This contribution to the CPT'16 meeting briefly highlights some of the recent progress in the phenomenology of Lorentz and CPT violation, with emphasis on research performed at the Indiana University Center for Spacetime Symmetries.
Possibilities for Lorentz violation in nonleptonic decays
Keri Vos, K.; Wilschut, H.W.; Timmermans, R.G.E.
2015-01-01
The weak interaction offers an interesting portal to search for Lorentz symmetry breaking. We explore the possibilities to study Lorentz violation in nonleptonic decays, focusing on the recent measurement of the KLOE collaboration of the directional dependence of the lifetime of the neutral kaon
Noncommutative field theory and Lorentz violation.
Carroll, S M; Harvey, J A; Kostelecký, V A; Lane, C D; Okamoto, T
2001-10-01
The role of Lorentz symmetry in noncommutative field theory is considered. Any realistic noncommutative theory is found to be physically equivalent to a subset of a general Lorentz-violating standard-model extension involving ordinary fields. Some theoretical consequences are discussed. Existing experiments bound the scale of the noncommutativity parameter to (10 TeV)(-2).
Hiding Lorentz invariance violation with MOND
Sanders, R. H.
2011-01-01
Horava-Lifshitz gravity is an attempt to construct a renormalizable theory of gravity by breaking the Lorentz invariance of the gravitational action at high energies. The underlying principle is that Lorentz invariance is an approximate symmetry and its violation by gravitational phenomena is
Question of Lorentz violation in muon decay
Noordmans, J. P.; Onderwater, C. J. G.; Wilschut, H. W.; Timmermans, R. G. E.
2016-01-01
Possibilities to test the Lorentz invariance of the weak interaction in muon decay are considered. We derive the direction-dependent muon-decay rate with a general Lorentz-violating addition to the W-boson propagator. We discuss measurements of the directional and boost dependence of the Michel para
Lorentz violations in multifractal spacetimes
Calcagni, Gianluca
2016-01-01
Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would manifest an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with $q$-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is $E_*>10^{14}\\,\\text{GeV}$ (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value $1/2$. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not...
Lorentz violations in multifractal spacetimes
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca [Instituto de Estructura de la Materia, CSIC, Madrid (Spain)
2017-05-15
Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would display an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with q-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is E{sub *} > 10{sup 14} GeV (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value 1 / 2. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not change much the bounds obtained in their absence, unless the amplitude of the oscillations is fine tuned. This feature, unavailable in known quantum-gravity scenarios, may help the theory to avoid being ruled out by gamma-ray burst (GRB) observations, for which E{sub *} > 10{sup 17} GeV or greater. (orig.)
Lorentz violations in multifractal spacetimes
Calcagni, Gianluca
2017-05-01
Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would display an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with q-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is E_{*}>10^{14} {GeV} (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value 1 / 2. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not change much the bounds obtained in their absence, unless the amplitude of the oscillations is fine tuned. This feature, unavailable in known quantum-gravity scenarios, may help the theory to avoid being ruled out by gamma-ray burst (GRB) observations, for which E_{*}> 10^{17} {GeV} or greater.
Probes of Lorentz Violation in Neutrino Propagation
Ellis, Jonathan Richard; Meregaglia, Anselmo; Rubbia, André; Sakharov, Alexander S
2008-01-01
It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1 +- (E/M_\
Gauge anomalies in Lorentz-violating QED
Santos, Tiago R. S.; Sobreiro, Rodrigo F.
2016-12-01
In this work we study the issue of gauge anomalies in Lorentz-violating QED. To do so, we opt to use the Becchi-Rouet-Stora-Tyutin formalism within the algebraic renormalization approach, reducing our study to a cohomology problem. Since this approach is independent of the renormalization scheme, the results obtained here are expected to be general. We find that the Lorentz-violating QED is free of gauge anomalies to all orders in perturbation theory.
Gauge anomalies in Lorentz-violating QED
Santos, Tiago R S
2016-01-01
In this work we study the issue of gauge anomalies in Lorentz-violating QED. To do so, we opt to use the BRST formalism within of the algebraic renormalization approach, reducing our study to a cohomology problem. Since that this approach is independent of the renormalization scheme, the results here obtained are expected to be general. We find that the Lorentz-violating QED is free of gauge anomalies to all orders in perturbation theory.
Macroscopic Objects, Intrinsic Spin, and Lorentz Violation
Atkinson, David W; Tasson, Jay D
2013-01-01
The framework of the Standard-Model Extension (SME) provides a relativistic quantum field theory for the study of Lorentz violation. The classical, nonrelativistic equations of motion can be extracted as a limit that is useful in various scenarios. In this work, we consider the effects of certain SME coefficients for Lorentz violation on the motion of macroscopic objects having net intrinsic spin in the classical, nonrelativistic limit.
Lorentz violation and Condensed Matter Physics
Ajaib, Muhammad Adeel
2014-01-01
We present heuristic arguments that hint to a possible connection of Lorentz violation with observed phenomenon in condensed matter physics. Various references from condensed matter literature are cited where operators in the Standard Model Extension (SME) appear to be enhanced. Based on this we propose that, in the non-relativistic limit, Lorentz violation in the context of the SME exhibits itself in various condensed matter systems.
Hadronic Lorentz violation in chiral perturbation theory
Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.
2017-03-01
Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation at the underlying quark level. The relationships between the theories at these two levels are studied using chiral perturbation theory. Starting from a two-flavor quark theory that includes dimension-4 Lorentz-violation operators, the effective Lagrangians are derived for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz-violation coefficients for nucleons and pions are all related to a single set of underlying quark coefficients, one can compare the sensitivity of different types of experiments. Our analysis shows that atomic physics experiments currently provide constraints on the quark parameters that are stronger by about 10 orders of magnitude than astrophysical experiments with relativistic pions. Alternatively, it is possible to place approximate bounds on pion Lorentz violation using only proton and neutron observations. Under the assumption that the Lorentz-violating operators considered here are the only ones contributing to the relevant observables and taking the currently unknown hadronic low-energy constants to be of natural size, the resulting estimated bounds on four pion parameters are at the 10-23 level, representing improvements of 10 orders of magnitude.
Alternative theories of gravity and Lorentz violation
Xu, Rui; Foster, Joshua; Kostelecky, V. Alan
2017-01-01
General relativity has achieved many successes, including the prediction of experimental results. However, its incompatibility with quantum theory remains an obstacle. By extending the foundational properties of general relativity, alternative theories of gravity can be constructed. In this talk, we focus on fermion couplings in the weak-gravity limit of certain alternative theories of gravity. Under suitable experimental circumstances, some of these couplings match terms appearing in the gravitational SME, which is a general framework describing violations of local Lorentz invariance. Existing limits on Lorentz violation can therefore be used to constrain certain Lorentz-invariant alternative theories of gravity.
Photon gravitational defection in Lorentz violating scenarios
Accioly, Antonio; Helayël-Neto, José
2016-01-01
The effect of Lorentz symmetry violation in the phenomenon of photon gravitational bending, is investigated. Using a semiclassical approach, where the photon is described by the Carrol-Field-Jackiw (CFJ) electrodynamics which is responsible for implementing the Lorentz symmetry violation, the gravitational deflection angle related to the CFJ photon is computed. As expected, this bending angle experiences a deviation from the usual Einstein result and the latter is recovered in the appropriate limit. A comparison between the theoretical prediction and the experimental results allows to conclude that no trace of Lorentz symmetry breaking is found provided the components of the background vector field are $\\lesssim 10^{-8}$ eV.
Cosmological Background torsion limits from Lorentz violation
Garcia de Andrade, L C
2001-01-01
Cosmological limits on Lorentz invariance breaking in Chern-Simons $(3+1)-dimensional$ electrodynamics are used to place limits on torsion. Birefrigence phenomena is discussed by using extending the propagation equation to Riemann-Cartan spacetimes instead of treating it in purely Riemannian spaces. The parameter of Lorentz violation is shown to be proportional to the axial torsion vector which allows us to place a limit on cosmological background torsion from the Lorentz violation constraint which is given by $ 10^{-33} eV <|S^{\\mu}| < 10^{-32} eV$ where $|S^{\\mu}|$ is the axial torsion vector.
Lorentz-violating electrodynamics and the cosmic microwave background.
Kostelecký, V Alan; Mewes, Matthew
2007-07-06
Possible Lorentz-violating effects in the cosmic microwave background are studied. We provide a systematic classification of renormalizable and nonrenormalizable operators for Lorentz violation in electrodynamics and use polarimetric observations to search for the associated violations.
Baryogenesis in Lorentz-violating gravity theories
Sakstein, Jeremy; Solomon, Adam R.
2017-10-01
Lorentz-violating theories of gravity typically contain constrained vector fields. We show that the lowest-order coupling of such vectors to U (1)-symmetric scalars can naturally give rise to baryogenesis in a manner akin to the Affleck-Dine mechanism. We calculate the cosmology of this new mechanism, demonstrating that a net B - L can be generated in the early Universe, and that the resulting baryon-to-photon ratio matches that which is presently observed. We discuss constraints on the model using solar system and astrophysical tests of Lorentz violation in the gravity sector. Generic Lorentz-violating theories can give rise to the observed matter-antimatter asymmetry without violating any current bounds.
Looking for Lorentz violation with gravitational waves
Schreck, M
2016-01-01
The current letter has been inspired by the recent direct detection of gravitational waves reported by Advanced LIGO. In this context, a particular Lorentz-violating framework for classical, massive particles is on the focus. The latter is characterized by a preferred direction in spacetime comprised of CPT-odd components with mass dimension 1. Curvature effects in spacetime, which are caused by a propagating gravitational wave, are assumed to deform the otherwise constant background field. In accordance with spontaneous Lorentz violation, a particular choice for the vector field is taken, which was proposed elsewhere. The geodesic equations for a particle that is subject to this type of Lorentz violation are obtained. Subsequently, their numerical solutions are computed and discussed. The particular model considered leads to changes in the particle trajectory, which interferometric gravitational-wave experiments could be sensitive for. Since such effects have not been observed in the gravitational-wave event...
Velocity in Lorentz-Violating Fermion Theories
Altschul, B D; Colladay, Don
2004-01-01
We consider the role of the velocity in Lorentz-violating fermionic quantum theory, especially emphasizing the nonrelativistic regime. Information about the velocity will be important for the kinematical analysis of scattering and other problems. Working within the minimal standard model extension, we derive new expressions for the velocity. We find that generic momentum and spin eigenstates may not have well-defined velocities. We also demonstrate how several different techniques may be used to shed light on different aspects of the problem. A relativistic operator analysis allows us to study the behavior of the Lorentz-violating Zitterbewegung. Alternatively, by studying the time evolution of Gaussian wave packets, we find that there are Lorentz-violating modifications to the wave packet spreading and the spin structure of the wave function.
Lorentz violation in simple QED processes
de Brito, G P; Kroff, D; Malta, P C; Marques, C
2016-01-01
We determine the effect of a CPT-even and Lorentz violating non-minimal coupling on the differential cross sections for some of the most important tree-level processes in QED, namely, Compton and Bhabha scatterings, as well as electron-positron annihilation. Experimental limits constraining the allowed deviation of the differential cross sections relative to pure QED allow us to place upper bounds on the Lorentz violating parameters. A constraint based on the decay rate of para-positronium is also obtained.
Bluhm, R
2004-01-01
A status report is given of some recent theoretical and experimental investigations looking for signals of Lorentz violation in QED. Experiments with light, charged particles, and atoms have exceptional sensitivity to small shifts in energy caused by Lorentz violation, including effects that could originate from new physics at the Planck scale.
Extra dimensions and violations of Lorentz symmetry
Overduin, James M
2016-01-01
We use experimental limits on Lorentz violation to obtain new constraints on Kaluza-Klein-type theories in which the extra dimensions may be large but do not necessarily have units of length. The associated variation in fundamental quantities such as rest mass must occur slowly, on cosmological scales.
Lorentz Violating Julia-Toulouse Mechanism
Gaete, P; Gaete, Patricio; Wotzasek, Clovis
2007-01-01
We propose a new Lorentz invariant violating extension for the pure photonic sector of the Standard Model due to the condensation of topological defects in the context of the Julia-Toulouse mechanism. Possible physical consequences leading to direct measurable effects over the confining properties of the elementary particles are explored.
Constraining Lorentz violation with cosmology.
Zuntz, J A; Ferreira, P G; Zlosnik, T G
2008-12-31
The Einstein-aether theory provides a simple, dynamical mechanism for breaking Lorentz invariance. It does so within a generally covariant context and may emerge from quantum effects in more fundamental theories. The theory leads to a preferred frame and can have distinct experimental signatures. In this Letter, we perform a comprehensive study of the cosmological effects of the Einstein-aether theory and use observational data to constrain it. Allied to previously determined consistency and experimental constraints, we find that an Einstein-aether universe can fit experimental data over a wide range of its parameter space, but requires a specific rescaling of the other cosmological densities.
Cosmic rays and the search for a Lorentz Invariance Violation
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, Wolfgang [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2008-11-15
This is an introductory review about the on-going search for a signal of Lorentz Invariance Violation (LIV) in cosmic rays. We first summarise basic aspects of cosmic rays, focusing on rays of ultra high energy (UHECRs). We discuss the Greisen-Zatsepin-Kuz'min (GZK) energy cutoff for cosmic protons, which is predicted due to photopion production in the Cosmic Microwave Background (CMB). This is a process of modest energy in the proton rest frame. It can be investigated to a high precision in the laboratory, if Lorentz transformations apply even at factors {gamma} {proportional_to} O(10{sup 11}). For heavier nuclei the energy attenuation is even faster due to photo-disintegration, again if this process is Lorentz invariant. Hence the viability of Lorentz symmetry up to tremendous {gamma}-factors - far beyond accelerator tests - is a central issue. Next we comment on conceptual aspects of Lorentz Invariance and the possibility of its spontaneous breaking. This could lead to slightly particle dependent ''Maximal Attainable Velocities''. We discuss their effect in decays, Cerenkov radiation, the GZK cutoff and neutrino oscillation in cosmic rays. We also review the search for LIV in cosmic {gamma}-rays. For multi TeV {gamma}-rays we possibly encounter another puzzle related to the transparency of the CMB, similar to the GZK cutoff, due to electron/positron creation and subsequent inverse Compton scattering. The photons emitted in a Gamma Ray Burst occur at lower energies, but their very long path provides access to information not far from the Planck scale. We discuss conceivable non-linear photon dispersions based on non-commutative geometry or effective approaches. No LIV has been observed so far. However, even extremely tiny LIV effects could change the predictions for cosmic ray physics drastically. An Appendix is devoted to the recent hypothesis by the Pierre Auger Collaboration, which identifies nearby Active Galactic Nuclei - or objects
Infrared Lorentz violation and slowly instantaneous electricity.
Dvali, Gia; Papucci, Michele; Schwartz, Matthew D
2005-05-20
We study a modification of electromagnetism which violates Lorentz invariance at large distances. In this theory, electromagnetic waves are massive, but the static force between charged particles is Coulomb, not Yukawa. At very short distances the theory looks just like QED. But for distances larger than 1/m the massive dispersion relation of the waves can be appreciated, and the Coulomb force can be used to communicate faster than the speed of light. In fact, electrical signals are transmitted instantly, but take a time approximately 1/m to build up to full strength. After that, undamped oscillations of the electric field are set in and continue until they are dispersed by the arrival of the Lorentz-obeying part of the transmission. Experimental constraints imply that the Compton wavelength of the photon may be as small as 6000 km. This bound is weaker than for a Lorentz-invariant mass, essentially because the Coulomb constraint is removed.
Astroparticle Physics Tests of Lorentz Invariance Violation
Lang, R. G.; de Souza, V.
2017-06-01
Testing Lorentz invariance is essential as it is one of the pillars of modern physics. Moreover, its violation is foreseen in several popular Quantum Gravity models. Several authors study the effects of Lorentz invariance violation (LIV) in the propagation of ultra-high energy cosmic rays. These particles are the most energetic events ever detected and therefore represent a promising framework to test LIV. In this work we present an analytic calculation of the inelasticity for any a + b → c + d interaction using first order perturbation in the dispersion relation that violates Lorentz invariance. The inelasticity can be calculated by solving a third-order polynomial equation containing: a) the kinematics of the interaction, b) the LIV term for each particle and c) the geometry of the interaction. We use the inelasticity we calculate to investigate the proton propagation in the intergalactic media. The photopion production of the proton interaction with the CMB is taken into account using the inelasticity and the attenuation length in different LIV scenarios. We show how the allowed phase space for the photopion production changes when LIV is considered for the interaction. The calculations presented here are going to be extended in order to calculated the modified ultra-high energy cosmic rays spectrum and compare it to the data.
BPS Lorentz-violating vortex solutions
Energy Technology Data Exchange (ETDEWEB)
Casana, Rodolfo; Ferreira Junior, Manoel M. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Dept. de Fisica; Hora, E. da [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Fisica
2011-07-01
In this work, we deal with the construction of static Bogomol'nyi-Prasad-Sommerfield (BPS) rotationally symmetric configurations on the dimensional CPT-even Lorentz-breaking photonic sector of the Standard Model Extension (SME). The main objective of this presentation is to show the possibility of obtaining such BPS solutions, even in the presence of a Lorentz-violating background. A secondary objective is to analyze the effects of this background on such topologically non-trivial BPS configurations. In order to obtain these results, we deal with some specific components of Lorentz-violating field, handling with the static Euler-Lagrange equation of motion to gauge field, from which we fix temporal gauge (absence of electric field) as a proper gauge choice. Also, considering this equation, we consistently determine an interesting configuration (discarding non-interesting ones) to the Lorentz-breaking sector. Using this configuration and the standard rotationally symmetric vortex Ansatz (which describes the behaviors of Higgs and gauge fields via two profile functions, g(r) and a(r), respectively), we construct a rotationally symmetric expression to the energy density of the system. To obtain BPS solutions, we rewrite this expression in order to have static vortex solutions satisfying a set of first order differential equations (BPS ones). The existence of such solutions is strongly constrained by a relation between some parameters of the model, including the Lorentz-breaking one. Naturally, we show that the total energy of these BPS solutions is proportional to their magnetic flux, which is quantized according to their winding number. Using suitable boundary conditions (near the origin and asymptotically), we numerically integrate the BPS equations (by means of the shooting method). By this way, we obtain solutions for some physical quantities (Higgs field, magnetic field and energy density) for several values of the Lorentz-violating parameters. From these
Lorentz violation in Bhabha scattering at finite temperature
Santos, A. F.; Khanna, Faqir C.
2017-06-01
Corrections to the Bhabha scattering cross section, due to Lorentz violation, at finite temperature are calculated. The vertex interaction between fermions and photons is modified by introducing the Lorentz violation, for the Standard Model extension, from C P T odd nonminimal coupling. The finite temperature corrections are calculated using the thermo field dynamics formalism. The Lorentz violation corrections are presented for zero to high temperatures.
Neutrino Oscillations, Lorentz/CPT Violation, and Dark Energy
Ando, Shin'ichiro; Mocioiu, Irina
2009-01-01
If dark energy (DE) couples to neutrinos, then there may be apparent violations of Lorentz/CPT invariance in neutrino oscillations. The DE-induced Lorentz/CPT violation takes a specific form that introduces neutrino oscillations that are energy independent, differ for particles and antiparticles, and can lead to novel effects for neutrinos propagating through matter. We show that ultra-high-energy neutrinos may provide one avenue to seek this type of Lorentz/CPT violation in \
Looking for Lorentz Violation in Short-Range Gravity
Xu, Rui
2016-01-01
General violations of Lorentz symmetry can be described by the Standard-Model Extension (SME) framework. The SME predicts modifications to existing physics and can be tested in high-precision experiments. By looking for small deviations from Newton gravity, short-range gravity experiments are expected to be sensitive to possible gravitational Lorentz-violation signals. With two group's short-range gravity data analyzed recently, no nonminimal Lorentz violation signal is found at the micron distance scale, which gives stringent constraints on nonminimal Lorentz-violation coefficients in the SME.
Lorentz-violating spinor electrodynamics and Penning traps
Ding, Yunhua
2016-01-01
The prospects are explored for testing Lorentz- and CPT-violating quantum electrodynamics in experiments with Penning traps. We present the Lagrange density of Lorentz-violating spinor electrodynamics with operators of mass dimensions up to six, and we discuss some of its properties. The theory is used to derive Lorentz- and CPT-violating perturbative shifts of the energy levels of a particle confined to a Penning trap. Observable signals are discussed for trapped electrons, positrons, protons, and antiprotons. Existing experimental measurements on anomaly frequencies are used to extract new or improved bounds on numerous coefficients for Lorentz and CPT violation, using sidereal variations of observables and comparisons between particles and antiparticles.
Lorentz Invariance Violation in Modified Gravity
Brax, Philippe
2012-01-01
We consider an environmentally dependent violation of Lorentz invariance in scalar-tensor models of modified gravity where General Relativity is retrieved locally thanks to a screening mechanism. We find that fermions have a modified dispersion relation and would go faster than light in an anisotropic and space-dependent way along the scalar field lines of force. We analyse briefly the OPERA results and show that they could be reproduced with chameleon models. We suggest that neutrinos emitted radially, at different energies, and observed on the other side of the earth would provide a test of these models.
Testing Lorentz violation using propagating UHECRs
Institute of Scientific and Technical Information of China (English)
Cong-Xin Qiu; Zi-Gao Dai
2009-01-01
Lorentz invariant violation (LIV) test is important for studying modem physics.All the known astrophysical constraints either have a very small examinable parameter space or are only suitable for some special theoretical models. Here, we suggest that it is possible to directly detect the time-delay of ultra-high-energy cosmic-rays (UHECRs). We discuss some difficulties in our method, including the intergalactic magnetic fields. It seems that none of them are crucial, hence this method could give a larger examinable parameter space and a stronger constraint on LIV.
Background Dependent Lorentz Violation from String Theory
Li, Tianjun
2011-01-01
We revisit Lorentz violations in the Type IIB string theory with D3-branes and D7-branes. We study the relativistic particle velosities in details, and show that there exist both subluminal and superluminal particle propagations. In particular, the additional contributions to the particle velosity \\delta v\\equiv (v-c)/c from string theory is proportional to both the particle energy and the D3-brane number density, and is inversely proportional to the string scale. Thus, we can realize the background dependent Lorentz violation naturally by varying the D3-brane number density in space time. To explain the superluminal neutrino propagations in the OPERA and MINOS experiments, we obtain the string scale should be around 10^5 GeV. With very tiny D3-brane number density at the interstellar scale, we can also explain the time delays for the high energy photons compared to the low energy photons in the MAGIC, HESS, and FERMI experiments simultaneously. Interestingly, we can automatically satisfy all the stringent co...
Low Energy Lorentz Violation from Modified Dispersion at High Energies.
Husain, Viqar; Louko, Jorma
2016-02-12
Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities.
Lorentz violation in neutron decay and allowed nuclear beta decay
Noordmans, J. P.; Wilschut, H. W.; Timmermans, R. G. E.
2013-01-01
Background: The search for violations of Lorentz invariance is nowadays motivated by attempts to unify the standard model of particle physics with general relativity. Such theories of "quantum gravity" predict Lorentz-violating signals that could be detected in low-energy precision experiments. In
Limits on Lorentz violation from charged-pion decay
P. Noordmans, J.; K. Vos, K.
2014-01-01
Charged-pion decay offers many opportunities to study Lorentz violation. Using an effective field theory approach, we study Lorentz violation in the lepton, W-boson, and quark sectors and derive the differential pion-decay rate, including muon polarization. Using coordinate redefinitions we are able
Lorentz Invariance Violation and Generalized Uncertainty Principle
Tawfik, A; Ali, A Farag
2016-01-01
Recent approaches for quantum gravity are conjectured to give predictions for a minimum measurable length, a maximum observable momentum and an essential generalization for the Heisenberg uncertainty principle (GUP). The latter is based on a momentum-dependent modification in the standard dispersion relation and leads to Lorentz invariance violation (LIV). The main features of the controversial OPERA measurements on the faster-than-light muon neutrino anomaly are used to calculate the time of flight delays $\\Delta t$ and the relative change $\\Delta v$ in the speed of neutrino in dependence on the redshift $z$. The results are compared with the OPERA measurements. We find that the measurements are too large to be interpreted as LIV. Depending on the rest mass, the propagation of high-energy muon neutrino can be superluminal. The comparison with the ultra high energy cosmic rays seems to reveals an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly ...
Pihan-Le Bars, H.; Guerlin, C.; Lasseri, R.-D.; Ebran, J.-P.; Bailey, Q. G.; Bize, S.; Khan, E.; Wolf, P.
2017-04-01
We introduce an improved model that links the frequency shift of the 133Cs hyperfine Zeeman transitions |F =3 ,mF ⟩↔|F =4 ,mF ⟩ to the Lorentz-violating Standard Model extension (SME) coefficients of the proton and neutron. The new model uses Lorentz transformations developed to second order in boost and additionally takes the nuclear structure into account, beyond the simple Schmidt model used previously in Standard Model extension analyses, thereby providing access to both proton and neutron SME coefficients including the isotropic coefficient c˜T T. Using this new model in a second analysis of the data delivered by the FO2 dual Cs/Rb fountain at Paris Observatory and previously analyzed in [1], we improve by up to 13 orders of magnitude the present maximum sensitivities for laboratory tests [2] on the c˜Q, c˜T J, and c˜T T coefficients for the neutron and on the c˜Q coefficient for the proton, reaching respectively 10-20, 10-17, 10-13, and 10-15 GeV .
Cavity tests of parity-odd Lorentz violations in electrodynamics
Mewes, Matthew; Petroff, Alexander
2007-03-01
Electromagnetic resonant cavities form the basis for a number modern tests of Lorentz invariance. The geometry of most of these experiments implies unsuppressed sensitivities to parity-even Lorentz violations only. Parity-odd violations typically enter through suppressed boost effects, causing a reduction in sensitivity by roughly 4 orders of magnitude. Here we discuss possible techniques for achieving unsuppressed sensitivities to parity-odd violations using asymmetric resonators.
Discussion on Neutrino Oscillation and CPT/Lorentz Invariance Violation
Luo, Cui-Bai; Du, Yi-Lun; Wang, Yong-Long; Zong, Hong-Shi
2016-01-01
Depending on deformed canonical anticommutation relations, massless neutrino oscillation based on CPT /Lorentz invariance viol ation is discussed. It is found that the deformed canonical anti-commutation relations should satisfy the condition of new Moy al product and new non standard commutation relations. Furthermore, by comparing the neutrino experimental data and the above relations, we find that the orders of magnitude of noncommutative parameters or Lorentz invariant Violation parameters $\\mathi t{A}$ is not self-consistent. This means that the previous studies about Lorentz invariance violation in noncommutative field theory may not naturally explain massless neutrino oscillation. In other words, it should be impossible to explain neutrino os cillation by lorentz invariance violation. This conclusion is supported by the latest atmospheric neutrinos experimental resul ts from Super-Kamiokande Collaboration, which show that no evidence of Lorentz invariance violation on atmospheric neutrinos w as observe...
Geometrical Lorentz Violation and Quantum Mechanical Physics
Mignani, R; Cardone, F
2013-01-01
On the basis of the results of some experiments dealing with the violation of Local Lorentz Invariance (LLI) and on the formalism of the Deformed Special Relativity (DSR), we examine the connections between the local geometrical structure of space-time and the foundation of Quantum Mechanics. We show that Quantum Mechanics, beside being an axiomatic theory, can be considered also a deductive physical theory, deducted from the primary physical principle of Relativistic Correlation. This principle is synonym of LLI and of a rigid and at minkowskian space-time. The results of the experiments mentioned above show the breakdown of LLI and hence the violation of the principle of Relativistic Correlation. The formalism of DSR allows to highlight the deep meaning of LLI breakdown in terms of the geometrical structure of local space-time which, far from being rigid and at, is deformed by the energy of the physical phenomena that take place and in this sense it has an active part in the dynamics of the whole physical p...
Limits on Lorentz violation from synchrotron and inverse Compton sources.
Altschul, B
2006-05-26
We derive new bounds on Lorentz violations in the electron sector from existing data on high-energy astrophysical sources. Synchrotron and inverse Compton data give precisely complementary constraints. The best bound on a specific combination of electron Lorentz-violating coefficients is at the 6 x 10(-20) level, and independent bounds are available for all the Lorentz-violating c coefficients at the 2 x 10(-14)level or better. This represents an improvement in some bounds by 14 orders of magnitude.
Møller scattering and Lorentz-violating Z bosons
Fu, Hao; Lehnert, Ralf
2016-11-01
Lorentz-symmetry breakdown in weak-interaction physics is studied. In particular, the CPT-even Lorentz-violating contributions to the Z boson in the minimal Standard-Model Extension are considered, and in this context polarized electron-electron scattering is investigated. Corrections to the usual parity-violating asymmetry are determined at tree level. Together with available data, this result can be used to improve existing estimates for the Lorentz-violating kW coefficient by two orders of magnitude. Some implications for past and future experiments are mentioned.
Standard model with Lorentz and CPT violations in Finsler spacetime
Chang, Zhe
2012-01-01
Standard model with intrinsic Lorentz and CPT violations is proposed in a Finsler geometric framework. We present explicitly Lorentz and CPT--breaking Lagrangians of the matter fields and the gauge fields in locally Minkowski spacetime. The Lorentz invariance violation is found to be originated from the spacetime background deviating from the Minkowski one. Similarly, the CPT violation is determined by the behaviors of the locally Minkowski metric under the parity and time reversal operations. To help understanding phenomenologies, we compare the Finslerian model with the standard--model extension (SME) term by term at a first order approximation.
Restrictive scenarios from Lorentz Invariance Violation to cosmic rays propagation
Martínez-Huerta, H
2016-01-01
Lorentz Invariance Violation introduced as a generic modification to particle dispersion relations is used to study high energy cosmic ray attenuation processes. It is shown to reproduce the same physical effects for vacuum Cherenkov radiation, as in models with spontaneous breaking of Lorentz symmetry. This approximation is also implemented for the study of photon decay in vacuum, where stringent limits to the violation scale are derived from the direct observation of very high energy cosmic ray photon events on gamma telescopes. Photo production processes by cosmic ray primaries on photon background are also addressed, to show that Lorentz violation may turn off this attenuation process at energies above a well defined secondary threshold.
Lorentz invariance violation and generalized uncertainty principle
Tawfik, Abdel Nasser; Magdy, H.; Ali, A. Farag
2016-01-01
There are several theoretical indications that the quantum gravity approaches may have predictions for a minimal measurable length, and a maximal observable momentum and throughout a generalization for Heisenberg uncertainty principle. The generalized uncertainty principle (GUP) is based on a momentum-dependent modification in the standard dispersion relation which is conjectured to violate the principle of Lorentz invariance. From the resulting Hamiltonian, the velocity and time of flight of relativistic distant particles at Planck energy can be derived. A first comparison is made with recent observations for Hubble parameter in redshift-dependence in early-type galaxies. We find that LIV has two types of contributions to the time of flight delay Δ t comparable with that observations. Although the wrong OPERA measurement on faster-than-light muon neutrino anomaly, Δ t, and the relative change in the speed of muon neutrino Δ v in dependence on redshift z turn to be wrong, we utilize its main features to estimate Δ v. Accordingly, the results could not be interpreted as LIV. A third comparison is made with the ultra high-energy cosmic rays (UHECR). It is found that an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly spacial relativity and the one assuming a perturbative departure from exact Lorentz invariance. Fixing the sensitivity factor and its energy dependence are essential inputs for a reliable confronting of our calculations to UHECR. The sensitivity factor is related to the special time of flight delay and the time structure of the signal. Furthermore, the upper and lower bounds to the parameter, a that characterizes the generalized uncertainly principle, have to be fixed in related physical systems such as the gamma rays bursts.
Realisation of a Lorentz algebra in Lorentz violating theory
Energy Technology Data Exchange (ETDEWEB)
Ganguly, Oindrila [S. N. Bose National Centre for Basic Sciences, Kolkata (India)
2012-11-15
A Lorentz non-invariant higher derivative effective action in flat spacetime, characterised by a constant vector, can be made invariant under infinitesimal Lorentz transformations by restricting the allowed field configurations. These restricted fields are defined as functions of the background vector in such a way that background dependence of the dynamics of the physical system is no longer manifest. We show here that they also provide a field basis for the realisation of a Lorentz algebra and allow the construction of a Poincare invariant symplectic two-form on the covariant phase space of the theory. (orig.)
Lorentz- and CPT-violating extension of the standard model
Kostelecky, V A
1999-01-01
The formulation and some experimental implications of a general Lorentz-violating extension of the standard model are reviewed. The theory incorporates both CPT-preserving and CPT-breaking terms. It is otherwise a conventional quantum field theory, obtained under the assumption that Lorentz symmetry is spontaneously broken in an underlying model. The theory contains the usual standard-model gauge structure, and it is power-counting renormalizable. Energy and momentum are conserved. Despite the violation of Lorentz symmetry, the theory exhibits covariance under Lorentz transformations of the observer inertial frame. A general Lorentz-violating extension of quantum electrodynamics can be extracted. The standard-model extension implies potentially observable effects in a wide variety of experiments, including among others measurements on neutral-meson oscillations, comparative studies in Penning traps, spectroscopy of hydrogen and antihydrogen, bounds on cosmological birefringence, measurements of muon propertie...
Probes of Lorentz violation in neutrino propagation
Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Rubbia, André; Sakharov, Alexander S.
2008-08-01
It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1±(E/MνQG1)] or [1±(E/MνQG2)2], using data from supernova explosions and the OPERA long-baseline neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB, and Baksan experiments, we set the limits MνQG1>2.7(2.5)×1010GeV for subluminal (superluminal) propagation and MνQG2>4.6(4.1)×104GeV at the 95% confidence level. A future galactic supernova at a distance of 10 kpc would have sensitivity to MνQG1>2(4)×1011GeV for subluminal (superluminal) propagation and MνQG2>2(4)×105GeV. With the current CERN neutrinos to Gran Sasso extraction spill length of 10.5μs and with standard clock synchronization techniques, the sensitivity of the OPERA experiment would reach MνQG1˜7×105GeV (MνQG2˜8×103GeV) after 5 years of nominal running. If the time structure of the super proton synchrotron radio frequency bunches within the extracted CERN neutrinos to Gran Sasso spills could be exploited, these figures would be significantly improved to MνQG1˜5×107GeV (MνQG2˜4×104GeV). These results can be improved further if a similar time resolution can be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential sensitivities to MνQG1˜4×108GeV and MνQG2˜7×105GeV.
Test of Lorentz Violation with Astrophysical Neutrino Flavor
Katori, Teppei; Salvado, Jordi
2016-01-01
The high-energy astrophysical neutrinos recently discovered by IceCube opened a new way to test Lorentz and CPT violation through the astrophysical neutrino mixing properties. The flavor ratio of astrophysical neutrinos is a very powerful tool to investigate tiny effects caused by Lorentz and CPT violation. There are 3 main findings; (1) current limits on Lorentz and CPT violation in neutrino sector are not tight and they allow for any flavor ratios, (2) however, the observable flavor ratio on the Earth is tied with the flavor ratio at production, this means we can test both the presence of new physics and the astrophysical neutrino production mechanism simultaneously, and (3) the astrophysical neutrino flavor ratio is one of the most stringent tests of Lorentz and CPT violation.
Vacuum photon splitting in Lorentz-violating quantum electrodynamics.
Kostelecký, V Alan; Pickering, Austin G M
2003-07-18
Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even and CPT-odd contributions forbidden in conventional electrodynamics.
Lorentz-violating Euler-Heisenberg effective action
Furtado, J
2014-01-01
In this work, we study the radiative generation of the Lorentz-violating Euler-Heisenberg action, in the weak field approximation. For this, we first consider a nonperturbative calculation in the coefficient $c_{\\mu\
Vacuum Photon Splitting in Lorentz-Violating Quantum Electrodynamics
Kostelecky, V A; Kostelecky, Alan; Pickering, Austin
2003-01-01
Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even and CPT-odd contributions forbidden in conventional electrodynamics.
Lorentz-violating spinor electrodynamics and Penning traps
Ding, Yunhua; Kostelecký, V. Alan
2016-09-01
The prospects are explored for testing Lorentz- and C P T -violating quantum electrodynamics in experiments with Penning traps. We present the Lagrange density of Lorentz-violating spinor electrodynamics with operators of mass dimensions up to 6, and we discuss some of its properties. The theory is used to derive Lorentz- and C P T -violating perturbative shifts of the energy levels of a particle confined to a Penning trap. Observable signals are discussed for trapped electrons, positrons, protons, and antiprotons. Existing experimental measurements on anomaly frequencies are used to extract new or improved bounds on numerous coefficients for Lorentz and C P T violation, using sidereal variations of observables and comparisons between particles and antiparticles.
Lorentz-violating effects in three-dimensional $QED$
Bufalo, R
2014-01-01
Inspired in discussions presented lately regarding Lorentz-violating interaction terms in \\cite{13,6}, we propose here a slightly different version for the coupling term. We will consider a modified quantum electrodynamics with violation of Lorentz symmetry defined in a $\\left( 2+1\\right) $-dimensional spacetime. We define the Lagrangian density with a Lorentz-violating interaction, where the the spacetime dimensionality is explicitly taken into account in its definition. The work encompasses an analysis of this model at both zero and finite-temperature, where very interesting features are known to occur due to the spacetime dimensionality. With that in mind we expect that the spacetime dimensionality may provide new insights about the radiative generation of higher-derivative terms into the action, implying in a new Lorentz-violating electrodynamics, as well the nonminimal coupling may provide interesting implications on the thermodynamical quantities.
Entropy production due to Lorentz invariance violation
Mohammadzadeh, Hosein; Farahmand, Mehrnoosh; Maleki, Mahnaz
2017-07-01
It is generally believed that the concept of the spacetime continuum should be modified for distances as small as the Planck length. This is a length scale at which the spacetime might have a discrete structure and quantum gravity effects are dominant. Presumably, the microscopic fluctuations within the geometry of spacetime should result in an enormous entropy production. In the present work, we look for the effects of Lorentz invariance violation (LIV) in flat and curved backgrounds that can be measured by quantum entanglement and quantum thermodynamic entropies for scalar modes. Our results show that the general behavior of these entropies is the same. We also consider variations of the entropies with respect to LIV and cosmological and field parameters. Using the properties of these entropies, along with detecting the most entangled modes, we extract information about the past existence of LIV, which in turn might be useful in recovering the quantum structure of gravity. Indeed, the occurrence of a peak in the behavior of these entropies for a specific momentum could provide information about the expansion parameters. Moreover, information about the LIV parameter is codified in this peak.
ICECUBE NEUTRINOS AND LORENTZ INVARIANCE VIOLATION
Energy Technology Data Exchange (ETDEWEB)
Amelino-Camelia, Giovanni [Dipartimento di Fisica, Sapienza Università di Roma and INFN, Sez. Roma1, P.le A. Moro 2, I-00185 Roma (Italy); Guetta, D. [Osservatorio astronomico di Roma, v. Frascati 33, I-00040 Monte Porzio Catone (Italy); Piran, Tsvi [The Racah Institute for Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
2015-06-20
The IceCube neutrino telescope has found so far no evidence of gamma-ray burst (GRB) neutrinos. We here notice that these results assume the same travel times from source to telescope for neutrinos and photons, an assumption that is challenged by some much-studied pictures of spacetime quantization. We briefly review previous results suggesting that limits on quantum-spacetime effects obtained for photons might not be applicable to neutrinos, and we then observe that the outcome of GRB-neutrino searches could depend strongly on whether one allows for neutrinos to be affected by the minute effects of Lorentz invariance violation (LIV) predicted by some relevant quantum-spacetime models. We discuss some relevant issues using as an illustrative example three neutrinos that were detected by IceCube in good spatial coincidence with GRBs, but hours before the corresponding gamma rays. In general, this could happen if the earlier arrival reflects quantum-spacetime-induced LIV, but, as we stress, some consistency criteria must be enforced in order to properly test such a hypothesis. Our analysis sets the stage for future GRB-neutrino searches that could systematically test the possibility of quantum-spacetime-induced LIV.
Consistency analysis of a nonbirefringent Lorentz-violating planar model
Casana, Rodolfo; Moreira, Roemir P M
2011-01-01
In this work analyze the physical consistency of a nonbirefringent Lorentz-violating planar model via the analysis of the pole structure of its Feynman's propagators. The nonbirefringent planar model, obtained from the dimensional reduction of the CPT-even gauge sector of the standard model extension, is composed of a gauge and a scalar fields, being affected by Lorentz-violating (LIV) coefficients encoded in the symmetric tensor $\\kappa_{\\mu\
UHECR bounds on Lorentz violation in the photon sector
Klinkhamer, F. R.
2008-01-01
The aim of this brief review is to present a case study of how astrophysics data can be used to get bounds on Lorentz-violating parameters. For this purpose, a particularly simple Lorentz-violating modification of the Maxwell theory of photons is considered, which maintains gauge invariance, CPT, and renormalization. With a standard spin-one-half Dirac particle minimally coupled to this nonstandard photon, the resulting modified-quantum-electrodynamics model involves nineteen dimensionless "d...
The Impact of Lorentz Violation on the Klein Tunneling Effect
Xiao, Zhi
2016-01-01
We discuss the impact of a tiny Lorentz-violating $b^\\mu$ term on the one dimensional motion of a Dirac particle scattering on a rectangular barrier. We assume the experiment is performed in a particular inertial frame, where the components of $b^\\mu$ are assumed constants. The results show that Lorentz-violation modification to the transmission rate depends on the observer Lorentz nature of $b^\\mu$. For a spacelike or lightlike $b^\\mu$ the induced resonant frequency shift depends on the polarization, while for timelike $b^\\mu$ there is essentially no modification.
Combined Search for Lorentz Violation in Short-Range Gravity.
Shao, Cheng-Gang; Tan, Yu-Jie; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G; Long, J C; Weisman, E; Xu, Rui; Kostelecký, V Alan
2016-08-12
Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10^{-9} m^{2}, improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings.
Strong binary pulsar constraints on Lorentz violation in gravity.
Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico
2014-04-25
Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.
Limits on Lorentz violation from forbidden β decays.
Noordmans, J P; Wilschut, H W; Timmermans, R G E
2013-10-25
Forbidden (slow) β decays offer new opportunities to test the invariance of the weak interaction under Lorentz transformations. Within a general effective field theory framework we analyze and reinterpret the only two relevant experiments, performed in the 1970s, dedicated to search for a preferred direction in space in first- and second-forbidden β decays. We show that the results of these experiments put strong and unique limits on Lorentz violation, and in particular on the presence of several interactions in the modern Lorentz-violating standard model extension. We discuss prospects to improve on these limits.
Combined search for Lorentz violation in short-range gravity
Shao, Cheng-Gang; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G; Long, J C; Weisman, E; Xu, Rui; Kostelecky, Alan
2016-01-01
Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of $10^{-9}$ m$^2$, improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings.
Implications of Lorentz violation on Higgs-mediated lepton flavor violation
López-Osorio, M A; Toscano, J J
2014-01-01
The lepton flavor violating decay of the Higgs boson $H\\to l_Al_B$ is studied within two qualitatively different extensions of the Yukawa sector: one renormalizable and the other nonrenormalizable; both incorporating Lorentz violation in a model-independent fashion. These extensions are characterized by Yukawa-like matrices, the former by a constant Lorentz 2-tensor $Y^{AB}_{\\mu \
Planck scale effects on the thermodynamics of photon gases
Faruk, Mir Mehedi; Rahman, Md. Muktadir
2016-11-01
A particular framework for quantum gravity is the doubly special relativity formalism that introduces a new observer-independent scale (the Planck scale). We resort to the methods of statistical mechanics in this framework to determine how the deformed dispersion relation affects the thermodynamics of a photon gas. The ensuing modifications to the density of states, partition function, pressure, internal energy, entropy, free energy, and specific heat are calculated. These results are compared with the outcome obtained in the Lorentz violating model of Camacho and Marcias [Gen. Relativ. Gravit. 39, 1175 (2007)]. The two types of models predict different results due to different spacetime structures near the Planck scale. The resulting modifications can be interpreted as a consequence of the deformed Lorentz symmetry present in the particular model we have considered. In the low energy limit, our calculation coincides with the usual results of photon thermodynamics in special relativity theory, in contrast to the study presented in an earlier article [Phys. Rev. D 81, 085039 (2010)].
Lorentz violation for photons and ultrahigh-energy cosmic rays.
Galaverni, Matteo; Sigl, Günter
2008-01-18
Lorentz symmetry breaking at very high energies may lead to photon dispersion relations of the form omega2=k2+xink2(k/MPl)n with new terms suppressed by a power n of the Planck mass MPl. We show that first and second order terms of size |xi1|>orsimilar10(-14) and xi2
Lorentz Violation of the Photon Sector in Field Theory Models
Directory of Open Access Journals (Sweden)
Lingli Zhou
2014-01-01
Full Text Available We compare the Lorentz violation terms of the pure photon sector between two field theory models, namely, the minimal standard model extension (SME and the standard model supplement (SMS. From the requirement of the identity of the intersection for the two models, we find that the free photon sector of the SMS can be a subset of the photon sector of the minimal SME. We not only obtain some relations between the SME parameters but also get some constraints on the SMS parameters from the SME parameters. The CPT-odd coefficients (kAFα of the SME are predicted to be zero. There are 15 degrees of freedom in the Lorentz violation matrix Δαβ of free photons of the SMS related with the same number of degrees of freedom in the tensor coefficients (kFαβμν, which are independent from each other in the minimal SME but are interrelated in the intersection of the SMS and the minimal SME. With the related degrees of freedom, we obtain the conservative constraints (2σ on the elements of the photon Lorentz violation matrix. The detailed structure of the photon Lorentz violation matrix suggests some applications to the Lorentz violation experiments for photons.
Restrictions from Lorentz invariance violation on cosmic ray propagation
Martínez-Huerta, H.; Pérez-Lorenzana, A.
2017-03-01
Lorentz invariance violation introduced as a generic modification to particle dispersion relations is used to study high energy cosmic ray attenuation processes. It is shown to reproduce the same physical effects for vacuum Cherenkov radiation, as in some particular models with spontaneous breaking of Lorentz symmetry. This approximation is also implemented for the study of photon decay in vacuum, where stringent limits to the violation scale are derived from the direct observation of very high energy cosmic ray photon events on gamma telescopes. Photo production processes by cosmic ray primaries on photon background are also addressed, to show that Lorentz violation may turn off this attenuation process at energies above a well-defined secondary threshold.
Constraints on Lorentz violation from gravitational Čerenkov radiation
Directory of Open Access Journals (Sweden)
V. Alan Kostelecký
2015-10-01
Full Text Available Limits on gravitational Čerenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. Prospects are discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Čerenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Čerenkov radiation by gravitons.
Constraints on Lorentz violation from gravitational Cherenkov radiation
Kostelecky, Alan
2015-01-01
Limits on gravitational Cherenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. Prospects are discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Cherenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Cherenkov radiation by gravitons.
Lorentz Violation in Deep Inelastic Electron-Proton Scattering
Lunghi, Enrico
2016-01-01
Lorentz violation in the quark sector induces a sidereal time dependence in electron-proton, proton-antiproton and proton-proton cross sections. At high energies nonperturbative effects are buried in universal nucleon parton distribution functions and Lorentz violating effects are calculable in perturbation theory. We focus on deep inelastic electron-proton scattering data collected from ZEUS and H1 at HERA and show that a sideral time analysis of these events is able to set strong constraints on most of the coefficients we consider.
Spacetime Variation of Lorentz-Violation Coefficients at Nonrelativistic Scale
Lane, Charles D
2016-01-01
The notion of uniform and/or constant tensor fields of rank $>0$ is incompatible with general curved spacetimes. This work considers the consequences of certain tensor-valued coefficients for Lorentz violation in the Standard-Model Extension varying with spacetime position. We focus on two of the coefficients, $a_\\mu$ and $b_\\mu$, that characterize Lorentz violation in massive fermions, particularly in those fermions that constitute ordinary matter. We calculate the nonrelativistic hamiltonian describing these effects, and use it to extract the sensitivity of several precision experiments to coefficient variation.
Search for Lorentz Violation in km$^3$-Scale Neutrino Telescopes
Argüelles, C A; Conrad, J M; Katori, T; Kheirandish, A
2016-01-01
Kilometer$^3$-scale neutrino detectors such as IceCube, ANTARES, and the proposed Km3Net neutrino observatory in the Mediterranean have measured, and will continue to characterize, the atmospheric neutrino spectrum above 1 TeV. Such precise measurements enable us to probe new neutrino physics, in particular, those that arise from Lorentz violation. In this paper, we first relate the effective new physics hamiltonian terms with the Lorentz violating literature. Second, we calculate the oscillation probability formulas for the two-level $\
Lorentz and CPT violation in the Standard-Model Extension
Lehnert, Ralf
2016-01-01
Lorentz and CPT invariance are among the symmetries that can be investigated with ultrahigh precision in subatomic physics. Being spacetime symmetries, Lorentz and CPT invariance can be violated by minuscule amounts in many theoretical approaches to underlying physics that involve novel spacetime concepts, such as quantized versions of gravity. Regardless of the underlying mechanism, the low-energy effects of such violations are expected to be governed by effective field theory. This talk provides a survey of this idea and includes an overview of experimental efforts in the field.
Limits on violations of Lorentz Symmetry from Gravity Probe B
Bailey, Quentin G; Overduin, James M
2013-01-01
Generic violations of Lorentz symmetry can be described by an effective field theory framework that contains both general relativity and the standard model of particle physics called the Standard-Model Extension (SME). We obtain new constraints on the gravitational sector of the SME using recently published final results from Gravity Probe B. These include for the first time an upper limit at the 10^(-3) level on the time-time component of the new tensor field responsible for inducing local Lorentz violation in the theory, and an independent limit at the 10^(-7) level on a combination of components of this tensor field.
Signals for Lorentz and CPT Violation in Atomic Spectroscopy Experiments and Other Systems
Vargas, Arnaldo J
2016-01-01
The prospects of studying nonminimal operators for Lorentz violation using spectroscopy experiments with light atoms and muon spin-precession experiments are presented. Possible improvements on bounds on minimal and nonminimal operators for Lorentz violation are discussed.
On the origin of neutrino oscillations through Lorentz violation
Leite, Julio
2015-07-01
The possibility of generating neutrino masses and oscillations through Lorentz- violating models is investigated. In the first model, an interaction between a fermion doublet and a Lorentz-violating gauge field, which play the role of a regulator field and, eventually, decouples from the fermions, is considered. In this case, by solving the (non-perturbative) Schwinger-Dyson equation, we show how masses and oscillations are generated dynamically. In the second model, fermions with LV kinematics interact via a four-fermion interaction and masses are shown to be generated dynamically when using another non-perturbative method. In both models, the recovery of Lorentz invariance is discussed and it is shown that the only physical observables are the dynamical masses that lead to neutrino oscillations.
Constraints on torsion from bounds on lorentz violation.
Kostelecký, V Alan; Russell, Neil; Tasson, Jay D
2008-03-21
Exceptional sensitivity to space-time torsion can be achieved by searching for its couplings to fermions. Recent experimental searches for Lorentz violation are exploited to extract new constraints involving 19 of the 24 independent torsion components down to levels of order 10(-31) GeV.
Constraints on nonmetricity from bounds on Lorentz violation
Foster, Joshua; Kostelecký, V. Alan; Xu, Rui
2017-04-01
Spacetime nonmetricity can be studied experimentally through its couplings to fermions and photons. We use recent high-precision searches for Lorentz violation to deduce first constraints involving the 40 independent nonmetricity components down to levels of order 10-43 GeV .
Limits on Lorentz violation in neutral-Kaon decay
Vos, K.K.; Wilschut, H. W.; Timmermans, R. G. E.
2013-01-01
The KLOE collaboration recently reported bounds on the directional dependence of the lifetime of the short-lived neutral kaon K_S with respect to the cosmic microwave background dipole anisotropy. We interpret their results in a general framework developed to probe Lorentz violation in the weak
Lorentz-violating effects in three-dimensional QED
Bufalo, R.
2014-08-01
Inspired in discussions presented lately regarding Lorentz-violating interaction terms in B. Charneski, M. Gomes, R. V. Maluf and A. J. da Silva, Phys. Rev. D86, 045003 (2012); R. Casana, M. M. Ferreira Jr., R. V. Maluf and F. E. P. dos Santos, Phys. Lett. B726, 815 (2013); R. Casana, M. M. Ferreira Jr., E. Passos, F. E. P. dos Santos and E. O. Silva, Phys. Rev. D87, 047701 (2013), we propose here a slightly different version for the coupling term. We will consider a modified quantum electrodynamics with violation of Lorentz symmetry defined in a (2+1)-dimensional space-time. We define the Lagrangian density with a Lorentz-violating interaction, where the space-time dimensionality is explicitly taken into account in its definition. The work encompasses an analysis of this model at both zero and finite-temperature, where very interesting features are known to occur due to the space-time dimensionality. With that in mind, we expect that the space-time dimensionality may provide new insights about the radiative generation of higher-derivative terms into the action, implying in a new Lorentz-violating electrodynamics, as well the nonminimal coupling may provide interesting implications on the thermodynamical quantities.
Spacetime Variation of Lorentz-Violation Coefficients at Nonrelativistic Scale
Lane, Charles D
2016-01-01
When the Standard-Model Extension (SME) is applied in curved spacetime, the Lorentz-violation coefficients must depend on spacetime position. This work describes some of the consequences of this spacetime variation. We focus on effects that appear at a nonrelativistic scale and extract sensitivity of completed experiments to derivatives of SME coefficient fields.
BPS Maxwell-Chern-Simons-like vortices in a Lorentz-violating framework
Casana, R; Da Hora, E; Neves, A B F
2013-01-01
We have analyzed Maxwell-Chern-Simons-Higgs BPS vortices in a Lorentz-violating CPT-odd context. The Lorentz violation induces profiles with a conical behavior at the origin. For some combination of the coefficients for Lorentz violation there always exists a sufficiently large winding number for which the magnetic field flips its sign.
BPS Maxwell-Chern Vortices in a Lorentz-Violating Framework
Casana, R.; Ferreira, M. M.; Hora, E. Da; Neves, A. B. F.
2014-01-01
We have analyzed Maxwell-Chern-Simons-Higgs BPS vortices in a Lorentz-violating CPT-odd context. The Lorentz violation induces profiles with a conical behavior at the origin. For some combination of the coefficients for Lorentz violation there always exists a sufficiently large winding number for which the magnetic field flips its sign.
MACRO constraints on violation of Lorentz invariance
Cozzi, M
2007-01-01
The energy spectrum of neutrino-induced upward-going muons in MACRO has been analysed in terms of relativity principles violating effects, keeping standard mass-induced atmospheric neutrino oscillations as the dominant source of $\
Cosmological constraints on Lorentz violating dark energy
Audren, B; Lesgourgues, J; Sibiryakov, S
2013-01-01
The role of Lorentz invariance as a fundamental symmetry of nature has been lately reconsidered in different approaches to quantum gravity. It is thus natural to study whether other puzzles of physics may be solved within these proposals. This may be the case for the cosmological constant problem. Indeed, it has been shown that breaking Lorentz invariance provides Lagrangians that can drive the current acceleration of the universe without experiencing large corrections from ultraviolet physics. In this work, we focus on the simplest model of this type, called ThetaCDM, and study its cosmological implications in detail. At the background level, this model cannot be distinguished from LambdaCDM. The differences appear at the level of perturbations. We show that in ThetaCDM, the spectrum of CMB anisotropies and matter fluctuations may be affected by a rescaling of the gravitational constant in the Poisson equation, by the presence of extra contributions to the anisotropic stress, and finally by the existence of ...
Lorentz violation in brane cosmology, accelerated expansion and fundamental constants
Ahmadi, F; Sepangi, H R
2006-01-01
The notion of Lorentz violation in four dimensions is extended to a 5-dimensional brane-world scenario by utilizing a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane. The cosmological consequences of this theory consisting of the time variation in the gravitational coupling $G$ and cosmological term $\\Lambda_4$ are explored. The brane evolution is addressed by studying the generalized Friedmann and Raychaudhuri equations. The behavior of the expansion scale factor is then considered for different possible scenarios where the bulk cosmological constant is zero, positive or negative.
Lorentz invariance violation and chemical composition of ultra high energy cosmic rays
Energy Technology Data Exchange (ETDEWEB)
Saveliev, Andrey; Sigl, Guenter [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2010-12-15
Motivated by experimental indications of a significant presence of heavy nuclei in the cosmic ray flux at ultra high energies (>or similar 10{sup 19} eV), we consider the effects of Planck scale suppressed Lorentz Invariance Violation (LIV) on the propagation of cosmic ray nuclei. In particular we focus on LIV effects on the photodisintegration of nuclei onto the background radiation fields. After a general discussion of the behavior of the relevant quantities, we apply our formalism to a simplified model where the LIV parameters of the various nuclei are assumed to kinematically result from a single LIV parameter for the constituent nucleons, {eta}, and we derive constraints on {eta}. Assuming a nucleus of a particular species to be actually present at 10{sup 20} eV the following constraints can be placed: -3 x 10{sup -2}
High Energy Astrophysics Tests of Lorentz Invariance Violation
Stecker, Floyd W.
2004-01-01
Observations of the multi-TeV spectra of the nearby BL Lac objects Mkn 421 and Mkn 501 exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions, primarily with IR photons having a flux level as determined by various astronomical observations. After correcting for such intergalactic absorption, these spectra can be explained within the framework of synchrotron self-Compton emission models. Stecker & Glashow have shown that the existence of this annihilation via electron-positron pair production puts strong constraints on Lorentz violation. We will show that such constraints have important implications for some quantum gravity models and large extra dimension models. We will also discuss the potentially important effects of a smaller Lorentz violation which is consistent with these constraints on the propagation and spectra of ultrahigh energy cosmic rays.
Quantum gravity and Lorentz invariance violation in the standard model.
Alfaro, Jorge
2005-06-10
The most important problem of fundamental physics is the quantization of the gravitational field. A main difficulty is the lack of available experimental tests that discriminate among the theories proposed to quantize gravity. Recently, Lorentz invariance violation by quantum gravity (QG) has been the source of growing interest. However, the predictions depend on an ad hoc hypothesis and too many arbitrary parameters. Here we show that the standard model itself contains tiny Lorentz invariance violation terms coming from QG. All terms depend on one arbitrary parameter alpha that sets the scale of QG effects. This parameter can be estimated using data from the ultrahigh energy cosmic ray spectrum to be |alpha|< approximately 10(-22)-10(-23).
Sfermions and gauginos in a Lorentz-violating theory
Allen, R E; Allen, Roland E.; Yokoo, Seiichirou
2005-01-01
In Lorentz-violating supergravity, sfermions have spin 1/2 and other unusual properties. If the dark matter consists of such particles, there is a natural explanation for the apparent absence of cusps and other small scale structure: The Lorentz-violating dark matter is cold because of the large particle mass, but still moves at nearly the speed of light. Although the R-parity of a sfermion, gaugino, or gravitino is +1 in the present theory, these particles have an "S-parity'' which implies that the LSP is stable and that they are produced in pairs. On the other hand, they can be clearly distinguished from the superpartners of standard supersymmetry by their highly unconventional properties.
Spontaneous Lorentz violation: the case of infrared QED
Energy Technology Data Exchange (ETDEWEB)
Balachandran, A. P., E-mail: bal@phy.syr.edu [Physics Department, Syracuse University, 13244-1130, Syracuse, NY (United States); Kürkçüoǧlu, S., E-mail: kseckin@metu.edu.tr [Department of Physics, Middle East Technical University, 06800, Ankara (Turkey); Queiroz, A. R. de, E-mail: amilcarq@unb.br [Instituto de Física, Universidade de Brasília, Caixa Postal 04455, 70919-970, Brasília, DF (Brazil); Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza (Spain); Vaidya, S., E-mail: vaidya@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, 560012, Bangalore (India)
2015-02-24
It is by now clear that the infrared sector of quantum electrodynamics (QED) has an intriguingly complex structure. Based on earlier pioneering work on this subject, two of us recently proposed a simple modification of QED by constructing a generalization of the U(1) charge group of QED to the “Sky” group incorporating the well-known spontaneous Lorentz violation due to infrared photons, but still compatible in particular with locality (Balachandran and Vaidya, Eur Phys J Plus 128:118, 2013). It was shown that the “Sky” group is generated by the algebra of angle-dependent charges and a study of its superselection sectors has revealed a manifest description of spontaneous breaking of the Lorentz symmetry. We further elaborate this approach here and investigate in some detail the properties of charged particles dressed by the infrared photons. We find that Lorentz violation due to soft photons may be manifestly codified in an angle-dependent fermion mass, modifying therefore the fermion dispersion relations. The fact that the masses of the charged particles are not Lorentz invariant affects their spin content, and time dilation formulas for decays should also get corrections.
Spontaneous Lorentz violation: the case of infrared QED
Energy Technology Data Exchange (ETDEWEB)
Balachandran, A.P. [Syracuse University, Physics Department, Syracuse, NY (United States); Kuerkcueoglu, S. [Middle East Technical University, Department of Physics, Ankara (Turkey); Queiroz, A.R. de [Universidade de Brasilia, Instituto de Fisica, Brasilia (Brazil); Universidad de Zaragoza, Departamento de Fisica Teorica, Facultad de Ciencias, Zaragoza (Spain); Vaidya, S. [Indian Institute of Science, Centre for High Energy Physics, Bangalore (India)
2015-02-01
It is by now clear that the infrared sector of quantum electrodynamics (QED) has an intriguingly complex structure. Based on earlier pioneering work on this subject, two of us recently proposed a simple modification of QED by constructing a generalization of the U(1) charge group of QED to the ''Sky'' group incorporating the well-known spontaneous Lorentz violation due to infrared photons, but still compatible in particular with locality (Balachandran and Vaidya, Eur Phys J Plus 128:118, 2013). It was shown that the ''Sky'' group is generated by the algebra of angle-dependent charges and a study of its superselection sectors has revealed a manifest description of spontaneous breaking of the Lorentz symmetry. We further elaborate this approach here and investigate in some detail the properties of charged particles dressed by the infrared photons. We find that Lorentz violation due to soft photons may be manifestly codified in an angle-dependent fermion mass, modifying therefore the fermion dispersion relations. The fact that the masses of the charged particles are not Lorentz invariant affects their spin content, and time dilation formulas for decays should also get corrections. (orig.)
Vacuum Cerenkov radiation in Lorentz-violating theories without CPT violation.
Altschul, Brett
2007-01-26
In theories with broken Lorentz symmetry, Cerenkov radiation may be possible even in vacuum. We analyze the Cerenkov emissions that are associated with the least constrained Lorentz-violating modifications of the photon sector, calculating the threshold energy, the frequency spectrum, and the shape of the Mach cone. In order to obtain sensible results for the total power emitted, we must make use of information contained within the theory which indicates at what scale new physics must enter.
Probing the Planck Scale with Proton Decay
Energy Technology Data Exchange (ETDEWEB)
Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi; Thormeier, Marc
2004-04-28
We advocate the idea that proton decay may probe physics at the Planck scale instead of the GUT scale. This is possible because supersymmetric theories have dimension-5 operators that can induce proton decay at dangerous rates, even with R-parity conservation. These operators are expected to be suppressed by the same physics that explains the fermion masses and mixings. We present a thorough analysis of nucleon partial lifetimes in models with a string-inspired anomalous U(1)_X family symmetry which is responsible for the fermionic mass spectrum as well as forbidding R-parity violating interactions. Protons and neutrons can decay via R-parity conserving non-renormalizable superpotential terms that are suppressed by the Planck scale and powers of the Cabibbo angle. Many of the models naturally lead to nucleon decay near present limits without any reference to grand unification.
Discussion on Lorentz invariance violation of noncommutative field theory and neutrino oscillation
Luo, Cui-Bai; Shi, Song; Du, Yi-Lun; Wang, Yong-Long; Zong, Hong-Shi
2017-03-01
Depending on deformed canonical anticommutation relations, massless neutrino oscillation based on Lorentz invariance violation in noncommutative field theory is discussed. It is found that the previous studies about massless neutrino oscillation within deformed canonical anticommutation relations should satisfy the condition of new Moyal product and new nonstandard commutation relations. Furthermore, comparing the Lorentz invariant violation parameters A in the previous studies with new Moyal product and new nonstandard commutation relations, we find that the orders of magnitude of noncommutative parameters (Lorentz invariant violation parameters A) is not self-consistent. This inconsistency means that the previous studies of Lorentz invariance violation in noncommutative field theory may not naturally explain massless neutrino oscillation. In other words, it should be impossible to explain neutrino oscillation by Lorentz invariance violation in noncommutative field theory. This conclusion is supported by the latest atmospheric neutrinos experimental results from the super-Kamiokande Collaboration, which show that no evidence of Lorentz invariance violation on atmospheric neutrinos was observed.
Strongly enhanced effects of Lorentz symmetry violation in entangled Yb+ ions
Dzuba, V A; Safronova, M S; Porsev, S G; Pruttivarasin, T; Hohensee, M A; Häffner, H
2015-01-01
Lorentz symmetry is one of the cornerstones of modern physics. However, a number of theories aiming at unifying gravity with the other fundamental interactions including string field theory suggest violation of Lorentz symmetry [1-4]. While the energy scale of such strongly Lorentz symmetry-violating physics is much higher than that currently attainable by particle accelerators, Lorentz violation may nevertheless be detectable via precision measurements at low energies [2]. Here, we carry out a systematic theoretical investigation of the sensitivity of a wide range of atomic systems to violation of local Lorentz invariance (LLI). Aim of these studies is to identify which atom shows the biggest promise to detect violation of Lorentz symmetry. We identify the Yb+ ion as an ideal system with high sensitivity as well as excellent experimental controllability. By applying quantum information inspired technology to Yb+, we expect tests of LLI violating physics in the electron-photon sector to reach levels of $10^{-...
Constaints on Lorentz symmetry violations using lunar laser ranging observations
Bourgoin, Adrien
2016-12-01
General Relativity (GR) and the standard model of particle physics provide a comprehensive description of the four interactions of nature. A quantum gravity theory is expected to merge these two pillars of modern physics. From unification theories, such a combination would lead to a breaking of fundamental symmetry appearing in both GR and the standard model of particle physics as the Lorentz symmetry. Lorentz symmetry violations in all fields of physics can be parametrized by an effective field theory framework called the standard-model extension (SME). Local Lorentz Invariance violations in the gravitational sector should impact the orbital motion of bodies inside the solar system, such as the Moon. Thus, the accurate lunar laser ranging (LLR) data can be analyzed in order to study precisely the lunar motion to look for irregularities. For this purpose, ELPN (Ephéméride Lunaire Parisienne Numérique), a new lunar ephemeris has been integrated in the SME framework. This new numerical solution of the lunar motion provides time series dated in temps dynamique barycentrique (TDB). Among that series, we mention the barycentric position and velocity of the Earth-Moon vector, the lunar libration angles, the time scale difference between the terrestrial time and TDB and partial derivatives integrated from variational equations. ELPN predictions have been used to analyzed LLR observations. In the GR framework, the residuals standard deviations has turned out to be the same order of magnitude compare to those of INPOP13b and DE430 ephemerides. In the framework of the minimal SME, LLR data analysis provided constraints on local Lorentz invariance violations. Spetial attention was paid to analyze uncertainties to provide the most realistic constraints. Therefore, in a first place, linear combinations of SME coefficients have been derived and fitted to LLR observations. In a second time, realistic uncertainties have been determined with a resampling method. LLR data
Lorentz symmetry violation, dark matter and dark energy
Gonzalez-Mestres, Luis
2009-01-01
Taking into account the experimental results of the HiRes and AUGER collaborations, the present status of bounds on Lorentz symmetry violation (LSV) patterns is discussed. Although significant constraints will emerge, a wide range of models and values of parameters will still be left open. Cosmological implications of allowed LSV patterns are discussed focusing on the origin of our Universe, the cosmological constant, dark matter and dark energy. Superbradyons (superluminal preons) may be the actual constituents of vacuum and of standard particles, and form equally a cosmological sea leading to new forms of dark matter and dark energy.
Quantum-Gravity Induced Lorentz Violation and Dynamical Mass Generation
Mavromatos, Nick E.
2010-01-01
In Ref. [1] (by J. Alexandre) a minimal extension of (3+1)-dimensional Quantum Electrodynamics has been proposed, which includes Lorentz-Violation (LV) in the form of higher-(spatial)-derivative isotropic terms in the gauge sector, suppressed by a mass scale $M$. The model can lead to dynamical mass generation for charged fermions. In this article I elaborate further on this idea and I attempt to connect it to specific quantum-gravity models, inspired from string/brane theory. Specifically, i...
New limit on signals of Lorentz violation in electrodynamics.
Lipa, J A; Nissen, J A; Wang, S; Stricker, D A; Avaloff, D
2003-02-14
We describe the results of an experiment to test for spacetime anisotropy terms that might exist from Lorentz violations. The apparatus consists of a pair of cylindrical superconducting cavity-stabilized oscillators operating in the TM010 mode with one axis east-west and the other vertical. Spatial anisotropy is detected by monitoring the beat frequency at the sidereal rate and its first harmonic. We see no anisotropy to a part in 10(13). This puts a comparable bound on four linear combinations of parameters in the general standard model extension, and a weaker bound of < 4 x 10(-9) on three others.
Lorentz Invariance Violation and Modified Hawking Fermions Tunneling Radiation
Directory of Open Access Journals (Sweden)
Shu-Zheng Yang
2016-01-01
Full Text Available Recently the modified Dirac equation with Lorentz invariance violation has been proposed, which would be helpful to resolve some issues in quantum gravity theory and high energy physics. In this paper, the modified Dirac equation has been generalized in curved spacetime, and then fermion tunneling of black holes is researched under this correctional Dirac field theory. We also use semiclassical approximation method to get correctional Hamilton-Jacobi equation, so that the correctional Hawking temperature and correctional black hole’s entropy are derived.
Lorentz and CPT violation in the hydrogen spectrum
Adkins, Gregory S
2013-01-01
We have studied the effect of hypothetical violations of Lorentz and CPT symmetry by calculating the corrections to the energy levels of hydrogen induced by the Standard-Model Extension (SME). Hydrogen studies are interesting because the energy levels of hydrogen can be measured with great precision and the theory for hydrogen based on the Standard Model (SM) is well understood. We obtained corrections through order \\alpha^2 times the SME parameters for all levels of hydrogen and applied them to determine the SME corrections to the transition frequency for the 2S-1S transition.
Cosmic Censorship in Lorentz Violating Theories of Gravity
Meiers, Michael; Afshordi, Niayesh
2015-01-01
Is Cosmic Censorship special to General Relativity, or can it survive a violation of equivalence principle? Recent studies have shown that singularities in Lorentz violating Einstein-Aether (or Horava-Lifhsitz) theories can lie behind a universal horizon in simple black hole spacetimes. Even infinitely fast signals cannot escape these universal horizons. We extend this result, for an incompressible aether, to 3+1d dynamical or spinning spacetimes which possess inner killing horizons, and show that a universal horizon always forms in between the outer and (would-be) inner horizons. This finding suggests a notion of Cosmic Censorship, given that geometry in these theories never evolves beyond the universal horizon (avoiding potentially singular inner killing horizons). A surprising result is that there are 3 distinct possible stationary universal horizons for a spinning black hole, only one of which matches the dynamical spherical solution. This motivates dynamical studies of collapse in Einstein-Aether theorie...
Lorentz violation in the gravity sector: the t puzzle
Bonder, Yuri
2015-01-01
Lorentz violation is a candidate quantum-gravity signal, and the Standard-Model Extension (SME) is a widely used parametrization of such violation. In the gravitational SME sector, there is an elusive coefficient for which no effects have been found. This is is known as the $t$ puzzle and, to date, it has no compelling explanation. In this paper, several approaches to understand the $t$ puzzle are proposed. First, redefinitions of the dynamical fields are studied, which reveal that other SME coefficients can be moved to nongravitational sectors. It is also shown that the gravity SME sector can be treated \\textit{\\`a la} Palatini, and that, in the presence of spacetime boundaries, it is possible to correct its action to get the desired equations of motion. Also, through a reformulation as a Lanczos-type tensor, some problematic features of the $t$ term, that should arise at the phenomenological level, are revealed. Additional potential explanations to the $t$ puzzle are outlined.
Cosmic censorship in Lorentz-violating theories of gravity
Meiers, Michael; Saravani, Mehdi; Afshordi, Niayesh
2016-05-01
Is cosmic censorship special to general relativity, or can it survive a violation of local Lorentz invariance? Recent studies have shown that singularities in Lorentz -violating Einstein-Aether (or Horava-Lifshitz) theories can lie behind a universal horizon in simple black hole spacetimes. Even infinitely fast signals cannot escape these universal horizons. We extend this result, for an incompressible aether, to 3 +1 d dynamical or spinning spacetimes which possess inner Killing horizons, and show that a universal horizon always forms in between the outer and (would-be) inner horizons. This finding suggests a notion of cosmic censorship, given that geometry in these theories never evolves beyond the universal horizon (avoiding potentially singular inner Killing horizons). A surprising result is that there are 3 distinct possible stationary universal horizons for a spinning black hole, only one of which matches the dynamical spherical solution. This motivates dynamical studies of collapse in Einstein-Aether theories beyond spherical symmetry, which may reveal instabilities around the spherical solution.
Consistency analysis of a nonbirefringent Lorentz-violating planar model
Energy Technology Data Exchange (ETDEWEB)
Casana, Rodolfo; Ferreira, Manoel M.; Moreira, Roemir P.M. [Universidade Federal do Maranhao (UFMA), Departamento de Fisica, Sao Luis, MA (Brazil)
2012-07-15
In this work analyze the physical consistency of a nonbirefringent Lorentz-violating planar model via the analysis of the pole structure of its Feynman propagators. The nonbirefringent planar model, obtained from the dimensional reduction of the CPT-even gauge sector of the standard model extension, is composed of a gauge and a scalar fields, being affected by Lorentz-violating (LIV) coefficients encoded in the symmetric tensor {kappa}{sub {mu}{nu}}. The propagator of the gauge field is explicitly evaluated and expressed in terms of linear independent symmetric tensors, presenting only one physical mode. The same holds for the scalar propagator. A consistency analysis is performed based on the poles of the propagators. The isotropic parity-even sector is stable, causal and unitary mode for 0{<=}{kappa}{sub 00}<1. On the other hand, the anisotropic sector is stable and unitary but in general noncausal. Finally, it is shown that this planar model interacting with a {lambda}{phi}{sup 4}-Higgs field supports compact-like vortex configurations. (orig.)
Consistency analysis of a nonbirefringent Lorentz-violating planar model
Casana, Rodolfo; Ferreira, Manoel M.; Moreira, Roemir P. M.
2012-07-01
In this work analyze the physical consistency of a nonbirefringent Lorentz-violating planar model via the analysis of the pole structure of its Feynman propagators. The nonbirefringent planar model, obtained from the dimensional reduction of the CPT-even gauge sector of the standard model extension, is composed of a gauge and a scalar fields, being affected by Lorentz-violating (LIV) coefficients encoded in the symmetric tensor κ μν . The propagator of the gauge field is explicitly evaluated and expressed in terms of linear independent symmetric tensors, presenting only one physical mode. The same holds for the scalar propagator. A consistency analysis is performed based on the poles of the propagators. The isotropic parity-even sector is stable, causal and unitary mode for 0≤ κ 00<1. On the other hand, the anisotropic sector is stable and unitary but in general noncausal. Finally, it is shown that this planar model interacting with a λ| φ|4-Higgs field supports compactlike vortex configurations.
Extending the graviton propagator with a Lorentz-violating vector field
Seifert, Michael D
2016-01-01
I discuss progress towards "bootstrapping" a Lorentz-violating gravity theory: namely, extending a linear Lorentz-violating theory of a rank-2 tensor to a non-linear theory by coupling this field to its own stress-energy tensor.
Relativistic Landau-Aharonov-Casher quantization based on the Lorentz symmetry violation background
Bakke, K; Silva, E O; 10.1063/1.3597230
2011-01-01
Based on the discussions about the Aharonov-Casher effect in the Lorentz symmetry violation background, we show that the analogue of the relativistic Landau quantization in the Aharonov-Casher setup can be achieved in the Lorentz-symmetry violation background.
Relativistic Landau-Aharonov-Casher quantization based on the Lorentz symmetry violation background
Bakke, K.; Belich, H.; Silva, E. O.
2011-06-01
Based on the discussions about the Aharonov-Casher effect in the Lorentz symmetry violation background, we show that the analogue of the relativistic Landau quantization in the Aharonov-Casher setup can be achieved in the Lorentz-symmetry violation background.
Search for Lorentz and CPT violation effects in muon spin precession
Bennett, G. W.; Bousquet, B.; Brown, H. N.; Bunce, G.; Carey, R. M.; Cushman, P.; Danby, G. T.; Debevec, P. T.; Deile, M.; Deng, H.; Deninger, W.; Dhawan, S. K.; Druzhinin, V. P.; Duong, L.; Efstathiadis, E.; Farley, F. J. M.; Fedotovich, G. V.; Giron, S.; Gray, F. E.; Grigoriev, D.; Grosse-Perdekamp, M.; Grossmann, A.; Hare, M. F.; Hertzog, D. W.; Huang, X.; Hughes, V. W.; Iwasaki, M.; Jungmann, K.; Kawall, D.; Kawamura, M.; Khazin, B. I.; Kindem, J.; Krienen, F.; Kronkvist, I.; Lam, A.; Larsen, R.; Lee, Y. Y.; Logashenko, I.; McNabb, R.; Meng, W.; Mi, J.; Miller, J. P.; Mizumachi, Y.; Morse, W. M.; Nikas, D.; Onderwater, C. J. G.; Orlov, Y.; Oezben, C. S.; Paley, J. M.; Peng, Q.; Polly, C. C.; Pretz, J.; Prigl, R.; Putlitz, G. zu; Qian, T.; Redin, S. I.; Rind, O.; Roberts, B. L.; Ryskulov, N.; Sedykh, S.; Semertzidis, Y. K.; Shagin, P.; Shatunov, Yu. M.; Sichtermann, E. P.; Solodov, E.; Sossong, M.; Steinmetz, A.; Sulak, L. R.; Timmermans, C.; Trofimov, A.; Urner, D.; von Walter, P.; Warburton, D.; Winn, D.; Yamamoto, A.; Zimmerman, D.; Bennet, G.W.; Ozben, C.
2008-01-01
The spin precession frequency of muons stored in the (g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for a nonzero Delta omega(a)(=omega(mu+)(a)-omega(mu-)(a)) and a sidereal variation of omega(mu+)(a). No signifi
Sidharth, B G
1998-01-01
Within the context of the usual semi classical investigation of Planck scale Schwarzchild Black Holes, as in Quantum Gravity, and later attempts at a full Quantum Mechanical description in terms of a Kerr-Newman metric including the spinorial behaviour, we attempt to present a formulation that extends from the Planck scale to the Hubble scale. In the process the so called large number coincidences as also the hitherto inexplicable relations between the pion mass and the Hubble Constant, pointed out by Weinberg, turn out to be natural consequences in a consistent description.
Low energy Lorentz violation from polymer quantum field theory
Husain, Viqar
2015-01-01
We analyze the response of an inertial two-level Unruh-DeWitt particle detector coupled to a polymer quantized scalar field in four-dimensional Minkowski spacetime, within first-order perturbation theory. Above a critical rapidity $\\beta_c \\approx 1.3675$, independent of the polymer mass scale $M_\\star$, two drastic changes occur: (i) the detector's excitation rate becomes nonvanishing; (ii) the excitation and de-excitation rates are of order $M_\\star$, for arbitrarily small detector energy gap. We argue that qualitatively similar results hold for any Lorentz violating theory in which field modes with spatial momentum $k$ have excitation energy of the form $|k|\\ f(|k|/M_\\star)$ where the function $f$ dips below unity.
Signals for Lorentz Violation in Post-Newtonian Gravity
Bailey, Q G; Bailey, Quentin G.; Kostelecky, Alan
2006-01-01
The pure-gravity sector of the minimal Standard-Model Extension is studied in the limit of Riemann spacetime. A method is developed to extract the modified Einstein field equations in the limit of small metric fluctuations about the Minkowski vacuum, while allowing for the dynamics of the coefficients for Lorentz violation. The linearized effective equations depend on 20 independent coefficients, and they are solved to obtain the post-newtonian metric. The corresponding post-newtonian behavior of a perfect fluid is studied and applied to the gravitating many-body system. Illustrative examples of the methodology are provided using bumblebee models. The implications of the general theoretical results are studied for a variety of existing and proposed gravitational experiments, including lunar and satellite laser ranging, laboratory experiments with gravimeters and torsion pendula, measurements of the spin precession of orbiting gyroscopes, timing studies of signals from binary pulsars, and the classic tests inv...
Bounding isotropic Lorentz violation using synchrotron losses at LEP
Altschul, Brett
2009-11-01
Some deviations from special relativity—especially isotropic effects—are most efficiently constrained using particles with velocities very close to 1. While there are extremely tight bounds on some of the relevant parameters coming from astrophysical observations, many of these rely on our having an accurate understanding of the dynamics of these high-energy sources. It is desirable to have reliable laboratory constraints on these same parameters. The fastest-moving particles in a laboratory were electrons and positrons at LEP. The energetics of the LEP beams were extremely well understood, and measurements of the synchrotron emission rate indicate that the isotropic Lorentz violation coefficient |κ˜tr-(4)/(3)c00| must be smaller than 5×10-15.
Violations of Lorentz invariance in the neutrino sector after OPERA
Energy Technology Data Exchange (ETDEWEB)
Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Liberati, Stefano [Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste (Italy); INFN, Sezione de Trieste (Italy); Mattingly, David M. [New Hampshire Univ., Durham (United States). Dept. of Physics
2011-10-15
The OPERA collaboration has recently reported that neutrinos travel faster than light. We review the theoretical situation of constraints on violations of Lorentz invariance, focusing in particular on the compatibility between the OPERA results with both previous constraints and recently obtained ones. We generalize to higher order operators the recent constraint provided by the absence of neutrino energy loss, via electron-positron pair production at OPERA energies, and show that no modi ed in vacuo dispersion relation within an effective field theory context is compatible with OPERA results. We conclude that the OPERA result is incompatible with current observations, at least without resorting to models beyond effective field theory, possibly with local environmental effects. (orig.)
Cosmological background torsion inhomogeneities and Lorentz violation in QED
Garcia de Andrade, L C
2003-01-01
A non-minimal photon-torsion axial coupling in the quantum electrodynamics (QED) framework is considered. The geometrical optics in Riemann-Cartan spacetime is considering and a plane wave expansion of the electromagnetic vector potential is considered leading to a set of the equations for the ray congruence. Since we are interested mainly on the torsion effects in this first report we just consider the Riemann-flat case composed of the Minkowskian spacetime with torsion. It is also shown that in torsionic de Sitter background the vacuum polarisation does alter the propagation of individual photons, an effect which is absent in Riemannian spaces. It is shown that the cosmological torsion background inhomogeneities induce Lorentz violation and massive photon modes in this QED.
Projected Constraints on Lorentz-Violating Gravity with Gravitational Waves
Hansen, Devin; Yagi, Kent
2014-01-01
Gravitational waves are excellent tools to probe the foundations of General Relativity in the strongly dynamical and non-linear regime. One such foundation is Lorentz symmetry, which can be broken in the gravitational sector by the existence of a preferred time direction, and thus, a preferred frame at each spacetime point. This leads to a modification in the orbital decay rate of binary systems, and also in the generation and chirping of their associated gravitational waves. We here study whether waves emitted in the late, quasi-circular inspiral of non-spinning, neutron star binaries can place competitive constraints on two proxies of gravitational Lorentz-violation: Einstein-\\AE{}ther theory and khronometric gravity. We model the waves in the small-coupling (or decoupling) limit and in the post-Newtonian approximation, by perturbatively solving the field equations in small deformations from General Relativity and in the small-velocity/weak-gravity approximation. We assume a gravitational wave consistent wi...
What do we know about Lorentz invariance?
Tasson, Jay D
2014-06-01
The realization that Planck-scale physics can be tested with existing technology through the search for spacetime-symmetry violation brought about the development of a comprehensive framework, known as the gravitational standard-model extension (SME), for studying deviations from exact Lorentz and CPT symmetry in nature. The development of this framework and its motivation led to an explosion of new tests of Lorentz symmetry over the past decade and to considerable theoretical interest in the subject. This work reviews the key concepts associated with Lorentz and CPT symmetry, the structure of the SME framework, and some recent experimental and theoretical results.
What Do We Know About Lorentz Invariance?
Tasson, Jay D
2014-01-01
The realization that Planck-scale physics can be tested with existing technology through the search for spacetime-symmetry violation brought about the development of a comprehensive framework, known as the gravitational Standard-Model Extension (SME), for studying deviations from exact Lorentz and CPT symmetry in nature. The development of this framework and its motivation led to an explosion of new tests of Lorentz symmetry over the past decade and to considerable theoretical interest in the subject. This work reviews the key concepts associated with Lorentz and CPT symmetry, the structure of the SME framework, and some recent experimental and theoretical results.
Searching for Traces of Planck-Scale Physics with High Energy Neutrinos
Stecker, Floyd; Scully, Sean; Liberati, Stefano; Mattingly, David
2017-01-01
Some Planck-scale physics and quantum gravity models predict a slight violation of Lorentz invariance (LIV) at high energies. High-energy cosmic neutrino observations can be used to test for such LIV. Operators in an effective field theory (EFT) can be used to describe the effects of LIV. They can be used to calculate kinematically allowed energy losses of possible superluminal neutrinos. These losses can be caused by both vacuum pair emission (VPE) and neutrino splitting. Assuming a reasonable distribution of extragalactic neutrino sources, we determined the resulting after-loss neutrino spectra using Monte Carlo propagation calculations. We then compared them with the neutrino spectrum observed by IceCube to determine the implications of our results regarding Planck-scale physics. If the drop off in the observed IceCube neutrino flux above 2 PeV is caused by LIV, a potentially significant pileup effect would be produced just below the drop-off energy in the case of CPT-even operator dominance. However, such a clear drop off effect would not be observed if a CPT-odd, CPT-violating term dominates.
Lorentz-violating neutral-pion decays in isotropic modified Maxwell theory
Klinkhamer, F R
2016-01-01
We consider an extension of the Standard Model with isotropic nonbirefringent Lorentz violation in the photon sector and specialize to the case of a "fast" photon with a phase velocity larger than the maximum attainable velocity of the fermions. With our conventions, this case corresponds to a negative Lorentz-violating parameter $\\kappa$ in the action. The decay rate of a neutral pion into two photons is calculated as a function of the 3-momentum of the initial pion and the negative Lorentz-violating parameter $\\kappa$ of the final photons.
Search for Lorentz and CPT Violation Effects in Muon Spin Precession
Bennett, G W; Brown, H N; Bunce, G; Carey, R M; Cushman, P; Danby, G T; Debevec, P T; Deile, M; Deng, H; Deninger, W; Dhawan, S K; Druzhinin, V P; Duong, L; Efstathiadis, E; Farley, F J M; Fedotovich, G V; Giron, S; Gray, F E; Grigoriev, D; Grosse-Perdekamp, M; Grossmann, A; Hare, M F; Hertzog, D W; Huang, X; Hughes, V W; Iwasaki, M; Jungmann, K; Kawall, D; Kawamura, M; Khazin, B I; Kindem, J; Krienen, F; Kronkvist, I; Lam, A; Larsen, R; Lee, Y Y; Logashenko, I; McNabb, R; Meng, W; Mi, J; Miller, J P; Mizumachi, Y; Morse, W M; Nikas, D; Onderwater, C J G; Orlov, Y; Ozben, C S; Paley, J M; Peng, Q; Polly, C C; Pretz, J; Prigl, R; zu Putlitz, G; Qian, T; Redin, S I; Rind, O; Roberts, B L; Ryskulov, N; Sedykh, S; Semertzidis, Y K; Shagin, P; Shatunov, Yu M; Sichtermann, E P; Solodov, E; Sossong, M; Steinmetz, A; Sulak, L R; Timmermans, C; Trofimov, A; Urner, D; von Walter, P; Warburton, D; Winn, D; Yamamoto, A; Zimmerman, D
2007-01-01
The spin precession frequency of muons stored in the (g-2) precision storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for: a nonzero \\Delta\\omega_a =\\omega_a ^\\mu^{+} - \\omega_{a}^\\mu^{-} ; and a sidereal variation of \\omega_{a}^\\mu^{\\pm}. No significant effect is found, and several limits on Lorentz and CPT violating parameters for positive and negative muons are set at the level of \\sim 10^{-23} - 10^{-24} GeV.
The role of singular spinor fields in a torsional gravity, Lorentz-violating, framework
Ferrari, A. F.; Neto, J. A. S.; da Rocha, R.
2017-05-01
In this work, we consider a generalization of quantum electrodynamics including Lorentz violation and torsional-gravity, in the context of general spinor fields as classified in the Lounesto scheme. Singular spinor fields will be shown to be less sensitive to the Lorentz violation, as far as couplings between the spinor bilinear covariants and torsion are regarded. In addition, we prove that flagpole spinor fields do not admit minimal coupling to the torsion. In general, mass dimension four couplings are deeply affected when singular—flagpoles—spinors are considered, instead of the usual Dirac spinors. We also construct a mapping between spinors in the covariant framework and spinors in Lorentz symmetry breaking scenarios, showing how one may transliterate spinors of different classes between the two cases. Specific examples concerning the mapping of Dirac spinor fields in Lorentz violating scenarios into flagpole and flag-dipole spinors with full Lorentz invariance (including the cases of Weyl and Majorana spinors) are worked out.
The role of singular spinor fields in a torsional gravity, Lorentz-violating, framework
Ferrari, A F; Silva-Neto, J A
2016-01-01
In this work, we consider a generalization of quantum electrodynamics including Lorentz violation and torsional-gravity, in the context of general spinor fields as classified in the Lounesto scheme. Singular spinor fields will be shown to be less sensitive to the Lorentz violation, as far as couplings between the spinor bilinear covariants and torsion are regarded. In addition, we prove that flagpole spinor fields do not admit minimal coupling to the torsion. In general, mass dimension four couplings are deeply affected when singular flagpoles spinors are considered instead of the usual Dirac spinors. We also construct a mapping between spinors in the covariant framework and spinors in Lorentz symmetry breaking scenarios, showing how one may transliterate spinors of different classes between the two cases. Specific examples concerning the mapping of Dirac spinor fields in Lorentz violating scenarios into flagpole and flag-dipole spinors with full Lorentz invariance (including the cases of Weyl and Majorana sp...
Testing Lorentz invariance emergence in Ising Model using lattice Monte Carlo simulations
Stojku, Stefan
2017-01-01
All measurements performed so far at the observable energy scales show no violation of Lorentz invariance. However, it is yet impossible to check experimentally whether this symmetry holds at high energies such as the Planck scale. Recently, theories of gravitation with Lorentz violation, known as Horava-Lifshitz gravity [1, 2] have gained signiﬁcant attention by treating Lorentz symmetry as an emergent phenomenon. A Lif-shitz type theory assumes an anisotropic scaling between space and time weighted by some critical exponent. In order for these theories to be viable candidates for quantum gravity description of the nature, Lorentz symmetry needs to be recovered at low energies.
Directory of Open Access Journals (Sweden)
Lorentz Matthias
2017-01-01
Full Text Available Some extensions to the Standard Model lead to the introduction of Lorentz symmetry breaking terms, expected to induce deviations from Lorentz symmetry around the Planck scale. A parameterization of effects due to Lorentz invariance violation (LIV can be introduced by adding an effective term to the photon dispersion relation. This affects the kinematics of electron-positron pair creation by TeV γ rays on the extragalactic background light (EBL and translates into modifications of the standard EBL opacity for the TeV photon spectra of extragalactic sources. Exclusion limits are presented, obtained with the spectral analysis of H.E.S.S. observations taken on the blazar Mrk 501 during the exceptional 2014 flare. The energy spectrum, extending very significantly above 10 TeV, allows to place strong limits on LIV in the photon sector at the level of the Planck energy scale for linear perturbations in the photon dispersion relation, and provides the strongest constraints presently for the case of quadratic perturbations.
Lorentz, Matthias
2016-01-01
Some extensions to the Standard Model lead to the introduction of Lorentz symmetry breaking terms, expected to induce deviations from Lorentz symmetry around the Planck scale. A parameterization of effects due to Lorentz invariance violation (LIV) can be introduced by adding an effective term to the photon dispersion relation. This affects the kinematics of electron-positron pair creation by TeV $\\gamma$ rays on the extragalactic background light (EBL) and translates into modifications of the standard EBL opacity for the TeV photon spectra of extragalactic sources. Exclusion limits are presented, obtained with the spectral analysis of H.E.S.S. observations taken on the blazar Mrk 501 during the exceptional 2014 flare. The energy spectrum, extending very significantly above 10 TeV, allows to place strong limits on LIV in the photon sector at the level of the Planck energy scale for linear perturbations in the photon dispersion relation, and provides the strongest constraints presently for the case of quadratic...
Lorentz, Matthias; Brun, Pierre
2017-03-01
Some extensions to the Standard Model lead to the introduction of Lorentz symmetry breaking terms, expected to induce deviations from Lorentz symmetry around the Planck scale. A parameterization of effects due to Lorentz invariance violation (LIV) can be introduced by adding an effective term to the photon dispersion relation. This affects the kinematics of electron-positron pair creation by TeV γ rays on the extragalactic background light (EBL) and translates into modifications of the standard EBL opacity for the TeV photon spectra of extragalactic sources. Exclusion limits are presented, obtained with the spectral analysis of H.E.S.S. observations taken on the blazar Mrk 501 during the exceptional 2014 flare. The energy spectrum, extending very significantly above 10 TeV, allows to place strong limits on LIV in the photon sector at the level of the Planck energy scale for linear perturbations in the photon dispersion relation, and provides the strongest constraints presently for the case of quadratic perturbations.
Directory of Open Access Journals (Sweden)
L.H.C. Borges
2016-05-01
Full Text Available We study the perturbative generation of higher-derivative Lorentz violating operators as quantum corrections to the photon effective action, originated from a specific Lorentz violation background, which has already been studied in connection with the physics of light pseudoscalars. We calculate the complete one loop effective action of the photon field through the proper-time method, using the zeta function regularization. This result can be used as a starting point to study possible effects of the Lorentz violating background we are considering in photon physics. As an example, we focus on the lowest order corrections and investigate whether they could influence the propagation of electromagnetic waves through the vacuum. We show, however, that no effects of the kind of Lorentz violation we consider can be detected in such a context, so that other aspects of photon physics have to be studied.
Preliminary Design of a Pendulum Experiment for Searching for a Lorentz-Violation Signal
Shao, Cheng-Gang; Tan, Yu-Jie
2016-01-01
This work mainly presents a preliminary design for a pendulum experiment with both the source mass and the test mass in a striped pattern to amplify the Lorentz-violation signal, since the signal is sensitive to edge effects.
Enhanced sensitivity to Lorentz invariance violations in short-range gravity experiments
Shao, Cheng-Gang; Tan, Yu-Jie; Luo, Jun; Yang, Shan-Qing; Tobar, Michael Edmund
2016-01-01
Recently, first limits on putative Lorentz invariance violation coefficients in the pure gravity sector were determined by the reanalysis of short-range gravity experiments. Such experiments search for new physics at sidereal frequencies. They are not, however, designed to optimize the signal strength of a Lorentz invariance violation force; in fact the Lorentz violating signal is suppressed in the planar test mass geometry employed in those experiments. We describe a short-range torsion pendulum experiment with enhanced sensitivity to possible Lorentz violating signals. A periodic, striped test mass geometry is used to augment the signal. Careful arrangement of the phases of the striped patterns on opposite ends of the pendulum further enhances the signal while simultaneously suppressing the Newtonian background.
Completing Lorentz violating massive gravity at high energies
Blas, Diego
2015-01-01
Theories with massive gravitons are interesting for a variety of physical applications, ranging from cosmological phenomena to holographic modeling of condensed matter systems. To date, they have been formulated as effective field theories with a cutoff proportional to a positive power of the graviton mass m_g and much smaller than that of the massless theory (M_P ~ 10^19 GeV in the case of general relativity). In this paper we present an ultraviolet completion for massive gravity valid up to a high energy scale independent of the graviton mass. The construction is based on the existence of a preferred time foliation combined with spontaneous condensation of vector fields. The perturbations of these fields are massive and below their mass the theory reduces to a model of Lorentz violating massive gravity. The latter theory possesses instantaneous modes whose consistent quantization we discuss in detail. We briefly study some modifications to gravitational phenomenology at low-energies. The homogeneous cosmolo...
Cosmological evolution of interacting dark energy in Lorentz violation
Zen, Freddy P; Gunara, Bobby E; Triyanta,; Purwanto, A
2008-01-01
The cosmological evolution of an interacting scalar field model in which the scalar field has its interaction with dark matter, radiation, and baryon via Lorentz violation is investigated. We propose a model of interaction through the effective coupling parameter, $\\bar{\\beta}$, $Q_m = - \\dot{\\bar{\\beta}}\\rho_m/\\bar{\\beta}$. We apply the dynamical systems to study the linear dynamics of an interacting model and show that the dynamics is completely determined by only two parameters $\\lambda_1$ and $\\lambda_2$. We determine all critical points and study their stability. By choosing the values of $\\lambda_1$ and $\\lambda_2$, we show the numerical solution for different interesting cases. There exists the sequence of radiation, dark matter, and scalar field dark energy but the baryon is sub dominant. The model allows the possible of the universe in the phantom phase with the constant potential. We also find that the vacuum expectation value of the vector field determines the time variations in the gravitational c...
Sakharov, Alexander; Harries, Nicholas; Meregaglia, Anselmo; Rubbia, André
2009-01-01
It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1 +- (E/M_\
Search for Lorentz Violation using Short-Range Tests of Gravity
Long, J
2016-01-01
Experimental tests of the newtonian inverse square law at short range, one at Indiana University and the other at the Huazhong University of Science and Technology, have been used to set limits on Lorentz violation in the pure gravity sector of the nonminimal Standard-Model Extension. In the nonrelativistic limit, the constraints derived for the 14 independent SME coefficients for Lorentz violation acting simultaneously are of order $10^{-9}$ m$^{2}$.
Searching for photon-sector Lorentz violation using gravitational-wave detectors
Kostelecky, Alan; Mewes, Matthew
2016-01-01
We study the prospects for using interferometers in gravitational-wave detectors as tools to search for photon-sector violations of Lorentz symmetry. Existing interferometers are shown to be exquisitely sensitive to tiny changes in the effective refractive index of light occurring at frequencies around and below the microhertz range, including at the harmonics of the frequencies of the Earth's sidereal rotation and annual revolution relevant for tests of Lorentz symmetry. We use preliminary data obtained by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2006-2007 to place constraints on coefficients for Lorentz violation in the photon sector exceeding current limits by about four orders of magnitude.
First Test of Lorentz Violation with a Reactor-based Antineutrino Experiment
Abe, Y; Anjos, J C dos; Bergevin, M; Bernstein, A; Bezerra, T J C; Bezrukhov, L; Blucher, E; Bowden, N S; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P -J; Chimenti, P; Classen, T; Collin, A P; Conover, E; Conrad, J M; Crespo-Anadón, J I; Crum, K; Cucoanes, A; D'Agostino, M V; Damon, E; Dawson, J V; Dazeley, S; Dietrich, D; Djurcic, Z; Dracos, M; Durand, V; Ebert, J; Efremenko, Y; Elnimr, M; Erickson, A; Fallot, M; Fechner, M; von Feilitzsch, F; Felde, J; Fischer, V; Franco, D; Franke, A J; Franke, M; Furuta, H; Gama, R; Gil-Botella, I; Giot, L; Göger-Neff, M; Gonzalez, L F G; Goodman, M C; Goon, J TM; Greiner, D; Haag, N; Habib, S; Hagner, C; Hara, T; Hartmann, F X; Haser, J; Hatzikoutelis, A; Hayakawa, T; Hofmann, M; Horton-Smith, G A; Ishitsuka, M; Jochum, J; Jollet, C; Jones, C L; Kaether, F; Kalousis, L N; Kamyshkov, Y; Kaplan, D M; Katori, T; Kawasaki, T; Keefer, G; Kemp, E; de Kerret, H; Konno, T; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; López-Castanõ, J M; LoSecco, J M; Lubsandorzhiev, B K; Lucht, S; McKee, D; Maeda, J; Maesano, C N; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Meyer, M; Miletic, T; Milincic, R; Miyata, H; Mueller, Th A; Nagasaka, Y; Nakajima, K; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Ostrovskiy, I; Palomares, C; Pepe, I M; Perasso, S; Perrin, P; Pfahler, P; Porta, A; Potzel, W; Pronost, G; Reichenbacher, J; Reinhold, B; Remoto, A; Röhling, M; Roncin, R; Roth, S; Rybolt, B; Sakamoto, Y; Santorelli, R; Sato, F; Schönert, S; Schoppmann, S; Schwetz, T; Shaevitz, M H; Shrestha, D; Sida, J -L; Sinev, V; Skorokhvatov, M; Smith, E; Spitz, J; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Stüken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Terao, K; Tonazzo, A; Toups, M; Thi, H H Trinh; Valdiviesso, G; Veyssiere, C; Wagner, S; Watanabe, H; White, B; Wiebusch, C; Winslow, L; Worcester, M; Wurm, M; Yanovitch, E; Yermia, F; Zimmer, V
2012-01-01
We present a search for Lorentz violation with 8249 candidate electron antineutrino events taken by the Double Chooz experiment in 227.9 live days of running. This analysis, featuring a search for a sidereal time dependence of the events, is the first test of Lorentz invariance using a reactor-based antineutrino source. No sidereal variation is present in the data and the disappearance results are consistent with sidereal time independent oscillations. Under the Standard-Model Extension (SME), we set the first limits on fourteen Lorentz violating coefficients associated with transitions between electron and tau flavor, and set two competitive limits associated with transitions between electron and muon flavor.
Strongly Enhanced Effects of Lorentz-Symmetry Violation in Yb$^+$ and Highly Charged Ions
Safronova, M S
2016-01-01
A Lorentz-symmetry test with Ca$^+$ ions demonstrated the potential of using quantum information inspired technology for tests of fundamental physics. A systematic study of atomic-system sensitivities to Lorentz violation identified the ytterbium ion as an ideal system with high sensitivity as well as excellent experimental controllability. A test of Lorentz-violating physics in the electron-photon sector with Yb$^+$ ions has the potential to reach levels of 10$^{-23}$, five orders of magnitude more sensitive than the current best bounds. Similar sensitivities may be also reached with highly charged ions.
Asymptotic states and renormalization in Lorentz-violating quantum field theory
Cambiaso, Mauro; Potting, Robertus
2014-01-01
Asymptotic single-particle states in quantum field theories with small departures from Lorentz symmetry are investigated. To this end, one-loop radiative corrections for a sample Lorentz-violating Lagrangian contained in the Standard-Model Extension (SME) are studied. It is found that the spinor kinetic operator is modified in momentum space by Lorentz-violating operators not present in the original Lagrangian. It is demonstrated how both the standard renormalization procedure as well as the Lehmann-Symanzik-Zimmermann reduction formalism need to be adapted as a consequence of this result.
Rubtsov, Grigory; Sibiryakov, Sergey
2016-01-01
We discuss the effect of hypothetical violation of Lorentz invariance at high energies on the formation of atmospheric showers by very-high-energy gamma rays. In the scenario where Lorentz invariance violation leads to a decrease of the photon velocity with energy the formation of the showers is suppressed compared to the Lorentz invariant case. Absence of such suppression in the high-energy part of spectrum of the Crab nebula measured independently by HEGRA and H.E.S.S. collaborations is used to set lower bounds on the energy scale of Lorentz invariance violation. These bounds are competitive with the strongest existing constraints obtained from timing of variable astrophysical sources and the absorption of TeV photons on the extragalactic background light. They will be further improved by the next generation of multi-TeV gamma-ray observatories.
Implications of Lorentz symmetry violation on a 5D supersymmetric model
García-Aguilar, J. D.; Pérez-Lorenzana, A.
2017-04-01
Field models with n extra spatial dimensions have a larger SO(1, 3 + n) Lorentz symmetry which is broken down to the standard SO(1, 3) four-dimensional one by the compactification process. By considering Lorentz violating operators in a 5D supersymmetric Wess-Zumino model, which otherwise conserve the standard four-dimensional Poincaré invariance, we show that supersymmetry (SUSY) can be restored upon a simple deformation of the supersymmetric transformations. However, SUSY is not preserved in the effective 4D theory that arises after compactification when the 5D Lorentz violating operators do not preserve Z2 : y →-y bulk parity. Our mechanism unveils a possible connection among Lorentz violation and the Scherk-Schwarz mechanism. We also show that parity preserving models, on the other hand, do provide well defined supersymmetric KK models.
Charged Lifshitz black hole and probed Lorentz-violation fermions from holography
Luo, Cheng-Jian; Kuang, Xiao-Mei; Shu, Fu-Wen
2017-06-01
We analytically obtain a new charged Lifshitz solution by adding a non-relativistic Maxwell field in Hořava-Lifshitz gravity. The black hole exhibits an anisotropic scaling between space and time (Lifshitz scaling) in the UV limit, while in the IR limit, the Lorentz invariance is approximately recovered. We introduce the probed Lorentz-violation fermions into the background and holographically investigate the spectral properties of the dual fermionic operator. The Lorentz-violation of the fermions will enhance the peak and correspond larger fermi momentum, which compensates the non-relativistic bulk effect of the dynamical exponent (z). For a fixed z, when the Lorentz-violation of fermions increases to a critical value, the behavior of the low energy excitation goes from a non-Fermi liquid type to a Fermi liquid type, which implies a kind of phase transition.
Rubtsov, Grigory; Satunin, Petr; Sibiryakov, Sergey
2017-05-01
Parameterizing hypothetical violation of Lorentz invariance at high energies using the framework of effective quantum field theory, we discuss its effect on the formation of atmospheric showers by very-high-energy gamma rays. In the scenario where Lorentz invariance violation leads to a decrease of the photon velocity with energy the formation of the showers is suppressed compared to the Lorentz invariant case. Absence of such suppression in the high-energy part of spectrum of the Crab nebula measured independently by HEGRA and H.E.S.S. collaborations is used to set lower bounds on the energy scale of Lorentz invariance violation. These bounds are competitive with the strongest existing constraints obtained from timing of variable astrophysical sources and the absorption of TeV photons on the extragalactic background light. They will be further improved by the next generation of multi-TeV gamma-ray observatories.
Charged Lifshitz black hole and probed Lorentz-violation fermions from holography
Directory of Open Access Journals (Sweden)
Cheng-Jian Luo
2017-06-01
Full Text Available We analytically obtain a new charged Lifshitz solution by adding a non-relativistic Maxwell field in Hořava–Lifshitz gravity. The black hole exhibits an anisotropic scaling between space and time (Lifshitz scaling in the UV limit, while in the IR limit, the Lorentz invariance is approximately recovered. We introduce the probed Lorentz-violation fermions into the background and holographically investigate the spectral properties of the dual fermionic operator. The Lorentz-violation of the fermions will enhance the peak and correspond larger fermi momentum, which compensates the non-relativistic bulk effect of the dynamical exponent (z. For a fixed z, when the Lorentz-violation of fermions increases to a critical value, the behavior of the low energy excitation goes from a non-Fermi liquid type to a Fermi liquid type, which implies a kind of phase transition.
Energy Technology Data Exchange (ETDEWEB)
Borges, L.H.C.; Ferrari, A.F. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [Universidade Federal de Itajuba, IFQ, Itajuba, MG (Brazil)
2016-11-15
This paper is dedicated to the study of interactions between external sources for the electromagnetic field in the presence of Lorentz symmetry breaking. We focus on a higher derivative, Lorentz violating interaction that arises from a specific model that was argued to lead to interesting effects in the low energy phenomenology of light pseudoscalars interacting with photons. The kind of higher derivative Lorentz violating interaction we discuss are called nonminimal. They are usually expected to be relevant only at very high energies, but we argue they might also induce relevant effects in low energy phenomena. Indeed, we show that the Lorentz violating background considered by us leads to several phenomena that have no counterpart in Maxwell theory, such as nontrivial torques on isolated electric dipoles, as well as nontrivial forces and torques between line currents and point like charges, as well as among Dirac strings and other electromagnetic sources. (orig.)
Laperashvili, L V; Laperashvili, Larisa
2006-01-01
In the present talk we suggest a new model of preons-dyons making composite quark-leptons and bosons, described by the supersymmetric string-inspired flipped E_6\\times \\tilde E_6 gauge group of symmetry. This investigation predicts the possible extension of the Standard Model to the Family replicated gauge group model of type G^{N_{fam}}, where N_{fam} is the number of families. Here E_6 and \\tilde E_6 are non-dual and dual sectors of theory with hyper-electric g and hyper-magnetic \\tilde g charges, respectively. Our model is based on the recent theory of composite non-Abelian flux tubes in SQCD. Considering the breakdown of E_6 (and \\tilde E_6) at the Planck scale into the SU(6)\\times U(1) gauge group, we have shown that the six types of composite N = 1 supersymmetric non-Abelian flux tubes are created by the condensation of spreons-dyons near the Planck scale and have fluxes quantized according to the Z_6 center group of SU(6): \\Phi_n = n\\Phi_0 (n = \\pm 1,\\pm 2,\\pm 3). These fluxes give three types of k-str...
Constraining Anisotropic Lorentz Violation via the Spectral-lag Transition of GRB 160625B
Wei, Jun-Jie; Wu, Xue-Feng; Zhang, Bin-Bin; Shao, Lang; Mészáros, Peter; Kostelecký, V. Alan
2017-06-01
Violations of Lorentz invariance can lead to an energy-dependent vacuum dispersion of light, which results in arrival-time differences of photons with different energies arising from a given transient source. In this work, direction-dependent dispersion constraints are obtained on nonbirefringent Lorentz-violating effects using the observed spectral lags of the gamma-ray burst GRB 160625B. This burst has unusually large high-energy photon statistics, so we can obtain constraints from the true spectral time lags of bunches of high-energy photons rather than from the rough time lag of a single highest-energy photon. Also, GRB 160625B is the only burst to date having a well-defined transition from positive lags to negative lags, providing a unique opportunity to distinguish Lorentz-violating effects from any source-intrinsic time lag in the emission of photons of different energy bands. Our results place comparatively robust two-sided constraints on a variety of isotropic and anisotropic coefficients for Lorentz violation, including the first bounds on Lorentz-violating effects from operators of mass dimension 10 in the photon sector.
CPT/Lorentz Invariance Violation and Quantum Field Theory
Arias, P; Gamboa-Rios, J; López-Sarrion, J; Méndez, F; Arias, Paola; Das, Ashok; Gamboa, Jorge; Lopez-Sarrion, Justo; Mendez, Fernando
2006-01-01
Analogies between the noncommutative harmonic oscillator and noncommutative fields are analyzed. Following this analogy we construct examples of quantum fields theories with explicit CPT and Lorentz symmetry breaking. Some applications to baryogenesis and neutrino oscillation are also discussed
Analogue Aharonov-Bohm effect in a Lorentz-violating background
Anacleto, M A; Passos, E
2012-01-01
In this paper we consider the acoustic black hole metrics obtained from a relativistic fluid under the influence of constant background that violates the Lorentz symmetry to study the analogue of the Aharonov-Bohm (AB) effect. We show that the scattering of planar waves by a draining bathtub vortex leads to a modified AB effect and due to the Lorentz symmetry breaking, the phase shift persists even in the limit where the parameters associated with the circulation and draining vanish.
The CTA Sensitivity to Lorentz-Violating Effects on the Gamma-Ray Horizon
Fairbairn, Malcolm; Ellis, John; Hinton, Jim; White, Richard
2014-01-01
The arrival of TeV-energy photons from distant galaxies is expected to be affected by their QED interaction with intergalactic radiation fields through electron-positron pair production. In theories where high-energy photons violate Lorentz symmetry, the kinematics of the process $\\gamma + \\gamma\\rightarrow e^+ + e^-$ is altered and the cross-section suppressed. Consequently, one would expect more of the highest-energy photons to arrive if QED is modified by Lorentz violation than if it is not. We estimate the sensitivity of Cherenkov Telescope Array (CTA) to changes in the $\\gamma$-ray horizon of the Universe due to Lorentz violation, and find that it should be competitive with other leading constraints.
On the use of energy loss mechanisms to constrain Lorentz invariance violations
Mazón, Diego
2014-01-01
In light of recent and probably incoming observations of very high energy astroparticles, such as those reported by the IceCube collaboration, we readdress the energy loss mechanism by Lorentz violating particles. We analytically show that Cohen-Glashow's formula for energy loss is connected with a Poisson distribution for the number of decays, whose large fluctuations prevent from placing bounds on Lorentz invariance violations. However, this model ignores the sharp change in the decay width after each process. We propose replacing Poisson statistics with a new distribution that takes this into account. We study the average final energy and its fluctuations according to the new statistics, contrasting it with Cohen-Glashow's result and discussing the reliability of energy loss mechanisms to constrain violations of Lorentz invariance.
Battat, James B R; Chandler, John F; Stubbs, Christopher W
2007-12-14
We present constraints on violations of Lorentz invariance based on archival lunar laser-ranging (LLR) data. LLR measures the Earth-Moon separation by timing the round-trip travel of light between the two bodies and is currently accurate to the equivalent of a few centimeters (parts in 10(11) of the total distance). By analyzing this LLR data under the standard-model extension (SME) framework, we derived six observational constraints on dimensionless SME parameters that describe potential Lorentz violation. We found no evidence for Lorentz violation at the 10(-6) to 10(-11) level in these parameters. This work constitutes the first LLR constraints on SME parameters.
Borges, L H C; Ferrari, A F; Nascimento, J R; Petrov, A Yu
2016-01-01
We study the perturbative generation of higher-derivative operators as corrections to the photon effective action, which are originated from a Lorentz violation background. Such corrections are obtained, at one-loop order, through the proper-time method, using the zeta function regularization. We focus over the lowest order corrections and investigate their influence in the propagation of electromagnetic waves through the vacuum, in the presence of a strong, constant magnetic field. This is a setting of experimental relevance, since it bases active efforts to measure non linear electromagnetic effects. After surprising cancellations of Lorentz violating corrections to the Maxwell's equation, we show that no effects of the kind of Lorentz violation we consider can be detected in such a context.
Lifshitz-scaling to Lorentz-violating high derivative operator and gamma-ray busts
Passos, E; Anacleto, M A; Brito, F A; Wotzasek, C; Zarro, C A D
2016-01-01
In this work we have used a Hovrava-Lifshitz scaling to rewrite a Lorentz-violating higher-order derivative electrodynamics controlled by a background four-vector $n_{\\mu}$. The photon propagator was obtained and we have analyzed the dispersion relation and the observational results of gamma-ray burst (GRB) experiments were used. The limits of the critical exponent were discussed in the light of the GRB data and the physical implications were compared with the current GRB-Lorentz-invariance-violation literature. We show that the bound for the Lorentz-violating coupling for dimension-six operators, obtained from a Hovrava-Lifshitz scaling, is eight orders of magnitude better than the result found without considering a Hovrava-Lifshitz scaling, also this bound is nearby one, which is expected to be relevant phenomenologically.
Fermionic Lorentz violation and its implications for interferometric gravitational-wave detection
Schreck, M.
2017-07-01
The recent direct detection of gravitational waves reported by Advanced LIGO has inspired the current article. In this context, a particular Lorentz-violating framework for classical, massive particles is the focus. The latter is characterized by a preferred direction in spacetime comprised of CPT-odd components with mass dimension 1. Curvature effects in spacetime, which are caused by a propagating gravitational wave, are assumed to deform the otherwise constant background field. In accordance with spontaneous Lorentz violation, a particular choice for the vector field is taken, which was proposed elsewhere. The geodesic equations for a particle that is subject to this type of Lorentz violation are obtained. Subsequently, their numerical solutions are computed and discussed. The particular model considered leads to changes in the particle trajectory whose impact on interferometric gravitational-wave experiments such as LIGO will be studied.
Lorentz-invariance violating effects in the Bose-Einstein condensation of an ideal bosonic gas
Casana, Rodolfo
2011-01-01
We have studied the effects of Lorentz-invariance violation in the Bose-Einstein condensation (BEC) of an ideal bosonic gas, assessing both the nonrelativistic and ultrarelativistic limits. Our model describes a massive complex scalar field coupled to a CPT-even and Lorentz-violating background. First, by starting from the nonrelativistic limit of our model and by using experimental data, we give upper limits for some parameters of our model. But, the existence of the nonrelativistic BEC, in a Lorentz-invariance violating (LIV) framework, imposes strong restrictions on some LIV parameters. It is shown that only the critical temperature gains LIV contributions. In the sequel, we analyze the ultrarelativistic Bose-Einstein condensation, constructing a well-defined partition function for the relativistic bosonic ideal gas, from which severe constraints on certain LIV parameters are imposed. The analysis of the ultrarelativistic BEC has shown that the critical temperature and the critical chemical potential are s...
Maxwell-Chern-Simons vortices in a CPT-odd Lorentz-violating Higgs Electrodynamics
Casana, R; da Hora, E; Neves, A B F
2014-01-01
We have studied BPS vortices in a CPT-odd and Lorentz-violating Maxwell-Chern-Simons-Higgs (MCSH) electrodynamics attained from the dimensional reduction of the Carroll-Field-Jackiw-Higgs model. The Lorentz-violating parameter induces a pronounced behavior at origin (for the magnetic/electric fields and energy density) which is absent in the MCSH vortices. For some combination of the Lorentz-violating coefficients there always exist a sufficiently large winding number $n_{0}$ such that for all $% |n|\\geq |n_{0}|$ the magnetic field flips its signal, yielding two well defined regions with opposite magnetic flux. However, the total magnetic flux remains quantized and proportional to the winding number.
Topological self-dual configurations in a Lorentz-violating gauged O(3) sigma model
Casana, R; Ferreira, M M
2015-01-01
We have studied the existence of topological BPS or self-dual configurations in a Lorentz-violating gauged O(3) nonlinear sigma model, where CPT-even Lorentz-violating (LV) terms were introduced in both the gauge and {\\sigma}-field sectors. Such as it happens in the usual gauged {\\sigma}-model, purely magnetic self-dual configurations are allowed, maintaining some qualitative features of the standard ones. In a more involved configuration, Lorentz-violation provides new self-dual magnetic solutions carrying electric field but null total electric charge. In both cases, the total energy of the self-dual configurations turns out proportional to the topological charge of the model and to the LV parameters introduced in the {\\sigma}-sector. It is shown that the LV terms yield magnetic flux reversion as well.
Maxwell-Chern-Simons vortices in a CPT-odd Lorentz-violating Higgs electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Casana, R.; Ferreira, M.M.; Hora, E. da; Neves, A.B.F. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, Maranhao (Brazil)
2014-09-15
We study BPS vortices in a CPT-odd and Lorentz-violating Maxwell-Chern-Simons-Higgs (MCSH) electrodynamics attained from the dimensional reduction of the Carroll-Field-Jackiw-Higgs model. The Lorentz-violating parameter induces a pronounced behavior at origin (for the magnetic/electric fields and energy density) which is absent in the MCSH vortices. For some combination of the Lorentz-violating coefficients there always exists a sufficiently large winding number n{sub 0} such that for all vertical stroke n vertical stroke ≥ vertical stroke n{sub 0} vertical stroke the magnetic field flips sign, yielding two well-defined regions with opposite magnetic flux. However, the total magnetic flux remains quantized and proportional to the winding number. (orig.)
Topological self-dual configurations in a Lorentz-violating gauged O (3 ) sigma model
Casana, R.; Farias, C. F.; Ferreira, M. M.
2015-12-01
We have studied the existence of topological Bogomol'nyi-Prasad-Sommerfield or self-dual configurations in a Lorentz-violating gauged O (3 ) nonlinear sigma model, where C P T -even Lorentz-violating (LV) terms were introduced in both the gauge and σ -field sectors. As happens in the usual gauged σ model, purely magnetic self-dual configurations are allowed, maintaining some qualitative features of the standard ones. In a more involved configuration, Lorentz violation provides new self-dual magnetic solutions carrying an electric field but a null total electric charge. In both cases, the total energy of the self-dual configurations turns out to be proportional to the topological charge of the model and to the LV parameters introduced in the σ sector. It is shown that the LV terms yield magnetic flux reversion as well.
Maxwell-Chern-Simons vortices in a CPT-odd Lorentz-violating Higgs electrodynamics
Casana, R.; Ferreira, M. M.; da Hora, E.; Neves, A. B. F.
2014-09-01
We have studied BPS vortices in a CPT-odd and Lorentz-violating Maxwell-Chern-Simons-Higgs (MCSH) electrodynamics attained from the dimensional reduction of the Carroll-Field-Jackiw-Higgs model. The Lorentz-violating parameter induces a pronounced behavior at origin (for the magnetic/electric fields and energy density) which is absent in the MCSH vortices. For some combination of the Lorentz-violating coefficients there always exist a sufficiently large winding number $n_{0}$ such that for all $% |n|\\geq |n_{0}|$ the magnetic field flips its signal, yielding two well defined regions with opposite magnetic flux. However, the total magnetic flux remains quantized and proportional to the winding number.
Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2010-12-01
A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the standard model, allow for neutrino oscillations that depend on the neutrino’s direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Because of the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by 3 orders of magnitude with respect to limits set by other experiments.
Changes in extensive air showers from isotropic Lorentz violation in the photon sector
Díaz, J. S.; Klinkhamer, F. R.; Risse, M.
2016-10-01
We consider a theory with isotropic nonbirefringent Lorentz violation in the photon sector and explore the effects on the development of the electromagnetic component of extensive air showers in the Earth atmosphere. Specifically, we consider the case of a "fast" photon with a phase velocity larger than the maximum attainable velocity of a massive Dirac fermion (this case corresponds to a negative Lorentz-violating parameter κ in the action). Shower photons with above-threshold energies decay promptly into electron-positron pairs, instead of decaying by the conventional production of electron-positron pairs in the background fields of atomic nuclei. This rapid production of charged leptons accelerates the shower development, decreasing the atmospheric depth of the shower maximum (Xmax) by an amount which could be measured by cosmic-ray observatories. Precise measurements of Xmax could then improve existing limits on the negative Lorentz-violating parameter κ by several orders of magnitude.
Changes in extensive air showers from isotropic Lorentz violation in the photon sector
Diaz, J S; Risse, M
2016-01-01
We consider a theory with isotropic nonbirefringent Lorentz violation in the photon sector and explore the effects on the development of the electromagnetic component of extensive air showers in the Earth atmosphere. Specifically, we consider the case of a "fast" photon with a phase velocity larger than the maximum attainable velocity of a massive Dirac fermion (this case corresponds to a negative Lorentz-violating parameter $\\kappa$ in the action). The production of photons with energies above the threshold for photon decay prevents the conventional production of electron-positron pairs, which gets replaced by the prompt decay of photons into electron-positron pairs. This rapid production of charged leptons accelerates the shower development, decreasing the atmospheric depth of the shower maximum ($X_\\text{max}$) by an amount which could be measured by cosmic-ray observatories. Precise measurements of $X_\\text{max}$ could then improve existing limits on the negative Lorentz-violating parameter $\\kappa$ by se...
Schreck, M
2015-01-01
The current article shall contribute to understanding the classical analogue of the minimal photon sector in the Lorentz-violating Standard-Model Extension (SME). It is supposed to complement all studies performed on classical point-particle equivalents of SME fermions. The classical analogue of a photon is not a massive particle being described by a usual equation of motion, but a geometric ray underlying the eikonal equation. The first part of the paper will set up the necessary tools to understand this correspondence for interesting cases of the minimal SME photon sector. In conventional optics the eikonal equation follows from an action principle, which is demonstrated to work in most (but not all) Lorentz-violating cases as well. The integrands of the action functional correspond to Finsler structures, which establishes the connection to Finsler geometry. The second part of the article treats Lorentz-violating light rays in a weak gravitational background by implementing the principle of minimal coupling...
Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube
Energy Technology Data Exchange (ETDEWEB)
IceCube; etal, Abbasi, R,
2010-11-11
A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillationmodels, derivable from extensions to the Standard Model, allow for neutrino oscillations that depend on the neutrino's direction of propagation. No such direction-dependent variation was found. Adiscrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Due to the unique high energy reach of IceCube, it was possible to improveconstraints on certain Lorentz-violating oscillations by three orders of magnitude with respect to limits set by other experiments.
Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube
Abbasi, R; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Davis, J C; De Clercq, C; Demirörs, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Duvoort, M R; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K -H; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lehmann, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Matusik, M; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nießen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Heros, C Pérez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schlenstedt, S; Schmidt, T; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Singh, K; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Wikström, G; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P
2010-01-01
A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the Standard Model, allow for neutrino oscillations that depend on the neutrino's direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Due to the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by three orders of magnitude with respect to limits set by other experiments.
Sakharov, Alexander; Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Rubbia, André
2009-06-01
It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c = [1 ± (E/MvQG1)] or [1 ± (E/MvQG2)2], using data from supernova explosions and the OPERA long-baseline neutrino experiment.
Effects of the Lorentz Invariance Violation on Coulomb Interactions in Nuclei and Atoms
Flambaum, V. V.; Romalis, M. V.
2017-04-01
Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in Ne2110 are used to improve the limits on Lorentz symmetry violations in the photon sector, namely, the anisotropy of the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10-28.
Search for Lorentz invariance and CPT violation with the MINOS far detector.
Adamson, P; Auty, D J; Ayres, D S; Backhouse, C; Barr, G; Barrett, W L; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Bower, C; Budd, S; Cavanaugh, S; Cherdack, D; Childress, S; Choudhary, B C; Coelho, J A B; Cobb, J H; Coleman, S J; Corwin, L; Cravens, J P; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Gran, R; Grant, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Ilic, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Krahn, Z; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, J L; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Oliver, W P; Orchanian, M; Paley, J; Patterson, R B; Patzak, T; Pawloski, G; Pearce, G F; Pittam, R; Plunkett, R K; Ratchford, J; Raufer, T M; Rebel, B; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Ryabov, V A; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Semenov, V K; Shanahan, P; Smart, W; Sousa, A; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Wright, D M; Yang, T; Zois, M; Zwaska, R
2010-10-08
We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the standard-model extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature, and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of 20-510 over the current best limits found by using the MINOS near detector.
Gauge field spectrum in massive Yang-Mills theory with Lorentz violation
Santos, T R S; Tomaz, A A
2016-01-01
The spectrum of the massive CPT-odd Yang-Mills propagator with Lorentz violation is performed at tree-level. The modification is due to mass terms generated by the exigence of multiplicative renormalizability of Yang-Mills theory with Lorentz violation. The causality analysis is performed from group and front velocities for both, spacelike and timelike background tensors. It is show that, by demanding causality, it is always possible to define a physical sector for the gauge propagator. Hence, it is expected that the model is also unitary, if one takes the Faddeev-Popov ghost into account.
Limits on Lorentz Invariance Violation from Coulomb Interactions in Nuclei and Atoms.
Flambaum, V V; Romalis, M V
2017-04-07
Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in _{10}^{21}Ne are used to improve the limits on Lorentz symmetry violations in the photon sector, namely, the anisotropy of the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10^{28}.
A new CPT-even and Lorentz-Violating nonminimal coupling in the Dirac equation
Casana, R; Silva, E O; Passos, E; Santos, F E P dos
2013-01-01
In this work, we propose a CPT-even and Lorentz-violating dimension-five nonminimal coupling between fermionic and gauge fields, involving the CTP-even and Lorentz-violating gauge tensor of the SME. This nonminimal coupling modifies the Dirac equation, whose nonrelativistic regime is governed by a Hamiltonian which induces new effects, such as an electric-Zeeman-like spectrum splitting and an anomalous-like contribution to the electron magnetic moment, between others. Some of these new effects allows to constrain the magnitude of this nonminimal coupling in 1 part in 10^16.
A CPT-even Lorentz-violating nonminimal coupling between fermions and photons
Casana, R; Santos, E Passos F E P Dos; Silva, E O
2013-01-01
We propose a CPT-even and Lorentz-violating dimension-five nonminimal coupling between fermionic and gauge fields, involving the CPT-even and Lorentz-violating gauge tensor of the Standard-Model Extension. This nonminimal coupling modifies the nonrelativistic regime of Dirac particles, inducing new effects such as an electric-Zeeman-like spectrum splitting and an anomalous-like contribution to the electron magnetic moment. These new effects allow to constrain the magnitude of this nonminimal coupling in 1 part in $10^{16}.$
a Cpt-Even Lorentz-Violating Nonminimal Coupling Between Fermions and Photons
Casana, R.; Ferreira, M. M.; Dos Santos, F. E. P.; Silva, E. O.; Passos, E.
2014-01-01
We propose a CPT-even and Lorentz-violating dimension-five nonminimal coupling between fermionic and gauge fields, involving the CPT-even and Lorentz-violating gauge tensor of the Standard-Model Extension. This nonminimal coupling modifies the nonrelativistic regime of Dirac particles, inducing new effects such as an electric-Zeeman-like spectrum splitting and an anomalous-like contribution to the electron magnetic moment. These new effects allow to constrain the magnitude of this nonminimal coupling in 1 part in 1016.
New CPT-even and Lorentz-violating nonminimal coupling in the Dirac equation
Casana, R.; Ferreira, M. M., Jr.; Passos, E.; dos Santos, F. E. P.; Silva, E. O.
2013-02-01
In this work, we propose a CPT-even and Lorentz-violating dimension-five nonminimal coupling between fermionic and gauge fields, involving the CPT-even and Lorentz-violating gauge tensor of the Standard Model extension. This nonminimal coupling modifies the Dirac equation, whose nonrelativistic regime is governed by a Hamiltonian which induces new effects, such as an electric-Zeeman-like spectrum splitting and an anomalouslike contribution to the electron magnetic moment, among others. Some of these new effects allow one to constrain the magnitude of this nonminimal coupling in 1 part in 1016(eV)-1.
Lorentz Invariant CPT Violating Effects for a Class of Gauge-invariant Nonlocal Thirring Models
Patra, Pinaki
2013-01-01
CPT violation and Lorentz invariance can coexist in the framework of non-local field theory. Local gauge-invariance may not hold for the few non-local interaction terms. However, the gauge-invariance for the non-local interaction term can be formulated by the inclusion of Swinger non-integrable phase factor. In this article we have proposed a class of CPT violating Lorentz invariant Nonlocal Gauge-invariant models which can be termed as non-local gauge-invariant Thirring models. The inclusion of non-locality will modify the current conservation laws. Also, the possible particle antiparticle mass-splitting in this respect is discussed.
Lab-based limits on the Carroll-Field-Jackiw Lorentz-violating electrodynamics
Gomes, Y M P
2016-01-01
The CPT-odd and Lorentz-violating Carroll-Field-Jackiw modification of electrodynamics is discussed and we study its effects on the energy spectrum of hydrogen, as well as in the generation of a momentum-dependent electric dipole moment for charged leptons. We also briefly comment on the possibility of the detection of Lorentz violation in measurements of vacuum dichroism in resonant cavities. The bounds found are based on local laboratory experimental limits and are not competitive with the ones coming from astrophysical considerations.
A Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector
Adamson, P; Ayres, D S; Backhouse, C; Barr, G; Barrett, W L; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Bower, C; Budd, S; Cavanaugh, S; Cherdack, D; Childress, S; Choudhary, B C; Coelho, J A B; Cobb, J H; Coleman, S J; Corwin, L; Cravens, J P; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Gran, R; Grant, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Ilic, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Krahn, Z; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, J L; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Oliver, W P; Orchanian, M; Paley, J; Patterson, R B; Patzak, T; Pawloski, G; Pearce, G F; Pittam, R; Plunkett, R K; Ratchford, J; Raufer, T M; Rebel, B; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Ryabov, V A; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Semenov, V K; Shanahan, P; Smart, W; Sousa, A; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Wright, D M; Yang, T; Zois, M; Zwaska, R
2010-01-01
We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the Standard-Model Extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of $20-510$ over the current best limits found using the MINOS near detector.
First search for Lorentz and C P T violation in double beta decay with EXO-200
Albert, J. B.; Barbeau, P. S.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; DeVoe, R.; Díaz, J. S.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; Fairbank, W.; Farine, J.; Feyzbkhsh, S.; Feldmeier, W.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Homiller, S.; Hughes, M.; Jewell, M. J.; Jiang, X. S.; Johnson, A.; Johnson, T. N.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Killick, R.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Leonard, D. S.; Licciardi, C.; Lin, Y. H.; Ling, J.; MacLellan, R.; Marino, M. G.; Mong, B.; Moore, D.; Nelson, R.; Njoya, O.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Retiére, F.; Rowson, P. C.; Russell, J. J.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Twelker, K.; Vuilleumier, J.-L.; Vogel, P.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Wood, J.; Yang, L.; Yen, Y.-R.; Zeldovich, O. Ya.; EXO-200 Collaboration
2016-04-01
A search for Lorentz- and C P T -violating signals in the double beta decay spectrum of 136Xe has been performed using an exposure of 100 kg .yr with the EXO-200 detector. No significant evidence of the spectral modification due to isotropic Lorentz-violation was found, and a two-sided limit of -2.65 ×10-5 GeV SME). This is the first experimental study of the effect of the SME-defined oscillation-free and momentum-independent neutrino coupling operator on the double beta decay process.
Tests of Lorentz and CPT Violation in the Medium Baseline Reactor Antineutrino Experiment
Li, Yu-Feng
2014-01-01
Tests of Lorentz and CPT violation in the medium baseline reactor antineutrino experiment are presented in the framework of the Standard Model Extension (SME). Both the spectral distortion and sidereal variation are employed to derive the limits of Lorentz violation (LV) coefficients. We do the numerical analysis of the sensitivity of LV coefficients by taking the Jiangmen Underground Neutrino Observatory (JUNO) as an illustration, which can improve the sensitivity by more than two orders of magnitude compared with the current limits from reactor antineutrino experiments.
Limits on Lorentz Violation from Forbidden beta Decays
Noordmans, J.P.; Wilschut, H.W.; Timmermans, R.G.E.
2013-01-01
Forbidden (slow) beta decays offer new opportunities to test the invariance of the weak interaction under Lorentz transformations. Within a general effective field theory framework we analyze and reinterpret the only two relevant experiments, performed in the 1970s, dedicated to search for a
Path Integrals and Lorentz Violation in Polymer Quantized Scalar Fields
Kajuri, Nirmalya
2014-01-01
We obtain a path integral formulation of polymer quantized scalar field theory, starting from the Hilbert Space framework. This brings the polymer quantized scalar field theory under the ambit of Feynman diagrammatic techniques. The path integral formulation also shows that Lorentz invariance is lost for the Klein-Gordon field.
High-Energy Nuclear Physics with Lorentz Symmetry Violation
González-Mestres, L
1997-01-01
If textbook Lorentz invariance is actually a property of the equations describing a sector of the excitations of vacuum above some critical distance scale, several sectors of matter with different critical speeds in vacuum can coexist and an absolute rest frame (the vacuum rest frame) may exist without contradicting the apparent Lorentz invariance felt by "ordinary" particles (particles with critical speed in vacuum equal to $c$ , the speed of light). Sectorial Lorentz invariance, reflected by the fact that all particles of a given dynamical sector have the same critical speed in vacuum, will then be an expression of a fundamental sectorial symmetry (e.g. preonic grand unification or extended supersymmetry) protecting a parameter of the equations of motion. Furthermore, the sectorial Lorentz symmetry may be only a low-energy limit, in the same way as the relation $\\omega $ (frequency) = $c_s$ (speed of sound) $k$ (wave vector) holds for low-energy phonons in a crystal. In this context, phenomena such as the a...
A CPT-even and Lorentz-Violating nonminimal coupling in the Dirac equation
Energy Technology Data Exchange (ETDEWEB)
Ferreira Junior, Manoel; Casana, M.R.; Santos, Frederico E.P. dos; Silva, E.O. [UFMA, Sao Luis (Brazil); Passos, E. [UFCG, Campina Grande, PB (Brazil)
2013-07-01
Full text: The Standard Model Extension (SME) has been the usual framework for investigating signals of Lorentz violation in physical systems. It is the natural framework for studying properties of physical systems with Lorentz-violation since it includes Lorentz-violating terms in all sectors of the minimal standard model. The Lorentz-violating (LV) terms are generated as vacuum expectation values of tensors defined in a high energy scale. This framework has inspired a great deal of investigation in recent years. Such works encompass several distinct aspects involving fermion systems and radiative corrections, CPT- probing experiments, the electromagnetic CPT- and Lorentz-odd term, the 19 electromagnetic CPT-even coefficients. Recently, some studies involving higher dimensional operators have also been reported with great interest, including nonminimal interactions. These many contributions have elucidated the effects induced by Lorentz violation and served to set up stringent upper bounds on the LV coefficients. In the present work, we propose a new CPT-even, dimension-five, nonminimal coupling linking the fermionic and gauge fields in the context of the Dirac equation, involving the CPT-even tensor of the gauge term of the SME. By considering the nonrelativistic limit of the modified Dirac equation, we explicitly evaluate the new contributions to the nonrelativistic Hamiltonian. These new terms imply a direct correction on the anomalous magnetic moment, a kind of electrical Zeeman-like effect on the atomic spectrum, and a Rashba-like coupling term. These effects are then used to impose upper bounds on the magnitude of the non minimally coupled LV coefficients at the level of 1 part in 10{sub 16}. (author)
Planck-scale effects on WIMP dark matter
Directory of Open Access Journals (Sweden)
Sofiane M Boucenna
2014-01-01
Full Text Available There exists a widely known conjecture that gravitational effects violate global symmetries. We study the effect of global-symmetry violating higher-dimension operators induced by Planck-scale physics on the properties of WIMP dark matter. Using an effective description, we show that the lifetime of the WIMP dark matter candidate can satisfy cosmological bounds under reasonable assumptions regarding the strength of the dimension-five operators. On the other hand, the indirect WIMP dark matter detection signal is significantly enhanced due to new decay channels.
Directory of Open Access Journals (Sweden)
Thiago Prudêncio
2017-01-01
Full Text Available We discuss the modified Maxwell action of a KF-type Lorentz symmetry breaking theory and present a solution of Maxwell equations derived in the cases of linear and elliptically polarized electromagnetic waves in the vacuum of CPT-even Lorentz violation. We show in this case that the Lorentz violation has the effect of changing the amplitude of one component of the magnetic field, while leaving the electric field unchanged, leading to nonorthogonal propagation of electromagnetic fields and dependence of the eccentricity on κ-term. Further, we exhibit numerically the consequences of this effect in the cases of linear and elliptical polarization, in particular, the regimes of nonorthogonality of the electromagnetic wave fields and the eccentricity of the elliptical polarization of the magnetic field with dependence on the κ-term.
Implications of Lorentz symmetry violation on a 5D supersymmetric model
García-Aguilar, J D
2016-01-01
Field models with $n$ extra spatial dimensions have a larger $SO(1,3+n)$ Lorentz symmetry which is broken down to the standard $SO(1,3)$ four dimensional symmetry by the compactification process. By considering all Lorentz violating operators in a $5D$ supersymmetric Wess-Zumino mo\\-del, which otherwise conserve standard Poincare invariance in four dimensions, we show that Supersymmetry can be restored upon a simple deformation of the supersymmetric transformations. However, Supersymmetry shall not be preserved in the effective $4D$ theory that arises after compactification when the $5D$ Lorentz violating operators do not preserve $Z_2: y\\rightarrow -y$ bulk parity. We also show that parity preserving models, on the other hand, do provide well defined supersymmetric KK models.
Borges, L H C; Barone, F A
2016-01-01
This paper is dedicated to the study of interactions between external sources for the electromagnetic field in a Lorentz symmetry breaking scenario. We focus on a particular higher derivative, Lorentz violating interaction that arises from a specific model that was argued to lead to interesting effects in the low energy phenomenology of light pseudoscalars interacting with photons. The kind of higher derivative Lorentz violating interaction we discuss do not appear in the well known Standard Model Extension, therefore they are called nonminimal. They are usually expected to be relevant only at very high energies, but we argue they might also induce relevant effects in low energy phenomena. Special attention is given for phenomena that have no counterpart in Maxwell theory.
Generation of Axion-Like Couplings via Quantum Corrections in a Lorentz Violating Background
Borges, L H C; Ferrari, A F; Nascimento, J R; Petrov, A Yu
2013-01-01
Light pseudoscalars, or axions like particles (ALPs), are much studied due to their potential relevance to the fields of particle physics, astrophysics and cosmology. The most relevant coupling of ALPs from the viewpoint of current experimental searches is to the photon: in this work, we study the generation of this coupling as an effect of quantum corrections, originated from the presence of a fermion field which feels an underlying Lorentz violating background. We show that this mechanism involves the calculation of a triangle graph, which is finite but ambiguous, so it might represent an interesting connection between a theoretical puzzle and an active field of experimental research. Most interestingly, we show that the axion-photon interaction generated by this mechanism turns out to be Lorentz invariant, thus mimicking the standard ALPs coupling to photon that is considered in the experiments. We comment on what kind of bounds in Lorentz violating parameters might be obtained from this connection. Finall...
Higher-order Lorentz-invariance violation, quantum gravity and fine-tuning
Directory of Open Access Journals (Sweden)
Carlos M. Reyes
2015-06-01
Full Text Available The issue of Lorentz fine-tuning in effective theories containing higher-order operators is studied. To this end, we focus on the Myers–Pospelov extension of QED with dimension-five operators in the photon sector and standard fermions. We compute the fermion self-energy at one-loop order considering its even and odd CPT contributions. In the even sector we find small radiative corrections to the usual parameters of QED which also turn to be finite. In the odd sector the axial operator is shown to contain unsuppressed effects of Lorentz violation leading to a possible fine-tuning. We use dimensional regularization to deal with the divergencies and a generic preferred four-vector. Taking the first steps in the renormalization procedure for Lorentz violating theories we arrive to acceptable small corrections allowing to set the bound ξ<6×10−3.
Searching for photon-sector Lorentz violation using gravitational-wave detectors
Directory of Open Access Journals (Sweden)
V. Alan Kostelecký
2016-10-01
Full Text Available We study the prospects for using interferometers in gravitational-wave detectors as tools to search for photon-sector violations of Lorentz symmetry. Existing interferometers are shown to be exquisitely sensitive to tiny changes in the effective refractive index of light occurring at frequencies around and below the microhertz range, including at the harmonics of the frequencies of the Earth's sidereal rotation and annual revolution relevant for tests of Lorentz symmetry. We use preliminary data obtained by the Laser Interferometer Gravitational-Wave Observatory (LIGO in 2006–2007 to place constraints on coefficients for Lorentz violation in the photon sector exceeding current limits by about four orders of magnitude.
Modified gravity and binary pulsars: the Lorentz violating case
Blas, Diego
2016-01-01
The dynamics of binary pulsars can be used to test different aspects of gravitation. This is particularly important to constrain alternatives to general relativity in regimes which are not probed by other methods. In this short contribution, I will describe the case of theories of gravity without Lorentz invariance. The latter are important in the context of quantum gravity and modify the laws of gravity at basically all scales.
Planck scale operators, inflation and fine tuning
Marunovic, Anja
2016-01-01
Ultraviolet completion of the standard model plus gravity at and beyond the Planck scale is a daunting problem to which no generally accepted solution exists. Principal obstacles include (a) lack of data at the Planck scale (b) nonrenormalizability of gravity and (c) unitarity problem. Here we make a simple observation that, if one treats all Planck scale operators of equal canonical dimension democratically, one can tame some of the undesirable features of these models. With a reasonable amount of fine tuning one can satisfy slow roll conditions required in viable inflationary models. That remains true even when the number of such operators becomes very large.
Search for violation of Lorentz invariance in top quark pair production and decay.
Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Aoki, M; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Begalli, M; Bellantoni, L; Berger, M S; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Pérez, E; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Das, A; Davies, G; de Jong, S J; De la Cruz-Burelo, E; Déliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garcia-Bellido, A; García-González, J A; García-Guerra, G A; Gavrilov, V; Gay, P; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jayasinghe, A; Jesik, R; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kostelecký, V A; Kozelov, A V; Kraus, J; Kulikov, S; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nunnemann, T; Obrant, G; Orduna, J; Osman, N; Osta, J; Padilla, M; Pal, A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Salcido, P; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shaw, S; Shchukin, A A; Shivpuri, R K; Simak, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stoyanova, D A; Strauss, M; Stutte, L; Suter, L; Svoisky, P; Takahashi, M; Titov, M; Tokmenin, V V; Tsai, Y-T; Tschann-Grimm, K; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; White, A; Whittington, D; Wicke, D; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yin, H; Yip, K; Youn, S W; Zennamo, J; Zhao, T; Zhao, T G; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L
2012-06-29
Using data collected with the D0 detector at the Fermilab Tevatron Collider, corresponding to 5.3 fb(-1) of integrated luminosity, we search for violation of Lorentz invariance by examining the tt[over ¯] production cross section in lepton+jets final states. We quantify this violation using the standard-model extension framework, which predicts a dependence of the tt[over ¯] production cross section on sidereal time as the orientation of the detector changes with the rotation of the Earth. Within this framework, we measure components of the matrices (c(Q))(μν33) and (c(U))(μν33) containing coefficients used to parametrize violation of Lorentz invariance in the top quark sector. Within uncertainties, these coefficients are found to be consistent with zero.
Search for CPT and Lorentz Violation in B0-B0bar Oscillations with Dilepton Events
Energy Technology Data Exchange (ETDEWEB)
Collaboration, The BABAR; Aubert, B.
2007-11-28
We report results of a search for CPT and Lorentz violation in B{sup 0}-{bar B}{sup 0} oscillations using inclusive dilepton events from 232 million {Upsilon}(4S) {yields} B{bar B} decays recorded by the BABAR detector at the PEP-II B Factory at SLAC. We find 2.8{sigma} significance, compatible with no signal, for variations in the complex CPT violation parameter z at the Earth's sidereal frequency and extract values for the quantities {Delta}a{sub {mu}} in the general Lorentz-violating standard-model extension. The spectral powers for variations in z over the frequency range 0.26 year{sup -1} to 2.1 day{sup -1} are also compatible with no signal.
Search for Violation of Lorentz Invariance in Top Quark Pair Production and Decay
Energy Technology Data Exchange (ETDEWEB)
Abazov V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Aoki, M.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Berger, M. S.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besancon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Perez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Thery, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Deliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Garcia-Gonzalez, J. A.; Garcia-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Gruenendahl, S.; Gruenewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffre, M.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kostelecky, V. A.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurca, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; de Sa, R. Lopes; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magana-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martinez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; et al.
2012-06-27
Using data collected with the D0 detector at the Fermilab Tevatron Collider, corresponding to 5.3 fb{sup -1} of integrated luminosity, we search for violation of Lorentz invariance by examining the t{bar t} production cross section in lepton+jets final states. We quantify this violation using the standard-model extension framework, which predicts a dependence of the t{bar t} production cross section on sidereal time as the orientation of the detector changes with the rotation of the Earth. Within this framework, we measure components of the matrices (c{sub Q}){sub {mu}{nu}33} and (c{sub U}){sub {mu}{nu}33} containing coefficients used to parametrize violation of Lorentz invariance in the top quark sector. Within uncertainties, these coefficients are found to be consistent with zero.
Photon emission and decay from generic Lorentz invariance violation
Martínez-Huerta, H.; Pérez-Lorenzana, A.
2017-06-01
One of the most studied approaches in phenomenology to introduce the breaking of Lorentz symmetry is the generic approach. This consist on the modification of the free particle dispersion relation by the addition of an extra power law term of order n on energy or momentum. Using this approach in the photon sector, we have calculated the generic rates for vacuum Cherenkov radiation and photon decay, for any order n, at leading order. Explicit results for the decay and emission rates for the lowest values of n are also presented.
Lorentz violation, two-time physics, and strings
Energy Technology Data Exchange (ETDEWEB)
Romero, Juan M., E-mail: jromero@correo.cua.uam.mx [Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Mexico, D.F 01120 (Mexico); Sanchez-Santos, Oscar, E-mail: oscarsanbuzz@yahoo.com.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico 04510 DF (Mexico); Vergara, Jose David, E-mail: vergara@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico 04510 DF (Mexico)
2011-10-24
The aim of this paper is to study the generalization of the relativistic particle recently proposed by Kostelecky. An alternative action for this system is presented, and it is shown that this action can be interpreted as a particle in curved space. Furthermore, the following results are established for the model: (i) there exists a limit where the system has more local symmetries than the usual relativistic particle; (ii) in this limit when Lorentz symmetry is restored, a direct relationship with the two-time physics is determined; (iii) if also Poincare symmetry is recovered, the action of a relativistic bosonic string is obtained. -- Highlights: → We study the generalization of the relativistic particle proposed by Kostelecky. → An alternative action for this system is presented. → There is a limit where the model has more symmetries than the relativistic particle. → When Lorentz symmetry is restored, a relationship with two-time physics is determined. → If Poincare symmetry is recovered, the action of a relativistic string is obtained.
Lorentz-violating vortex solutions in the CPT-even electrodynamics of the Standard Model Extension
Energy Technology Data Exchange (ETDEWEB)
Casana, Rodolfo; Ferreira Junior, Manoel M. [Universidade Federal do Maranhao (UFMA), MA (Brazil); Hora, E. da [Universidade Federal da Paraiba (UFPB), PB (Brazil)
2011-07-01
Full text: In this work, we investigate the formation of static rotationally symmetric solutions on the (1+3) dimensional CPT-even and Lorentz-violating photonic sector of the Standard Model Extension (SME). The main goal of this work is to show the possibility of obtaining these solutions, even in the presence of Lorentz-breaking fields. A secondary goal is to examine the effects of these fields on topologically non-trivial configurations. In order to obtain these results, we focus on specific components of Lorentz-violating background, dealing with static Euler-Lagrange equations, from which we fix temporal gauge (absence of electric field) as a proper gauge choice. We assume the usual rotationally symmetric Ansatz, inserting it in the Euler-Lagrange equations previously obtained. This Ansatz describes the Higgs and gauge fields via profile functions g(r) and a(r), respectively. From this Ansatz, we construct suitable boundary conditions near the origin. Also, we write the energy density in terms of these two profile functions, obtaining from it asymptotic boundary conditions. This set of conditions is used to numerically solve the Euler-Lagrange equations (by means of the shooting method). Finally, we plot solutions for some physical quantities (Higgs field, magnetic field and energy density) for several values of the Lorentz-violating parameters. From these plots, we discuss the influence of these coefficients on the topologically non-trivial rotationally symmetric configurations, focusing on the profiles of both magnetic field and energy density. (author)
The potential of the HAWC Observatory to observe violations of Lorentz Invariance
Nellen, Lukas
2015-01-01
The framework of relativistic quantum-field theories requires Lorentz Invariance. Many theories of quantum gravity, on the other hand, include violations of Lorentz Invariance at small scales and high energies. This generates a lot of interest in establishing limits on such effects, and, if possible, observing them directly. Gamma-ray observatories provide a tool to probe parts of the parameter space of models of Lorentz Invariance Violation that is not accessible in terrestrial laboratories and man-made accelerators. Transients, especially gamma-ray bursts, are a particularly promising class of events to search for such phenomena. By combining cosmological distances with high energy emission and short duration, emitting photons up to 30 GeV in less than a second, one can measure the energy dependence of the speed of photons to one part in $10^{16}$. We will discuss the potential of HAWC to detect effects of the violation of Lorentz Invariance and place its sensitivity in the context of existing limits.
Gonzalez-Mestres, L.
2014-04-01
With the present understanding of data, the observed flux suppression for ultra-high energy cosmic rays (UHECR) at energies above 4.1019 eV can be a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or be related to a similar mechanism. But it may also correspond, for instance, to the maximum energies available at the relevant sources. In both cases, violations of special relativity modifying cosmic-ray propagation or acceleration at very high energy can potentially play a role. Other violations of fundamental principles of standard particle physics (quantum mechanics, energy and momentum conservation, vacuum homogeneity and "static" properties, effective space dimensions, quark confinement…) can also be relevant at these energies. In particular, UHECR data would in principle allow to set bounds on Lorentz symmetry violation (LSV) in patterns incorporating a privileged local reference frame (the "vacuum rest frame", VRF). But the precise analysis is far from trivial, and other effects can also be present. The effective parameters can be related to Planckscale physics, or even to physics beyond Planck scale, as well as to the dynamics and effective symmetries of LSV for nucleons, quarks, leptons and the photon. LSV can also be at the origin of GZK-like effects. In the presence of a VRF, and contrary to a "grand unification" view, LSV and other violations of standard principles can modify the internal structure of particles at very high energy and conventional symmetries may cease to be valid at energies close to the Planck scale. We present an updated discussion of these topics, including experimental prospects, new potentialities for high-energy cosmic ray phenomenology and the possible link with unconventional pre-Big Bang scenarios, superbradyon (superluminal preon) patterns… The subject of a possible superluminal propagation of neutrinos at accelerator energies is also dealt with.
Einstein-Hilbert Graviton Modes modified by the Lorentz-violating Bumblebee Field
Maluf, R V; Casana, R; Ferreira, M M
2014-01-01
In this work, we investigate the consequences of the spontaneous breaking of Lorentz symmetry, triggered by the bumblebee vector field, on the Einstein-Hilbert usual theory. Specifically, we consider the Einstein-Hilbert action modified by the bumblebee dynamic field, and evaluate the graviton propagator using an extended basis of Barnes-Rivers tensor projectors, involving the Lorentz-violating vector. Once the propagator is carried out, we proceed discussing the consistency of the model, writing the dispersion relations, analyzing causality and unitarity. We verify that graviton physical propagating modes are causal and unitary.
Leon, David; Kaufman, Jonathan; Keating, Brian; Mewes, Matthew
2017-01-01
One of the most powerful probes of new physics is the polarized cosmic microwave background (CMB). The detection of a nonzero polarization angle rotation between the CMB surface of last scattering and today could provide evidence of Lorentz-violating physics. The purpose of this paper is two-fold. First, we review one popular mechanism for polarization rotation of CMB photons: the pseudo-Nambu-Goldstone boson (PNGB). Second, we propose a method to use the POLARBEAR experiment to constrain Lorentz-violating physics in the context of the Standard Model Extension (SME), a framework to standardize a large class of potential Lorentz-violating terms in particle physics.
Shao, Cheng-Gang; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund
2015-01-01
A search for sidereal variations in the non-Newtonian force between two tungsten plates separated at millimeter ranges sets experimental limits on Lorentz invariance violation involving quadratic couplings of Riemann curvature. We show that the Lorentz invariance violation force between two finite flat plates is dominated by the edge effects, which includes a suppression effect leading to lower limits than previous rough estimates. From this search, we determine the current best constraints of the Lorentz invariance violating coefficients at a level of $10^{-8}$ m$^{2}$.
Leon, David; Keating, Brian; Mewes, Matthew
2016-01-01
One of the most powerful probes of new physics is the polarized Cosmic Microwave Background (CMB). The detection of a nonzero polarization angle rotation between the CMB surface of last scattering and today could provide evidence of Lorentz-violating physics. The purpose of this paper is twofold. First we review one popular mechanism for polarization rotation of CMB photons: the pseudo-Nambu-Goldstone boson. Second, we propose a method to use the Polarbear experiment to constrain Lorentz-violating physics in the context of the Standard-Model Extension, a framework to standardize a large class of potential Lorentz-violating terms in particle physics.
Lorentz violating p-form gauge theories in superspace
Upadhyay, Sudhaker; Shah, Mushtaq B.; Ganai, Prince A.
2017-03-01
Very special relativity (VSR) keeps the main features of special relativity but breaks rotational invariance due to an intrinsic preferred direction. We study the VSR-modified extended BRST and anti-BRST symmetry of the Batalin-Vilkovisky (BV) actions corresponding to the p=1,2,3-form gauge theories. Within the VSR framework, we discuss the extended BRST invariant and extended BRST and anti-BRST invariant superspace formulations for these BV actions. Here we observe that the VSR-modified extended BRST invariant BV actions corresponding to the p=1,2,3-form gauge theories can be written in a manifestly covariant manner in a superspace with one Grassmann coordinate. Moreover, two Grassmann coordinates are required to describe the VSR-modified extended BRST and extended anti-BRST invariant BV actions in a superspace. These results are consistent with the Lorentz-invariant (special relativity) formulation.
Lorentz violating p-form gauge theories in superspace
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker [Indian Institute of Technology Kharagpur, Centre for Theoretical Studies, Kharagpur (India); Shah, Mushtaq B.; Ganai, Prince A. [National Institute of Technology, Department of Physics, Srinagar, Kashmir (India)
2017-03-15
Very special relativity (VSR) keeps the main features of special relativity but breaks rotational invariance due to an intrinsic preferred direction. We study the VSR-modified extended BRST and anti-BRST symmetry of the Batalin-Vilkovisky (BV) actions corresponding to the p = 1, 2, 3-form gauge theories. Within the VSR framework, we discuss the extended BRST invariant and extended BRST and anti-BRST invariant superspace formulations for these BV actions. Here we observe that the VSR-modified extended BRST invariant BV actions corresponding to the p = 1, 2, 3-form gauge theories can be written in a manifestly covariant manner in a superspace with one Grassmann coordinate. Moreover, two Grassmann coordinates are required to describe the VSR-modified extended BRST and extended anti-BRST invariant BV actions in a superspace. These results are consistent with the Lorentz-invariant (special relativity) formulation. (orig.)
Status and prospects for CPT and Lorentz invariance violation searches in neutral meson mixing
Directory of Open Access Journals (Sweden)
Jeroen van Tilburg
2015-03-01
Full Text Available An overview of current experimental bounds on CPT violation in neutral meson mixing is given. New values for the CPT asymmetry in the B0 and Bs0 systems are deduced from published BaBar, Belle and LHCb results. With dedicated analyses, LHCb will be able to further improve the bounds on CPT violation in the D0, B0 and Bs0 systems. Since CPT violation implies violation of Lorentz invariance in an interacting local quantum field theory, the observed CPT asymmetry will exhibit sidereal- and boost-dependent variations. Such CPT-violating and Lorentz-violating effects are accommodated in the framework of the Standard Model Extension (SME. The large boost of the neutral mesons produced at LHCb results in a high sensitivity to the corresponding SME coefficients. For the B0 and Bs0 systems, using existing LHCb results, we determine with high precision the SME coefficients that are not varying with sidereal time. With a full sidereal analysis, LHCb will be able to improve the existing SME bounds in the D0, B0 and Bs0 systems by up to two orders of magnitude.
Lorentz-violating contributions of the Carroll-Field-Jackiw model to the CMB anisotropy
Casana, Rodolfo; Rodrigues, Josberg S
2008-01-01
We study the finite temperature properties of the Maxwell-Carroll-Field-Jackiw (MCFJ) electrodynamics for a purely space-like background. Starting from the associated finite temperature partition function, a modified black body spectral distribution is obtained. We thus show that, if the CMB radiation is described by this model, the spectrum presents an anisotropic angular energy density distribution. We show, at leading order, that the Lorentz breaking contributions for the Plank's radiation law and for the Stefan-Boltzmann's law are nonlinear in frequency and quadratic in temperature, respectively. Using our results, we set up bounds for the Lorentz breaking parameter, and show that Lorentz violation in the context of the MCFJ model is unable to yield the known CMB anisotropy (of 1 part in $10^{5})$.
Lorentz-violating contributions of the Carroll-Field-Jackiw model to the CMB anisotropy
Casana, Rodolfo; Ferreira, Manoel M., Jr.; Rodrigues, Josberg S.
2008-12-01
We study the finite temperature properties of the Maxwell-Carroll-Field-Jackiw (MCFJ) electrodynamics for a purely spacelike background. Starting from the associated finite temperature partition function, a modified black body spectral distribution is obtained. We thus show that, if the CMB radiation is described by this model, the spectrum presents an anisotropic angular energy density distribution. We show, at leading order, that the Lorentz-breaking contributions for the Plank’s radiation law and for the Stefan-Boltzmann’s law are nonlinear in frequency and quadratic in temperature, respectively. Using our results, we set up bounds for the Lorentz-breaking parameter, and show that Lorentz violation in the context of the MCFJ model is unable to yield the known CMB anisotropy (of 1 part in 105).
First Search for Lorentz and CPT Violation in Double Beta Decay with EXO-200
:,; Barbeau, P S; Beck, D; Belov, V; Breidenbach, M; Brunner, T; Burenkov, A; Cao, G F; Chambers, C; Cleveland, B; Coon, M; Craycraft, A; Daniels, T; Danilov, M; Daugherty, S J; Davis, C G; Davis, J; Delaquis, S; Der Mesrobian-Kabakian, A; DeVoe, R; Díaz, J S; Didberidze, T; Dilling, J; Dolgolenko, A; Dolinski, M J; Dunford, M; Fairbank, W; Farine, J; Feyzbkhsh, S; Feldmeier, W; Fierlinger, P; Fudenberg, D; Gornea, R; Graham, K; Gratta, G; Hall, C; Homiller, S; Hughes, M; Jewell, M J; Jiang, X S; Johnson, A; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Krücken, R; Kuchenkov, A; Kumar, K S; Leonard, D S; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Mong, B; Moore, D; Nelson, R; Njoya, O; Odian, A; Ostrovskiy, I; Piepke, A; Pocar, A; Prescott, C Y; Retiére, F; Rowson, P C; Russell, J J; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Tsang, R; Twelker, K; Vuilleumier, J -L; Vogel, P; Waite, A; Walton, J; Walton, T; Weber, M; Wen, L J; Wichoski, U; Wood, J; Yang, L; Yen, Y -R; Zeldovich, O Ya
2016-01-01
A search for Lorentz- and CPT-violating signals in the double beta decay spectrum of $^{136}$Xe has been performed using an exposure of 100 kg$\\cdot$yr with the EXO-200 detector. No significant evidence of the spectral modification due to isotropic Lorentz-violation was found, and a two-sided limit of $-2.65 \\times 10^{-5 } \\; \\textrm{GeV} < \\mathring{a}^{(3)}_{\\text{of}} < 7.60 \\times 10^{-6} \\; \\textrm{GeV}$ is placed on the relevant coefficient within the Standard-Model Extension (SME). This is the first experimental study of the effect of the SME-defined oscillation-free and momentum-independent neutrino coupling operator on the double beta decay process.
Lorentz invariance violation as an explanation of the muon excess in Auger data
Tomar, Gaurav
2017-05-01
The Auger Collaboration has observed the number of muons, which is higher than its prediction by existing hadronic interaction models. We explain this excess of muons by using Lorentz invariance violation (LIV) in the photon sector. As an outcome of Lorentz invariance violation, the dispersion relation of the photon gets modified, which we use for the calculation of π0 decay width. In the Auger data of primary energy 1 09.8
Search for Lorentz and CPT violation effects in Muon spin precession.
Bennett, G W; Bousquet, B; Brown, H N; Bunce, G; Carey, R M; Cushman, P; Danby, G T; Debevec, P T; Deile, M; Deng, H; Deninger, W; Dhawan, S K; Druzhinin, V P; Duong, L; Efstathiadis, E; Farley, F J M; Fedotovich, G V; Giron, S; Gray, F E; Grigoriev, D; Grosse-Perdekamp, M; Grossmann, A; Hare, M F; Hertzog, D W; Huang, X; Hughes, V W; Iwasaki, M; Jungmann, K; Kawall, D; Kawamura, M; Khazin, B I; Kindem, J; Krienen, F; Kronkvist, I; Lam, A; Larsen, R; Lee, Y Y; Logashenko, I; McNabb, R; Meng, W; Mi, J; Miller, J P; Mizumachi, Y; Morse, W M; Nikas, D; Onderwater, C J G; Orlov, Y; Ozben, C S; Paley, J M; Peng, Q; Polly, C C; Pretz, J; Prigl, R; zu Putlitz, G; Qian, T; Redin, S I; Rind, O; Roberts, B L; Ryskulov, N; Sedykh, S; Semertzidis, Y K; Shagin, P; Shatunov, Yu M; Sichtermann, E P; Solodov, E; Sossong, M; Steinmetz, A; Sulak, L R; Timmermans, C; Trofimov, A; Urner, D; von Walter, P; Warburton, D; Winn, D; Yamamoto, A; Zimmerman, D
2008-03-07
The spin precession frequency of muons stored in the (g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for a nonzero delta omega a(=omega a mu+ - omega a mu-) and a sidereal variation of omega a mu+/-). No significant effect is found, and the following limits on the standard-model extension parameters are obtained: bZ = -(1.0+/-1.1) x 10(-23) GeV; (m mu dZ0 + HXY)=(1.8+/-6.0) x 10(-23) GeV; and the 95% confidence level limits b perpendicular mu+ <1.4 x 10(-24) GeV and b perpendicular mu- <2.6 x 10(-24) GeV.
Kondo effect from a Lorentz-violating domain wall description of superconductivity
Bazeia, D; Mota-Silva, J C
2016-01-01
We extend recent results on domain wall description of superconductivity in an Abelian Higgs model by introducing a particular Lorentz-violating term. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath. We show that this term can be associated with the {\\sl Kondo effect}, that is, the Lorentz-violating parameter is closely related to the concentration of magnetic impurities living on a superconducting domain wall. We also found that the critical temperature decreasing with the impurity concentration as a non-single valued function, for the case $T_K
Lorentz-violating effects in the Bose-Einstein condensation of an ideal bosonic gas
Casana, Rodolfo; da Silva, Kleber A. T.
2015-03-01
We have studied the effects of Lorentz-violation in the Bose-Einstein condensation (BEC) of an ideal boson gas, by assessing both the nonrelativistic and ultrarelativistic limits. Our model describes a massive complex scalar field coupled to a CPT-even and Lorentz-violating background. We first analyze the nonrelativistic case, at this level by using experimental data, we obtain upper-bounds for some LIV parameters. In the sequel, we have constructed the partition function for the relativistic ideal boson gas which to be able of a consistent description requires the imposition of severe restrictions on some LIV coefficients. In both cases, we have demonstrated that the LIV contributions are contained in an overall factor, which multiplies almost all thermodynamical properties. An exception is the fraction of the condensed particles.
Shore, G M
2004-01-01
The strong equivalence principle, local Lorentz invariance and CPT symmetry are fundamental ingredients of the quantum field theories used to describe elementary particle physics. Nevertheless, each may be violated by simple modifications to the dynamics while apparently preserving the essential fundamental structure of quantum field theory itself. In this paper, we analyse the construction of strong equivalence, Lorentz and CPT violating Lagrangians for QED and review and propose some experimental tests in the fields of astrophysical polarimetry and precision atomic spectroscopy. In particular, modifications of the Maxwell action predict a birefringent rotation of the direction of linearly polarised radiation from synchrotron emission which may be studied using radio galaxies or, potentially, gamma-ray bursts. In the Dirac sector, changes in atomic energy levels are predicted which may be probed in precision spectroscopy of hydrogen and anti-hydrogen atoms, notably in the Doppler-free, two-photon $1s-2s$ and...
First Search for Lorentz and CPT Violation in Double Beta Decay with EXO-200
Kaufman, L J
2016-01-01
This proceedings contribution reports the first experimental search for Lorentz- and CPT-violating signals specifically studying the effect of the Standard-Model Extension (SME) oscillation-free momentum-independent neutrino coupling operator in the double beta decay process. The search has been performed using an exposure of 100 kg yr of $^{136}$Xe with the EXO-200 detector. No significant evidence of the spectral modification due to isotropic Lorentz violation was found. A two-sided limit of $-2.65 \\times 10^{-5}$ GeV $<$ $\\mathring{a}_{\\mathrm{of}}^{(3)}$ $< 7.60 \\times 10^{-6}$ GeV (90% C.L.) is placed on the relevant coefficient within the SME.
Lorentz invariance violation and electromagnetic field in an intrinsically anisotropic spacetime
Chang, Zhe
2012-01-01
Recently, Kostelecky [V.A. Kostelecky, Phys. Lett. B {\\bf 701}, 137 (2011)] proposed that the spontaneous Lorentz invariance violation (SLIV) for point--like particles is related to Finsler geometry. Finsler spacetime is intrinsically anisotropic and induces naturally the SLIV effects. In this paper, we propose that locally Minkowski spacetime could be a suitable platform to characterize the possible SLIV effects. The electromagnetic field in locally Minkowski spacetime is investigated. The Lagrangian for the electromagnetic field is presented explicitly. It is compatible with the standard model extension (SME), a perturbative SLIV framework. We show the Lorentz--violating Maxwell equations as well as the electromagnetic wave equation. The formal plane wave solution is obtained. To first order, the SLIV effects could be viewed as influence from a slightly anisotropic media on the electromagnetic wave. Depending on concrete characters of the SLIV effects, the lightcone of the anisotropic spacetime is enlarged ...
Spectra of Lorentz-violating Dirac bound states in a cylindrical well
Xiao, Zhi
2016-12-01
In the presence of the Lorentz-violating bμ coefficient, the spectra of bound states for a Dirac particle in a cylindric well are changed. Compared to the Lorentz invariant (LI) spectrum, the Lorentz violation deviation becomes significant when eigenenergy E is sufficiently close to the critical values ±m , where m is the particle's mass. The detailed profile of the deviation depends on the observer Lorentz nature of bμ. We discussed three types of bμ configuration. When bμ=(0 ,0 ,0 ,bZ) is parallel to the well axis, the would be degenerate LI spectra split into two subspectra, reminiscent of the Zeeman splitting in the presence of a weak magnetic field. Depending on the relative sign of bZ accompanying mass m in the dispersion relation, the spectrum extends or shrinks in the allowed eigenenergy region. When bμ is a radial [bμ=(0 ,b cos ϕ ,b sin ϕ ,0 ) ] or purely timelike vector [bμ=(bT,0 →)], the spin-up and down components are coupled together, and there is no splitting. However, the monotonic increasing behavior of well depth V0 with the decrease of eigenenergy E is slightly changed when E is sufficiently close to -m .
Search for Violation of $CPT$ and Lorentz invariance in ${B_s^0}$ meson oscillations
Abazov, Victor Mukhamedovich; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Agnew, James P; Alexeev, Guennadi D; Alkhazov, Georgiy D; Alton, Andrew K; Askew, Andrew Warren; Atkins, Scott; Augsten, Kamil; Avila, Carlos A; Badaud, Frederique; Bagby, Linda F; Baldin, Boris; Bandurin, Dmitry V; Banerjee, Sunanda; Barberis, Emanuela; Baringer, Philip S; Bartlett, JFrederick; Bassler, Ursula Rita; Bazterra, Victor; Bean, Alice L; Begalli, Marcia; Bellantoni, Leo; Beri, Suman B; Bernardi, Gregorio; Bernhard, Ralf Patrick; Bertram, Iain A; Besancon, Marc; Beuselinck, Raymond; Bhat, Pushpalatha C; Bhatia, Sudeep; Bhatnagar, Vipin; Blazey, Gerald Charles; Blessing, Susan K; Bloom, Kenneth A; Boehnlein, Amber S; Boline, Daniel Dooley; Boos, Edward E; Borissov, Guennadi; Borysova, Maryna; Brandt, Andrew; Brandt, Oleg; Brock, Raymond L; Bross, Alan D; Brown, Duncan Paul; Bu, Xue-Bing; Buehler, Marc; Buescher, Volker; Bunichev, Viacheslav Yevgenyevich; Burdin, Sergey; Buszello, Claus Peter; Camacho-Perez, Enrique; Casey, Brendan Cameron Kieran; Castilla-Valdez, Heriberto; Caughron, Seth Aaron; Chakrabarti, Subhendu; Chan, Kwok Ming Leo; Chandra, Avdhesh; Chapon, Emilien; Chen, Guo; Cho, Sung-Woong; Choi, Suyong; Choudhary, Brajesh C; Cihangir, Selcuk; Claes, Daniel R; Clutter, Justace Randall; Cooke, Michael P; Cooper, William Edward; Corcoran, Marjorie D; Couderc, Fabrice; Cousinou, Marie-Claude; Cuth, Jakub; Cutts, David; Das, Amitabha; Davies, Gavin John; de Jong, Sijbrand Jan; De La Cruz-Burelo, Eduard; Deliot, Frederic; Demina, Regina; Denisov, Dmitri S; Denisov, Sergei P; Desai, Satish Vijay; Deterre, Cecile; DeVaughan, Kayle Otis; Diehl, HThomas; Diesburg, Michael; Ding, Pengfei; Dominguez, DAaron M; Dubey, Abhinav Kumar; Dudko, Lev V; Duperrin, Arnaud; Dutt, Suneel; Eads, Michael T; Edmunds, Daniel L; Ellison, John A; Elvira, VDaniel; Enari, Yuji; Evans, Harold G; Evdokimov, Anatoly V; Evdokimov, Valeri N; Faure, Alexandre; Feng, Lei; Ferbel, Thomas; Fiedler, Frank; Filthaut, Frank; Fisher, Wade Cameron; Fisk, HEugene; Fortner, Michael R; Fox, Harald; Fuess, Stuart C; Garbincius, Peter H; Garcia-Bellido, Aran; Garcia-Gonzalez, Jose Andres; Gavrilov, Vladimir B; Geng, Weigang; Gerber, Cecilia Elena; Gershtein, Yuri S; Ginther, George E; Gogota, Olga; Golovanov, Georgy Anatolievich; Grannis, Paul D; Greder, Sebastien; Greenlee, Herbert B; Grenier, Gerald Jean; Gris, Phillipe Luc; Grivaz, Jean-Francois; Grohsjean, Alexander; Gruenendahl, Stefan; Gruenewald, Martin Werner; Guillemin, Thibault; Gutierrez, Gaston R; Gutierrez, Phillip; Haley, Joseph Glenn Biddle; Han, Liang; Harder, Kristian; Harel, Amnon; Hauptman, John Michael; Hays, Jonathan M; Head, Tim; Hebbeker, Thomas; Hedin, David R; Hegab, Hatim; Heinson, Ann; Heintz, Ulrich; Hensel, Carsten; Heredia-De La Cruz, Ivan; Herner, Kenneth Richard; Hesketh, Gavin G; Hildreth, Michael D; Hirosky, Robert James; Hoang, Trang; Hobbs, John D; Hoeneisen, Bruce; Hogan, Julie; Hohlfeld, Mark; Holzbauer, Jenny Lyn; Howley, Ian James; Hubacek, Zdenek; Hynek, Vlastislav; Iashvili, Ia; Ilchenko, Yuriy; Illingworth, Robert A; Ito, Albert S; Jabeen, Shabnam; Jaffre, Michel J; Jayasinghe, Ayesh; Jeong, Min-Soo; Jesik, Richard L; Jiang, Peng; Johns, Kenneth Arthur; Johnson, Emily; Johnson, Marvin E; Jonckheere, Alan M; Jonsson, Per Martin; Joshi, Jyoti; Jung, Andreas Werner; Juste, Aurelio; Kajfasz, Eric; Karmanov, Dmitriy Y; Katsanos, Ioannis; Kaur, Manbir; Kehoe, Robert Leo Patrick; Kermiche, Smain; Khalatyan, Norayr; Khanov, Alexander; Kharchilava, Avto; Kharzheev, Yuri N; Kiselevich, Ivan Lvovich; Kohli, Jatinder M; Kozelov, Alexander V; Kraus, James Alexander; Kumar, Ashish; Kupco, Alexander; Kurca, Tibor; Kuzmin, Valentin Alexandrovich; Lammers, Sabine Wedam; Lebrun, Patrice; Lee, Hyeon-Seung; Lee, Seh-Wook; Lee, William M; Lei, Xiaowen; Lellouch, Jeremie; Li, Dikai; Li, Hengne; Li, Liang; Li, Qi-Zhong; Lim, Jeong Ku; Lincoln, Donald W; Linnemann, James Thomas; Lipaev, Vladimir V; Lipton, Ronald J; Liu, Huanzhao; Liu, Yanwen; Lobodenko, Alexandre; Lokajicek, Milos; Lopes de Sa, Rafael; Luna-Garcia, Rene; Lyon, Adam Leonard; Maciel, Arthur KA; Madar, Romain; Magana-Villalba, Ricardo; Malik, Sudhir; Malyshev, Vladimir L; Mansour, Jason; Martinez-Ortega, Jorge; McCarthy, Robert L; Mcgivern, Carrie Lynne; Meijer, Melvin M; Melnitchouk, Alexander S; Menezes, Diego D; Mercadante, Pedro Galli; Merkin, Mikhail M; Meyer, Arnd; Meyer, Jorg Manfred; Miconi, Florian; Mondal, Naba K; Mulhearn, Michael James; Nagy, Elemer; Narain, Meenakshi; Nayyar, Ruchika
2015-01-01
We present the first search for CPT-violating effects in the mixing of ${B_s^0}$ mesons using the full Run II data set with an integrated luminosity of 10.4 fb$^{-1}$ of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay $B_s^0 \\to \\mu^\\pm D_s^\\pm$ as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPT- and Lorentz-invariance violating coupling coefficients. We find 95\\% confidence intervals of $\\Delta a_{\\perp} < 1.2 \\times 10^{-12}$ GeV and $(-0.8 < \\Delta a_T - 0.396 \\Delta a_Z < 3.9) \\times 10^{-13}$ GeV.
Search for Violation of CPT and Lorentz Invariance in Bs(0) Meson Oscillations.
Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Begalli, M; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Borysova, M; Brandt, A; Brandt, O; Brock, R; Bross, A; Brown, D; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Pérez, E; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cuth, J; Cutts, D; Das, A; Davies, G; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, A; Evdokimov, V N; Fauré, A; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Gavrilov, V; Geng, W; Gerber, C E; Gershtein, Y; Ginther, G; Gogota, O; Golovanov, G; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jayasinghe, A; Jeong, M S; Jesik, R; Jiang, P; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kajfasz, E; Karmanov, D; Katsanos, I; Kaur, M; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Lammers, S; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Mansour, J; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Mulhearn, M; Nagy, E; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nguyen, H T; Nunnemann, T; Orduna, J; Osman, N; Osta, J; Pal, A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Pleier, M-A; Podstavkov, V M; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santos, A S; Savage, G; Savitskyi, M; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schott, M; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shaw, S; Shchukin, A A; Simak, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stoyanova, D A; Strauss, M; Suter, L; Svoisky, P; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yamada, R; Yang, S; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J M; Zennamo, J; Zhao, T G; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L
2015-10-16
We present the first search for CPT-violating effects in the mixing of Bs(0) mesons using the full Run II data set with an integrated luminosity of 10.4 fb(-1) of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay Bs(0)→μ(±)Ds(±) as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPT- and Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of Δa⊥<1.2×10(-12) GeV and (-0.8<ΔaT-0.396ΔaZ<3.9)×10(-13) GeV.
Search for Violation of $CPT$ and Lorentz invariance in ${B_s^0}$ meson oscillations
Abazov, Victor Mukhamedovich; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Agnew, James P; Alexeev, Guennadi D; Alkhazov, Georgiy D; Alton, Andrew K; Askew, Andrew Warren; Atkins, Scott; Augsten, Kamil; Avila, Carlos A; Badaud, Frederique; Bagby, Linda F; Baldin, Boris; Bandurin, Dmitry V; Banerjee, Sunanda; Barberis, Emanuela; Baringer, Philip S; Bartlett, JFrederick; Bassler, Ursula Rita; Bazterra, Victor; Bean, Alice L; Begalli, Marcia; Bellantoni, Leo; Beri, Suman B; Bernardi, Gregorio; Bernhard, Ralf Patrick; Bertram, Iain A; Besancon, Marc; Beuselinck, Raymond; Bhat, Pushpalatha C; Bhatia, Sudeep; Bhatnagar, Vipin; Blazey, Gerald Charles; Blessing, Susan K; Bloom, Kenneth A; Boehnlein, Amber S; Boline, Daniel Dooley; Boos, Edward E; Borissov, Guennadi; Borysova, Maryna; Brandt, Andrew; Brandt, Oleg; Brock, Raymond L; Bross, Alan D; Brown, Duncan Paul; Bu, Xue-Bing; Buehler, Marc; Buescher, Volker; Bunichev, Viacheslav Yevgenyevich; Burdin, Sergey; Buszello, Claus Peter; Camacho-Perez, Enrique; Casey, Brendan Cameron Kieran; Castilla-Valdez, Heriberto; Caughron, Seth Aaron; Chakrabarti, Subhendu; Chan, Kwok Ming Leo; Chandra, Avdhesh; Chapon, Emilien; Chen, Guo; Cho, Sung-Woong; Choi, Suyong; Choudhary, Brajesh C; Cihangir, Selcuk; Claes, Daniel R; Clutter, Justace Randall; Cooke, Michael P; Cooper, William Edward; Corcoran, Marjorie D; Couderc, Fabrice; Cousinou, Marie-Claude; Cuth, Jakub; Cutts, David; Das, Amitabha; Davies, Gavin John; de Jong, Sijbrand Jan; De La Cruz-Burelo, Eduard; Deliot, Frederic; Demina, Regina; Denisov, Dmitri S; Denisov, Sergei P; Desai, Satish Vijay; Deterre, Cecile; DeVaughan, Kayle Otis; Diehl, HThomas; Diesburg, Michael; Ding, Pengfei; Dominguez, DAaron M; Dubey, Abhinav Kumar; Dudko, Lev V; Duperrin, Arnaud; Dutt, Suneel; Eads, Michael T; Edmunds, Daniel L; Ellison, John A; Elvira, VDaniel; Enari, Yuji; Evans, Harold G; Evdokimov, Anatoly V; Evdokimov, Valeri N; Faure, Alexandre; Feng, Lei; Ferbel, Thomas; Fiedler, Frank; Filthaut, Frank; Fisher, Wade Cameron; Fisk, HEugene; Fortner, Michael R; Fox, Harald; Fuess, Stuart C; Garbincius, Peter H; Garcia-Bellido, Aran; Garcia-Gonzalez, Jose Andres; Gavrilov, Vladimir B; Geng, Weigang; Gerber, Cecilia Elena; Gershtein, Yuri S; Ginther, George E; Gogota, Olga; Golovanov, Georgy Anatolievich; Grannis, Paul D; Greder, Sebastien; Greenlee, Herbert B; Grenier, Gerald Jean; Gris, Phillipe Luc; Grivaz, Jean-Francois; Grohsjean, Alexander; Gruenendahl, Stefan; Gruenewald, Martin Werner; Guillemin, Thibault; Gutierrez, Gaston R; Gutierrez, Phillip; Haley, Joseph Glenn Biddle; Han, Liang; Harder, Kristian; Harel, Amnon; Hauptman, John Michael; Hays, Jonathan M; Head, Tim; Hebbeker, Thomas; Hedin, David R; Hegab, Hatim; Heinson, Ann; Heintz, Ulrich; Hensel, Carsten; Heredia-De La Cruz, Ivan; Herner, Kenneth Richard; Hesketh, Gavin G; Hildreth, Michael D; Hirosky, Robert James; Hoang, Trang; Hobbs, John D; Hoeneisen, Bruce; Hogan, Julie; Hohlfeld, Mark; Holzbauer, Jenny Lyn; Howley, Ian James; Hubacek, Zdenek; Hynek, Vlastislav; Iashvili, Ia; Ilchenko, Yuriy; Illingworth, Robert A; Ito, Albert S; Jabeen, Shabnam; Jaffre, Michel J; Jayasinghe, Ayesh; Jeong, Min-Soo; Jesik, Richard L; Jiang, Peng; Johns, Kenneth Arthur; Johnson, Emily; Johnson, Marvin E; Jonckheere, Alan M; Jonsson, Per Martin; Joshi, Jyoti; Jung, Andreas Werner; Juste, Aurelio; Kajfasz, Eric; Karmanov, Dmitriy Y; Katsanos, Ioannis; Kaur, Manbir; Kehoe, Robert Leo Patrick; Kermiche, Smain; Khalatyan, Norayr; Khanov, Alexander; Kharchilava, Avto; Kharzheev, Yuri N; Kiselevich, Ivan Lvovich; Kohli, Jatinder M; Kozelov, Alexander V; Kraus, James Alexander; Kumar, Ashish; Kupco, Alexander; Kurca, Tibor; Kuzmin, Valentin Alexandrovich; Lammers, Sabine Wedam; Lebrun, Patrice; Lee, Hyun-Su; Lee, Seh-Wook; Lee, William M; Lei, Xiaowen; Lellouch, Jeremie; Li, Dikai; Li, Hengne; Li, Liang; Li, Qi-Zhong; Lim, Jeong Ku; Lincoln, Donald W; Linnemann, James Thomas; Lipaev, Vladimir V; Lipton, Ronald J; Liu, Huanzhao; Liu, Yanwen; Lobodenko, Alexandre; Lokajicek, Milos; Lopes de Sa, Rafael; Luna-Garcia, Rene; Lyon, Adam Leonard; Maciel, Arthur KA; Madar, Romain; Magana-Villalba, Ricardo; Malik, Sudhir; Malyshev, Vladimir L; Mansour, Jason; Martinez-Ortega, Jorge; McCarthy, Robert L; Mcgivern, Carrie Lynne; Meijer, Melvin M; Melnitchouk, Alexander S; Menezes, Diego D; Mercadante, Pedro Galli; Merkin, Mikhail M; Meyer, Arnd; Meyer, Jorg Manfred; Miconi, Florian; Mondal, Naba K; Mulhearn, Michael James; Nagy, Elemer; Narain, Meenakshi; Nayyar, Ruchika; Neal, Homer A; Negret, Juan Pablo; Neustroev, Petr V; Nguyen, Huong Thi; Nunnemann, Thomas P; Orduna, Jose de Jesus Hernandez; Osman, Nicolas Ahmed; Osta, Jyotsna; Pal, Arnab; Parashar, Neeti; Parihar, Vivek; Park, Sung Keun; Partridge, Richard A; Parua, Nirmalya; Patwa, Abid; Penning, Bjoern; Perfilov, Maxim Anatolyevich; Peters, Reinhild Yvonne Fatima; Petridis, Konstantinos; Petrillo, Gianluca; Petroff, Pierre; Pleier, Marc-Andre; Podstavkov, Vladimir M; Popov, Alexey V; Prewitt, Michelle; Price, Darren; Prokopenko, Nikolay N; Qian, Jianming; Quadt, Arnulf; Quinn, Gene Breese; Ratoff, Peter N; Razumov, Ivan A; Ripp-Baudot, Isabelle; Rizatdinova, Flera; Rominsky, Mandy Kathleen; Ross, Anthony; Royon, Christophe; Rubinov, Paul Michael; Ruchti, Randal C; Sajot, Gerard; Sanchez-Hernandez, Alberto; Sanders, Michiel P; Santos, Angelo Souza; Savage, David G; Savitskyi, Mykola; Sawyer, HLee; Scanlon, Timothy P; Schamberger, RDean; Scheglov, Yury A; Schellman, Heidi M; Schott, Matthias; Schwanenberger, Christian; Schwienhorst, Reinhard H; Sekaric, Jadranka; Severini, Horst; Shabalina, Elizaveta K; Shary, Viacheslav V; Shaw, Savanna; Shchukin, Andrey A; Simak, Vladislav J; Skubic, Patrick Louis; Slattery, Paul F; Smirnov, Dmitri V; Snow, Gregory R; Snow, Joel Mark; Snyder, Scott Stuart; Soldner-Rembold, Stefan; Sonnenschein, Lars; Soustruznik, Karel; Stark, Jan; Stoyanova, Dina A; Strauss, Michael G; Suter, Louise; Svoisky, Peter V; Titov, Maxim; Tokmenin, Valeriy V; Tsai, Yun-Tse; Tsybychev, Dmitri; Tuchming, Boris; Tully, Christopher George T; Uvarov, Lev; Uvarov, Sergey L; Uzunyan, Sergey A; Van Kooten, Richard J; van Leeuwen, Willem M; Varelas, Nikos; Varnes, Erich W; Vasilyev, Igor A; Verkheev, Alexander Yurievich; Vertogradov, Leonid S; Verzocchi, Marco; Vesterinen, Mika; Vilanova, Didier; Vokac, Petr; Wahl, Horst D; Wang, Michael HLS; Warchol, Jadwiga; Watts, Gordon Thomas; Wayne, Mitchell R; Weichert, Jonas; Welty-Rieger, Leah Christine; Williams, Mark Richard James; Wilson, Graham Wallace; Wobisch, Markus; Wood, Darien Robert; Wyatt, Terence R; Xie, Yunhe; Yamada, Ryuji; Yang, Siqi; Yasuda, Takahiro; Yatsunenko, Yuriy A; Ye, Wanyu; Ye, Zhenyu; Yin, Hang; Yip, Kin; Youn, Sungwoo; Yu, Jiaming; Zennamo, Joseph; Zhao, Tianqi Gilbert; Zhou, Bing; Zhu, Junjie; Zielinski, Marek; Zieminska, Daria; Zivkovic, Lidija
2015-01-01
We present the first search for CPT-violating effects in the mixing of ${B_s^0}$ mesons using the full Run II data set with an integrated luminosity of 10.4 fb$^{-1}$ of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay $B_s^0 \\to \\mu^\\pm D_s^\\pm$ as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPT- and Lorentz-invariance violating coupling coefficients. We find 95\\% confidence intervals of $\\Delta a_{\\perp} < 1.2 \\times 10^{-12}$ GeV and $(-0.8 < \\Delta a_T - 0.396 \\Delta a_Z < 3.9) \\times 10^{-13}$ GeV.
Aspects of CPT-even Lorentz-symmetry violating physics in a supersymmetric scenario
Energy Technology Data Exchange (ETDEWEB)
Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Universidade Federal do Para, Faculdade de Fisica, Belem, Para (Brazil); Bernald, L.D.; Helayel-Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil); Gaete, Patricio [Universidad Tecnica Federico Santa Maria, Departmento de Fisica and Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile); Leal, F.J.L. [Ciencia e Tecnologia do Espirito Santo, Instituto Federal de Educacao, Vitoria, ES (Brazil)
2015-06-15
Background fermion condensates in a landscape dominated by global supersymmetry are reassessed in connection with a scenario where Lorentz symmetry is violated in the bosonic sector (actually, the photon sector) by a CPT-even k{sub F} term. An effective photonic action is discussed that originates from the supersymmetric background fermion condensates. Also, the photino mass emerges in terms of a particular condensate contrary to what happens in the case of k{sub AF}-violation. Finally, the interparticle potential induced by the effective photonic action is investigated and a confining profile is identified. (orig.)
Consistency in Perturbative Calculations and Radiatively Induced Lorentz and CPT Violations
Battistel, O A
2002-01-01
The origin of the radiatively induced Lorentz and CPT violations, in perturbative evaluations, of an extended version of QED, is investigated. Using a very general calculational method, concerning the manipulations and calculations involving divergent amplitudes, we clearly identify the possible sources of contributions for the violating terms. We show that consistency in the perturbative calculations, in a broader sense, leaves no room for the existence of radiatively induced contributions which is in accordance with what was previously conjectured and recently advocated by some authors supported on general arguments.
Aspects of CPT-even Lorentz-symmetry violating physics in a supersymmetric scenario
Belich, H; Helayël-Neto, Patricio Gaete J A; Leal, F J L
2015-01-01
Background fermion condensates in a landscape dominated by global SUSY are reassessed in connection with a scenario where Lorentz symmetry is violated in the bosonic sector (actually, the photon sector) by a $CPT$-even $k_F$-term. An effective photonic action is discussed that originates from the supersymmetric background fermion condensates. Also, the photino mass emerges in terms of a particular condensate contrary to what happens in the $k_{AF}$-violation. Finally, the interparticle potential induced by the effective photonic action is investigated and a confining profile is identified.
Consistency in perturbative calculations and radiatively induced Lorentz and CPT violations
Energy Technology Data Exchange (ETDEWEB)
Battistel, O.A. [Department of Physics-CCNE, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)]. E-mail: orimar@ccne.ufsm.br; Dallabona, G. [Department of Physics-ICEx, Universidade Federal de Minas Gerais, Belo Horizonte (Brazil)]. E-mail: dalla@fisica.ufmg.br
2002-08-01
The origin of the radiatively induced Lorentz and CPT violations, in perturbative evaluations, of an extended version of QED, is investigated. Using a very general calculational method, concerning the manipulations and calculations involving divergent amplitudes, we clearly identify the possible sources of contributions for the violating terms. We show that consistency in the perturbative calculations, in a broader sense, leaves no room for the existence of radiatively induced contributions, which is in accordance with what was previously conjectured and recently advocated by some authors supported on general arguments. (author). Letter-to-the-editor.
Feynman rules in the Lorentz violating extension of the standard model
Directory of Open Access Journals (Sweden)
A Binandeh
2011-12-01
Full Text Available We consider the Lorentz violating extension of the standard model introduced by D. Colladay and V. A. Kostelecky. In this framework, we obtain all Feynman rules for the electroweak part of the standard model extension (SME, for the first time. Among the new obtained interactions one finds new vertices for the Higgs boson that is interesting in the phenomenology of the Higgs particle.
No Contact Terms for the Magnetic Field in Lorentz- and CPT-Violating Electrodynamics
Schober, Karl
2016-01-01
In a Lorentz- and CPT-violating modification of electrodynamics, the fields of a moving charge are known to have unusual singularities. This raises the question of whether the singular behavior may include $\\delta$-function contact terms, similar to those that appear in the fields of idealized dipoles. However, by calculating the magnetic field of an infinite straight wire in this theory, we demonstrate that there are no such contact terms in the magnetic field of a moving point charge
Search for Violations of Lorentz Invariance and CPT Symmetry in B-(s)(0) Mixing
Aaij, R.; Beteta, C. Abellan; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M. -O.; van Beuzekom, M.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Cheung, S. -F.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C. -T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farber, C.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Garcia Pardinas, J.; Tico, J. Garra; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Giani, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Gobel, C.; Golubkov, D.; Golutvin, A.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hongming, L.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kolpin, M.; Komarov, I.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. -P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Cid, E. Lemos; Leroy, O.; Lesiak, T.; Leverington, B.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusardi, N.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; Meadows, B.; Meier, F.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M. -N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mueller, J.; Mueller, K.; Mueller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Niess, V.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Perez, P. Rodriguez; Rogozhnikov, A.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Valls, P. Ruiz; Saborido Silva, J. J.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M. -H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Coutinho, R. Silva; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, I. T.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valat, S.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; Waldi, R.; Wallace, C.; Wallace, R.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhong, L.; Zhukov, V.; Zucchelli, S.
2016-01-01
Violations of CPT symmetry and Lorentz invariance are searched for by studying interference effects in B-0 mixing and in B-s(0) mixing. Samples of B-0 -> J/psi K-S(0) and B-0(s) -> J/psi K+K- decays are recorded by the LHCb detector in proton-proton collisions at center-of-mass energies of 7 and 8
Searches for Lorentz Violation in Top-Quark Production and Decay at Hadron Colliders
Energy Technology Data Exchange (ETDEWEB)
Whittington, Denver Wade [Indiana Univ., Bloomington, IN (United States)
2012-07-01
We present a first-of-its-kind confirmation that the most massive known elementary particle obeys the special theory of relativity. Lorentz symmetry is a fundamental aspect of special relativity which posits that the laws of physics are invariant regardless of the orientation and velocity of the reference frame in which they are measured. Because this symmetry is a fundamental tenet of physics, it is important to test its validity in all processes. We quantify violation of this symmetry using the Standard-Model Extension framework, which predicts the effects that Lorentz violation would have on elementary particles and their interactions. The top quark is the most massive known elementary particle and has remained inaccessible to tests of Lorentz invariance until now. This model predicts a dependence of the production cross section for top and antitop quark pairs on sidereal time as the orientation of the experiment in which these events are produced changes with the rotation of the Earth. Using data collected with the DØ detector at the Fermilab Tevatron Collider, we search for violation of Lorentz invariance in events involving the production of a $t\\bar{t}$ pair. Within the experimental precision, we find no evidence for such a violation and set upper limits on parameters describing its possible strength within the Standard-Model Extension. We also investigate the prospects for extending this analysis using the ATLAS detector at the Large Hadron Collider which, because of the higher rate of $t\\bar{t}$ events at that experiment, has the potential to improve the limits presented here.
Consequences of a condensed matter realization of Lorentz violating QED in Weyl semi-metals
Grushin, Adolfo G
2012-01-01
In Lorentz violating quantum electrodynamics (QED) it is known that a radiatively induced Chern-Simons term appears in the effective action for the gauge field, which is finite but undetermined. This ambiguity is shown to be absent in a condensed matter realization of such a theory in Weyl semi-metals due to the existence of a full microscopic model from which this effective theory emerges. Physically observable consequences such as birefringence are also discussed in this scenario.
No contact terms for the magnetic field in Lorentz- and CPT-violating electrodynamics
Schober, Karl; Altschul, Brett
2016-09-01
In a Lorentz- and CPT-violating modification of electrodynamics, the fields of a moving charge are known to have unusual singularities. This raises the question of whether the singular behavior may include δ-function contact terms, similar to those that appear in the fields of idealized dipoles. However, by calculating the magnetic field of an infinite straight wire in this theory, we demonstrate that there are no such contact terms in the magnetic field of a moving point charge.
Ultra-High Energy Astrophysical Neutrino Detection, and the Search for Lorentz Invariance Violations
Hanson, J C
2016-01-01
A growing class of ultra-high energy neutrino (UHE-nu) observatories based on the Askaryan effect and Antarctic ice is able to search for Lorentz invariance violation (LIV). The ARA, ARIANNA, ANITA and EVA collaborations have the power to constrain the Standard Model Extension (SME) by measuring the flux and energy distribution of neutrinos created through the GZK process. The future expansion of ARA, at the South Pole, pushes the discovery potential further.
Casana, Rodolfo; Mota, Alexsandro Lucena
2015-01-01
We have studied the existence of topological self-dual vortices in a nonminimal CPT-odd and Lorentz-violating Maxwell-Higgs model. The Lorentz-violating nonminimal interaction is introduced via a modification of the usual covariant derivative coupling the Higgs and the gauge sectors. The self-dual solutions behave similarly to the Abrikosov-Nielsen-Olesen vortices, are electrically neutral and their total energy is proportional to the quantized magnetic flux.
Lorentz violation constrained by triplicity of lepton families and neutrino oscillations
Institute of Scientific and Technical Information of China (English)
WANG Hai-Jun
2009-01-01
In this paper we postulate an algebraic model to relate the triplet characteristic of lepton families to Lorentz violation. Inspired by the two-to-one mapping between the group SL(2, C) and the Lorentz group via the Pauli grading (the elements of SL(2, C) expressed by direct sum of unit matrix and generators of SU (2) group), we grade the SL(3, C) group with the generators of SU(3), i. e. the Gell-Mann matrices, then express the SU(3) group in terms of three SU(2) subgroups, each of which stands for a lepton species and is mapped into the proper Lorentz group as in the case of the group SL(2,C). If the mapping from group SL(3,C) to the Lorentz group is constructed by choosing one SU(2) subgroup as basis, then the other two subgroups display their impact only by one more additional generator to that of the original Lorentz group. Applying the mapping result to the Dirac equation, it is found that only when the kinetic vertex γμξμ is extended to encompass γμξμ can the Dirac-equation-form be conserved. The generalized vertex is useful in producing neutrino oscillations and mass differences.
Non-commutative field theory and the parameters of Lorentz violation in QED
Directory of Open Access Journals (Sweden)
S Aghababaei
2011-09-01
Full Text Available Non-commutative field theory as a theory including the Lorentz violation can be constructed in two different ways. In the first method, the non-commutative fields are the same as the ordinary ones while the gauge group is restricted to U(n. For example, the symmetry group of standard model in non-commutative space is U(3×(2×U(1 which can be reduced to SU(3×SU(2×U(1 by two appropriate spontaneous symmetry breaking. In contrast, in the second method, the non-commutative gauge theory can be constructed for SU(n gauge group via Seiberg- Witten map. In this work, we want to find the relation between the NC-parameter and the Lorentz violation parameters for the first method and compare our results with what is already found in the second one. At the end, we obtain new limits on non-commutative parameter by using the existing bounds on the Lorentz Violation parameters.
Lorentz-violating modification of Dirac theory based on spin-nondegenerate operators
Reis, J. A. A. S.; Schreck, M.
2017-04-01
The Standard Model extension (SME) parametrizes all possible Lorentz-violating contributions to the Standard Model and general relativity. It can be considered as an effective framework to describe possible quantum-gravity effects for energies much below the Planck energy. In the current paper, the spin-nondegenerate operators of the SME fermion sector are the focus. The propagators, energies, and solutions to the modified Dirac equation are obtained for several families of coefficients including nonminimal ones. The particle energies and spinors are computed at first order in Lorentz violation and, with the optical theorem, they are shown to be consistent with the propagators. The optical theorem is then also used to derive the matrices formed from a spinor and its Dirac conjugate at all orders in Lorentz violation. The results are the first explicit ones derived for the spin-nondegenerate operators. They will prove helpful for future phenomenological calculations in the SME that rely on the footing of quantum field theory.
Topological charged BPS vortices in Lorentz-violating Maxwell-Higgs electrodynamics
Casana, R.; Lazar, G.
2014-09-01
We have performed a complete study of BPS vortex solutions in the Abelian sector of the standard model extension (SME). Specifically, we have coupled the SME electromagnetism with a Higgs field which is supplemented with a Lorentz-violating CPT-even term. We have verified that Lorentz violation (LV) belonging to the Higgs sector allows us to interpolate between some well-known models like Maxwell-Higgs, Chern-Simons-Higgs, and Maxwell-Chern-Simons-Higgs. We can also observe that the electrical charged density distribution is non-null in both CPT-even and CPT-odd models; however, the total electric charge in the CPT-even case is null, whereas in the CPT-odd one it is proportional to the quantized magnetic flux. The following general results can be established in relation to the LV introduced in the Higgs sector: it changes the vortex ansatz and the gauge field boundary conditions. A direct consequence is that the magnetic flux, besides being proportional to the winding number, also depends explicitly on the Lorentz-violation belonging to the Higgs sector.
Singular Lorentz-Violating Lagrangians and Associated Finsler Structures
Colladay, Don
2015-01-01
Several lagrangians associated to classical limits of lorenz-violating fermions in the Standard Model extension (SME) have been shown to yield Finsler functions when the theory is expressed in Euclidean space. When spin-couplings are present, the lagrangian can develop singularities that obstruct the construction of a globally defined Legendre transformation, leading to singular Finsler spaces. A specific sector of the SME where such problems arise is studied. It is found that the singular behavior can be eliminated by an appropriate lifting of the problem to an associated algebraic variety. This provides a smooth classical model for the singular problem. In Euclidean space, the procedure involves combining two related singular Finsler functions into a single smooth function with a semi-positive definite quadratic form defined on a desingularized variety.
,
2016-01-01
A search is presented for CPT-violating effects in the mixing of $B^0_s$ mesons using the D0 detector at the Fermilab Tevatron Collider. The CPT-violating asymmetry in the decay $B^0_s \\rightarrow \\mu^{\\pm} D_s^{\\mp} X$ as a function of sidereal phase is measured. No evidence for CPT-violating effects is observed and limits are placed on CPT- and Lorentz-invariance violating coupling coefficients.
Self-dual solitons in a C P T -odd and Lorentz-violating gauged O (3 ) sigma model
Casana, R.; Farias, C. F.; Ferreira, M. M.; Lazar, G.
2016-09-01
We have performed a complete study of self-dual configurations in a C P T -odd and Lorentz-violating gauged O (3 ) nonlinear sigma model. We have consistently implemented the Bogomol'nyi-Prasad-Sommerfield (BPS) formalism and obtained the correspondent differential first-order equations describing electrically charged self-dual configurations. The total energy and magnetic flux of the vortices, besides being proportional to the winding number, also depend explicitly on the Lorentz-violating coefficients belonging to the sigma sector. The total electrical charge is proportional to the magnetic flux such as it occurs in Chern-Simons models. The Lorentz violation in the sigma sector allows one to interpolate between Lorentz-violating versions of some sigma models: the gauged O (3 ) sigma model and the Maxwell-Chern-Simons O (3 ) sigma model. The Lorentz violation enhances the amplitude of the magnetic field and BPS energy density near the origin, augmenting the deviation in relation to the solutions deprived of Lorentz violation.
Battistoni, G; Cecchini, S; Cozzi, M; Dekhissi, H; Esposito, L S; Giacomelli, G; Giorgini, M; Mandrioli, G; Manzoor, S; Margiotta, A; Patrizii, L; Popa, V; Sioli, M; Sirri, G; Spurio, M; Togo, V
2005-01-01
Neutrino-induced upward-going muons in MACRO have been analysed in terms of relativity principles violating effects, keeping standard mass-induced atmospheric neutrino oscillations as the dominant source of nu_mu -> nu_tau transitions. The data disfavor these exotic possibilities even at a sub-dominant level, and stringent 90% C.L. limits are placed on the Lorentz invariance violation parameter |Delta v| < 6 * 10^(-24) at sin2theta_v = 0 and |Delta v| < 2.5--5 * 10^(-26) at sin2theta_v = +/-1. These limits can also be re-interpreted as upper bounds on the parameters describing violation of the Equivalence Principle.
Search for Violations of Lorentz Invariance and CPT Symmetry in B_{(s)}^{0} Mixing.
Aaij, R; Abellán Beteta, C; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hongming, L; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A
2016-06-17
Violations of CPT symmetry and Lorentz invariance are searched for by studying interference effects in B^{0} mixing and in B_{s}^{0} mixing. Samples of B^{0}→J/ψK_{S}^{0} and B_{s}^{0}→J/ψK^{+}K^{-} decays are recorded by the LHCb detector in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb^{-1}. No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and CPT symmetry. Results are expressed in terms of the standard model extension parameter Δa_{μ} with precisions of O(10^{-15}) and O(10^{-14}) GeV for the B^{0} and B_{s}^{0} systems, respectively. With no assumption on Lorentz (non)invariance, the CPT-violating parameter z in the B_{s}^{0} system is measured for the first time and found to be Re(z)=-0.022±0.033±0.005 and Im(z)=0.004±0.011±0.002, where the first uncertainties are statistical and the second systematic.
Search for violations of Lorentz invariance and $CPT$ symmetry in $B^0_{(s)}$ mixing
Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hongming, Li; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusardi, Nicola; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen-Mau, Chung; Niess, Valentin; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavomira; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valat, Sebastien; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zheng, Yangheng; Zhokhov, Anatoly; Zhong, Liang; Zhukov, Valery; Zucchelli, Stefano
2016-01-01
Violations of $ CPT$ symmetry and Lorentz invariance are searched for by studying interference effects in $ B^0$ mixing and in $ B^0_s$ mixing. Samples of $ B^0\\to J/\\psi K^0_{\\mathrm{S}}$ and $ B^0_s\\to J/\\psi K^+ K^-$ decays are recorded by the LHCb detector in proton--proton collisions at centre-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb$^{-1}$. No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and $ CPT$ symmetry. Results are expressed in terms of the Standard Model Extension parameter $\\Delta a_{\\mu}$ with precisions of $ \\mathcal{O}(10^{-15})$ and $ \\mathcal{O}(10^{-14})$ GeV for the $ B^0$ and $ B^0_s$ systems, respectively. With no assumption on Lorentz (non-)invariance, the $ CPT$-violating parameter $z$ in the $ B^0_s$ system is measured for the first time and found to be $ \\mathcal{R}e(z) = -0.022 \\pm 0.033 \\pm 0.005$ and $ \\mathcal{I}m(z) = 0.004 \\pm 0.011\\pm 0.002$, where the first uncertainti...
Effects of Lorentz violation through the $\\gamma e\\to W\
Aranda, J I; Rosete, D A; Tlachino, F J; Toscano, J J; Tututi, E S
2013-01-01
Physics beyond the Fermi scale could show up through deviations of the gauge couplings predicted by the electroweak Yang-Mills sector. This possibility is explored in the context of the International Linear Collider (ILC) through the helicity amplitudes for the gamma e -> W nu_e reaction to which contributes the trilinear WWgamma coupling. The new physics effects on this vertex are parametrized in a model-independent fashion through an effective electroweak Yang-Mills sector, which is constructed by considering two essentially different sources of new physics. In one scenario, Lorentz violation will be considered exclusively as the source of new physics effects. This type of new physics is considered in an extension of the Standard Model that is known as the Standard Model Extension (SME), which is an effective field theory that contemplates CPT and Lorentz violation in a model-independent fashion. Any source of new physics that respects the Lorentz symmetry, will be considered within the general context of t...
Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars.
Shao, Lijing
2014-03-21
The standard model extension is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model and general relativity (GR). In the pure-gravity sector of minimal standard model extension, nine coefficients describe dominant observable deviations from GR. We systematically implemented 27 tests from 13 pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of minimal standard model extension with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for the convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravity.
Uncharged vortex solutions in a CPT-even Lorentz-violating electrodynamics
Casana, R; da Hora, E; Cantanhede, C M
2011-01-01
In this work, we investigate the existence stable uncharged vortex solutions in the framework of the Lorentz-breaking and CPT-even electrodynamics of the Standard Model Extension in the presence of the Higgs sector endowed with a fourth order self-interacting potential. We verify the possibility of attaining uncharged non-BPS and BPS solutions in this LIV environment, whose profiles are obtained numerically. It is observed that the Lorentz-violating parameter alters the radial extension of the defect (core of the solution) and the amplitude of the magnetic field, a result also observed in k-field defects. This new result opens the possibility of controlling the extension of the defect without altering neither the Higgs potential nor the kinetic sector of the theory.
Einstein-Hilbert graviton modes modified by the Lorentz-violating bumblebee field
Maluf, R. V.; Almeida, C. A. S.; Casana, R.; Ferreira, M. M.
2014-07-01
In this work, we investigate the consequences of the spontaneous breaking of Lorentz symmetry, triggered by the bumblebee vector field, on the usual Einstein-Hilbert theory. Specifically, we consider the Einstein-Hilbert action modified by the bumblebee dynamic field, and evaluate the graviton propagator using an extended basis of Barnes-Rivers tensor projectors, involving the Lorentz-violating vector. Once the propagator is carried out, we proceed with discussing the consistency of the model, writing the dispersion relations, and analyzing causality and unitarity. We verify that this model possesses two dispersion relations: one provides causal and unitary propagating modes, while the second one yields a causal but nonunitary mode which spoils the physical consistency of the model.
Belich, H
2004-01-01
We deal with a Lorentz non-invariant Abelian-Higgs model in 1+3 dimensions, and carry out its dimensional reduction to D=1+2. The new planar model obtained is composed by a Maxwell-Chern-Simons-Proca gauge sector, a massive scalar sector, and a mixing term (involving the fixed background $v^{\\mu}$) that imposes the Lorentz violation to the reduced model. The vortex solutions for the reduced model in a superconductor environment are investigated. The Aharonov-Casher Effect in layered superconductors, that shows interference of particles with a magnetic moment moving around a line charge, is studied. Our vortex solution presents electrical charge which generates a screened electrical field, and simulate the same phase shift caused by a charged wire.
Tests of Local Lorentz Invariance Violation of Gravity in the Standard-Model Extension with Pulsars
Shao, Lijing
2014-01-01
Standard-model extension (SME) is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model (SM) and general relativity (GR). In the pure-gravity sector of minimal SME (mSME), nine coefficients describe dominant observable deviations from GR. We systematically implemented twenty-seven tests from thirteen pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of mSME with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravit...
Test of Lorentz symmetry with trapped ions
Pruttivarasin, Thaned
2016-05-01
The outcome of an experiment should not depend on the orientation of the apparatus in space. This important cornerstone of physics is deeply engrained into the Standard Model of Physics by requiring that all fields must be Lorentz invariant. However, it is well-known that the Standard Model is incomplete. Some theories conjecture that at the Planck scale Lorentz symmetry might be broken and measurable at experimentally accessible energy scales. Therefore, a search for violation of Lorentz symmetry directly probes physics beyond the Standard model. We present a novel experiment utilizing trapped calcium ions as a direct probe of Lorentz-violation in the electron-photon sector. We monitor the energy between atomic states with different orientations of the electronic wave-functions as they rotate together with the motion of the Earth. This is analogous to the famous Michelson-Morley experiment. To remove magnetic field noise, we perform the experiment with the ions prepared in the decoherence-free states. Our result improves on the most stringent bounds on Lorentz symmetry for electrons by 100 times. The experimental scheme is readily applicable to many ion species, hence opening up paths toward much improved test of Lorentz symmetry in the future. (Ph. D. Advisor: Hartmut Haeffner, University of California, Berkeley).
Yunes, Nicolas
2016-01-01
The recent observation of gravitational waves by the LIGO/Virgo collaboration provides a unique opportunity to probe the extreme gravity of coalescing binary black holes. In this regime, the gravitational interaction is not only strong, but the spacetime curvature is large, characteristic velocities are a non-negligible fraction of the speed of light, and the time scale on which the curvature and gravity change is small. This contribution discusses some consequences of these observations on modifications to General Relativity, with a special emphasis on Lorentz-violating theories.
Effects of the Lorentz invariance violation in Coulomb interaction in nuclei and atoms
Flambaum, V V
2016-01-01
Anisotropy in the speed of light (studied in the Michelson-Morley experiment ) generates anisotropy in the Coulomb interaction. This anisotropy manifests itself in the nuclear and atomic experiments. The experimental results for 21Ne are used to improve the limits on the tensor components characterising the asymmetry of the speed of light and the Coulomb interaction (violation of the Lorentz symmetry in the photon sector) by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10E-28.
Bound on Lorentz and CPT violating boost effects for the neutron.
Canè, F; Bear, D; Phillips, D F; Rosen, M S; Smallwood, C L; Stoner, R E; Walsworth, R L; Kostelecký, V Alan
2004-12-03
A search for an annual variation of a daily sidereal modulation of the frequency difference between colocated 129Xe and 3He Zeeman masers sets a stringent limit on boost-dependent Lorentz and CPT violation involving the neutron, consistent with no effect at the level of 150 nHz. In the framework of the general standard-model extension, the present result provides the first clean test for the fermion sector of the symmetry of spacetime under boost transformations at a level of 10(-27) GeV.
Magnetic flux inversion in Charged BPS vortices in a Lorentz-violating Maxwell-Higgs framework
Cantanhede, C M; Ferreira, M M; da Hora, E
2012-01-01
We demonstrate by first the existence of electrically charged BPS vortices in a Maxwell-Higgs model supplemented with a parity-odd Lorentz-violating (LV) structure belonging to the CPT-even gauge sector of the standard model extension and a fourth order potential (in the absence of the Chern-Simons term). The modified first order BPS equations provide charged vortex configurations endowed with some interesting features: localized and controllable spatial thickness, integer flux quantization, electric field inversion and magnetic flux reversion. This model could possibly be applied on condensed matter systems which support charged vortices carrying localized and integer quantized magnetic flux, endowed with flipping of the magnetic flux.
Matter-gravity scattering in the presence of spontaneous Lorentz violation
Maluf, R V; Cruz, W T; Almeida, C A S
2013-01-01
Considering quantum gravity within the framework of effective field theory, we investigated the consequences of spontaneous Lorentz violation for the gravitational potential. In particular, we focus our attention on the bumblebee models, in which the graviton couples to a vector B{\\mu} that assumes a nonzero vacuum expectation value. The leading order corrections for the nonrelativistic potential are obtained from calculation of the scattering matrix of two scalar particles interacting gravitationally. These corrections imply a modification on the magnitude of the interaction and also add a Darwin-like term for Newton's potential.
On the Aharonov-Casher scattering in a CPT-odd Lorentz-violating background
Andrade, F M; Prudêncio, T; Filgueiras, C
2013-01-01
The effects of a Lorentz symmetry violating background vector on the Aharonov-Casher scattering is considered. By using the self-adjoint extension method we found that there is an additional scattering for any value of the self-adjoint extension parameter and non-zero energy bound states for negative values of this parameter. Expressions for the energy bound-states, phase-shift and the scattering matrix are explicitly determined in terms of the self-adjoint extension parameter. The expression obtained for the scattering amplitude reveals that the helicity is not conserved in this scenario.
On Aharonov-Casher scattering in a CPT-odd Lorentz-violating background
Andrade, F. M.; Silva, E. O.; Prudêncio, T.; Filgueiras, C.
2013-07-01
The effects of a Lorentz symmetry-violating background vector on Aharonov-Casher scattering in the nonrelativistic limit are considered. Using the self-adjoint extension method, we find that there is additional scattering for any value of the self-adjoint extension parameter and non-zero energy bound states for negative values of this parameter. Expressions for the energy bound states, phase-shift and scattering matrix are explicitly determined in terms of the self-adjoint extension parameter. The expression obtained for the scattering amplitude reveals that the helicity is not conserved in this scenario.
Classical kinematics and Finsler structures for nonminimal Lorentz-violating fermions
Energy Technology Data Exchange (ETDEWEB)
Schreck, M. [Indiana University, Indiana University Center for Spacetime Symmetries, Bloomington, IN (United States)
2015-05-15
In the current paper the Lagrangian of a classical, relativistic point particle is obtained whose conjugate momentum satisfies the dispersion relation of a quantum wave packet that is subject to Lorentz violation based on a particular coefficient of the nonminimal standard-model extension (SME). The properties of this Lagrangian are analyzed and two corresponding Finsler structures are obtained. One structure describes a scaled Euclidean geometry, whereas the other is neither a Riemann nor a Randers or Kropina structure. The results of the article provide some initial understanding of classical Lagrangians of the nonminimal SME fermion sector. (orig.)
Use of the gravitational-wave interferometers to test Lorentz invariance violation
Melissinos, Adrian
2016-01-01
Currently operating gravitational-wave interferometers are Michelson interferometers with effective arm length L ~ 4x10e5 m. While the interferometer remains in lock, data at the fsr sideband frequency encode information on slow phase changes in the f ~ 10e-5 Hz range, with a fringe sensitivity ~ 10e-10. Preliminary LIGO data presented in 2009 show no Lorentz violating signal at the second harmonic of the Earth's sidereal frequency. This sets a limit on a possible change in refractine index, dn/n < 2x10e-22, an improvement of more than three orders of magnitude over existing limits.
Self-dual solitons in a $CPT$-odd and Lorentz-violating gauged $O(3)$ sigma model
Casana, R; Ferreira, M M; Lazar, G
2016-01-01
We have performed a complete study of self-dual configurations in a $CPT$-odd and Lorentz-violating gauged $O(3)$ nonlinear sigma model. We have consistently implemented the Bogomol'nyi-Prasad-Sommerfield (BPS) formalism and obtained the correspondent differential first-order equations describing electrically charged self-dual configurations. The total energy and magnetic flux of the vortices, besides being proportional to the winding number, also depend explicitly on the Lorentz-violating coefficients belonging to the sigma sector. The total electrical charge is proportional to the magnetic flux such as it occurs in Chern-Simons models. The Lorentz violation in the sigma sector allows one to interpolate between Lorentz-violating versions of some sigma models: the gauged $O(3)$ sigma model and the Maxwell-Chern-Simons $O(3)$ sigma model. The Lorentz violation enhances the amplitude of the magnetic field and BPS energy density near the origin, augmenting the deviation in relation to the solutions deprived of L...
Flambaum, V V
2016-08-12
Local Lorentz invariance violating (LLIV) and Einstein equivalence principle violating (EEPV) effects in atomic experiments are discussed. The EEPV effects are strongly enhanced in the narrow 7.8 eV transition in the _{90}^{229}Th nucleus. The nuclear LLIV tensors describing the anisotropy in the maximal attainable speed for massive particles (analog of the Michelson-Morley experiment for light) are expressed in terms of the experimental values of the nuclear quadrupole moments. Calculations for nuclei of experimental interest _{55}^{133}Cs, _{37}^{85}Rb, _{37}^{87}Rb, _{80}^{201}Hg, _{54}^{131}Xe, and _{10}^{21}Ne are performed. The results for _{10}^{21}Ne are used to improve the limits on the proton LLIV interaction constants by 4 orders of magnitude.
New limit on Lorentz violation using a double-pass optical ring cavity.
Michimura, Yuta; Matsumoto, Nobuyuki; Ohmae, Noriaki; Kokuyama, Wataru; Aso, Yoichi; Ando, Masaki; Tsubono, Kimio
2013-05-17
A search for Lorentz violation in electrodynamics was performed by measuring the resonant frequency difference between two counterpropagating directions of an optical ring cavity. Our cavity contains a dielectric element, which makes our cavity sensitive to the violation. The laser frequency is stabilized to the counterclockwise resonance of the cavity, and the transmitted light is reflected back into the cavity for resonant frequency comparison with the clockwise resonance. This double-pass configuration enables a null experiment and gives high common mode rejection of environmental disturbances. We found no evidence for odd-parity anisotropy at the level of δc/c ≲ 10(-14). Within the framework of the standard model extension, our result put more than 5 times better limits on three odd-parity parameters κ(o+)(JK) and a 12 times better limit on the scalar parameter κ(tr) compared with the previous best limits.
Flambaum, V V
2016-01-01
Local Lorentz Invariance violating (LLIV) and Einstein equivalence principle violating (EEPV) effects in atomic experiments are discussed. The LLIV and EEPV effects are strongly enhanced in the narrow 7.8 eV transition in 229Th nucleus. Nuclear LLIV tensors are expressed in terms of the experimental values of nuclear quadrupole moments. There is enhancement in nuclei where the quadrupole moments and LLIV tensors have collective nature. Calculations for nuclei of experimental interest 21Ne, 173Yb, 133Cs, 85Rb, 87Rb, 20Hg, 9Be and 131Xe have been performed. The results for 21Ne are used to improve the limits on the proton LLIV constants by 5 orders of magnitude and on the neutron LLIV constants by 1 order of magnitude.
Hohensee, M A; Leefer, N; Budker, D; Harabati, C; Dzuba, V A; Flambaum, V V
2013-08-02
We report a joint test of local Lorentz invariance and the Einstein equivalence principle for electrons, using long-term measurements of the transition frequency between two nearly degenerate states of atomic dysprosium. We present many-body calculations which demonstrate that the energy splitting of these states is particularly sensitive to violations of both special and general relativity. We limit Lorentz violation for electrons at the level of 10(-17), matching or improving the best laboratory and astrophysical limits by up to a factor of 10, and improve bounds on gravitational redshift anomalies for electrons by 2 orders of magnitude, to 10(-8). With some enhancements, our experiment may be sensitive to Lorentz violation at the level of 9 × 10(-20).
Casana, R; Mouchrek-Santos, V E; Silva, Edilberto O
2015-01-01
We have demonstrated that Lorentz-violating terms stemming from the fermion sector of the SME are able to generate geometrical phases on the wave function of electrons confined in 1-dimensional rings, as well as persistent spin currents, in the total absence of electromagnetic fields. We have explicitly evaluated the eigenenergies and eigenspinors of the electrons modified by the Lorentz-violating terms, using them to calculate the dynamic and the Aharonov-Anandan phases in the sequel. The total phase presents a pattern very similar to the Aharonov-Casher phase accumulated by electrons in rings under the action of the Rashba interaction. Finally, the persistent spin current were carried out and used to impose upper bounds on the Lorentz-violating parameters.
Directory of Open Access Journals (Sweden)
R. Casana
2015-06-01
Full Text Available We have demonstrated that Lorentz-violating terms stemming from the fermion sector of the SME are able to generate geometrical phases on the wave function of electrons confined in 1-dimensional rings, as well as persistent spin currents, in the total absence of electromagnetic fields. We have explicitly evaluated the eigenenergies and eigenspinors of the electrons modified by the Lorentz-violating terms, using them to calculate the dynamic and the Aharonov–Anandan phases in the sequel. The total phase presents a pattern very similar to the Aharonov–Casher phase accumulated by electrons in rings under the action of the Rashba interaction. Finally, the persistent spin current were carried out and used to impose upper bounds on the Lorentz-violating parameters.
Energy Technology Data Exchange (ETDEWEB)
Casana, R.; Ferreira, M.M., E-mail: manojr.ufma@gmail.com; Mouchrek-Santos, V.E.; Silva, Edilberto O.
2015-06-30
We have demonstrated that Lorentz-violating terms stemming from the fermion sector of the SME are able to generate geometrical phases on the wave function of electrons confined in 1-dimensional rings, as well as persistent spin currents, in the total absence of electromagnetic fields. We have explicitly evaluated the eigenenergies and eigenspinors of the electrons modified by the Lorentz-violating terms, using them to calculate the dynamic and the Aharonov–Anandan phases in the sequel. The total phase presents a pattern very similar to the Aharonov–Casher phase accumulated by electrons in rings under the action of the Rashba interaction. Finally, the persistent spin current were carried out and used to impose upper bounds on the Lorentz-violating parameters.
Effects of a CPT-even and Lorentz-violating nonminimal coupling on electron-positron scattering
Casana, R.; Ferreira, M. M., Jr.; Maluf, R. V.; dos Santos, F. E. P.
2012-12-01
We propose a new CPT-even and Lorentz-violating nonminimal coupling between fermions and Abelian gauge fields involving the CPT-even tensor (KF)μναβ of the standard model extension. We thus investigate its effects on the cross section of the electron-positron scattering by analyzing the process e++e-→μ++μ-. Such a study was performed for the parity-odd and parity-even nonbirefringent components of the Lorentz-violating (KF)μναβ tensor. Finally, by using experimental data available in the literature, we have imposed upper bounds as tight as 10-12(eV)-1 on the magnitude of the CPT-even and Lorentz-violating parameters while nonminimally coupled.
Casana, R.; Ferreira, M. M.; Mouchrek-Santos, V. E.; Silva, Edilberto O.
2015-06-01
We have demonstrated that Lorentz-violating terms stemming from the fermion sector of the SME are able to generate geometrical phases on the wave function of electrons confined in 1-dimensional rings, as well as persistent spin currents, in the total absence of electromagnetic fields. We have explicitly evaluated the eigenenergies and eigenspinors of the electrons modified by the Lorentz-violating terms, using them to calculate the dynamic and the Aharonov-Anandan phases in the sequel. The total phase presents a pattern very similar to the Aharonov-Casher phase accumulated by electrons in rings under the action of the Rashba interaction. Finally, the persistent spin current were carried out and used to impose upper bounds on the Lorentz-violating parameters.
Local effects of the quantum vacuum in Lorentz-violating electrodynamics
Martín-Ruiz, A
2016-01-01
The Casimir effect is one of the most remarkable consequences of the non-zero vacuum energy predicted by quantum field theory. In this paper we use a local approach to study the Lorentz violation effects of the minimal standard model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method similar to that used for obtaining the Born series for the scattering amplitudes in quantum mechanics, we compute, at leading order in the Lorentz-violating coefficients, the relevant Green's function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of the Green's function. We discuss its structure in the region between the plates. We compute the renormalized vacuum stress, which is obtained as the difference between the vacuum stress in the presence of the plates and that of the vacuum. The Casimir force is evaluated in an analytical fashion by two me...
The Spectrum of Ultrahigh Energy Cosmic Rays and Constraints on Lorentz Invariance Violation
Stecker, F. W.
2008-01-01
There has been much interest in possible violations of Lorentz invariance, particularly motivated by quantum gravity theories. It has been suggested that a small amount of Lorentz invariance violation (LIV) could turn off photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with photons of the cosmic background radiation and thereby eliminate the resulting sharp steepening in the spectrum of the highest energy CRs predicted by Greisen Zatsepin and Kuzmin (GZK). Recent measurements of the UHECR spectrum reported by the HiRes and Auger collaborations, however, indicate the presence of the GZK effect. We present the results of a detailed calculation of the modification of the UHECR spectrum caused by LIV using the formalism of Coleman and Glashow. We then use a chi-squared analysis to compare our results with the experimental UHECR data and thereby place limits on the amount of LIV. We also discuss how a small amount of LIV that is consistent with the experimental data can still lead to a recovery of the cosmic ray flux at higher energies than presently observed.
Lorentz Invariance Violation and the Observed Spectrum of Ultrahigh Energy Cosmic Rays
Scully, S. T.; Stecker, F. W.
2009-01-01
There has been much interest in possible violations of Lorentz invariance, particularly motivated by quantum gravity theories. It has been suggested that a small amount of Lorentz invariance violation (LIV) could turn of photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with photons of the cosmic background radiation and thereby eliminate the resulting sharp steepening in the spectrum of the highest energy CRs predicted by Greisen Zatsepin and Kuzmin (GZK). Recent measurements of the UHECR spectrum reported by the HiRes and Auger collaborations, however, indicate the presence of the GZK effect. We present the results of a detailed calculation of the modification of the UHECR spectrum caused by LIV using the formalism of Coleman and Glashow. We then compare these results with the experimental UHECR data from Auger and HiRes. Based on these data, we find a best fit amount of LIV of 4.5+1:5 ..4:5 x 10(exp -23),consistent with an upper limit of 6 x 10(exp -23). This possible amount of LIV can lead to a recovery of the cosmic ray spectrum at higher energies than presently observed. Such an LIV recovery effect can be tested observationally using future detectors.
Local effects of the quantum vacuum in Lorentz-violating electrodynamics
Martín-Ruiz, A.; Escobar, C. A.
2017-02-01
The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted by quantum field theory. In this paper we use a local approach to study the Lorentz violation effects of the minimal standard model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method similar to that used for obtaining the Born series for the scattering amplitudes in quantum mechanics, we compute, at leading order in the Lorentz-violating coefficients, the relevant Green's function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of the Green's function. We discuss its structure in the region between the plates. We compute the renormalized vacuum stress, which is obtained as the difference between the vacuum stress in the presence of the plates and that of the vacuum. The Casimir force is evaluated in an analytical fashion by two methods: by differentiating the renormalized global energy density and by computing the normal-normal component of the renormalized vacuum stress. We compute the local Casimir energy, which is found to diverge as approaching the plates, and we demonstrate that it does not contribute to the observable force.
Topological charged BPS vortices in Lorentz-violating Maxwell-Higgs electrodynamics
Casana, R
2014-01-01
We have performed a complete study of BPS vortex solutions in the Abelian sector of the standard model extension (SME). Specifically we have coupled the SME electromagnetism with a Higgs field which is supplemented with a Lorentz-violating CPT-even term. We have verified that Lorentz-violation (LV) belonging to Higgs sector allows to interpolate between some well known models like, Maxwell-Higgs, Chern-Simons-Higgs and Maxwell-Chern-Simons-Higgs. We can also observed that the electrical charged density distribution is nonnull in both CPT-even and CPT-odd models, however the total electric charge in the CPT-even case is null whereas in the CPT-odd one it is proportional to the quantized magnetic flux. The following general results can be established in relation to the LV introduced in the Higgs sector: it changes the vortex \\emph{Ansatz} and the gauge field boundary conditions. The last one is responsible for the magnetic flux besides being proportional to the winding number also depends explicitly in the Lore...
Probing Lorentz and CPT Violation in a Magnetized Iron Detector using Atmospheric Neutrinos
Chatterjee, Animesh; Singh, Jyotsna
2014-01-01
We study the sensitivity of the Iron Calorimeter (ICAL) at the India-Based Neutrino Observatory (INO) to Lorentz and CPT violation in the neutrino sector. Its ability to identify the charge of muons in addition to their direction and energy makes ICAL a useful tool in putting constraints on these fundamental symmetries. Using resolution, efficiencies, errors and uncertainties obtained from ICAL detector simulations, we determine sensitivities to $\\delta{b}_{31}$, which parametizes the violations in the muon neutrino sector. We carry out calculations for three generic cases representing mixing in the CPT violating part of the hamiltonian, specifically, when the mixing is 1) small, 2) large, 3) the same as that in the PMNS matrix. We find that for both types of hierarchy, ICAL at INO should be sensitive to $\\delta{b}_{31}$ $\\gtrsim$ $4\\times10^{-23}$ GeV at 99% C.L. for 500 kt-yr exposure, unless the mixing in the CPT violation sector is small.
Chen, Songbai; Liao, Hao
2015-01-01
We have investigated quantum entropy of a static black hole arising from the massless scalar field with Lorentz violation induced by the coupling to Einstein tensor. Our results show that the coupled massless scalar field contributes to the classical Bekenstein-Hawking term in the black hole entropy. The corrected classical Bekenstein-Hawking entropy is not one quarter of the event horizon area of the original background black hole, but of a corresponding effective metric related to the coupling. It means that the classical Bekenstein-Hawking entropy depends not only on the black hole parameter, but also on the coupling which reduces Lorentz violation.
Carvalho, Paulo R. S.
2016-12-01
We compute analytically the all-loop level critical exponents for a massless thermal Lorentz-violating (LV) O(N) self-interacting λϕ4 scalar field theory. For that, we evaluate, firstly explicitly up to next-to-leading loop order and later in a proof by induction up to any loop level, the respective β-function and anomalous dimensions in a theory renormalized in the massless BPHZ method, where a reduced set of Feynman diagrams to be calculated is needed. We investigate the effect of the Lorentz violation in the outcome for the critical exponents and present the corresponding mathematical explanation and physical interpretation.
Dai, Wei-Ming; Guo, Zong-Kuan; Cai, Rong-Gen; Zhang, Yuan-Zhong
2017-06-01
We investigate constraints on Lorentz invariance violation in the neutrino sector from a joint analysis of big bang nucleosynthesis and the cosmic microwave background. The effect of Lorentz invariance violation during the epoch of big bang nucleosynthesis changes the predicted helium-4 abundance, which influences the power spectrum of the cosmic microwave background at the recombination epoch. In combination with the latest measurement of the primordial helium-4 abundance, the Planck 2015 data of the cosmic microwave background anisotropies give a strong constraint on the deformation parameter since adding the primordial helium measurement breaks the degeneracy between the deformation parameter and the physical dark matter density.
Directory of Open Access Journals (Sweden)
Songbai Chen
2015-12-01
Full Text Available We have investigated quantum entropy of a static black hole arising from the massless scalar field with Lorentz violation induced by the coupling to Einstein tensor. Our results show that the coupled massless scalar field contributes to the classical Bekenstein–Hawking term in the black hole entropy. The corrected classical Bekenstein–Hawking entropy is not one quarter of the event horizon area of the original background black hole, but of a corresponding effective metric related to the coupling. It means that the classical Bekenstein–Hawking entropy depends not only on the black hole parameter, but also on the coupling which reduces Lorentz violation.
Energy Technology Data Exchange (ETDEWEB)
Chen, Songbai, E-mail: csb3752@hunnu.edu.cn [Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081 (China); Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China); Jing, Jiliang, E-mail: jljing@hunnu.edu.cn [Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081 (China); Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China); Liao, Hao [Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081 (China); Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China)
2015-12-17
We have investigated quantum entropy of a static black hole arising from the massless scalar field with Lorentz violation induced by the coupling to Einstein tensor. Our results show that the coupled massless scalar field contributes to the classical Bekenstein–Hawking term in the black hole entropy. The corrected classical Bekenstein–Hawking entropy is not one quarter of the event horizon area of the original background black hole, but of a corresponding effective metric related to the coupling. It means that the classical Bekenstein–Hawking entropy depends not only on the black hole parameter, but also on the coupling which reduces Lorentz violation.
Energy Technology Data Exchange (ETDEWEB)
Dai, Wei-Ming; Cai, Rong-Gen [Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Guo, Zong-Kuan [Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China); University of Chinese Academy of Sciences, School of Astronomy and Space Science, Beijing (China); Zhang, Yuan-Zhong [Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China)
2017-06-15
We investigate constraints on Lorentz invariance violation in the neutrino sector from a joint analysis of big bang nucleosynthesis and the cosmic microwave background. The effect of Lorentz invariance violation during the epoch of big bang nucleosynthesis changes the predicted helium-4 abundance, which influences the power spectrum of the cosmic microwave background at the recombination epoch. In combination with the latest measurement of the primordial helium-4 abundance, the Planck 2015 data of the cosmic microwave background anisotropies give a strong constraint on the deformation parameter since adding the primordial helium measurement breaks the degeneracy between the deformation parameter and the physical dark matter density. (orig.)
Prudencio, Thiago
2016-01-01
We discuss the modified Maxwell action of a $K_{F}$-type Lorentz symmetry breaking theory and present a solution of Maxwell equations derived in the cases of linear and elliptically polarized electromagnetic waves in the vacuum of CPT-even Lorentz violation. We show in this case the Lorentz violation has the effect of changing the amplitude of one component of the magnetic field, while leaving the electric field unchanged, leading to non-orthogonal propagation of eletromagnetic fields and dependence of the eccentricity on $\\kappa$-term. Further, we exhibit numerically the consequences of this effect in the cases of linear and elliptical polarization, in particular, the regimes of non-orthogonality of the electromagnetic wave fields and the eccentricity of the elliptical polarization of the magnetic field with dependence on the $\\kappa$-term.
Limit on lorentz and CPT violation of the neutron using a two-species noble-Gas maser
Bear; Stoner; Walsworth; Kostelecky; Lane
2000-12-11
A search for sidereal variations in the frequency difference between co-located 129Xe and 3He Zeeman masers sets the most stringent limit to date on leading-order Lorentz and CPT violation involving the neutron, consistent with no effect at the level of 10(-31) GeV.
Miller, C.; Casana, R.; Ferreira, M. M., Jr.; da Hora, E.
2012-09-01
We have investigated and verified the existence of stable uncharged Bogomol’nyi-Prasad-Sommerfeld (BPS) vortices in the framework of an Abelian Maxwell-Higgs model supplemented with CPT-even and Lorentz-violating (LV) terms belonging to the gauge and Higgs sectors of the standard model extension. The analysis is performed in two situations: first, by considering the Lorentz violation only in the gauge sector, and then in both gauge and Higgs sectors. In the first case, it is observed that the model supports vortices somehow equivalent to the ones appearing in a dielectric medium. The Lorentz violation controls the radial extension (core of the solution) and the magnetic field amplitude of the Abrikosov-Nielsen-Olesen vortices, yielding compactlike defects in an alternative and simpler way than that of k-field models. At the end, we consider the Lorentz-violating terms in the gauge and Higgs sectors. It is shown that the full model also supports compactlike uncharged BPS vortices in a modified vacuum, but this time there are two LV parameters controlling the defect structure. Moreover, an interesting novelty is introduced by the LV-Higgs sector: fractional vortex solutions.
Klinkhamer, F R
2011-01-01
Following-up on the discussion of a previous article [arXiv:1011.4258], we present a physical model which gives rise to isotropic modified Maxwell theory with a negative Lorentz-violating parameter kappa-tilde_{tr} (corresponding to a "fast" photon).
The Planck Scale from Top Condensation
Bai, Yang; Ponton, Eduardo
2008-01-01
We propose a scenario in which the Planck scale is dynamically linked to the electroweak scale induced by top condensation. The standard model field content, without the Higgs, is promoted to a 5D warped background. The only additional ingredient is a 5D fermion with the quantum numbers of the right-handed top. Localization of the zero-modes leads, at low energies, to a Nambu-Jona-Lasinio model that also stabilizes the radion field dynamically thus explaining the hierarchy between the Planck scale and v_EW = 174 GeV. The top mass arises dynamically from the electroweak breaking condensate. The other standard model fermion masses arise naturally from higher-dimension operators, and the fermion mass hierarchies and flavor structure can be explained from the localization of the zero-modes in the extra dimension. The model is easily consistent with the electroweak precision data, since the Kaluza-Klein scale is predicted to be about two orders of magnitude above the electroweak scale. This little hierarchy is a d...
Probe of Lorentz Invariance Violation effects and determination of the distance of PG 1553+113
Sanchez, D A; Couturier, C; Jacholkowska, A
2015-01-01
The high frequency peaked BL Lac object PG 1553+113 underwent a flaring event in 2012. The High Energy Stereoscopic System (H.E.S.S.) observed this source for two consecutive nights at very high energies (VHE, $E>$100~GeV). The data show an increase of a factor of three of the flux with respect to archival measurements with the same instrument and hints of intra-night variability. The data set has been used to put constraints on possible Lorentz invariance violation (LIV), manifesting itself as an energy dependence of the velocity of light in vacuum, and to set limits on the energy scale at which Quantum Gravity effects causing LIV may arise. With a new method to combine H.E.S.S. and Fermi large area telescope data, the previously poorly known redshift of PG 1555+113 has been determined to be close to the value derived from optical measurements.
Magnetic flux inversion in charged BPS vortices in a Lorentz-violating Maxwell-Higgs framework
Energy Technology Data Exchange (ETDEWEB)
Casana, R., E-mail: rodolfo.casana@gmail.com [Departamento de Fisica, Universidade Federal do Maranhao, 65085-580, Sao Luis, Maranhao (Brazil); Ferreira, M.M. [Departamento de Fisica, Universidade Federal do Maranhao, 65085-580, Sao Luis, Maranhao (Brazil); Hora, E. da [Departamento de Fisica, Universidade Federal do Maranhao, 65085-580, Sao Luis, Maranhao (Brazil); Departamento de Fisica, Universidade Federal da Paraiba, 58051-900, Joao Pessoa, Paraiba (Brazil); Miller, C. [Departamento de Fisica, Universidade Federal do Maranhao, 65085-580, Sao Luis, Maranhao (Brazil); Instituto de Fisica Teorica, UNESP - Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271 - Bl. II, 01140-070, Sao Paulo, SP (Brazil)
2012-12-05
We demonstrate for the first time the existence of electrically charged BPS vortices in a Maxwell-Higgs model supplemented with a parity-odd Lorentz-violating (LV) structure belonging to the CPT-even gauge sector of the standard model extension and a fourth order potential (in the absence of the Chern-Simons term). The modified first order BPS equations provide charged vortex configurations endowed with some interesting features: localized and controllable spatial thickness, integer flux quantization, electric field inversion and localized magnetic flux reversion. This model could possibly be applied on condensed matter systems which support charged vortices carrying integer quantized magnetic flux, endowed with localized flipping of the magnetic flux.
Magnetic flux inversion in charged BPS vortices in a Lorentz-violating Maxwell-Higgs framework
Casana, R.; Ferreira, M. M.; da Hora, E.; Miller, C.
2012-12-01
We demonstrate for the first time the existence of electrically charged BPS vortices in a Maxwell-Higgs model supplemented with a parity-odd Lorentz-violating (LV) structure belonging to the CPT-even gauge sector of the standard model extension and a fourth order potential (in the absence of the Chern-Simons term). The modified first order BPS equations provide charged vortex configurations endowed with some interesting features: localized and controllable spatial thickness, integer flux quantization, electric field inversion and localized magnetic flux reversion. This model could possibly be applied on condensed matter systems which support charged vortices carrying integer quantized magnetic flux, endowed with localized flipping of the magnetic flux.
Lorentz-violating effects in the spin-1/2 Aharonov-Casher problem
Silva, Edilberto O
2014-01-01
The effects of a Lorentz symmetry violating background vector on the Aharonov-Casher bound and scattering scenarios is considered. Using an approach based on the self-adjoint extension method, an expression for the bound state energies is obtained in terms of the physics of the problem by determining the self-adjoint extension parameter. We found that there is an additional scattering for any value of the self-adjoint extension parameter and bound states for negative values of this parameter. By comparing the bound state and scattering results the self-adjoint extension parameter is determined. Expressions for the bound state energies, phase-shift and the scattering matrix are explicitly determined in terms of the self-adjoint extension parameter. The expression obtained for the scattering amplitude reveals that the helicity is not conserved in this scenario.
Constraints on spacetime anisotropy and Lorentz violation from the GRAAL experiment
Energy Technology Data Exchange (ETDEWEB)
Chang, Zhe [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Center for Science Facilities, Beijing (China); Wang, Sai [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)
2013-02-15
The GRAAL experiment could constrain the variations of the speed of light. The anisotropy of the speed of light may imply that the spacetime is anisotropic. Finsler geometry is a reasonable candidate to deal with the spacetime anisotropy. In this paper, the Lorentz invariance violation (LIV) of the photon sector is investigated in the locally Minkowski spacetime. The locally Minkowski spacetime is a class of flat Finsler spacetime and refers a metric with the anisotropic departure from the Minkowski one. The LIV matrices used to fit the experimental data are represented in terms of these metric deviations. The GRAAL experiment constrains the spacetime anisotropy to be less than 10{sup -14}. In addition, we find that the simplest Finslerian photon sector could be viewed as a geometric representation of the photon sector in the minimal standard model extension (SME). (orig.)
Electrophobic Lorentz invariance violation for neutrinos and the see-saw mechanism
Energy Technology Data Exchange (ETDEWEB)
Choubey, Sandhya; King, S.F
2004-04-29
We show how Lorentz invariance violation (LIV) can occur for Majorana neutrinos, without inducing LIV in the charged leptons via radiative corrections. Such 'electrophobic' LIV is due to the Majorana nature of the LIV operator together with electric charge conservation. Being free from the strong constraints coming from the charged lepton sector, electrophobic LIV can in principle be as large as current neutrino experiments permit. On the other hand, electrophobic LIV could be naturally small if it originates from LIV in some singlet 'right-handed neutrino' sector, and is felt in the physical left-handed neutrinos via a see-saw mechanism. We develop the formalism appropriate to electrophobic LIV for Majorana neutrinos, and discuss experimental constraints at current and future neutrino experiments.
Electrophobic Lorentz invariance violation for neutrinos and the see-saw mechanism
Choubey, S; Choubey, Sandhya
2003-01-01
We show how Lorentz invariance violation (LIV) can occur for Majorana neutrinos, without inducing LIV in the charged leptons via radiative corrections. Such ``electrophobic'' LIV is due to the Majorana nature of the LIV operator together with electric charge conservation. Being free from the strong constraints coming from the charged lepton sector, electrophobic LIV can in principle be as large as current neutrino experiments permit. On the other hand electrophobic LIV could be naturally small if it originates from LIV in some singlet ``right-handed neutrino'' sector, and is felt in the physical left-handed neutrinos via a see-saw mechanism. We develop the formalism appropriate to electrophobic LIV for Majorana neutrinos, and discuss experimental constraints at current and future neutrino experiments.
Gauge invariance and the Pauli-Villars regulator in Lorentz- and CPT-violating electrodynamics
Altschul, B.
2004-11-01
We examine the nonperturbative structure of the radiatively induced Chern-Simons term in a Lorentz- and CPT-violating modification of QED. Although the coefficient of the induced Chern-Simons term is in general undetermined, the nonperturbative theory appears to generate a definite value. However, the CPT-even radiative corrections in this same formulation of the theory generally break gauge invariance. We show that gauge invariance may yet be preserved through the use of a Pauli-Villars regulator, and, contrary to earlier expectations, this regulator does not necessarily give rise to a vanishing Chern-Simons term. Instead, two possible values of the Chern-Simons coefficient are allowed, one zero and one nonzero. This formulation of the theory therefore allows the coefficient to vanish naturally, in agreement with experimental observations.
Constraining the Lorentz invariance violation from the continuous spectra of short gamma-ray bursts
Chang, Zhe; Lin, Hai-Nan; Sang, Yu; Wang, Ping; Wang, Sai
2015-01-01
In quantum gravity, a foamy structure of space-time leads to Lorentz invariance violation (LIV). As the most energetic astrophysical processes in the Universe, gamma-ray bursts (GRBs) provide an effective way to probe quantum gravity effects. We use continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale $M_\\textrm{QG} $. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to the low energy ones. Based on the fact that the LIV-induced time delay can't be longer than the duration of a GRB, we present the most conservative estimation of the quantum gravity energy scales from 20 short GRBs. The most strict constraint, $M_\\textrm{QG}>5.05\\times10^{14}$ GeV, is from GRB 140622A.
Constraints on spacetime anisotropy and Lorentz violation from the GRAAL experiment
Chang, Zhe
2013-01-01
The GRAAL experiment could constrain the variations of the speed of light. The anisotropy of the speed of light may imply that the spacetime is anisotropic. Finsler geometry is a reasonable candidate to deal with the spacetime anisotropy. In this paper, the Lorentz invariance violation (LIV) of the photon sector is investigated in the locally Minkowski spacetime. The locally Minkowski spacetime is a class of flat Finsler spacetime and refers a metric with the anisotropic departure from the Minkowski one. The LIV matrices used to fit the experimental data are represented in terms of these metric deviations. The GRAAL experiment constrains the spacetime anisotropy to be less than (10^{-14}). In addition, we find that the simplest Finslerian photon sector could be viewed as a geometric representation of the photon sector in the minimal standard model extension (SME).
Classical solutions in a Lorentz-violating Maxwell-Chern-Simons electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Belich, H. Jr.; Helayel Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); E-mails: belich@cbpf.br; helayel@cbpf.br; Ferreira, M.M. Jr. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); Maranhao Univ., Sao Luiz, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br; Orlando, M.T.D. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); Espirito Santo Univ., Vitoria, ES (Brazil). Dept. de Fisica e Quimica; E-mail: orlando@cce.ufes.br
2003-01-01
We take as starting point the planar model arising from the dimensional reduction of the Maxwell Electrodynamics with the (Lorentz-violating) Carrol-Field-Jackiw term. We then write and study the extended Maxwell equations and the corresponding wave equations for the potentials. The solution to these equations show some interesting deviations from the usual MCS Electrodynamics, with background-dependent correction terms. In the case of a time-like background, the correction terms dominate over the MCS sector in the region far from the origin, and establish the behaviour of a massless Electrodynamics ( in the electric sector). In the space-like case, the solutions indicate the clear manifestation of spatial anisotropy, which is consistent with the existence of a privileged direction is space. (author)
Gamma-ray burst polarization reduction induced by the Lorentz invariance violation
Lin, Hai-Nan; Chang, Zhe
2016-01-01
It has been observed that photons in the prompt emission of some gamma-ray bursts (GRBs) are highly polarized. The high polarization is used by some authors to give a strict constraint on the Lorentz invariance violation (LIV). If the Lorentz invariance is broken, the polarization vector of a photon may rotate during its propagation. The rotation angle of polarization vector depends on both the photon energy and the distance of source. It is believed that if high polarization is observed, then the relative rotation angle (denoted by $\\alpha$) of polarization vector of the highest energy photon with respect to that of the lowest energy photon should be no more than $\\pi/2$. Otherwise, the net polarization will be severely suppressed, thus couldn't be as high as what was actually observed. In this paper, we will give a detailed calculation on the evolution of GRB polarization arising from LIV effect duration the propagation. It is shown that the polarization degree rapidly decrease as $\\alpha$ increases, and re...
Planck scale effects and the suppression of power on the large scales in the primordial spectrum
Shankaranarayanan, S
2005-01-01
The enormous red-shifting of the modes during the inflationary epoch suggests that physics at the very high energy scales may modify the primordial perturbation spectrum. Therefore, the measurements of the anisotropies in the Cosmic Microwave Background (CMB) could provide us with clues to understanding physics beyond the Planck scale. In this proceeding, we study the Planck scale effects on the primordial spectrum in the power-law inflation using a model which preserves local Lorentz invariance. While our model reproduces the standard spectrum on small scales, it naturally predicts a suppression of power on the large scales -- a feature that seems to be necessary to explain deficit of power in the lower multipoles of the CMB.
Lämmerzahl, C; Müller, H; Laemmerzahl, Claus; Macias, Alfredo; Mueller, Holger
2005-01-01
All quantum gravity approaches lead to small modifications in the standard laws of physics which lead to violations of Lorentz invariance. One particular example is the extended standard model (SME). Here, a general phenomenological approach for extensions of the Maxwell equations is presented which turns out to be more general than the SME and which covers charge non--conservation (CNC), too. The new Lorentz invariance violating terms cannot be probed by optical experiments but need, instead, the exploration of the electromagnetic field created by a point charge or a magnetic dipole. Some scalar--tensor theories and higher dimensional brane theories predict CNC in four dimensions and some models violating Special Relativity have been shown to be connected with CNC and its relation to the Einstein Equivalence Principle has been discussed. Due to this upcoming interest, the experimental status of electric charge conservation is reviewed. Up to now there seem to exist no unique tests of charge conservation. CNC...
Search for CPT and lorentz violation in B0-B[over ]0 oscillations with dilepton events.
Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Wenzel, W A; Del Amo Sanchez, P; Hawkes, C M; Watson, A T; Koch, H; Schroeder, T; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Watson, J E; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, L; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Roethel, W; Wilson, F F; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Nelson, S; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Majewski, S A; Miyashita, T S; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Neal, H
2008-04-04
We report results of a search for CPT and Lorentz violation in B(0)-B[over ](0) oscillations using inclusive dilepton events from 232 x 10(6) Upsilon(4S)-->BB[over ] decays recorded by the BABAR detector at the PEP-II B Factory at SLAC. We find 2.8sigma significance, compatible with no signal, for variations in the complex CPT violation parameter z at the Earth's sidereal frequency and extract values for the quantities Deltaa(micro) in the general Lorentz-violating standard-model extension. The spectral powers for variations in z over the frequency range 0.26 yr(-1) to 2.1 solar day(-1) are also compatible with no signal.
Abe, K.; Amey, J.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Ban, S.; Barbato, F. C. T.; Barbi, M.; Barker, G. J.; Barr, G.; Barry, C.; Bartet-Friburg, P.; Batkiewicz, M.; Berardi, V.; Berkman, S.; Bhadra, S.; Bienstock, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Campbell, T.; Cao, S.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Chappell, A.; Checchia, C.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Coplowe, D.; Cremonesi, L.; Cudd, A.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dunkman, M.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S. G.; Giganti, C.; Gizzarelli, F.; Golan, T.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, J. T.; Hamilton, P.; Hansen, D.; Harada, J.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hiramoto, A.; Hirota, S.; Hogan, M.; Holeczek, J.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kowalik, K.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Lamoureux, M.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Lazos, M.; Licciardi, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Lou, T.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Maret, L.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Morrison, J.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakanishi, Y.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Novella, P.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Paudyal, P.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radermacher, T.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Rossi, B.; Roth, S.; Rubbia, A.; Ruggeri, A. C.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Stowell, P.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tamura, R.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Vilela, C.; Vladisavljevic, T.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Wret, C.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration
2017-06-01
A class of extensions of the Standard Model allows Lorentz and C P T violations, which can be identified by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations was performed using the T2K on-axis near detector. Two complementary methods were used in this study, both of which resulted in no evidence of a signal. Limits on associated Lorentz and C P T -violating terms from the Standard Model extension have been derived by taking into account their correlations in this model for the first time. These results imply such symmetry violations are suppressed by a factor of more than 1 020 at the GeV scale.
A Lorentz Violating Theory: Its Nonminimal Extension in the Photon Sector
Albayrak, Soner
2016-01-01
The relentless efforts of the physics community has not yet availed us the solution of how to unify the Quantum Mechanics with General Relativity, a puzzle that has engaged the minds of the physicists for almost a century. The insufficiency of today's and foreseeable future's technology for a direct reach into the Planck energies at which the fundamental theory, the Quantum Theory of Gravity, lies has lead to the search of the low energy effects of that fundamental Planck level theory irregardless of the details of it. In this thesis, one of the leading candidates of such an exotic effect, that is the violation of Lorentz and CPT symmetries is analyzed. The action level effective field theoretical framework for such an analysis called Standard Model Extension has already been in the literature for the last two decades; here, the nonminimal photon sector of such a framework is examined from a quantum field theoretical point of view. All possible polarization vectors for different kinds of CPT violations, the g...
Vitória, R. L. L.; Belich, H.; Bakke, K.
2017-01-01
We consider a background of the violation of the Lorentz symmetry determined by the tensor (KF)_{μναβ} which governs the Lorentz symmetry violation out of the Standard Model Extension, where this background gives rise to a Coulomb-type potential, and then, we analyse its effects on a relativistic quantum oscillator. Furthermore, we analyse the behaviour of the relativistic quantum oscillator under the influence of a linear scalar potential and this background of the Lorentz symmetry violation. We show in both cases that analytical solutions to the Klein-Gordon equation can be achieved.
Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models
Stecker, Floyd
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
Lorentz violation bounds from torsion trace fermion sector and galaxy M51 data and chiral dynamos
Energy Technology Data Exchange (ETDEWEB)
Garcia de Andrade, L.C. [IF-UERJ, Departamento de Fisica Teorica, Rio de Janeiro, RJ (Brazil)
2017-06-15
Earlier we have computed a Lorentz violation (LV) bound for torsion terms via galactic dynamos and found bounds similar to the one obtained by Kostelecky et al. (Phys Rev Lett 100:111102, 2008) which is of the order of 10{sup -31} GeV. Their result was found making use of the axial torsion vector in terms of Dirac spinors and minimal torsion coupling in flat space-time of fermions. In this paper, a torsion dynamo equation obtained using the variation of the torsion trace and galaxy M51 data of 500 pc are used to place an upper bound of 10{sup -26} GeV in LV, which agrees with the one by Kostelecky and his group using an astrophysical framework background. Their lowest bound was obtained in earth laboratory using dual masers. One of the purposes of this paper is to apply the Faraday self-induction magnetic equation, recently extended to torsioned space-time, by the author to show that it lends support to physics in Riemann-Cartan space-time, in several distinct physical backgrounds. Backreaction magnetic effects are used to obtain the LV bounds. Previously Bamba et al. (JCAP 10:058, 2012) have used the torsion trace in their teleparallel investigation of the IGMF, with the argument that the torsion trace leads to less weaker effects than the other irreducible components of the torsion tensor. LV is computed in terms of a chiral-torsion-like current in the new dynamo equation analogous to the Dvornikov and Semikoz dynamo equation with chiral magnetic currents. Making use of the chiral-torsion dynamo equation we estimate the LV bounds in the early universe to be of the order of 10{sup -24} GeV, which was the order of the charged-lepton sector. Our main result is that it is possible to obtain more stringent bounds than the ones found in the fermion sector of astrophysics in the new revised 2017 data table for CPT and Lorentz violation by Kostelecky and Mewes. They found in several astrophysical backgrounds, orders of magnitude such as 10{sup -24} and 10{sup -23} Ge
Lorentz violation bounds from torsion trace fermion sector and galaxy M 51 data and chiral dynamos
Garcia de Andrade, L. C.
2017-06-01
Earlier we have computed a Lorentz violation (LV) bound for torsion terms via galactic dynamos and found bounds similar to the one obtained by Kostelecky et al. (Phys Rev Lett 100:111102, 2008) which is of the order of 10^{-31} GeV. Their result was found making use of the axial torsion vector in terms of Dirac spinors and minimal torsion coupling in flat space-time of fermions. In this paper, a torsion dynamo equation obtained using the variation of the torsion trace and galaxy M51 data of 500 pc are used to place an upper bound of 10^{-26} GeV in LV, which agrees with the one by Kostelecky and his group using an astrophysical framework background. Their lowest bound was obtained in earth laboratory using dual masers. One of the purposes of this paper is to apply the Faraday self-induction magnetic equation, recently extended to torsioned space-time, by the author to show that it lends support to physics in Riemann-Cartan space-time, in several distinct physical backgrounds. Backreaction magnetic effects are used to obtain the LV bounds. Previously Bamba et al. (JCAP 10:058, 2012) have used the torsion trace in their teleparallel investigation of the IGMF, with the argument that the torsion trace leads to less weaker effects than the other irreducible components of the torsion tensor. LV is computed in terms of a chiral-torsion-like current in the new dynamo equation analogous to the Dvornikov and Semikoz dynamo equation with chiral magnetic currents. Making use of the chiral-torsion dynamo equation we estimate the LV bounds in the early universe to be of the order of 10^{-24} GeV, which was the order of the charged-lepton sector. Our main result is that it is possible to obtain more stringent bounds than the ones found in the fermion sector of astrophysics in the new revised 2017 data table for CPT and Lorentz violation by Kostelecky and Mewes. They found in several astrophysical backgrounds, orders of magnitude such as 10^{-24} and 10^{-23} GeV which are not so
Stecker, F W
2003-01-01
Observations of the multi-TeV spectra of the nearby BL objects Mkn 421 and Mkn 501 exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions, primarily with infrared photons having a flux level as determined by various astronomical observations. After correction for this absorption effect, the derived intrinsic spectra of these multi-TeV sources can be explained within the framework of simple synchrotron self-Compton emission models. Stecker and Glashow have shown that the existence of such annihilations via electron-positron pair production interactions up to an energy of 20 TeV puts strong constraints on Lorentz invariance violation. Such constraints have important implications for Lorentz invariance violating (LIV) quantum gravity models as well as LIV models involving large extra dimensions. We also discuss the implications of observations of high energy gamma-rays from the Crab Nebula on constraining quantum gravity models.
Ultrahigh-energy photons as probes of Lorentz symmetry violations in stringy space-time foam models.
Maccione, Luca; Liberati, Stefano; Sigl, Günter
2010-07-09
The time delays between γ rays of different energies from extragalactic sources have often been used to probe quantum gravity models in which Lorentz symmetry is violated. It has been claimed that these time delays can be explained by or at least put the strongest available constraints on quantum gravity scenarios that cannot be cast within an effective field theory framework, such as the space-time foam, D-brane model. Here we show that this model would predict too many photons in the ultrahigh energy cosmic ray flux to be consistent with observations. The resulting constraints on the space-time foam model are much stronger than limits from time delays and allow for Lorentz violation effects way too small for explaining the observed time delays.
Ultra high energy photons as probes of Lorentz symmetry violations in stringy space-time foam models
Energy Technology Data Exchange (ETDEWEB)
Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Liberati, Stefano [SISSA, Trieste (Italy); INFN, Trieste (Italy); Sigl, Guenter [Hamburg Univ. (Germany). Inst. fuer Theoretische Physik
2010-03-15
The time delays between gamma-rays of different energies from extragalactic sources have often been used to probe quantum gravity models in which Lorentz symmetry is violated. It has been claimed that these time delays can be explained by or at least put the strongest available constraints on quantum gravity scenarios that cannot be cast within an effective field theory framework, such as the space-time foam, D-brane model. Here we show that this model would predict too many photons in the ultra-high energy cosmic ray flux to be consistent with observations. The resulting constraints on the space-time foam model are much stronger than limits from time delays and allow for Lorentz violations effects way too small for explaining the observed time delays. (orig.)
Dynamically Induced Planck Scale and Inflation
Kannike, Kristjan; Pizza, Liberato; Racioppi, Antonio; Raidal, Martti; Salvio, Alberto; Strumia, Alessandro
2015-01-01
Theories where the Planck scale is dynamically generated from dimensionless interactions provide predictive inflationary potentials and super-Planckian field variations. We first study the minimal single-field realisation in the low-energy effective field theory limit, finding the predictions $n_s \\approx 0.96$ for the spectral index and $r \\approx 0.13$ for the tensor-to-scalar ratio, close to those of a quadratic potential. Next we consider agravity as a dimensionless quantum gravity theory finding a multi-field inflation that converges towards an attractor trajectory that predicts $n_s\\approx 0.96$ and $0.003
Lorentz invariance violation and simultaneous emission of electromagnetic and gravitational waves
Passos, E.; Anacleto, M. A.; Brito, F. A.; Holanda, O.; Souza, G. B.; Zarro, C. A. D.
2017-09-01
In this work, we compute some phenomenological bounds for the electromagnetic and massive gravitational high-derivative extensions supposing that it is possible to have an astrophysical process that generates simultaneously gravitational and electromagnetic waves. We present Lorentz invariance violating (LIV) higher-order derivative models, following the Myers-Pospelov approach, to electrodynamics and massive gravitational waves. We compute the corrected equation of motion of these models, their dispersion relations and the velocities. The LIV parameters for the gravitational and electromagnetic sectors, ξg and ξγ, respectively, were also obtained for three different approaches: luminal photons, time delay of flight and the difference of graviton and photon velocities. These LIV parameters depend on the mass scales where the LIV-terms become relevant, M for the electromagnetic sector and M1 for the gravitational one. We obtain, using the values for M and M1 found in the literature, that ξg ∼10-2, which is expected to be phenomenologically relevant and ξγ ∼103, which cannot be suitable for an effective LIV theory. However, we show that ξγ can be interesting in a phenomenological point of view if M ≫M1. Finally the relation between the variation of the velocities of the photon and the graviton in relation to the speed of light was calculated and resulted in Δvg / Δvγ ≲ 1.82 ×10-3.
de Andrade, L C Garcia
2011-01-01
Recently Kahniashivili et al (2006) presented a unified treatment for ultraviolet Lorentz violation (LV) testing through electromagnetic wave propagation in magnetised plasmas, based on dispersion and rotation measured data. Based on the fact discovered recently by Kostelecky et al (2008), that LV may place constraints on spacetime torsion, in this paper it is shown that on the limit of very low frequency torsion waves, it is possible to constraint torsion from Faraday rotation and CMB on a similar fashion as Minkowski spacetime plus torsion. Here the Maxwells modified equations are obtained by a perturbative method introduced by de Sabbata and Gasperini (1981). Torsion is constraint to $Q_{CMB}\\approx{10^{-18}GeV}$ which is not so stringent as the $10^{-31}GeV$ obtained by Kostelecky et al. However, Gamma Ray Bursts (GBRs) may lead to the more string value obtined by Kostelecky et al. Another interesting constraint on torsion is shown to be placed by galactic dynamo seed magnetic fields. For torsion effects ...
Black holes in multi-fractional and Lorentz-violating models
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-05-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length ℓ _*. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to ℓ _*. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
A New Test of Lorentz Invariance Violation: The Spectral Lag Transition of GRB 160625B
Wei, Jun-Jie; Zhang, Bin-Bin; Shao, Lang; Wu, Xue-Feng; Mészáros, Peter
2017-01-01
Possible violations of Lorentz invariance (LIV) have been investigated for a long time using the observed spectral lags of gamma-ray bursts (GRBs). However, these generally have relied on using a single photon in the highest energy range. Furthermore, the search for LIV lags has been hindered by our ignorance concerning the intrinsic time lag in different energy bands. GRB 160625B, the only burst so far with a well-defined transition from positive lags to negative lags provides a unique opportunity to put new constraints on LIV. Using multi-photon energy bands we consider the contributions to the observed spectral lag from both the intrinsic time lag and the lag by LIV effects, and assuming the intrinsic time lag to have a positive dependence on the photon energy, we obtain robust limits on LIV by directly fitting the spectral lag data of GRB 160625B. Here we show that these robust limits on the quantum gravity energy scales are {E}{QG,1}≥slant 0.5× {10}16 GeV for the linear, and {E}{QG,2}≥slant 1.4× {10}7 GeV for the quadratic LIV effects, respectively. In addition, we give, for the first time, a reasonable formulation of the intrinsic energy-dependent time lag.
Black holes in multi-fractional and Lorentz-violating models
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Rodriguez Fernandez, David [Universidad de Oviedo, Department of Physics, Oviedo (Spain); Ronco, Michele [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy)
2017-05-15
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length l{sub *}. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to l{sub *}. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models. (orig.)
Sidharth, B. G.; Das, Abhishek; Roy, Arka Dev
2016-05-01
This paper deals with the violation of Lorentz symmetry. The approach is based on Compton scattering which becomes modified due to a modified dispersion relation arising from a minimum spacetime cut off as in modern Quantum Gravity approaches. With this amendment, we find that two high-energy rays of different energies develop a time-lag. This time separation becomes prominent when the energies of the considered photons is ≥ 1 GeV. Extending our approach to gamma rays of cosmic origin we predict that they undergo innumerable such scattering processes before reaching us. Therefore, it accounts for the time-lag phenomena of gamma ray bursts ( GRB)'s which have been claimed to be observed. Also, we find that resorting to the modified Snyder-Sidharth Hamiltonian it is possible to extend the GZK cut off beyond its normal limit, 1020 eV. Some observations of ultra high energy cosmic rays support this. This extends the limits of special theory of relativity.
Adamson, P; Aurisano, A; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Carroll, T J; Castromonte, C M; Chen, R; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; de Rijck, S; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Flanagan, W; Frohne, M V; Gabrielyan, M; Gallagher, H R; Germani, S; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Holin, A; Huang, J; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; O'Connor, J; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Perch, A; Pfützner, M M; Phan, D D; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sail, P; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tian, X; Timmons, A; Todd, J; Tognini, S C; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R
2016-01-01
Data from the MINOS experiment has been used to search for mixing between muon neutrinos and muon antineutrinos using a time-independent Lorentz-violating formalism derived from the Standard-Model Extension (SME). MINOS is uniquely capable of searching for muon neutrino-antineutrino mixing given its long baseline and ability to distinguish between neutrinos and antineutrinos on an event-by-event basis. Neutrino and antineutrino interactions were observed in the MINOS Near and Far Detectors from an exposure of 10.56$\\times10^{20}$ protons-on-target from the NuMI neutrino-optimized beam. No evidence was found for such transitions and new, highly stringent limits were placed on the SME coefficients governing them. We place the first limits on the SME parameters $(c_{L})^{TT}_{\\mu\\mu} $ and $(c_{L})^{TT}_{\\tau\\tau}$ at $-8.4\\times10^{-23} < (c_{L})^{TT}_{\\mu\\mu} < 8.0\\times10^{-23}$ and $-8.0\\times10^{-23} < (c_{L})^{TT}_{\\tau\\tau} < 8.4\\times10^{-23}$, and the world's best limits on the $\\tilde{g}^{Z...
Lorentz violation effects in asymmetric two brane models a nonperturbative analysis
Farakos, K
2009-01-01
We consider the case of bulk photons in a Lorentz violating brane background, with an asymmetric warping between space and time warp factors. A perturbative analysis, in a previous work, gave an energy dependent phase (or group) velocity of light: $V_{ph}(\\omega)=V_{ph}(0)-C_G \\:\\omega^2 \\quad (C_G>0)$, which was derived up to second order of time independent perturbation theory. In this paper, we go beyond the perturbative result and we study the nonperturbative behavior of the phase velocity for larger energies, by solving numerically an eigenvalue problem for the wave function of the zero mode (4D photon). In particular we see that $V_{ph}(\\omega)$ is in general a monotonically decreasing function which tends asymptotically to a final value $V_{ph}(\\infty)$. We compare with the results of perturbation theory and we obtain a very good agreement in the range of small energies. We also present a wave function analysis and we see that in the nonperturbative sector of the theory (very high energies), the zero m...
$D$-dimensions Dirac fermions BEC-BCS cross-over thermodynamics with Lorentz violation
Chen, J
2006-01-01
An analytical attempt is made with an effective Proca Lagrangian action to address the vector condensation Lorentz violation effects on the equation of state of strongly interacting fermions. The in-medium many-body renormalization effect is introduced as an external field approximation through a fictive generalized Thomson Problem background. The expressions for the $d$-dimensions thermodynamics are given with finite $S$-wave scattering length. In the non-relativistic limit for $d=3$, universal coefficient $\\xi ={4/9}$ and energy gap $\\Delta ={5/18}\\epsilon_f $ are reasonably consistent with the existed theoretical and experimental results. In the unitary limit for $d=2$ and T=0, the universal dimensionless coefficient can even approach the extreme occasion $\\xi=0$ corresponding to $m^*=\\infty$ which can be mapped to the strongly coupled two-dimensions electrons and is quite similar to the 3-dimensions Bose-Einstein Condensation of ideal boson gas. Instead, for $d=1$, the universal coefficient $\\xi$ is negat...
Black holes in multi-fractional and Lorentz-violating models.
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-01-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length [Formula: see text]. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to [Formula: see text]. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
de Andrade, L. C. Garcia
Recently Kahniashvili et al.9 presented a unified treatment for ultraviolet Lorentz violation (LV) testing through electromagnetic wave propagation in magnetized plasmas, based on dispersion and rotation measured data. Based on the fact discovered recently by Kostelecky et al., 3 that LV may place constraints on spacetime torsion, in this paper it is shown that on the limit of very low frequency torsion waves, it is possible to constraint torsion from Faraday rotation and CMB on a similar fashion as Minkowski spacetime plus torsion. Here, the Maxwells modified equations are obtained by a perturbative method introduced by de Sabbata and Gasperini [Introduction to Gravitation (World Scientific, 1980)]. Torsion is constraint to QCMB≈10-18 GeV which is not so stringent as the 10-31 GeV obtained by Kostelecky et al. However, Gamma-Ray Bursts (GRBs) may lead to the more string value obtained by Kostelecky et al.Another interesting constraint on torsion is shown to be placed by galactic dynamo seed magnetic fields. For torsion effects be compatible with the galactic dynamo seeds, one obtains a torsion constraint of 10-33 GeV which is two orders of magnitude more stringent that the above Kostelecky et al. limit.
Energy Technology Data Exchange (ETDEWEB)
Adamson, P.; et al.
2016-05-10
Data from the MINOS experiment has been used to search for mixing between muon neutrinos and muon antineutrinos using a time-independent Lorentz-violating formalism derived from the Standard-Model Extension (SME). MINOS is uniquely capable of searching for muon neutrino-antineutrino mixing given its long baseline and ability to distinguish between neutrinos and antineutrinos on an event-by-event basis. Neutrino and antineutrino interactions were observed in the MINOS Near and Far Detectors from an exposure of 10.56$\\times10^{20}$ protons-on-target from the NuMI neutrino-optimized beam. No evidence was found for such transitions and new, highly stringent limits were placed on the SME coefficients governing them. We place the first limits on the SME parameters $(c_{L})^{TT}_{\\mu\\mu} $ and $(c_{L})^{TT}_{\\tau\\tau}$ at $-8.4\\times10^{-23} < (c_{L})^{TT}_{\\mu\\mu} < 8.0\\times10^{-23}$ and $-8.0\\times10^{-23} < (c_{L})^{TT}_{\\tau\\tau} < 8.4\\times10^{-23}$, and the world's best limits on the $\\tilde{g}^{ZT}_{\\mu\\overline{\\mu}}$ and $\\tilde{g}^{ZT}_{\\tau\\overline{\\tau}}$ parameters at $|\\tilde{g}^{ZT}_{\\mu\\overline{\\mu}}| < 3.3\\times 10^{-23}$ and $|\\tilde{g}^{ZT}_{\\tau\\overline{\\tau}}| < 3.3\\times 10^{-23}$, all limits quoted at $3\\sigma$.
Toniolo, Giuliano R.; Fargnoli, H. G.; Brito, L. C. T.; Scarpelli, A. P. Baêta
2017-02-01
S-matrix amplitudes for the electron-electron scattering are calculated in order to verify the physical equivalence between two Lorentz-breaking dual models. We begin with an extended Quantum Electrodynamics which incorporates CPT-even Lorentz-violating kinetic and mass terms. Then, in a process of gauge embedding, its gauge-invariant dual model is obtained. The physical equivalence of the two models is established at tree level in the electron-electron scattering and the unpolarized cross section is calculated up to second order in the Lorentz-violating parameter.
Energy Technology Data Exchange (ETDEWEB)
Toniolo, Giuliano R.; Fargnoli, H.G.; Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Caixa Postal 3037, Lavras, Minas Gerais (Brazil); Scarpelli, A.P.B. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Sao Paulo (Brazil)
2017-02-15
S-matrix amplitudes for the electron-electron scattering are calculated in order to verify the physical equivalence between two Lorentz-breaking dual models. We begin with an extended Quantum Electrodynamics which incorporates CPT-even Lorentz-violating kinetic and mass terms. Then, in a process of gauge embedding, its gauge-invariant dual model is obtained. The physical equivalence of the two models is established at tree level in the electron-electron scattering and the unpolarized cross section is calculated up to second order in the Lorentz-violating parameter. (orig.)
Search for CPT and Lorentz-Symmetry Violation in Entangled Neutral Kaons
Di Domenico, Antonio
2016-01-01
The neutral-kaon system constitutes a fantastic and unique laboratory for the study of CPT symmetry and the basic principles of quantum mechanics, and a $\\phi$-factory represents a unique opportunity to push forward these studies. The experimental results show no deviation from the expectations of quantum mechanics and CPT symmetry, while the extreme precision of the measure- ments, in some cases, reaches the interesting Planck-scale region. At present the KLOE-2 experiment is collecting data with an upgraded detector with the aim of significantly improving these kinds of experimental tests.
Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Courturier, C.; Granot, J.; Stecker, Floyd William; Cohen-Tanugi, J.; Longo, F.
2013-01-01
We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the "QG energy scale" (the energy scale that LIV-inducing QG effects become important, E(sub QG)) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB 090510 and are E(sub QG,1) > 7.6 times the Planck energy (E(sub Pl)) and E(sub QG,2) > 1.3×10(exp 11) GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of approx. 2. Our results disfavor any class of models requiring E(sub QG,1) < or approx. E(sub Pl)
Search for CPT and Lorentz Violation in B0-B0bar Oscillations with Inclusive Dilepton Events
Aubert, B; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Del Amo-Sánchez, P; Barrett, M; Ford, K E; Hart, A J; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Asgeirsson, D J; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Regensburger, J J; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; Vasseur, G; Yéche, C; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martínez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihályi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H; al, et
2006-01-01
We report preliminary results of a search for CPT and Lorentz violation in B0-B0bar oscillations using an inclusive dilepton sample collected by the BABAR experiment at the PEP-II B Factory. Using a sample of 232 million BBbar pairs, we search for time-dependent variations in the complex CPT parameter z = z0 + z1*cos(Omega*t^ + phi) where Omega is the Earth's sidereal frequency and t^ is sidereal time. We measure Im(z0) = (-14.1 +- 7.3(stat) +- 2.4(syst)) x 10E-3, DeltaGamma*Re(z0) = (-7.2 +- 4.1(stat) +- 2.1(syst)) x 10E-3 ps-1, Im(z1) = (-24.0 +- 10.7(stat) +- 5.9(syst)) x 10E-3, and DeltaGamma*Re(z1) = (-18.8 +- 5.5(stat) +- 4.0(syst)) x 10E-3 ps-1, where DeltaGamma is the difference between the decay rates of the neutral B mass eigenstates. The statistical correlation between the measurements of Im(z0) and DeltaGamma*Re(z0) is 76%; between Im(z1) and DeltaGamma*Re(z1) it is 79%. These results are used to evaluate expressions involving coefficients for Lorentz and CPT violation in the general Lorentz-viola...
Parker, Stephen R; Baynes, Fred N; Tobar, Michael E
2015-01-01
Optical resonators provide a powerful tool for testing aspects of Lorentz invariance. Here, we present a reanalysis of an experiment where a path asymmetry was created in an optical ring resonator by introducing a dielectric prism in one arm. The frequency difference of the two fundamental counter-propagating modes was then recorded as the apparatus was orientation-modulated in the laboratory. By assuming that the minimal Standard-Model Extension coefficients vanish we are able to place bounds on higher-order parity-odd Lorentz-violating coefficients of the Standard-Model Extension. The results presented in this work set the first constraints on two previously unbounded linear combinations of d=8 parity-odd nonbirefringent nondispersive coefficients of the photon sector.
Search for CPT and Lorentz Violation in B0-B0bar Oscillations with Inclusive Dilepton Events
Energy Technology Data Exchange (ETDEWEB)
Aubert, B.
2006-09-26
We report preliminary results of a search for CPT and Lorentz violation in B{sup 0}-{bar B}{sup 0} oscillations using an inclusive dilepton sample collected by the BABAR experiment at the PEP-II B Factory. Using a sample of 232 million B{bar B} pairs, we search for time-dependent variations in the complex CPT parameter z = z{sub 0} +z{sub 1} cos ({Omega}{cflx t} + {phi}) where {Omega} is the Earth's sidereal frequency and {cflx t} is sidereal time. We measure Imz{sub 0} = (-14.1 {+-} 7.3(stat.) {+-} 2.4(syst.)) x 10{sup -3}, {Delta}{Lambda} x Rez{sub 0} = (-7.2 {+-} 4.1(stat.) {+-} 2.1(syst.)) x 10{sup -3} ps{sup -1}, Im z{sub 1} = (-24.0 {+-} 10.7(stat.) {+-} 5.9(syst.)) x 10{sup -3}, and {Delta}{Lambda} x Re z{sub 1} = (-18.8 {+-} 5.5(stat.) {+-} 4.0(syst.)) x 10{sup -3} ps{sup -1}, where {Delta}{Lambda} is the difference between the decay rates of the neutral B mass eigenstates. The statistical correlation between the measurements of Imz{sub 0} and {Delta}{Lambda} x Rez{sub 0} is 76%; between Imz{sub 1} and {Delta}{Lambda} x Rez{sub 1} it is 79%. These results are used to evaluate expressions involving coefficients for Lorentz and CPT violation in the general Lorentz-violating standard-model extension. In a complementary approach, we examine the spectral power of periodic variations in z over a wide range of frequencies and find no significant signal.
Classical solutions for the Lorentz-violating and CPT-even term of the Standard Model Extension
Casana, R; Santos, C E H
2008-01-01
In this work, we calculate the classical solutions for the electrodynamics stemming from the Lorentz-violating (LV) and CPT-even term of the Standard Model Extension. The solutions for point-like and extended charges are obtained from the wave equations by means of the Green method. A dipolar expansion is written for the field strengths. It is explicitly shown that charge and current generate first order effects for the magnetic and electric fields, respectively. Using the magnetic field generated by a macroscopic 1C charged sphere, we establish a stringent bound for the LV parameter:$\\kappa \\leq 10^{-16}.$
Classical solutions for the Lorentz-violating and CPT-even term of the standard model extension
Casana, Rodolfo; Ferreira, Manoel M., Jr.; Santos, Carlos E. H.
2008-11-01
In this work, we calculate the classical solutions for the electrodynamics stemming from the Lorentz-violating (LV) and CPT-even term of the standard model extension. Static and stationary solutions for pointlike and extended charges are obtained from the wave equations by means of the Green method. A dipolar expansion is written for the field strengths. It is explicitly shown that charge and current generate LV first order effects for the magnetic and electric fields, respectively. Using the magnetic field generated by a macroscopic 1C charged sphere, we establish a stringent bound for the LV parameter: κ≤10-16.
Araujo, Jonas B.; Casana, Rodolfo; Ferreira, Manoel M.
2015-07-01
We analyze some dimension-five C P T -even and Lorentz-violating nonminimal couplings between fermionic and gauge fields in the context of the Dirac equation. After evaluating the nonrelativistic Hamiltonian, we discuss the behavior of the terms under discrete symmetries and analyze the implied effects. We then use the anomalous magnetic dipole moment and electron electric dipole moment measurements to reach upper bounds of 1 part in 1020 and 1024 (eV )-1 , improving the level of restriction on such couplings by at least 8 orders of magnitude. These upper bounds are also transferred to the Sun-centered frame by considering the Earth's rotational motion.
On Dirac-like Monopoles in a Lorentz- and CPT-violating Electrodynamics
Barraz, N M; Moura-Melo, W A; Helay"el-Neto, J A
2007-01-01
We study magnetic monopoles in a Lorentz- and CPT-odd electrodynamical framework in (3+1) dimensions. This is the standard Maxwell model extended by means of a Chern-Simons-like term, $b_\\mu\\tilde{F}^{\\mu\
Direct terrestrial test of Lorentz symmetry in electrodynamics to 10−18
Nagel, Moritz; Parker, Stephen R.; Kovalchuk, Evgeny V.; Stanwix, Paul L.; Hartnett, John G.; Ivanov, Eugene N.; Peters, Achim; Tobar, Michael E.
2015-01-01
Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low-energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources to perform a modern Michelson–Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes Δν/ν to 9.2±10.7 × 10−19 (95% confidence interval). This order of magnitude improvement over previous Michelson–Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry. PMID:26323989
Direct terrestrial test of Lorentz symmetry in electrodynamics to 10-18
Nagel, Moritz; Parker, Stephen R.; Kovalchuk, Evgeny V.; Stanwix, Paul L.; Hartnett, John G.; Ivanov, Eugene N.; Peters, Achim; Tobar, Michael E.
2015-09-01
Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low-energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources to perform a modern Michelson-Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes Δν/ν to 9.2+/-10.7 × 10-19 (95% confidence interval). This order of magnitude improvement over previous Michelson-Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry.
Direct terrestrial test of Lorentz symmetry in electrodynamics to 10(-18).
Nagel, Moritz; Parker, Stephen R; Kovalchuk, Evgeny V; Stanwix, Paul L; Hartnett, John G; Ivanov, Eugene N; Peters, Achim; Tobar, Michael E
2015-09-01
Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low-energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources to perform a modern Michelson-Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes Δν/ν to 9.2±10.7 × 10(-19) (95% confidence interval). This order of magnitude improvement over previous Michelson-Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry.
Toniolo, Giuliano R; Brito, L C T; Scarpelli, A P Baêta
2016-01-01
S-matrix amplitudes for the electron-electron scattering are calculated in order to verify the quantum equivalence of dual models. We used an extended Quantum Electrodynamics with CPT-even Lorentz-violating kinetic and mass terms, which was used in a process of gauge embedding, known as Noether dualizationn method (NDM), in order to generate its gauge-invariant dual model. The physical equivalence was established at tree-level and the cross section was calculated to second order in the Lorentz-violating parameter.
Proton Decay and the Planck Scale
Larson, D T
2005-01-01
Even without grand unification, proton decay can be a powerful probe of physics at the highest energy scales. Supersymmetric theories with conserved R-parity contain Planck-suppressed dimension 5 operators that give important contributions to nucleon decay. These operators are likely controlled by flavor physics, which means current and near future proton decay experiments might yield clues about the fermion mass spectrum. I present a thorough analysis of nucleon partial lifetimes in supersymmetric one-flavon Froggatt-Nielsen models with a single U(1)_X family symmetry which is responsible for the fermionic mass spectrum as well as forbidding R-parity violating interactions. Many of the models naturally lead to nucleon decay near present limits without any reference to grand unification.
Lorentz symmetry violation in the fermion number anomaly with the chiral overlap operator
Makino, Hiroki
2016-01-01
Recently, Grabowska and Kaplan proposed a 4-dimensional lattice formulation of chiral gauge theories on the basis of a chiral overlap operator. We compute the classical continuum limit of the fermion number anomaly in this formulation. Unexpectedly, we find that the anomaly contains a term which is not Lorentz invariant. The term is however proportional to the gauge anomaly coefficient and thus the fermion number anomaly in this lattice formulation automatically restores the Lorentz invariant form when and only when the anomaly cancellation condition is met.
Lorentz symmetry violation in the fermion number anomaly with the chiral overlap operator
Makino, Hiroki; Morikawa, Okuto
2016-12-01
Recently, Grabowska and Kaplan proposed a four-dimensional lattice formulation of chiral gauge theories on the basis of a chiral overlap operator. We compute the classical continuum limit of the fermion number anomaly in this formulation. Unexpectedly, we find that the continuum limit contains a term which is not Lorentz invariant. The term is, however, proportional to the gauge anomaly coefficient, and thus the fermion number anomaly in this lattice formulation automatically restores the Lorentz-invariant form when and only when the anomaly cancellation condition is met.
Testing Lorentz violation with binary pulsars: constraints on standard model extension
Institute of Scientific and Technical Information of China (English)
Yi Xie
2013-01-01
Under the standard model extension (SME) framework,Lorentz invariance is tested in five binary pulsars:PSR J0737-3039,PSR B 1534+ 12,PSR J 1756-2251,PSR B1913+16 and PSR B2127+11C.By analyzing the advance of periastron,we obtain the constraints on a dimensionless combination of SME parameters that is sensitive to timing observations.The results imply no evidence for the break of Lorentz invariance at the 10-10 level,one order of magnitude larger than the previous estimation.
Discovery of Lorentz-violating type II Weyl fermions in LaAlGe
Xu, Su-Yang; Alidoust, Nasser; Chang, Guoqing; Lu, Hong; Singh, Bahadur; Belopolski, Ilya; Sanchez, Daniel S.; Zhang, Xiao; Bian, Guang; Zheng, Hao; Husanu, Marious-Adrian; Bian, Yi; Huang, Shin-Ming; Hsu, Chuang-Han; Chang, Tay-Rong; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Strocov, Vladimir N.; Lin, Hsin; Jia, Shuang; Hasan, M. Zahid
2017-01-01
In quantum field theory, Weyl fermions are relativistic particles that travel at the speed of light and strictly obey the celebrated Lorentz symmetry. Their low-energy condensed matter analogs are Weyl semimetals, which are conductors whose electronic excitations mimic the Weyl fermion equation of motion. Although the traditional (type I) emergent Weyl fermions observed in TaAs still approximately respect Lorentz symmetry, recently, the so-called type II Weyl semimetal has been proposed, where the emergent Weyl quasiparticles break the Lorentz symmetry so strongly that they cannot be smoothly connected to Lorentz symmetric Weyl particles. Despite some evidence of nontrivial surface states, the direct observation of the type II bulk Weyl fermions remains elusive. We present the direct observation of the type II Weyl fermions in crystalline solid lanthanum aluminum germanide (LaAlGe) based on our photoemission data alone, without reliance on band structure calculations. Moreover, our systematic data agree with the theoretical calculations, providing further support on our experimental results. PMID:28630919
Dimensional reduction of a Lorentz and CPT-violating Maxwell-Chern-Simons model
Energy Technology Data Exchange (ETDEWEB)
Belich, H. Jr.; Helayel Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); E-mails: belich@cbpf.br; helayel@cbpf.br; Ferreira, M.M. Jr. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); Maranhao Univ., Sao Luiz, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br; Orlando, M.T.D. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); Espirito Santo Univ., Vitoria, ES (Brazil). Dept. de Fisica e Quimica; E-mail: orlando@cce.ufes.br
2003-01-01
Taking as starting point a Lorentz and CPT non-invariant Chern-Simons-like model defined in 1+3 dimensions, we proceed realizing its dimensional to D = 1+2. One then obtains a new planar model, composed by the Maxwell-Chern-Simons (MCS) sector, a Klein-Gordon massless scalar field, and a coupling term that mixes the gauge field to the external vector, {nu}{sup {mu}}. In spite of breaking Lorentz invariance in the particle frame, this model may preserve the CPT symmetry for a single particular choice of {nu}{sup {mu}} . Analyzing the dispersion relations, one verifies that the reduced model exhibits stability, but the causality can be jeopardized by some modes. The unitary of the gauge sector is assured without any restriction , while the scalar sector is unitary only in the space-like case. (author)
Dual embedding of the Lorentz-violating electrodinamics and Batalin-Vilkovisky quantization
Cantcheff, M. Botta; Godinho, C. F. L.; Scarpelli, A. P. Baêta; Helayël-Neto, J. A.
2003-01-01
Modifications of the electromagnetic Maxwell Lagrangian in four dimensions have been considered by some authors. One may include an explicit massive term (Proca) and a topological but not Lorentz-invariant term within certain observational limits. We find the dual-corresponding gauge invariant version of this theory by using the recently suggested gauge embedding method. We enforce this dualisation procedure by showing that, in many cases, this is actually a constructive method to find a sort...
The K\\"all\\'en-Lehmann representation for Lorentz-violating field theory
Potting, Robertus
2011-01-01
We consider field-theoretic models, one consisting purely of scalars, the other also involving fermions, that couple to a set of constant background coupling coefficients transforming as a symmetric observer Lorentz two-tensor. We show that the exact propagators can be cast in the form of a K\\"all\\'en-Lehmann representation. We work out the resulting form of the Feynman propagators and the equal-time field commutators, and derive sum rules for the spectral density functions.
De Angelis, Alessandro; Antonelli, Mario; Dreucci, Marco
2010-01-01
From the study of a sample of about 62.3 million well reconstructed K0S decays recorded by the KLOE detector at the DAFNE accelerator in Frascati, the lifetimes of K0S mesons parallel and antiparallel to the direction of motion of the Earth with respect to the Cosmic Microwave Background reference frame have been studied. No difference has been found, and a limit on a possible asymmetry of the lifetime with respect to the CMB has been set at 95% C.L.: A < 0.98 x 10-3. This is presently the best experimental limit on such quantity, and it is smaller of the speed, expressed in natural units, of the Solar System with respect to the CMB. The present limit might constrain possible Lorentz-violating anisotropical theories.
Allmendinger, Fabian; Heil, Werner; Karpuk, Sergej; Sobolev, Yuri
2016-01-01
We performed a search for a Lorentz-invariance- and CPT-violating coupling of the $^3$He and $^{129}$Xe nuclear spins to posited background fields. Our experimental approach is to measure the free precession of nuclear spin polarized $^3$He and $^{129}$Xe atoms using SQUID detectors. As the laboratory reference frame rotates with respect to distant stars, we look for a sidereal modulation of the Larmor frequencies of the co-located spin samples. As a result we obtain an upper limit on the equatorial component of the background field $\\tilde{b}^n_{\\bot}< 8.4 \\cdot 10^{-34}$ GeV (68\\% C.L.). Furthermore, this technique was modified to search for an electric dipole moment (EDM) of $^{129}$Xe.
A stringent constraint on neutrino Lorentz invariance violation from the two IceCube PeV neutrinos
Borriello, Enrico; Mirizzi, Alessandro; Serpico, Pasquale Dario
2013-01-01
It has been speculated that Lorentz invariance violation (LIV) might be generated by quantum-gravity (QG) effects. As a consequence, particles may not travel at the universal speed of light. In particular, superluminal extragalactic neutrinos would rapidly lose energy via the bremssthralung of electron-positron pairs, damping their initial energy into electromagnetic cascades, a figure constrained by Fermi-LAT data. We show that the two cascade neutrino events with energies around 1 PeV recently detected by IceCube -if attributed to extragalactic diffuse events, as it appears likely- can place the strongest bound on LIV in the neutrino sector, namely delta = (v^2-1) ~ 10^5 M_Pl (M_QG >~ 10^{-4} M_Pl) for a linear (quadratic) LIV, at least for models inducing superluminal neutrino effects (delta > 0).
Arkani-Hamed, N; Luty, M; Thaler, J; Arkani-Hamed, Nima; Cheng, Hsin-Chia; Luty, Markus; Thaler, Jesse
2005-01-01
We study the universal low-energy dynamics associated with the spontaneous breaking of Lorentz invariance down to spatial rotations. The effective Lagrangian for the associated Goldstone field can be uniquely determined by the non-linear realization of a broken time diffeomorphism symmetry, up to some overall mass scales. It has previously been shown that this symmetry breaking pattern gives rise to a Higgs phase of gravity, in which gravity is modified in the infrared. In this paper, we study the effects of direct couplings between the Goldstone boson and standard model fermions, which necessarily accompany Lorentz-violating terms in the theory. The leading interaction is the coupling to the axial vector current, which reduces to spin in the non-relativistic limit. A spin moving relative to the "ether" rest frame will emit Goldstone Cerenkov radiation. The Goldstone also induces a long-range inverse-square law force between spin sources with a striking angular dependence, reflecting the underlying Goldstone ...
Dual embedding of the Lorentz-violating electrodinamics and Batalin-Vilkovisky quantization
Cantcheff, M B; Scarpelli, A P B; Helayël-Neto, J A
2003-01-01
Modifications of the electromagnetic Maxwell Lagrangian in four dimensions have been considered by some authors. One may include an explicit massive term (Proca) and a topological but not Lorentz-invariant term within certain observational limits. We find the dual-corresponding gauge invariant version of this theory by using the recently suggested gauge embedding method. We enforce this dualisation procedure by showing that, in many cases, this is actually a constructive method to find a sort of parent action, which manifestly establishes duality. We also use the gauge invariant version of this theory to formulate a Batalin-Vilkovisky quantization and present a detailed discussion on the excitation spectrum.
Vacuum Cherenkov radiation and photon decay rates from generic Lorentz Invariance Violation
Martínez-Huerta, H
2016-01-01
Among the most studied approaches to introduce the breaking of Lorentz symmetry, the generic approach is one of the most frequently used for phenomenology, it converges on the modification of the free particle dispersion relation. Using this approach in the photon sector, we have calculated the squared probability amplitude for vacuum Cherenkov radiation and photon decay by correcting the QED coupling at tree level and first order in LIV parameters. For the lower order energy correction we calculate the emission and decay rate for each process.
Iorio, Lorenzo
2012-01-01
We analytically work out the long-term rates of change of the six osculating Keplerian orbital elements of a test particle acted upon by the Lorentz-violating gravitomagnetic acceleration due to a static body, as predicted by the Standard Model Extension (SME). We neither restrict to any specific spatial orientation for the symmetry-violating vector s nor make a priori simplifying assumptions concerning the orbital configuration of the perturbed test particle. Thus, our results are quite general, and can be applied for sensitivity analyses to a variety of specific astronomical and astrophysical scenarios. We find that, apart from the semimajor axis a, all the other orbital elements undergo non-vanishing secular variations. By comparing our results to the latest determinations of the supplementary advances of the perihelia of some planets of the solar system we preliminarily obtain s_x = (0.9 +/- 1.5) 10^-8, s_y = (-4 +/- 6) 10^-9, s_z = (0.3 +/- 1) 10^-9. Bounds from the terrestrial LAGEOS and LAGEOS II satel...
Energy Technology Data Exchange (ETDEWEB)
Gazzola, G.; Fargnoli, H.G.; Sampaio, Marcos; Nemes, M.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Scarpelli, A.P. Baeta [Departamento de Policia Federal (DPF), Sao Paulo, SP (Brazil). Setor Tecnico-Cientifico
2011-07-01
In this research we consider a modified version of quantum electrodynamics in four dimensions with the coupling between the photon and the fermion composed by two terms: a nonminimal and the minimal one. There are two interesting aspects in this model. First, gauge invariance is restored by the presence of the minimal coupling. Second, the quantum corrections will allow for the possibility of the generation of a Chern-Simons-like term. The fact that the model is gauge invariant allows for a more complete analysis on the value of both the coefficients of the hypothetical CPT odd and CPT even radiatively generated terms. A question that arises involves a possible violation of some Ward-Takahashi identity when radiative corrections are taken into account. In other words, is there an anomaly in the model? We show that, since conventional QED is gauge invariant, there is no room for a non transversal vacuum polarization tensor in the present model. This is study is to be presented in the following order: first we are to present the model; second we do an analysis on the generation of Lorentz violating terms in the pure gauge sector; third we carry out a calculation on gauge invariance grounds to fix the coefficients of the quantum corrections; and lastly the concluding comments. (author)
Statistical measures of Planck scale signal correlations in interferometers
Energy Technology Data Exchange (ETDEWEB)
Hogan, Craig J. [Univ. of Chicago, Chicago, IL (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Kwon, Ohkyung [Univ. of Chicago, Chicago, IL (United States)
2015-06-22
A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parametrized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. As a result, simple projections of sensitivity for specific experimental set-ups suggests that measurements will directly yield constraints on a universal time derivative of the correlation function, and thereby confirm or rule out a class of Planck scale departures from classical geometry.
Planck-scale-modified dispersion relations in FRW spacetime
Rosati, Giacomo; Marciano, Antonino; Matassa, Marco
2015-01-01
In recent years Planck-scale modifications of the dispersion relation have been attracting increasing interest also from the viewpoint of possible applications in astrophysics and cosmology, where spacetime curvature cannot be neglected. Nonetheless the interplay between Planck-scale effects and spacetime curvature is still poorly understood, particularly in cases where curvature is not constant. These challenges have been so far postponed by relying on an ansatz, first introduced by Jacob and Piran. We here propose a general strategy of analysis of the effects of modifications of dispersion relation in FRW spacetimes, applicable both to cases where the relativistic equivalence of frames is spoiled ("preferred-frame scenarios") and to the alternative possibility of "DSR-relativistic theories", theories that are fully relativistic but with relativistic laws deformed so that the modified dispersion relation is observer independent. We show that the Jacob-Piran ansatz implicitly assumes that spacetime translatio...
Aspects of quantum corrections in a Lorentz-violating extension of the abelian Higgs Model
Energy Technology Data Exchange (ETDEWEB)
Brito, L.C.T.; Fargnoli, H.G. [Universidade Federal de Lavras, MG (Brazil); Scarpelli, A.P. Baeta [Departamento de Policia Federal, Rio de Janeiro, RJ (Brazil)
2013-07-01
Full text: We have investigated new aspects related to the four-dimensional abelian gauge-Higgs model with the addition of the Carroll-Field-Jackiw term (CFJ). We have focused on one-loop quantum corrections to the photon and Higgs sectors and we have analyzed what kind of effects are induced at the quantum level by spontaneous gauge symmetry breaking due the presence of the CFJ term. We have shown that new finite and non-ambiguous Lorentz-breaking terms are induced in both sectors at second order in the background vector. Specifically in the pure gauge sector, a CPT-even aether term (free from ambiguities) is induced. A CPT-even term is also induced in the pure Higgs sector. Both terms have been mapped in the Standard Model Extension. Besides, aspects of the one-loop renormalization of the background vector dependent terms have been studied. The new divergences due the presence of the CFJ term were shown to be worked out by the renormalization condition which requires the vanishing of the vacuum expectation value of the Higgs field. So at one loop the CFJ term does not spoil the well known renormalizability of the model without Lorentz symmetry breaking terms. The calculations have been done within dimensional methods and in an arbitrary gauge choice. (author)
Dimensional Reduction of a Lorentz- and CPT-violating Chern-Simons Model
Belich, H; Orlando, M T D
2003-01-01
Taking as starting point a Lorentz and CPT non-invariant Chern-Simons-like model defined in 1+3 dimensions, we proceed realizing its dimensional reduction to D=1+2. One then obtains a new planar model, composed by the Maxwell-Chern-Simons (MCS)sector, a Klein-Gordon massless scalar field, and a coupling term that mixes the gauge field to the external vector, $v^{\\mu}$. In spite of breaking Lorentz invariance in the particle frame, this model may preserve the CPT symmetry for a single particular choice of $v^{\\mu}$. The solution of the wave equations shows a behavior similar but which deviates from the usual MCS electrodynamics by some correction-terms (dependent on the background field). These solutions also indicate the existence of spatial-anisotropy in the case $v^{\\mu}$ is purely space-like, which is consistent with the determination of a privileged direction is space, v. The reduced model exhibits stability, but the causality can be jeopardized by some modes. PACS numbers: 11.10.Kk; 11.30.Cp; 11.30.Er; 1...
Scalar-Qed β-FUNCTIONS Near Planck's Scale
Pires, Gentil O.
The Renormalization Group Flow Equations of the Scalar-QED model near Planck's scale are computed within the framework of the average effective action. Exact Flow Equations, corrected by Einstein Gravity, for the running self-interacting scalar coupling parameter and for the running v.e.v. of ϕ*ϕ, are computed taking into account threshold effects. Analytic solutions are given in the infrared and ultraviolet limits.
Gravitational effects on vanishing Higgs potential at the Planck scale
Haba, Naoyuki; Takahashi, Ryo; Yamaguchi, Yuya
2014-01-01
We investigate gravitational effects on so-called multiple point criticality principle (MPCP) at the Planck scale. The MPCP requires two degenerate vacua, whose necessary conditions are expressed by vanishing Higgs quartic coupling ($\\lambda(M_{\\rm Pl})=0$) and vanishing its $\\beta$-function ($\\beta_\\lambda(M_{\\rm Pl})=0$). In order to satisfy the conditions, we find that the top pole mass and the Higgs mass should be $170.8\\,{\\rm GeV} \\lesssim M_t\\lesssim 171.7\\, {\\rm GeV}$ and $M_h=125.7\\pm0.4\\, {\\rm GeV}$, respectively, as well as suitable magnitude of gravitational effects (a coefficient of gravitational contribution as $|a_\\lambda| > 2$). In this case, however, since the Higgs quartic coupling $\\lambda$ becomes negative below the Planck scale, two vacua are not degenerate. We find that $M_h \\gtrsim 131.5\\, {\\rm GeV}$ with $M_t \\gtrsim 174\\, {\\rm GeV}$ is required by the realization of the MPCP. Therefore, the MPCP at the Planck scale cannot be realized in the SM and also the SM with gravity since $M_h \\g...
MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colak, S. M.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Inada, T.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.
2017-09-01
Spontaneous breaking of Lorentz symmetry at energies on the order of the Planck energy or lower is predicted by many quantum gravity theories, implying non-trivial dispersion relations for the photon in vacuum. Consequently, gamma-rays of different energies, emitted simultaneously from astrophysical sources, could accumulate measurable differences in their time of flight until they reach the Earth. Such tests have been carried out in the past using fast variations of gamma-ray flux from pulsars, and more recently from active galactic nuclei and gamma-ray bursts. We present new constraints studying the gamma-ray emission of the galactic Crab Pulsar, recently observed up to TeV energies by the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) collaboration. A profile likelihood analysis of pulsar events reconstructed for energies above 400 GeV finds no significant variation in arrival time as their energy increases. Ninety-five percent CL limits are obtained on the effective Lorentz invariance violating energy scale at the level of {E}{{QG}1}> 5.5× {10}17 {GeV} (4.5× {10}17 {GeV}) for a linear, and {E}{{QG}2}> 5.9× {10}10 {GeV} (5.3× {10}10 {GeV}) for a quadratic scenario, for the subluminal and the superluminal cases, respectively. A substantial part of this study is dedicated to calibration of the test statistic, with respect to bias and coverage properties. Moreover, the limits take into account systematic uncertainties, which are found to worsen the statistical limits by about 36%–42%. Our constraints would have been much more stringent if the intrinsic pulse shape of the pulsar between 200 GeV and 400 GeV was understood in sufficient detail and allowed inclusion of events well below 400 GeV.
Bakke, K
2014-01-01
We study a possible scenario of the Lorentz symmetry violation background that allows us to build an analogue of the Landau system for a nonrelativistic Dirac neutral particle interacting with a field configuration of crossed electric and magnetic fields. We also discuss the arising of analogues of the Rashba coupling, the Zeeman term and the Darwin term from the Lorentz symmetry breaking effects, and the influence of these terms on the analogue of the Landau system confined to a two-dimensional quantum ring. Finally, we show that this analogy with the Landau system confined to a two-dimensional quantum ring allows us to establish an upper bound for the Lorentz symmetry breaking parameters.
de Andrade, L Garcia
2011-01-01
Cosmological magnetic helicity has been thought to be a fundamental agent for magnetic field amplification in the universe. More recently Semikoz and Sokoloff [Phys Rev Lett 92 (2004): 131.301.] showed that the weakness of the seed fields did not necessarily imply the weakness of magnetic cosmological helicity. In this paper we present a derivation of dynamo equation based upon the flat torsion photon non-minimal coupling through Riemann-Cartan spacetime. From this derivation one computes the necessary conditions for a flat torsion field to generate a galactic dynamo seed, from the cosmological magnetic helicity. A peculiar feature of this dynamo equation is that the resistivity depends upon the Ricci scalar curvature. This feature is also present in turbulent dynamo models. Here the electrical effective conductivity is obtained by making use of flat torsion modes of a $R(\\Gamma)F^{2}$ Lagrangean where R refers to the Ricci-Cartan spacetime. Power spectrum of the magnetic field is also computed. Lorentz viola...
Variable Cosmological Constant as a Planck Scale Effect
Shapiro, I L; Espana-Bonet, C; Ruiz-Lapuente, P; Shapiro, Ilya L.; Sola, Joan; Espana-Bonet, Cristina; Ruiz-Lapuente, Pilar
2003-01-01
We construct a semiclassical FLRW cosmological model assuming a running cosmological constant (CC). It turns out that the CC becomes variable at arbitrarily low energies due to the remnant quantum effects of the heaviest particles, e.g. the Planck scale physics. These effects are universal in the sense that they lead to a low-energy structure common to a large class of high-energy theories. Remarkably, the uncertainty concerning the unknown high-energy dynamics is accumulated into a single parameter \
Energy Technology Data Exchange (ETDEWEB)
Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970, João Pessoa, PB (Brazil); Belich, H., E-mail: belichjr@gmail.com [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)
2015-03-15
We study a possible scenario of the Lorentz symmetry violation background that allows us to build an analogue of the Landau system for a nonrelativistic Dirac neutral particle interacting with a field configuration of crossed electric and magnetic fields. We also discuss the arising of analogues of the Rashba coupling, the Zeeman term and the Darwin term from the Lorentz symmetry breaking effects, and the influence of these terms on the analogue of the Landau system confined to a two-dimensional quantum ring. Finally, we show that this analogy with the Landau system confined to a two-dimensional quantum ring allows us to establish an upper bound for the Lorentz symmetry breaking parameters. - Highlights: • Landau system from crossed electric and magnetic fields and fixed time-like vector. • Analogues of the Rashba coupling, the Zeeman term and the Darwin term. • Lorentz symmetry breaking effects on a two-dimensional quantum ring. • Upper bound for the Lorentz symmetry breaking parameters.
Energy Technology Data Exchange (ETDEWEB)
Katori, Teppei [Indiana Univ., Bloomington, IN (United States)
2008-12-01
The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for v_{μ} → v_{e} appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions (v_{μ} + n → μ + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is σ = (1.058 ± 0.003 (stat) ± 0.111 (syst)) x 10^{-38} cm^{2} at the MiniBooNE muon neutrino beam energy (700-800 MeV). v_{e} appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.
Testing local Lorentz invariance with gravitational waves
Kostelecky, Alan
2016-01-01
The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz-violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational-wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation.
Testing local Lorentz invariance with gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Kostelecký, V. Alan, E-mail: kostelec@indiana.edu [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Mewes, Matthew [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States)
2016-06-10
The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz-violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational-wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation.
Planck-scale dimensional reduction without a preferred frame
Amelino-Camelia, Giovanni; Gubitosi, Giulia; Magueijo, Joao
2013-01-01
Several approaches to quantum gravity suggest that the standard description of spacetime as probed at low-energy, with four dimensions, is replaced in the Planckian regime by a spacetime with a spectral dimension of two. The implications for relativistic symmetries can be momentous, and indeed the most tangible picture for "running" of the spectral dimension, found within Horava-Lifschitz gravity, requires the breakdown of relativity of inertial frames. In this Letter we incorporate running spectral dimensions in a scenario that does not require the emergence of a preferred frame. We consider the best studied mechanism for deforming relativistic symmetries whilst preserving the relativity of inertial frames, based on a momentum space with curvature at the Planck scale. We show explicitly how running of the spectral dimension can be derived from these models.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
Stecker, Floyd W.
2012-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approx.10(exp -35) m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approx. 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future. I will also discuss how the LIV formalism casts doubt on the OPERA superluminal neutrino claim.
Gemmel, C; Karpuk, S; Lenz, K; Sobolev, Yu; Tullney, K; Burghoff, M; Kilian, W; Knappe-Grüneberg, S; Müller, W; Schnabel, A; Seifert, F; Trahms, L; Schmidt, U
2010-01-01
We report on the search for Lorentz violating sidereal variations of the frequency difference of co-located spin-species while the Earth and hence the laboratory reference frame rotates with respect to a relic background field. The co-magnetometer used is based on the detection of freely precessing nuclear spins from polarized 3He and 129Xe gas samples using SQUIDs as low-noise magnetic flux detectors. As result we can determine the limit for the equatorial component of the background field interacting with the spin of the bound neutron to be bn < 3.7 x 10^{-32} GeV (95 C.L.).
Del Cima, Oswaldo M; Piguet, Olivier
2016-01-01
In this paper, we revisit the issue intensively studied in recent years on the generation of terms by radiative corrections in models with broken Lorentz symmetry. The algebraic perturbative method of handling the problem of renormalization of the theories with Lorentz symmetry breaking, is used. We hope to make clear the Symanzik's aphorism: "{\\it Whether you like it or not, you have to include in the lagrangian all counter terms consistent with locality and power-counting, unless otherwise constrained by Ward identities.}"
Discrete mathematics and physics on the Planck-scale
Requardt, M
1995-01-01
Starting from the hypothesis that both physics, in particular space-time and the physical vacuum, and the corresponding mathematics are discrete on the Planck scale we develop a certain framework in form of a '{\\it cellular network}' consisting of cells interacting with each other via bonds. Both the internal states of the cells and the "strength" of the bonds are assumed to be dynamical variables. In section 3 the basis is laid for a version of '{\\it discrete analysis}' which, starting from different, perhaps more physically oriented principles, manages to make contact with the much more abstract machinery of Connes et al. and may complement the latter approach. In section 4 a, as far as we can see, new concept of '{\\it topological dimension}' in form of a '{\\it degree of connectivity}' for graphs, networks and the like is developed. It is then indicated how this '{\\it dimension}', which for continuous structures or lattices being embedded in a continuous background agrees with the usual notion of dimension,...
Planck-scale induced left–right gauge theory at LHC and experimental tests
Directory of Open Access Journals (Sweden)
M.K. Parida
2016-05-01
Full Text Available Recent measurements at LHC have inspired searches for TeV scale left–right gauge theory originating from grand unified theories. We show that inclusion of Planck-scale induced effects due to dim.5 operator not only does away with all the additional intermediate symmetries, but also it predicts the minimal set of light Higgs scalars tailored after neutrino masses and dilepton, or trilepton signals. The heavy-light neutrino mixings are predicted from charged fermion mass fits in SO(10 and LFV constraints which lead to new predictions for dilepton or trilepton production signals. Including fine-structure constant matching and two-loop, and threshold effects predict MWR=g2R104.3±1.5±0.2 GeV and proton lifetime τp=1036.15±5.8±0.2 yrs with WR gauge boson coupling g2R=0.56–0.57. Predictions on lepton flavour and lepton number violations are accessible to ongoing experiments. Current CMS data on di-electron excess at s=8 TeV are found to be consistent with WR gauge boson mass MWR≥1.9–2.2 TeV which also agrees with the values obtained from dijet resonance production data. We also discuss plausible explanations for diboson production excesses observed at LHC and make predictions expected at s=14 TeV.
Energy Technology Data Exchange (ETDEWEB)
Del Cima, Oswaldo M.; Franco, Daniel H.T.; Piguet, Olivier, E-mail: opiguet@pq.cnpq.br
2016-11-15
In this paper, we revisit the issue intensively studied in recent years on the generation of terms by radiative corrections in models with broken Lorentz symmetry. The algebraic perturbative method of handling the problem of renormalization of the theories with Lorentz symmetry breaking, is used. We hope to make clear the Symanzik's aphorism: “Whether you like it or not, you have to include in the lagrangian all counter terms consistent with locality and power-counting, unless otherwise constrained by Ward identities.”{sup 1}.
Directory of Open Access Journals (Sweden)
Oswaldo M. Del Cima
2016-11-01
Full Text Available In this paper, we revisit the issue intensively studied in recent years on the generation of terms by radiative corrections in models with broken Lorentz symmetry. The algebraic perturbative method of handling the problem of renormalization of the theories with Lorentz symmetry breaking, is used. We hope to make clear the Symanzik's aphorism: “Whether you like it or not, you have to include in the lagrangian all counter terms consistent with locality and power-counting, unless otherwise constrained by Ward identities.”1
Murase, Kohta
2009-08-21
Detecting neutrinos and photons is crucial to identifying the sources of ultrahigh-energy cosmic rays (UHECRs), especially for transient sources. We focus on ultrahigh-energy gamma-ray emission from transient sources such as gamma-ray bursts, since >EeV gamma rays can be more direct evidence of UHECRs than approximately PeV neutrinos and GeV-TeV gamma rays. We demonstrate that coincident detections of approximately 1-100 events can be expected by current and future UHECR detectors such as Auger and JEM-EUSO, and the detection probability can be higher than that of neutrinos for nearby transient sources at Lorentz-invariance violation than current constraints.
Energy Technology Data Exchange (ETDEWEB)
Casana, Rodolfo; Ferreira, Manoel M.; Pinheiro, Paulo R.D. [Universidade Federal do Maranhao (UFMA), Departamento de Fisica, Sao Luis, MA (Brazil); Gomes, A.R. [Centro Federal de Educacao Tecnologica do Maranhao, Departamento de Ciencias Exatas, Sao Luis, Maranhao (Brazil)
2009-08-15
In this work, we focus on some properties of the parity-even sector of the CPT-even electrodynamics of the standard model extension. We analyze how the six non-birefringent terms belonging to this sector modify the static and stationary classical solutions of the usual Maxwell theory. We observe that the parity-even terms do not couple the electric and magnetic sectors (at least in the stationary regime). The Green's method is used to obtain solutions for the field strengths E and B at first order in the Lorentz-covariance-violating parameters. Explicit solutions are attained for point-like and spatially extended sources, for which a dipolar expansion is achieved. Finally, an Earth-based experiment is presented that can lead (in principle) to an upper bound on the anisotropic coefficients as stringent as ({kappa}{sub e-}){sup ij}<2.9 x 10{sup -20}. (orig.)
Casana, Rodolfo; Ferreira, Manoel M.; Gomes, A. R.; Pinheiro, Paulo R. D.
2009-08-01
In this work, we focus on some properties of the parity-even sector of the CPT-even electrodynamics of the standard model extension. We analyze how the six non-birefringent terms belonging to this sector modify the static and stationary classical solutions of the usual Maxwell theory. We observe that the parity-even terms do not couple the electric and magnetic sectors (at least in the stationary regime). The Green’s method is used to obtain solutions for the field strengths E and B at first order in the Lorentz-covariance-violating parameters. Explicit solutions are attained for point-like and spatially extended sources, for which a dipolar expansion is achieved. Finally, an Earth-based experiment is presented that can lead (in principle) to an upper bound on the anisotropic coefficients as stringent as left(widetilde{kappa}_{e-}right)^{ij}<2.9×10^{-20}.
Particle-Dependent Deformations of Lorentz Symmetry
Directory of Open Access Journals (Sweden)
Giovanni Amelino-Camelia
2012-07-01
Full Text Available I report results suggesting that it is possible to introduce laws of relativistic kinematics endowing different types of particles with suitably different deformed-Lorentz-symmetry properties. I also consider some possible applications of these results, among which I highlight those relevant for addressing a long-standing challenge in the description of composite particles, such as atoms, within quantum-gravity-inspired scenarios with Planck-scale deformations of Lorentz symmetry. Some of the new elements here introduced in the formulation of relativistic kinematics appear to also provide the starting point for the development of a correspondingly novel mathematical formulation of spacetime-symmetry algebras.
Cosmological constant in SUGRA models with Planck scale SUSY breaking and degenerate vacua
Froggatt, C D; Nielsen, H B; Thomas, A W
2014-01-01
We argue that the measured value of the cosmological constant, as well as the small values of quartic Higgs self--coupling and the corresponding beta function at the Planck scale, which can be obtained by extrapolating the Standard Model (SM) couplings to high energies, can originate from supergravity (SUGRA) models with degenerate vacua. This scenario is realised if there are at least three exactly degenerate vacua. In the first vacuum, associated with the physical one, local supersymmetry (SUSY) is broken near the Planck scale while the breakdown of the SU(2)_W\\times U(1)_Y symmetry takes place at the electroweak (EW) scale. In the second vacuum local SUSY breaking is induced by gaugino condensation at a scale which is just slightly lower than \\Lambda_{QCD} in the physical vacuum. Finally, in the third vacuum local SUSY and EW symmetry are broken near the Planck scale.
Planck scale boundary conditions in the standard model with singlet scalar dark matter
Haba, Naoyuki; Takahashi, Ryo
2013-01-01
We investigate Planck scale boundary conditions on the Higgs sector of the standard model with a gauge singlet scalar dark matter. We will find that vanishing self-coupling and Veltman condition at the Planck scale are realized with the 126 GeV Higgs mass and top pole mass, 171.8 GeV $\\lesssim M_t\\lesssim$ 173.5 GeV, where a correct abundance of scalar dark matter is obtained with mass of 300 GeV $\\lesssim m_S \\lesssim$ 1 TeV. It means that the Higgs potential is flat at the Planck scale, and this situation can not be realized in the standard model with the top pole mass.
Planck scale boundary conditions in the standard model with singlet scalar dark matter
Energy Technology Data Exchange (ETDEWEB)
Haba, Naoyuki [Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504 (Japan); Kaneta, Kunio [Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Takahashi, Ryo [Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504 (Japan)
2014-04-04
We investigate Planck scale boundary conditions on the Higgs sector of the standard model with a gauge singlet scalar dark matter. We will find that vanishing self-coupling and Veltman condition at the Planck scale are realized with the 126 GeV Higgs mass and top pole mass, 172 GeV≲M{sub t}≲173.5 GeV, where a correct abundance of scalar dark matter is obtained with mass of 300 GeV≲m{sub S}≲1 TeV. It means that the Higgs potential is flat at the Planck scale, and this situation can not be realized in the standard model with the top pole mass.
Luo, Cui-Bai; Shi, Song; Xia, Yong-Hui; Zong, Hong-Shi
2017-06-01
The Eigenstate Method has been developed to deduce the fermion propagator with a constant external magnetic field. In general, we find its result is equivalent to other methods and this new method is more convenient, especially when one evaluates the contribution from the infinitesimal imaginary term of the fermion propagator. Using the Eigenstate Method we try to discuss whether the infinitesimal imaginary frequency of the fermion propagator in a strong magnetic field and Lorentz-violating extension of the minimal SU(3)×SU(2)×SU(1) Standard Model could have a significant influence on the dynamical mass. When the imaginary term of the fermion propagator in this model is not trivial , this model gives a correction to the dynamical mass. When one does not consider the influence from the imaginary term , there is another correction from the conventional term. Under both circumstances, chiral symmetry is broken. Supported in part by National Natural Science Foundation of China (11275097, 11475085, 11535005, 11690030), China Postdoctoral Science Foundation (2014M561621), and Jiangsu Planned Projects for Postdoctoral Research Funds (1401116C)
Energy Technology Data Exchange (ETDEWEB)
Casana, Rodolfo, E-mail: rodolfo.casana@gmail.com; Ferreira, Manoel M., E-mail: manojr.ufma@gmail.com; Mota, Alexsandro Lucena, E-mail: lucenalexster@gmail.com
2016-12-15
We have studied the existence of topological self-dual configurations in a nonminimal CPT-odd and Lorentz-violating (LV) Maxwell–Higgs model, where the LV interaction is introduced by modifying the minimal covariant derivative. The Bogomol’nyi–Prasad–Sommerfield formalism has been implemented, revealing that the scalar self-interaction implying self-dual equations contains a derivative coupling. The CPT-odd self-dual equations describe electrically neutral configurations with finite total energy proportional to the total magnetic flux, which differ from the charged solutions of other CPT-odd and LV models previously studied. In particular, we have investigated the axially symmetrical self-dual vortex solutions altered by the LV parameter. For large distances, the profiles possess general behavior similar to the vortices of Abrikosov–Nielsen–Olesen. However, within the vortex core, the profiles of the magnetic field and energy can differ substantially from ones of the Maxwell–Higgs model depending if the LV parameter is negative or positive.
Casana, Rodolfo; Ferreira, Manoel M.; Mota, Alexsandro Lucena
2016-12-01
We have studied the existence of topological self-dual configurations in a nonminimal CPT-odd and Lorentz-violating (LV) Maxwell-Higgs model, where the LV interaction is introduced by modifying the minimal covariant derivative. The Bogomol'nyi-Prasad-Sommerfield formalism has been implemented, revealing that the scalar self-interaction implying self-dual equations contains a derivative coupling. The CPT-odd self-dual equations describe electrically neutral configurations with finite total energy proportional to the total magnetic flux, which differ from the charged solutions of other CPT-odd and LV models previously studied. In particular, we have investigated the axially symmetrical self-dual vortex solutions altered by the LV parameter. For large distances, the profiles possess general behavior similar to the vortices of Abrikosov-Nielsen-Olesen. However, within the vortex core, the profiles of the magnetic field and energy can differ substantially from ones of the Maxwell-Higgs model depending if the LV parameter is negative or positive.
Allmendinger, F; Karpuk, S; Kilian, W; Scharth, A; Schmidt, U; Schnabel, A; Sobolev, Yu; Tullney, K
2013-01-01
We report on the search for a CPT and Lorentz invariance violating coupling of the 3He and 129Xe nuclear spins (each largely determined by a valence neutron) to background tensor fields which permeate the universe. Our experimental approach is to measure the free precession of nuclear spin polarized 3He and 129Xe atoms in a homogeneous magnetic guiding field of about 400 nT using LTC SQUIDs as low-noise magnetic flux detectors. As the laboratory reference frame rotates with respect to distant stars, we look for a sidereal modulation of the Larmor frequencies of the co-located spin samples. As a result we obtain an upper limit on the equatorial component of the background field interacting with the spin of the bound neutron bn< 6.7*10^-34 GeV (68% C.L.). Our result improves our previous limit (data measured in 2009) by a factor of 30 and the world's best limit by a factor of 5.
Clifton, Gary Alexander
The Tokai to Kamioka (T2K) neutrino experiment is designed to search for electron neutrino appearance oscillations and muon neutrino disappearance oscillations. While the main physics goals of T2K fall into conventional physics, T2K may be used to search for more exotic physics. One exotic physics analysis that can be performed is a search for Lorentz and CPT symmetry violation (LV and CPTV) through short baseline neutrino oscillations. The theoretical framework which describes these phenomena is the Standard Model Extension (SME). Due to its off-axis nature, T2K has two near detectors. A search for LV and CPTV is performed in each detector. The search utilizes charged-current inclusive (CC inclusive) neutrino events to search for sidereal variations in the neutrino event rate at each detector. Two methods are developed; the first being a Fast Fourier Transform method to perform a hypothesis test of the data with a set of 10,000 toy Monte-Carlo simulations that do not have any LV signal in them. The second is a binned likelihood fit. Using three data sets, both analysis methods are consistent with no sidereal variations. One set of data is used to calculate upper limits on combinations of the SME coefficients while the other two are used to constrain the SME coefficients directly. Despite not seeing any indication of LV in the T2K near detectors, the upper limits provided are useful for the theoretical field to continue improving theories which include LV and CPTV.
Planck-scale-modified dispersion relations in homogeneous and isotropic spacetimes
Barcaroli, Leonardo; Brunkhorst, Lukas K.; Gubitosi, Giulia; Loret, Niccoló; Pfeifer, Christian
2017-01-01
The covariant understanding of dispersion relations as level sets of Hamilton functions on phase space enables us to derive the most general dispersion relation compatible with homogeneous and isotropic spacetimes. We use this concept to present a Planck-scale deformation of the Hamiltonian of a particle in Friedman-Lemaître-Robertson-Walker (FLRW) geometry that is locally identical to the κ -Poincaré dispersion relation, in the same way as the dispersion relation of point particles in general relativity is locally identical to the one valid in special relativity. Studying the motion of particles subject to such a Hamiltonian, we derive the redshift and lateshift as observable consequences of the Planck-scale deformed FLRW universe.
Formation of the remnant close to Planck scale and the Schwarzschild black hole with global monopole
Li, Hui-Ling; Chen, Shuai-Ru
2017-10-01
In this paper, we use the generalized uncertainty principle (GUP) and quantum tunneling method to research the formation of the remnant from a Schwarzschild black hole with global monopole. Based on the corrected Hamilton-Jacobi equation, the corrections to the Hawking temperature, heat capacity and entropy are calculated. We not only find the remnant close to Planck scale by employing GUP, but also research the thermodynamic stability of the black hole remnant according to the phase transition and heat capacity.
Hierarchy problem, gauge coupling unification at the Planck scale, and vaccum stability
Haba, Naoyuki; Takahashi, Ryo; Yamaguchi, Yuya
2014-01-01
Regarding to the gauge hierarchy problem, an intermediate scale, such as a grand unification scale of ${\\cal O}(10^{16})\\,{\\rm GeV}$, is disfavored, and allowed mass scale is only TeV scale. For this motivation, we explore possibilities of gauge coupling unification (GCU) at the Planck scale ($M_{Pl} = 2.4 \\times 10^{18}\\,{\\rm GeV}$) by adding a few extra particles with TeV scale mass into the standard model. We find that, when all extra particles have the same mass, the GCU at the Planck scale cannot be realized only by extra fermions, but can be done by extra particles including some scalars. On the other hand, when extra fermions have different masses, the GCU can be realized around $\\sqrt{8 \\pi} M_{Pl}$ only by themselves. By this extension, a vacuum becomes stable up to the Planck scale as well as a proton lifetime is much longer than an experimental lower bound.
Effects of Planck Scale Physics on Neutrino Mixing Parameters in Left-Right Symmetric Models
Borah, Debasish
2013-01-01
Left right symmetric models (LRSM) are extensions of the standard model by an enlarged gauge group $SU(2)_L \\times SU(2)_R \\times U(1)_{B-L}$ where automatic inclusion of right handed fermions as $SU(2)_R$ doublets guarantees a natural seesaw origin of neutrino masses. Apart from the extended gauge symmetry, LRSM also has an in-built global discrete symmetry, called D-parity which ensures equal gauge couplings for left and right sectors. Motivated by the fact that global symmetries are expected to be explicitly broken by theories of quantum gravity, here we study the effects of such gravity or Planck scale physics on neutrino masses and mixings by introducing explict D-parity breaking Planck scale suppressed higher dimensional operators. Although such Planck scale suppressd operators have dimension at least six in generic LRSM, dimension five operators can also arise in the presence of additional scalar fields which can be naturally accommodated within SO(10) grand unified theory (GUT) multiplets. We show tha...
Testing Lorentz invariance in orbital electron capture
Vos, K K; Timmermans, R G E
2015-01-01
Searches for Lorentz violation were recently extended to the weak sector, in particular neutron and nuclear $\\beta$ decay [1]. From experiments on forbidden $\\beta$-decay transitions strong limits in the range of $10^{-6}$-$10^{-8}$ were obtained on Lorentz-violating components of the $W$-boson propagator [2]. In order to improve on these limits strong sources have to be considered. In this Brief Report we study isotopes that undergo orbital electron capture and allow experiments at high decay rates and low dose. We derive the expressions for the Lorentz-violating differential decay rate and discuss the options for competitive experiments and their required precision.
Astroparticle tests of Lorentz symmetry
Energy Technology Data Exchange (ETDEWEB)
Diaz, Jorge [Karlsruhe Institute of Technology, Karlsruhe (Germany)
2016-07-01
Lorentz symmetry is a cornerstone of modern physics. As the spacetime symmetry of special relativity, Lorentz invariance is a basic component of the standard model of particle physics and general relativity, which to date constitute our most successful descriptions of nature. Deviations from exact symmetry would radically change our view of the universe and current experiments allow us to test the validity of this assumption. In this talk, I describe effects of Lorentz violation in cosmic rays and gamma rays that can be studied in current observatories.
Various Types of Five Dimensional Warp Factor and Effective Planck Scale
Ito, M
2002-01-01
Based on the assumption that the warp factor of four dimensional spacetime and the one of fifth dimension are tied through a parameter $\\alpha$, we consider five dimensional gravity with a 3-brane coupled to a bulk scalar field. For arbitrary value of $\\alpha$, the form of the warp factor is implicitly determined by hypergeometric function. Concretely, we show that the warp factor becomes explicit form for appropriate value of $\\alpha$, and study the relation between four dimensional effective Planck scale and the brane tension. This setup allows the possibility of extending the diversity of brane world.
Berenstein, David
2016-01-01
We argue in this essay that for classical configurations of gravity in the AdS/CFT setup, it is in general impossible to reconstruct the bulk geometry from the leading asymptotic behavior of the classical fields in gravity alone. This is possible sufficiently near the vacuum, but not more generally. We argue this by using a counter-example that utilizes the supersymmetric geometries constructed by Lin, Lunin, and Maldacena. In the dual quantum field theory, the additional data required to complete the geometry is encoded in modes that near the vacuum geometry lie beyond the Planck scale.
A Mass Dependent String-Quintessence Model at the Planck Scale
Koperski, A P
2005-01-01
A combined quantum model may be constructed from elements of string theory and that of a quintessence field. This field derives from two fundamental constants, Planck's constant and the velocity of light to give a minimum quintessence mass, dependant on the Planck scale. The quintessence mass can then be applied in string theory in place of the standard Planck mass to enable the derivation of the frequency of both matter and electromagnetic fields. The model potentially further leads to the formation of a combined matter,force and real ether vacuum fields
Search for Space-Time Correlations from the Planck Scale with the Fermilab Holometer
Chou, Aaron S; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Waldman, Samuel; Weiss, Rainer
2015-01-01
Measurements are reported of high frequency cross-spectra of signals from the Fermilab Holometer, a pair of co-located 39 m, high power Michelson interferometers. The instrument obtains differential position sensitivity to cross-correlated signals far exceeding any previous measurement in a broad frequency band extending to the 3.8 MHz inverse light crossing time of the apparatus. A model of universal exotic spatial shear correlations that matches the Planck scale holographic information bound of space-time position states is excluded to 4.6{\\sigma} significance.
Blackwell, William C., Jr.
2004-01-01
In this paper space is modeled as a lattice of Compton wave oscillators (CWOs) of near- Planck size. It is shown that gravitation and special relativity emerge from the interaction between particles Compton waves. To develop this CWO model an algorithmic approach was taken, incorporating simple rules of interaction at the Planck-scale developed using well known physical laws. This technique naturally leads to Newton s law of gravitation and a new form of doubly special relativity. The model is in apparent agreement with the holographic principle, and it predicts a cutoff energy for ultrahigh-energy cosmic rays that is consistent with observational data.
Berenstein, David; Miller, Alexandra
2016-09-01
In this paper, we argue that for classical configurations of gravity in the AdS/CFT setup, it is in general impossible to reconstruct the bulk geometry from the leading asymptotic behavior of the classical fields in gravity alone. This is possible sufficiently near the vacuum, but not more generally. We argue this by using a counter-example that utilizes the supersymmetric geometries constructed by Lin, Lunin, and Maldacena. In the dual quantum field theory, the additional data required to complete the geometry is encoded in modes that near the vacuum geometry lie beyond the Planck scale.
Antimatter-Gravity Couplings, and Lorentz Symmetry
Tasson, Jay D
2015-01-01
Implications of possible CPT and Lorentz violation for antimatter-gravity experiments as well as other antimatter tests are considered in the context of the general field-theory-based framework of the Standard-Model Extension (SME).
Quantum dynamics via Planck-scale-stepped action-carrying 'Graph Paths'
Energy Technology Data Exchange (ETDEWEB)
Chew, Geoffrey F.
2003-05-05
A divergence-free, parameter-free, path-based discrete-time quantum dynamics is designed to not only enlarge the achievements of general relativity and the standard particle model, by approximations at spacetime scales far above Planck scale while far below Hubble scale, but to allow tackling of hitherto inaccessible questions. ''Path space'' is larger than and precursor to Hilbert-space basis. The wave-function-propagating paths are action-carrying structured graphs-cubic and quartic structured vertices connected by structured ''fermionic'' or ''bosonic'' ''particle'' and ''nonparticle'' arcs. A Planck-scale path step determines the gravitational constant while controlling all graph structure. The basis of the theory's (zero-rest-mass) elementary-particle Hilbert space (which includes neither gravitons nor scalar bosons) resides in particle arcs. Nonparticle arcs within a path are responsible for energy and rest mass.
Planck-scale phenomenology with anti-de Sitter momentum space
Arzano, Michele; Magueijo, Joao; Amelino-Camelia, Giovanni
2014-01-01
We investigate the anti-de Sitter (AdS) counterpart to the well studied de Sitter (dS) model for energy-momentum space, viz "$\\kappa$-momentum space" space (with a structure based on the properties of the $\\kappa$-Poincar\\'e Hopf algebra). On the basis of previous preliminary results one might expect the two models to be "dual": dS exhibiting an invariant maximal spatial momentum but unbounded energy, AdS a maximal energy but unbounded momentum. If that were the case AdS momentum space could be used to implement a principle of maximal Planck-scale energy, just as several studies use dS momentum space to postulate of maximal Planck-scale spatial momentum. However several unexpected features are uncovered in this paper, which limit the scope of the expected duality, and interestingly they take different forms in different coordinatizations of AdS momentum space. "Cosmological" AdS coordinates mimic the dS construction used for $\\kappa$-momentum space, and produce a Carrol limit in the ultraviolet. However, unli...
Parton model in Lorentz invariant noncommutative space
Haghighat, M.; Ettefaghi, M. M.
2004-08-01
We consider the Lorentz invariant noncommutative QED and complete the Feynman rules for the theory up to the order θ2. In the Lorentz invariant version of the noncommutative QED the particles with fractional charges can be also considered. We show that in the parton model, even at the lowest order, the Bjorken scaling violates as ˜θ2Q4.
Testing Lorentz invariance in β decay
Sytema, Auke
2016-01-01
In this thesis we investigate violation of Lorentz invariance in the weak interaction, specifically in β decay. For this purpose an experiment is performed with nuclear-spin-polarized 20Na that decays by emitting a β particle. Lorentz invariance is the property that the laws of nature do not depend
Perepelitsa, Vassili F
2016-01-01
Some features of a Lorentz-violating (but Lorentz-covariant) Lagrangian of a scalar tachyon field are considered in this note. It is shown that the equation of motion and the Feynman propagator resulting from it are Lorentz-invariant, while the Lorentz symmetry of the suggested tachyon field model can be defined as spontaneously broken.
Supergravity with broken Lorentz invariance
Directory of Open Access Journals (Sweden)
Marakulin Arthur
2016-01-01
Full Text Available The supersymmetric extension of the Lorentz violating Einstein-aether theory of gravity is considered. The most general Lagrangian of the linearized Einstein-aether supergravity is constructed using the superfield formalism. The constraints imposed by supersymmetry on the parameters of the theory are obtained.
Testing Lorentz Invariance with neutrino burst from supernova neutronization
Chakraborty, Sovan; Sigl, Günter
2012-01-01
Quantum-gravity (QG) effects might generate Lorentz invariance violation by the interaction of energetic particles with the foamy structure of the space-time. As a consequence, particles may not travel at the universal speed of light. We propose to constrain Lorentz invariance violation for energetic neutrinos exploiting the $\
Testing Lorentz and CPT Symmetries in Penning Traps
Ding, Yunhua
2016-01-01
A modified Dirac equation with general Lorentz- and CPT-violating operators in the electromagnetic field is studied. Constraints on and possible sensitivities to Lorentz-violating coefficients in the nonminimal sector up to mass-dimension six can be obtained by analyzing Penning-trap results involving anomaly frequencies.
Hierarchy problem, gauge coupling unification at the Planck scale, and vacuum stability
Directory of Open Access Journals (Sweden)
Naoyuki Haba
2015-11-01
Full Text Available From the point of view of the gauge hierarchy problem, introducing an intermediate scale in addition to TeV scale and the Planck scale (MPl=2.4×1018 GeV is unfavorable. In that way, a gauge coupling unification (GCU is expected to be realized at MPl. We explore possibilities of GCU at MPl by adding a few extra particles with TeV scale mass into the standard model (SM. When extra particles are fermions and scalars (only fermions with the same mass, the GCU at MPl can (not be realized. On the other hand, when extra fermions have different masses, the GCU can be realized around 8πMPl without extra scalars. This simple SM extension has two advantages that a vacuum becomes stable up to MPl (8πMPl and a proton lifetime becomes much longer than an experimental bound.
Echoes from the Abyss: Evidence for Planck-scale structure at black hole horizons
Abedi, Jahed; Afshordi, Niayesh
2016-01-01
In classical General Relativity (GR), an observer falling into an astrophysical black hole is not expected to experience anything dramatic as she crosses the event horizon. However, tentative resolutions to problems in quantum gravity, such as the cosmological constant problem, or the black hole information paradox, invoke significant departures from classicality in the vicinity of the horizon. It was recently pointed out that such near-horizon structures can lead to late-time echoes in the black hole merger gravitational wave signals that are otherwise indistinguishable from GR. We search for observational signatures of these echoes in the gravitational wave data released by advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), following the three black hole merger events GW150914, GW151226, and LVT151012. In particular, we look for repeating damped echoes with time-delays of $8 M \\log M$ (+spin corrections, in Planck units), corresponding to Planck-scale departures from GR near their respecti...
Supersymmetric SO(N) from a Planck-scale statistical theory
Allen, Roland E
2010-01-01
Several refinements are made in a theory which starts with a Planck-scale statistical picture and ends with supersymmetry and a coupling of fundamental fermions and bosons to SO(N) gauge fields. In particular, more satisfactory treatments are given for (1) the transformation from the initial Euclidean form of the path integral for fermionic fields to the usual Lorentzian form, (2) the corresponding transformation for bosonic fields (which is much less straightforward), (3) the transformation from an initial primitive supersymmetry to the final standard form (containing, e.g., scalar sfermions and their auxiliary fields), (4) the initial statistical picture, and (5) the transformation to an action which is invariant under general coordinate transformations.
Vanishing Higgs potential at the Planck scale in singlets extension of the standard model
Haba, Naoyuki; Kaneta, Kunio; Takahashi, Ryo
2014-01-01
We discuss the realization of a vanishing Higgs potential at the Planck scale, which is required by the multiple point criticality principle, in the standard model with singlet scalar dark matter and a right-handed neutrino. We find the scalar dark matter and the right-handed neutrino play crucial roles, and their masses, $m_S$ and $M_R$, must be $8.0\\times10^2~{\\rm GeV}\\leq m_S\\leq1.2\\times10^3~{\\rm GeV}$ and $6.3\\times10^{13}~{\\rm GeV}\\leq M_R\\leq1.6\\times10^{14}~{\\rm GeV}$ within current experimental values of the Higgs and top masses. This scenario is consistent with current dark matter direct search experiments, and will be confirmed by future experiments such as LUX with further exposure and/or XENON1T.
Froggatt, C; Nielsen, H B; Thomas, A
2015-01-01
We argue that the exact degeneracy of vacua in N=1 supergravity can shed light on the smallness of the cosmological constant. The presence of such vacua, which are degenerate to very high accuracy, may also result in small values of the quartic Higgs coupling and its beta function at the Planck scale in the phase in which we live.
Evidence for Planck-scale resonant particle production during inflation from the CMB power spectrum
Mathews, Grant J; Ichiki, Kiyotomo; Kajino, Toshitaka
2016-01-01
The power spectrum of the cosmic microwave background from both the {\\it Planck} and {\\it WMAP} data exhibits a slight dip for multipoles in the range of $l= 10-30$. We show that such a dip could be the result of the resonant creation of massive particles that couple to the inflaton field. For our best-fit models, the epoch of resonant particle creation reenters the horizon at a wave number of $k_* \\sim 0.0011 \\pm 0.0004 $ ($h$ Mpc$^{-1}$). The amplitude and location of this feature corresponds to the creation of a number of degenerate fermion species of mass $\\sim (8-11) /\\lambda^{3/2} $ $m_{pl}$ during inflation where $\\lambda \\sim (1.0 \\pm 0.5) N^{-2/5}$ is the coupling constant between the inflaton field and the created fermion species, while $N$ is the number of degenerate species. Although the evidence is of marginal statistical significance, this could constitute new observational hints of unexplored physics beyond the Planck scale
Models of LHC Diphoton Excesses Valid up to the Planck scale
Hamada, Yuta; Kawana, Kiyoharu; Tsumura, Koji
2016-01-01
We discuss a possibility to explain the LHC diphoton excesses at $750$GeV by the new scalar $X$ that couples to the gauge bosons through the loop of new massive particles with Standard Model charges. We assume that the new particles decay into the Standard model particles at the tree level. We systematically examine the models that preserve the vacuum stability and the perturbativity up to the Planck scale. When we take scalars for the new particles, we find that only a few diquark and dilepton models can explain the observed diphoton cross section without conflicting the experimental mass bounds. When we take vector-like fermions for the new particles, we find rather different situations depending on whether their couplings to $X$ are scalar or pseudoscalar type. In the former case, a few models are allowed if we introduce only one species of fermions. The more fermions we introduce, the more models are allowed. In the later case, the most of the models are allowed because of the large coupling between $X$ a...
Planck Scale Physics, Gravi-Weak Unification and the Higgs Inflation
Laperashvili, L V; Sidharth, B G
2015-01-01
Starting with a theory of the discrete space-time at the Planck scale, we developed a Gravi-Weak Unification (GWU) - a $Spin(4,4)$-invariant model unified gravity with weak $SU(2)$ gauge and Higgs fields in the visible and invisible sectors of the Universe. Considering the Gravi-Weak symmetry breaking, we showed that the obtained sub-algebras contain the self-dual left-handed gravity in the OW, and the anti-self-dual right-handed gravity in the MW. Finally, at the low energy limit, we have only the Standard Model (SM) and the Einstein-Hilbert's gravity. The Froggatt-Nielsen's prediction of the top-quark and Higgs masses was given in the assumption that there exist two degenerate vacua in the SM. This prediction was improved by the next order calculations. We have developed a model of the Higgs Inflation using the GWU action. According to this inflationary model, a scalar field (inflaton) starts trapped from the "false vacuum" of the Universe at the Higgs field's VEV $v_2 \\sim 10^{18}$ GeV. The interaction bet...
Black Hole Thermodynamics and Lorentz Symmetry
Jacobson, Ted
2008-01-01
Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe the arguments leading to that conclusion. We suggest the implication that Lorentz symmetry should be viewed as an emergent property of the macroscopic world, required by the second law of black hole thermodynamics.
Haba, Naoyuki
2015-01-01
We investigate the vacuum stability in a scale invariant local $U(1)_\\chi$ model with vanishing scalar potential at the Planck scale. We find that it is impossible to realize the Higgs mass of 125\\,GeV while keeping the Higgs quartic coupling $\\lambda_H$ to be positive in all energy scale, that is the same as the standard model. Once one allows $\\lambda_H0$ gives the upper bound in $N_\
Why is High Energy Physics Lorentz Invariant?
Afshordi, Niayesh
2015-01-01
Despite the tremendous empirical success of equivalence principle, there are several theoretical motivations for existence of a preferred reference frame (or aether) in a consistent theory of quantum gravity. However, if quantum gravity had a preferred reference frame, why would high energy processes enjoy such a high degree of Lorentz symmetry? While this is often considered as an argument against aether, here I provide three independent arguments for why perturbative unitarity (or weak coupling) of the Lorentz-violating effective field theories put stringent constraints on possible observable violations of Lorentz symmetry at high energies. In particular, the interaction with the scalar graviton in a consistent low-energy theory of gravity and a (radiatively and dynamically) stable cosmological framework, leads to these constraints. The violation (quantified by the relative difference in maximum speed of propagation) is limited to $\\lesssim 10^{-10} E({\\rm eV})^{-4}$ (superseding all current empirical bound...
Test of Lorentz Invariance with Atmospheric Neutrinos
:,; Haga, Y; Hayato, Y; Ikeda, M; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Tanaka, H; Tomura, T; Ueno, K; Wendell, R A; Yokozawa, T; Irvine, T; Kajita, T; Kametani, I; Kaneyuki, K; Lee, K P; McLachlan, T; Nishimura, Y; Richard, E; Okumura, K; Labarga, L; Fernandez, P; Gustafson, J; Kearns, E; Raaf, J L; Berkman, S; Tanaka, H A; Tobayama, S; Stone, J L; Sulak, L R; Goldhaber, M; Carminati, G; Kropp, W R; Mine, S; Weatherly, P; Renshaw, A; Smy, M B; Sobel, H W; Takhistov, V; Ganezer, K S; Hartfiel, B L; Hill, J; Keig, W E; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Kikawa, T; Minamino, A; Murakami, A; Nakaya, T; Suzuki, K; Takahashi, S; Tateishi, K; Fukuda, Y; Choi, K; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yamaguchi, R; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Suda, Y; Totsuka, Y; Yokoyama, M; Martens, K; Marti, Ll; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Zhang, Y; Connolly, K; Wilkes, R J
2014-01-01
A search for neutrino oscillations induced by Lorentz violation has been performed using 4,438 live-days of Super-Kamiokande atmospheric neutrino data. The Lorentz violation is included in addition to standard three-flavor oscillations using the non-perturbative Standard Model Extension (SME), allowing the use of the full range of neutrino path lengths, ranging from 15 to 12,800 km, and energies ranging from 100 MeV to more than 100 TeV in the search. No evidence of Lorentz violation was observed, so limits are set on the renormalizable isotropic SME coefficients in the $e\\mu$, $\\mu\\tau$, and $e\\tau$ sectors, improving the existing limits by up to seven orders of magnitude and setting limits for the first time in the neutrino $\\mu\\tau$ sector of the SME.
Testing Lorentz Symmetry using Chiral Perturbation Theory
Noordmans, J P
2016-01-01
We consider the low-energy effects of a selected set of Lorentz- and CPT-violating quark and gluon operators by deriving the corresponding chiral effective lagrangian. Using this effective lagrangian, low-energy hadronic observables can be calculated. We apply this to magnetometer experiments and derive the best bounds on some of the Lorentz-violating coefficients. We point out that progress can be made by studying the nucleon-nucleon potential, and by considering storage-ring experiments for deuterons and other light nuclei.
Lorentz symmetry breaking effects on relativistic EPR correlations
Energy Technology Data Exchange (ETDEWEB)
Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Furtado, C.; Bakke, K. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)
2015-09-15
Lorentz symmetry breaking effects on relativistic EPR (Einstein-Podolsky-Rosen) correlations are discussed. From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the Lorentz symmetry violation and write an effective metric for the Minkowski spacetime. Then we obtain the Wigner rotation angle via the Fermi-Walker transport of spinors and consider the WKB (Wentzel-Kramers-Brillouin) approximation in order to study the influence of Lorentz symmetry breaking effects on the relativistic EPR correlations. (orig.)
Testing local Lorentz invariance with short-range gravity
Kostelecký, V. Alan; Mewes, Matthew
2017-03-01
The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.
Testing local Lorentz invariance with short-range gravity
Kostelecky, Alan
2016-01-01
The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.
Predicting Planck scale and Newton constant from a Yang-Mills gauge theory: 1 and 2-loops estimates
Sobreiro, Rodrigo F
2016-01-01
Recently, a model for an emergent gravity based on $SO(5)$ Yang-Mills action in Euclidian four-dimensional spacetime was proposed. In this work we provide some 1 and 2-loop computations and show that the model can accomodate suitable predicting values for the Newton's gravitational constant. Moreover, it is shown that the typical scale of the expected phase transition between the quantum theory and the geometrodynamical phase is consistent with Planck scale. We also provide a discussion on the cosmological constant problem.
Emergent Lorentz invariance in fermion sector
Directory of Open Access Journals (Sweden)
Kharuk Ivan
2016-01-01
Full Text Available By using holographic description of strongly interacting field theories we show that under common assumptions Lorentz invariance emerges as an effective low–energy symmetry of the theory, despite fundamental theory at hight energies being Lorentz–violating. We consider fermions sector and show that the notion of chirality also automatically arises in the infrared.
Testing Lorentz invariance in orbital electron capture
Vos, K. K.; Wilschut, H. W.; Timmermans, R. G. E.
2015-01-01
Searches for Lorentz violation were recently extended to the weak sector, in particular neutron and nuclear beta decay [Noordmans, Wilschut, and Timmermans, Phys. Rev. C 87, 055502 (2013)]. From experiments on forbidden beta-decay transitions, strong limits in the range of 10(-6) to 10(-8) were obta
Diósi, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Prati, Enrico; Vitiello, Giuseppe; Yearsley, James
2013-06-01
Presented in this volume are the Invited Lectures and the Contributed Papers of the Sixth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2012, held at Castello Pasquini, Castiglioncello (Tuscany), 17-21 September 2012. These proceedings may document to the interested public and to the wider scientific community the stimulating exchange of ideas at the meeting. The number of participants has been steadily growing over the years, reflecting an increasing attraction, if not need, of such conference. Our very intention has always been to bring together leading researchers, advanced students, and renowned scholars from various areas, in order to stimulate new ideas and their exchange across the borders of specialization. In this way, the series of meetings successfully continued from the beginning with DICE 20021, followed by DICE 20042, DICE 20063, DICE 20084, and DICE 20105, Most recently, DICE 2012 brought together more than 120 participants representing more than 30 countries worldwide. It has been a great honour and inspiration to have Professor Yakir Aharonov (Tel Aviv) with us, who presented the opening Keynote Lecture 'The two-vector quantum formalism'. With the overarching theme 'Spacetime - Matter - Quantum Mechanics - from the Planck scale to emergent phenomena', the conference took place in the very pleasant and inspiring atmosphere of Castello Pasquini - in beautiful surroundings, overlooking a piece of Tuscany's coast. The 5-day program covered these major topics: Quantum Mechanics, Foundations and Quantum-Classical Border Quantum-Classical Hybrids and Many-Body Systems Spectral Geometry, Path Integrals and Experiments Quantum -/- Gravity -/- Spacetime Quantum Mechanics on all Scales? A Roundtable Discussion under the theme 'Nuovi orizzonti nella ricerca scientifica. Ci troviamo di fronte ad una rivoluzione scientifica?' formed an integral part of the program. With participation of E Del Giudice (INFN & Università di
Nowotny, T; Nowotny, Thomas; Requardt, Manfred
1998-01-01
Starting from the working hypothesis that both physics and the corresponding mathematics have to be described by means of discrete concepts on the Planck-scale, one of the many problems one has to face is to find the discrete protoforms of the building blocks of continuum physics and mathematics. In the following we embark on developing such concepts for irregular structures like (large) graphs or networks which are intended to emulate (some of) the generic properties of the presumed combinatorial substratum from which continuum physics is assumed to emerge as a coarse grained and secondary model theory. We briefly indicate how various concepts of discrete (functional) analysis and geometry can be naturally constructed within this framework, leaving a larger portion of the paper to the systematic developement of dimensional concepts and their properties, which may have a possible bearing on various branches of modern physics beyond quantum gravity.
Comments on Holography with Broken Lorentz Invariance
Gordeli, Ivan
2009-01-01
Recently a family of solutions of the Einstein equations in backgrounds with broken Lorentz invariance was found ArXiv:0712.1136. We show that the gravitational solution recently obtained by Kachru, Liu and Mulligan in ArXiv:0808.1725 is a part of the former solution which was derived earlier in the framework of extra dimensional theories. We show how the energy-momentum and Einstein tensors are related and establish a correspondence between parameters which govern Lorentz invariance violation. At the end we speculate on relations between the RG flow of a boundary theory and asymptotic behavior of gravitational solutions in the bulk.
Black Hole Thermodynamics and Lorentz Symmetry
Jacobson, Ted; Wall, Aron C.
2010-08-01
Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.
Gravitational wave in Lorentz violating gravity
Li, Xin; Chang, Zhe(State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 100049, Beijing, China)
2011-01-01
By making use of the weak gravitational field approximation, we obtain a linearized solution of the gravitational vacuum field equation in an anisotropic spacetime. The plane-wave solution and dispersion relation of gravitational wave is presented explicitly. There is possibility that the speed of gravitational wave is larger than the speed of light and the casuality still holds. We show that the energy-momentum of gravitational wave in the ansiotropic spacetime is still well defined and cons...
Spacetime-symmetry violations: motivations, phenomenology, and tests
Lehnert, Ralf
2014-01-01
An important open question in fundamental physics concerns the nature of spacetime at distance scales associated with the Planck length. The widespread belief that probing such distances necessitates Planck-energy particles has impeded phenomenological and experimental research in this context. However, it has been realized that various theoretical approaches to underlying physics can accommodate Planck-scale violations of spacetime symmetries. This talk surveys the motivations for spacetime-symmetry research, the SME test framework, and experimental efforts in this field.
Constraints on relativity violations from gamma-ray bursts.
Kostelecký, V Alan; Mewes, Matthew
2013-05-17
Tiny violations of the Lorentz symmetry of relativity and the associated discrete CPT symmetry could emerge in a consistent theory of quantum gravity such as string theory. Recent evidence for linear polarization in gamma-ray bursts improves existing sensitivities to Lorentz and CPT violation involving photons by factors ranging from ten to a million.
Testing Lorentz invariance in weak decays
Energy Technology Data Exchange (ETDEWEB)
Sytema, Auke; Dijck, Elwin; Hoekstra, Steven; Jungmann, Klaus; Mueller, Stefan; Noordmans, Jacob; Onderwater, Gerco; Pijpker, Coen; Timmermans, Rob; Vos, Keri; Willmann, Lorenz; Wilschut, Hans [Van Swinderen Institute, University of Groningen (Netherlands)
2015-07-01
Lorentz invariance is the invariance of physical laws under orientations and boosts. It is a key assumption in Special Relativity and the Standard Model of Particle Physics. Several theories unifying General Relativity and Quantum Mechanics allow breaking of Lorentz invariance. At the Van Swinderen Institute in Groningen a theoretical and experimental research program was started to study Lorentz invariance violation (LIV) in weak interactions. The theoretical work allowed a systematic approach to LIV in weak decays. Limits could be set on parameters that quantify LIV. A novel beta decay experiment was designed which tests rotational invariance with respect to the orientation of nuclear spin. In particular, using the isotope {sup 20}Na, the decay rate dependence on the nuclear polarization direction was measured. Searching for sidereal variations, systematic errors can be suppressed. The result of the experiment is presented.
Tests of Lorentz Symmetry in the Gravitational Sector
Directory of Open Access Journals (Sweden)
Aurélien Hees
2016-12-01
Full Text Available Lorentz symmetry is one of the pillars of both General Relativity and the Standard Model of particle physics. Motivated by ideas about quantum gravity, unification theories and violations of CPT symmetry, a significant effort has been put the last decades into testing Lorentz symmetry. This review focuses on Lorentz symmetry tests performed in the gravitational sector. We briefly review the basics of the pure gravitational sector of the Standard-Model Extension (SME framework, a formalism developed in order to systematically parametrize hypothetical violations of the Lorentz invariance. Furthermore, we discuss the latest constraints obtained within this formalism including analyses of the following measurements: atomic gravimetry, Lunar Laser Ranging, Very Long Baseline Interferometry, planetary ephemerides, Gravity Probe B, binary pulsars, high energy cosmic rays, … In addition, we propose a combined analysis of all these results. We also discuss possible improvements on current analyses and present some sensitivity analyses for future observations.
Tests of Lorentz symmetry in the gravitational sector
Hees, Aurélien; Bourgoin, Adrien; Bars, Hélène Pihan-Le; Guerlin, Christine; Poncin-Lafitte, Christophe Le
2016-01-01
Lorentz symmetry is one of the pillars of both General Relativity and the Standard Model of particle physics. Motivated by ideas about quantum gravity, unification theories and violations of CPT symmetry, a significant effort has been put the last decades into testing Lorentz symmetry. This review focuses on Lorentz symmetry tests performed in the gravitational sector. We briefly review the basics of the pure gravitational sector of the Standard-Model Extension (SME) framework, a formalism developed in order to systematically parametrize hypothetical violations of the Lorentz invariance. Furthermore, we discuss the latest constraints obtained within this formalism including analyses of the following measurements: atomic gravimetry, Lunar Laser Ranging, Very Long Baseline Interferometry, planetary ephemerides, Gravity Probe B, binary pulsars, high energy cosmic rays,... In addition, we propose a combined analysis of all these results. We also discuss possible improvements on current analyses and present some s...
Moyotl, A; Toscano, J J; Tututi, E S
2013-01-01
Low-energy Lorentz-invariant quantities could receive contributions from a fundamental theory producing small Lorentz-violating effects. Within the Lorentz-violating extension of quantum electrodynamics, we investigate, perturbatively, the contributions to the one-loop ffgamma vertex from the CPT-violating axial coupling of a vector background field to fermions. We find that the resulting vertex function has a larger set of Lorentz structures than the one characterizing the usual, Lorentz invariant, parametrization of the ffgamma vertex. We prove gauge invariance of the resulting one-loop expression through a set of gauge invariant nonrenormalizable operators introducing new-physics effects at the first and second orders in Lorentz violation, and which generate tree-level contributions to the ffgamma vertex. Whereas loop contributions involving parameters that violate Lorentz invariance at the first order are CPT-odd, those arising at the second order are CPT-even, so that contributions to low-energy physics ...
Tests of Lorentz Symmetry in Single Beta Decay
Directory of Open Access Journals (Sweden)
Jorge S. Díaz
2014-01-01
Full Text Available Low-energy experiments studying single beta decay can serve as sensitive probes of Lorentz invariance that can complement interferometric searches for deviations from this spacetime symmetry. Experimental signatures of a dimension-three operator for Lorentz violation which are unobservable in neutrino oscillations are described for the decay of polarized and unpolarized neutrons as well as for measurements of the spectral endpoint in beta decay.
Finsler-like structures from Lorentz-breaking classical particles
Russell, Neil
2015-01-01
A method is presented for deducing classical point-particle Lagrange functions corresponding to a class of quartic dispersion relations. Applying this to particles violating Lorentz symmetry in the minimal Standard-Model Extension leads to a variety of novel lagrangians in flat spacetime. Morphisms in these classical systems are studied that echo invariance under field redefinitions in the quantized theory. The Lagrange functions found offer new possibilities for understanding Lorentz-breaking effects by exploring parallels with Finsler-like geometries.
Dark Energy from Violation of Energy Conservation.
Josset, Thibaut; Perez, Alejandro; Sudarsky, Daniel
2017-01-13
In this Letter, we consider the possibility of reconciling metric theories of gravitation with a violation of the conservation of energy-momentum. Under some circumstances, this can be achieved in the context of unimodular gravity, and it leads to the emergence of an effective cosmological constant in Einstein's equation. We specifically investigate two potential sources of energy nonconservation-nonunitary modifications of quantum mechanics and phenomenological models motivated by quantum gravity theories with spacetime discreteness at the Planck scale-and show that such locally negligible phenomena can nevertheless become relevant at the cosmological scale.
Time-delay and Doppler tests of the Lorentz symmetry of gravity
Bailey, Quentin G
2009-01-01
Modifications to the classic time-delay effect and Doppler shift in General Relativity (GR) are studied in the context of the Lorentz-violating Standard-Model Extension (SME). We derive the leading Lorentz-violating corrections to the time-delay and Doppler shift signals, for a light ray passing near a massive body. It is demonstrated that anisotropic coefficients for Lorentz violation control a time-dependent behavior of these signals that is qualitatively different from the conventional case in GR. Estimates of sensitivities to gravity-sector coefficients in the SME are given for current and future experiments, including the recent Cassini solar conjunction experiment.
Testing Lorentz Symmetry with the Double Chooz Eexperiment
Katori, Teppei
2013-01-01
The Double Chooz reactor-based oscillation experiment searches for an electron antineutrino disappearance signal to investigate the neutrino mass matrix mixing angle theta 13. Double Chooz's reported evidence for this disappearance is generally interpreted as mass-driven mixing through this parameter. However, the electron antineutrino candidates collected by the experiment can also be used to search for a signature of the violation of Lorentz invariance. We study the sidereal time dependence of the antineutrino signal rate and probe Lorentz violation within the Standard-Model Extension (SME) framework. We find that the data prefer the sidereal time independent solution, and a number of limits are applied to the relevant SME coefficients, including the first constraints on those associated with Lorentz violation in the e-tau mixing sector.
Lobo, Iarley P; Nettel, Francisco
2016-01-01
In recent years, Planck-scale modifications to particles' dispersion relation have been deeply studied for the possibility to formulate some phenomenology of Planckian effects in astrophysical and cosmological frameworks. There are some indications [arXiv:gr-qc/0611024] that Finsler geometry can provide some generalization of Riemannian geometry which may allow to account for non-trivial (Planckian) structure of relativistic particles' configuration space. We investigate the possibility to formalize Planck-scale deformations to relativistic models in curved spacetime, within the framework of Finsler geometry. We take into account the general strategy of analysis of modifications of dispersion relations in curved spacetimes proposed in [arXiv:1507.02056], generalizing to the de Sitter case the results obtained in [arXiv:1407.8143], for deformed relativistic particle kinematics in flat spacetime using Finsler formalism.
Generalized Lorentz invariance with an invariant energy scale
Magueijo, J; Magueijo, Joao; Smolin, Lee
2003-01-01
The hypothesis that the Lorentz transformations may be modified at Planck scale energies is further explored. We present a general formalism for theories which preserve the relativity of inertial frames with a non-linear action of the Lorentz transformations on momentum space. Several examples are discussed in which the speed of light varies with energy and elementary particles have a maximum momenta and/or energy. Energy and momentum conservation are suitably generalized and a proposal is made for how the new transformation laws apply to composite systems. We then use these results to explain the ultra high energy cosmic ray anomaly and we find a form of the theory that explains the anomaly, and leads also to a maximum momentum and a speed of light that diverges with energy. We finally propose that the spatial coordinates be identified as the generators of translation in Minkowski spacetime. In some examples this leads to a commutative geometry, but with an energy dependent Planck constant.
Deng, Yanbin; Huang, Changyu; Huang, Yong-Chang
2016-08-01
It was suggested by dimensional analysis that there exists a limit called the Planck energy scale coming close to which the gravitational effects of physical processes would inflate and struggle for equal rights so as to spoil the validity of pure nongravitational physical theories that governed well below the Planck energy. Near the Planck scale, the Planck charges, Planck currents, or Planck parameters can be defined and assigned to physical quantities such as the single particle electric charge and magnetic charge as the ceiling value obeyed by the low energy ordinary physics. The Dirac electric-magnetic charge quantization relation as one form of electric-magnetic duality dictates that, the present low value electric charge corresponds to a huge magnetic charge value already passed the Planck limit so as to render theories of magnetic monopoles into the strong coupling regime, and vice versa, that small and tractable magnetic charge values correspond to huge electric charge values. It suggests that for theoretic models in which the renormalization group equation provides rapid growth for the running electric coupling constant, it is easier for the dual magnetic monopoles to emerge at lower energy scales. Allowing charges to vary with the Dirac electric-magnetic charge quantization relation while keeping values under the Planck limit informs that the magnetic charge value drops below the Planck ceiling value into the manageable region when the electric coupling constant grows to one fourth at a model dependent energy scale, and continues dropping toward half the value of the Planck magnetic charge as the electric coupling constant continues growing at the model dependent rate toward one near Planck energy scale.
Aspects of semilocal BPS vortex in systems with Lorentz symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Villalobos, C.H.C.; Silva, J.M.H. da; Hott, M.B. [UNESP, Univ Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Belich, H. [Universidade Federal do Espi rito Santo (UFES), Departamento de Fisica e Quimica, Vitoria, ES (Brazil)
2014-03-15
The existence is shown of a static self-dual semilocal vortex configuration for the Maxwell-Higgs system with a Lorentz-violating CPT-even term. The dependence of the vorticity upper limit on the Lorentz-symmetry-breaking term is also investigated. (orig.)
Fine-tuning problems in quantum field theory and Lorentz invariance
Cortes, J L
2016-01-01
A model with a scalar and a fermion field is used to show how a Lorentz invariance violating high momentum scale, which eliminates all the divergences of the quantum field theory, can be made compatible with a suppression of Lorentz invariance violations at low momenta. The fine tuning required to get this suppression and to have a light scalar particle in the spectrum is determined at one loop.
T-violation in flavour oscillations as a test for relativity principles at a neutrino factory
Leung, C N; Wong, Yvonne Y. Y.
2003-01-01
We study the effects of violation of the equivalence principle (VEP) or violation of Lorentz invariance (LIV) in the neutrino sector on the asymmetry between T-conjugate oscillation probabilities, $\\Delta P_T \\equiv P(\
Spontaneous Breaking of Lorentz Symmetry with an antisymmetric tensor
Hernaski, Carlos A
2016-01-01
Spontaneous violation of Lorentz symmetry by the vacuum condensation of an antisymmetric $2$-tensor is considered. The coset construction for nonlinear realization of spacetime symmetries is employed to build the most general low-energy effective action for the Goldstone modes interacting with photons. We analyze the model within the context of the Standard-Model Extension and noncommutative QED. Experimental bounds for some parameters of the model are discussed, and we readdress the subtle issues of stability and causality in Lorentz non-invariant scenarios. Besides the two photon polarizations, just one Goldstone mode must be dynamical to set a sensible low-energy effective model, and the enhancement of the stability by accounting interaction terms points to a protection against observational Lorentz violation.
Concurrent tests of Lorentz invariance in $\\beta$-decay experiments
Vos, K K; Timmermans, R G E
2015-01-01
Modern experiments on neutron and allowed nuclear $\\beta$ decay search for new semileptonic interactions, beyond the ``left-handed'' electroweak force. We show that ongoing and planned $\\beta$-decay experiments, with isotopes at rest and in flight, can be exploited as sensitive tests of Lorentz invariance. The variety of correlations that involve the nuclear spin, the direction of the emitted $\\beta$ particle, and the recoil direction of the daughter nucleus allow for relatively simple experiments that give direct bounds on Lorentz violation. The pertinent observables are decay-rate asymmetries and their dependence on sidereal time. We discuss the potential of several asymmetries that together cover a large part of the parameter space for Lorentz violation in the gauge sector. High counting statistics is required.
Prospects for Lorentz and CPT tests with hydrogen and antihydrogen
Becker, Tobias Frederic
2017-01-01
As a summer student for 13 weeks in the ASACUSA-CUSP collaboration, under the supervision of Chloé Malbrunot, my project consisted in a first part on the theoretical treatment of Lorentz and CPT violation in hydrogen & antihydrogen in the framework of the Standard Model Extension SME and in second part on experimental measurements on a hydrogen beam.
Lorentz- and CPT-symmetry studies in subatomic physics
Energy Technology Data Exchange (ETDEWEB)
Lehnert, Ralf, E-mail: ralehner@indiana.edu [Leibniz Universität Hannover (Germany)
2016-12-15
Subatomic systems provide an exquisite test bench for spacetime symmetries. This work motivates such measurements, reviews the effective field theory test framework for the description of Lorentz and CPT violation, and employs this framework to study the phenomenology of spacetime-symmetry breaking in various subatomic systems.
Testing Lorentz Invariance Using an Odd-Parity Asymmetric Optical Resonator
Baynes, Fred; Tobar, Michael
2011-01-01
We present the first experimental test of Lorentz invariance using the frequency difference between counter-propagating modes in an asymmetric odd-parity optical resonator. This type of test is $\\sim10^{4}$ more sensitive to odd-parity and isotropic (scalar) violations of Lorentz invariance than equivalent conventional even-parity experiments due to the asymmetry of the optical resonator. The disadvantages of odd parity resonators have been negated by the use of counter-propagating modes, delivering a high level of immunity to environmental fluctuations. With a non-rotating experiment our result limits the isotropic Lorentz violating parameter $\\tilde{\\kappa}_{tr}$ to 3.4 $\\pm$ 6.2 x $10^{-9}$, the best reported constraint from direct measurements. Using this technique the bounds on odd-parity and scalar violations of Lorentz invariance can be improved by many orders of magnitude.
Testing Lorentz invariance in β decay
Directory of Open Access Journals (Sweden)
Sytema A.
2014-03-01
Experimentally we exploit the Gamow-Teller transition of polarized 20Na, where we can test the dependence of the β-decay rate on the spin orientation of 20Na. The polarization degree is measured using the β asymmetry, while the decay rate is measured by the γ yield. A change in the γ rate, when reversing the spin, implies Lorentz invariance violation. The decay rate should depend on sidereal time and the polarization direction relative to the rotation axis of the earth. The method of the measurement will be presented, together with the first results.
Generalizing the Lorentz transformations
Chappell, James M; Iannella, Nicolangelo; Hartnett, John G; Iqbal, Azhar; Abbott, Derek
2016-01-01
In this paper we develop a framework allowing a natural extension of the Lorentz transformations. To begin, we show that by expanding conventional four-dimensional spacetime to eight-dimensions that a natural generalization is indeed obtained. We then find with these generalized coordinate transformations acting on Maxwell's equations that the electromagnetic field transformations are nevertheless unchanged. We find further, that if we assume the absence of magnetic monopoles, in accordance with Maxwell's theory, our generalized transformations are then restricted to be the conventional ones. While the conventional Lorentz transformations are indeed recovered from our framework, we nevertheless provide a new perspective into why the Lorentz transformations are constrained to be the conventional ones. Also, this generalized framework may assist in explaining several unresolved questions in electromagnetism as well as to be able to describe quasi magnetic monopoles found in spin-ice systems.
Extended Lorentz code of a superluminal particle
Ter-Kazarian, G
2012-01-01
While the OPERA experimental scrutiny is ongoing in the community, in the present article we construct a toy model of {\\it extended Lorentz code} (ELC) of the uniform motion, which will be a well established consistent and unique theoretical framework to explain the apparent violations of the standard Lorentz code (SLC), the possible manifestations of which arise in a similar way in all particle sectors. We argue that in the ELC-framework the propagation of the superluminal particle, which implies the modified dispersion relation, could be consistent with causality. Furthermore, in this framework, we give a justification of forbiddance of Vavilov-Cherenkov (VC)-radiation/or analog processes in vacuum. To be consistent with the SN1987A and OPERA data, we identify the neutrinos from SN1987A and the light as so-called {\\it 1-th type} particles carrying the {\\it individual Lorentz motion code} with the velocity of light $c_{1}\\equiv c$ in vacuum as maximum attainable velocity for all the 1-th type particles. Ther...
Belich, H; Helayël-Neto, J A; Leal, F J L; Spalenza, W
2010-01-01
In this work, we present two possible venues to accomodate the $K_{F}$-type Lorentz-symmetry violating Electrodynamics in an $N=1$-supersymmetric framework. A chiral and a vector superfield are chosen to describe the background that signals Lorentz-symmetry breaking. In each case, the $\\ K_{\\mu \
Belich, H
2015-01-01
The behaviour of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string spacetime is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor $\\left(K_{F}\\right)_{\\mu\