WorldWideScience

Sample records for planar silicon detectors

  1. Planar edgeless silicon detectors for the TOTEM experiment

    CERN Document Server

    Ruggiero, G; Noschis, E

    2007-01-01

    Recently the first prototype of microstrip edgeless silicon detector for the TOTEM experiment has been successfully produced and tested. This detector is fabricated with standard planar technology, reach sensitivity 50 μm from the cut edge and can operate with high bias at room temperature. These almost edgeless detectors employ a newly conceived terminating structure, which, although being reduced with respect to the conventional ones, still controls the electric field at the device periphery and prevents leakage current breakdown for high bias. Detectors with the new terminating structure are being produced now and will be installed at LHC in the Roman Pots, a special beam insertion, to allow the TOTEM experiment to detect leading protons at 10 σ from the beam. This paper will describe this new terminating structure for planar silicon detectors, how it applies to big size devices and the experimental tests proving their functionality.

  2. Planar Edgeless Silicon Detectors for the TOTEM Experiment

    CERN Document Server

    Ruggiero, G; Deile, M; De Oliveira, R; Eggert, K; Haug, F; Jarron, P; Macina, D; Niewiadomski, H; Noschis, E; Oriunno, M; Siegrist, P; Snoeys, W; Verdier, A; Avati, V; Bergholm, V; Kalliopuska, J; Kiiskinen, A P; Kurvinen, K; Lauhakangas, R; Mäki, T; Oljemark, F; Orava, R; Österberg, K; Palmieri, V G; Saarikko, H; Tapprogge, S; Toppinen, A; Bassetti, V; Boccone, V; Bozzo, M; Buzzo, A; Cereseto, R; Cuneo, S; Ferro, F; Macri, M; Minutoli, S; Morelli, A; Musico, P; Negri, M; Puppo, R; Santroni, A; Sette, G; Berardi, V; Catanesi, M G; Radicioni, E; Egorov, N; Sidorov, A; Eremin, I; Hasi, J; Kok, A; Watts, S; Herzog, R; Rudischer, R; Wobst, E; Kundrát, W; Lokajícek, M; Smotlacha, J; Sanguinetti, G; Mirabito, L

    2005-01-01

    Silicon detectors for the Roman Pots of the large hadron collider TOTEM experiment aim for full sensitivity at the edge where a terminating structure is required for electrical stability. This work provides an innovative approach reducing the conventional width of the terminating structure to less than 100 microns, still using standard planar fabrication technology. The objective of this new development is to decouple the electric behaviour of the surface from the sensitive volume within tens of microns. The explanation of the basic principle of this new approach together with the experimental confirmation via electric measurements and beam test are presented in this paper, demonstrating that silicon detectors with this new terminating structure are fully operational and efficient to under 60 microns from the die cut.

  3. Final Size Planar Edgeless Silicon Detectors for the TOTEM Experiment

    CERN Document Server

    Noschis, E; Anelli, G; Avati, V; Berardi, V; Boccone, V; Bozzo, M; Brucken, E; Buzzo, A; Catanesi, M G; Cereseto, R; Cuneo, S; Da Vià, C; Deile, M; Dinapoli, R; Eggert, K; Egorov, N; Eremin, I; Ferro, F; Hasi, J; Haug, F; Heino, J; Jarron, P; Kalliopuska, J; Kaspar, J; Kok, A; Kozlov, Y; Kundrat, W; Kurvinen, K; Lauhakangas, R; Lokajícek, M; Luntama, T; Macina, D; Macri, M; Minutoli, S; Mirabito, L; Morelli, A; Musico, P; Negri, M; Niewiadomski, H; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Perrot, A L; Puppo, R; Radermacher, E; Radicioni, E; Saarikko, H; Santroni, A; Sette, G; Sidorov, A; Siegrist, P; Smotlacha, J; Snoeys, W; Taylor, C; Watts, S; Whitmoree, J

    2006-01-01

    The TOTEM experiment will detect leading protons scattered in angles of microradians from the interaction point at the Large Hadron Collider. This will be achieved using detectors with a minimized dead area at the edge. The collaboration has developed an innovative structure at the detector edge reducing the conventional dead width to less than 100 microns, still using standard planar fabrication technology. In this new development, the current of the surface is decoupled from the sensitive volume current within a few tens of micrometers. The basic working principle is explained in this paper. Final size detectors have been produced using this approach. The current-voltage and current-temperature characteristics of the detectors were studied and the detectors were successfully tested in a coasting beam experiment.

  4. Beam test measurements with planar and 3D silicon strip detectors irradiated to sLHC fluences

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Michael; Wiik, Liv; /Freiburg U.; Bates, Richard; /Glasgow U.; Dalla Betta, Gian-Franco; /INFN, Trento /Trento U.; Fleta, Celeste; /Barcelona, Inst. Microelectron.; Harkonen, Jaakko; /Helsinki Inst. of Phys.; Jakobs, Karl; /Freiburg U.; Lozano, Manuel; /Barcelona, Inst. Microelectron.; Maenpaa, Teppo; Moilanen, Henri; /Helsinki Inst. of Phys.; Parkes, Chris; /Glasgow U. /Freiburg U. /Barcelona, Inst. Microelectron. /Fermilab

    2011-01-01

    The planned luminosity upgrade of the CERN LHC to the super LHC (sLHC) requires investigation of new radiation hard tracking detectors. Compared to the LHC, tracking detectors must withstand a 5-10 times higher radiation fluence. Promising radiation hard options are planar silicon detectors with n-side readout and silicon detectors in 3D technology, where columnar electrodes are etched into the silicon substrate. This article presents beam test measurements per formed with planar and 3D n-in-p silicon strip detectors. The detectors were irradiated to different fluences, where the maximum fluence was 3 x 10{sup 15} 1 MeV neutron equivalent particles per square centimeter (n{sub eq}/cm{sup 2}) for the planar detectors and 2 x 10{sup 15} n{sub eq}/cm{sup 2} for the 3D detectors. In addition to signal measurements, charge sharing and resolution of both detector technologies are compared. An increased signal from the irradiated 3D detectors at high bias voltages compared to the signal from the unirradiated detector indicates that charge multiplication effects occur in the 3D detectors. At a bias voltage of 260 V, the 3D detector irradiated to 2 x 10{sup 15} n{sub eq}/cm{sup 2} yields a signal almost twice as high as the signal of the unirradiated detector. Only 30% of the signal of an unirradiated detector could be measured with the planar detector irradiated to 3 x 10{sup 15} n{sub eq}/cm{sup 2} at a bias voltage of 600 V, which was the highest bias voltage applied to this sensor.

  5. Performance of almost edgeless silicon detectors in CTS and 3D-planar technologies

    Science.gov (United States)

    Alagoz, E.; Anelli, G.; Antchev, G.; Avati, V.; Bassetti, V.; Berardi, V.; Boccone, V.; Bozzo, M.; Brücken, E.; Buzzo, A.; Catanesi, M. G.; Cuneo, S.; Da Vià, C.; Deile, M.; Dinapoli, R.; Eggert, K.; Eremin, V.; Ferro, F.; Hasi, J.; Haug, F.; Heino, J.; Jarron, P.; Kalliopuska, J.; Kašpar, J.; Kenney, C.; Kok, A.; Kundrát, V.; Kurvinen, K.; Lauhakangas, R.; Lippmaa, E.; Lokajíček, M.; Luntama, T.; Macina, D.; Macrí, M.; Minutoli, S.; Mirabito, L.; Niewiadomski, H.; Noschis, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Parker, S.; Perrot, A.-L.; Radermacher, E.; Radicioni, E.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Sette, G.; Siegrist, P.; Smotlacha, J.; Snoeys, W.; Taylor, C.; Watts, S.; Whitmore, J.

    2013-06-01

    The physics programme of the TOTEM experiment requires the detection of very forward protons scattered by only a few microradians out of the LHC beams. For this purpose, stacks of planar Silicon detectors have been mounted in moveable near-beam telescopes (Roman Pots) located along the beamline on both sides of the interaction point. In order to maximise the proton acceptance close to the beams, the dead space at the detector edge had to be minimised. During the detector prototyping phase, different sensor technologies and designs have been explored. A reduction of the dead space to less than 50 μm has been accomplished with two novel silicon detector technologies: one with the Current Terminating Structure (CTS) design and one based on the 3D edge manufacturing. This paper describes performance studies on prototypes of these detectors, carried out in 2004 in a fixed-target muon beam at CERN's SPS accelerator. In particular, the efficiency and accuracy in the vicinity of the beam-facing edges are discussed.

  6. Effect of SiO$_{2}$ passivating layer in segmented silicon planar detectors on the detector response

    CERN Document Server

    Verbitskaya, Elena; Eremin, Vladimir; Golubkov, S; Konkov, K; Roe, Shaun; Ruggiero, G; Sidorov, A; Weilhammer, Peter

    2004-01-01

    Silicon detectors with a fine segmentation (micropixel and microstrip) are the main type of detectors used in the inner trackers of LHC experiments. Due to the high luminosity of the LHC machines they are required to have a fast response to fit the short shaping time of 25 ns and to be radiation hard. Evaluation of silicon microstrip detectors developed for the ATLAS silicon tracker and carried out under collaboration of CERN and PTI has shown the reversal of the pulse polarity in the detector response to short- range radiation. Since the negative signal is of about 30% of the normal positive one, the effect strongly reduces the charge collection efficiency in irradiated detectors. The investigation presents the consideration on the origin of a negative response in Si microstrip detectors and the experimental proof of the model. The study of the effect has been carried out using "baby" strip detectors with a special design: each strip has a window in a metallization, which covers the p/sup +/ implant. The sca...

  7. Edgeless silicon pad detectors

    Science.gov (United States)

    Perea Solano, B.; Abreu, M. C.; Avati, V.; Boccali, T.; Boccone, V.; Bozzo, M.; Capra, R.; Casagrande, L.; Chen, W.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Mirabito, L.; Morelli, A.; Niinikoski, T. O.; Oljemark, F.; Palmieri, V. G.; Rato Mendes, P.; Rodrigues, S.; Siegrist, P.; Silvestris, L.; Sousa, P.; Tapprogge, S.; Trocmé, B.

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in "edgeless" planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5±8 stat..±6 syst.) μm.

  8. Edgeless silicon pad detectors

    Energy Technology Data Exchange (ETDEWEB)

    Perea Solano, B. [CERN, CH-1211 Geneva 23 (Switzerland)]. E-mail: blanca.perea.solano@cern.ch; Abreu, M.C. [LIP and University of Algarve, 8000 Faro (Portugal); Avati, V. [CERN, CH-1211 Geneva 23 (Switzerland); Boccali, T. [INFN Sez. di Pisa and Scuola Normale Superiore, Pisa (Italy); Boccone, V. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Bozzo, M. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Capra, R. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Casagrande, L. [INFN Sez. di Roma 2 and Universita di Roma 2, Rome (Italy); Chen, W. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Eggert, K. [CERN, CH-1211 Geneva 23 (Switzerland); Heijne, E. [CERN, CH-1211 Geneva 23 (Switzerland); Klauke, S. [CERN, CH-1211 Geneva 23 (Switzerland); Li, Z. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Maeki, T. [Helsinki Institute of Physics, Helsinki (Finland); Mirabito, L. [CERN, CH-1211 Geneva 23 (Switzerland); Morelli, A. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Niinikoski, T.O. [CERN, CH-1211 Geneva 23 (Switzerland); Oljemark, F. [Helsinki Institute of Physics, Helsinki (Finland); Palmieri, V.G. [Helsinki Institute of Physics, Helsinki (Finland); Rato Mendes, P. [LIP and University of Algarve, 8000 Faro (Portugal); Rodrigues, S. [LIP and University of Algarve, 8000 Faro (Portugal); Siegrist, P. [CERN, CH-1211 Geneva 23 (Switzerland); Silvestris, L. [INFN Sez. Di Bari, Bari (Italy); Sousa, P. [LIP and University of Algarve, 8000 Faro (Portugal); Tapprogge, S. [Helsinki Institute of Physics, Helsinki (Finland); Trocme, B. [Institut de Physique Nucleaire, Villeurbanne (France)

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in 'edgeless' planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5{+-}8{sub stat.}.{+-}6{sub syst.}) {mu}m.

  9. Development of Silicon Multi-strip Detector

    Institute of Scientific and Technical Information of China (English)

    TanJilian; JinGenming; WangHongwei; YuanXiaohua; DuanLiming; LiSonglin; LuZiwei; XuHushan; NingBaojun; TianDayu; WangWei; ZhangLu

    2003-01-01

    Position sensitive detector is very important for nuclear physics experiment. There several techniques can be used to fabricate position sensitive detector, for example, Si-surface barrier method, diffusion method, ion implantation and planar process etc. Among all the techniques mentioned above planar process is the best one. We have developed batch of position sensitive detector -- silicon multi-strip detector by using planar process.

  10. Positron Emission Mammotomography with Dual Planar Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mark Smith; Raymond Raylman; Stanislaw Majewski

    2003-06-29

    Positron emission mammography (PEM) is usually performed with two stationary planar detectors above and below a compressed breast. There is image blurring normal to the detectors due to the limited angular range of the lines of response. Positron emission mammotomography (PEM-T) with dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation.

  11. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  12. The Silicon Cube detector

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I.; Adimi, N. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Blank, B. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France)], E-mail: blank@cenbg.in2p3.fr; Canchel, G.; Giovinazzo, J. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Borge, M.J.G.; Dominguez-Reyes, R.; Tengblad, O. [Insto. Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Thomas, J.-C. [GANIL, CEA/DSM - CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)

    2009-08-21

    A new experimental device, the Silicon Cube detector, consisting of six double-sided silicon strip detectors placed in a compact geometry was developed at CENBG. Having a very good angular coverage and high granularity, it allows simultaneous measurements of energy and angular distributions of charged particles emitted from unbound nuclear states. In addition, large-volume Germanium detectors can be placed close to the collection point of the radioactive species to be studied. The setup is ideally suited for isotope separation on-line (ISOL)-type experiments to study multi-particle emitters and was tested during an experiment at the low-energy beam line of SPIRAL at GANIL.

  13. Microstructured silicon radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Derzon, Mark S.; Draper, Bruce L.

    2017-03-14

    A radiation detector comprises a silicon body in which are defined vertical pores filled with a converter material and situated within silicon depletion regions. One or more charge-collection electrodes are arranged to collect current generated when secondary particles enter the silicon body through walls of the pores. The pores are disposed in low-density clusters, have a majority pore thickness of 5 .mu.m or less, and have a majority aspect ratio, defined as the ratio of pore depth to pore thickness, of at least 10.

  14. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  15. Development of planar detectors with active edge

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Giacomini, G.; Vianello, E.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2011-12-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  16. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  17. Planarity certification of ATLAS Micromegas detector panels

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Ralph; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard; Hertenberger, Ralf; Loesel, Philipp; Herrmann, Maximilian [LMU Muenchen (Germany); Zibell, Andre [JMU Wuerzburg (Germany)

    2016-07-01

    During the second long LHC shutdown, 2019/20, the precision tracking detectors of the ATLAS muon spectrometer in the inner end caps will be replaced using Micromegas, a planar gas-detector technology. Modules of 2 m{sup 2} area are built in quadruplets from five precisely planar sandwich panels that define the anodes and the cathodes of the four active detector planes. A panel is composed of three consecutive layers FR4 - aluminum honeycomb - FR4. Single plane spatial particle resolution below 100 μm is achievable when the deviations from planarity of the strip-anodes do not exceed 80 μm RMS over the whole active area and the parallelism of the readout strips is within 30 μm. In order to measure the dimensional accuracy of each panel, laser distance sensors combined with a coordinate measurement system have been investigated. The sensor requirements to measure the planarity of the panels are a resolution of 0.3 μm and a beam spot diameter of ∼20 μm, well below 100 μ m the size of the smallest structures. We report on achieved planarities of the panels and the performance of the laser sensor system. A panel with an RMS better than 30 μm was build and the evolution of its planarity due to humidity and temperature effects is shown.

  18. A Study on the Beta Voltaic Micro -nuclear Battery Based on the Planar Technology Silicon Detector%基于平面工艺硅探测器的β伏打微核能电池

    Institute of Scientific and Technical Information of China (English)

    张凯; 何高魁; 黄小健; 刘洋; 孟欣; 郝晓勇

    2011-01-01

    It describes briefly the beta voltaic micro - nuclear battery based on the planar technology silicon detector and radioisotope. Different sensitive area of silicon detectors are used to cooperate with Ni source to buildup of beta voltaic micro - nuclear batteries. The experimental data show that the larger sensitive area the silicon detector has, the higher open circuit voltage it produces, and the open circuit voltage of single cell has reached an excellent result from 0. 15 V to 0. 30V. It is possible to get high output power by series or parallel connecting the beta voltaic micro - nuclear batteries.%简要叙述了利用平面工艺硅探测器和放射性同位素构成的β伏打微核能电池的原理,比较了不同灵敏面积硅探测器对β伏打微核能电池开路电压的影响.实验证明,单个β伏打微核能电池的开路电压可达到0.15V~0.3V,采用串、并联方式可以获得较大的输出功率.

  19. Radiation damage in silicon detectors

    CERN Document Server

    Lindström, G

    2003-01-01

    Radiation damage effects in silicon detectors under severe hadron and gamma-irradiation are surveyed, focusing on bulk effects. Both macroscopic detector properties (reverse current, depletion voltage and charge collection) as also the underlying microscopic defect generation are covered. Basic results are taken from the work done in the CERN-RD48 (ROSE) collaboration updated by results of recent work. Preliminary studies on the use of dimerized float zone and Czochralski silicon as detector material show possible benefits. An essential progress in the understanding of the radiation-induced detector deterioration had recently been achieved in gamma irradiation, directly correlating defect analysis data with the macroscopic detector performance.

  20. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  1. Silicon Drift Detectors for ALICE

    CERN Document Server

    Navach, F; CERN. Geneva

    1992-01-01

    The Silicon Drift Detector (SDD) is a semiconductor, not yet extensively used in HEP experiment, which has an excellent spatial resolution and granularity about comparable to a pixel device requiring a number of readout channels two order of magnitude less.

  2. Belle II Silicon Vertex Detector

    CERN Document Server

    Mohanty, Gagan B

    2015-01-01

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by a vertex detector, which comprises two layers of pixelated silicon detector and four layers of silicon vertex detector. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector that is aimed to be commissioned towards the middle of 2017.

  3. Efficiency measurements for 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich, E-mail: ulrich.parzefall@physik.uni-freiburg.d [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Dalla Betta, Gian-Franco [INFN Trento and Universita di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Koehler, Michael; Kuehn, Susanne; Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris; Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Zoboli, Andrea [INFN Trento and Universita di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2010-11-01

    Silicon strip detectors are widely used as part of the inner tracking layers in particle physics experiments. For applications at the luminosity upgrade of the Large Hadron Collider (LHC), the sLHC, silicon detectors with extreme radiation hardness are required. The 3D detector design, where electrodes are processed from underneath the strips into the silicon bulk material, provides a way to enhance the radiation tolerance of standard planar silicon strip detectors. Detectors with several innovative 3D designs that constitute a simpler and more cost-effective processing than the 3D design initially proposed were connected to read-out electronics from LHC experiments and subsequently tested. Results on the amount of charge collected, the noise and the uniformity of charge collection are given.

  4. Belle II silicon vertex detector

    Science.gov (United States)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Enami, K.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-09-01

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  5. Belle II silicon vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Università di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); and others

    2016-09-21

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  6. Ultra-fast silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sadrozinski, H. F.-W., E-mail: hartmut@scipp.ucsc.edu [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Petersen, B.; Seiden, A.; Zatserklyaniy, A. [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Cartiglia, N.; Marchetto, F. [INFN Torino, Torino (Italy); Bruzzi, M.; Mori, R.; Scaringella, M.; Vinattieri, A. [University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, Firenze (Italy)

    2013-12-01

    We propose to develop a fast, thin silicon sensor with gain capable to concurrently measure with high precision the space (∼10 μm) and time (∼10 ps) coordinates of a particle. This will open up new application of silicon detector systems in many fields. Our analysis of detector properties indicates that it is possible to improve the timing characteristics of silicon-based tracking sensors, which already have sufficient position resolution, to achieve four-dimensional high-precision measurements. The basic sensor characteristics and the expected performance are listed, the wide field of applications are mentioned and the required R and D topics are discussed. -- Highlights: •We are proposing thin pixel silicon sensors with 10's of picoseconds time resolution. •Fast charge collection is coupled with internal charge multiplication. •The truly 4-D sensors will revolutionize imaging and particle counting in many applications.

  7. Large volume cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35131 Padova (Italy); Boscardin, M. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy); Bressi, G. [INFN sez. di Pavia, via Bassi 6, 27100 Pavia (Italy); Carugno, G.; Corti, D. [INFN sez. di Padova, via Marzolo 8, 35131 Padova (Italy); Galeazzi, G. [INFN lab. naz. Legnaro, viale dell' Universita 2, 35020 Legnaro (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy)

    2009-12-15

    We present preliminary measurements for the development of a large volume silicon detector to detect low energy and low rate energy depositions. The tested detector is a one cm-thick silicon PIN diode with an active volume of 31 cm{sup 3}, cooled to the liquid helium temperature to obtain depletion from thermally-generated free carriers. A thorough study has been done to show that effects of charge trapping during drift disappears at a bias field value of the order of 100V/cm.

  8. First test of cold edgeless silicon microstrip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Avati, V.; Boccone, V.; Borer, K.; Bozzo, M. E-mail: marco.bozzo@cern.ch; Capra, R.; Casagrande, L.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Maeki, T.; Morelli, A.; Oljemark, F.; Palmieri, V.G.; Perea-Solano, B.; Tapprogge, S

    2004-02-01

    Silicon microstrip detectors will provide the forward tracking in the TOTEM experiment at the LHC. To allow efficient tracking closest to the beam ({approx}1 mm) these detectors should be sensitive up to their physical edge (i.e. edgeless). Edgeless (without guard rings) microstrip planar detectors can be operated at cryogenic temperatures (about 130 deg. K) where leakage currents due to the active edge are drastically reduced. A silicon microstrip prototype, cut perpendicular to the strips, has been tested with a pion beam at CERN to study its efficiency close to the edge by using reference tracks from a simple silicon telescope. Results indicate that the detector measures tracks with good efficiency up to the physical edge of the silicon.

  9. First test of cold edgeless silicon microstrip detectors

    CERN Document Server

    Avati, V; Borer, K; Bozzo, M; Capra, R; Casagrande, L; Eggert, Karsten; Heijne, Erik H M; Klauke, S; Li, Z; Mäki, T; Morelli, A; Oljemark, F; Palmieri, V G; Perea-Solano, B; Tapprogge, Stefan

    2004-01-01

    Silicon microstrip detectors will provide the forward tracking in the TOTEM experiment at the LHC. To allow efficient tracking closest to the beam ( approximately equals 1 mm) these detectors should be sensitive up to their physical edge (i.e. edgeless). Edgeless (without guard rings) microstrip planar detectors can be operated at cryogenic temperatures (about 130 degree K) where leakage currents due to the active edge are drastically reduced. A silicon microstrip prototype, cut perpendicular to the strips, has been tested with a pion beam at CERN to study its efficiency close to the edge by using reference tracks from a simple silicon telescope. Results indicate that the detector measures tracks with good efficiency up to the physical edge of the silicon.

  10. First test of cold edgeless silicon microstrip detectors

    Science.gov (United States)

    Avati, V.; Boccone, V.; Borer, K.; Bozzo, M.; Capra, R.; Casagrande, L.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Morelli, A.; Oljemark, F.; Palmieri, V. G.; Perea-Solano, B.; Tapprogge, S.

    2004-02-01

    Silicon microstrip detectors will provide the forward tracking in the TOTEM experiment at the LHC. To allow efficient tracking closest to the beam (≈1 mm) these detectors should be sensitive up to their physical edge (i.e. edgeless). Edgeless (without guard rings) microstrip planar detectors can be operated at cryogenic temperatures (about 130° K) where leakage currents due to the active edge are drastically reduced. A silicon microstrip prototype, cut perpendicular to the strips, has been tested with a pion beam at CERN to study its efficiency close to the edge by using reference tracks from a simple silicon telescope. Results indicate that the detector measures tracks with good efficiency up to the physical edge of the silicon.

  11. The CDF Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Tkaczyk, S.; Carter, H.; Flaugher, B. [and others

    1993-09-01

    A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the detector in the radiation environment are discussed. The device has been taking colliding beams data since May of 1992, performing at its best design specifications and enhancing the physics program of CDF.

  12. Performance of Ultra-Fast Silicon Detectors

    CERN Document Server

    Cartiglia, N; Ely, S; Fadeyev, V; Galloway, Z; Marchetto, F; Mazza, G; Ngo, J; Obertino, M; Parker, C; Rivetti, A; Shumacher, D; Sadrozinski, H F-W; Seiden, A; Zatserklyaniy, A

    2013-01-01

    The development of Low-Gain Avalanche Detectors has opened up the possibility of manufacturing silicon detectors with signal larger than that of traditional sensors. In this paper we explore the timing performance of Low-Gain Avalanche Detectors, and in particular we demonstrate the possibility of obtaining ultra-fast silicon detector with time resolution of less than 20 picosecond.

  13. Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    Science.gov (United States)

    Wegrzecka, Iwona; Panas, Andrzej; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kozłowski, Roman; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecki, Maciej; Zaborowski, Michał

    2013-07-01

    The paper discusses the technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE). The developed technology enables the fabrication of both planar and epiplanar p+-ν-n+ detector structures with an active area of up to 50 cm2. The starting material for epiplanar structures are silicon wafers with a high-resistivity n-type epitaxial layer ( ν layer - ρ < 3 kΩcm) deposited on a highly doped n+-type substrate (ρ< 0,02Ωcm) developed and fabricated at the Institute of Electronic Materials Technology. Active layer thickness of the epiplanar detectors (νlayer) may range from 10 μm to 150 μm. Imported silicon with min. 5 kΩcm resistivity is used to fabricate planar detectors. Active layer thickness of the planar detectors (ν) layer) may range from 200 μm to 1 mm. This technology enables the fabrication of both discrete and multi-junction detectors (monolithic detector arrays), such as single-sided strip detectors (epiplanar and planar) and double-sided strip detectors (planar). Examples of process diagrams for fabrication of the epiplanar and planar detectors are presented in the paper, and selected technological processes are discussed.

  14. Signal development in irradiated silicon detectors

    CERN Document Server

    Kramberger, Gregor; Mikuz, Marko

    2001-01-01

    This work provides a detailed study of signal formation in silicon detectors, with the emphasis on detectors with high concentration of irradiation induced defects in the lattice. These defects give rise to deep energy levels in the band gap. As a consequence, the current induced by charge motion in silicon detectors is signifcantly altered. Within the framework of the study a new experimental method, Charge correction method, based on transient current technique (TCT) was proposed for determination of effective electron and hole trapping times in irradiated silicon detectors. Effective carrier trapping times were determined in numerous silicon pad detectors irradiated with neutrons, pions and protons. Studied detectors were fabricated on oxygenated and non-oxygenated silicon wafers with different bulk resistivities. Measured effective carrier trapping times were found to be inversely proportional to fuence and increase with temperature. No dependence on silicon resistivity and oxygen concentration was observ...

  15. Analytical response function for planar Ge detectors

    Science.gov (United States)

    García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.

    2016-04-01

    We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.

  16. The New Silicon Strip Detectors for the CMS Tracker Upgrade

    CERN Document Server

    Dragicevic, Marko

    2010-01-01

    The first introductory part of the thesis describes the concept of the CMS experiment. The tasks of the various detector systems and their technical implementations in CMS are explained. To facilitate the understanding of the basic principles of silicon strip sensors, the subsequent chapter discusses the fundamentals in semiconductor technology, with particular emphasis on silicon. The necessary process steps to manufacture strip sensors in a so-called planar process are described in detail. Furthermore, the effects of irradiation on silicon strip sensors are discussed. To conclude the introductory part of the thesis, the design of the silicon strip sensors of the CMS Tracker are described in detail. The choice of the substrate material and the complex geometry of the sensors are reviewed and the quality assurance procedures for the production of the sensors are presented. Furthermore the design of the detector modules are described. The main part of this thesis starts with a discussion on the demands on the ...

  17. Radiation experience with the CDF silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Husemann, Ulrich; /Rochester U.

    2005-11-01

    The silicon detectors of the CDF experiment at the Tevatron collider are operated in a harsh radiation environment. The lifetime of the silicon detectors is limited by radiation damage, and beam-related incidents are an additional risk. This article describes the impact of beam-related incidents on detector operation and the effects of radiation damage on electronics noise and the silicon sensors. From measurements of the depletion voltage as a function of the integrated luminosity, estimates of the silicon detector lifetime are derived.

  18. ATLAS Silicon Microstrip Detector Operation and Performance

    CERN Document Server

    Coniavitis, E

    2011-01-01

    In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV, followed by the unprecedented energy of 7 TeV in March 2010. The Semi-Conductor Tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The completed SCT has been installed inside the ATLAS experimental hall. After the commissioning phase it arrived to the first LHC pp collision runs in very good shape: 99.3% of the SCT strips are operational, noise occupancy and hit efficiency exceed the design specifications, the alignment is already close enough to the ideal one to allow on-line track reconstruction and invariant mass determination. The current status of the SCT is reviewed, including results from the latest data-taking periods in 2009 and 2010, and from the detector alignment. We report on the operation of the detector and observed problems. The main emphasi...

  19. Applications of passivated silicon detectors

    Science.gov (United States)

    Kyung, Richard; Park, Chan Ho

    2012-03-01

    We can postulate that dark matter are WIMPS, more specifically, Majorana particles called neutralinos floating through space. Upon neutralino-neutralino annihilation, they create a greater burst of other particles into space: these being all kinds of particles including anti-deuterons which are the indications of the existence of dark matter. For the study of the applications of passivated silicon detectors, this paper shows following procedures in two categories. Painting on little pieces of silicon (Polyimid and Boxcar Red) :Took clean paint brush and painted on Polyimid and Boxcar red samples onto little pieces of sample silicon and dried for a certain number of hours in different conditions. Cooling test : usually done in 7 cycles, cool until usually -35 degrees or -40 degrees Celsius with thermoelectric cooler, dry out, evapate the moisture in the fume hood, take pictures with the microscope and check for irregularities every 1, 4 and 7 times. The results show us how the passivated silicon will act in the real experiment--the vacuum chamber and x-rays (from the radioactive source), and different atmospheric pressures simulate what it will be like in space.

  20. Planar photonic crystal waveguides in silicon oxynitride

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Borel, Peter Ingo;

    Most work on planar photonic crystals has been performed on structures based on semiconducting crystals such as Si and III-V compounds. Due to the high index contrast between the host material and the air holes (e.g., Si has n = 3.5), these structures exhibit a large photonic band gap. However......ON glasses with different indices between 1.46 and 1.77 and we are currently fabricating photonic crystals in SiON on a silica buffer layer on Si. Simulations show that a complete band gap can indeed be created for TE-polarised light in the SiON structures, making them promising candidates for new photonic......, at visible wavelengths they absorb light very strongly. In contrary, silicon oxynitride (SiON) glasses offer high transparency down to blue and ultraviolet wavelengths. Thus, SiON photonic crystal waveguides can open for new possibilities, e.g., within sensing and life sciences. We have fabricated Si...

  1. Integrated double-sided silicon microstrip detectors

    Directory of Open Access Journals (Sweden)

    Perevertailo V. L.

    2011-11-01

    Full Text Available The problems of design, technology and manufacturing double-sided silicon microstrip detectors using standard equipment production line in mass production of silicon integrated circuits are considered. The design of prototype high-energy particles detector for experiment ALICE (CERN is presented. The parameters of fabricated detectors are comparable with those of similar foreign detectors, but they are distinguished by lesser cost.

  2. ATLAS Inner Detector (Pixel Detector and Silicon Tracker)

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    To raise awareness of the basic functions of the Pixel Detector and Silicon Tracker in the ATLAS detector on the LHC at CERN. This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the detector, seeing critical pieces of the detector and hearing short explanations of how each works.

  3. The two sides of silicon detectors

    CERN Document Server

    Devine, S R

    2001-01-01

    /p/n sup + and essentially two p-n junctions within one device. With increasing bias voltage, as the electric field is extending into the detector bulk from opposite sides of the silicon detector, there are two distinct depletion regions that collect charge signal independently. Summing the signal charge from the two regions, one is able to reconstruct the initial energy of the incident particle. From Transient Current measurements it is apparent that E-field manipulation is possible by excess carrier injection, enabling a high enough E-field to extend across the width of the detector, allowing for efficient charge collection. Results are presented on in situ irradiation of silicon detector's at cryogenic temperature. The results show that irradiation at cryogenic temperatures does not detrimentally effect a silicon detectors performance when compared to its irradiation at room temperature. Operation of silicon devices at cryogenic temperatures offers the advantage of reducing radiation-induced leakage curren...

  4. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  5. Synthesis of Planar Reflective Gratings for Silicon Interconnects

    Directory of Open Access Journals (Sweden)

    Serge Bidnyk

    2008-05-01

    Full Text Available The design and simulations of planar reflective gratings for building optical interconnects in silicon-on-insulator (SOI were studied for a range of silicon core thicknesses of 0.1 to 10 μm. The verticality of the grating facets has been shown to be the main contributing factor to the cumulative crosstalk in thick silicon cores. The dispersion property of the slab was found to limit the minimal thickness of the core for polarization-insensitive gratings. The effects of polarization-dependent confinement on optical crosstalk were studied. The findings were used to design and simulate a polarization-insensitive 18-channel coarse wavelength division demultiplexer (CWDM with a free spectral range of over 600 nm. The CWDM demultiplexer uses a 1.7 μm silicon core and combines a shallow-etch tapered rib structure and multimode silicon channels to produce box-like passbands for integrated receiver applications. The diffraction grating was constructed using double astigmatic point design with phase-corrected grating facets to reduce astigmatism. Optical properties of the planar gratings have been simulated using quasivectorial diffraction grating theory. The simulation results confirm that there is high diffraction efficiency and low optical crosstalk over the entire range of operation. Applications of planar silicon gratings to the synthesis of silicon interconnects are discussed.

  6. Compton imager using room temperature silicon detectors

    Science.gov (United States)

    Kurfess, James D.; Novikova, Elena I.; Phlips, Bernard F.; Wulf, Eric A.

    2007-08-01

    We have been developing a multi-layer Compton Gamma Ray Imager using position-sensitive, intrinsic silicon detectors. Advantages of this approach include room temperature operation, reduced Doppler broadening, and use of conventional silicon fabrication technologies. We have obtained results on the imaging performance of a multi-layer instrument where each layer consists of a 2×2 array of double-sided strip detectors. Each detector is 63 mm×63 mm×2 mm thick and has 64 strips providing a strip pitch of approximately 0.9 mm. The detectors were fabricated by SINTEF ICT (Oslo Norway) from 100 mm diameter wafers. The use of large arrays of silicon detectors appears especially advantageous for applications that require excellent sensitivity, spectral resolution and imaging such as gamma ray astrophysics, detection of special nuclear materials, and medical imaging. The multiple Compton interactions (three or more) in the low-Z silicon enable the energy and direction of the incident gamma ray to be determined without full deposition of the incident gamma-ray energy in the detector. The performance of large volume instruments for various applications are presented, including an instrument under consideration for NASA's Advanced Compton Telescope (ACT) mission and applications to Homeland Security. Technology developments that could further extend the sensitivity and performance of silicon Compton Imagers are presented, including the use of low-energy (few hundred keV) electron tracking within novel silicon detectors and the potential for a wafer-bonding approach to produce thicker, position-sensitive silicon detectors with an associated reduction of required electronics and instrument cost.

  7. Radiation hardness studies of silicon pixel detectors

    CERN Document Server

    Lari, T

    2006-01-01

    At the LHC silicon vertex detectors will be exposed to hadron fluences of the order of . In order to study the effects of radiation damage on the performances of the ATLAS Pixel Vertex Detector, several full-size detector modules were irradiated to a fluence of and tested in a beam at CERN. After irradiation only a modest degradation of the detector performances is observed. At the operating ATLAS bias voltage of 600 V the average signal is still 80% of the pre-irradiation value, the spatial resolution is and the detection efficiency is 98.2%. The LHC luminosity upgrade will increase the radiation hardness requirements by a factor of 10 and will require the development of new ultra-radiation hard vertex detectors. A detailed simulation of silicon pixel detectors irradiated to very high fluence is presented and used to study the possibility to use silicon pixel detectors at the LHC after the luminosity upgrade. The charge collection properties and the detector response were computed for different silicon mater...

  8. Development of innovative silicon radiation detectors

    CERN Document Server

    Balbuena, JuanPablo

    Silicon radiation detectors fabricated at the IMB-CNM (CSIC) Clean Room facilities using the most innovative techniques in detector technology are presented in this thesis. TCAD simulation comprises an important part in this work as becomes an essential tool to achieve exhaustive performance information of modelled detectors prior their fabrication and subsequent electrical characterization. Radiation tolerance is also investigated in this work using TCAD simulations through the potential and electric field distributions, leakage current and capacitance characteristics and the response of the detectors to the pass of different particles for charge collection efficiencies. Silicon detectors investigated in this thesis were developed for specific projects but also for applications in experiments which can benefit from their improved characteristics, as described in Chapter 1. Double-sided double type columns 3D (3D-DDTC) detectors have been developed under the NEWATLASPIXEL project in the framework of the CERN ...

  9. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  10. Silicon detectors for neutrino oscillation experiments

    CERN Document Server

    do Couto e Silva, E

    1998-01-01

    This note describes the technique of using a target equipped with high resolution silicon microstrip detectors for the detection of the topological signature of decays in neutrino oscillation ex periments. Two detectors are presented. The first detector is installed in the NOMAD spectrometer at the CERN SPS neutrino beam. The target consists of four layers passive boron carbide plate s (total mass of 45 kg) interleaved with five layers of silicon microstrip detectors. A total of 600 single--sided silicon microstrip detectors are used amounting to a total area of 1.14 m$^2$. The silicon tracker is made with the longest ladders built to date (72 cm). During the 1997 run about 8000 charged current interactions were estimated to have occurred in the target and data tak ing will continue in 1998. For these events it will be possible to perform a precise measurement of both vertex and kinematical variables. The second detector was installed in September 1997 in a CERN PS pion beam to investigate the possibility of ...

  11. Advantages of gated silicon single photon detectors

    CERN Document Server

    Lunghi, T; Barreiro, C; Stucki, D; Sanguinetti, B; Zbinden, H

    2012-01-01

    We present a gated silicon single photon detector based on a commercially available avalanche photodiode. Our detector achieves a photon detection efficiency of 45\\pm5% at 808 nm with 2x 10^-6 dark count per ns at -30V of excess bias and -30{\\deg}C. We compare gated and free-running detectors and show that this mode of operation has significant advantages in two representative experimental scenarios: detecting a single photon either hidden in faint continuous light or after a strong pulse. We also explore, at different temperatures and incident light intensities, the "charge persistence" effect, whereby a detector clicks some time after having been illuminated.

  12. Silicon Strip Detectors for the ATLAS sLHC Upgrade

    CERN Document Server

    Soldevila, U; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&amp;D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a...

  13. Silicon strip detectors for the ATLAS HL-LHC upgrade

    CERN Document Server

    Bernabeu, J; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a number of d...

  14. Proton Straggling in Thick Silicon Detectors

    Science.gov (United States)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.

    2017-01-01

    Straggling functions for protons in thick silicon radiation detectors are computed by Monte Carlo simulation. Mean energy loss is constrained by the silicon stopping power, providing higher straggling at low energy and probabilities for stopping within the detector volume. By matching the first four moments of simulated energy-loss distributions, straggling functions are approximated by a log-normal distribution that is accurate for Vavilov k is greater than or equal to 0:3. They are verified by comparison to experimental proton data from a charged particle telescope.

  15. Proton straggling in thick silicon detectors

    Science.gov (United States)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.

    2017-03-01

    Straggling functions for protons in thick silicon radiation detectors are computed by Monte Carlo simulation. Mean energy loss is constrained by the silicon stopping power, providing higher straggling at low energy and probabilities for stopping within the detector volume. By matching the first four moments of simulated energy-loss distributions, straggling functions are approximated by a log-normal distribution that is accurate for Vavilov κ ≳ 0.3 . They are verified by comparison to experimental proton data from a charged particle telescope.

  16. Novel detectors for silicon based microdosimetry, their concepts and applications

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Anatoly B., E-mail: anatoly@uow.edu.au

    2016-02-11

    This paper presents an overview of the development of semiconductor microdosimetry and the most current (state-of-the-art) Silicon on Insulator (SOI) detectors for microdosimetry based mainly on research and development carried out at the Centre for Medical Radiation Physics (CMRP) at the University of Wollongong with collaborators over the last 18 years. In this paper every generation of CMRP SOI microdosimeters, including their fabrication, design, and electrical and charge collection characterisation are presented. A study of SOI microdosimeters in various radiation fields has demonstrated that under appropriate geometrical scaling, the response of SOI detectors with the well-known geometry of microscopically sensitive volumes will record the energy deposition spectra representative of tissue cells of an equivalent shape. This development of SOI detectors for microdosimetry with increased complexity has improved the definition of microscopic sensitive volume (SV), which is modelling the deposition of ionising energy in a biological cell, that are led from planar to 3D SOI detectors with an array of segmented microscopic 3D SVs. The monolithic ΔE−E silicon telescope, which is an alternative to the SOI silicon microdosimeter, is presented, and as an example, applications of SOI detectors and ΔE−E monolithic telescope for microdosimetery in proton therapy field and equivalent neutron dose measurements out of field are also presented. An SOI microdosimeter “bridge” with 3D SVs can derive the relative biological effectiveness (RBE) in {sup 12}C ion radiation therapy that matches the tissue equivalent proportional counter (TEPC) quite well, but with outstanding spatial resolution. The use of SOI technology in experimental microdosimetry offers simplicity (no gas system or HV supply), high spatial resolution, low cost, high count rates, and the possibility of integrating the system onto a single device with other types of detectors.

  17. A silicon detector for neutrino physics

    CERN Document Server

    Kokkonen, J

    2002-01-01

    In order to demonstrate the feasibility of conducting future muon neutrino - tau neutrino oscillation searches using a high-resolution, large-area silicon microstrip detector, the Silicon TARget (STAR) detector was built. STAR was installed in the NOMAD short baseline neutrino oscillation experiment at the CERN SPS neutrino beam, where it recorded approximately 10000 neutrino interactions during the operation of the detector in the period 1997-98. It consists of five layers of silicon detectors interleaved with four layers of passive boron carbide as the target. The target mass is 45 kg, while the total silicon surface area is 1.14 square-meters and contains 32000 readout channels. The individual modules have a length of 72 cm, the longest built to date. The detection of tau particles, produced in tau neutrino charged-current interactions, would require a tracking detector with a precision of a few tens of microns in order to measure the position of the neutrino interaction vertex as well as the impact parame...

  18. Limitations of the pulse-shape technique for particle discrimination in planar Si detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pausch, G.; Seidel, W. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany). Inst. fuer Kern- und Hadronenphysik; Moszynski, M.; Wolski, D. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland). Dept. of Nuclear Electronics; Bohne, W. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Festkoerperphysik; Cederkaell, J.; Klamra, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Physics; Grawe, H.; Schubart, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Lampert, M.O.; Rohr, P. [Eurisys Mesures, 67 - Tanneries (France)

    1996-11-01

    Limitations of the pulse-shape discrimination (PSD) technique - a promising method to identify the charged particles stopped in planar Si-detectors - have been investigated. The particle resolution turned out to be basically determined by resistivity fluctuations in the bulk silicon which cause the charge-collection time to depend on the point of impact. Detector maps showing these fluctuations have been measured and are discussed. Furthermore we present a simple method to test the performance of detectors with respect to PSD. Another limitation of the PSD technique is the finite energy threshold for particle identification. This threshold is caused by an unexpected decrease of the total charge-collection time for ions with a short range, in spite of the fact that the particle tracks are located in a region of very low electric field. (orig.)

  19. Advantages of gated silicon single photon detectors

    Science.gov (United States)

    Legré, Matthieu; Lunghi, Tommaso; Stucki, Damien; Zbinden, Hugo

    2013-05-01

    We present gated silicon single photon detectors based on two commercially available avalanche photodiodes (APDs) and one customised APD from ID Quantique SA. This customised APD is used in a commercially available device called id110. A brief comparison of the two commercial APDs is presented. Then, the charge persistence effect of all of those detectors that occurs just after a strong illumination is shown and discussed.

  20. Status of the CDF silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Grinstein, Sebastian; /Harvard U.

    2006-05-01

    The CDF Run II silicon micro-strip detector is an essential part of the heavy flavor tagging and forward tracking capabilities of the experiment. Since the commissioning period ended in 2002, about 85% of the 730 k readout channels have been consistently provided good data. A summary of the recent improvements in the DAQ system as well as experience of maintaining and operating such a large, complex detector are presented.

  1. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  2. Characteristics of the ALICE Silicon Drift Detector

    CERN Document Server

    Bonvicini, V; Crescio, E; Giubellino, P; Hernández-Montoya, R; Kolojvari, A A; Montaño, L M; Nouais, D; Piemonte, C; Rashevsky, A; Tosello, F; Vacchi, A; Wheadon, R

    2001-01-01

    A Silicon Drift Detector (SDD) with an active area of 7.0 x 7.5 cm2 has been designed, produced and tested for the ALICE Inner Tracking System. The development of the SDD has been focussed on the capability of the detector to work without an external support to the integrated high voltage divider. Severalfeatures have been implemented in the design in order to increase the robustness and the long-term electrical stability of the detector. One of the prototypes has been tested in a pion beam at the CERN SPS. Preliminary results on the position resolution are given.

  3. Silicon technologies for the CLIC vertex detector

    Science.gov (United States)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  4. Silicon pixel-detector R&D for CLIC

    Science.gov (United States)

    Nürnberg, A.

    2016-11-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (~ 0.2%X0 per layer for the vertex region and ~ 1%X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer tracking region, both hybrid concepts and fully integrated CMOS sensors are under consideration. The feasibility of ultra-thin sensor layers is validated with Timepix3 readout ASICs bump bonded to active edge planar sensors with 50 μm to 150 μm thickness. Prototypes of CLICpix readout ASICs implemented in 6525 nm CMOS technology with 25 μm pixel pitch have been produced. Hybridisation concepts have been developed for interconnecting these chips either through capacitive coupling to active HV-CMOS sensors or through bump-bonding to planar sensors. Recent R&D achievements include results from beam tests with all types of hybrid assemblies. Simulations based on Geant4 and TCAD are used to validate the experimental results and to assess and optimise the performance of various detector designs.

  5. Silicon Detector Letter of Intent

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, H.; Burrows, P.; Oreglia, M.

    2010-05-26

    This document presents the current status of SiD's effort to develop an optimized design for an experiment at the International Linear Collider. It presents detailed discussions of each of SiD's various subsystems, an overview of the full GEANT4 description of SiD, the status of newly developed tracking and calorimeter reconstruction algorithms, studies of subsystem performance based on these tools, results of physics benchmarking analyses, an estimate of the cost of the detector, and an assessment of the detector R&D needed to provide the technical basis for an optimised SiD.

  6. Silicon Detectors for PET and SPECT

    Science.gov (United States)

    Cochran, Eric R.

    Silicon detectors use state-of-the-art electronics to take advantage of the semiconductor properties of silicon to produce very high resolution radiation detectors. These detectors have been a fundamental part of high energy, nuclear, and astroparticle physics experiments for decades, and they hold great potential for significant gains in both PET and SPECT applications. Two separate prototype nuclear medicine imaging systems have been developed to explore this potential. Both devices take advantage of the unique properties of high resolution pixelated silicon detectors, designed and developed as part of the CIMA collaboration and built at The Ohio State University. The first prototype is a Compton SPECT imaging system. Compton SPECT, also referred to as electronic collimation, is a fundamentally different approach to single photon imaging from standard gamma cameras. It removes the inherent coupling of spatial resolution and sensitivity in mechanically collimated systems and provides improved performance at higher energies. As a result, Compton SPECT creates opportunities for the development of new radiopharmaceuticals based on higher energy isotopes as well as opportunities to expand the use of current isotopes such as 131I due to the increased resolution and sensitivity. The Compton SPECT prototype consists of a single high resolution silicon detector, configured in a 2D geometry, in coincidence with a standard NaI scintillator detector. Images of point sources have been taken for 99mTc (140 keV), 131I (364keV), and 22Na (511 keV), demonstrating the performance of high resolution silicon detectors in a Compton SPECT system. Filtered back projection image resolutions of 10 mm, 7.5 mm, and 6.7 mm were achieved for the three different sources respectively. The results compare well with typical SPECT resolutions of 5-15 mm and validate the claims of improved performance in Compton SPECT imaging devices at higher source energies. They also support the potential of

  7. Neutron transmutation doped silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Krejner, Kh.; Ito, D.; Khusimi, K.; Okava, S.; Sirejsi, F.

    1984-01-01

    A method of doping neutron transmutation during (NTD) of Si crystals is described. Characteristics of detectors made of crystals obtained by the NTD method at low and room temperatures are measured. The possibility is studied of using the NTD method to produce Si crystals with a longer lifetime of non-base charge carriers, high specific resistance and more even distribution of specific resistance over the detector radius. The NTD method is based on /sup 30/Si isotope transmutation into /sup 31/Si following the (n, ..gamma..)-reaction. The /sup 31/Si isotope is unstable and transforms to /sup 31/P while emitting ..beta../sup -/. The NTD method consists in introduction of purified gaseous monosilan SiH/sub 4/ into the furnace to undergo thermal decomposition at 860 deg C with the formation of polycrystalline n-type Si. The polycrystalline Si prepared is treated mechanically and, after purification by the method of a ''floating zone'' in vacuum and in argon irradiated by a thermal neutron flux with the a density of 5x10/sup 11/ neUtr/(cm/sup 2/ x s) for 30-75 min. An analysis of the data obtained shows that the specifications of the Si detectors prepared by the NTD method are the same as those of conventional Si-detectors widely used nowadays but their cost of production is considerably lower.

  8. Silicon buried channels for pixel detector cooling

    Energy Technology Data Exchange (ETDEWEB)

    Boscardin, M., E-mail: boscardi@fbk.eu [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Conci, P.; Crivellari, M.; Ronchin, S. [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Bettarini, S. [Universitá di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Bosi, F. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy)

    2013-08-01

    The support and cooling structures add important contributions to the thickness, in radiation length, of vertex detectors. In order to minimize the material budget of pixel sensors, we developed a new approach to integrate the cooling into the silicon devices. The microchannels are formed in silicon using isotropic SF{sub 6} plasma etching in a DRIE (deep reactive ion etcher) equipment. Due to their peculiar profiles, the channels can be sealed by a layer of a PECVD silicon oxide. We have realized on a silicon wafer microchannels with different geometries and hydraulic diameters. We describe the main fabrication steps of microchannels with focus on the channel definition. The experimental results are reported on the thermal characterization of several prototypes, using a mixture of glycol and water as a liquid coolant. The prototypes have shown high cooling efficiency and high-pressure breaking strength.

  9. Magnetic Czochralski silicon as detector material

    CERN Document Server

    Härkönen, J; Luukka, P; Nordlund, H K; Tuominen, E

    2007-01-01

    The Czochralski silicon (Cz-Si) has intrinsically high oxygen concentration. Therefore Cz-Si is considered as a promising material for the tracking systems in future very high luminosity colliders. In this contribution a brief overview of the Czochralski crystal growth is given. The fabrication process issues of Cz-Si are discussed and the formation of thermal donors is especially emphasized. N+/p−/p+ and p+/n−/n+ detectors have been processed on magnetic Czochralski (MCz-Si) wafers. We show measurement data of AC-coupled strip detectors and single pad detectors as well as experimental results of intentional TD doping. Data of spatial homogeneity of electrical properties, full depletion voltage and leakage current, is shown and n and p-type devices are compared. Our results show that it is possible to manufacture high quality n+/p−/p+ and p+/n−/n+ particle detectors from high-resistivity Cz-Si.

  10. Design and testing of an innovative slim-edge termination for silicon radiation detectors

    Science.gov (United States)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Mattedi, F.; Mendicino, R.; Zorzi, N.

    2013-11-01

    Silicon detectors with reduced or no dead volume along the edges have been attracting a lot of interest in the past few years in many different fields. High Energy Physics (HEP) experiments are demanding this feature to ease the assembly of the innermost tracking layers, where space and material budget are usually a concern. At the same time, other applications like X-Ray imaging, are starting to use matrixes of silicon detectors to cover increasingly larger areas and, in order to do so in a seamless way, minimum edge extension is required. In this paper we report on the design and testing of a new edge termination for silicon 3D detectors able to reduce the edge extension to about 50 μm without increasing the fabrication complexity. In addition, the same edge termination can also be applied to planar detectors with little additional process complexity.

  11. Present status of silicon detectors in COMPASS

    CERN Document Server

    Angerer, H; Esposito, A; Friedrich, J M; Gerassimov, S G; Grube, B; Ketzer, B; Konorov, I; Kühn, R; Paul, S; Schmitt, L; Wagner, R M; Wiesmann, M

    2003-01-01

    In 2002 the COMPASS experiment at CERN has started to take first physics data. The fixed target experiment at the SPS uses muon and hadron beams of very high intensity to investigate the structure of the nucleon. For beam definition and small angle tracking silicon microstrip detectors are used. This article describes the requirements which are set by the physics program of COMPASS for these detectors and the ways they were met, amongst which the operation at a temperature around 130 K (Lazarus effect) is the most prominent. Measurements at low temperatures as well as first results from the operation at room temperature in the COMPASS physics run 2002 are presented.

  12. Silicon drift detectors in the ALICE experiment

    CERN Document Server

    Bonvicini, V; Crescio, E; Giubellino, P; Hernández-Montoya, R; Kolojvari, A A; Mazza, G; Montaño-Zetina, L M; Nissinen, J; Nouais, D; Rashevsky, A; Rivetti, A; Tosello, F; Vacchi, A

    2000-01-01

    Silicon drift detectors (SDDs) are well suited to high-energy physics experiments with relatively low event rates. In particular SDDs will be used for the two intermediate layers of the Inner Tracking System of the ALICE experiment. Beam test results of linear SDD prototypes have shown a resolution of 40*30 mu m/sup 2/ and a cluster finding efficiency of essentially 100% with E=600 V/cm. (6 refs).

  13. The Belle II Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M., E-mail: markus.friedl@oeaw.ac.at [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ackermann, K. [MPI Munich, Föhringer Ring 6, 80805 München (Germany); Aihara, H. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Aziz, T. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Bergauer, T. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Bozek, A. [Institute of Nuclear Physics, Division of Particle Physics and Astrophysics, ul. Radzikowskiego 152, 31 342 Krakow (Poland); Campbell, A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Dingfelder, J. [University of Bonn, Department of Physics and Astronomy, Nussallee 12, 53115 Bonn (Germany); Drasal, Z. [Charles University, Institute of Particle and Nuclear Physics, Ke Karlovu 3, 121 16 Praha 2 (Czech Republic); Frankenberger, A. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Gadow, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Gfall, I. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Haba, J.; Hara, K.; Hara, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Higuchi, T. [University of Tokyo, Kavli Institute for Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Himori, S. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Irmler, C. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ishikawa, A. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Joo, C. [Seoul National University, High Energy Physics Laboratory, 25-107 Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); and others

    2013-12-21

    The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×10{sup 35}cm{sup −2}s{sup −1} in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13m{sup 2} and 223,744 channels—twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics.

  14. Commissioning and operation of the CDF silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    S. D' Auria

    2002-01-18

    The CDF-II silicon detector has been partially commissioned and used for taking preliminary physics data. This paper is a report on commissioning and initial operations of the 5.8m{sup 2} silicon detector. This experience can be useful to the large silicon systems that are presently under construction.

  15. Silicon Technologies for the CLIC Vertex Detector

    CERN Document Server

    Spannagel, Simon

    2017-01-01

    CLIC is a proposed linear e$^+$e$^−$ collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2%$~X_0$ per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50–150$~\\mu$m, including different active edge designs, are evaluated using Timepix3 A...

  16. Recent Progress on 3D Silicon Detectors

    CERN Document Server

    Lange, Jörn

    2015-01-01

    3D silicon detectors, in which the electrodes penetrate the sensor bulk perpendicular to the surface, have recently undergone a rapid development from R\\&D over industrialisation to their first installation in a real high-energy-physics experiment. Since June 2015, the ATLAS Insertable B-Layer is taking first collision data with 3D pixel detectors. At the same time, preparations are advancing to install 3D pixel detectors in forward trackers such as the ATLAS Forward Proton detector or the CMS-TOTEM Proton Precision Spectrometer. For those experiments, the main requirements are a slim edge and the ability to cope with non-uniform irradiation. Both have been shown to be fulfilled by 3D pixel detectors. For the High-Luminosity LHC pixel upgrades of the major experiments, 3D detectors are promising candidates for the innermost pixel layers to cope with harsh radiation environments up to fluences of $2\\times10^{16}$\\,n$_{eq}$/cm$^2$ thanks to their excellent radiation hardness at low operational voltages and ...

  17. Amorphous silicon detectors in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  18. Silicon Strip Detectors for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Miñano, M; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called High Luminosity LHC (HL-LHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity up to 5 x 1034 cm-2 s-1. The ATLAS experiment will need to build a new tracker for HL operation, which would cope with the increase in pile-up backgrounds at the higher luminosity. A new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a number of different designs. The irradiated sensors were subsequently tested in order to study the radiation-induced degradation, and determine their performance after irradiation of up to ...

  19. The STAR silicon vertex tracker: a large area silicon drift detector

    CERN Document Server

    Lynn, D; Beuttenmüller, Rolf H; Caines, H; Chen, W; Dimassimo, D; Dyke, H; Elliot, D; Eremin, V; Grau, M; Hoffmann, G W; Humanic, T; Ilyashenko, Yu S; Kotov, I; Kraner, H W; Kuczewski, P; Leonhardt, B; Li, Z; Liaw, C J; Lo Curto, G; Middelkamp, P; Minor, R; Munhoz, M; Ott, G; Pandey, S U; Pruneau, C A; Rykov, V L; Schambach, J; Sedlmeir, J; Soja, B; Sugarbaker, E R; Takahashi, J; Wilson, K; Wilson, R

    2000-01-01

    The Solenoidal Tracker At RHIC-Silicon Vertex Tracker (STAR-SVT) is a three barrel microvertex detector based upon silicon drift detector technology. As designed for the STAR-SVT, silicon drift detectors (SDDs) are capable of providing unambiguous two-dimensional hit position measurements with resolutions on the order of 20 mu m in each coordinate. Achievement of such resolutions, particularly in the drift direction coordinate, depends upon certain characteristics of silicon and drift detector geometry that are uniquely critical for silicon drift detectors hit measurements. Here we describe features of the design of the STAR-SVT SDDs and the front-end electronics that are motivated by such characteristics.

  20. Detector performance of the ALICE silicon pixel detector

    CERN Document Server

    Cavicchioli, C

    2011-01-01

    The ALICE Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). It consists of two barrel layers of hybrid silicon pixel detectors at radii of 39 and 76 mm. The physics targets of the ALICE experiment require that the material budget of the SPD is kept within approximate to 1\\%X(0) per layer. This has set some stringent constraints on the design and construction of the SPD. A unique feature of the ALICE SPD is that it is capable of providing a prompt trigger signal, called Fast-OR, which contributes to the L0 trigger decision. The pixel trigger system allows to apply a set of algorithms for the trigger selection, and its output is sent to the Central Trigger Processor (CTP). The detector has been installed in the experiment in summer 2007. During the first injection tests in June 2008 the SPD was able to record the very first sign of life of the LHC by registering secondary particles from the beam dumped upstream the ALICE experiment. In the following months the...

  1. Ultra-Fast Silicon Detectors for 4D tracking

    Science.gov (United States)

    Sola, V.; Arcidiacono, R.; Bellora, A.; Cartiglia, N.; Cenna, F.; Cirio, R.; Durando, S.; Ferrero, M.; Galloway, Z.; Gruey, B.; Freeman, P.; Mashayekhi, M.; Mandurrino, M.; Monaco, V.; Mulargia, R.; Obertino, M. M.; Ravera, F.; Sacchi, R.; Sadrozinski, H. F.-W.; Seiden, A.; Spencer, N.; Staiano, A.; Wilder, M.; Woods, N.; Zatserklyaniy, A.

    2017-02-01

    We review the progress toward the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~ 10 larger than standard silicon detectors.

  2. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    Science.gov (United States)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  3. Cryogenic Silicon Microstrip Detector Modules for LHC

    CERN Document Server

    Perea-Solano, B

    2004-01-01

    CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3 1014 cm-2 of hadrons or charged leptons. This is insufficient, however, for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade of the LHC. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. This work proposes a cryogenic microstrip detector module concept which has the features required for the microstrip trackers of the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements in the ATLAS, CMS and TOTEM experiments. The design o...

  4. Epitaxial silicon semiconductor detectors, past developments, future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Gruhn, C.R.

    1976-01-01

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized.

  5. Epitaxial silicon semiconductor detectors: past developments, future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Gruhn, C.R.

    1977-02-01

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized.

  6. The PHENIX Forward Silicon Vertex Detector

    CERN Document Server

    Aidala, C; Anderssen, LE; Bambaugh, A; Barron, A; Boissevain, J G; Bok, J; Boose, S; Brooks, M L; Butsyk, S; Cepeda, LM; Chacon, P; Chacon, S; Chavez, L; Cote, T; D'Agostino, C; Datta, A; DeBlasio, K; DelMonte, L; Desmond, E J; Durham, J M; Fields, D; Finger, M; Gingu, C; Gonzales, B; Haggerty, J S; Hawke, T; van Hecke, H W; Herron, M; Hoff, J; Huang, J; Jiang, X; Johnson, LT; Jonas, M; Kapustinsky, J; Key, A; Kunde, G J; LaBounty, J; Lee, D M; Lee, K B; Leitch, M J; Lenz, M; Lenz, W; Liu, M X; Lynch, D; Mannel, E; McGaughey, P L; Meles, A; Meredith, B; Nguyen, H; O'Brien, E; Pak, R; Papavassiliou, V; Pate, S; Pereira, H; Perera, G D N; Phillips, M; Pisani, R; Polizzo, S; Poncione, R J; Popule, J; Prokop, M; Purschke, M L; Purwar, A K; Ronzhina, N; Silva, C L; Slunecka, M; Smith, R; Sondheim, W E; Spendier, K; Stoffer, M; Tennant, E; Thomas, D; Tomasek, M; Veicht, A; Vrba, V; Wang, X R; Wei, F; Winter, D; Yarema, R; You, Z; Zimmerman, A; Zimmerman, T

    2013-01-01

    A new silicon detector has been developed to provide the PHENIX experiment with precise charged particle tracking at forward and backward rapidity. The Forward Silicon Vertex Tracker (FVTX) was installed in PHENIX prior to the 2012 run period of the Relativistic Heavy Ion Collider (RHIC). The FVTX is composed of two annular endcaps, each with four stations of silicon mini-strip sensors, covering a rapidity range of $1.2<|\\eta|<2.2$ that closely matches the two existing PHENIX muon arms. Each station consists of 48 individual silicon sensors, each of which contains two columns of mini-strips with 75 $\\mu$m pitch in the radial direction and lengths in the $\\phi$ direction varying from 3.4 mm at the inner radius to 11.5 mm at the outer radius. The FVTX has approximately 0.54 million strips in each endcap. These are read out with FPHX chips, developed in collaboration with Fermilab, which are wire bonded directly to the mini-strips. The maximum strip occupancy reached in central Au-Au collisions is approxim...

  7. Through silicon vias filled with planarized carbon nanotube bundles.

    Science.gov (United States)

    Wang, Teng; Jeppson, Kjell; Olofsson, Niklas; Campbell, Eleanor E B; Liu, Johan

    2009-12-02

    The feasibility of using carbon nanotube (CNT) bundles as the fillers of through silicon vias (TSVs) has been demonstrated. CNT bundles are synthesized directly inside TSVs by thermal chemical vapor deposition (TCVD). The growth of CNTs in vias is found to be highly dependent on the geometric dimensions and arrangement patterns of the vias at atmospheric pressure. The CNT-Si structure is planarized by a combined lapping and polishing process to achieve both a high removal rate and a fine surface finish. Electrical tests of the CNT TSVs have been performed and their electrical resistance was found to be in the few hundred ohms range. The reasons for the high electrical resistance have been discussed and possible methods to decrease the electrical resistance have been proposed.

  8. The CDF Run IIb silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, M.; Bacchetta, N.; Behari, S.; Benjamin, D.; Bisello, D.; Bolla, G.; Bortoletto, D.; Burghard, A.; Busetto, G.; Cabrera, S.; Canepa, A.; Castro, A.; Cardoso, G.; Chertok, M.; Ciobanu, C.; Derylo, G.; Fang, I.; Flaugher, B. E-mail: brenna@fnal.gov; Freeman, J.; Galtieri, L.; Galyardt, J.; Garcia-Sciveres, M.; Giurgiu, G.; Gorelov, I.; Haber, C.; Hara, K.; Hoeferkamp, M.; Holbrook, B.; Hrycyk, M.; Junk, T.; Kim, S.; Kobayashi, K.; Krieger, B.; Kruse, M.; Lander, R.; Lu, R.-S.; Lukens, P.; Malferrari, L.; Manea, C.; Margotti, A.; Maksimovic, P.; Merkel, P.; Moccia, S.; Nakano, I.; Naoumov, D.; Novak, J.; Okusawa, T.; Orlov, Y.; Pancaldi, G.; Pantano, D.; Pavlicek, V.; Pellett, D.; Seidel, S.; Semeria, F.; Takei, Y.; Tanaka, R.; Wang, Z.; Watje, P.; Weber, M.; Wester, W.; Wilkes, T.; Yamamoto, K.; Yao, W.; Zimmermann, S.; Zucchelli, S.; Zucchini, A

    2004-02-01

    Fermilab plans to deliver 5-15 fb{sup -1} of integrated luminosity to the CDF and D0 experiments. The current inner silicon detectors at CDF (SVXIIa and L00) will not tolerate the radiation dose associated with high-luminosity running and will need to be replaced. A new readout chip (SVX4) has been designed in radiation-hard 0.25 {mu}m, CMOS technology. Single-sided sensors are arranged in a compact structure, called a stave, with integrated readout and cooling systems. This paper describes the general design of the Run IIb system, testing results of prototype electrical components (staves), and prototype silicon sensor performance before and after irradiation.

  9. Cryogenic detector modules and edgeless silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rouby, X. [Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium)]. E-mail: rouby@fynu.ucl.ac.be; Eremin, V. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Grohmann, S. [ILK Dresden, Bertolt-Brecht-Allee 20, D-01309 Dresden (Germany); Haerkoenen, J. [Helsinki Institute of Physics, 00014 Helsinki (Finland); Li, Z. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Luukka, P. [Helsinki Institute of Physics, 00014 Helsinki (Finland); Militaru, O. [Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Niinikoski, T. [CERN, CH-1211 Geneva (Switzerland); Nuessle, G. [CERN, CH-1211 Geneva (Switzerland); Perea Solano, B. [CERN, CH-1211 Geneva (Switzerland); Piotrzkowski, K. [Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Tuovinen, E. [Helsinki Institute of Physics, 00014 Helsinki (Finland); Verbitskaya, E. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)

    2007-01-11

    We are studying the operation of silicon microstrip detector with readout electronics in the temperature range from 90 to 130K. The sensor can be operated in the current-injection mode which significantly improves its radiation hardness. A first module prototype has been built, with APV25 readout chips and an embedded microtube, providing efficient low-mass cooling of the whole module with a two-phase flow of N{sub 2} or Ar. First pedestal and pulse shape temperature dependencies are presented for this module. We have also built an edgeless test module with two pairs of laser cut sensors, with both angular and parallel cuts with respect to the strips (at 120{mu}m pitch). We are studying the efficiency of the microstrip sensors very close (<200{mu}m) to the physical border of the cut silicon crystal and present here some electrical characteristics.

  10. Status and performance of the CDF Run II silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Tuula; /Helsinki Inst. of Phys.

    2006-10-01

    The CDF silicon detector is one of the largest silicon detectors in operation. It has a total of 722,432 electronic channels, and it covers a sensor surface area of 6 m{sup 2}. The detector has been operating reliably for five years, and it has recorded 1.5 fb{sup -1} of data. This article discusses experiences of operating such a large, complex system as well as the longevity of the detector.

  11. Commissioning of Silicon detectors for the COMPASS experiment at CERN

    CERN Document Server

    Wagner, R M

    2001-01-01

    This document describes the silicon microstrip detectors used in the COMPASS experiment. The main features of silicon microstrip detectors, mechanisms of radiation damages and the principles of the Lazarus effect are reviewed. The specific realization of silicon microstrip detectors in the COMPASS experiment is described. Production and tests done in the lab are discussed. Here, emphasis is placed on the noise performance of the detectors. The analysis of readout and performance tests in a test beam at CERN is done. Commissioning, debugging and first tests of the detectors and of the readout system on the COMPASS beam line in the 2001 beam time are presented.

  12. Ultra-fast silicon detectors (UFSD)

    Science.gov (United States)

    Sadrozinski, H. F.-W.; Anker, A.; Chen, J.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gruey, B.; Grabas, H.; John, C.; Liang, Z.; Losakul, R.; Mak, S. N.; Ng, C. W.; Seiden, A.; Woods, N.; Zatserklyaniy, A.; Baldassarri, B.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Pellegrini, G.; Hidalgo, S.; Baselga, M.; Carulla, M.; Fernandez-Martinez, P.; Flores, D.; Merlos, A.; Quirion, D.; Mikuž, M.; Kramberger, G.; Cindro, V.; Mandić, I.; Zavrtanik, M.

    2016-09-01

    We report on measurements on Ultra-Fast Silicon Detectors (UFSD) which are based on Low-Gain Avalanche Detectors (LGAD). They are n-on-p sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction, obtained with a highly doped implant. We have performed several beam tests with LGAD of different gain and report the measured timing resolution, comparing it with laser injection and simulations. For the 300 μm thick LGAD, the timing resolution measured at test beams is 120 ps while it is 57 ps for IR laser, in agreement with simulations using Weightfield2. For the development of thin sensors and their readout electronics, we focused on the understanding of the pulse shapes and point out the pivotal role the sensor capacitance plays.

  13. Ultra-fast silicon detectors (UFSD)

    Energy Technology Data Exchange (ETDEWEB)

    Sadrozinski, H.F.-W., E-mail: hartmut@ucsc.edu [SCIPP, Univ. of California Santa Cruz, CA 95064 (United States); Anker, A.; Chen, J.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gruey, B.; Grabas, H.; John, C.; Liang, Z.; Losakul, R.; Mak, S.N.; Ng, C.W.; Seiden, A.; Woods, N.; Zatserklyaniy, A. [SCIPP, Univ. of California Santa Cruz, CA 95064 (United States); Baldassarri, B.; Cartiglia, N.; Cenna, F.; Ferrero, M. [Univ. of Torino and INFN, Torino (Italy); and others

    2016-09-21

    We report on measurements on Ultra-Fast Silicon Detectors (UFSD) which are based on Low-Gain Avalanche Detectors (LGAD). They are n-on-p sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction, obtained with a highly doped implant. We have performed several beam tests with LGAD of different gain and report the measured timing resolution, comparing it with laser injection and simulations. For the 300 μm thick LGAD, the timing resolution measured at test beams is 120 ps while it is 57 ps for IR laser, in agreement with simulations using Weightfield2. For the development of thin sensors and their readout electronics, we focused on the understanding of the pulse shapes and point out the pivotal role the sensor capacitance plays.

  14. Characterization of Silicon Detector Readout Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M. [Purdue U.

    2015-07-22

    Configuration and calibration of the front-end electronics typical of many silicon detector configurations were investigated in a lab activity based on a pair of strip sensors interfaced with FSSR2 read-out chips and an FPGA. This simple hardware configuration, originally developed for a telescope at the Fermilab Test Beam Facility, was used to measure thresholds and noise on individual readout channels and to study the influence that different configurations of the front-end electronics had on the observed levels of noise in the system. An understanding of the calibration and operation of this small detector system provided an opportunity to explore the architecture of larger systems such as those currently in use at LHC experiments.

  15. Recent results with HV-CMOS and planar sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627

    2016-01-01

    The physics aims for the future multi-TeV e+e- Compact Linear Collider (CLIC) impose high precision requirements on the vertex detector which has to match the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of 3μm, 10 ns time stamping capabilities, low mass (⇠0.2% X0 per layer), low power dissipation and pulsed power operation. Recent results of test beam measurements and GEANT4 simulations for assemblies with Timepix3 ASICs and thin active-edge sensors are presented. The 65 nm CLICpix readout ASIC with 25μm pitch was bump bonded to planar silicon sensors and also capacitively coupled through a thin layer of glue to active HV-CMOS sensors. Test beam results for these two hybridisation concepts are presented.

  16. A beta-ray spectrometer based on a two-or three silicon detector coincidence telescope

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S. [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics; Weizman, Y. [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics; Hirning, C.R. [Health Physics Dept., Ontario Hydro, Whitby (Canada)

    1995-03-11

    This report describes the operation of a beta-ray energy spectrometer based on a silicon detector telescope using two or three elements. The front detector is a planar, totally-depleted, silicon surface barrier detector that is 97 {mu}m thick, the back detector is a room-temperature, lithium compensated, silicon detector that is 5000 {mu}m thick, and the intermediate detector is similar to the front detector but 72 {mu}m thick and intended to be used only in intense photon fields. The three detectors are mounted in a light-tight aluminum housing. The capability of the spectrometer to reject photons is based upon the fact that the incident photon will have a small probability of simultaneously losing detectable energy in two detectors, and an even smaller probability of losing detectable energy in all three detectors. Electrons will, however, almost always record measurable events in either the front two or all three detectors. A coincidence requirement between the detectors thus rejects photon induced events. With a 97 {mu}m thick detector the lower energy coincidence threshold is approximately 110 keV. With an ultra-thin 40 {mu}m thick front detector, and operated at 15 C, the spectrometer is capable of detecting even 60-70 keV electrons with a coincidence efficiency of 60%. The spectrometer has been used to measure beta radiation fields in CANDU reactor working environments, and the spectral information is intended to support dose algorithms for the LiF TLD chips used in the Ontario Hydro dosimetry program. (orig.).

  17. The ALICE Silicon Pixel Detector System

    CERN Document Server

    Fadmar Osmic, FO

    2006-01-01

    The European Organization for Particle Physics (CERN) in Geneva is currently constructing the Large Hadron Collider (LHC), which will allow the study of the subnuclear ranges of physics with an accuracy never achieved before. Within the LHC project, ALICE is to the study of strongly interacting matter at extreme densities and high temperatures. ALICE as many other modern High Energy Physics (HEP) experiments uses silicon pixel detectors for tracking close to the interaction point (IP). The ALICE Silicon Pixel Detector (SPD) will constitute the two innermost layers of ALICE, and will due to its high granularity provide precise tracking information. In heavy ion collisions, the track density could be as high as 80 tracks/cm2 in the first SPD layer. The SPD will provide tracking information at radii of 3.9 and 7.6 cm from the IP. It is a fundamental element for the study of the weak decays of the particles carrying heavy flavour, whose typical signature will be a secondary vertex separated from the primary verte...

  18. Thermal experiment of silicon PIN detector

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-Fei; ZOU Ji-Qing; SHI Wei-Hong; ZOU Hong; HU Ran-Sheng; TIAN Da-Yu

    2008-01-01

    The experiment of this paper is the thermal test of the leakage current of silicon PIN detector.Raising temperature may cause the detector to increase leakage current,decrease depletion and increase noise.Three samples are used in the experiment.One (called △E) is the sample of 100 tan in thickness.The other two (called E1 and E2) are stacks of five detectors of 1000 μm in thickness.All of them are 12 mm in diameter.The experiment has been done for 21 hours and with power on continuously.The samples have undergone more than 60 ℃ for about one hour.They are not degenerated when back to the room temperature.The depletion rate is temperature and bias voltage related.With the circuit of the experiment and temperature at 35 ℃,△E is still depleted while E1 and E2 are 94.9% and 99.7% depleted respectively.The noises of the samples can be derived from the values at room temperature and the thermal dependence of the leakage currents.With the addition of the noise of the pre-amplifier,the noises of E1,E2 and AE at 24 ℃ are 16.4,16.3,and 10.5 keV (FWHM) respectively while at 35 ℃ are about 33.6,33.1,and 20.6 keV (FWHM) respectively.

  19. Development of Radiation Hard Radiation Detectors, Differences between Czochralski Silicon and Float Zone Silicon

    CERN Document Server

    Tuominen, Eija

    2012-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made ofsilicon are cost effective and have excellent position resolution. Therefore, they are widely used fortrack finding and particle analysis in large high-energy physics experiments. Silicon detectors willalso be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (LargeHadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work wasdone in the CMS programme of Helsinki Institute of Physics (HIP).Exposure of the silicon material to particle radiation causes irreversible defects that deteriorate theperformance of the silicon detectors. In HIP CMS Programme, our approach was to improve theradiation hardness of the silicon material with increased oxygen concentration in silicon material. Westudied two different methods: diffusion oxygenation of Float Zone silicon and use of high resistivityCzochralski silicon.We processed, characterised, tested in a parti...

  20. Measurements with Irradiated 3D Silicon Strip Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, M. [University of Freiburg (Germany); Bates, R. [University of Glasgow (United Kingdom); Dalla Betta, G.-F. [University of Trento and INFN sez. Trento (Italy); Fleta, C. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Barcelona (Spain); Haerkoenen, J. [Helsinki Institute of Physics (Finland); Jakobs, K. [University of Freiburg (Germany); Lozano, M. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Barcelona (Spain); Maeenpaeae, T.; Moilanen, H. [Helsinki Institute of Physics (Finland); Parkes, C. [University of Glasgow (United Kingdom); Parzefall, U. [University of Freiburg (Germany); Pellegrini, G. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Barcelona (Spain); Sadrozinski, H. [Santa Cruz Institute of Particle Physics (United States); Spiegel, L. [Fermi National Accelerator Laboratory, Batavia (United States); Wiik, L. [University of Freiburg (Germany)

    2011-06-15

    For the unprecedentedly high radiation level at the sLHC, the luminosity upgrade of the LHC, new tracking detectors are investigated. Among different approaches, silicon detectors in 3D technology constitute a promising option. Columnar electrodes are etched into the substrate, therefore the distance for charge collection and depletion is decoupled from the detector thickness. Thus, two of the detrimental effects caused by radiation in silicon (increased depletion voltage and charge carrier trapping) can be reduced. Results of measurements with irradiated 3D silicon strip detectors produced by IMB-CNM are presented.

  1. Design optimization of ultra-fast silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cartiglia, N., E-mail: cartiglia@to.infn.it [INFN Torino (Italy); Arcidiacono, R. [Università del Piemonte Orientale, Novara (Italy); Baselga, M. [Centro Nacional de Microeletronica, IMB-CNM, Barcelona (Spain); Bellan, R. [Università di Torino, Torino (Italy); Boscardin, M. [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Cenna, F. [INFN Torino (Italy); Dalla Betta, G.F. [Università di Trento, Via Sommarive 9, 38123 Trento (Italy); Fernndez-Martnez, P. [Centro Nacional de Microeletronica, IMB-CNM, Barcelona (Spain); Ferrero, M. [INFN Torino (Italy); Università di Torino, Torino (Italy); Flores, D. [Centro Nacional de Microeletronica, IMB-CNM, Barcelona (Spain); Galloway, Z. [Santa Cruz Institute for Particle Physics UC Santa Cruz, CA 95064 (United States); Greco, V.; Hidalgo, S. [Centro Nacional de Microeletronica, IMB-CNM, Barcelona (Spain); Marchetto, F. [INFN Torino (Italy); Monaco, V. [Università di Torino, Torino (Italy); Obertino, M. [Università del Piemonte Orientale, Novara (Italy); Pancheri, L. [Università di Trento, Via Sommarive 9, 38123 Trento (Italy); Paternoster, G. [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Picerno, A. [Università di Torino, Torino (Italy); Pellegrini, G. [Centro Nacional de Microeletronica, IMB-CNM, Barcelona (Spain); and others

    2015-10-01

    Low-Gain Avalanche Diodes (LGAD) are silicon detectors with output signals that are about a factor of 10 larger than those of traditional sensors. In this paper we analyze how the design of LGAD can be optimized to exploit their increased output signal to reach optimum timing performances. Our simulations show that these sensors, the so-called Ultra-Fast Silicon Detectors (UFSD), will be able to reach a time resolution factor of 10 better than that of traditional silicon sensors.

  2. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    CERN Document Server

    Li, Zheng; Verbitskaya, Elena; Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R; Alexopoulos, Andreas; Kurfürst, Christoph; Härkönen, Jaakko

    2016-01-01

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 10 16 protons/cm 2 while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development—results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014—is presented. Our main finding is that silicon detectors survive under irradiation to 1×10 16 p/cm 2 at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode.

  3. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    Science.gov (United States)

    Li, Zheng; Eremin, Vladimir; Verbitskaya, Elena; Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas; Kurfürst, Christoph; Härkönen, Jaakko

    2016-07-01

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 1016 protons/cm2 while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development-results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014-is presented. Our main finding is that silicon detectors survive under irradiation to 1×1016 p/cm2 at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode.

  4. Digital autoradiography using silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Overdick, M.

    1998-05-01

    Spatially resolving radiation detection systems operating in real time can be used to acquire autoradiographic images. An overview over alternatives to traditional autoradiography is given and the special features of these filmless methods are discussed. On this basis the design of a system for digital autoradiography using silicon strip detectors is presented. Special emphasis is put on the physical background of the detection process in the semiconductor and on the self-triggering read-out technique. The practical performance of the system is analyzed with respect to energy and spatial resolution. This analysis is complemented by case studies from cell biology (especially electrophoresis), botany and mineralogy. Also the results from a time-resolved autoradiographic experiment are presented. (orig.) 80 refs.

  5. Silicon strip detectors for two-dimensional soft X-ray imaging at normal incidence

    Energy Technology Data Exchange (ETDEWEB)

    Rato Mendes, P. E-mail: rato@lip.pt; Abreu, M.C.; Baldazzi, G.; Bollini, D.; Cabal Rodriguez, A.E.; Dabrowski, W.; Diaz Garcia, A.; Gambaccini, M.; Giubellino, P.; Gombia, M.; Grybos, P.; Idzik, M.; Marzari-Chiesa, A.; Montano, L.M.; Prino, F.; Ramello, L.; Rodrigues, S.; Sitta, M.; Sousa, P.; Swientek, K.; Taibi, A.; Tuffanelli, A.; Wheadon, R.; Wiacek, P

    2003-08-21

    A simple prototype system for static two-dimensional soft X-ray imaging using silicon microstrip detectors irradiated at normal incidence is presented. Radiation sensors consist of single-sided silicon detectors made from 300 {mu}m thick wafers, read by RX64 ASICs. Data acquisition and control is performed by a Windows PC workstation running dedicated LabVIEW routines, connected to the sensors through a PCI-DIO-96 interface. Two-dimensional images are obtained by scanning a lead collimator with a thin slit perpendicular to the strip axis, along the whole detector size; the several strip profiles (slices) taken at each position are then put together to form a planar image. Preliminary results are presented, illustrating the high-resolution imaging capabilities of the system with soft X-rays.

  6. Tracking and Alignment Performance of the LHCb silicon detectors

    CERN Document Server

    Borghi, Silvia

    2011-01-01

    The LHCb experiment is primarily dedicated to the study of new physics through the heavy flavour decays. The tracking system of LHCb is composed of a silicon micro-strip vertex detector, two silicon strip tracker detectors and straw-tube drift chambers in front of and behind a dipole generating a magnetic field. This system provides precise measure of the vertex position and high momentum resolution. The performances of the silicon tracking subdetectors in terms of hit resolution and detector efficiencies, as well as on the overall track reconstruction performance and the alignment status, are reported.

  7. Charge-trap correction and radiation damage in orthogonal-strip planar germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, E.L. [PHDS Corporation, 3011 Amherst Road, Knoxville, TN 37921 (United States); Jackson, E.G.; Lister, C.J. [Physics Department, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Pehl, R.H. [PHDS Corporation, 3011 Amherst Road, Knoxville, TN 37921 (United States)

    2014-10-21

    A charge-carrier trap correction technique was developed for orthogonal strip planar germanium gamma-ray detectors. The trap corrector significantly improves the gamma-ray energy resolution of detectors with charge-carrier trapping from crystal-growth defects and radiation damage. Two orthogonal-strip planar germanium detectors were radiation damaged with 2-MeV neutron fluences of ∼8×10{sup 9} n/cm{sup 2}. The radiation-damaged detectors were studied in the 60–80 K temperature range.

  8. Investigation of silicon sensors for their use as antiproton annihilation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pacifico, N., E-mail: nicola.pacifico@cern.ch [University of Bergen, Institute of Physics and Technology, Allégaten 55, 5007 Bergen (Norway); Aghion, S. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Milano, Via Celoria 16, 20133 Milano (Italy); Ahlén, O. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Belov, A.S. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation); Bonomi, G. [University of Brescia, Department of Mechanical and Industrial Engineering, Via Branze 38, 25133 Brescia (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, Via Agostino Bassi 6, 27100 Pavia (Italy); Bräunig, P. [Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany); Bremer, J. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Brusa, R.S. [Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento (Italy); INFN-TIFPA, via Sommarive 14, 38123 Povo, Trento (Italy); Burghart, G. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Cabaret, L. [Laboratoire Aimé Cotton, CNRS, Université Paris Sud, ENS Cachan, Bâtiment 505, Campus d' Orsay, 91405 Orsay Cedex (France); Caccia, M. [University of Insubria, Dipartimento di Scienza ed Alta Tecnologia, via Valleggio 11, Como (Italy); Canali, C. [University of Zurich, Physics Institute, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Caravita, R. [Istituto Nazionale di Fisica Nucleare, Sez. di Genova, Via Dodecaneso 33, 16146 Genova (Italy); University of Genoa, Department of Physics, Via Dodecaneso 33, 16146 Genova (Italy); Castelli, F. [University of Milano, Department of Physics, Via Celoria 16, 20133 Milano (Italy); and others

    2014-11-21

    We present here a new application of silicon sensors aimed at the direct detection of antinucleons annihilations taking place inside the sensor's volume. Such detectors are interesting particularly for the measurement of antimatter properties and will be used as part of the gravity measurement module in the AEg{sup ¯}IS experiment at the CERN Antiproton Decelerator. One of the goals of the AEg{sup ¯}IS experiment is to measure the gravitational acceleration of antihydrogen with 1% precision. Three different silicon sensor geometries have been tested with an antiproton beam to investigate their properties as annihilation detection devices: strip planar, 3D pixels and monolithic pixel planar. In all cases we were successfully detecting annihilations taking place in the sensor and we were able to make a first characterization of the clusters and tracks.

  9. MTF study of planar small pixel pitch quantum IR detectors

    Science.gov (United States)

    Gravrand, O.; Baier, N.; Ferron, A.; Rochette, F.; Berthoz, J.; Rubaldo, L.; Cluzel, R.

    2014-06-01

    The actual trend in quantum IR detector development is the design of very small pixel pitch large arrays. From previously 30μm pitch, the standard pixel pitch is today 15μm and is expected to decrease to 12μm in the next few years. Furthermore, focal plane arrays (FPA) with pixel pitch as small as small as 10μm has been demonstrated. Such ultra-small pixel pitches are very small compared to the typical length ruling the electrical characteristics of the absorbing materials, namely the minority carrier diffusion length. As an example for low doped N type HgCdTe or InSb material, this diffusion length is of the order of 30 to 50μm, i.e. 3 to 5 times the targeted pixel pitches. This has strong consequences on the modulation transfer function (MTF) for planar structures, where the lateral extension of the photodiode is limited by diffusion. For such aspect ratios, the self-confinement of neighboring diodes may not be efficient enough to maintain optimal MTF. Therefore, this issue has to be addressed in order to take full benefits of the pixel pitch reduction in terms of image resolution. This paper aims at investigating the MTF evolution of HgCdTe and InSb FPAs decreasing the pixel pitch below 15μm. Both experimental measurements and finite element simulations are used to discuss this issue. Different scenarii will be compared, namely deep mesa etch between pixels, internal drift, surface recombination, thin absorbing layers.

  10. Spectral response of multi-element silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K. [Univ. of California, Berkeley, CA (United States)

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  11. Performance of novel silicon n-in-p planar Pixel Sensors

    CERN Document Server

    Gallrapp, C; Macchiolo, A; Nisius, R; Pernegger, H; Richter, R H; Weigell, P

    2012-01-01

    The performance of novel n-in-p planar pixel detectors, designed for future upgrades of the ATLAS Pixel system is presented. The n-in-p silicon sensors technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. The n-in-p modules presented here, are composed of pixel sensors produced by CiS connected by bump-bonding to the ATLAS readout chip FE-I3. The characterization of these devices has been performed before and after irradiation up to a fluence of 5 x 10**15 neq/cm2 . Charge collection measurements carried out with radioactive sources have proven the functioning of this technology up to these particle fluences. First results from beam test data with a 120 GeV/c pion beam at the CERN-SPS are also discussed, demonstrating a high tracking efficiency before irradiation, and a high collected charge for a device irradiated at a fluence of 5 x 10**15 neq/cm2 .

  12. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng [National-Provincial Laboratory of Special Function Thin Film Materials, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China); Eremin, Vladimir [Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021 (Russian Federation); Verbitskaya, Elena, E-mail: elena.verbitskaya@cern.ch [Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021 (Russian Federation); Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas [CERN, CH-1211, Geneva 23 (Switzerland); Kurfürst, Christoph [Technische Universität, Universitätsring 1, 1010 Wien (Austria); Härkönen, Jaakko [Helsinki Institute of Physics, Gustaf Hällströminkatu, 200014 Helsingin yliopisto (Finland)

    2016-07-11

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 10{sup 16} protons/cm{sup 2} while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development—results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014—is presented. Our main finding is that silicon detectors survive under irradiation to 1×10{sup 16} p/cm{sup 2} at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode. - Highlights: • Activities aimed at upgrading of Beam Loss Monitors (BLM) at HL-LHC are described. • Overview of in situ radiation tests of silicon BLMs immersed in LHe is presented. • Silicon detectors with 300 and 100 μm thickness survived radiation at 1.9 K. • Current injection is still effective at 1.9 K for radiation hardness improvement. • Si detectors are currently installed on the magnets for their operation as BLMs.

  13. Degradation of charge sharing after neutron irradiation in strip silicon detectors with different geometries

    CERN Document Server

    Casse, G

    2013-01-01

    The aim of the CERN/RD50 collaboration is the improvement of the radiation tolerance of semiconductor detectors for future experiments at high-luminosity colliders. In the RD50 framework, evidence of enhanced signal charge in severely irradiated silicon detectors (diodes, segmented planar and 3D devices) was found. The underlying mechanism was labelled charge multiplication. This has been one of the most exciting results from the research activity of RD50 because it could allow for a greatly extended radiation tolerance, if the mechanism is to be found controllable and tuneable. The charge multiplication mechanism is governed by impact ionisation from electrons drifting in high electric field. The electric field profile is influenced by the geometry of the implanted electrodes. In order to investigate the influence of the diode implantation geometry on charge multiplication, the RD50 collaboration has commissioned the production of miniature microstrip silicon sensors with various choices of strip pitch and s...

  14. Characterisation of micro-strip and pixel silicon detectors before and after hadron irradiation

    CERN Document Server

    Allport, P.P

    2012-01-01

    The use of segmented silicon detectors for tracking and vertexing in particle physics has grown substantially since their introduction in 1980. It is now anticipated that roughly 50,000 six inch wafers of high resistivity silicon will need to be processed into sensors to be deployed in the upgraded experiments in the future high luminosity LHC (HL-LHC) at CERN. These detectors will also face an extremely severe radiation environment, varying with distance from the interaction point. The volume of required sensors is large and their delivery is required during a relatively short time, demanding a high throughput from the chosen suppliers. The current situation internationally, in this highly specialist market, means that security of supply for large orders can therefore be an issue and bringing additional potential vendors into the field can only be an advantage. Semiconductor companies that could include planar sensors suitable for particle physics in their product lines will, however, need to prove their pro...

  15. Adaptive silicone-membrane lenses: planar vs. shaped membrane

    CSIR Research Space (South Africa)

    Schneider, F

    2009-08-01

    Full Text Available -section. The lens systems incorporate a piezo actuator which is operated in a regime of ±40 V. The shaped membrane lenses show lower wave front errors than the planar ones, down to 24 nm. However, the system with a planar membrane achieves a larger refractive power...

  16. Development, prototyping and characterization of double sided silicon strip detectors

    Science.gov (United States)

    Topkar, Anita; Singh, Arvind; Aggarwal, Bharti; Kumar, Amit; Kumar, Arvind; Murali Krishna, L. V.; Das, D.

    2016-10-01

    Double sided DC-coupled silicon strip detectors with geometry of 65 mm×65 mm have been developed in India for nuclear physics experiments. The detectors have 64 P+ strips on the front side and 64 N+ strips on the backside with a pitch of 0.9 mm. These detectors were fabricated using a twelve mask layer process involving double sided wafer processing technology. Semiconductor process and device simulations were carried out in order to theoretically estimate the impact of important design and process parameters on the breakdown voltage of detectors. The performance of the first lot of prototype detectors has been studied using static characterization tests and using an alpha source. The characterization results demonstrate that the detectors have low leakage currents and good uniformity over the detector area of about 40 cm2. Overview of the detector design, fabrication process, simulation results and initial characterization results of the detectors are presented in this paper.

  17. Theoretical consideration of the energy resolution in planar HPGe detectors for low energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Samedov, Victor V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Shosse, 115409, Moscow, (Russian Federation)

    2015-07-01

    In this work, theoretical consideration of the processes in planar High Purity Ge (HPGe) detectors for low energy X-rays using the random stochastic processes formalism was carried out. Using the random stochastic processes formalism, the generating function of the processes of X-rays registration in a planar HPGe detector was derived. The power serial expansions of the detector amplitude and the variance in terms of the inverse bias voltage were derived. The coefficients of these expansions allow determining the Fano factor, electron mobility lifetime product, nonuniformity of the trap density, and other characteristics of the semiconductor material. (authors)

  18. Design and Fabrication of Silicon Carbide Semiconductor Detectors

    Institute of Scientific and Technical Information of China (English)

    MENG; Xin; LIU; Yang; HE; Gao-kui

    2015-01-01

    The potential of silicon carbide(SiC)for use in semiconductor nuclear radiation detectors has been recognized for years.SiC detectors have now been demonstrated for high-resolution alpha particle and X-ray energy spectrometry,beta ray,gamma-ray,thermal-and fast-neutron

  19. The target silicon detector for the FOCUS spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Link, J.M.; Reyes, M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Goebel, C.; Magnin, J.; Massafferri, A.; Miranda, J.M. de; Pepe, I.M.; Reis, A.C. dos; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P.; O' Reilly, B.; Ramirez, J.E.; Segoni, I.; Butler, J.N.; Cheung, H.W.K.; Chiodini, G.; Gaines, I.; Garbincius, P.H.; Garren, L.A.; Gottschalk, E.; Kasper, P.H.; Kreymer, A.E.; Kutschke, R.; Benussi, L.; Bianco, S.; Fabbri, F.L.; Zallo, A.; Cawlfield, C.; Kim, D.Y.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chung, Y.S.; Kang, J.S.; Ko, B.R.; Kwak, J.W.; Lee, K.B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Boschini, M.; D' Angelo, P.; DiCorato, M.; Dini, P.; Edera, L.; Erba, S.; Giammarchi, M.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Milazzo, L.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport III, T.F.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Merlo, M.M.; Pantea, D.; Ratti, S.P.; Riccardi, C.; Vitulo, P.; Hernandez, H.; Lopez, A.M.; Mendez, H.; Mendez, L.; Montiel, E.; Olaya, D.; Paris, A.; Quinones, J.; Rivera, C.; Xiong, W.; Zhang, Y.; Purohit, M.; Copty, N.; Wilson, J.R.; Handler, T.; Mitchell, R.; Engh, D.; Helms, R.W.; Hosack, M.; Johns, W.E. E-mail: will.johns@vanderbilt.edu; Nehring, M.; Sheldon, P.D.; Stenson, K.; Webster, M.; Sheaff, M

    2004-01-11

    We describe a silicon microstrip detector interleaved with segments of a beryllium oxide target which was used in the FOCUS photoproduction experiment at Fermilab. The detector was designed to improve the vertex resolution and to enhance the reconstruction efficiency of short-lived charm particles.

  20. Recent progress in low-temperature silicon detectors

    CERN Document Server

    Abreu, M; Berglund, P; Borchi, E; Borer, K; Bruzzi, M; Buontempo, S; Casagrande, L; Chapuy, S; Cindro, V; D'Ambrosio, N; De Masi, R; Devine, S R H; Dezillie, B; Dierlamm, A; Dimcovski, Zlatomir; Eremin, V; Esposito, A; Granata, V; Grigoriev, E; Grohmann, S; Härkönen, J; Hauler, F; Heijne, Erik H M; Heising, S; Hempel, O; Herzog, R; Janos, S; Jungermann, L; Konorov, I; Li, Z; Lourenço, Carlos; Rato-Mendes, P; Menichelli, D; Mikuz, M; Niinikoski, Tapio O; Pagano, S; Palmieri, V G; Paul, S; Pirollo, S; Pretzl, Klaus; Ruggiero, G; Shea, V O; Smith, K; Solano, B P; Sonderegger, Peter; Sousa, P; Tuominen, E; Verbitskaya, E; Watts, S; Wobst, E; Zavrtanik, M; Da Vià, C; de Boer, Wim

    2003-01-01

    The CERN RD39 Collaboration studies the possibility to extend the detector lifetime in a hostile radiation environment by operating them at low temperatures. The outstanding illustration is the Lazarus effect, which showed a broad operational temperature range around 130 K for neutron irradiated silicon detectors.

  1. Qualification of a new supplier for silicon particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dragicevic, M., E-mail: marko.dragicevic@cern.ch [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Bartl, U. [Infineon Technologies Austria AG, Villach (Austria); Bergauer, T.; Frühwirth, E. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Gamerith, S.; Hacker, J.; Kröner, F.; Kucher, E.; Moser, J.; Neidhart, T. [Infineon Technologies Austria AG, Villach (Austria); Schulze, H.-J. [Infineon Technologies AG, Munich (Germany); Schustereder, W. [Infineon Technologies Austria AG, Villach (Austria); Treberspurg, W. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Wübben, T. [Infineon Technologies Austria AG, Villach (Austria)

    2013-12-21

    Most modern particle physics experiments use silicon based sensors for their tracking systems. These sensors are able to detect particles generated in high energy collisions with high spatial resolution and therefore allow the precise reconstruction of particle tracks. So far only a few vendors are capable of producing silicon strip sensors with the quality needed in particle physics experiments. Together with the European semiconductor manufacturer Infineon Technologies Austria AG the Institute of High Energy Physics of the Austrian Academy of Sciences developed planar silicon strip sensors in p-on-n technology. This paper presents the development, production and results from the electrical characterisation of the first sensors produced by Infineon.

  2. Temperature effects on radiation damage to silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barberis, E.; Cartiglia, N.; Leslie, J.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W. (SCIPP, Univ. California, Santa Cruz, CA (United States)); Boissevain, J.G.; Ferguson, P.; Holzscheiter, K.; Kapustinsky, J.S.; Palounek, A.P.T.; Sommer, W.F.; Sondheim, W.E.; Ziock, H.J. (Los Alamos National Lab., NM (United States)); Ellison, J.A.; Fleming, J.K.; Jerger, S.; Joyce, D.; Lietzke, C.; Wimpenny, S.J. (Univ. California, Riverside, CA (United States)); Matthews, J.A.J.; Skinner, D. (Univ. New Mexico, Albuquerque, NM (United States))

    1993-03-01

    Motivated by the large particle fluences anticipated for the SSC and LHC, we are performing a systematic study of radiation damage to silicon microstrip detectors. Here we report radiation effects on detectors cooled to 0deg C (the proposed operating point for a large SSC silicon tracker) including leakage currents and change in depletion voltage. We also present results on the annealing behavior of the radiation damage. Finally, we report results of charge collection measurements of the damaged detectors made with an [sup 241]Am [alpha] source. (orig.).

  3. Processing of Radiation Hard Particle Detectors on Czochralski Silicon

    CERN Document Server

    Tuovinen, Esa

    2012-01-01

    The purpose of this work was to study the radiation hardness of particle detectors. Silicon detectors are cost-effective andhave an excellent spatial resolution. Therefore, they are widely used in many high-energy physics experiments. It is knownthat oxygen improves the radiation hardness of silicon detectors. The natural way to have a high concentration of oxygen insilicon is to use magnetic Czochralski silicon (MCz-Si). MCz-Si has intrinsically a relatively uniform and high level ofoxygen (5x10^17 cm^3) compared to regular float-zone silicon (FZ-Si). Such a level is hard to attain with other methods,namely the diffusion oxygenation of float-zone silicon.In the Large Hadron Collider (LHC) and its potential upgrade, the luminosity and the fluencies of fast hadrons can be sohigh that detectors made of standard detector-grade FZ-Si might not survive the planned operating period. MCz-Si offers animprovement to the lifetime of particle detectors through improved radiation hardness.This thesis takes a process-orie...

  4. Charge Collection Efficiency Simulations of Irradiated Silicon Strip Detectors

    CERN Document Server

    Peltola, T

    2014-01-01

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. Thus, to upgrade the tracker to required performance level, comprehensive measurements and simulations studies have already been carried out. Essential information of the performance of an irradiated silicon detector is obtained by monitoring its charge collection efficiency (CCE). From the evolution of CCE with fluence, it is possible to directly observe the effect of the radiation induced defects to the ability of the detector to collect charge carriers generated by traversing minimum ionizing particles (mip). In this paper the numerically simulated CCE and CCE loss between the strips of irradiated silicon strip detectors are presented. The simulations based on Synopsys Sentaurus TCAD framework were performed ...

  5. Edge sensitivity of “edgeless” silicon pad detectors measured in a high-energy beam

    Science.gov (United States)

    Perea Solano, B.; Abreu, M. C.; Avati, V.; Boccali, T.; Boccone, V.; Bozzo, M.; Capra, R.; Casagrande, L.; Chen, W.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Mirabito, L.; Morelli, A.; Niinikoski, T. O.; Oljemark, F.; Palmieri, V. G.; Rato Mendes, P.; Rodrigues, S.; Siegrist, P.; Silvestris, L.; Sousa, P.; Tapprogge, S.; Trocmé, B.

    2005-09-01

    We report measurements in a high-energy beam of the sensitivity of the edge region in “edgeless” planar silicon pad diode detectors. The edgeless side of these rectangular diodes is formed by a cut and break through the contact implants. A large surface current on such an edge prevents the normal reverse biasing of this device above the full depletion voltage, but we have shown that the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at a low temperature. A pair of these edgeless silicon diode pad sensors was exposed to the X5 high-energy pion beam at CERN, to determine the edge sensitivity. The signal of the detector pair triggered a reference telescope made of silicon microstrip detector modules. The gap width between the edgeless sensors, determined using the tracks measured by the reference telescope, was then compared with the results of precision metrology. It was concluded that the depth of the dead layer at the diced edge is compatible with zero within the statistical precision of ±8 μm and systematic error of ±6 μm.

  6. Commissioning of the recoil silicon detector for the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pickert, N.C.

    2008-02-15

    The reconstruction of the missing mass is limited by the position and momentum resolution of the HERMES spectrometer. In order to reach a higher accuracy in the measurements the backscattered nucleon must also be detected. A detector suited for this must give the possibility, to determine the momentum of the particles over a very large range: from minimally ionizing particles up to protons, which are stopped in the detector. The detector must also be able to discriminate hadrons and mesons as well as cover the complete spatial region around the target. In the winter 2005-2006 such a recoil detector was installed in the HERMES experiment. The detector sonsists of three partial detectors, a silicon counter within the scattering chamber, a sintillating-fiber detector and a photon detector. Before the installation of the detector the silicon modules were tested in a bench test and checked together with the other particle detectors in a test experiment. A large part of this dissertation is dedicated to the planning and performance of these tests as well to the evaluation of them. It could be show, that the modules worked accordly to their specifications, however because of unexpectedly high noise a signal correction became necessary. Different models for the correction were developed and tested in the framework of these thesis. In spite of the high noise cosmic muons could be detected and their energy deposition measured with a signal-to-noise ratio of 2:1. In the winter break 2005-2006 the recoil detector was installed into the HERMES experiment. First diagnosis and analysis software was developed. The silicon detector measured successfully energy depositions of minimally ionizing particles up to protons stopped in the sensor. Minimally ionizing particles could be detected with a signal-to-noise ratio of 5:1. By means of track information of the scintillating-fiber detector protons could be discriminated from pions and other mesons by the silicon detector. The HERMES

  7. Planar n{sup +}-in-n silicon pixel sensors for the ATLAS IBL upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Goessling, C.; Klingenberg, R. [Lehrstuhl fuer Experimentelle Physik IV, TU Dortmund, 44221 Dortmund (Germany); Muenstermann, D., E-mail: Daniel.Muenstermann@TU-Dortmund.de [Lehrstuhl fuer Experimentelle Physik IV, TU Dortmund, 44221 Dortmund (Germany); Rummler, A.; Troska, G.; Wittig, T. [Lehrstuhl fuer Experimentelle Physik IV, TU Dortmund, 44221 Dortmund (Germany)

    2011-09-11

    The ATLAS experiment at the LHC is planning to upgrade its pixel detector by the installation of a 4th pixel layer, the insertable b-layer IBL with a mean sensor radius of only 32 mm from the beam axis. Being very close to the beam, the radiation damage of the IBL sensors might be as high as 5x10{sup 15} n{sub eq} cm{sup -2} at their end-of-life. To investigate the radiation hardness and suitability of the current ATLAS pixel sensors for IBL fluences, n{sup +}-in-n silicon pixel sensors from the ATLAS Pixel production have been irradiated by reactor neutrons to the IBL design fluence and been tested with pions at the SPS and with electrons from a {sup 90}Sr source in the laboratory. The collected charge was found to exceed 10 000 electrons per MIP at 1 kV of bias voltage which is in agreement with data collected with strip sensors. With an expected threshold of 3000-4000 electrons, this result suggests that planar n{sup +}-in-n pixel sensors are radiation hard enough to be used as IBL sensor technology.

  8. Design and fabrication of a planar patch-clamp substrate using a silicon-on-insulator wafer

    Science.gov (United States)

    Zhenlong, Zhang; Xiangyang, Liu; Yanli, Mao

    2009-09-01

    The planar patch-clamp technique has been applied to high throughput screening in drug discovery. The key feature of this technique is the fabrication of a planar patch-clamp substrate using appropriate materials. In this study, a planar patch-clamp substrate was designed and fabricated using a silicon-on-insulator (SOI) wafer. The access resistance and capacitance of SOI-based planar patch-clamp substrates are smaller than those of bulk silicon-based planar substrates, which will reduce the distributed RC noise.

  9. Antihydrogen annihilation reconstruction with the ALPHA silicon detector

    Science.gov (United States)

    Andresen, G. B.; Ashkezari, M. D.; Bertsche, W.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Hayano, R. S.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Jørgensen, L. V.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Sarid, E.; Seif El Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Yamazaki, Y.; Alpha Collaboration

    2012-08-01

    The ALPHA experiment has succeeded in trapping antihydrogen, a major milestone on the road to spectroscopic comparisons of antihydrogen with hydrogen. An annihilation vertex detector, which determines the time and position of antiproton annihilations, has been central to this achievement. This detector, an array of double-sided silicon microstrip detector modules arranged in three concentric cylindrical tiers, is sensitive to the passage of charged particles resulting from antiproton annihilation. This article describes the method used to reconstruct the annihilation location and to distinguish the annihilation signal from the cosmic ray background. Recent experimental results using this detector are outlined.

  10. Antihydrogen annihilation reconstruction with the ALPHA silicon detector

    CERN Document Server

    Andresen, G B; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D.R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Hayano, R S; Humphries, A J; Hydomako, R; Jonsell, S; Jorgensen, L V; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Yamazaki, Y

    2012-01-01

    The ALPHA experiment has succeeded in trapping antihydrogen, a major milestone on the road to spectroscopic comparisons of antihydrogen with hydrogen. An annihilation vertex detector, which determines the time and position of antiproton annihilations, has been central to this achievement. This detector, an array of double-sided silicon microstrip detector modules arranged in three concentric cylindrical tiers, is sensitive to the passage of charged particles resulting from antiproton annihilation. This article describes the method used to reconstruct the annihilation location and to distinguish the annihilation signal from the cosmic ray background. Recent experimental results using this detector are outlined.

  11. Data Transmission Protocol for the readout of Silicon Drift Detector

    CERN Document Server

    Mazza, G; CERN. Geneva; Alberici, G

    1998-01-01

    An Interface Board will be located at both ends of each Silicon Drift Detector ladder, and it has three fundamental goals. It is designed to provide the compression of the digital data stream incoming from the bank of detectors (reducing the amount of data to allow the writing on disk), the hardware implementation of the transmission protocol (managing data coming from eight half detectors to be sent onone optical fibre) and the implementation of the physical interface towards the Detector Data Link (DDL) (using the data link transmission protocol).

  12. Probe station for testing of ALICE silicon drift detectors

    CERN Document Server

    Humanic, T J; Piemonte, C; Rashevsky, A; Sugarbaker, E R; Vacchi, A

    2003-01-01

    Large area, 7.25 cm multiplied by 8.76 cm silicon drift detectors have been developed and are in production for the ALICE experiment at LHC. An active area of the detector of more than 50 cm**2 imposes high demands on the quality of processing and raw material. Automated testing procedures have been developed to test detectors before mounting them on the ladders. Probe stations for ALICE SDD testing were designed and built at INFN, Trieste and Ohio State University (OSU). Testing procedures, detector selection criteria and some details of the OSU probe station design are discussed.

  13. The planar silicon-based microelectronic technology for electrochemical transducers

    Science.gov (United States)

    Novikov, A. V.; Egorchikov, A. E.; Dolgov, A. N.; Gornev, E. S.; Popov, V. G.; Egorov, I. V.; Krishtop, V. G.

    2016-12-01

    We have developed the new technology for production of sensitive modules for electrochemical sensors of pressure and acceleration. The technology is applicable for mass production and scalable for high-volume production. In this work we demonstrate the new sensing module for electrochemical motion sensors, and its possibility of applying in geophones. We fabricated prototypes of electrochemical planar transducer chips, produced a laboratory prototype of a geophone based on our planar transducer chip, and tested them. This paper presents the preliminary results of the tests.

  14. Balloon Flight Background Measurement with Actively-Shielded Planar and Imaging CZT Detectors

    OpenAIRE

    Bloser, P. F.; Narita, T; Jenkins, J. A.; Perrin, M.; Murray, R.; Grindlay, J.E.

    2001-01-01

    We present results from the flight of two prototype CZT detectors on a scientific balloon payload in September 2000. The first detector, referred to as ``CZT1,'' consisted of a 10 mm x 10 mm x 2 mm CZT crystal with a single gold planar electrode readout. This detector was shielded by a combination of a passive collimator surrounded by plastic scintillator and a thick BGO crystal in the rear. The second detector, ``CZT2,'' comprised two 10 mm x 10 mm x 5 mm CZT crystals, one made of eV Product...

  15. Amorphous Silicon Position Detectors for the Link Alignment System of the CMS Detector: Users Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2007-07-01

    We present the general characteristics, calibration procedures and measured performance of the Amorphous Silicon Position Detectors installed in the Link Alignment System of the CMS Detector for laser beam detection and reconstruction and give the Data Base to be used as a Handbook during CMS operation. (Author) 10 refs.

  16. Linear-log counting-rate meter uses transconductance characteristics of a silicon planar transistor

    Science.gov (United States)

    Eichholz, J. J.

    1969-01-01

    Counting rate meter compresses a wide range of data values, or decades of current. Silicon planar transistor, operating in the zero collector-base voltage mode, is used as a feedback element in an operational amplifier to obtain the log response.

  17. A micron resolution optical scanner for characterization of silicon detectors

    Science.gov (United States)

    Shukla, R. A.; Dugad, S. R.; Garde, C. S.; Gopal, A. V.; Gupta, S. K.; Prabhu, S. S.

    2014-02-01

    The emergence of high position resolution (˜10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 - σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  18. A micron resolution optical scanner for characterization of silicon detectors.

    Science.gov (United States)

    Shukla, R A; Dugad, S R; Garde, C S; Gopal, A V; Gupta, S K; Prabhu, S S

    2014-02-01

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 - σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  19. Test results on silicon micro-strip detectors for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, J.; Dorfan, D.E.; Dubbs, T.; Grillo, A.A.; Kashigin, S.; Kroeger, W.; Pulliam, T.; Rahn, J.; Rowe, W.A.; Sadrozinski, H.F.-W.; Seiden, A.; Spencer, E.; Webster, A.; Wichmann, R.; Wilder, M.; Williams, D.C.; Dane, J.; Lankford, A.; Pier, S.; Schmid, B.; Bonino, R.; Couyoumtzelis, C.; Demierre, P.; Fujita, K.; Handa, T.; Iwata, Y.; Ohsugi, T.; Iwasaki, H.; Kohriki, T.; Kondo, T.; Terada, S.; Unno, Y.; Takashima, R.; Ciocio, A.; Collins, T.; Emes, J.; Gilchriese, M.G.D.; Haber, C.; Kipnis, I.; Shapiro, M.; Siegrist, J.; Spieler, H.; Moorhead, G.; Nakao, M.; Tamura, N.; Dabrowski, W.; Idzik, M.; Godlewski, J.; Grewal, A.; Nickerson, R.; Wastie, R.; Gao, Y.; Gonzalez, S.; Walsh, A.M.; Feng, Z. [California Univ., Santa Cruz, CA (United States). Inst. for Particle Phys.]|[California Univ., Irvine, CA (United States)]|[Geneva Univ. (Switzerland)]|[Hiroshima Univ. (Japan)]|[KEK, Tsukuba (Japan)]|[Kyoto Univ. Education (Japan)]|[Lawrence Berkeley National Lab., CA (United States)]|[Melbourne Univ. (Australia)]|[Okayama Univ. (Japan)]|[IPNT, Krakow (Poland)]|[INP, Krakow (Poland)]|[Oxford Univ. (United Kingdom)]|[Wisconsin Univ., Madison, WI (United States)

    1997-02-11

    We report results from beam tests on silicon microstrip detectors using a binary readout system for ATLAS. The data were collected during the H8 beam test at CERN in August/September 1995 and the KEK test in February 1996. The binary modules tested had been assembled from silicon microstrip detectors of different layout and from front-end electronics chips of different architecture. The efficiency, noise occupancy and position resolution were determined as a function of the threshold setting for various bias voltages and angles of incidence for both irradiated and non-irradiated detectors. In particular, the high spatial resolution of the beam telescope allowed the evaluation of the performance as a function of the track location in between detector strips. (orig.).

  20. Ameliorating neutron damage in orthogonal-strip planar germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, E.G., E-mail: Emily_Jackson@student.uml.edu [Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Hull, E.L. [PHDS Company, 3011 Amherst Road, Knoxville, TN 37921 (United States); Lister, C.J. [Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Pehl, R.H. [PHDS Company, 3011 Amherst Road, Knoxville, TN 37921 (United States)

    2015-02-21

    The segmentation of the electrodes of germanium detectors facilitates gamma-ray imaging and tracking. Replacing the traditional n-type lithium drifted contact is a key to finer segmentation. Amorphous-germanium is a promising alternative contact technology, and large, highly segmented detectors have been fabricated. One factor in adopting any new detector technology is its robustness in hostile environments. Therefore, to explore the effects of neutron damage on position sensitive amorphous-contact germanium gamma-ray detectors and investigate methods for mitigation and repair of damage, two detectors were intentionally exposed to a non-uniform neutron fluence of greater than 4(1) ×10{sup 9} n/cm{sup 2} produced in the {sup 7}Li(p, n){sup 7}Be reaction at the UMass Lowell Van-de-Graaff accelerator. Post-irradiation tests were made on the counters by varying the electric field, the charge deposition rate, the operating temperature, and utilizing various annealing cycles in order to ascertain the robustness of their performance after irradiation.

  1. The Silicon Ministrip Detector of the DELPHI Very Forward Tracker

    CERN Document Server

    AUTHOR|(CDS)2067985

    1996-01-01

    The subject of this work is the design, test and construction of a new silicon tracking detector for the extreme forward region of the DELPHI experiment at LEP. I joined the Very Forward Tracker (VFT) Ministrip group in 1993, at a time when the upgrade of the DELPHI tracking system was proposed. My first task was to participate in the design of the ministrip detector for the VFT. This included the optimisation of the detector layout in simulations and the study of prototype detectors in the testbeam. In 1994 I became responsible for the tests and assembly' of the VFT ministrip detector at CERN. The main focus of my work was the study of the performance of a large variety of detectors in beam tests. This included the preparation of the test setup, the tests of different detectors and the analysis of the measurements. With these measurements it is possible to compare the advantages and disadvantages of various new layouts for large pitch silicon strip detectors. In particular the signal response and spatial res...

  2. Test beam results of a large area strip detector made on high resistivity Czochralski silicon

    CERN Document Server

    Tuominen, E; Czellar, S; Härkönen, J; Heikkinen, A M; Johansson, P; Karimäki, V; Luukka, Panja; Mehtälä, P; Niku, J; Nummela, S; Nysten, J; Simpura, J; Tuominiemi, J; Tuovinen, E; Ungaro, D; Vaarala, T; Voutilainen, M; Wendland, L; Zibellini, A

    2003-01-01

    We have tested the detection performance of a strip detector processed on silicon wafer grown by magnetic Czochralski (MCZ) method. This is the first time a full size Czochralski detector has been tested in a beam, although the advantages of CZ silicon have been known before. Prior to test beam measurements, the electrical characteristics of the Czochralski silicon detectors were found to be appropriate for particle detection. Using the Helsinki silicon beam telescope at CERN H2 test beam, the performance of the Czochralski silicon detector was shown to be comparable with the existing silicon strip detectors.

  3. Test beam results of a large area strip detector made on high resistivity Czochralski silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tuominen, E.; Banzuzi, K.; Czellar, S.; Heikkinen, A.; Haerkoenen, J.; Johansson, P.; Karimaeki, V.; Luukka, P.; Mehtaelae, P.; Niku, J.; Nummela, S.; Nysten, J.; Simpura, J.; Tuovinen, E.; Tuominiemi, J.; Ungaro, D.; Vaarala, T.; Wendland, L.; Voutilainen, M.; Zibellini, A

    2003-09-01

    We have tested the detection performance of a strip detector processed on silicon wafer grown by magnetic Czochralski (MCZ) method. This is the first time a full size Czochralski detector has been tested in a beam, although the advantages of CZ silicon have been known before. Prior to test beam measurements, the electrical characteristics of the Czochralski silicon detectors were found to be appropriate for particle detection. Using the Helsinki Silicon Beam telescope at CERN H2 test beam, the performance of the Czochralski silicon detector was shown to be comparable with the existing silicon strip detectors.

  4. Low dose radiation damage effects in silicon strip detectors

    Science.gov (United States)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  5. Characterization of silicon detectors through TCT at Delhi University

    Energy Technology Data Exchange (ETDEWEB)

    Jain, G., E-mail: geetikajain.hep@gmail.com; Lalwani, K.; Dalal, R.; Bhardwaj, A.; Ranjan, K.

    2016-07-11

    Transient Current Technique (TCT) is one of the important methods to characterize silicon detectors and is based on the time evolution of the charge carriers generated when a laser light is shone on it. For red laser, charge is injected only to a small distance from the surface of the detector. For such a system, one of the charge carriers is collected faster than the readout time of the electronics and therefore, the effective signal at the electrodes is decided by the charge carriers that traverse throughout the active volume of the detector, giving insight to the electric field profile, drift velocity, effective doping density, etc. of the detector. Delhi University is actively involved in the silicon detector R&D and has recently installed a TCT setup consisting of a red laser system, a Faraday cage, a SMU (Source Measuring Unit), a bias tee, and an amplifier. Measurements on a few silicon pad detectors have been performed using the developed system, and the results have been found in good agreement with the CERN setup.

  6. A Monte Carlo tool for evaluating VMAT and DIMRT treatment deliveries including planar detectors

    Science.gov (United States)

    Asuni, G.; van Beek, T. A.; Venkataraman, S.; Popescu, I. A.; McCurdy, B. M. C.

    2013-06-01

    The aim of this work is to describe and validate a new general research tool that performs Monte Carlo (MC) simulations for volumetric modulated arc therapy (VMAT) and dynamic intensity modulated radiation therapy (DIMRT), simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system. The tool is generalized to handle either entrance or exit detectors and provides the simulated dose for the individual control-points of the time-dependent VMAT and DIMRT deliveries. The MC simulation tool was developed with the EGSnrc radiation transport. For the individual control point simulation, we rotate the patient/phantom volume only (i.e. independent of the gantry and planar detector geometries) using the gantry angle in the treatment planning system (TPS) DICOM RP file such that each control point has its own unique phantom file. After MC simulation, we obtained the total dose to the phantom by summing dose contributions for all control points. Scored dose to the sensitive layer of the planar detector is available for each control point. To validate the tool, three clinical treatment plans were used including VMAT plans for a prostate case and a head-and-neck case, and a DIMRT plan for a head-and-neck case. An electronic portal imaging device operated in ‘movie’ mode was used with the VMAT plans delivered to cylindrical and anthropomorphic phantoms to validate the code using an exit detector. The DIMRT plan was delivered to a novel transmission detector, to validate the code using an entrance detector. The total MC 3D absolute doses in patient/phantom were compared with the TPS doses, while 2D MC doses were compared with planar detector doses for all individual control points, using the gamma evaluation test with 3%/3 mm criteria. The MC 3D absolute doses demonstrated excellent agreement with the TPS doses for all the tested plans, with about 95% of voxels having γ 90% of percentage pixels with γ <1. We found that over

  7. Modeling the intensity and polarization response of planar bolometric detectors.

    Science.gov (United States)

    Thomas, Christopher N; Withington, Stafford; Chuss, David T; Wollack, Edward J; Moseley, S Harvey

    2010-05-01

    Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behavior precisely. We have studied the intensity and polarization response of free-space bolometers and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behavior. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behavior. The ability to model easily the intensity, polarization, and straylight characteristics of electrically small detectors will be of great value when designing high-performance polarimetric imaging arrays.

  8. Time development and flux dependence of neutron-irradiation induced defects in silicon pad detectors

    CERN Document Server

    Zontar, D; Kramberger, G; Mikuz, M

    1999-01-01

    1x1 cm sup 2 silicon pad p sup + -n-n sup + detectors were irradiated with fast neutrons from the TRIGA research reactor in Ljubljana to fluences from 5x10 sup 1 sup 3 to 10 sup 1 sup 4 n/cm sup 2. The observed time development of annealing of the full-depletion voltage (FDV) could be fitted by a constant and two exponentials. The characteristic time of the fast component is 4 h, independent of temperature in the interval 0-15 deg. C. A comparison of MESA and planar pad detectors shows a 20-30% lower FDV for the MESA. A search for a flux dependence of the radiation damage was performed in the range from 2x10 sup 8 to 5x10 sup 1 sup 5 n/cm sup 2 s and no systematic differences were observed.

  9. Pre- and post-irradiation performance of FBK 3D silicon pixel detectors for CMS

    Energy Technology Data Exchange (ETDEWEB)

    Krzywda, A., E-mail: akrzywda@purdue.edu [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Alagoz, E.; Bubna, M. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Obertino, M. [Università del Piemonte Orientale, Novara (Italy); INFN, Sezione di Torino, Torino (Italy); Solano, A. [Università di Torino, Torino (Italy); INFN, Sezione di Torino, Torino (Italy); Arndt, K. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Uplegger, L. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Betta, G.F. Dalla [TIFPA INFN and Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, I-38123 Povo di Trento, TN (Italy); Boscardin, M. [Centro per Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Trento, Via Sommarive 18, I-38123 Povo di Trento, TN (Italy); Ngadiuba, J. [Università di Milano-Bicocca, Milan (Italy); Rivera, R. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Menasce, D.; Moroni, L.; Terzo, S. [Università di Milano-Bicocca, Milan (Italy); Bortoletto, D. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Prosser, A.; Adreson, J.; Kwan, S. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Osipenkov, I. [Texas A and M University, Department of Physics, College Station, TX 77843 (United States); Bolla, G. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); and others

    2014-11-01

    In preparation for the tenfold luminosity upgrade of the Large Hadron Collider (the HL-LHC) around 2020, three-dimensional (3D) silicon pixel sensors are being developed as a radiation-hard candidate to replace the planar ones currently being used in the CMS pixel detector. This study examines an early batch of FBK sensors (named ATLAS08) of three 3D pixel geometries: 1E, 2E, and 4E, which respectively contain one, two, and four readout electrodes for each pixel, passing completely through the bulk. We present electrical characteristics and beam test performance results for each detector before and after irradiation. The maximum fluence applied is 3.5×10{sup 15} n {sub eq}/cm{sup 2}.

  10. The development of a silicon multiplicity detector system

    Energy Technology Data Exchange (ETDEWEB)

    Beuttenmuller, R.H.; Kraner, H.W.; Lissauer, D.; Makowiecki, D.; Polychronakos, V.; Radeka, V.; Sondericker, J.; Stephani, D. [Brookhaven National Laboratory, Upton, NY (United States); Barrette, J.; Hall, J.; Mark, S.K.; Pruneau, C.A. [McGill Univ., Montreal, Quebec (Canada); Wolfe, D. [Univ. of New Mexico, Albuquerque (United States); Borenstein, S.R. [York College-CUNY, Jamaica, NY (United States)

    1991-12-31

    The physics program and the design criteria for a Silicon Pad Detector at RHIC are reviewed. An end cap double sided readout detector configuration for RHIC is presented. Its performance as an on-line and off-line centrality tagging device is studied by means of simulations with Fritiof as the event generator. The results of an in-beam test of a prototype double-sided Si-detector are presented. Good signal-to-noise ratio are obtained with front junction and the resistive back side readout. Good separation between one and two minimum-ionizing particle signals is achieved.

  11. Feasibility studies of microelectrode silicon detectors with integrated electronics

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, G.-F. E-mail: dallabe@itc.it; Batignani, G.; Bettarini, S.; Boscardin, M.; Bosisio, L.; Carpinelli, M.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Lusiani, A.; Manghisoni, M.; Pignatel, G.U.; Rama, M.; Ratti, L.; Re, V.; Sandrelli, F.; Speziali, V.; Svelto, F.; Zorzi, N

    2002-02-01

    We describe our experience on design and fabrication, on high-resistivity silicon substrates, of microstrip detectors and integrated electronics, devoted to high-energy physics experiments and medical/industrial imaging applications. We report on the full program of our collaboration, with particular regards to the tuning of a new fabrication process, allowing for the production of good quality transistors, while keeping under control the basic detector parameters, such as leakage current. Experimental results on JFET and bipolar transistors are presented, and a microstrip detector with an integrated JFET in source-follower configuration is introduced.

  12. Feasibility studies of microelectrode silicon detectors with integrated electronics

    CERN Document Server

    Dalla Betta, Gian Franco; Bettarini, S; Boscardin, M; Bosisio, L; Carpinelli, M; Dittongo, S; Forti, F; Giorgi, M; Gregori, P; Lusiani, A; Manghisoni, M; Pignatel, Giogrio Umberto; Rama, M; Ratti, L; Re, V; Sandrelli, F; Speziali, V; Svelto, F; Zorzi, N

    2002-01-01

    We describe our experience on design and fabrication, on high-resistivity silicon substrates, of microstrip detectors and integrated electronics, devoted to high-energy physics experiments and medical/industrial imaging applications. We report on the full program of our collaboration, with particular regards to the tuning of a new fabrication process, allowing for the production of good quality transistors, while keeping under control the basic detector parameters, such as leakage current. Experimental results on JFET and bipolar transistors are presented, and a microstrip detector with an integrated JFET in source-follower configuration is introduced.

  13. The development of a silicon multiplicity detector system

    Energy Technology Data Exchange (ETDEWEB)

    Beuttenmuller, R.H.; Kraner, H.W.; Lissauer, D.; Makowiecki, D.; Polychronakos, V.; Radeka, V.; Sondericker, J.; Stephani, D. [Brookhaven National Laboratory, Upton, NY (United States); Barrette, J.; Hall, J.; Mark, S.K.; Pruneau, C.A. [McGill Univ., Montreal, Quebec (Canada); Wolfe, D. [Univ. of New Mexico, Albuquerque (United States); Borenstein, S.R. [York College-CUNY, Jamaica, NY (United States)

    1991-12-31

    The physics program and the design criteria for a Silicon Pad Detector at RHIC are reviewed. An end cap double sided readout detector configuration for RHIC is presented. Its performance as an on-line and off-line centrality tagging device is studied by means of simulations with Fritiof as the event generator. The results of an in-beam test of a prototype double-sided Si-detector are presented. Good signal-to-noise ratio are obtained with front junction and the resistive back side readout. Good separation between one and two minimum-ionizing particle signals is achieved.

  14. Charge collection efficiency of standard and oxygenated silicon microstrip detectors

    CERN Document Server

    Stavitski, I; Bisello, D; Bacchetta, N; Candelori, A; Kaminski, A; Wyss, J

    2002-01-01

    Two silicon microstrip detectors, one fabricated from a standard and the second from a highly oxygenated substrate, were non-uniformly irradiated by 24 GeV protons to fluences ranging between 2.3 and 6.3 * 10/sup 14/ cm/sup -2/. Charge collection efficiency measurements, performed by pulsing the detectors with a 1060 mu m wavelength laser, show that the beneficial effect of the oxygenation remains, although reduced with respect to that observed by C-V measurements on diodes fabricated with the detectors. (10 refs).

  15. Portable triple silicon detector telescope spectrometer for skin dosimetry

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Larsen, H.E.; Christensen, P.

    1999-01-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50 mu m/150 mu m/7000 mu m covered by a 2 mu m thick titanium window. Rejection of photon contributions from mixed beta/photon exposures...... detectors. The LabVIEW(TM) software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer...

  16. Simulation study of silicon and gaseous tracking detectors

    CERN Document Server

    Beaumont, W; De Lentdecker, G; Devroede, O; Doninck, W V; Dyck, C V; Udo, Fred; Van Velde, C; Vanlaer, P; Verbeure, F; Zhukov, V

    2002-01-01

    The performance of microstrip gaseous counters (MSGC, MSGC + GEM) and silicon microstrip sensors has been studied in view of their use in high luminosity tracking applications. Simulations of signal development in the detectors and subsequent signal treatment in the readout electronics were performed. The simulation results are compared with experimental data obtained in test beams.

  17. The SVX II silicon vertex detector at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Worm, S. [New Mexico Univ., Albuquerque, NM (United States). New Mexico Center for Particle Physics; CDF Collaboration

    1996-09-01

    The CDF silicon vertex detector is being upgraded for use in Run II of the Fermilab collider. The increased luminosity in Run II, coupled with the desire for increased acceptance and secondary vertex triggering, necessitates a complete redesign of the previous generation tracker. Details of the design are described.

  18. Applications of a silicon photodiode detector for radon progeny measurements

    CERN Document Server

    Voytchev, M; Chambaudet, A; Georgiev, G; Iovtchev, M

    1999-01-01

    An application of our developed silicon photodiode detector for radon progeny measurements is presented in this paper. It was determined the deposition velocity for free (3.6+-0.7)x10 sup - sup 3 m s sup - sup 1 and attached (1.0+-0.5)x10 sup - sup 5 m s sup - sup 1 fraction of short living radon progeny.

  19. Portable triple silicon detector telescope spectrometer for skin dosimetry

    CERN Document Server

    Helt-Hansen, J; Christensen, P

    1999-01-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50 mu m/150 mu m/7000 mu m covered by a 2 mu m thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact, portable processing unit including a laptop computer executing control, monitor, histogram and display tasks. The use of digital signal processing at an early stage of the signal chain has facilitated the achievement of a compact, low-weight device. 256 channels are available for each of the three detectors. The LabVIEW sup T sup M software distributed by National Instruments was used for all program developments for the sp...

  20. Portable triple silicon detector telescope spectrometer for skin dosimetry

    Science.gov (United States)

    Helt-Hansen, J.; Larsen, H. E.; Christensen, P.

    1999-12-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50μm/150μm/7000μm covered by a 2μm thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact, portable processing unit including a laptop computer executing control, monitor, histogram and display tasks. The use of digital signal processing at an early stage of the signal chain has facilitated the achievement of a compact, low-weight device. 256 channels are available for each of the three detectors. The LabVIEWTM software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in mixed beta/photon radiation fields. It also describes the main features of the digital signal-processing electronics.

  1. Measurement of β-decay end point energy with planar HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, T., E-mail: btumpa@vecc.gov.in [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Pandit, Deepak [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Das, S.K. [RCD-BARC, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Chowdhury, A.; Das, P. [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Banerjee, D. [RCD-BARC, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Saha, A.; Mukhopadhyay, S.; Pal, S.; Banerjee, S.R. [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India)

    2014-12-11

    The β–γ coincidence measurement has been performed with a segmented planar Hyper-Pure Germanium (HPGe) detector and a single coaxial HPGe detector to determine the end point energies of nuclear β-decays. The experimental end point energies have been determined for some of the known β-decays in {sup 106}Rh→{sup 106}Pd. The end point energies corresponding to three weak branches in {sup 106}Rh→{sup 106}Pd decay have been measured for the first time. The γ ray and β particle responses for the planar HPGe detector were simulated using the Monte Carlo based code GEANT3. The experimentally obtained β spectra were successfully reproduced with the simulation.

  2. Measurement of $\\beta$-decay end point energy with Planar HPGe detector

    CERN Document Server

    Bhattacharjee, T; Das, S K; Chowdhury, A; Das, P; Banerjee, D; Saha, A; Mukhopadhyay, S; Pal, S; Banerjee, S R

    2014-01-01

    The end point energies of nuclear $\\beta$ decays have been measured with a segmented planar Ge LEPS detector using both singles and coincidence techniques. The $\\beta - \\gamma$ coincidence has been performed with a segmented planar Ge LEPS and a single 10$\\%$ HPGe detector. The $\\gamma$ ray and $\\beta$ particle responses of the Segmented planer Ge LEPS detector were studied using monte carlo simulation code GEANT3. The experimentally obtained $\\beta$ spectrum was in reasonably good agreement with the simulation results. The experimental end point energies are determined with substantial accuracy for some of the known $\\beta$ decays in $^{106}$Rh, $^{210}$Bi and $^{90}$Y. The end point energies corresponding to three weak branches in $^{106}$Rh $\\rightarrow$ $^{106}$Pd decay has been measured for the first time.

  3. Silicon carbide detector for laser-generated plasma radiation

    Science.gov (United States)

    Bertuccio, Giuseppe; Puglisi, Donatella; Torrisi, Lorenzo; Lanzieri, Claudio

    2013-05-01

    We present the performance of a Silicon Carbide (SiC) detector in the acquisition of the radiation emitted by laser generated plasmas. The detector has been employed in time of flight (TOF) configuration within an experiment performed at the Prague Asterix Laser System (PALS). The detector is a 5 mm2 area 100 nm thick circular Nisbnd SiC Schottky junction on a high purity 4Hsbnd SiC epitaxial layer 115 μm thick. Current signals from the detector with amplitudes up to 1.6 A have been measured, achieving voltage signals over 80 V on a 50 Ω load resistance with excellent signal to noise ratios. Resolution of few nanoseconds has been experimentally demonstrated in TOF measurements. The detector has operated at 250 V DC bias under extreme operating conditions with no observable performance degradation.

  4. Development of Microstrip Silicon Detectors for Star and ALICE

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Guthneck, L; Higueret, S; Hundt, F; Kühn, C E; Lutz, Jean Robert; Pozdniakov, S; Rami, F; Tarchini, A; Boucham, A; Bouvier, S; Erazmus, B; Germain, M; Giliberto, S; Martin, L; Le Moal, C; Roy, C; Colledani, C; Dulinski, W; Turchetta, R

    1998-01-01

    The physics program of STAR and ALICE at ultra-relativistic heavy ion colliders, RHIC and LHC respectively, requires very good tracking capabilities. Some specific quark gluon plasma signatures, based on strange matter measurements implies quite a good secondary vertex reconstruction.For this purpose, the inner trackers of both experiments are composed of high-granularity silicon detectors. The current status of the development of double-sided silicon microstrip detectors is presented in this work.The global performance for tracking purpose adn particle identification are first reviewed. Then tests of the detectors and of the associated readout electronics are described. In-beam measurements of noise, spatial resolution, efficiency and charge matching capability, as well as radiation hardness, are examined.

  5. Silicon pixel detector prototyping in SOI CMOS technology

    Science.gov (United States)

    Dasgupta, Roma; Bugiel, Szymon; Idzik, Marek; Kapusta, Piotr; Kucewicz, Wojciech; Turala, Michal

    2016-12-01

    The Silicon-On-Insulator (SOI) CMOS is one of the most advanced and promising technology for monolithic pixel detectors design. The insulator layer that is implemented inside the silicon crystal allows to integrate sensors matrix and readout electronic on a single wafer. Moreover, the separation of electronic and substrate increases also the SOI circuits performance. The parasitic capacitances to substrate are significantly reduced, so the electronic systems are faster and consume much less power. The authors of this presentation are the members of international SOIPIX collaboration, that is developing SOI pixel detectors in 200 nm Lapis Fully-Depleted, Low-Leakage SOI CMOS. This work shows a set of advantages of SOI technology and presents possibilities for pixel detector design SOI CMOS. In particular, the preliminary results of a Cracow chip are presented.

  6. New results on silicon microstrip detectors of CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Demaria, N. E-mail: natale.demaria@cern.ch; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bolla, G.; Bosi, F.; Borrello, L.; Bortoletto, D.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D' Alessandro, R.; Da Rold, M.; De Palma, M.; Dell' Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Favro, G.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Li Yahong; Watts, S.; Wittmer, B

    2000-06-01

    Interstrip and backplane capacitances on silicon microstrip detectors with p{sup +} strip on n substrate of 320 {mu}m thickness were measured for pitches between 60 and 240 {mu}m and width over pitch ratios between 0.13 and 0.5. Parametrisations of capacitance w.r.t. pitch and width were compared with data. The detectors were measured before and after being irradiated to a fluence of 4x10{sup 14} protons/cm{sup 2} of 24 GeV/c momentum. The effect of the crystal orientation of the silicon has been found to have a relevant influence on the surface radiation damage, favouring the choice of a <1 0 0> substrate. Working at high bias (up to 500 V in CMS) might be critical for the stability of detector, for a small width over pitch ratio. The influence found to enhance the stability.

  7. Longevity Studies in the CDF II Silicon Detector

    CERN Document Server

    Behari, Satyajit

    2010-01-01

    The CDF Run II silicon detector is the largest operating detector of its kind in High Energy Physics, collecting p-pbar collision data at the Fermilab Tevatron since 2001. It provides precision tracking and vertexing which played a critical role in the B_s mixing discovery and is essential to the ongoing Higgs Boson search and many other physics analyses carried out at CDF. Due to the prolonged Tevatron Run II program the detector faces unforeseen challenges while operating well beyond its design parameters. Of particular concern is the radiation aging of the silicon sensors which are expected to acquire ~10 fb^-1 data, far above their design integrated luminosity of 2-3 fb^-1. In this paper we discuss the impact of radiation damage to the sensors, their effect on the physics performance and expectations for future operations of the two inner layers, which have already inverted.

  8. A new detector concept for silicon photomultipliers

    Science.gov (United States)

    Sadigov, A.; Ahmadov, F.; Ahmadov, G.; Ariffin, A.; Khorev, S.; Sadygov, Z.; Suleymanov, S.; Zerrouk, F.; Madatov, R.

    2016-07-01

    A new design and principle of operation of silicon photomultipliers are presented. The new design comprises a semiconductor substrate and an array of independent micro-phototransistors formed on the substrate. Each micro-phototransistor comprises a photosensitive base operating in Geiger mode and an individual micro-emitter covering a small part of the base layer, thereby creating, together with this latter, a micro-transistor. Both micro-emitters and photosensitive base layers are connected with two respective independent metal grids via their individual micro-resistors. The total value of signal gain in the proposed silicon photomultiplier is a result of both the avalanche gain in the base layer and the corresponding gain in the micro-transistor. The main goals of the new design are: significantly lower both optical crosstalk and after-pulse effects at high signal amplification, improve speed of single photoelectron pulse formation, and significantly reduce the device capacitance.

  9. A new detector concept for silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Sadigov, A., E-mail: saazik@yandex.ru [National Nuclear Research Center, Baku (Azerbaijan); Ahmadov, F.; Ahmadov, G. [National Nuclear Research Center, Baku (Azerbaijan); Ariffin, A.; Khorev, S. [Zecotek Photonics Inc., Vancouver (Canada); Sadygov, Z. [National Nuclear Research Center, Baku (Azerbaijan); Joint Institute for Nuclear Research, Dubna (Russian Federation); Suleymanov, S. [National Nuclear Research Center, Baku (Azerbaijan); Zerrouk, F. [Zecotek Photonics Inc., Vancouver (Canada); Madatov, R. [Institute of Radiation Problems, Baku (Azerbaijan)

    2016-07-11

    A new design and principle of operation of silicon photomultipliers are presented. The new design comprises a semiconductor substrate and an array of independent micro-phototransistors formed on the substrate. Each micro-phototransistor comprises a photosensitive base operating in Geiger mode and an individual micro-emitter covering a small part of the base layer, thereby creating, together with this latter, a micro-transistor. Both micro-emitters and photosensitive base layers are connected with two respective independent metal grids via their individual micro-resistors. The total value of signal gain in the proposed silicon photomultiplier is a result of both the avalanche gain in the base layer and the corresponding gain in the micro-transistor. The main goals of the new design are: significantly lower both optical crosstalk and after-pulse effects at high signal amplification, improve speed of single photoelectron pulse formation, and significantly reduce the device capacitance.

  10. Internal alignement of the BABAR silicon vertex tracking detector

    CERN Document Server

    Brown, D; Roberts, D

    2007-01-01

    The BABAR Silicon Vertex Tracker (SVT ) is a five-layer double-sided silicon detector designed to provide precise measurements of the position and direction of primary tracks, and to fully reconstruct low-momentum tracks produced in e+e¡ collisions at the PEP-II asymmetric collider at Stanford Linear Accelerator Center. This paper describes the design, implementation, performance and validation of the local alignment procedure used to determine the relative positions and orientations of the 340 Silicon Vertex Trackerwafers. This procedure uses a tuned mix of lab-bench measurements and complementary in-situ experimental data to control systematic distortions. Wafer positions and orientations are determined by minimizing a Â2 computed using these data for each wafer individually, iterating to account for between-wafer correlations. A correction for aplanar distortions of the silicon wafers is measured and applied. The net effect of residual mis-alignments on relevant physical variables evaluated in special co...

  11. Radiation damage in silicon. Defect analysis and detector properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F.

    2008-01-15

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after {gamma}-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO{sub i}, C{sub i}O{sub i}, C{sub i}C{sub s}, VP or V{sub 2} several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO{sub 2} defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep

  12. Characterization of silicon carbide and diamond detectors for neutron applications

    Science.gov (United States)

    Hodgson, M.; Lohstroh, A.; Sellin, P.; Thomas, D.

    2017-10-01

    The presence of carbon atoms in silicon carbide and diamond makes these materials ideal candidates for direct fast neutron detectors. Furthermore the low atomic number, strong covalent bonds, high displacement energies, wide bandgap and low intrinsic carrier concentrations make these semiconductor detectors potentially suitable for applications where rugged, high-temperature, low-gamma-sensitivity detectors are required, such as active interrogation, electronic personal neutron dosimetry and harsh environment detectors. A thorough direct performance comparison of the detection capabilities of semi-insulating silicon carbide (SiC–SI), single crystal diamond (D–SC), polycrystalline diamond (D–PC) and a self-biased epitaxial silicon carbide (SiC–EP) detector has been conducted and benchmarked against a commercial silicon PIN (Si–PIN) diode, in a wide range of alpha (Am-241), beta (Sr/Y-90), ionizing photon (65 keV to 1332 keV) and neutron radiation fields (including 1.2 MeV to 16.5 MeV mono-energetic neutrons, as well as neutrons from AmBe and Cf-252 sources). All detectors were shown to be able to directly detect and distinguish both the different radiation types and energies by using a simple energy threshold discrimination method. The SiC devices demonstrated the best neutron energy discrimination ratio (E\\max (n=5 MeV)/E\\max (n=1 MeV)  ≈5), whereas a superior neutron/photon cross-sensitivity ratio was observed in the D–PC detector (E\\max (AmBe)/E\\max (Co-60)  ≈16). Further work also demonstrated that the cross-sensitivity ratios can be improved through use of a simple proton-recoil conversion layer. Stability issues were also observed in the D–SC, D–PC and SiC–SI detectors while under irradiation, namely a change of energy peak position and/or count rate with time (often referred to as the polarization effect). This phenomenon within the detectors was non-debilitating over the time period tested (> 5 h) and, as such, stable

  13. NA62 Gigatracker sets new standards for silicon detectors

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The NA62 experiment should start collecting its first data (technical run) in a little over one year. At the heart of the experiment is the Gigatracker, a newly conceived silicon pixel detector, whose job is to measure the arrival time and the position of the incoming beam particles. The demonstration detector has recently shown a time resolution of 175 picoseconds, an unprecedented record in the field of silicon pixel detectors.   The Gigatracker prototype. A 115 metre long vacuum tank, a brand new set of detectors surrounding it and an extremely rare decay to study: this is the new NA62 detector, foreseen to be installed in the SPS North Area in 2012. “We will study a very rare decay of the K+. Such a decay is sensitive to contributions coming from new particles and therefore represents a powerful way of searching for new physics, complementary to the direct approach of the LHC detectors,” explains Augusto Ceccucci, NA62 spokesperson. The particles from the SPS accelerator a...

  14. Calibration and alignment of the CMS silicon tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Stoye, M.

    2007-07-15

    The Large Hadron Collider (LHC) will dominate the high energy physics program in the coming decade. The discovery of the standard model Higgs boson and the discovery of super-symmetric particles are within the reach at the energy scale explored by the LHC. However, the high luminosity and the high energy of the colliding protons lead to challenging demands on the detectors. The hostile radiation environment requires irradiation hard detectors, where the innermost subdetectors, consisting of silicon modules, are most affected. This thesis is devoted to the calibration and alignment of the silicon tracking detector. Electron test beam data, taken at DESY, have been used to investigate the performance of detector modules which previously were irradiated with protons up to a dose expected after 10 years of operation. The irradiated sensors turned out to be still better than required. The performance of the inner tracking systems will be dominated by the degree to which the positions of the sensors can be determined. Only a track based alignment procedure can reach the required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel {chi}{sup 2} minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously, as many sources of information as possible are used, and all correlations between the position parameters of the detectors are taken into account. Utilizing simulated data, a proof of concept of the alignment strategy is shown. (orig.)

  15. Characteristics of edgeless silicon detectors for the Roman Pots of the TOTEM experiment at the LHC

    CERN Document Server

    G. Ruggiero, G; Antchev, G; Deile, M; Eggert, K; Eremin, V; Kaspar, J; Niewiadomski, H; Petäjäjärvi, J; Radicioni, E; Ravotti, F; Radermacher, E; Snoeys, W; Spearman, W; Wu, J

    2009-01-01

    TOTEM Roman Pot (RP) microstrip edgeless silicon detectors, fabricated with standard planar technology, reach full sensitivity within 50 μm from the cut edge and can operate with high bias voltage at room temperature. These detectors use a newly developed terminating structure, which prevents breakdown and surface current injection at high bias, while simultaneously providing extremely reduced dead zones at the edges. Moreover, radiation hardness studies indicate that when operated under moderate cooling, the detectors remain fully efficient up to a fluence of about 1.5×1014 p cm−2. The mass production of these detectors for the TOTEM Experiment is being completed and their installation in the Roman Pots is ongoing. When the installation is complete and the LHC will be operational, these detectors will allow the TOTEM Experiment to detect leading protons at distance of 1 mm from the beam centre at the LHC. This work presented here is a survey of this recently developed device and its most up-to-date chara...

  16. Experimental studies of radiation damage of silicon detectors. Internal report

    Energy Technology Data Exchange (ETDEWEB)

    Angelescu, T.; Ghete, V.M.; Ghiordanescu, N.; Lazanu, I.; Mihul, A. [Univ. of Bucharest (Romania); Golutvin, I.; Lazanu, S.; Savin, I.; Vasilescu, A. [JINR, Dubna (Russian Federation); Biggeri, U.; Borchi, E.; Bruzzi, M. [Univ. of Florence (Italy)]|[INFN, Florence (Italy); Li, Z.; Kraner, H.W. [Brookhaven National Lab., Upton, NY (United States)

    1994-02-01

    New particle physics experiments are correlated with high luminosity and/or high energy. The new generation of colliding beam machines which will be constructed will make an extrapolation of a factor of 100 in the center of mass energy and of 1000 in luminosity beyond present accelerators. The scientific community hopes that very exciting physics results could be achieved this way, from the solution to the problem of electroweak symmetry breaking to the possible discovery of new, unpredicted phenomena. The particles which compose the radiation field are: electrons, pions, neutrons, protons and photons. It has become evident that the problem of the radiation resistance of detectors in this severe environment is a crucial one. This situation is complicated more by the fact that detectors must work all the run time of the machine, and better all the time of the experiment, without replacement (part or whole). So, studies related to the investigation of the radiation hardness of all detector parts, are developing. The studies are in part material and device characterization after irradiation, and in part technological developments, made in order to find harder, cheaper technologies, for larger surfaces. Semiconductor detectors have proven to be a good choice for vertex and calorimeter. Both fixed target machines and colliders had utilized in the past silicon junction detectors as the whole or part of the detection system. Precision beam hodoscopes and sophisticated trigger devices with silicon are equally used. The associated electronics in located near the detectors, and is subjected to the same radiation fields. Studies of material and device radiation hardness are developing in parallel. Here the authors present results on the radiation hardness of silicon, both as a bulk material and as detectors, to neutron irradiation at high fluences.

  17. Deflection of 450 GeV protons by planar channeling in a bent silicon crystal

    Science.gov (United States)

    Jensen, B. N.; Møller, S. P.; Uggerhøj, E.; Worm, T.; Atherton, H. W.; Clément, M.; Doble, N.; Elsener, K.; Gatignon, L.; Grafström, P.; Jeanneret, J. B.; Hage-Ali, M.; Siffert, P.

    1992-08-01

    A 450 GeV proton beam has been bent by various angles from 4 to 14 mrad using planar channeling in a (111) silicon crystal. Detailed investigations of the deflected beam as well as the unbent and scattered particles have been performed. The incident beam had a divergence of about 35 μrad (FWHM). 20% of the protons hitting the crystal front face were found to be initially channeled. The measured bending efficiencies range from 5 to 2% (for increasing deflection angles) are compared to theoretical estimates including surface acceptance and dechanneling in bent silicon crystals.

  18. Deflection of 450 GeV protons by planar channeling in a bent silicon crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B.N.; Moeller, S.P.; Uggerhoej, E.; Worm, T. (Inst. for Synchrotron Radiation, Aarhus Univ. (Denmark)); Atherton, H.W.; Clement, M.; Doble, N.; Elsener, K.; Gatignon, L.; Grafstroem, P.; Jeanneret, J.B. (European Organization for Nuclear Research (CERN), Geneva (Switzerland)); Hage-Ali, M.; Siffert, P. (Centre de Recherches Nucleaires, 67 - Strasbourg (France))

    1992-08-01

    A 450 GeV proton beam has been bent by various angles from 4 to 14 mrad using planar channeling in a (111) silicon crystal. Detailed investigations of the deflected beam as well as the unbent and scattered particles have been performed. The incident beam had a divergence of about 35 [mu]rad (FWHM). 20% of the protons hitting the crystal front face were found to be initially channeled. The measured bending efficiencies range from 5 to 2% (for increasing deflection angles) and are compared to theoretical estimates including surface acceptance and dechanneling in bent silicon crystals. (orig.).

  19. Silicon-Germanium Alloys for Infrared Detectors.

    Science.gov (United States)

    1980-04-01

    crystals, aiming at improved crystallinity and higher resistivity and to extend the Czochralski growth method to indium-doped Si-Ge alloys. Our intention...of the disappointingly high boron concentrations achieved in Czochralski growth, we decided to explore a crucible-free method for preparing Si-Ge...material was not high enough to allow an adequately long depletion region in a p-i-n detector. It does not appear that any Czochralski -type growth method

  20. The silicon vertex detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, Markus, E-mail: friedl@hephy.a [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria)

    2011-02-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10{sup 35} cm{sup -2} s{sup -1}, which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  1. Silicon detector for a Compton Camera in Nuclear Medical Imaging

    CERN Document Server

    Meier, D; Jalocha, P; Sowicki, B; Kowal, M; Dulinski, W; Maehlum, G; Nygård, E; Yoshioka, K; Fuster, J A; Lacasta, C; Mikuz, M; Roe, S; Weilhammer, Peter; Hua, C H; Park, S J; Wilderman, S J; Zhang, L; Clinthorne, N H; Rogers, W L

    2001-01-01

    Electronically collimated gamma ca\\-me\\-ras based on Com\\-pton scattering in silicon pad sensors may improve imaging in nuclear medicine and bio-medical research. The work described here concentrates on the silicon pad detector developed for a prototype Compton camera. The silicon pad sensors are read out using low noise VLSI CMOS chips and novel fast triggering chips. Depending on the application a light weight and dense packaging of sensors and its readout electronics on a hybrid is required. We describe the silicon pad sensor and their readout with the newly designed hybrid. %The silicon detector of a Compton camera %may contain up to $10^5$~analogue channels requiring %a fast and low cost data acquisition system. We also describe a modular and low-cost data acquisition system (CCDAQ) based on a digital signal processor which is interfaced to the EPP port of personal computers. Using the CCDAQ and the hybrids energy spectra of gamma-ray photons from technetium ($^{\\rm 99m}_{43}$Tc) and americium ($^{241}_{...

  2. Preliminary Results on Compton Electrons in Silicon Drift Detector

    Science.gov (United States)

    Conka-Nurdan, T.; Nurdan, K.; Laihem, K.; Walenta, A. H.; Fiorini, C.; Freisleben, B.; Hornel, N.; Pavel, N. A.; Struder, L.

    2004-10-01

    Silicon drift detectors (SDD) with on-chip electronics have found many applications in different fields. A detector system has recently been designed and built to study the electrons from Compton scatter events in such a detector. The reconstruction of the Compton electrons is a crucial issue for Compton imaging. The equipment consists of a monolithic array of 19 channel SDDs and an Anger camera. Photons emitted from a finely collimated source undergo Compton scattering within the SDD where the recoil electron is absorbed. The scattered photon is subsequently observed by photoelectric absorption in the second detector. The coincidence events are used to get the energy, position, and direction of the Compton electrons. Because the on-chip transistors provide the first stage amplification, the SDDs provide outstanding noise performance and fast shaping, so that very good energy resolution can be obtained even at room temperature. The drift detectors require a relatively low number of readout channels for large detector areas. Custom-designed analog and digital electronics provide fast readout of the SDDs. The equipment is designed such that the measurements can be done in all detector orientations and kinematical conditions. The first results obtained with this detector system will be presented in this paper.

  3. Optimization and applications of planar silicon-based photonic crystal devices

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Burgos Leon, Juan;

    2005-01-01

    such as topology optimization. We have also investigated a new device concept for coarse wavelength division de-multiplexing based on planar photonic crystal waveguides. The filtering of the wavelength channels has been realized by shifting the cut-off frequency of the fundamental photonic band gap mode......Very low propagation losses in straight planar photonic crystal waveguides have previously been reported. A next natural step is to add functionality to the photonic crystal waveguides and create ultra compact optical components. We have designed and fabricated such structures in a silicon......-on-insulator material. The photonic crystal is defined by holes with diameter 250 nm arranged in a triangular lattice having lattice constant 400 nm. Leaving out single rows of holes creates the planar photonic crystal waveguides. Different types of couplers and splitters, aswell as 60. 90 and 120 degree bends have...

  4. Beam test of CSES silicon strip detector module

    Science.gov (United States)

    Zhang, Da-Li; Lu, Hong; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, Zheng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun

    2017-05-01

    The silicon-strip tracker of the China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSDs) which provide incident particle tracking information. A low-noise analog ASIC VA140 was used in this study for DSSD signal readout. A beam test on the DSSD module was performed at the Beijing Test Beam Facility of the Beijing Electron Positron Collider (BEPC) using a 400-800 MeV/c proton beam. The pedestal analysis results, RMSE noise, gain correction, and intensity distribution of incident particles of the DSSD module are presented. Supported by the XXX Civil Space Programme

  5. Beam test of CSES silicon strip detector module

    CERN Document Server

    Zhang, Da-Li; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, heng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun

    2016-01-01

    The silicon-strip tracker of China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSD). It provides the tracking information of incident particles. The low-noise analog ASIC VA140 was used for signal readout of DSSD. A beam test of the DSSD module was performed in the Beijing test beam Facility of the Beijing Electron Positron Collider (BEPC) using proton beam of 400~800MeV/c. Results on pedestal analysis, RMSE noise, gain correction and reconstruction of incident position of DSSD module are presented.

  6. Interdefect charge exchange in silicon particle detectors at cryogenic temperatures

    CERN Document Server

    MacEvoy, B; Hall, G; Moscatelli, F; Passeri, D; Santocchia, A

    2002-01-01

    Silicon particle detectors in the next generation of experiments at the CERN Large Hadron Collider will be exposed to a very challenging radiation environment. The principal obstacle to long-term operation arises from changes in detector doping concentration (N/sub eff/), which lead to an increase in the bias required to deplete the detector and hence achieve efficient charge collection. We have previously presented a model of interdefect charge exchange between closely spaced centers in the dense terminal clusters formed by hadron irradiation. This manifestly non-Shockley-Read-Hall (SRH) mechanism leads to a marked increase in carrier generation rate and negative space charge over the SRH prediction. There is currently much interest in the subject of cryogenic detector operation as a means of improving radiation hardness. Our motivation, however, is primarily to investigate our model further by testing its predictions over a range of temperatures. We present measurements of spectra from /sup 241/Am alpha par...

  7. Simulation and test of 3D silicon radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fleta, C. [Department of Physics and Astronomy, University of Glasgow, Glasgow, Scotland (United Kingdom)], E-mail: c.fleta@physics.gla.ac.uk; Pennicard, D.; Bates, R.; Parkes, C. [Department of Physics and Astronomy, University of Glasgow, Glasgow, Scotland (United Kingdom); Pellegrini, G.; Lozano, M. [Centro Nacional de Microelectronica, (CNM-IMB, CSIC), Barcelona (Spain); Wright, V. [Diamond Light Source, Oxfordshire (United Kingdom); Boscardin, M.; Dalla Betta, G.-F.; Piemonte, C.; Pozza, A.; Ronchin, S.; Zorzi, N. [ITC-IRST, Trento (Italy)

    2007-09-01

    The work presented here is the result of the collaborative effort between the University of Glasgow, ITC-IRST (Trento) and IMB-CNM (Barcelona) in the framework of the CERN-RD50 Collaboration to produce 3D silicon radiation detectors and study their performance. This paper reports on two sets of 3D devices. IRST and CNM have fabricated a set of single-type column 3D detectors, which have columnar electrodes of the same doping type and an ohmic contact located at the backplane. Simulations of the device behaviour and electrical test results are presented. In particular, current-voltage, capacitance-voltage and charge collection efficiency measurements are reported. Other types of structures called double-sided 3D detectors are currently being fabricated at CNM. In these detectors the sets of n and p columns are made on opposite sides of the device. Electrical and technological simulations and first processing results are presented.

  8. Gas-silicon detector telescope for charged particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Honkanen, A.; Oinonen, M.; Aeystoe, J. [Jyvaeskylae Univ. (Finland). Dept. of Physics; Eskola, K. [Helsinki Univ. (Finland). Dept. of Phys.; Jokinen, A. [PPE Division, CERN, CH-1211 Geneva 23 (Switzerland); ISOLDE Collaboration

    1997-08-11

    A gas-silicon detector telescope for charged particle spectroscopy has been constructed and tested. The lower detection limits were determined to be 155 keV for protons, 180 keV for deuterons and 350 keV for alpha particles. Typical energy resolution of the telescope measured for beta-delayed protons is 20 keV. Time resolution for the signals of the telescope was measured to be less than 10 ns. Examples of using the detector telescope in detection of beta-delayed proton activities are presented. (orig.).

  9. Recent developments in silicon radiation detectors at IRST

    CERN Document Server

    Pignatel, Giogrio Umberto; Dalla Betta, Gian Franco

    2000-01-01

    In the last few years, the Institute for Research, Science and Technology (IRST) has been involved in a research program, supported by the Italian Institute of Nuclear Physics (INFN), aimed at setting up the technological capabilities for the production of double-sided silicon detectors for high energy physics experiments. We report on the most relevant achievements of this R&D activity, with emphasis on some recent results from the development of detectors oriented to ALICE (a large ion collider experiment) and ATLAS (a toroidal LHC apparatus) experiments at LHC. (14 refs).

  10. High Voltage Operation of heavily irradiated silicon microstrip detectors

    CERN Document Server

    Gu, W H; Angarano, M M; Bader, A; Biggeri, U; Boemi, D; Braibant, S; Breuker, H; Bruzzi, Mara; Caner, A; Catacchini, E; Civinini, C; Creanza, D; D'Alessandro, R; Demaria, N; Eklund, C; Peisert, Anna; Feld, L; Fiore, L; Focardi, E; Fürtjes, A; Glessing, B; Hall, G; Hammerstrom, R; Dollan, Ralph; Huhtinen, M; Karimäki, V; König, S; Lenzi, M; Lübelsmeyer, K; Maggi, G; Mannelli, M; Marchioro, A; Mariotti, C; Mättig, P; McEvoy, B; Meschini, M; My, S; Pandoulas, D; Parrini, G; Pieri, M; Dollan, Ralph; Potenza, R; Raso, G; Raymond, M; Schmitt, B; Selvaggi, G; Siedling, R; Silvestris, L; Skog, K; Stefanini, G; Tempesta, P; Tricomi, A; Watts, S; Wittmer, B; De Palma, M

    1999-01-01

    We discuss the results obtained from the R&D studies, done within the CMS experiment at LHC related to the behaviour of silicon microstrip prototype detectors when they are operated at high bias voltages before and after heavy irradiation, simulating up to 10 years of LHC running conditions. We have found detectors from several manufacturesrs that are able to work at V_bias > 500 Volts before and after the irradiation procedure, maintaining an acceptable performance with S/N > 14, efficiency close to 100% and few ghost hits.

  11. Movable radiation shields for the CLEO II silicon vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, D.J.; Ward, C.W.; Alexander, J.; Cherwinka, J.; Henderson, S. [Cornell Univ., Ithaca, NY (United States); Cinabro, D. [Harvard University, Cambridge, MA 02138 (United States); Fast, J. [Purdue University, Lafayette, IN 47907 (United States); Morrison, R. [University of California at Santa Barbara, Santa Barbara, CA 93106 (United States); O`Neill, M. [CRPP, Carleton University, Ottawa, Ont. (Canada)

    1998-02-11

    Two movable tungsten radiation shields were installed on the beam pipe during the upgrade of the CLEO II detector, operating at the Cornell electron storage ring (CESR). This upgrade included the installation of a silicon vertex detector (SVX) and the purpose of the shields is to protect the SVX readout electronics from synchrotron radiation produced during injection and non-high-energy physics operation of CESR. Shield motion is controlled remotely by cables, keeping the associated motors and controls outside the detection volume. We discuss the design and performance of the radiation shields and the associated control system. (orig.). 8 refs.

  12. Detectors based on silicon photomultiplier arrays for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Llosa, G.; Barrio, J.; Cabello, J.; Lacasta, C.; Oliver, J. F. [Instituto de Fisica Corpuscular - IFIC-CSIC/UVEG, Valencia (Spain); Rafecas, M. [Instituto de Fisica Corpuscular - IFIC-CSIC/UVEG, Valencia (Spain); Departamento de Fisica Atomica, Molecular Y Nuclear, Universitat de Valencia, Valencia (Spain); Stankova, V.; Solaz, C. [Instituto de Fisica Corpuscular - IFIC-CSIC/UVEG, Valencia (Spain); Bisogni, M. G.; Del Guerra, A. [Universite di Pisa, INFN Pisa, Pisa (Italy)

    2011-07-01

    Silicon photomultipliers (SiPMs) have experienced a fast development and are now employed in different research fields. The availability of 2D arrays that provide information of the interaction position in the detector has had a high interest for medical imaging. Continuous crystals combined with segmented photodetectors can provide higher efficiency than pixellated crystals and very high spatial resolution. The IRIS group at IFIC is working on the development of detector heads based on continuous crystals coupled to SiPM arrays for different applications, including a small animal PET scanner in collaboration with the Univ. of Pisa and INFN Pisa, and a Compton telescope for dose monitoring in hadron therapy. (authors)

  13. Characterization of different surface passivation routes applied to a planar HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Maggioni, G.; Gelain, M.; Carturan, S. [University of Padova, Department of Physics and Astronomy ' ' G. Galilei' ' , Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Legnaro (Italy); Napoli, D.R. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Legnaro (Italy); Eberth, J. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Grimaldi, M.G.; Tati, S. [University of Catania, Department of Physics and Astronomy, Catania (Italy)

    2015-11-15

    The effects of different passivation methods applied to the same planar high-purity germanium gamma radiation detector have been studied. By means of the scanning with a low-energy collimated gamma source, it has been found that the surface passivation gives rise to a dead layer below the intrinsic Ge surface, whose thickness and distribution are strongly dependent on the passivation type. Measured bulk detector properties like the peak-to-Compton ratio and efficiency have shown a dependence on the passivation and an influence of the passivation type on the depletion voltage, whilst the optimal energy resolution has been the same for all the passivations. (orig.)

  14. Works of art investigation with silicon drift detectors

    CERN Document Server

    Leutenegger, P; Fiorini, C; Strüder, L; Kemmer, J; Lechner, P; Sciuti, S; Cesareo, R

    2000-01-01

    The X-ray fluorescence (XRF) spectroscopy analysis is a non-destructive technique widely used in archeometry to investigate the chemical composition of pigments, metal alloys and stones for restoration and historical investigation. The classical detection systems for archeometrical investigations utilize cryogenic detectors, like Si(Li) and HPGe, characterized by a satisfactory energy resolution (of the order of 140 eV FWHM at 6 keV). However, the requirements of liquid N sub 2 drastically limit the portability of such systems, limiting the possibility of making measurements 'on the field'. Recently new silicon PIN diodes Peltier cooled were introduced, allowing the construction of portable instrumentation. However, their energy resolution (of the order of 250 eV FWHM at 6 keV) results in some cases unsatisfactory (for instance in the identification of light elements). Both the requirements of portability and good energy resolution are fulfilled by the silicon drift detector (SDD). The SDD, cooled by a Peltie...

  15. Performance of silicon pixel detectors at small track incidence angles

    CERN Document Server

    Viel, Simon; The ATLAS collaboration

    2015-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN, as well as simulated data.

  16. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  17. Silicon microstrip detectors in 3D technology for the sLHC

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne; Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris; Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-08-01

    The projected luminosity upgrade of the large hadron collider (LHC), the sLHC, will constitute a challenging radiation environment for tracking detectors. Massive improvements in radiation hardness are required with respect to the LHC. In the layout for the new ATLAS tracker, silicon strip detectors (SSDs) with short strips cover the region from 28 to 60 cm distance to the beam. These SSDs will be exposed to fluences up to 10{sup 15}N{sub eq}/cm{sup 2}, hence radiation resistance is the major concern. It is advantageous to fuse the superior radiation hardness of the 3D design originally conceived for pixel-style applications with the benefits of the well-known planar technology for strip detectors. This is achieved by ganging rows of 3D columns together to form strips. Several prototype sLHC detector modules using 3D SSD with short strips, processed on p-type silicon, and LHC-speed front-end electronics from the present ATLAS semi-conductor tracker (SCT) were built. The modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency (CCE), a Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particles (MIPs), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the performance of these 3D modules, and draws conclusions about options for using 3D strip sensors as tracking detectors at the sLHC.

  18. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  19. Silicon vertex detector upgrade in the ALPHA experiment

    CERN Document Server

    Amole, C; Ashkezari, M.D; Baquero-Ruiz, M; Bertsche, W; Burrows, C; Butler, E; Capra, A; Cesar, C.L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M.C; Gill, D.R; Gutierrez, A; Hangst, J.S; Hardy, W.N; Hayden, M.E; Humphries, A.J; Isaac, C.A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J.T.K; Menary, S; Napoli, S.C; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C.Ø; Robicheaux, F; Sacramento, R.L; Sampson, J.A; Sarid, E; Seddon, D; Silveira, D.M; So, C; Stracka, S; Tharp, T; Thompson, R.I; Thornhill, J; Tooley, M.P; Van Der Werf, D.P; Wells, D

    2013-01-01

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA ' s analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA ' s new neutral atom trap.

  20. Silicon vertex detector upgrade in the ALPHA experiment

    Science.gov (United States)

    Amole, C.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Burrows, C.; Butler, E.; Capra, A.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Stracka, S.; Sampson, J. A.; Sarid, E.; Seddon, D.; Silveira, D. M.; So, C.; Thompson, R. I.; Tharp, T.; Thornhill, J.; Tooley, M. P.; van der Werf, D. P.; Wells, D.

    2013-12-01

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA's analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA's new neutral atom trap.

  1. Massive silicon or germanium detectors at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dip. Fisica dell' Universita di Ferrara and INFN, via del Paradiso 12, 44100 Ferrara (Italy); Bressi, G. [INFN, sez.Pavia, Via U. Bassi 6, 27100 Pavia (Italy); Carugno, G. [INFN, sez. Padova, Via Marzolo 8, 35131 Padova (Italy); Feltrin, E. [INFN, Lab. Naz. Legnaro, Via dell' Universita 1, 35020 Legnaro (PD) (Italy)]. E-mail: feltrin@lnl.infn.it; Galeazzi, G. [INFN, Lab. Naz. Legnaro, Via dell' Universita 1, 35020 Legnaro (PD) (Italy)

    2006-11-30

    Several massive silicon and germanium home-made detectors, working at cryogenic temperature, have been studied. They are the benchmarking schemes to check the possibility of realizing a semiconductor time projection chamber that could have various interesting applications in weak interaction problems. Reported here are the first results on investigations of charge collection efficiency and metal-semiconductor contact hardness. The leakage current, total depletion voltage and alpha or gamma spectroscopy are presented.

  2. Descent of the Silicon Pixel Detector (SPD) for ALICE Experiment

    CERN Multimedia

    2007-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the ALICE Inner Tracking System (ITS) at radii of 3.9 cm and 7.6 cm, respectively. It is a fundamental element for the determination of the position of the primary vertex as well as for the measurement of the impact parameter of secondary tracks originating from the weak decays of strange, charm and beauty particles.

  3. Silicon vertex detector upgrade in the ALPHA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C. [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Andresen, G.B. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M.D. [Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 (Canada); Baquero-Ruiz, M. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Bertsche, W. [School of Physics and Astronomy, University of Manchester, M13 9PL Manchester (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, WA4 4AD Warrington (United Kingdom); Burrows, C. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Capra, A. [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Cesar, C.L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Chapman, S. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Charlton, M.; Deller, A.; Eriksson, S. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Fajans, J. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Friesen, T. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Fujiwara, M.C. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gill, D.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gutierrez, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); and others

    2013-12-21

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA's analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA's new neutral atom trap.

  4. New test and analysis of position-sensitive-silicon-detector

    Institute of Scientific and Technical Information of China (English)

    FENG Lang; GE Vu-Cheng; WANG He; FAN Feng-Ying; QIAO Rui; LU Fei; SONG Yu-Shou; ZHENG Tao; YE Yan-Lin

    2009-01-01

    We have tested and analyzed the properties of two-dimensional Position-Sensitive-silicon-Detector (PSD) with new integrated preamplifiers.The test demonstrates that the best position resolution for 5.5 MeV α particles is 1.7 mm (FWHM),and the best energy resolution is 2.1%,which are notably better than the previously reported results.A scaling formula is introduced to make the absolute position calibration.

  5. LHCb: Installation and operation of the LHCb Silicon Tracker detector

    CERN Multimedia

    Esperante Pereira, D

    2009-01-01

    The LHCb experiment has been designed to perform high-precision measurements of CP violation and rare decays of B hadrons. The construction and installation phases of the Silicon Tracker (ST) of the experiment were completed by early summer 2008. The LHCb Silicon Tracker sums up to a total sensitive area of about 12 m^2 using silicon micro-strip technology and withstands charged particle fluxes of up to 5 x 10^5cm^−2s^−1. We will report on the preparation of the detectors for the first LHC beams. Selected results from the commissioning in LHCb are shown, including the first beam-related events accumulated during LHC injection tests in September 2008. Lessons are drawn from the experience gathered during the installation and commissioning.

  6. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    S. Behari et al.

    2003-12-18

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  7. Silicon Strip Detectors for the ATLAS sLHC Upgrade

    CERN Document Server

    Miñano, M; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. The left part of figure 1 shows the simulated layout for the ATLAS tracker upgrade to be installed in the volume taken up by the current ATLAS pixel, strip and transition radiation detectors. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The...

  8. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    S. Behari et al.

    2003-12-18

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  9. Silicon detectors for the n-TOF neutron beams monitoring

    CERN Document Server

    Cosentino, L; Barbagallo, M; Colonna, N; Damone, L; Pappalardo, A; Piscopo, M; Finocchiaro, P

    2015-01-01

    During 2014 the second experimental area EAR2 was completed at the n-TOF neutron beam facility at CERN. As the neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target, the resulting neutron beam covers an enormous energy range, from thermal to several GeV. In this paper we describe two beam diagnostic devices, designed and built at INFN-LNS, both exploiting silicon detectors coupled with neutron converter foils containing 6Li. The first one is based on four silicon pads and allows to monitor the neutron beam flux as a function of the neutron energy. The second one, based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices have been ch...

  10. MUST: A silicon strip detector array for radioactive beam experiments

    CERN Document Server

    Blumenfeld, Y; Sauvestre, J E; Maréchal, F; Ottini, S; Alamanos, N; Barbier, A; Beaumel, D; Bonnereau, B; Charlet, D; Clavelin, J F; Courtat, P; Delbourgo-Salvador, P; Douet, R; Engrand, M; Ethvignot, T; Gillibert, A; Khan, E; Lapoux, V; Lagoyannis, A; Lavergne, L; Lebon, S; Lelong, P; Lesage, A; Le Ven, V; Lhenry, I; Martin, J M; Musumarra, A; Pita, S; Petizon, L; Pollacco, E; Pouthas, J; Richard, A; Rougier, D; Santonocito, D; Scarpaci, J A; Sida, J L; Soulet, C; Stutzmann, J S; Suomijärvi, T; Szmigiel, M; Volkov, P; Voltolini, G

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm sup 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and a...

  11. Novel fabrication techniques for low-mass composite structures in silicon particle detectors

    Science.gov (United States)

    Hartman, Neal; Silber, Joseph; Anderssen, Eric; Garcia-Sciveres, Maurice; Gilchriese, Murdock; Johnson, Thomas; Cepeda, Mario

    2013-12-01

    The structural design of silicon-based particle detectors is governed by competing demands of reducing mass while maximizing stability and accuracy. These demands can only be met by fiber reinforced composite laminates (CFRP). As detecting sensors and electronics become lower mass, the motivation to reduce structure as a proportion of overall mass pushes modern detector structures to the lower limits of composite ply thickness, while demanding maximum stiffness. However, classical approaches to composite laminate design require symmetric laminates and flat structures, in order to minimize warping during fabrication. This constraint of symmetry in laminate design, and a “flat plate” approach to fabrication, results in more massive structures. This study presents an approach to fabricating stable and accurate, geometrically complex composite structures by bonding warped, asymmetric, but ultra-thin component laminates together in an accurate tool, achieving final overall precision normally associated with planar structures. This technique has been used to fabricate a prototype “I-beam” that supports two layers of detecting elements, while being up to 20 times stiffer and up to 30% lower mass than comparable, independent planar structures (typically known as “staves”).

  12. Silicon drift detector with reduced lateral diffusion: experimental results

    CERN Document Server

    Sonsky, J; Huizenga, John R; Hollander, R W; Eijk, C W E; Sarro, P M

    2000-01-01

    In a standard multi-anode silicon drift detector electron cloud broadening during the drifting towards the anode pixels deteriorates the energy and position resolution. This makes the detector less applicable for detection of low-energy X-rays. The signal charge sharing between several anodes can be eliminated by introducing sawtooth-shaped p sup + field strips. The sawtooth structure results in small electric fields directed parallel to the sensor surface and perpendicular to the drift direction which produce gutters. The drifting electrons are confined in these gutters of one saw tooth period wide. For a detector with a sawtooth period of 500 mu m, we have measured the maximum number of fully confined electrons as a function of the potential gutter depth induced by different sawtooth angles.

  13. Pulse shape method for the Chimera silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, A.; Arena, N.; Cardella, G.; D' Andrea, M.; Filippo, E. de; Fichera, F.; Giudice, N.; Guardone, N.; Grimaldi, A.; Nicotra, D.; Papa, M.; Pirrone, S.; Politi, G.; Rapicavoli, C.; Rizza, G.; Russotto, P.; Sacca, G.; Urso, S.; Lanzano, G. [Catania Univ., INFN Catania and Dipartimento di Fisica e Astronomia (Italy); Alderighi, M.; Sechi, G. [INFN Milano and Istituto di Fisica Cosmica CNR, Milano (Italy); Amorini, F.; Anzalone, A.; Cali, C.; Campagna, V.; Cavallaro, S.; Di Stefano, A.; Giustolisi, F.; La Guidara, E.; Lanzalone, G.; Maiolino, C.; Porto, F.; Rizzo, F.; Salamone, S. [Catania Univ., INFN-LNS and Dipartimento di Fisica e Astronomia (Italy); Auditore, L.; Trifiro, A.; Trimarchi, M. [Messina Univ., INFN and Dipartimento di Fisica (Italy); Bassini, R.; Boiano, C.; Guazzoni, P.; Russo, S.; Sassi, M.; Zetta, L. [Milano Univ., INFN Milano and Dipartimento di Fisica (Italy); Blicharska, J.; Grzeszczuk, A. [Silesia Univ., Institute of Physics, Katowice (Poland); Chatterjee, M.B. [Saha Institute Of Nuclear Physics, Kolkata (India); Geraci, E.; Zipper, W. [Bologna Univ., INFN Bologna and Dipartimento di Fisica (Italy); Rosato, E.; Vigilante, M. [Napoli Univ., INFN and Dipartimento di Fisica (Italy); Schroder, W.U.; T-ke, J. [Rochester Univ., Dept. of Chemistry, Rochester, N.Y. (United States)

    2003-07-01

    Since January 2003, the 4{pi} CHIMERA (Charged Heavy Ions Mass and Energy Resolving Array) detector in its full configuration has successfully been operated at the 'Catania Laboratori Nazionali del Sud' (LNS) accelerator facility. The detector has been used with a variety of beams from the Superconducting Cyclotron in heavy-ion reaction studies at Fermi bombarding energies. Future experiments with a focus on isospin physics at Fermi energies, planned for both primary and less intense secondary particle beams, suggest the development of new and more versatile experimental particle identification methods. Recent achievements in implementing specific pulse shape particle identification methods for CHIMERA silicon detectors are reported. They suggest an upgrade of the present charge and mass identification capability of CHIMERA by a simple extension of the method. (authors)

  14. Fabrication of PIN diode detectors on thinned silicon wafers

    CERN Document Server

    Ronchin, Sabina; Dalla Betta, Gian Franco; Gregori, Paolo; Guarnieri, Vittorio; Piemonte, Claudio; Zorzi, Nicola

    2004-01-01

    Thin substrates are one of the possible choices to provide radiation hard detectors for future high-energy physics experiments. Among the advantages of thin detectors are the low full depletion voltage, even after high particle fluences, the improvement of the tracking precision and momentum resolution and the reduced material budget. In the framework of the CERN RD50 Collaboration, we have developed p-n diode detectors on membranes obtained by locally thinning the silicon substrate by means of tetra-methyl ammonium hydroxide etching from the wafer backside. Diodes of different shapes and sizes have been fabricated on 57 and 99mum thick membranes. They have been tested, showing a very low leakage current ( less than 0.4nA/cm**2) and, as expected, a very low depletion voltage ( less than 1V for the 57mum membrane). The paper describes the technological approach used for devices fabrication and reports selected results from the electrical characterization.

  15. Positron emission mammography with tomographic acquisition using dual planar detectors: initial evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Mark F Smith; Raymond R Raylman; Stan Majewski; Andrew G Weisenberger

    2004-05-01

    Positron emission mammography (PEM) with tomographic acquisition using dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation compared with PEM using stationary detectors. PEM tomography (PEMT) was compared with stationary PEM for point source and compressed breast phantom studies performed with a compact dual detector system. The acquisition geometries were appropriate for the target application of PEM guidance of stereotactic core biopsy. Images were reconstructed with a three-dimensional iterative maximum likelihood expectation maximization algorithm. PEMT eliminated blurring normal to the detectors seen with stationary PEM. Depth of interaction effects distorted the shape of the point spread functions for PEMT as the angular range from normal incidence of lines of response used in image reconstruction increased. Streak artifacts in PEMT for large detector rotation increments led to the development of an expression for the maximum rotation increment that maintains complete angular sampling. Studies with a compressed breast phantom were used to investigate contrast and signal-to-noise ratio (SNR) trade-offs for different sized spherical tumor models. PEMT and PEM both had advantages depending on lesion size and detector separation. The most appropriate acquisition method for specific detection or quantitation tasks requires additional investigation.

  16. Balloon Flight Background Measurement with Actively-Shielded Planar and Imaging CZT Detectors

    CERN Document Server

    Bloser, P F; Jenkins, J A; Perrin, M; Murray, R; Grindlay, J E

    2001-01-01

    We present results from the flight of two prototype CZT detectors on a scientific balloon payload in September 2000. The first detector, referred to as ``CZT1,'' consisted of a 10 mm x 10 mm x 2 mm CZT crystal with a single gold planar electrode readout. This detector was shielded by a combination of a passive collimator surrounded by plastic scintillator and a thick BGO crystal in the rear. The second detector, ``CZT2,'' comprised two 10 mm x 10 mm x 5 mm CZT crystals, one made of eV Products high pressure Bridgman material and the other of IMARAD horizontal Bridgman material, each fashioned with a 4 x 4 array of gold pixels on a 2.5 mm pitch. The pixellated detectors were flip-chip-mounted side by side and read out by a 32-channel ASIC. This detector was also shielded by a passive/plastic collimator in the front, but used only additional passive/plastic shielding in the rear. Both experiments were flown from Ft. Sumner, NM on September 19, 2000 on a 24 hour balloon flight. CZT1 recorded a non-vetoed backgro...

  17. Technology for fabrication of sub-20 nm silicon planar nanowires array

    Science.gov (United States)

    Miakonkikh, Andrey V.; Tatarintsev, Andrey A.; Rogozhin, Alexander E.; Rudenko, Konstantin V.

    2016-12-01

    The results presented on Silicon one-dimensional structures fabrication which are promising for application in nanoelectronics, sensors, THz-applications. We employ two-stage technology of precise anizotropic plasma etching of silicon over e-beam resist and isotropic removal of thermally oxidised defected surface layer of silicon by wet etch. As first the process for nano-fins fabrication on SOI substrate was developed. HSQ resist was used as a negative-tone electron beam resist with good etch-resistance, high resolution and high mechanical stability. The etching was performed by RIE in mix of SF6 + C4F8. plasma. By changing the ratio SF6:C4F8, the sidewall profile angle can be controlled thoroughly. Next step to minimize lateral size of structures and reduce impact of surface defects on electron mobility in core of nanowires was the application of surface thermal oxidation to defected layer. It was used for selective removal of damaged silicon layer and polymer residues. Oxidation was performed with controlled flow of dry oxygen and water vapour. Oxidation rate was precisely controlled by ex-situ spectral ellipsometry on unpatterned chips As a result the arrays of planar sub-20 nm Silicon nanowires with length in the range 200 nm - 500 um were made.

  18. Position-sensitive silicon strip detector characterization using particle beams

    CERN Document Server

    Maenpaeae, Teppo

    2012-01-01

    Silicon strip detectors are fast, cost-effective and have an excellent spatial resolution.They are widely used in many high-energy physics experiments. Modern high energyphysics experiments impose harsh operation conditions on the detectors, e.g., of LHCexperiments. The high radiation doses cause the detectors to eventually fail as a resultof excessive radiation damage. This has led to a need to study radiation tolerance usingvarious techniques. At the same time, a need to operate sensors approaching the endtheir lifetimes has arisen.The goal of this work is to demonstrate that novel detectors can survive the environment that is foreseen for future high-energy physics experiments. To reach this goal,measurement apparatuses are built. The devices are then used to measure the propertiesof irradiated detectors. The measurement data are analyzed, and conclusions are drawn.Three measurement apparatuses built as a part of this work are described: two telescopes measuring the tracks of the beam of a particle acceler...

  19. Silicon pixel R&D for the CLIC detector

    CERN Document Server

    Hynds, Daniel

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few microns, ultra-low mass (~0.2% X0 per layer for the vertex region and ~1% X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hy- brid pixel detectors with small pitch (25 μm) and analogue readout are explored. For the outer tracking region,...

  20. Silicon pixel-detector R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (∼ 0.2% X${}_0$ per layer for the vertex region and ∼ 1 % X${}_0$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ∼ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer trac...

  1. DLTS measurement of energetic levels, generated in silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bosetti, M. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Croitoru, N. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Furetta, C. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Leroy, C. [Universite de Montreal, Montreal, PQ H3C 3J7 (Canada); Pensotti, S. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Rancoita, P.G. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Rattaggi, M. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Redaelli, M. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Rizzatti, M. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Seidman, A. [Istituto Nazionale di Fisica Nucleare, Milan (Italy)

    1995-07-15

    DLTS (deep level transient spectroscopy) measurements were performed on irradiated Si detectors to record data on the energetic levels traps generated by neutrons. For moderate fluences ({phi}) of neutrons ({phi}<10{sup 12} n cm{sup -2}) electron and hole trap levels have been detected. Four electron trap levels were found for both FZ (float zone) and MCZ (magnetic Czochralsky) types of Si detectors but only two hole trap levels in FZ and one in MCZ detectors. This indicates that the type of silicon has an influence on the traps generated by irradiation. From the values obtained for the relative concentration of E1 centers in MCZ and FZ detectors, it results that the E1 centers are oxygen and not vacancy limited. Since the concentration of the E2, E3, and E4 levels are larger in FZ than in MCZ detectors, it may be assumed that the ``gettering effect`` can control the formation of deeper traps. Filling pulses were applied for various voltages and at the flat band filling voltage, maximum ratio of N{sub t}/N of the E1 center was achieved. This may indicate that the concentration of E1 centers, near the p{sup +}-n interface, can be larger than in the rest of the junction. (orig.).

  2. New results on silicon microstrip detectors of CMS tracker

    CERN Document Server

    Demaria, N; Angarano, M M; Azzi, P; Babucci, E; Bacchetta, N; Bader, A J; Bagliesi, G; Basti, A; Biggeri, U; Bilei, G M; Bisello, D; Boemi, D; Bölla, G; Bosi, F; Borello, L; Bortoletto, Daniela; Bozzi, C; Braibant, S; Breuker, Horst; Bruzzi, Mara; Buffini, A; Busoni, S; Candelori, A; Caner, A; Castaldi, R; Castro, A; Catacchini, E; Checcucci, B; Ciampolini, P; Civinini, C; Creanza, D; D'Alessandro, R; Da Rold, M; De Palma, M; Dell'Orso, R; Della Marina, R; Dutta, S; Eklund, C; Peisert, Anna; Favro, G; Feld, L; Fiore, L; Focardi, E; French, M; Freudenreich, Klaus; Fürtjes, A; Giassi, A; Giorgi, M A; Giraldo, A; Glessing, B; Gu, W H; Hall, G; Hammarström, R; Hebbeker, T; Hrubec, Josef; Huhtinen, M; Kaminski, A; Karimäki, V; Saint-Koenig, M; Krammer, Manfred; Lariccia, P; Lenzi, M; Loreti, M; Lübelsmeyer, K; Lustermann, W; Mättig, P; Maggi, G; Mannelli, M; Mantovani, G C; Marchioro, A; Mariotti, C; Martignon, G; McEvoy, B; Meschini, M; Messineo, A; Migliore, E; My, S; Paccagnella, A; Palla, Fabrizio; Pandoulas, D; Papi, A; Parrini, G; Passeri, D; Pieri, M; Piperov, S; Potenza, R; Radicci, V; Raffaelli, F; Raymond, M; Santocchia, A; Schmitt, B; Selvaggi, G; Servoli, L; Sguazzoni, G; Siedling, R; Silvestris, L; Skog, K; Starodumov, Andrei; Stavitski, I; Stefanini, G; Tempesta, P; Tonelli, G; Tricomi, A; Tuuva, T; Vannini, C; Verdini, P G; Viertel, Gert M; Xie, Z; Li, Y; Watts, S; Wittmer, B

    2000-01-01

    Interstrip and backplane capacitances on silicon microstrip detectors with pf strip on n substrate of 320 mu m thickness were measured for pitches between 60 and 240 mu m and width over pitch ratios between 0.13 and 0.5. Parametrisations of capacitance w.r.t. pitch and width were compared with data. The detectors were measured before and after being irradiated to a fluence of 4*10/sup 14/ protons/cm/sup 2/ of 24 GeV/e momentum. The effect of the crystal orientation of the silicon has been found to have a relevant influence on the surface radiation damage, favouring the choice of a (100) substrate. Working at high bias (up to 500 V in CMS) might be critical for the stability of detector, for a small width over pitch ratio. The influence of having a metal strip larger than the p/sup +/ implant has been studied and found to enhance the stability. (7 refs).

  3. CDF Run II Silicon Vertex Detector Annealing Study

    CERN Document Server

    Stancari, M; Behari, S; Christian, D; Di Ruzza, B; Jindariani, S; Junk, T R; Mattson, M; Mitra, A; Mondragon, M N; Sukhanov, A

    2013-01-01

    Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron collider delivered 12~fb$^{-1}$ of $p\\bar{p}$ collisions at $\\sqrt{s}=1.96$ TeV to the Collider Detector at Fermilab (CDF). During that time, the CDF silicon vertex detector was subject to radiation doses of up to 12 Mrad. After the end of operations, the silicon detector was annealed for 24 days at $18^{\\circ}$C. In this paper, we present a measurement of the change in the bias currents for a subset of sensors during the annealing period. We also introduce a novel method for monitoring the depletion voltage throughout the annealing period. The observed bias current evolution can be characterized by a falling exponential term with time constant $\\tau_I=17.88\\pm0.36$(stat.)$\\pm0.25$(syst.) days. We observe an average decrease of $(27\\pm3)\\%$ in the depletion voltage, whose evolution can similarly be described by an exponential time constant of $\\tau_V=6.21\\pm0.21$ days. These results are consistent with the Ham...

  4. A comprehensive analysis of irradiated silicon detectors at cryogenic temperatures

    CERN Document Server

    Santocchia, A; Hall, G; MacEvoy, B; Moscatelli, F; Passeri, D; Pignatel, Giogrio Umberto

    2003-01-01

    The effect of particle irradiation on high-resistivity silicon detectors has been extensively studied with the goal of engineering devices able to survive the very challenging radiation environment at the CERN Large Hadron Collider (LHC). The main aspect under investigation has been the changes observed in detector effective doping concentration (N/sub eff/). We have previously proposed a mechanism to explain the evolution of N/sub eff/, whereby charge is exchanged directly between closely-spaced defect centres in the dense terminal clusters formed by hadron irradiation. This model has been implemented in both a commercial finite-element device simulator (ISE-TCAD) and a purpose-built simulation of interdefect charge exchange. To control the risk of breakdown due to the high leakage currents foreseen during ten years of LHC operation, silicon detectors will be operated below room temperature (around -10 degrees C). This, and more general current interest in the field of cryogenic operation, has led us to inve...

  5. Detector module development for the CBM Silicon Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Lymanets, Anton [Physikalisches Institut, Universitaet Tuebingen (Germany); Collaboration: CBM-Collaboration

    2013-07-01

    The central detector of the CBM experiment at FAIR, the Silicon Tracking System (STS), is being designed to reconstruct hundreds of charged particles produced at rates up to 10 MHz in interactions of ion beams of up to 45 AGeV projectile energies with nuclear targets. The building block of the tracking system is a module suitable for a low-mass detector construction. In a module, the basic functional unit of the STS, radiation tolerant microstrip sensors are read out through low-mass multi-line cables with self-triggering front-end electronics located at the periphery of the system. Light-weight carbon fibre support structures will carry 10 of such modules and build up the STS stations. In the presentation, the concept of the detector module construction is presented. Quality assurance tests under development for the module components (double-sided silicon microstrip sensors, stacked polyimide microcables, front-end ASICs and boards) and the assembled structures are discussed.

  6. The Belle II silicon vertex detector assembly and mechanics

    Science.gov (United States)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Bulla, L.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Lueck, T.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2017-02-01

    The Belle II experiment at the asymmetric SuperKEKB collider in Japan will operate at an instantaneous luminosity approximately 50 times greater than its predecessor (Belle). The central feature of the experiment is a vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is CP violation asymmetry in the decays of beauty and charm hadrons, which hinges on a precise charged-track vertex determination and low-momentum track measurement. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision 3D coordinate measurements of the final SVD modules. Finally, some results from the latest test-beam are reported.

  7. A double sided silicon strip detector as a DRAGON end detector

    CERN Document Server

    Wrede, C; Rogers, J G; D'Auria, J M

    2003-01-01

    The new DRAGON facility (detector of recoils and gammas of nuclear reactions), located at the TRlUMF-ISAC Radioactive Beams facility in Vancouver, Canada is now operational. This facility is used to study radiative proton capture reactions in inverse kinematics (heavy ion beam onto a light gaseous target) with both stable beams and radioactive beams of mass A=13-26 in the energy range 0.15-1.5 MeV/u. A double sided silicon strip detector (DSSSD) has been used to detect recoil ions. Tests have been performed to determine the performance of this DSSSD.

  8. Compact silica-on-silicon planar lightwave circuits for high speed optical signal processing

    Science.gov (United States)

    Callender, C. L.; Dumais, P.; Blanchetiere, C.; Jacob, S.; Ledderhof, C.; Smelser, C. W.; Yadav, K.; Albert, J.

    2012-02-01

    Silica-on-silicon planar lightwave circuit (PLC) technology is well established and provides a low loss and stable photonic device platform. However, limitations in size and integration of active components remain. Engineering of the layer structure in silica PLCs to achieve high-index contrast, compact device architectures and monolithically integrated optical nonlinearities is described. Modeling of properties of doped-silica layers provides a design strategy for optimization of waveguide loss and birefringence. Optical nonlinearities in poled silica layers have been demonstrated, and recent work to incorporate these into functional device structures and exploit them for high speed modulation is reported.

  9. The silicon vertex detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, T. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Universitá di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); Bozek, A. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); and others

    2016-07-11

    The silicon vertex detector of the Belle II experiment, structured in a lantern shape, consists of four layers of ladders, fabricated from two to five silicon sensors. The APV25 readout ASIC chips are mounted on one side of the ladder to minimize the signal path for reducing the capacitive noise; signals from the sensor backside are transmitted to the chip by bent flexible fan-out circuits. The ladder is assembled using several dedicated jigs. Sensor motion on the jig is minimized by vacuum chucking. The gluing procedure provides such a rigid foundation that later leads to the desired wire bonding performance. The full ladder with electrically functional sensors is consistently completed with a fully developed assembly procedure, and its sensor offsets from the design values are found to be less than 200 μm. The potential functionality of the ladder is also demonstrated by the radioactive source test.

  10. The silicon vertex detector of the Belle II experiment

    Science.gov (United States)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The silicon vertex detector of the Belle II experiment, structured in a lantern shape, consists of four layers of ladders, fabricated from two to five silicon sensors. The APV25 readout ASIC chips are mounted on one side of the ladder to minimize the signal path for reducing the capacitive noise; signals from the sensor backside are transmitted to the chip by bent flexible fan-out circuits. The ladder is assembled using several dedicated jigs. Sensor motion on the jig is minimized by vacuum chucking. The gluing procedure provides such a rigid foundation that later leads to the desired wire bonding performance. The full ladder with electrically functional sensors is consistently completed with a fully developed assembly procedure, and its sensor offsets from the design values are found to be less than 200 μm. The potential functionality of the ladder is also demonstrated by the radioactive source test.

  11. Digital pulse processing and electronic noise analysis for improving energy resolutions in planar TlBr detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Tsutomu, E-mail: tada.t@cyric.tohoku.ac.j [Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Hitomi, Keitaro [Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Tanaka, Tomonobu [Divisions of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama, Kasumi-cho, Taihakuku, Sendai, Miyagi 982-8577 (Japan); Wu, Yan; Kim, Seong-Yun; Yamazaki, Hiromichi [Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Ishii, Keizo [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, 6-6-1 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2011-05-11

    Digital pulse processing and electronic noise analysis are proposed for improving energy resolution in planar thallium bromide (TlBr) detectors. An energy resolution of 5.8% FWHM at 662 keV was obtained from a 0.5 mm thick planar TlBr detector at room temperature using a digitizer with a sampling rate of 100 MS/s and 8 bit resolution. The electronic noise in the detector-preamplifier system was measured as a function of pulse shaping time in order to investigate the optimum shaping time for the detector. The depth of interaction (DOI) in TlBr detectors for incident gamma-rays was determined by taking the ratio of pulse heights for fast-shaped to slow-shaped signals. FWHM energy resolution of the detector was improved from 5.8% to 4.2% by implementing depth correction and by using the obtained optimum shaping time.

  12. SVX II a silicon vertex detector for run II of the tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Bortoletto, D.

    1994-11-01

    A microstrip silicon detector SVX II has been proposed for the upgrade of the vertex detector of the CDF experiment to be installed for run II of the Tevatron in 1998. Three barrels of four layers of double sided detectors will cover the interaction region. The requirement of the silicon tracker and the specification of the sensors are discussed together with the proposed R&D to verify the performance of the prototypes detectors produced by Sintef, Micron and Hamamatsu.

  13. Polarization of silicon detectors by minimum ionizing particles

    CERN Document Server

    Dezillie, B; Li, Z; Verbitskaya, E

    2000-01-01

    This work presents quantitative predictions of the properties of highly irradiated (e.g. by high-energy particles, up to an equivalent fluence of 1x10 sup 1 sup 4 n cm sup - sup 2) silicon detectors operating at cryogenic temperature. It is shown that the exposure to the Minimum Ionising Particle (MIP) with counting rates of about 10 sup 6 cm sup - sup 2 s sup - sup 1 can influence the electric field distribution in the detector's sensitive volume. This change in the electric field distribution and its effect on the charge collection efficiency are discussed in the frame of a model based on trapping of carriers generated by MIPs. The experiment was performed at 87 K with an infrared (1030 nm) laser to simulate MIPs.

  14. Polarization of silicon detectors by minimum ionizing particles

    Science.gov (United States)

    Dezillie, B.; Eremin, V.; Li, Z.; Verbitskaya, E.

    2000-10-01

    This work presents quantitative predictions of the properties of highly irradiated (e.g. by high-energy particles, up to an equivalent fluence of 1×10 14 n cm -2) silicon detectors operating at cryogenic temperature. It is shown that the exposure to the Minimum Ionising Particle (MIP) with counting rates of about 10 6 cm -2 s -1 can influence the electric field distribution in the detector's sensitive volume. This change in the electric field distribution and its effect on the charge collection efficiency are discussed in the frame of a model based on trapping of carriers generated by MIPs. The experiment was performed at 87 K with an infrared (1030 nm) laser to simulate MIPs.

  15. New silicon microstrip detectors optimized for tracker alignment

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, M., E-mail: Marcos.Fernandez@cern.c [Instituto de Fisica de Cantabria, Avda. Los Castros S/N, 39005 Santander (Spain); Vila, I.; Jaramillo, R.; Virto, A.L. [Instituto de Fisica de Cantabria, Avda. Los Castros S/N, 39005 Santander (Spain); Lozano, M.; Pellegrini, G.; Bassignana, D. [Centro Nacional de Microelectronica, Campus Universidad Autonoma de Barcelona, 08193 Bellaterra (Spain)

    2010-12-11

    The resolution of tracking systems based on layers of silicon microstrips is comparable to the stability of the structures on which they are mounted. Environmental changes during operation will misalign the modules out of their nominal positions. A straight laser beam that sequentially traverses consecutive layers of microstrips can be used as an artificial track to align them. For such a laser track to reach the last sensor, high transmittance of microstrips to infrared (IR) light is needed. We have simulated the passage of a coherent beam of light through a microstrip detector and identified the minimum set of changes to the design that boosts its transmittance. The simulation has been validated against real microstrip detector samples.

  16. Use of Silicon Photomultiplier in LBL Cosmic Tay Detector

    Science.gov (United States)

    Osornio, Leo

    2012-10-01

    During a summer internship program at Hartnell Community College our team successfully constructed two complementary cosmic ray experiments. The first employed NIM electronic modules the second constructed as per specifications of a circuit board designed by the Berkeley Lab Cosmic Ray Telescope Project (http://cosmic.lbl.gov/). During the following summer at Lawrence Berkeley National Laboratory, we worked on optimizing the performance of a group of Berkeley Lab Detector and developed tools to measure its performance. The next phase was exploring whether Silicon Photomultiplier (SiPM) can be used to replace the phototube of the Berkeley Detector. Data will be presented from both summers including the dependence of the cosmic ray flux on the separation and polar angle of scintillator paddles, as well as the results from our SiPM tests. Finally, I will include prospects for curriculum development using the cosmic ray experiments.

  17. Gated Silicon Drift Detector Fabricated from a Low-Cost Silicon Wafer

    Directory of Open Access Journals (Sweden)

    Hideharu Matsuura

    2015-05-01

    Full Text Available Inexpensive high-resolution silicon (Si X-ray detectors are required for on-site surveys of traces of hazardous elements in food and soil by measuring the energies and counts of X-ray fluorescence photons radially emitted from these elements. Gated silicon drift detectors (GSDDs are much cheaper to fabricate than commercial silicon drift detectors (SDDs. However, previous GSDDs were fabricated from \\(10\\-k\\(\\Omega \\cdot\\cm Si wafers, which are more expensive than \\(2\\-k\\(\\Omega \\cdot\\cm Si wafers used in commercial SDDs. To fabricate cheaper portable X-ray fluorescence instruments, we investigate GSDDs formed from \\(2\\-k\\(\\Omega \\cdot\\cm Si wafers. The thicknesses of commercial SDDs are up to \\(0.5\\ mm, which can detect photons with energies up to \\(27\\ keV, whereas we describe GSDDs that can detect photons with energies of up to \\(35\\ keV. We simulate the electric potential distributions in GSDDs with Si thicknesses of \\(0.5\\ and \\(1\\ mm at a single high reverse bias. GSDDs with one gate pattern using any resistivity Si wafer can work well for changing the reverse bias that is inversely proportional to the resistivity of the Si wafer.

  18. Performance of the Aleph Upgraded Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Creanza, D.; De Palma, M.; Girone, M.; Maggi, G.; Selvaggi, G.; Silvestris, L.; Raso, G.; Tempesta, P.; Burns, M.; Coyle, P.; Engster, C.; Frank, M.; Moneta, L.; Wachnik, M.; Wagner, A.; Zaslavsky, J.; Focardi, E.; Sguazzoni, G.; Parrini, G.; Scarlini, E.; Halley, A.; O`Shea, V.; Raine, C.; Barber, G.; Cameron, W.; Dornan, P.; Gentry, D.; Konstantinidis, N.; Moutoussi, A.; Nash, J.; Price, D.; Stacey, A.; Toudup, L.W.; Williams, M.I.; Billault, M.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Blanc, P.E.; Destelle, J.J.; Karst, P.; Payre, P.; Rousseau, D.; Thulasidas, M.; Dietl, H.; Moser, H.-G.; Settles, R.; Seywerd, H.; Waltermann, G.; Bettarini, S.; Bosi, F.; Dell`Orso, R.; Messineo, A.; Profeti, A.; Rizzo, G.; Verdini, P.G.; Walsh, J.; Bizzell, J.P.; Maley, P.D.; Thompson, J.C.; Wright, A.E.; Black, S.; Kim, H.Y.; Bosisio, L.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Elmer, P. [Bari Univ. (Italy). Dipt. di Fisica]|[INFN, Bari (Italy)]|[European Laboratory for Particle Physics (CERN), 1211 Geneva 23 (Switzerland)]|[Dipartimento di Fisica, Universita di Firenze, INFN Sezione di Firenze, 50125 Firenze (Italy)]|[Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)]|[Department of Physics, Imperial College, London SW7 2BZ (United Kingdom)]|[Department of Physics, University of Lancaster, Lancaster LA1 4YB (United Kingdom)]|[Centre de Physique des Particules, Faculte des Sciences de Luminy, IN2P3-CNRS, 13288 Marseille (France)]|[Max-Planck-Institut fuer Physik, Werner-Heisenberg-Institut, 80805 Muenchen (Germany)]|[Dipartimento di Fisica dell`Universita e INFN Sezione di Pisa, 56010 Pisa (Italy)]|[Particle Physics Dept., Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)]|[Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States)

    1997-03-01

    The ALEPH Vertex Detector (VDET) has been upgraded for the second phase of LEP running. The new version still uses double sided silicon strip detectors, fabricated with the same technology as the previous one, but the upgraded one is twice as long and has about half passive material in the tracking volume. Furthermore the readout electronics is now radiation hard (MX7-RH chips). An almost complete version of the upgraded VDET was installed in ALEPH during a three week LEP technical stop and took data in November 1995 during the LEP run at 130 GeV. The new detector worked well showing high signal over noise ratio and good efficiency. The point resolution measured during this run, using high momentum muons, 13 {mu}m in the r-{phi} view and 21 {mu}m in the r-z view, is dominated by the alignment precision, due to the low statistics available for this short LEP run. This result is however acceptable, since for lower momentum charged particle, the multiple scattering gives a significant contribution to the final impact parameter resolution. A better resolution has been achieved in the next run, when an initial period at the Z peak has been foreseen to calibrate and align the whole detector. (orig.).

  19. Investigation of Self Triggered Cosmic Ray Detectors using Silicon Photomultiplier

    Science.gov (United States)

    Knox, Adrian; Niduaza, Rommel; Hernandez, Victor; Ruiz, Daniel; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is a highly sensitive light detector capable of measuring single photons. It costs a fraction of the photomultiplier tube and operates slightly above the breakdown voltage. At this conference we describe our investigation of SiPM, the multipixel photon counters (MPPC) from Hamamatsu as readout detectors for plastic scintillators working for detecting cosmic ray particles. Our setup consists of scintillator sheets embedded with blue to green wavelength shifting fibers optically coupled to MPPCs to detect scintillating light. Four detector assemblies would be constructed and arranged to work in self triggered mode. Using custom matching tee boxes, the amplified MPPC signals are fed to discriminators with threshold set to give a reasonable coincidence count rate. Moreover, the detector waveforms are digitized using a 5 Giga Samples per second waveform digitizer, the DRS4, and triggered with the coincidence logic to capture the MPPC waveforms. Offline analysis of the digitized waveforms is accomplished using the CERN package PAW and results of our experiments and the data analysis would also be discussed. US Department of Education Title V Grant Number PO31S090007.

  20. Silicon detector technology development in India for the participation in international experiments

    Indian Academy of Sciences (India)

    Anita Topkar; S Praveenkumar; Bharti Aggarwal; S K Kataria; M D Ghodgaonkar

    2007-12-01

    A specific research and development program has been carried out by BARC in India to develop the technology for large area silicon strip detectors for application in nuclear and high energy physics experiments. These strip detectors will be used as pre-shower detector in the CMS experiment at LHC, CERN for 0/ rejection. The fabrication technology to produce silicon strip detectors with very good uniformity over a large area of ∼ 40 cm2, low leakage currents of the order of 10 nA/cm2 per strip and high breakdown voltage of >500 V has been developed by BARC. The production of detectors is already under way to deliver 1000 detector modules for the CMS and 90% production is completed. In this paper, research and development work carried out to develop the detector fabrication technology is briefly described. The performance of the silicon strip detectors produced in India is presented. The present status of the detector technology is discussed.

  1. Resistivity measurements on the neutron irradiated detector grade silicon materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng

    1993-11-01

    Resistivity measurements under the condition of no or low electrical field (electrical neutral bulk or ENB condition) have been made on various device configurations on detector grade silicon materials after neutron irradiation. Results of the measurements have shown that the ENB resistivity increases with neutron fluence ({Phi}{sub n}) at low {phi}{sub n} (<10{sup 13} n/cm{sup 2}) and saturates at a value between 300 and 400 k{Omega}-cm at {phi}{sub n} {approximately}10{sup 13} n/cm{sup 2}. Meanwhile, the effective doping concentration N{sub eff} in the space charge region (SCR) obtained from the C-V measurements of fully depleted p{sup +}/n silicon junction detectors has been found to increase nearly linearly with {phi}{sub n} at high fluences ({phi}{sub n} > 10{sup 13} n/cm{sup 2}). The experimental results are explained by the deep levels crossing the Fermi level in the SCR and near perfect compensation in the ENB by all deep levels, resulting in N{sub eff} (SCR) {ne} n or p (free carrier concentrations in the ENB).

  2. Resistivity measurements on the neutron irradiated detector grade silicon materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng

    1993-11-01

    Resistivity measurements under the condition of no or low electrical field (electrical neutral bulk or ENB condition) have been made on various device configurations on detector grade silicon materials after neutron irradiation. Results of the measurements have shown that the ENB resistivity increases with neutron fluence ({Phi}{sub n}) at low {phi}{sub n} (<10{sup 13} n/cm{sup 2}) and saturates at a value between 300 and 400 k{Omega}-cm at {phi}{sub n} {approximately}10{sup 13} n/cm{sup 2}. Meanwhile, the effective doping concentration N{sub eff} in the space charge region (SCR) obtained from the C-V measurements of fully depleted p{sup +}/n silicon junction detectors has been found to increase nearly linearly with {phi}{sub n} at high fluences ({phi}{sub n} > 10{sup 13} n/cm{sup 2}). The experimental results are explained by the deep levels crossing the Fermi level in the SCR and near perfect compensation in the ENB by all deep levels, resulting in N{sub eff} (SCR) {ne} n or p (free carrier concentrations in the ENB).

  3. Works of art investigation with silicon drift detectors

    Energy Technology Data Exchange (ETDEWEB)

    Leutenegger, P. E-mail: phl@mpe.mpg.de; Longoni, A.; Fiorini, C.; Strueder, L.; Kemmer, J.; Lechner, P.; Sciuti, S.; Cesareo, R

    2000-01-11

    The X-ray fluorescence (XRF) spectroscopy analysis is a non-destructive technique widely used in archeometry to investigate the chemical composition of pigments, metal alloys and stones for restoration and historical investigation. The classical detection systems for archeometrical investigations utilize cryogenic detectors, like Si(Li) and HPGe, characterized by a satisfactory energy resolution (of the order of 140 eV FWHM at 6 keV). However, the requirements of liquid N{sub 2} drastically limit the portability of such systems, limiting the possibility of making measurements 'on the field'. Recently new silicon PIN diodes Peltier cooled were introduced, allowing the construction of portable instrumentation. However, their energy resolution (of the order of 250 eV FWHM at 6 keV) results in some cases unsatisfactory (for instance in the identification of light elements). Both the requirements of portability and good energy resolution are fulfilled by the silicon drift detector (SDD). The SDD, cooled by a Peltier element, can reach resolutions better than 150 eV FWHM at 6 keV. These features make the device ideal for portable high resolution XRF spectrometers. A portable XRF spectrometer was realized at the research laboratories of Politecnico di Milano, and used for investigation on different kinds of works of art. Experimental results obtained in analysis of paintings of different ages and of metal alloys performed directly 'on the field' are summarized.

  4. Development of octave-band planar ortho-mode transducer with kinetic inductance detector for LiteBIRD

    Science.gov (United States)

    Shu, Shibo; Sekiguchi, Shigeyuki; Sekine, Masakazu; Sekimoto, Yutaro; Nitta, Tom; Dominjon, Agnes; Noguchi, Takashi; Naruse, Masato; Shan, Wenlei

    2016-07-01

    We demonstrate a design of octave-band circular waveguide coupled planar ortho-mode transducer (OMT) with Microwave Kinetic Inductance Detector (MKID) for LiteBIRD mission, a small-size satellite for cosmic microwave background (CMB) polarization signal full-sky mapping. In our 4-pixel prototype design, each single pixel is sensitive to two frequency bands (90 GHz and 150 GHz) corresponding to atmospheric window. Silicon on insulator (SOI) has been selected for OMT structure and a broadband coplanar waveguide (CPW) 180-degree hybrid is designed to cancel higher modes of a circular waveguide and add two signals from the fundamental mode together. After a microstrip bandpass diplexer, a microstrip line to coplanar waveguide transition structure couples signal to MKID. MKIDs are designed with Nb ground plane and Al/Ti bilayer center strip line to achieve low frequency response and high sensitivity. A 4-pixel module is under test and we plan to deploy these multi- chroic polarimeters on Nobeyama 45m telescope.

  5. Particle detectors made of high-resistivity Czochralski silicon

    CERN Document Server

    Härkönen, J; Ivanov, A; Li, Z; Luukka, Panja; Pirojenko, A; Riihimaki, I; Tuominen, E; Tuovinen, E; Verbitskaya, E; Virtanen, A

    2005-01-01

    We have processed pin-diodes and strip detectors on n- and p-type high-resistivity silicon wafers grown by magnetic Czochralski method. The Czochralski silicon (Cz-Si) wafers manufactured by Okmetic Oyj have nominal resistivity of 900 Omega cm and 1.9 kOmega cm for n- and p-type, respectively. The oxygen concentration in these substrates is slightly less than typically in wafers used for integrated circuit fabrication. This is optimal for semiconductor fabrication as well as for radiation hardness. The radiation hardness of devices has been investigated with several irradiation campaigns including low- and high-energy protons, neutrons, gamma-rays, lithium ions and electrons. Cz-Si was found to be more radiation hard than standard Float Zone silicon (Fz-Si) or oxygenated Fz-Si. When irradiated with protons, the full depletion voltage in Cz-Si has not exceeded its initial value of 300 V even after the fluence of 5 multiplied by 10**1**4 cm**-**2 1-MeV eq. n cm **-**2 that equals more than 30 years operation of...

  6. Tritel: 3D silicon detector telescope used for space dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Pazmandi, T.; Hirn, A.; Deme, S.; Apathy, I.; Csoke, A. [KFKI Atomic Energy Research Institute, Budapest (Hungary); Bodnar, L. [BL-Electronics, Solymar (Hungary)

    2006-07-01

    One of the many risks of long-duration space flights is the excessive exposure to cosmic radiation, which has great importance particularly during solar flares and higher solar activity. Radiation weighting factor, which is a function of the linear energy transfer of the radiation, is used to convert absorbed dose to equivalent dose. Since space radiation mainly consists of charged heavy particles, the equivalent dose differs significantly from the absorbed dose. The objectives of this project are to develop and manufacture a three-axis silicon detector telescope (Tritel), and to develop software for data evaluation of the measured energy deposition spectra. The 3 D silicon telescope should be the first such device used for measuring the dose astronauts are subjected to. Research and development began in the K.F.K.I. Atomic Energy Research Institute several years ago. The geometric parameters of the 3 D silicon Let telescope were defined, results of previous measurements were used as a benchmark. Features of various types and sizes of telescopes were analyzed. Elements of the Tritel telescope system, issues of the electronic block diagram, requirements for the mechanical construction and possibilities of data handling and data evaluation are analyzed in this paper. First results of the calibrations are presented as well. (authors)

  7. Silicon strip detector qualification for the CMS experiment

    CERN Document Server

    Kaußen, Gordon

    2008-01-01

    The Compact Muon Solenoid (CMS) is one of the four experiments being installed at the Large Hadron Collider (LHC) which is located at the european organization for nuclear research CERN in Geneva. This proton-proton collider will explore a new energy regime of up to 14TeV center-of-mass energy. To provide the best spatial resolution for the particle trajectory reconstruction and a very fast readout, the inner tracking system of CMS is build up of silicon detectors with a pixel tracker in the center surrounded by a strip tracker. The silicon strip tracker consists of so-called modules representing the smallest detection unit of the tracking device. These modules are mounted on higher-level structures called shells in the tracker inner barrel (TIB), rods in the tracker outer barrel (TOB), disks in the tracker inner disks (TID) and petals in the tracker end caps (TEC). The entire strip tracker spans an active area of about 198m2 and consists of approximately 16000 modules. Before the silicon sensors were assembl...

  8. Silicon strip detector qualification for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaussen, Gordon

    2008-10-06

    To provide the best spatial resolution for the particle trajectory reconstruction and a very fast readout, the inner tracking system of CMS is build up of silicon detectors with a pixel tracker in the center surrounded by a strip tracker. The silicon strip tracker consists of so-called modules representing the smallest detection unit of the tracking device. These modules are mounted on higher-level structures called shells in the tracker inner barrel (TIB), rods in the tracker outer barrel (TOB), disks in the tracker inner disks (TID) and petals in the tracker end caps (TEC). The performance of the participating two shells of the TIB, four rods of the TOB and two petals of the TEC (representing about 1% of the final strip tracker) could be studied in different magnetic fields over a period of approximately two month using cosmic muon signals. The last test before inserting the tracker in the CMS experiment was the Tracker Slice Test performed in spring/summer 2007 at the Tracker Integration Facility (TIF) at CERN after installing all subdetectors in the tracker support tube. Approximately 25% of the strip tracker +z side was powered and read out using a cosmic ray trigger built up of scintillation counters. In total, about 5 million muon events were recorded under various operating conditions. These events together with results from commissioning runs were used to study the detector response like cluster charges, signal-to-noise ratios and single strip noise behaviour as well as to identify faulty channels which turned out to be in the order of a few per mille. The performance of the silicon strip tracker during these different construction stages is discussed in this thesis with a special emphasis on the tracker end caps. (orig.)

  9. The silicon drift vertex detector for the STAR experiment at RHIC

    CERN Document Server

    Pandey, S U; Beuttenmüller, Rolf H; Caines, H; Chen, W; Dimassimo, D; Dyke, H; Elliot, D; Eremin, V; Grau, M; Hoffmann, G W; Humanic, T; Ilyashenko, Yu S; Kotov, I; Kraner, H W; Kuczewski, P; Leonhardt, B; Li, Z; Liaw, C J; Lo Curto, G; Middelkamp, P; Minor, R; Munhoz, M; Ott, G; Pruneau, C A; Rykov, V L; Schambach, J; Sedlmeir, J; Soja, B; Sugarbaker, E R; Takahashi, J; Wilson, K; Wilson, R

    2002-01-01

    The current status of the STAR Silicon Vertex Tracker (SVT) is presented. The performance of the Silicon Drift Detectors (SDD) is discussed. Results for a recent 15 layer SDD tracker which prototypes all components of the SVT are presented. The enhanced physics capabilities of the STAR detector due to the addition of the SVT are addressed.

  10. Control and data acquisition electronics for the CDF Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.

    1991-11-01

    A control and data acquisition system has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules. 11 refs., 6 figs., 3 tabs.

  11. Characterization of Silicon Photomultiplier Detectors using Cosmic Radiation

    Science.gov (United States)

    Zavala, Favian; Castro, Juan; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    The silicon photomultiplier light detector has gained a lot of attention lately in fields such as particle physics, astrophysics, and medical physics. Its popularity stems from its lower cost, compact size, insensitivity to magnetic fields, and its excellent ability to distinguish a quantized number of photons. They are normally operated at room temperature and biased above their breakdown voltages. As such, they may also exhibit properties that may hinder their optimal operation which include a thermally induced high dark count rate, after pulse effects, and cross talk from photons in nearby pixels. At this poster session, we describe our data analysis and our endeavor to characterize the multipixel photon counter (MPPC) detectors from Hamamatsu under different bias voltages and temperature conditions. Particularly, we describe our setup which uses cosmic rays to induce scintillation light delivered to the detector by wavelength shifting optical fibers and the use of a fast 1 GHz waveform sampler, the domino ring sampler (DRS4) digitizer board. Department of Education grant number P031S90007.

  12. Silicon microstrip detectors for future tracker alignment systems

    Energy Technology Data Exchange (ETDEWEB)

    Bassignana, D., E-mail: daniela.bassignana@imb-cnm.csic.e [IMB-CNM-CSIC Bellaterra, Barcelona (Spain); Pellegrini, G.; Lozano, M. [IMB-CNM-CSIC Bellaterra, Barcelona (Spain); Fernandez, M.; Vila, I.; Virto, A.; Jaramillo, R.; Munoz, F.J. [Instituto de Fisica de Cantabria, Santander (Spain)

    2011-02-01

    The next experiments at particles colliders will demand stability of the tracking systems to the level of few microns. The available technology cannot provide a supporting structure able to guarantee this degree of stability in working condition, when environmental changes will misalign the detectors out of their nominal position. Based on the successful experience of AMS and CMS tracker systems, we propose to use infrared laser beams traversing consecutive layers of silicon detectors to align them with respect to the beams. For such a laser track to reach the last sensor, high transmittance of microstrip sensors to infrared (IR) light is needed. We simulated the passage of a coherent beam of light through a microstrips detector and we identified the minimum set of changes to the design and technology that boost its transmittance while still respecting its tracking capabilities. The first prototypes are in process at IMB-CNM clean room facilities. We held the fabrication process at an intermediate step and we performed the first measurements of transmittance and reflectance on the sensors.

  13. Performance of the ALEPH upgraded silicon vertex detector

    CERN Document Server

    Creanza, D; Girone, M.; Maggi, G.; Selvaggi, G.; Silvestris, L.; Raso, G.; Tempesta, P.; Burns, M.; Coyle, P.; Engster, C.; Frank, M.; Moneta, L.; Wachnik, M.; Wagner, A.; Zaslavsky, J.; Focardi, E.; Sguazzoni, G.; Parrini, G.; Scarlini, E.; Halley, A.; O'Shea, V.; Raine, C.; Barber, G.; Cameron, W.; Dornan, P.; Gentry, D.; Konstantinidis, N.; Moutoussi, A.; Nash, J.; Price, D.; Stacey, A.; Toudup, L.W.; Williams, M.I.; Billault, M.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Blanc, P.E.; Destelle, J.J.; Karst, P.; Payre, P.; Rousseau, D.; Thulasidas, M.; Dietl, H.; Moser, H.G.; Settles, R.; Seywerd, H.; Waltermann, G.; Bettarini, S.; Bosi, F.; Dell'Orso, R.; Messineo, A.; Profeti, A.; Rizzo, G.; Verdini, P.G.; Walsh, J.; Bizzell, J.P.; Maley, P.D.; Thompson, J.C.; Wright, A.E.; Black, S.; Kim, H.Y.; Bosisio, L.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Elmer, P.

    1997-01-01

    The ALEPH Vertex Detector (VDET) has been upgraded for the second phase of LEP running. The new version still uses double sided silicon strip detectors, fabricated with the same technology as the previous one, but the upgraded one is twice as long and has about half passive material in the tracking volume. Furthermore the readout electronics is now radiation hard (MX7-RH chips). An almost complete version of the upgraded VDET was installed in ALEPH during a three week LEP technical stop and took data in November 1995 during the LEP run at 130 GeV. The new detector worked well showing high signal over noise ratio and good efficiency. The point resolution measured during this run, using high momentum muons, 13 μm in the τ - φ view and 21 μm in the τ - z view, is dominated by the alignment precision, due to the low statistics available for this short LEP run. This result is however acceptable, since for lower momentum charged particle, the multiple scattering gives a significant contribution to the final im...

  14. 3D Active Edge Silicon Detector Tests With 120 GeV Muons

    CERN Document Server

    Da Via, Cinzia; Hasi, Jasmine; Kenney, Christopher; Kok, Angela; Parker, Sherwood; Watts, Stephen; Anelli, Giovanni; Avati, Valentina; Bassetti, Valerio; Boccone, Vittorio; Bozzo, Marco; Eggert, Karsten; Ferro, Fabrizio; Inyakin, Alexandre; Kaplon, Jan; Lozano Bahilo, Julio; Morelli, Aldo; Niewiadomski, Hubert; Noschis, Elias; Oljemark, Fredrik; Oriunno, Marco; Österberg, Kenneth; Ruggiero, Gennaro; Snoeys, Walter; Tapprogge, Stefan

    2009-01-01

    3D detectors with electrodes penetrating through the silicon wafer and covering the edges were tested in the SPS beam line X5 at CERN in autumn 2003. Detector parameters including efficiency, signal-to-noise ratio, and edge sensitivity were measured using a silicon telescope as a reference system. The measured sensitive width and the known silicon width were equal within less than 10 mum.

  15. The AGILE silicon tracker testbeam results of the prototype silicon detector

    CERN Document Server

    Barbiellini, Guido; Liello, F; Longo, F; Pontoni, C; Prest, M; Tavani, M; Vallazza, E

    2002-01-01

    AGILE (Light Imager for Gamma-ray Astrophysics) is a small scientific satellite for the detection of cosmic gamma -ray sources in the energy range 30 MeV-50 GeV with a very large field of view (1/4 of the sky). It is planned to be operational in the years 2003-2006, a period in which no other gamma -ray mission in the same energy range is foreseen. The heart of the AGILE scientific instrument is a silicon-tungsten tracker made of 14 planes of single sided silicon detectors for a total of 43000 readout channels. Each detector has a dimension of 9.5*9.5 cm/sup 2/ and a thickness of 410 mu m. We present here a detailed description of the performance of the detector prototype during a testbeam period at the CERN PS in May 2000. The Tracker performance is described in terms of position resolution and signal-to-noise ratio for on and off-axis incident charged particles. The measured 40 mm resolution for a large range of incident angles will provide an excellent angular resolution for cosmic gamma -ray imaging. (15 ...

  16. Balloon flight background measurement with actively-shielded planar and imaging CZT detectors

    Science.gov (United States)

    Bloser, Peter F.; Narita, Tomohiko; Jenkins, Jonathan A.; Perrin, Marshall; Murray, Ruth; Grindlay, Jonathan E.

    2002-01-01

    We present results from the flight of two prototype CZT detectors on a scientific balloon payload in September 2000. The first detector, referred to as CZT1, consisted of a 10 mm x 10 mm x 2 mm CZT crystal with a single gold planar electrode readout. This detector was shielded by a combination of a passive collimator in the front, giving a 40 degree field of view and surrounded by plastic scintillator, and a thick BGO crystal in the rear. The second detector, CZT2, comprised two 10 mm x 10 mm x 5 mm CZT crystals, one made of eV Products high pressure Bridgman material and the other of IMARAD horizontal Bridgman material, each fashioned with a 4 x 4 array of gold pixels on a 2.5 mm pitch. The pixellated detectors were flip-chip-mounted side by side and read out by a 32-channel ASIC. This detector was also shielded by a passive/plastic collimator in the front, but used only additional passive/plastic shielding in the rear. Both experiments were flown from Ft. Sumner, NM on September 19, 2000 on a 24 hour balloon flight. Both instruments performed well. CZT1 recorded a non-vetoed background level at 100 keV of approximately 1 x 10-3 cm-2s-1keV-1. Raising the BGO threshold from 50 keV to approximately 1 MeV produced only an 18% increase in this level. CZT2 recorded a background at 100 keV of approximately 4 times 10-3 cts cm-2s-1keV-1 in the eV Products detector and approximately 6 x 10-3 cts cm-2s-1keV-1 in the IMARAD detector, a difference possibly due to our internal background subtracting procedure. Both CZT1 and CZT2 spectra were in basic agreement with Monte Carlo simulations, though both recorded systematically higher count rates at high energy than predicted. No lines were observed, indicating that neutron capture reactions, at least those producing decay lines at a few 100 keV, are not significant components of the CZT background. Comparison of the CZT1 and CZT2 spectra indicates that passive/plastic shielding may provide adequately low background levels for

  17. Chemiluminescence detector based on a single planar transparent digital microfluidic device.

    Science.gov (United States)

    Zeng, Xiangyu; Zhang, Kaidi; Pan, Jian; Chen, Guoping; Liu, Ai-Qun; Fan, Shih-Kang; Zhou, Jia

    2013-07-21

    We report on a compact and portable prototype of chemiluminescence detector based on a single planar single polar transparent electrowetting-on-dielectrics (EWOD) device. The coupling ground model was proposed to build the EWOD device, which could be driven under a single polar voltage. Such a design not only simplified the chip construction and control circuit, but also had the potential for the ball-like droplet to focus the fluorescence and enhance the detection sensitivity. Simulations and experiments both confirmed that the greater the contact angle, the stronger the detected optical signal, and thus the higher the sensitivity. The sensitivity of the prototype detector to H2O2 was 5.45 mV (mmol L(-1))(-1) and the detection limit was 0.01 mmol L(-1) when the contact angle of the EWOD surface was 120°. To further increase the sensitivity and decrease the detection limit, the contact angle of the EWOD device could be increased and the dark current of the photomultiplier decreased. The prototype shows potential applications as highly sensitive, cost effective and portable immuno-detectors, especially as a blood glucose monitor.

  18. Testing of the KRI-developed Silicon PIN Radioxenon Detector

    Energy Technology Data Exchange (ETDEWEB)

    Foxe, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McIntyre, Justin I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-23

    Radioxenon detectors are used for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in a network of detectors throughout the world called the International Monitoring System (IMS). The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Provisional Technical Secretariat (PTS) has tasked Pacific Northwest National Laboratory (PNNL) with testing a V.G. Khlopin Radium Institute (KRI) and Lares Ltd-developed Silicon PIN detector for radioxenon detection. PNNL measured radioxenon with the silicon PIN detector and determined its potential compared to current plastic scintillator beta cells. While the PNNL tested Si detector experienced noise issues, a second detector was tested in Russia at Lares Ltd, which did not exhibit the noise issues. Without the noise issues, the Si detector produces much better energy resolution and isomer peak separation than a conventional plastic scintillator cell used in the SAUNA systems in the IMS. Under the assumption of 1 cm3 of Xe in laboratory-like conditions, 24-hr count time (12-hr count time for the SAUNA), with the respective shielding the minimum detectable concentrations for the Si detector tested by Lares Ltd (and a conventional SAUNA system) were calculated to be: 131mXe – 0.12 mBq/m3 (0.12 mBq/m3); 133Xe – 0.18 mBq/m3 (0.21 mBq/m3); 133mXe – 0.07 mBq/m3 (0.15 mBq/m3); 135Xe – 0.45 mBq/m3 (0.67 mBq/m3). Detection limits, which are one of the important factors in choosing the best detection technique for radioxenon in field conditions, are significantly better than for SAUNA-like detection systems for 131mXe and 133mXe, but similar for 133Xe and 135Xe. Another important factor is the amount of “memory effect” or carry over signal from one radioxenon measurement to the subsequent sample. The memory effect is

  19. Characterisation of micro-strip and pixel silicon detectors before and after hadron irradiation

    Science.gov (United States)

    Allport, P. P.; Ball, K.; Casse, G.; Chmill, V.; Forshaw, D.; Hadfield, K.; Pritchard, A.; Pool, P.; Tsurin, I.

    2012-01-01

    The use of segmented silicon detectors for tracking and vertexing in particle physics has grown substantially since their introduction in 1980. It is now anticipated that roughly 50,000 six inch wafers of high resistivity silicon will need to be processed into sensors to be deployed in the upgraded experiments in the future high luminosity LHC (HL-LHC) at CERN. These detectors will also face an extremely severe radiation environment, varying with distance from the interaction point. The volume of required sensors is large and their delivery is required during a relatively short time, demanding a high throughput from the chosen suppliers. The current situation internationally, in this highly specialist market, means that security of supply for large orders can therefore be an issue and bringing additional potential vendors into the field can only be an advantage. Semiconductor companies that could include planar sensors suitable for particle physics in their product lines will, however, need to prove their products meet all the stringent technical requirements. A semiconductor company with very widespread experience of producing science grade CCDs (including deep depletion devices) has adapted their CCD process to fabricate for the first time several wafers of pixel and micro-strip radiation hard sensors, suitable for future high energy physics experiments. The results of the pre-irradiation characterization of devices fabricated with different processing parameters and the measurements of charge collection properties after different hadron irradiation doses up to those anticipated for the (larger area) outer pixel layers at the high-luminosity LHC (HL-LHC) are presented and compared with results from more established particle physics suppliers.

  20. Charge collection efficiency studies with irradiated silicon detectors

    CERN Document Server

    Allport, P P; Casse, G; Greenall, A; Jackson, J N; Turner, P R

    2003-01-01

    Small area (1x1 cm sup 2) microstrip detectors, made with a p sup + -n diode structure on FZ silicon substrates, both with and without oxygen enrichment, have been irradiated with 24 GeV/c protons to fluences of 1.9, 2.9 and 5.1x10 sup 1 sup 4 p/cm sup 2. Their charge collection properties have been studied using a sup 1 sup 0 sup 6 Ru beta-source with a wide bandwidth current amplifier and compared with those for a non-irradiated device. The integrated charge collected at different times (10, 25, 40 and 80 ns) has been used to estimate the effect of ballistic deficit. Predictions for the reduction in charge collection efficiency expected at fluences as high as 10 sup 1 sup 5 cm sup - sup 2 are presented using a parameterization described in earlier work which also fits this data well.

  1. Cryogenic temperature performance of heavily irradiated silicon detectors

    CERN Document Server

    Da Vià, C; Casagrande, L; Granata, V; Palmieri, V G

    1999-01-01

    The charge collection efficiency (CCE) of silicon detectors, previously irradiated with high neutron fluences, has been measured at 4.2, 77 and 195 K. The CCE recovery measured after 1.2x10 sup 1 sup 4 n/cm sup 2 is 100% at a bias voltage of 50 V. For 2x10 sup 1 sup 5 n/cm sup 2 the most probable signal collected for minimum ionising particles is 13 000 electrons, corresponding to 50% CCE, at a bias voltage of 250 V. Negligible difference has been observed between 77 and 4.2 K operation, while no recovery was measurable at 195 K. The timing of the signal was measured to be better than 5 ns. The samples were irradiated and stored at room temperature and cooled only when operated. Reproducible results were obtained after several weeks and several thermal cycles. (author)

  2. Role of guard rings in improving the performance of silicon detectors

    Indian Academy of Sciences (India)

    Vijay Mishra; V D Srivastava; S K Kataria

    2005-08-01

    BARC has developed large-area silicon detectors in collaboration with BEL to be used in the pre-shower detector of the CMS experiment at CERN. The use of floating guard rings (FGR) in improving breakdown voltage and reducing leakage current of silicon detectors is well-known. In the present work, it has been demonstrated that FGRs can also be used to improve the spectroscopic response of silicon detectors. The results have been confirmed by carrying out -particle ≈ 5 MeV) and -ray (60 keV) spectroscopies with the FGR floating or biased and the underlying physics aspect behind the change in spectra is explained. Although reduction in leakage current after biasing one of the guard rings has been reported earlier, the role of a guard ring in improving the spectroscopic response is reported for the first time. Results of TCAD simulations for silicon detectors with the guard ring under different biasing conditions have been presented. Low yield in producing large-area silicon detectors makes them very costly. However, with one of the FGRs biased even a detector having large surface leakage current can be used to give the same response as a very good detector. This makes the use of large-area silicon detectors very economical as the yield would be very high (> 90%).

  3. Fabrication of Si-based planar type patch clamp biosensor using silicon on insulator substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.L.; Asano, T. [Graduate University for Advanced Studies, Myodaiji, Okazaki, 444-8585 (Japan); Uno, H. [Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 (Japan); Tero, R. [Graduate University for Advanced Studies, Myodaiji, Okazaki, 444-8585 (Japan); Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 (Japan); Suzui, M.; Nakao, S. [Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 (Japan); Kaito, T. [SII NanoTechnology Inc., 36-1, Takenoshita, Oyama-cho, Sunto-gun, Shizuoka, 410-1393 (Japan); Shibasaki, K.; Tominaga, M. [Okazaki Institute for Integrative Bioscience, 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787 (Japan); Utsumi, Y. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2, Koto, Kamigori, Ako-gun, Hyogo, 678-1205 (Japan); Gao, Y.L. [Department of Physics and Astronomy, Rochester University, Rochester, New York 14627 (United States); Urisu, T. [Graduate University for Advanced Studies, Myodaiji, Okazaki, 444-8585 (Japan); Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 (Japan)], E-mail: urisu@ims.ac.jp

    2008-03-03

    The aim of this paper is to fabricate the planar type patch clamp ion-channel biosensor, which is suitable for the high throughput screening, using silicon-on-insulator (SOI) substrate. The micropore with 1.2 {mu}m diameter is formed through the top Si layer and the SiO{sub 2} box layer of the SOI substrate by focused ion beam (FIB). Then the substrate is assembled into the microfluidic circuit. The human embryonic kidney 293 (HEK-293) cell transfected with transient receptor potential vanilloid type 1 (TRPV1) is positioned on the micropore and the whole-cell configuration is formed by the suction. Capsaicin is added to the extracellular solution as a ligand molecule, and the channel current showing the desensitization unique to TRPV1 is measured successfully.

  4. Performance and calibration studies of silicon strip detectors in a test beam

    Energy Technology Data Exchange (ETDEWEB)

    Banzuzi, K.; Haapakorpi, M.; Heikkinen, A.; Heinonen, J.V.; Honkanen, A.; Karimaeki, V. E-mail: veikko.karimaki@hip.fi; Maeenpaeae, T.; Pietarinen, E.; Salomaeki, T.; Tuominiemi, J

    2000-10-21

    Performance of single-sided DC-coupled silicon strip detectors is studied in the CERN H2 test beam. A great emphasis is put on the calibration of the detector response as well as on the geometric alignment of the detector planes. Performance results are presented for different angles of incidence for the particles.

  5. Irradiation tests of double-sided silicon strip detectors with a special guard ring structure

    Energy Technology Data Exchange (ETDEWEB)

    Abt, I. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Andricek, L. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Bauer, C. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Baumann, I. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Fox, H. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Halley, A. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Knoepfle, K.T. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Kroha, H. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Richter, R.H. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Riechmann, K. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Rietz, M. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Ruebsam, R. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Seywerd, H. [Max-Planck-Institut fuer Physik, Muenchen (Germany); St Denis, R. [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    1995-12-01

    The results of the first irradiation tests of newly designed silicon microstrip detectors performed with 21 MeV protons at the Max-Planck-Institut in Heidelberg are presented. The detectors were developed and produced by the semiconductor laboratory of the Max-Planck-Institut in Munich. Novel guard ring structures allow operation of the detectors at voltages exceeding 300 V. (orig.)

  6. FACT - How stable are the silicon photon detectors?

    CERN Document Server

    Bretz, T; Buß, J; Dorner, D; Einecke, S; Eisenacher, D; Hildebrand, D; Knoetig, M L; Krähenbühl, T; Lustermann, W; Mannheim, K; Meier, K; Neise, D; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Ribordy, M; Steinbring, T; Temme, F; Thaele, J; Vogler, P; Walter, R; Weitzel, Q; Zänglein, M

    2013-01-01

    The First G-APD Cherenkov telescope (FACT) is the first telescope using silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise a higher photon detection efficiency, more robustness and higher precision than photo-multiplier tubes. Since the properties of G-APDs depend on auxiliary parameters like temperature, a feedback system adapting the applied voltage accordingly is mandatory. In this presentation, the feedback system, developed and in operation for FACT, is presented. Using the extraction of a single photon-equivalent (pe) spectrum as a reference, it can be proven that the sensors can be operated with very high precision. The extraction of the single-pe, its spectrum up to 10\\,pe, its properties and their precision, as well as their long-term behavior during operation are discussed. As a by product a single pulse template is obtained. It is shown that with the presented method, an additional external calibration device can be omitted. The presented method is essential for the appl...

  7. A prototype of radiation imaging detector using silicon strip sensors

    Science.gov (United States)

    Ryu, S.; Hyun, H. J.; Kah, D. H.; Kang, H. D.; Kim, H. J.; Kim, Kyeryung; Kim, Y. I.; Park, H.; Son, D. H.

    2008-06-01

    The aim of this work is to evaluate the performance of a strip sensor with a single photon counting data acquisition system based on VA1 readout chips to study the feasibility of a silicon microstrip detector for medical application. The sensor is an AC-coupled single-sided microstrip sensor and the active area of the sensor is 32.0 mm×32.0 mm with a thickness of 380 μm. The sensor has 64 readout strips with a pitch of 500 μm. The sensor was biased at 45 V and the experiment was performed at room temperature. Two silicon strip sensors were mounted perpendicularly one another to get two-dimensional position information with a 5 mm space gap. Two low noise analog ASICs, VA1 chips, were used for signal readout of the strip sensor. The assembly of sensors and readout electronics was housed in an Al light-tight box. A CsI(Tl) scintillation crystal and a 2-in. photomultiplier tube were used to trigger signal events. The data acquisition system was based on a 64 MHz FADC and control softwares for the PC-Linux platform. Imaging tests were performed by using a lead phantom with a 90Sr radioactive source and a 45 MeV proton beam at Korea Institute of Radiological and Medical Science in Seoul, respectively. Results of the S/ N ratio measurement and phantom images are presented.

  8. Characterization and Comparison of Planar and Trench Silicon Carbide (SiC) Power MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiqiang [ORNL; Chinthavali, Madhu Sudhan [ORNL; Campbell, Steven L [ORNL

    2016-01-01

    This paper presents a comprehensive evaluation and experimental comparison of silicon carbide power MOSFETs through double pulse test. First, a universal hardware platform is designed and developed to test power semiconductor devices with various device packages and measuring requirements. Using the developed platform, the static characteristics and switching performance of the two types of SiC MOSFETs (one planar and one trench type) are evaluated under different case temperatures from 25 oC to 175 oC. Based on the evaluation data, a comparison of both SiC MOSFETs is conducted in terms of their on-state resistance, switching loss, and temperature dependent behavior. It is found that the latest trench SiC MOSFETs present similar switching loss while much lower conduction loss compared to existing commercial planar SiC MOSFETs. Moreover, the trench devices show a nearly temperature independent switching loss, which is beneficial to suppress the potential thermal runaway issue under high temperature continuous operation.

  9. [Weighted-averaging multi-planar reconstruction method for multi-detector row computed tomography].

    Science.gov (United States)

    Aizawa, Mitsuhiro; Nishikawa, Keiichi; Sasaki, Keita; Kobayashi, Norio; Yama, Mitsuru; Sano, Tsukasa; Murakami, Shin-ichi

    2012-01-01

    Development of multi-detector row computed tomography (MDCT) has enabled three-dimensions (3D) scanning with minute voxels. Minute voxels improve spatial resolution of CT images. At the same time, however, they increase image noise. Multi-planar reconstruction (MPR) is one of effective 3D-image processing techniques. The conventional MPR technique can adjust slice thickness of MPR images. When a thick slice is used, the image noise is decreased. In this case, however, spatial resolution is deteriorated. In order to deal with this trade-off problem, we have developed the weighted-averaging multi-planar reconstruction (W-MPR) technique to control the balance between the spatial resolution and noise. The weighted-average is determined by the Gaussian-type weighting function. In this study, we compared the performance of W-MPR with that of conventional simple-addition-averaging MPR. As a result, we could confirm that W-MPR can decrease the image noise without significant deterioration of spatial resolution. W-MPR can adjust freely the weight for each slice by changing the shape of the weighting function. Therefore, W-MPR can allow us to select a proper balance of spatial resolution and noise and at the same time produce suitable MPR images for observation of targeted anatomical structures.

  10. Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

    CERN Document Server

    D'Alessandro, Raffaello

    2011-01-01

    CMS started a campaign to identify the future silicon sensor technology baseline for a new Tracker for the high-luminosity phase of LHC, coupled to a new effective way of providing tracking information to the experiment trigger. To this end a large variety of 6'' wafers was acquired in different thicknesses and technologies at HPK and new detector module designs were investigated. Detector thicknesses ranging from 50$\\mu$m to 300$\\mu$m are under investigation on float zone, magnetic Czochralski and epitaxial material both in n-in-p and p-in-n versions. P-stop and p-spray are explored as isolation technology for the n-in-p type sensors as well as the feasibility of double metal routing on 6'' wafers. Each wafer contains different structures to answer different questions, e.g. influence of geometry, Lorentz angle, radiation tolerance, annealing behaviour, validation of read-out schemes. Dedicated process test-structures, as well as diodes, mini-sensors, long and very short strip sensors and real pixel sensors ...

  11. Detector module development for the CBM silicon tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Bertini, Olga [GSI Helmholtzzentrum, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2014-07-01

    The central detector of the CBM experiment at FAIR, the Silicon Tracking System (STS), is designed to reconstruct hundreds of charged particle tracks produced at rates up to 10 MHz in interactions of ion beams of up to 45 AGeV projectile energies with nuclear targets. The building block of the tracking system is a module suitable for a low-mass detector construction. In a module, the basic functional unit of the STS, radiation tolerant microstrip sensors are read out through low-mass multi-line cables with self-triggering front-end electronics located at the periphery of the system. Light-weight carbon fibre support structures will carry 10 of such modules and build up the STS stations. The performance of module prototypes has been evaluated, resembling the structure of the intended STS module. The shown prototypes comprise a full-size CBM05 sensor and two 128-channel read-out cables attached to the read-out pads on either side of the sensor. The cables end in connector boards interfacing to two front-end boards each hosting one n-XYTER chip.

  12. Radiation hard silicon particle detectors for HL-LHC-RD50 status report

    Science.gov (United States)

    Terzo, S.

    2017-02-01

    It is foreseen to significantly increase the luminosity of the LHC by upgrading towards the HL-LHC (High Luminosity LHC). The Phase-II-Upgrade scheduled for 2024 will mean unprecedented radiation levels, way beyond the limits of the silicon trackers currently employed. All-silicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silicon sensors to be employed on the innermost layers. Within the RD50 Collaboration, a massive R&D program is underway across experimental boundaries to develop silicon sensors with sufficient radiation tolerance. We will present results of several detector technologies and silicon materials at radiation levels corresponding to HL-LHC fluences. Based on these results, we will give recommendations for the silicon detectors to be used at the different radii of tracking systems in the LHC detector upgrades. In order to complement the measurements, we also perform detailed simulation studies of the sensors.

  13. Radiation Damage in Silicon Detectors Caused by Hadronic and Electromagnetic Irradiation

    CERN Document Server

    Fretwurst, E.; Stahl, J.; Pintilie, I.

    2002-01-01

    The report contains various aspects of radiation damage in silicon detectors subjected to high intensity hadron and electromagnetic irradiation. It focuses on improvements for the foreseen LHC applications, employing oxygenation of silicon wafers during detector processing (result from CERN-RD48). An updated survey on hadron induced damage is given in the first article. Several improvements are outlined especially with respect to antiannealing problems associated with detector storage during LHC maintenance periods. Open questions are outlined in the final section, among which are a full understanding of differences found between proton and neutron induced damage, process related effects changing the radiation tolerance in addition to the oxygen content and the lack of understanding the changed detector properties on the basis of damage induced point and cluster defects. In addition to float zone silicon, so far entirely used for detector fabrication,Czochralski silicon was also studied and first promising re...

  14. Trapping induced N{sub eff} and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Eremin, V.; Li, Z.; Iljashenko, I.

    1994-02-01

    The trapping of both non-equilibrium electrons and holes by neutron induced deep levels in high resistivity silicon planar detectors have been observed. In the experiments Transient Current and Charge Techniques, with short laser light pulse excitation have been applied at temperature ranges of 77--300 k. Light pulse illumination of the front (p{sup +}) and back (n{sup +}) contacts of the detectors showed effective trapping and detrapping, especially for electrons. At temperatures lower than 150 k, the detrapping becomes non-efficient, and the additional negative charge of trapped electrons in the space charge region (SCR) of the detectors leads to dramatic transformations of the electric field due to the distortion of the effective space charge concentration N{sub eff}. The current and charge pulses transformation data can be explained in terms of extraction of electric field to the central part of the detector from the regions near both contacts. The initial field distribution may be recovered immediately by dropping reverse bias, which injects both electrons and holes into the space charge region. In the paper, the degree of the N{sub eff} distortions among various detectors irradiated by different neutron fluences are compared.

  15. Influence of radiation induced defect clusters on silicon particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Junkes, Alexandra

    2011-10-15

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) addresses some of today's most fundamental questions of particle physics, like the existence of the Higgs boson and supersymmetry. Two large general-purpose experiments (ATLAS, CMS) are installed to detect the products of high energy protonproton and nucleon-nucleon collisions. Silicon detectors are largely employed in the innermost region, the tracking area of the experiments. The proven technology and large scale availability make them the favorite choice. Within the framework of the LHC upgrade to the high-luminosity LHC, the luminosity will be increased to L=10{sup 35} cm{sup -2}s{sup -1}. In particular the pixel sensors in the innermost layers of the silicon trackers will be exposed to an extremely intense radiation field of mainly hadronic particles with fluences of up to {phi}{sub eq}=10{sup 16} cm{sup -2}. The radiation induced bulk damage in silicon sensors will lead to a severe degradation of the performance during their operational time. This work focusses on the improvement of the radiation tolerance of silicon materials (Float Zone, Magnetic Czochralski, epitaxial silicon) based on the evaluation of radiation induced defects in the silicon lattice using the Deep Level Transient Spectroscopy and the Thermally Stimulated Current methods. It reveals the outstanding role of extended defects (clusters) on the degradation of sensor properties after hadron irradiation in contrast to previous works that treated effects as caused by point defects. It has been found that two cluster related defects are responsible for the main generation of leakage current, the E5 defects with a level in the band gap at E{sub C}-0.460 eV and E205a at E{sub C}-0.395 eV where E{sub C} is the energy of the edge of the conduction band. The E5 defect can be assigned to the tri-vacancy (V{sub 3}) defect. Furthermore, isochronal annealing experiments have shown that the V{sub 3} defect

  16. Some recent results of the silicon detector radiation damage study by the RD2 collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Anghinolfi, F. [CERN, Geneva (Switzerland); Bates, S. [CERN, Geneva (Switzerland); Bardos, R. [School of Physics, University of Melbourne, Parkville, Victoria 3052 (Australia); Bonino, R. [DPNC, Geneva University, Geneva (Switzerland); Chilingarov, A. [CERN, Geneva (Switzerland); Clark, A.G. [DPNC, Geneva University, Geneva (Switzerland); Feick, H. [1. Institut fuer Experimentalphysik, Universitaet Hamburg, D-20355 Hamburg (Germany); Fretwurst, E. [1. Institut fuer Experimentalphysik, Universitaet Hamburg, D-20355 Hamburg (Germany); Glaser, M. [CERN, Geneva (Switzerland); Gorfine, G. [School of Physics, University of Melbourne, Parkville, Victoria 3052 (Australia); Goessling, C. [Institut fuer Physik, Universitaet Dortmund, D-4600 Dortmund (Germany); Jarron, P. [CERN, Geneva (Switzerland); Kambara, H. [DPNC, Geneva University, Geneva (Switzerland); Lindstroem, G. [1. Institut fuer Experimentalphysik, Universitaet Hamburg, D-20355 Hamburg (Germany); Lisowski, B. [Institut fuer Physik, Universitaet Dortmund, D-4600 Dortmund (Germany); Moorhead, G.F. [School of Physics, University of Melbourne, Parkville, Victoria 3052 (Australia); Munday, D.J. [Cambridge Univ. (United Kingdom). Cavendish Lab.; Parker, M.A. [Cambridge Univ. (United Kingdom). Cavendish Lab.; Perrin, E. [DPNC, Geneva University, Geneva (Switzerland); Pilath, S. [Institut fuer Physik, Universitaet Dortmund, D-4600 Dortmund (Germany); Rolf, A. [Institut fuer Physik, Universitaet Dortmund, D-4600 Dortmund (Germany); Schulz, T. [1. Institut fuer Experimentalphysik, Universitaet Hamburg, D-20355 Hamburg (Germany); Taylor, G.N. [School of Physics, University of Melbourne, Parkville, Victoria 3052 (Australia); Teiger, J. [Centre d`Etudes Nucleaires de Saclay, F-91191 Gif-sur-Yvette (France); Tovey, S.N. [School of Physics, University of Melbourne, Parkville, Victoria 3052 (Australia); Uhlmann, T.M. [1. Institut fuer Experimentalphysik, Universitaet Hamburg, D-20355 Hamburg (Germany)

    1995-06-01

    Recent results by the RD2 Collaboration of a study of radiation damage of silicon detectors for the ATLAS detector at LHC are presented. The detectors have been irradiated by neutrons with fluences of up to 1.5x10{sup 14} neutrons/cm{sup 2}. The electric field in the detectors before and after type inversion, the depletion voltage and the dark current were studied. (orig.).

  17. Design consideration of a multipinhole collimator with septa for ultra high-resolution silicon drift detector modules

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Jun [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of); Choi, Yong [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of)], E-mail: ychoi@skku.edu; Lee, Nam-Yong [School of Computer Aided Science, Institute of Basic Science, Inje University, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, Kisung [Department of Radiologic Science, Korea University, Seoul 136-703 (Korea, Republic of); Ahn, Young Bok [Department of Electronic Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Joung, Jinhun [Molecular Imaging, Siemens Medical Solutions USA, Inc., Hoffman Estates, IL 60195 (United States)

    2009-07-21

    The aim of this study was to design a multipinhole (MP) collimator with lead vertical septa coupled to a high-resolution detector module containing silicon drift detectors (SDDs) with an intrinsic resolution approaching the sub-millimeter level. Monte Carlo simulations were performed to determine pinhole parameters such as pinhole diameter, focal length, and number of pinholes. Effects of parallax error and collimator penetration were investigated for the new MP collimator design. The MP detector module was evaluated using reconstructed images of resolution and mathematical cardiac torso (MCAT) phantoms. In addition, the reduced angular sampling effect was investigated over 180 deg. The images were reconstructed using dedicated maximum likelihood expectation maximization (MLEM) algorithm. An MP collimator with 81-pinhole was designed with a 2-mm-diameter pinhole and a focal length of 40 mm . Planar sensitivity and resolution obtained using the devised MP collimator were 3.9 cps/{mu}Ci and 6 mm full-width at half-maximum (FWHM) at a 10 cm distance. The parallax error and penetration ratio were significantly improved using the proposed MP collimation design. The simulation results demonstrated that the proposed MP detector provided enlarged imaging field of view (FOV) and improved the angular sampling effect in resolution and MCAT phantom studies. Moreover, the novel design enables tomography images by simultaneously obtaining eight projections with eight-detector modules located along the 180 deg. orbit surrounding a patient, which allows designing of a stationary cardiac SPECT. In conclusion, the MP collimator with lead vertical septa was designed to have comparable system resolution and sensitivity to those of the low-energy high-resolution (LEHR) collimator per detector. The system sensitivity with an eight-detector configuration would be four times higher than that with a standard dual-detector cardiac SPECT.

  18. Consistency analysis for the performance of planar detector systems used in advanced radiotherapy

    Directory of Open Access Journals (Sweden)

    Kanan Jassal

    2015-03-01

    Full Text Available Purpose: To evaluate the performance linked to the consistency of a-Si EPID and ion-chamber array detectors for dose verification in advanced radiotherapy.Methods: Planar measurements were made for 250 patients using an array of ion chamber and a-Si EPID. For pre-treatment verification, the plans were generated on the phantom for re-calculation of doses. The γ-evaluation method with the criteria: dose-difference (DD ≤ 3% and distance-to-agreement (DTA ≤ 3 mm was used for the comparison of measurements. Also, the central axis (CAX doses were measured using 0.125cc ion chamber and were compared with the central chamber of array and central pixel correlated dose value from EPID image. Two types of statistical approaches were applied for the analysis. Conventional statistics used analysis of variance (ANOVA and unpaired t-test to evaluate the performance of the detectors. And statistical process control (SPC was utilized to study the statistical variation for the measured data. Control charts (CC based on an average , standard deviation ( and exponentially weighted moving averages (EWMA were prepared. The capability index (Cpm was determined as an indicator for the performance consistency of the two systems.Results: Array and EPID measurements had the average gamma pass rates as 99.9% ± 0.15% and 98.9% ± 1.06% respectively. For the point doses, the 0.125cc chamber results were within 2.1% ± 0.5% of the central chamber of the array. Similarly, CAX doses from EPID and chamber matched within 1.5% ± 0.3%. The control charts showed that both the detectors were performing optimally and all the data points were within ± 5%. EWMA charts revealed that both the detectors had a slow drift along the mean of the processes but was found well within ± 3%. Further, higher Cpm values for EPID demonstrate its higher efficiency for radiotherapy techniques.Conclusion: The performances of both the detectors were seen to be of high quality irrespective of the

  19. Temperature dependence of radiation damage and its annealing in silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, H.J.; Boissevain, J.G.; Holzscheiter, K.; Kapustinsky, J.S.; Palounek, A.P.T.; Sondheim, W.E. [Los Alamos National Lab., NM (United States); Barberis, E.; Cartiglia, N.; Leslie, J.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.; Wilder, M. [California Univ., Santa Cruz, CA (United States). Inst. for Particle Physics; Ellison, J.A.; Fleming, J.K.; Jerger, S.; Joyce, D.; Lietzke, C.; Reed, E.; Wimpenny, S.J. [California Univ., Riverside, CA (United States); Ferguson, P. [Missouri Univ., Rolla, MO (United States); Frautschi, M.A.; Matthews, J.A.J.; Skinner, D. [New Mexico Univ., Albuquerque, NM (United States)

    1992-12-01

    The radiation damage resulting from the large particle fluences predicted at the Superconducting Super Collider will induce significant leakage currents in silicon detectors. In order to limit those currents, we plan to operate the detectors at reduced temperatures ({approximately}0{degree} C). In this paper, we present the results of a study of temperature effects on both the initial radiation damage and the long-term annealing of that damage in silicon PIN detectors. Depletion voltage results are reported. The detectors were exposed to approximately 10{sup 14}/cm{sup 2} 650 MeV protons. Very pronounced temperature dependencies were observed.

  20. Temperature dependence of radiation damage and its annealing in silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, H.J.; Boissevain, J.G.; Holzscheiter, K.; Kapustinsky, J.S.; Palounek, A.P.T.; Sondheim, W.E. (Los Alamos National Lab., NM (United States)); Barberis, E.; Cartiglia, N.; Leslie, J.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.; Wilder, M. (Univ. of California, Santa Cruz, CA (United States). Santa Cruz Inst. for Particle Physics); Ellison, J.A.; Fleming, J.K.; Jerger, S.; Joyce, D.; Lietzke, C.; Reed, E.; Wimpenny, S.J. (Univ. of California, Riverside, CA (United States)); Ferguson, P. (Univ. of Missouri, Rolla, MO (United States)); Frautschi, M.A.; Matthews, J.A.J.; Skinner, D. (Univ. of New Mexico, Albuquerque, NM (United States))

    1993-08-01

    The radiation damage resulting from the large particle fluences predicted at the Superconducting Super Collider will induce significant leakage currents in silicon detectors. In order to limit those currents, the authors plan to operate the detectors at reduced temperatures ([approximately] 0 C). In this paper, they present the results of a study of temperature effects on both the initial radiation damage and the long-term annealing of that damage in silicon PIN detectors. Depletion voltage results are reported. The detectors were exposed to approximately 10[sup 14]/cm[sup 2] 650 MeV protons. Very pronounced temperature dependencies were observed.

  1. Temperature dependence of radiation damage and its annealing in silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, H.J.; Boissevain, J.G.; Holzscheiter, K.; Kapustinsky, J.S.; Palounek, A.P.T.; Sondheim, W.E. (Los Alamos National Lab., NM (United States)); Barberis, E.; Cartiglia, N.; Leslie, J.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.; Wilder, M. (California Univ., Santa Cruz, CA (United States). Inst. for Particle Physics); Ellison, J.A.; Fleming, J.K.; Jerger, S.; Joyce, D.; Lietzke, C.; Re

    1992-01-01

    The radiation damage resulting from the large particle fluences predicted at the Superconducting Super Collider will induce significant leakage currents in silicon detectors. In order to limit those currents, we plan to operate the detectors at reduced temperatures ([approximately]0[degree] C). In this paper, we present the results of a study of temperature effects on both the initial radiation damage and the long-term annealing of that damage in silicon PIN detectors. Depletion voltage results are reported. The detectors were exposed to approximately 10[sup 14]/cm[sup 2] 650 MeV protons. Very pronounced temperature dependencies were observed.

  2. Fine Grained Silicon-Tungsten Calorimetry for a Linear Collider Detector

    Energy Technology Data Exchange (ETDEWEB)

    Strom, D.; Frey, R.; /Oregon U.; Breidenbach, M.; Freytag, D.; Graf, N.; Haller, G.; Milgrome, O.; /SLAC; Radeka, V.; /Brookhaven

    2006-02-08

    A fine grained silicon-tungsten calorimeter is ideal for use as the electromagnetic calorimeter in a linear collider detector optimized for particle-flow reconstruction. We are designing a calorimeter that is based on readout chips which are bump bonded to the silicon wafers that serve as the active medium in the calorimeter. By using integrated electronics we plan to demonstrate that fine granularity can be achieved at a reasonable price. Our design minimizes the gap between tungsten layers leading to a small Moliere radius, an important figure of merit for particle-flow detectors. Tests of the silicon detectors to be used in a test beam prototype as well as timing measurements based on similar silicon detectors are discussed.

  3. Novel Silicon Carbide Deep Ultraviolet Detectors: Device Modeling, Characterization, Design and Prototyping Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicon Carbide deep UV detectors can achieve large gains, high signal-to-noise ratios and solar-blind operation, with added benefits of smaller sizes, lower...

  4. Novel Silicon Carbide Deep Ultraviolet Detectors: Device Modeling, Characterization, Design and Prototyping Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicon Carbide deep UV detectors can achieve large gains, high signal-to-noise ratios and solar-blind operation, with added benefits of smaller sizes, lower...

  5. A large area, silicon photomultiplier-based PET detector module.

    Science.gov (United States)

    Raylman, Rr; Stolin, A; Majewski, S; Proffitt, J

    2014-01-21

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26 × 58 array of 1.5 × 1.5mm(2) LYSO elements (spanning 41 × 91mm(2)) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ∼45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (∼2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3T clinical magnetic resonance imaging scanner.

  6. Optimization of the Clustering and Tracking Algorithms of the Silicon Microstrip Detectors for the COMPASS Experiment

    CERN Document Server

    Leeb, Michael

    The COMPASS experiment at CERN uses silicon microstrip detectors for beam defini- tion and during hadron program also for the reconstruction of the primary interaction point. In the year 2009 these detectors were operated continuously at cryogenic temper- atures of 200 K for the first time. The objec- tive of this thesis is the optimization of the data reconstruction algorithms used for the silicon microstrip detectors. The clustering algorithm is extended to increase the capa- bility of resolving several particles in close proximity with respect to each other. Fur- thermore improvements on the simulation of the detector response are presented. In addition, the requirements on the detector alignment in order to make full use of the detector capability are studied. Based on a precise alignment, results on the perfor- mance during cryogenic operation are given and compared to the non-cryogenic detector characteristics.

  7. Proposal for the Award of Two Contracts for Silicon Strip Detectors for the AMS Experiment

    CERN Document Server

    2003-01-01

    This document concerns the award of two contracts for the supply of silicon strip detectors for the AMS experiment. The work will be entirely financed by the University of Geneva and RWTH Aachen. For the reasons explained in this document, the Finance Committee is invited to agree to the negotiation of two contracts with the firm COLIBRYS (CH) for the supply of silicon strip detectors for a total amount of 1 000 000 Swiss francs, not subject to revision.

  8. Optimizing timing performance of silicon photomultiplier-based scintillation detectors.

    Science.gov (United States)

    Yeom, Jung Yeol; Vinke, Ruud; Levin, Craig S

    2013-02-21

    Precise timing resolution is crucial for applications requiring photon time-of-flight (ToF) information such as ToF positron emission tomography (PET). Silicon photomultipliers (SiPM) for PET, with their high output capacitance, are known to require custom preamplifiers to optimize timing performance. In this paper, we describe simple alternative front-end electronics based on a commercial low-noise RF preamplifier and methods that have been implemented to achieve excellent timing resolution. Two radiation detectors with L(Y)SO scintillators coupled to Hamamatsu SiPMs (MPPC S10362-33-050C) and front-end electronics based on an RF amplifier (MAR-3SM+), typically used for wireless applications that require minimal additional circuitry, have been fabricated. These detectors were used to detect annihilation photons from a Ge-68 source and the output signals were subsequently digitized by a high speed oscilloscope for offline processing. A coincident resolving time (CRT) of 147 ± 3 ps FWHM and 186 ± 3 ps FWHM with 3 × 3 × 5 mm(3) and with 3 × 3 × 20 mm(3) LYSO crystal elements were measured, respectively. With smaller 2 × 2 × 3 mm(3) LSO crystals, a CRT of 125 ± 2 ps FWHM was achieved with slight improvement to 121 ± 3 ps at a lower temperature (15° C). Finally, with the 20 mm length crystals, a degradation of timing resolution was observed for annihilation photon interactions that occur close to the photosensor compared to shallow depth-of-interaction (DOI). We conclude that commercial RF amplifiers optimized for noise, besides their ease of use, can produce excellent timing resolution comparable to best reported values acquired with custom readout electronics. On the other hand, as timing performance degrades with increasing photon DOI, a head-on detector configuration will produce better CRT than a side-irradiated setup for longer crystals.

  9. New technologies of silicon position-sensitive detectors for future tracker systems

    CERN Document Server

    Bassignana, Daniela; Lozano, M

    In view of the new generation of high luminosity colliders, HL-LHC and ILC, a farther investigation of silicon radiation detectors design and technology is demanded, in order to satisfy the stringent requirements of the experiments at such sophisticated machines. In this thesis, innovative technologies of silicon radiation detectors for future tracking systems are proposed. Three dierent devices have been studied and designed with the help of dierent tools for computer simulations. They have been manufactured in the IMB-CNM clean room facilities in Barcelona and characterized with proper experimental set-ups in order to test the detectors capabilities and the quality and suitability of the technologies used for their fabrication. The rst technology deals with the upgrade of dedicated sensors for laser alignment systems in future tracker detectors. The design and technology of common single-sided silicon microstrip detectors have been slightly modied in order to improve IR light transmittance of the devices. T...

  10. Effects of irradiation of energetic heavy ions on digital pulse shape analysis with silicon detectors

    Science.gov (United States)

    Barlini, S.; Carboni, S.; Bardelli, L.; Le Neindre, N.; Bini, M.; Borderie, B.; Bougault, R.; Casini, G.; Edelbruck, P.; Olmi, A.; Pasquali, G.; Poggi, G.; Rivet, M. F.; Stefanini, A. A.; Baiocco, G.; Berjillos, R.; Bonnet, E.; Bruno, M.; Chbihi, A.; Cruceru, I.; Degerlier, M.; Dueñas, J. A.; Galichet, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lopez, O.; Marchi, T.; Martel, I.; Morelli, L.; Parlog, M.; Piantelli, S.; Petrascu, H.; Rosato, E.; Seredov, V.; Vient, E.; Vigilante, M.; Fazia Collaboration

    2013-04-01

    The next generation of 4π detector arrays for heavy ion studies will largely use Pulse Shape Analysis to push the performance of silicon detectors with respect to ion identification. Energy resolution and pulse shape identification capabilities of silicon detectors under prolonged irradiation by energetic heavy ions have thus become a major issue. In this framework, we have studied the effects of irradiation by energetic heavy ions on the response of neutron transmutation doped (nTD) silicon detectors. Sizeable effects on the amplitude and the risetime of the charge signal have been found for detectors irradiated with large fluences of stopped heavy ions, while much weaker effects were observed by punching-through ions. The robustness of ion identification based on digital pulse shape techniques has been evaluated.

  11. Detector Developments for the LHC CMS TOB Silicon Detector Modules and ATLAS TileCal Read-Out Driver

    CERN Document Server

    Poveda, J; Ferrer, A

    2005-01-01

    This Research Report is divided in two different parts corresponding to two different periods of time working in different collaborations. First, a general approach to the framework where this work is set is presented at the Introduction: the CERN laboratory near Geneva, the LHC accelerator and its two general purpose experiments CMS and ATLAS. The first part of this report consists in the study of the performance of the silicon strip detectors specifically designed for the Tracker Outer Barrel (TOB) of the CMS Tracker detector. Results of the performance of CMS TOB silicon detector modules mounted on the first assembled double-sided rod at CERN are presented. These results are given in terms of noise, noise occupancies, signal to noise ratios and signal efficiencies. The detector signal efficiencies and noise occupancies are also shown as a function of threshold for a particular clustering algorithm. Signal efficiencies versus noise occupancy plots as a function of the threshold level, which could also be us...

  12. Developments in Readout for Silicon Microstrip Sensors at a Linear Collider Detector

    CERN Document Server

    Carman, Jerome; Crosby, Sean; Fadeyev, Vitaliy; Schumm, Bruce A; Spencer, Ned

    2010-01-01

    We report recent results on the use of charge division to obtain a longitudinal coordinate from silicon strip detectors, and on sources of electronic readout noise for long, thin strips. These results hold promise for the design of Linear Collider charged particle tracking system composed of silicon microstrip sensors.

  13. A beta ray spectrometer based on a two-, or three-element silicon detector coincidence telescope

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S.; Weizman, Y. [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics; Hirning, C.R. [Ontario Hydro, Whitby, ON (Canada). Health Physics Dept.

    1995-12-31

    The operation of a beta ray energy spectrometer based on a two-or three-element silicon detector telescope is described. The front detector (A) is a thin, totally depleted, silicon surface barrier detector either 40 {mu}m, 72 {mu}m or 98 {mu}m thick. The back detector (C) is a Li compensated silicon detector, 5000 {mu}m thick. An additional thin detector can be inserted between these two detectors when additional photon rejection capability is required in intense photon fields. The capability of the spectrometer to reject photons is based on the fact that incident photons will have a small probability of simultaneously losing detectable energy in two detectors and an even smaller probability of losing detectable energy in all three detectors. Electrons, however, above a low energy threshold, will always record simultaneous, events in all three detectors. The spectrometer is capable of measuring electron energies from a lower energy coincidence threshold of 70 keV with 60% efficiency increasing to 100% efficiency in the energy region between 150 keV and 2.5 MeV. (Author).

  14. Planarization process of single crystalline silicon asperity under abrasive rolling effect studied by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Si, Lina [Tsinghua University, State Key Laboratory of Tribology, Beijing (China); Beijing Institute of Technology, School of Mechanical Engineering, Beijing (China); Guo, Dan; Luo, Jianbin; Xie, Guoxin [Tsinghua University, State Key Laboratory of Tribology, Beijing (China)

    2012-10-15

    In the chemical mechanical polishing (CMP) process, the complex behaviors of abrasive particles play important roles in the planarization of wafer surface. Particles embedded in the pad remove materials by ploughing, while particles immersed in the slurry by rolling across the wafer surface. In this paper, processes of the particle rolling across a silicon surface with an asperity under various down forces and external driving forces were studied using molecular dynamics (MD) simulation method. The simulations clarified the asperity shape evolution during the rolling process and analyzed the energy changes of the simulation system and the interaction forces acted on the silica particle. It was shown that both the down force and the driving force had important influences on the amount of the material removed. With relatively small down forces and driving forces applied on the particle, the material removal occurred mainly in the front end of the asperity; when the down forces and driving forces were large enough, e.g., 100 nN, the material removal could take place at the whole top part of the asperity. The analysis of energy changes and interaction forces provided favorable explanations to the simulation results. (orig.)

  15. Silicon drift detectors with the drift field induced by pureB-coated trenches

    NARCIS (Netherlands)

    Nanver, Lis Karen; Kneževi´c, Tihomir; Suligoj, Tomislav

    2016-01-01

    Junction formation in deep trenches is proposed as a new means of creating a built-in drift field in silicon drift detectors (SDDs). The potential performance of this trenched drift detector (TDD) was investigated analytically and through simulations, and compared to simulations of conventional

  16. Test beam results for silicon microstrip detectors with VLSI read-out

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, C.; Litke, A.; Schwarz, A.; Turala, M.; Lueth, V.; Breakstone, A.; Parker, S.

    1986-04-01

    A telescope consisting of three silicon microstrip detectors has been tested in a high energy positron beam at SLAC. Each detector has trips with 25 micron pitch and is read out by two 128-channel NMOS integrated circuits (''Microplex''). Results on the signal-to-noise ratio, spatial resolution, and two-track separation are given.

  17. Beam test results of the BTeV silicon pixel detector

    CERN Document Server

    Appel, J A

    2001-01-01

    We report the results of the BTeV silicon pixel detector tests carried out in the MTest beam at Fermilab in 1999-2000. The pixel detector spatial resolution has been studied as a function of track inclination, sensor bias, and readout threshold.

  18. Improvement in breakdown characteristics with multiguard structures in microstrip silicon detectors for CMS

    CERN Document Server

    Bacchetta, N; Candelori, A; Da Rold, M; Descovich, M; Kaminski, A; Messineo, A; Rizzo, F; Verzellesi, G

    2001-01-01

    To obtain full charge collection the CMS silicon detectors should be able to operate at high bias voltage. We observed that multiguard structures enhance the breakdown performance of the devices on several tens of baby detectors designed for CMS. The beneficial effects of the multiguard structures still remains after the strong neutron irradiation performed to simulate the operation at the LHC. (3 refs).

  19. Commissioning of the Silicon Drift Detectors of the ALICE experiment at the LHC

    CERN Document Server

    Biolcati, Emanuele

    2009-01-01

    Silicon Drift Detectors (SDD) equip the two central layers of the Inner Tracking System of the ALICE experiment at the LHC. Main results of systematic studies of detector performance including noise, gain, drift speed and charge collection measurements will be reported

  20. Detector and Front-end electronics for ALICE and STAR silicon strip layers

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Higueret, S; Jundt, F; Kühn, C E; Lutz, Jean Robert; Suire, C; Tarchini, A; Berst, D; Blondé, J P; Clauss, G; Colledani, C; Deptuch, G; Dulinski, W; Hu, Y; Hébrard, L; Kucewicz, W; Boucham, A; Bouvier, S; Ravel, O; Retière, F

    1998-01-01

    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented.

  1. A Test-Bench for Measurement of Electrical Static Parameters of Strip Silicon Detectors

    CERN Document Server

    Golutvin, I A; Danilevich, V G; Dmitriev, A Yu; Elsha, V V; Zamiatin, Y I; Zubarev, E V; Ziaziulia, F E; Kozus, V I; Lomako, V M; Stepankov, D V; Khomich, A P; Shumeiko, N M; Cheremuhin, A E

    2003-01-01

    An automated test-bench for electrical parameters input control of the strip silicon detectors, used in the End-Cap Preshower detector of the CMS experiment, is described. The test-bench application allows one to solve a problem of silicon detectors input control in conditions of mass production - 1800 detectors over 2 years. The test-bench software is realized in Delphi environment and contains a user-friendly operator interface for measurement data processing and visualization as well as up-to-date facilities for MS-Windows used for the network database. High operating characteristics and reliability of the test-bench were confirmed while more than 800 detectors were tested. Some technical solutions applied to the test-bench could be useful for design and construction of automated facilities for electrical parameters measurements of the microstrip detectors input control.

  2. The effect of guard ring on leakage current and spectroscopic performance of TlBr planar detectors

    Science.gov (United States)

    Kargar, Alireza; Kim, Hadong; Cirignano, Leonard; Shah, Kanai

    2014-09-01

    Four thallium bromide planar detectors were fabricated from materials grown at RMD Inc. The TlBr samples were prepared to investigate the effect of guard ring on device gamma-ray spectroscopy performance, and to investigate the leakage current through surface and bulk. The devices' active area in planar configuration were 4.4 × 4.4 × 1.0 mm3. In this report, the detector fabrication process is described and the resulting energy spectra are discussed. It is shown that the guard ring improves device spectroscopic performance by shielding the sensing electrode from the surface leakage current, and by making the electric filed more uniform in the active region of the device.

  3. Background rejection capabilities of a Compton imaging telescope setup with a DSSD Ge planar detector and AGATA

    Energy Technology Data Exchange (ETDEWEB)

    Doncel, M., E-mail: doncel@usal.es [Laboratorio de Radiaciones Ionizantes, Universidad de Salamanca (Spain); Quintana, B. [Laboratorio de Radiaciones Ionizantes, Universidad de Salamanca (Spain); Gadea, A. [IFIC Valencia, Valencia (Spain); Recchia, F.; Farnea, E. [INFN sezione di Padova, Padova (Italy)

    2011-08-21

    In this work, we show the first Monte Carlo results about the performance of the Ge array which we propose for the DESPEC experiment at FAIR, when the background algorithm developed for AGATA is applied. The main objective of our study is to characterize the capabilities of the {gamma}-spectroscopy system, made up of AGATA detectors in a semi-spherical distribution covering a 1{pi} solid angle and a set of planar Ge detectors in a daisy configuration, to discriminate between {gamma} sources placed at different locations.

  4. Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC

    CERN Document Server

    Ichimiya, Ryo; Akiba, Yasuyuki; Atomssa, Ermias; Chollet, Simon; Drapier, Olivier; En'yo, Hideto; Fujiwara, Kohei; Gastaldi, Franck; de Cassagnac, Raphael Granier; Kasai, Miki; Kurita, Kazuyosi; Kurosawa, Maki; Mannel, Eric J; Ohnishi, Hiroaki; Onuki, Yoshiyuki; Pak, Robart; Pancake, Charles; Sekimoto, Michiko; Shafto, Eugene; Sondheim, Walter; Taketani, Atsushi

    2008-01-01

    PHENIX is one of the major experiments at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory. It has been exploring the spin structure of the nucleon utilizing polarized proton-proton collisions and characteristics of the Quark Gluon Plasma (QGP) created in heavy ion collisions. The Silicon Vertex Tracker (VTX) will be implemented in 2010 to enhance physics capabilities. It will be installed very close to the collision point and will cover | \\eta | < 1.2 and | \\phi | ~2{\\pi} by four layers of silicon sensors. Inner two layers are silicon pixel detectors and outer two layers are silicon strip layers. In this paper, the inner silicon pixel detector is reported. We used 200 {\\mu}m thick silicon sensor and readout chip developed for ALICE experiment. As a part of PHENIX detector, it needs to be read out by four times faster from ALICE experiment and to be thin in material to minimize the radiation length. To meet the criteria, the PHENIX silicon pixel detector has been designed an...

  5. High resolution measurements with silicon drift detectors for Compton camera applications

    OpenAIRE

    Çonka Nurdan, Tuba

    2006-01-01

    The accurate and rapid location of the radionuclide distribution in radioactively labeled tissue or organs is the goal of nuclear medicine. The Compton camera, in principle, can improve the spatial resolution and effiency with respect to today's PET and SPECT techniques. Since it is necessary to reconstruct a full scattering event in the Compton camera, the detector technology is very demanding. Useful detectors have not been available in the past. However, a new detector type, the Silicon Dr...

  6. Design and construction of double-sided silicon ladders for the L3 microvertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosi, G.; Babucci, E.; Battiston, R.; Biasini, M.; Easo, S.; Krastev, V.; Pauluzzi, M.; Santocchia, A.; Bay, A.; Burger, W.J.; Extermann, P.; Perrin, E.; Susinno, G.; Brooks, M.; Kapustinsky, J.S.; Kinnison, W.W.; Lee, D.M.; Mills, G.B.; Thompson, T.C.; DiBitonto, D.; Pennington, T.; Subhani, K.; Hauviller, C. (Univ. Degli Studi di Perugia (Italy) INFN, Perugia (Italy) Univ. of Geneva (Switzerland) Los Alamos National Lab., Los Alamos, NM (United States) Univ. of Alabama, Tuscaloosa, AL (United States) European Lab. for Particle Physics (CERN), Geneva (Switzerland))

    1994-04-21

    The techniques used in the construction of the double-sided ladders for the L3 Silicon Microvertex Detector (SMD) are presented. The detector consists of two cylindrical layers, each of 12 ladders, with double-sided silicon detectors which provide r-phi and z coordinates measurements. This description includes ladder mechanical design and the assembly. A novel solution to readout the z-coordinates is presented. It optimizes very effectively the removal of heat generated by the readout electronics and minimizes the radiation length in the central region. Some results from the survey of the individual ladders are also discussed. (orig.)

  7. Smart readout of silicon drift detector using ON-LINE fuzzy logic

    CERN Document Server

    Russo, G V; Caponetto, L; Caligiore, C; Lo Nigro, L; Lo Presti, D; Panebianco, S; Pappalardo, L L; Petta, C; Randazzo, N; Reito, S; Russo, M

    2000-01-01

    A silicon drift detector front-end and a smart readout is proposed for ALICE's ITS readout. It is based on a dedicated fuzzy processor. Four main aims can be achieved: a significant reduction of data volume toward mass storage; less matter across the particle trajectories; ON-LINE personalised calibration of the detector against temperature effects; more insensitivity to noise effects compared with traditional systems for both position and charge measurement. The system fulfils the requirement for the ALICE inner tracker system silicon drift detectors. This paper aims at illustrating to the physics community the work presently done that has engaged many people for a long time. (39 refs).

  8. Smart readout of silicon drift detector using ON-LINE fuzzy logic

    Science.gov (United States)

    Russo, G. V.; Becciani, U.; Caponetto, L.; Caligiore, C.; Lo Nigro, L.; Presti, D. Lo; Panebianco, S.; Pappalardo, L.; Petta, C.; Randazzo, N.; Reito, S.; Russo, M.

    2000-04-01

    A Silicon Drift Detector Front-End and a Smart Readout is proposed for ALICE's ITS readout. It is based on a dedicated Fuzzy Processor. Four main aims can be achieved: a significant reduction of data volume toward mass storage; less matter across the particle trajectories; ON-LINE personalised calibration of the detector against temperature effects; more insensitivity to noise effect compared with traditional systems for both position and charge measurement. The system fulfils the requirement for ALICE Inner Tracker System Silicon Drift Detectors. This paper aims at illustrating to the Physics community the work presently done that has engaged many people for a long time.

  9. Studies of the radiation hardness of oxygen-enriched silicon detectors

    CERN Document Server

    Ruzin, A; Glaser, M; Lemeilleur, F

    1999-01-01

    Detectors of high-energy particles sustain substantial structural defects induced by the particles during the operation period. Some of the defects have been found to be electrically active, degrading the detector's performance. Understanding the mechanisms of the electrical activities and learning to suppress their influence are essential if long 'lifetime' detectors are required. This work report s about radiation hardness of silicon P-I-N devices fabricated from oxygen-enriched, high-resistivity material. The high and nearly uniform concentration of oxygen in float-zone silicon has been achie ved by diffusion of oxygen from SiO2 layers.

  10. Smart readout of silicon drift detector using ON-LINE fuzzy logic

    Energy Technology Data Exchange (ETDEWEB)

    Russo, G.V. E-mail: valerio.russo@ct.infn.it; Becciani, U.; Caponetto, L.; Caligiore, C.; Lo Nigro, L.; Presti, D. Lo; Panebianco, S.; Pappalardo, L.; Petta, C.; Randazzo, N.; Reito, S.; Russo, M

    2000-04-01

    A Silicon Drift Detector Front-End and a Smart Readout is proposed for ALICE's ITS readout. It is based on a dedicated Fuzzy Processor. Four main aims can be achieved: a significant reduction of data volume toward mass storage; less matter across the particle trajectories; ON-LINE personalised calibration of the detector against temperature effects; more insensitivity to noise effect compared with traditional systems for both position and charge measurement. The system fulfils the requirement for ALICE Inner Tracker System Silicon Drift Detectors. This paper aims at illustrating to the Physics community the work presently done that has engaged many people for a long time.

  11. Silicon micro-fluidic cooling for NA62 GTK pixel detectors

    CERN Document Server

    Romagnoli, G; Brunel, B; Catinaccio, A; Degrange, J; Mapelli, A; Morel, M; Noel, J; Petagna, P

    2015-01-01

    Silicon micro-channel cooling is being studied for efficient thermal management in application fields such as high power computing and 3D electronic integration. This concept has been introduced in 2010 for the thermal management of silicon pixel detectors in high energy physics experiments. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to different detector configurations. The production of very thin cooling devices in silicon enables a minimization of material of the tracking sensors and eliminates mechanical stresses due to the mismatch of the coefficient of thermal expansion between detectors and cooling systems. The NA62 experiment at CERN will be the first high particle physics experiment that will install a micro-cooling system to perform the thermal management of the three detection planes of its Gigatracker pixel detector.

  12. Radiation Hard Silicon Particle Detectors for Phase-II LHC Trackers

    Science.gov (United States)

    Oblakowska-Mucha, A.

    2017-02-01

    The major LHC upgrade is planned after ten years of accelerator operation. It is foreseen to significantly increase the luminosity of the current machine up to 1035 cm‑2s‑1 and operate as the upcoming High Luminosity LHC (HL-LHC) . The major detectors upgrade, called the Phase-II Upgrade, is also planned, a main reason being the aging processes caused by severe particle radiation. Within the RD50 Collaboration, a large Research and Development program has been underway to develop silicon sensors with sufficient radiation tolerance for HL-LHC trackers. In this summary, several results obtained during the testing of the devices after irradiation to HL-LHC levels are presented. Among the studied structures, one can find advanced sensors types like 3D silicon detectors, High-Voltage CMOS technologies, or sensors with intrinsic gain (LGAD). Based on these results, the RD50 Collaboration gives recommendation for the silicon detectors to be used in the detector upgrade.

  13. Systematic investigation of background sources in neutron flux measurements with a proton-recoil silicon detector

    Science.gov (United States)

    Marini, P.; Mathieu, L.; Acosta, L.; Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.

    2017-01-01

    Proton-recoil detectors (PRDs), based on the well known standard H(n,p) elastic scattering cross section, are the preferred instruments to perform precise quasi-absolute neutron flux measurements above 1 MeV. The limitations of using a single silicon detector as PRD at a continuous neutron beam facility are investigated, with the aim of extending such measurements to neutron energies below 1 MeV. This requires a systematic investigation of the background sources affecting the neutron flux measurement. Experiments have been carried out at the AIFIRA facility to identify these sources. A study on the role of the silicon detector thickness on the background is presented and an energy limit on the use of a single silicon detector to achieve a neutron flux precision better than 1% is given.

  14. Studies of double-sided silicon microstrip detectors

    Science.gov (United States)

    Seidel, S. C.; Bruner, N. L.; Frautschi, M. A.; Hoeferkamp, M. R.; Patton, A.

    1996-02-01

    The electrical characteristics of detectors manufactured by SINTEF/SI with a variety of geometrical and processing options have been investigated. The detectors' leakage current, depletion voltage, bias resistance, interstrip, coupling capacitance, and coupling capacitor breakdown voltage were studied.

  15. MTF Issues in Small-Pixel-Pitch Planar Quantum IR Detectors

    Science.gov (United States)

    Gravrand, O.; Baier, N.; Ferron, A.; Rochette, F.; Berthoz, J.; Rubaldo, L.; Cluzel, R.

    2014-08-01

    The current trend in quantum infrared (IR) detector development is the design of very small-pixel-pitch large arrays. From the previous 30 μm pitch, the standard pixel pitch today is 15 μm and is expected to decrease to 12 μm in the next few years. Furthermore, focal-plane arrays (FPAs) with pixel pitch as small as 10 μm have been demonstrated. Such ultrasmall-pixel pitches are very small compared with the typical length ruling the electrical characteristics of the absorbing materials, namely the minority-carrier diffusion length. As an example, for low-doped n-type HgCdTe or InSb material, this diffusion length is on the order of 30 μm to 50 μm, i.e., three to five times the targeted pixel pitches. This has strong consequences for the modulation transfer function (MTF) of planar structures, where the lateral extension of the photodiode is limited by diffusion. For such aspect ratios, the self-confinement of neighboring diodes may not be efficient enough to maintain an optimal MTF. Therefore, this issue has to be addressed to take full advantage of the pixel pitch reduction in terms of image resolution. The aim of this work is to investigate the evolution of the MTF of HgCdTe and InSb FPAs when decreasing the pixel pitch below 15 μm. Both experimental measurements and finite-element simulations are used to discuss this issue. Different scenarios are compared, namely deep mesa etch between pixels, internal drift, surface recombination, and thin absorbing layers.

  16. Thermal properties of D0 Run IIb silicon detector staves

    Energy Technology Data Exchange (ETDEWEB)

    Lanfranco, Giobatta; Fast, James; /Fermilab

    2001-06-01

    A proposed stave design for the D0 Run IIb silicon tracker outer layers featuring central cooling channels and hybrid substrates mounted directly to the silicon sensor surfaces is evaluated for heat transfer characteristics and thermal deflections. In order to control leakage current noise in the silicon it is necessary to maintain the silicon in Layer 2 (R {approx} 100mm) at or below +5C. The current cooling system using 30% ethylene glycol in water can deliver coolant to the inlet of the silicon tracker at a temperature of -8C to -10C. This paper also investigates some alternative coolant options for Run IIB. While these are not required for the outer layers of silicon, they may be needed for L0, which sits at R {approx} 15mm. In this case the silicon must be kept at or below -5C, very near the lower limit for delivery of 30% glycol/water coolant. However, for the inner layers the electronics will be mounted independently from the silicon so the local heat flux is greatly reduced. This paper does not consider the cooling issues for the inner layers.

  17. A Laser Testing Facility for the Characterization of Silicon Strip Detectors

    Science.gov (United States)

    Phillips, Sarah

    2011-04-01

    Silicon strip detectors are used for high-precision tracking systems in particle physics experiments. During the 12 GeV upgrade to the accelerator at Jefferson Lab, a new spectrometer, CLAS12, will be built in Hall B. The University of New Hampshire is part of the collaboration designing and building CLAS12. Among the detector systems being developed for CLAS12 is a silicon vertex tracker that will be placed close to the target, providing excellent position resolution for vertex determination. It is vital to have the ability to perform quality assurance tests and to evaluate the performance of the individual silicon strip detectors before installation in CLAS12. UNH is designing and building a laser testing facility to perform this task. The design consists of an infrared laser system and a precision computer-controlled positioning system that scans the laser light on the detector. The detector signals are read out by a data acquisition system for analysis. The facility includes a cleanroom area and a dry storage containment system. The facility allows the characterization of the large number of detectors before the final assembly of the silicon vertex tracker.

  18. An optimized process for the production of advanced planar wire grid plates as detectors for high energy physics experiments

    CERN Document Server

    Iacopi, F; Pins, R; Van Hook, R I; Honore, M; Zhukov, V; Van Lancker, L; Van Doninck, W K; Beyne, E

    2001-01-01

    This paper introduces a novel production technique for the planar wire grid plates of microstrip gas chambers (MSGCs, gaseous particle detectors), taking advantage from the typical thin film metallization technologies. The aim of the work here presented has been to manufacture MSGC substrates which can meet the challenging requirements proper to particle tracking detectors in highly ionizing environments. These requirements are mainly represented by high reliability and robustness, since the devices are supposed to operate efficiently for at least 10 years in the extremely hostile conditions foreseen at the large hadron collider at CERN (CH). A detailed process description will be given and results will be analyzed both from the production point of view and from the application of the manufactured prototypes as detectors for high energy physics experiments. (7 refs).

  19. Evaluation of various planar gaseous detectors with Cs1 photocathodes for the detection of primary scintillation light from noble gases

    CERN Document Server

    Periale, L; Carlson, Per J; Iacobaeus, C; Francke, T; Pavlopoulos, N; Pietropaoplo, F; Sokolova, T; Picchi, P

    2003-01-01

    Noble gases and liquids are excellent scintillators and this opens a unique opportunity to directly detect the primary scintillation light produced in these media by photons or particles. This signal can be used for several purposes, for example as a start signal for TPCs or for particle's identification. Usually photomultipliers (PMs) are used for the detection of the scintillation light. In our previous work we have demonstrated that costly PMs could be replaced by gaseous detectors with CsI photocathodes. Such detectors have the same quantum efficiency as the best PMs but at the same time are cheap, simple and have high position and time resolutions. The aim of this work is to evaluate various planar type gaseous detectors with CsI photocathodes in order to choose the best one for the detection of the primary scintillation light from noble gases and liquids. (10 refs).

  20. Feasibility study for double-sided silicon microstrip detector fabrication at IRST

    CERN Document Server

    Betta, G F D; Bosisio, L; Carmel-Barnea, N; Ferrario, L; Pignatel, Giogrio Umberto; Rachevskaia, I; Zen, M; Zorzi, N

    1999-01-01

    This paper is concerned with the preliminary results of a technological study aimed at the development of a fabrication process for double-sided AC-coupled silicon microstrip detectors. The approach adopted for the fabrication of both single-sided and double-sided detectors is presented, and the results from electrical tests performed on detectors and test structures are reported and discussed. Good electrical characteristics as well as an acceptable number of process-related defects have been obtained for these prototype detectors, thus demonstrating the feasibility of fabricating such devices at the IRST facility. (author)

  1. Electrical production testing of the D0 Silicon microstrip tracker detector modules

    Energy Technology Data Exchange (ETDEWEB)

    D0, SMT Production Testing Group; /Fermilab

    2006-03-01

    The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.

  2. Review of amorphous silicon based particle detectors: the quest for single particle detection

    Science.gov (United States)

    Wyrsch, N.; Ballif, C.

    2016-10-01

    Hydrogenated amorphous silicon (a-Si:H) is attractive for radiation detectors because of its radiation resistance and processability over large areas with mature Si microfabrication techniques. While the use of a-Si:H for medical imaging has been very successful, the development of detectors for particle tracking and minimum-ionizing-particle detection has lagged, with almost no practical implementation. This paper reviews the development of various types of a-Si:H-based detectors and discusses their respective achievements and limitations. It also presents more recent developments of detectors that could potentially achieve single particle detection and be integrated in a monolithic fashion into a variety of applications.

  3. Improving the radiation hardness properties of silicon detectors using oxygenated n-type and p-type silicon

    CERN Document Server

    Casse, G L; Hanlon, M

    2000-01-01

    The degradation of the electrical properties of silicon detectors exposed to 24 GeV/c protons were studied using pad diodes made from different silicon materials. Standard high-grade p-type and n-type substrates and oxygenated n-type substrates have been used. The diodes were studied in terms of reverse current (I/sub r/) and full depletion voltage (V/sub fd/) as a function of fluence. The oxygenated devices from different suppliers with a variety of starting materials and techniques, all show a consistent improvement of the degradation rate of V/sub fd/ and CCE compared to un- oxygenated substrate devices. Radiation damage of n-type detectors introduces stable defects acting as effective p-type doping and leads to the change of the conductivity type of the silicon bulk (type inversion) at a neutron equivalent fluence of a few 10/sup 13/ cm/sup -2/. The diode junction after inversion migrates from the original side to the back plane of the detector. The migration of the junction is avoided using silicon detec...

  4. Charge collection and capacitance-voltage analysis in irradiated n-type magnetic Czochralski silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Petterson, M.K.; Sadrozinski, H.F.-W.; Betancourt, C. [SCIPP UC Santa Cruz, 1156 High Street, 95064 CA (United States); Bruzzi, M. [INFN, Dipartimento di Energetica, Universita di Firenze, via S. Marta 3, 50139 Florence (Italy)], E-mail: mara.bruzzi@unifi.it; Scaringella, M.; Tosi, C.; Macchiolo, A. [INFN, Dipartimento di Energetica, Universita di Firenze, via S. Marta 3, 50139 Florence (Italy); Manna, N.; Creanza, D. [Universita di Bari (Italy); Boscardin, M.; Piemonte, C.; Zorzi, N. [ITC, IRST, Povo, Trento (Italy); Borrello, L.; Messineo, A. [INFN Pisa (Italy); Dalla Betta, G.F. [Universita di Trento (Italy)

    2007-12-11

    The depletion depth of irradiated n-type silicon microstrip detectors can be inferred from both the reciprocal capacitance and from the amount of collected charge. Capacitance voltage (C-V) measurements at different frequencies and temperatures are being compared with the bias voltage dependence of the charge collection on an irradiated n-type magnetic Czochralski silicon detector. Good agreement between the reciprocal capacitance and the median collected charge is found when the frequency of the C-V measurement is selected such that it scales with the temperature dependence of the leakage current. Measuring C-V characteristics at prescribed combinations of temperature and frequency allows then a realistic estimate of the depletion characteristics of irradiated silicon strip detectors based on C-V data alone.

  5. Radiation hard position-sensitive cryogenic silicon detectors: the Lazarus effect

    Science.gov (United States)

    Palmieri, V. G.; Abreu, M. C.; Bell, W. H.; Berglund, P.; de Boer, W.; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Casagrande, L.; Chapuy, S.; Cindro, V.; D'Ambrosio, N.; Viá, C. Da; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenço, C.; Mikuẑ, M.; Niinikoski, T. O.; O'Shea, V.; Pagano, S.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M.; (RD39 Collaboration)

    2000-05-01

    The discovery of the so-called Lazarus effect, namely the recovery of the charge collection efficiency (CCE) of irradiated silicon detectors by means of cryogenic cooling has entailed an increasing interest in the behavior of silicon detectors at cryogenic temperatures. We have measured the CCE of a silicon p-i-n diode detector previously irradiated with an equivalent fluence of 1×10 15 n/ cm2 neutrons of 1 MeV energy. The charge collection efficiency has been measured at 77 K, showing that the low-temperature operation considerably decreases the bias current. This is also the case when forward voltage bias is applied, which then becomes a suitable option. In this condition, the sample shows a charge collection efficiency in excess of 65% at 250 V corresponding to a most probable signal for a minimum ionizing particle of 21 000 e-.

  6. Processing of microstrip detectors on Czochralski grown high resistivity silicon substrates

    CERN Document Server

    Härkönen, J; Tuovinen, E; Mehtälä, P; Lassila-Perini, K M; Ovchinnikov, V; Heikkilä, P; Ylikoski, M; Palmu, L; Kallijärvi, S; Nikkila, H; Anttila, O; Niinikoski, T O; Eremin, V; Ivanov, A; Verbitskaya, E

    2003-01-01

    We have processed large-area strip sensors on silicon wafers grown by the magnetic Czochralski (MCZ) method. The n-type MCZ silicon wafers manufactured by Okmetic Oyj have nominal resistivity of 900 Omega cm and oxygen concentration of less than 10 ppma. The Photoconductive Decay (PCD) measurements, current-voltage measurements and capacitance-voltage measurements were made to characterise the samples. The leakage current of 3 muA at 900 V bias voltage was measured on the 32.5 cm**2 detector. Detector depletion took place at about 420 V. According to PCD measurements, process induced contamination was effectively bound and neutralised by the oxygen present in Czochralski silicon. During the sample processing, the silicon resistivity increased in spite of the lack of specific donor- killing heat treatment.

  7. Development of silicon detectors for Beam Loss Monitoring at HL-LHC

    Science.gov (United States)

    Verbitskaya, E.; Eremin, V.; Zabrodskii, A.; Bogdanov, A.; Shepelev, A.; Dehning, B.; Bartosik, M. R.; Alexopoulos, A.; Glaser, M.; Ravotti, F.; Sapinski, M.; Härkönen, J.; Egorov, N.; Galkin, A.

    2017-03-01

    Silicon detectors were proposed as novel Beam Loss Monitors (BLM) for the control of the radiation environment in the vicinity of the superconductive magnets of the High-Luminosity Large Hadron Collider. The present work is aimed at enhancing the BLM sensitivity and therefore the capability of triggering the beam abort system before a critical radiation load hits the superconductive coils. We report here the results of three in situ irradiation tests of Si detectors carried out at the CERN PS at 1.9-4.2 K. The main experimental result is that all silicon detectors survived irradiation up to 1.22× 1016 p/cm2. The third test, focused on the detailed characterization of the detectors with standard (300 μm) and reduced (100 μm) thicknesses, showed only a marginal difference in the sensitivity of thinned detectors in the entire fluence range and a smaller rate of signal degradation that promotes their use as BLMs. The irradiation campaigns produced new information on radiation damage and carrier transport in Si detectors irradiated at the temperatures of 1.9-4.2 K. The results were encouraging and permitted to initiate the production of the first BLM prototype modules which were installed at the end of the vessel containing the superconductive coil of a LHC magnet immersed in superfluid helium to be able to test the silicon detectors in real operational conditions.

  8. Indium-bump-free antimonide superlattice membrane detectors on a silicon substrates

    Science.gov (United States)

    Zamiri, M.; Klein, B.; Schuler, T.; Myers, S.; Cavallo, F.; Krishna, S.

    2016-05-01

    We present an approach to realize antimonide based superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN based superlattice detectors are grown on top of a 60 nm Al0.6Ga0.4Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxiallift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy and photoluminescence. The interface between the transferred pixels and the new substrate was abrupt and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.

  9. Development of Silicon Drift Detectors using Boron layer technology

    OpenAIRE

    Golshani, N.

    2015-01-01

    Radiation detectors are used in a large variety of fields such as medicine, security, defense, geophysics, industry and physics. They have been developed to detect the energy or position of radiation or charge particles. In Chapter 1 several X-ray detectors were introduced briefly. In gas filled X-ray detectors, incoming photons ionize inert gas and create electron and ions which can be collected at a thin wire anode inside of the chamber. The advantage of this type of detector is the possibi...

  10. Development of Silicon Drift Detectors using Boron layer technology

    OpenAIRE

    2015-01-01

    Radiation detectors are used in a large variety of fields such as medicine, security, defense, geophysics, industry and physics. They have been developed to detect the energy or position of radiation or charge particles. In Chapter 1 several X-ray detectors were introduced briefly. In gas filled X-ray detectors, incoming photons ionize inert gas and create electron and ions which can be collected at a thin wire anode inside of the chamber. The advantage of this type of detector is the possibi...

  11. Characterization of large area, thick, and segmented silicon detectors for neutron β-decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Salas-Bacci, A., E-mail: americo.salas.bacci.1@ohio.edu [University of Virginia, Charlottesville, VA 22904 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); McGaughey, P.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Baeßler, S. [University of Virginia, Charlottesville, VA 22904 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Broussard, L. [Duke University, Durham, NC 27708 (United States); Makela, M.F.; Mirabal, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Pattie, R.W. [North Carolina State University, Raleigh, North Carolina 27695 (United States); Počanić, D. [University of Virginia, Charlottesville, VA 22904 (United States); Sjue, S.K.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Penttila, S.I. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wilburn, W.S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Young, A.R.; Zeck, B.A. [North Carolina State University, Raleigh, North Carolina 27695 (United States); Wang, Z. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-01-21

    The “Nab” and “UCNB” collaborations have proposed to measure the correlation parameters in neutron β-decay at Oak Ridge and Los Alamos National Laboratory, using a novel detector design. Two large area, thick, hexagonal-segmented silicon detectors containing 127 pixels per detector will be used to detect the proton and electron from neutron decay. Both silicon detectors are connected by magnetic field lines of a few Tesla field strength, and set on an electrostatic potential, such that protons can be accelerated up to 30 keV in order to be detected. Characteristics of the detector response to low energy conversion electrons and protons from 15 keV to 35 keV, including the evaluation of the dead layer thickness and other contributions to the pulse height defect for proton detection are presented for Si detectors of 0.5 mm and 1 mm of thickness. -- Highlights: • We characterized large area (108 cm{sup 2}), thick (0.5, 1 mm), and 127-segmented Si detectors. • We detected low energy protons from 15 to 35 keV with these large area Si detectors. • The recombination defect is insignificant at E{sub p}<35keV, for appropriate bias voltages. • Our computed nuclear pulse height defect agrees with available experimental data. • Our detector dead layer is ≲110nm, as probed by low energy protons.

  12. The barrel sector assembly system of the ALICE silicon pixel detector

    CERN Document Server

    Antinori, F; Cinausero, M; Dima, R; Fabris, D; Fioretto, E; Lunardon, M; Moretto, S; Pepato, Adriano; Prete, G; Scarlassara, F; Segato, G F; Soramel, F; Turrisi, R; Vannucci, L; Viesti, G

    2004-01-01

    The Silicon Pixel Detector is the inner part of the ITS tracking system of the ALICE experiment at LHC. The 240 silicon modules, hosting almost 10 million pixel cells with dimension 50 . 425 mu m /sup 2/, have to be assembled on a carbon fiber support with micrometric precision. To reach this result, a dedicated high- precision computer-controlled tooling system has been developed at the INFN Padova. The assembly system and the mounting procedures are presented. (10 refs).

  13. Characterization of oxygen dimer-enriched silicon detectors

    CERN Document Server

    Boisvert, V; Moll, M; Murin, L I; Pintilie, I

    2005-01-01

    Various types of silicon material and silicon p+n diodes have been treated to increase the concentration of the oxygen dimer (O2i) defect. This was done by exposing the bulk material and the diodes to 6 MeV electrons at a temperature of about 350 °C. FTIR spectroscopy has been performed on the processed material confirming the formation of oxygen dimer defects in Czochralski silicon pieces. We also show results from TSC characterization on processed diodes. Finally, we investigated the influence of the dimer enrichment process on the depletion voltage of silicon diodes and performed 24 GeV/c proton irradiations to study the evolution of the macroscopic diode characteristics as a function of fluence.

  14. Test beam results from the prototype L3 Silicon Microvertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adam, A.; Adriani, O.; Ahlen, S.; Ambrosi, G.; Babucci, E.; Baksay, L.; Baschirotto, A.; Battiston, R.; Bay, A.; Bencze, G.L.; Bertucci, B.; Biasini, M.; Bilei, G.M.; Bobbink, G.J.; Bosetti, M.; Brooks, M.L.; Burger, W.J.; Busenitz, J.; Camps, C.; Caria, M.; Castellini, G.; Castello, R.; Checcucci, B.; Chen, A.; Coan, T.E.; Commichau, V.; DiBitonto, D.; Duinker, P.; Easo, S.; Extermann, P.; Fiandrini, E.; Gabbanini, A.; Gougas, A.; Hangarter, K.; Hauviller, C.; Herve, A.; Hu, G.; Josa, M.I.; Kapustinsky, J.S.; Kim, D.; Kinnison, W.W.; Kornis, J.; Krastev, V.R.; Landi, G.; Lebeau, M.; Lee, D.M.; Leiste, R.; Lin, W.; Lohmann, W.; Marin, A.; Massetti, R.; Matay, G.; Mills, G.B.; Nowak, H.; Passaleva, G.; Paul, T.; Pauluzzi, M.; Pensotti, S.; Perrin, E.; Rancoita, P.G.; Rattaggi, M.; Rosch, A.; Santocchia, A.; Siedling, R.; Sachwitz, M.; Schmitz, P.; Schoeneich, B.; Servoli, L.; Susinno, G.F.; Terzi, G.; Tesi, M.; Tonisch, F.; Toth, J.; Trowitzsch, G.; Viertel, G.; Vogt, H.; Waldmeier, S.

    1994-05-15

    We report test beam results on the overall system performance of two modules of the L3 Silicon Microvertex Detector exposed to a 50 GeV pion beam. Each module consists of two AC coupled double-sided silicon strip detectors equipped with VLSI readout electronics. The associated data acquisition system comprises an 8 bit FADC, an optical data transmission circuit, a specialized data reduction processor and a synchronization module. A spatial resolution of 7.5 [mu]m and 14 [mu]m for the two coordinates and a detection efficiency in excess of 99% are measured. (orig.)

  15. High-resolution tracking with silicon strip detectors for relativistic ions

    CERN Document Server

    Hou, S R; Ambrosi, G; Balboni, C; Battiston, R; Burger, W J; Chang, Y H; Geissel, H; Ionica, M; Lustermann, W; Maehlum, G; Menichelli, M; Pauluzzi, M; Postolache, V; Produit, N; Rapin, D; Ren, D; Ribordy, M; Sann, H; Schardt, D; Sümmerer, K; Viertel, Gert M

    1999-01-01

    Tracking with silicon strip detectors for relativistic ions has been investigated using a sup 1 sup 2 C beam of 1.5 GeV/u at GSI. The ionization charge spectrum and the charge sharing between strips are presented. The strip cluster of carbon ion can be selected based on the cluster charge with high efficiency and little contamination. The spatial resolution of the silicon strip detectors is evaluated. The angular distribution of multiple Coulomb scattering was investigated with lead absorbers. The results are compared to the Moliere theory and the Gaussian approximation of GEANT calculations. (author)

  16. Development of Silicon Drift Detectors using Boron layer technology

    NARCIS (Netherlands)

    Golshani, N.

    2015-01-01

    Radiation detectors are used in a large variety of fields such as medicine, security, defense, geophysics, industry and physics. They have been developed to detect the energy or position of radiation or charge particles. In Chapter 1 several X-ray detectors were introduced briefly. In gas filled X

  17. Development of Silicon Drift Detectors using Boron layer technology

    NARCIS (Netherlands)

    Golshani, N.

    2015-01-01

    Radiation detectors are used in a large variety of fields such as medicine, security, defense, geophysics, industry and physics. They have been developed to detect the energy or position of radiation or charge particles. In Chapter 1 several X-ray detectors were introduced briefly. In gas filled X

  18. Development of Silicon Drift Detectors using Boron layer technology

    NARCIS (Netherlands)

    Golshani, N.

    2015-01-01

    Radiation detectors are used in a large variety of fields such as medicine, security, defense, geophysics, industry and physics. They have been developed to detect the energy or position of radiation or charge particles. In Chapter 1 several X-ray detectors were introduced briefly. In gas filled

  19. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.L. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain); Martel, I. [Dpto de Física Aplicada, Universidad de Huelva (Spain); CERN, ISOLDE, CH 1211 Geneva, 23 (Switzerland); Jiménez, R. [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Galán, J., E-mail: jgalan@diesia.uhu.es [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Salmerón, P. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain)

    2016-09-11

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from {sup 12}C up to {sup 84}Kr, yielding higher discrimination rates than any other previously reported.

  20. Development of hybrid photon detectors with integrated silicon pixel readout for the RICH counters of LHCb

    CERN Document Server

    Alemi, M; Formenti, F; Gys, Thierry; Piedigrossi, D; Puertolas, D; Rosso, E; Snoeys, W; Wyllie, Ken H

    1999-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based $9 on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a fast, binary readout chip with matching pixel electronics. The $9 performance of a half-scale prototype is presented, together with the developments and tests of a full-scale tube with large active area. Specific requirements for pixel front-end and readout electronics in LHCb are outlined, and $9 recent results obtained from pixel chips applicable to hybrid photon detector design are summarized.

  1. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Science.gov (United States)

    Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.

    2016-09-01

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.

  2. The Phase-1 upgrade of the CMS silicon pixel detector

    CERN Document Server

    Menichelli, Mauro

    2015-01-01

    The present CMS pixel detector will be replaced in the shutdown period 2016/17 by an upgraded version due to the following reasons: increased luminosity at reduced bunch spacing ( from 7 x 10 33 cm - 2 s - 1 at 50 ns bunch spacing to 2 x 10 34 cm - 2 s - 1 at 25 ns bunch spacing) in the LHC , and radiation damage effects that will significantly degrade the present detector. The new upgraded detector will have higher tracking efficiency and lower mass with four barrel layer and three forward/backward disks to provide higher hit pixel coverage out to pseudorapidities of ±2.5. In this paper we will describe the new pixel detector focus ing mostly on the barrel detector design, construction and expected performances

  3. MC-128 current commutator for silicon strip detector tests

    CERN Document Server

    Anghinolfi, Francis; Chilingarov, A G; Kollegov, M; Ledenev, E K A; Ledenev, E Kuper A

    1996-01-01

    The MC-128 is a CAMAC module designed to simplify routine tests of multichannel semiconductor detectors. It was developed at Budker Institute of Nuclear Physics (BINP) Novosibirsk in collaboration with RD2 as part of the ATLAS SCT development program. The module provides 128 channels, offering sequential measurements of the currents flowing grom detector strips to a grounded Common Bus. Each input stays virtually connected to the Common Bus independently on whether its current is measured or not. Eight inputs are permanently connected to the Common Bus, allowing the connection of additional elements like guard ring structures. The total detector current can be measured as the current flowing through the Common Bus. Measurements are accessible via a CAMAC bus and in analog form via a front panel detector. Optionally, the MC 128 allows the measurement of the capacitance between each strip and the common (high voltage) electrode of the detector at 10 kHz frequency.

  4. Double peak electric field distortion in heavily irradiated silicon strip detectors

    CERN Document Server

    Eremin, Vladimir; Roe, Shaun; Ruggiero, G; Verbitskaya, E

    2004-01-01

    Non-uniform distribution of the electric field outlined as double peak distortion (DPD) is considered for heavily irradiated silicon strip detectors, which were developed for the CERN-ATLAS semiconductor tracker. DPD originates from the non-uniform accumulation of electrons and holes from the bulk generated current that are captured by radiation induced defects: deep acceptors and donors with mid-gap energy levels. This corresponds to the formation of the low electric field region in the detector central part that consequently will delay charge collection. The electric field distributions at different reverse biases, fluences and detector operational temperatures are calculated using a one-dimensional Poisson equation as it was done earlier for pad detectors. It has been shown that due to the electric field focusing at the strips the DPD effect is more pronounced for strip detectors as compared to that in pad detectors. The double peak electric field distribution is evinced experimentally in current pulse res...

  5. Photometric method of determining gold film thickness of nuclear radiation silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, B.A.; Zakharchuk, D.V.; Kovalev, I.I.; Nikolaeva, T.V.; Serushkina, E.S.

    1987-07-01

    The authors examine a photometric method of assessing a nuclear radiation silicon detector's gold film thickness based on the photocurrent from a light passed through the sputtered metal layer. The surface-barrier detectors of nuclear radiations with a gold front contact are characterized by a high sensitivity to light in the 0.4-1.0 micrometer wavelength band. The relative error of determining the gold film thickness using the method examined here is of the 7% order.

  6. Beam test results of the irradiated Silicon Drift Detector for ALICE

    CERN Document Server

    Kushpil, S; Giubellino, P.; Idzik, M.; Kolozhvari, A.; Kushpil, V.; Martinez, M.I.; Mazza, G.; Mazzoni, A.; Meddi, F.; Nouais, D.; Petracek, V.; Piemonte, C.; Rashevsky, A.; Riccati, L.; Rivetti, A.; Tosello, F.; Vacchi, A.; Wheadon, R.

    2006-01-01

    The Silicon Drift Detectors will equip two of the six cylindrical layers of high precision position sensitive detectors in the ITS of the ALICE experiment at LHC. In this paper we report the beam test results of a SDD irradiated with 1 GeV electrons. The aim of this test was to verify the radiation tolerance of the device under an electron fluence equivalent to twice particle fluence expected during 10 years of ALICE operation.

  7. A parametrisation of the energy loss distributions of charged particles and its applications for silicon detectors

    CERN Document Server

    Sikler, Ferenc

    2012-01-01

    The energy loss distribution of charged particles in silicon is approximated by a simple analytical parametrization. Its use is demonstrated through several examples. With the help of energy deposits in sensing elements of the detector, the position of track segments and the corresponding deposited energy are estimated with improved accuracy and less bias. The parametrization is successfully used to estimate the energy loss rate of charged particles, and it is applied to detector gain calibration tasks.

  8. An Infrared Laser Testing Facility for the Characterization of the CLAS12 Silicon Detectors

    Science.gov (United States)

    Phillips, Sarah

    2011-04-01

    During the 12 GeV upgrade to the CEBAF accelerator at Jefferson Lab, a new spectrometer, CLAS12, will be built in Hall B. The Nuclear Physics Group at the University of New Hampshire is part of the collaboration working to design and build this new detector system. Among the new detector systems being developed for CLAS12 is a silicon vertex tracker that will be placed close to the target, providing excellent position resolution for vertex determination. It is essential to have the ability to perform quality assurance tests and to evaluate the performance of the individual silicon strip detectors before their installation in the full detector system. The UNH Nuclear Physics Group is designing and building a laser testing facility at UNH to perform this task. The design for the testing facility consists of a 1064 nm infrared laser system and a precision positioning mechanism to scan the laser light on the detector by a computer controlled system designed to efficiently test the large number of detectors prior to installation. The detector signals are read out by a computer data acquisition system for analysis. The facility also includes a cleanroom area to house the test stand, and a dry storage containment system for the storage of the detectors.

  9. Radiation hard silicon microstrip detectors for use in ATLAS at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Lars Gimmestad

    2005-07-01

    The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will accelerate protons in colliding beams to a center of mass energy of 14 TeV at very high luminosities. The ATLAS detector is being built to explore the physics in this unprecedented energy range. Tracking of charged particles in high-energy physics (HEP) experiments requires a high spatial resolution and fast signal readout, all with as little material as possible. Silicon microstrip detectors meet these requirements well and have been chosen for the Semiconductor Tracker (SCT) which is part of the inner tracking system of ATLAS and has a total area of 61 m2. During the 10 years of operation at LHC, the total fluence received by the detectors is sufficiently large that they will suffer a severe degradation from radiation induced damage. The damage affects both the physics performance of the detectors as well as their operability and a great challenge has been to develop radiation hard detectors for this environment. An extensive irradiation programme has been carried out where detectors of various designs, including defect engineering by oxygen enriched silicon, have been irradiated to the expected fluence. A subsequent thermal annealing period is included to account for a realistic annual maintenance schedule at room temperature, during which the radiation induced defects alter the detector properties significantly. This thesis presents work that has been carried out in the Bergen ATLAS group with results both from the irradiation programme and from detector testing during the module production. (Author)

  10. Developments and first measurements of Ultra-Fast Silicon Detectors produced at FBK

    Science.gov (United States)

    Paternoster, G.; Arcidiacono, R.; Boscardin, M.; Cartiglia, N.; Cenna, F.; Dalla Betta, G. F.; Ferrero, M.; Mulargia, R.; Obertino, M.; Pancheri, L.; Piemonte, C.; Sola, V.

    2017-02-01

    Segmented silicon sensors with internal gain, the so called Ultra-FAST Silicon Detectors (UFSD), have been produced at FBK for the first time. UFSD are based on the concept of Low-Gain Avalanche Detectors (LGAD), which are silicon detectors with an internal, low multiplication mechanism (gain ~ 10). This production houses two main type of devices: one type where the gain layer is on the same side of the read-out electrodes, the other type where the gain layer is on the side opposite to the pixellated electrodes (reverse-LGAD). Several technological splits have been included in the first production run, with the aim to tune the implantation dose of the multiplication layer, which controls the gain value of the detector. An extended testing on the wafers has been performed and the results are in line with simulations: the fabricated detectors show good performances, with breakdown voltages above 1000 Volts, and gain values in the range of 5–60 depending on the technological split. The detectors timing resolution has been measured by means of a laboratory setup based on an IR picosecond laser. The sample with higher gain shows time resolution of 55 ps at high reverse bias voltage, indicating very promising performance for future particle tracking applications.

  11. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    Science.gov (United States)

    Abraham, J. B. S.; Aguirre, B. A.; Pacheco, J. L.; Vizkelethy, G.; Bielejec, E.

    2016-08-01

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. The ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantation process.

  12. Characterisation of Silicon Timing Detectors for the RD50 Collaboration

    CERN Document Server

    Immig, David Maximilian

    2017-01-01

    Increasing pile-up and irradiation following with the high luminosity upgrade of the LHC, demands the development of improved semiconductor detectors. The former problem can be reduced by more precise time information, which can be obtained using a future detector based on the low gain avalanche diode (LGAD). LGADs are studied by the RD50-Collaboration, which studies the characteristics of semiconductor devices to improve these for future requirements of high energy physics. This reports is engaged with the process to characterise semiconductor detectors, specially LGADs, with capacitance-voltage and current-voltage measurements as well as transient current techniques of un- and irradiated semiconductor devices.

  13. Silicon Microchannel Plate Large Area UV Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA GSFC need for efficient UV photodetectors for NASA missions, such as the follow-on to FUV detectors of the Galaxy Evolution Explorer, Physical...

  14. Silicon Sensors for the Upgrades of the CMS Pixel Detector

    CERN Document Server

    Centis Vignali, Matteo; Schleper, Peter

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accel- erator and its injection chain. Two major upgrades will take place in the next years. The rst upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2 10 34 cm-2 s-1 A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5 10 34 cm-2 s1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The rst upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout elec- tronics that allow ecient data taking up to a luminosity of 2 10 34 cm-2s-1,twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at dierent institutes. Ham...

  15. Automated assembly in the construction of silicon microstrip detector modules

    CERN Document Server

    Eckert, S; Meinhardt, J; Runge, K; Benes, J

    2002-01-01

    The paper concerns silicon microstrip trackers for future experiments at the Large Hadron Collider (LHC). It describes a system for the automated assembly of the trackers. The aim is uniform quality and a mechanical precision of better than 5 mu m. It has been implemented based on an industrial gantry robot. The gantry is equipped with a complex vacuum system which dispenses glue, and places the mechanical parts and the ASICS and the four silicon sensors with the required precision. The modules are double sided and 18 cm * 6 cm in dimension. (5 refs).

  16. Resonance-enhanced waveguide-coupled silicon-germanium detector

    CERN Document Server

    Alloatti, Luca

    2016-01-01

    A photodiode with 0.55$\\pm$0.1 A/W responsivity at a wavelength of 1176.9 nm has been fabricated in a 45 nm microelectronics silicon-on-insulator foundry process. The resonant waveguide photodetector exploits carrier generation in silicon-germanium (SiGe) within a microring which is compatible with high-performance electronics. A 3 dB bandwidth of 5 GHz at -4 V bias is obtained with a dark current of less than 20 pA.

  17. A 60 GHz Planar Frequency Multiplier Feed on a Silicon Dielectric-Filled Parabola

    Science.gov (United States)

    Kim, M.; Fujiwra, B. H.; Humphrey, D. A.; Martin, S. C.; Smith, R. P.; Siegel, P. H.

    1997-01-01

    A novel all-planar quasi-optical schottky varactor diode frequency doubler has been fabricated and has produced more than 1 mW of output power at 600 GHz with an approximately 2 percent conversion efficiency.

  18. Nanophotonic Light Management for Silicon Heterojunction Solar Cells with Planar Passivation Layers - Implementation and Material Perspective

    OpenAIRE

    Smeets, Michael; Ermes, Markus; Pomaska, Manuel; Ding, Kaining; Paetzold, Ulrich W.; Bittkau, Karsten

    2016-01-01

    The successful implementation of light management concepts processed after the planar passivation of SHJ solar cells is demonstrated. We present prototype solar cells, improved performance and discuss promising approaches for future development.

  19. A study of the silicon Bulk-Barrier Diodes designed in planar technology

    Directory of Open Access Journals (Sweden)

    L. Georgopoulos

    2009-01-01

    Full Text Available In this paper, it is studied for the first time, the possibility of manufacturing a Bulk Barrier diode in planar technology usingsimulation. This study is based on simulation results obtained with a 2-D device simulator (S-PISCES. More precisely, theelectrical and switching behavior of the proposed devices in planar technology were investigated. The results of this studyshow that the technological parameters (doping concentrations, as well as the geometrical sizes (middle region widthand the bias conditions (applied voltage, have significant effects on the electrical and switching behavior of the proposeddevices. The appropriate choice of these parameters can reduce the switching time in the range of few picoseconds andalso dramatically modify the current through the device. The simulation results of devices in planar technology have beencompared with those designed in non planar technology. Finally, good agreement among theory and simulations results ofthe proposed devices observed.

  20. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    Science.gov (United States)

    Krimmer, J.; Ley, J.-L.; Abellan, C.; Cachemiche, J.-P.; Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D.; Freud, N.; Joly, B.; Lambert, D.; Lestand, L.; Létang, J. M.; Magne, M.; Mathez, H.; Maxim, V.; Montarou, G.; Morel, C.; Pinto, M.; Ray, C.; Reithinger, V.; Testa, E.; Zoccarato, Y.

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm3, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm3, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  1. Study of silicon+6LiF thermal neutron detectors: GEANT4 simulations versus real data

    Science.gov (United States)

    Meo, S. Lo; Cosentino, L.; Mazzone, A.; Bartolomei, P.; Finocchiaro, P.

    2017-09-01

    Research and development on alternative thermal neutron detection technologies and methods are nowadays needed as a possible replacement of 3He-based ones. Commercial solid state silicon detectors, coupled with neutron converter layers containing 6Li, have been proved to represent a viable solution for several applications as present in the literature. In order to better understand the detailed operation and the response and efficiency of such detectors, a series of dedicated GEANT4 simulations were performed and compared with real data collected in a few different configurations. The results show an excellent agreement between data and simulations, indicating that the behavior of the detector is fully understood.

  2. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Ley, J.-L. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Abellan, C.; Cachemiche, J.-P. [Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille (France); Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Joly, B.; Lambert, D.; Lestand, L. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Létang, J.M. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Magne, M. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); and others

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm{sup 3}, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm{sup 3}, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  3. Recent results from beam tests of large area silicon drift detectors

    CERN Document Server

    Crescio, E; Bonvicini, V; Cerello, P; Giubellino, P; Kolojvari, A A; Martínez, M I; Mazza, G; Montaño-Zetina, L M; Nouais, D; Piano, S; Piemonte, C; Rashevsky, A; Rivetti, A; Tosello, F; Vacchi, A; Wheadon, R

    2002-01-01

    Silicon drift detectors with an active area of 7.0 × 7.5 cm2 will equip the two middle layers of the Inner Tracking System of the ALICE experiment. The performance of several prototypes was studied during beam tests carried out at the CERN SPS facility. The results of the beam test data analysis are discussed in this paper.

  4. Operation of the CDF silicon vertex detector with colliding beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bedeschi, F.; Bolognesi, V.; Dell' Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F. (INFN, University and Scuola Normale Superiore of Pisa, Pisa, Italy, I-56100 (Italy)); Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M. (Purdue University, West Lafayette, Indiana 47907 (United States)); Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Yao, W. (Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Carter, H.; Flaugher, B.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.R. (Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)); Barnett, B.; Boswell, C.; Skarha, J.; Snider, F.D.; Spies, A.; Tseng, J.; Vejcik, S. (The John Hopkins University, Baltimore, Maryland 21218 (United States)); Amidei, D.; Derwent, P.F.; Song, T.Y.; Dunn, A. (Univer

    1992-02-05

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on [ital S]/[ital N] ratio, alignment, resolution, and efficiency are given.

  5. Evidence of Dopant Type-Inversion and Other Radiation Damage Effects of the CDF Silicon Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Ballarin, Roberto [Univ. of the Basque Country, Leioa (Spain)

    2010-06-01

    The aim of this document is to study the effect of radiation damage on the silicon sensors. The reflection of the effect of radiation can be observed in two fundamental parameters of the detector: the bias current and the bias voltage. The leakage current directly affects the noise, while the bias voltage is required to collect the maximum signal deposited by the charged particle.

  6. Operation of the CDF Silicon Vertex Detector with colliding beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bedeschi, F.; Bolognesi, V.; Dell' Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F. (Scuola Normale Superiore, Pisa (Italy)); Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M. (Purdue Univ., Lafayette, IN (United States)); Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneide

    1992-10-01

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on S/N ratio, alignment, resolution and efficiency are given.

  7. Development of a thermal neutron detector based on scintillating fibers and silicon photomultipliers.

    Science.gov (United States)

    Barbagallo, Massimo; Cosentino, Luigi; Greco, Giuseppe; Montereali, Rosa Maria; Pappalardo, Alfio; Scirè, Carlotta; Scirè, Sergio; Vincenti, Maria Aurora; Finocchiaro, Paolo

    2010-09-01

    We propose a technique for thermal neutron detection, based on a (6)Li converter placed in front of scintillating fibers readout by means of silicon photomultipliers. Such a technique allows building cheap and compact detectors and dosimeters, thus possibly opening new perspectives in terms of granular monitoring of neutron fluxes as well as space-resolved neutron detection.

  8. A prototype of very high-resolution small animal PET scanner using silicon pad detectors

    CERN Document Server

    Park, S J; Huh, S; Kagan, H; Honscheid, K; Burdette, D; Chesi, Enrico Guido; Lacasta, C; Llosa, G; Mikuz, M; Studen, A; Weilhammer, P; Clinthorne, N H

    2007-01-01

    Abstract A very high-resolution small animal positron emission tomograph (PET), which can achieve sub-millimeter spatial resolution, is being developed using silicon pad detectors. The prototype PET for a single slice instrument consists of two 1 mm thick silicon pad detectors, each containing a 32×16 array of 1.4×1.4 mm pads readout with four VATAGP3 chips which have 128 channels low-noise self-triggering ASIC in each chip, coincidence units, a source turntable and tungsten slice collimator. The silicon detectors were located edgewise on opposite sides of a 4 cm field-of-view to maximize efficiency. Energy resolution is dominated by electronic noise, which is 0.98% (1.38 keV) FWHM at 140.5 keV. Coincidence timing resolution is 82.1 ns FWHM and coincidence efficiency was measured to be 1.04×10−3% from two silicon detectors with annihilation photons of 18F source. Image data were acquired and reconstructed using conventional 2-D filtered-back projection (FBP) and a maximum likelihood expectation maximizat...

  9. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    NARCIS (Netherlands)

    Sokolov, Oleksiy

    2006-01-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5∼TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of

  10. A liquid-helium cooled large-area silicon PIN photodiode x-ray detector

    CERN Document Server

    Inoue, Y; Hara, H; Minowa, M; Shimokoshi, F; Inoue, Yoshizumi; Moriyama, Shigetaka; Hara, Hideyuki; Minowa, Makoto; Shimokoshi, Fumio

    1995-01-01

    An x-ray detector using a liquid-helium cooled large-area silicon PIN photodiode has been developed along with a tailor-made charge sensitive preamplifier whose first-stage JFET has been cooled. The operating temperature of the JFET has been varied separately and optimized. The x- and \\gamma-ray energy spectra for an \

  11. Radiation monitoring and beam dump system of the OPAL silicon microvertex detector

    CERN Document Server

    Braibant, S

    1997-01-01

    The OPAL microvertex silicon detector radiation monitoring and beam dump system is described. This system was designed and implemented in order to measure the radiation dose received at every beam crossing and to induce a fast beam dump if the radiation dose exceeds a given threshold.

  12. Monolithic integration of detectors and transistors on high-resistivity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco [INFN, Sezione di Padova (Gruppo Collegato Trento), and Universita di Trento, Via Sommarive 14, 38050 Povo (Trento) (Italy)], E-mail: dallabe@dit.unitn.it; Batignani, Giovanni [INFN, Sezione di Pisa, and Universita di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Boscardin, Maurizio [ITC-irst, Divisione Microsistemi, Via Sommarive 18, 38050 Povo (Trento) (Italy); Bosisio, Luciano [INFN, Sezione di Trieste, and Universita di Trieste, Via A. Valerio 2, 34127 Trieste (Italy); Gregori, Paolo; Pancheri, Lucio; Piemonte, Claudio [ITC-irst, Divisione Microsistemi, Via Sommarive 18, 38050 Povo (Trento) (Italy); Ratti, Lodovico [INFN, Sezione di Pavia, and Universita di Pavia, Via Ferrata 1, 27100 Pavia (Italy); Verzellesi, Giovanni [INFN, Sezione di Padova (Gruppo Collegato Trento), and Universita di Modena e Reggio Emilia, Via Vignolese 905, 42100 Modena (Italy); Zorzi, Nicola [ITC-irst, Divisione Microsistemi, Via Sommarive 18, 38050 Povo (Trento) (Italy)

    2007-09-01

    We report on the most recent results from an R and D activity aimed at the development of silicon radiation detectors with embedded front-end electronics. The key features of the fabrication technology and the available active devices are described. Selected results from the characterization of transistors and test structures are presented and discussed, and the considered application fields are addressed.

  13. Results from multipoint alignment monitoring using the new generation of amorphous silicon position detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E. [CIEMAT, 28040 Madrid (Spain); Ferrando, A. [CIEMAT, 28040 Madrid (Spain)], E-mail: antonio.ferrando@ciemat.es; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C. [CIEMAT, 28040 Madrid (Spain); Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Sobron, M.; Vila, I.; Virto, A.L. [Instituto de Fisica de Cantabria (IFCA), CSIC-University of Cantabria Santander (Spain)] (and others)

    2008-08-11

    We present the measured performance of a new generation of large sensitive area (28x28 mm{sup 2}) semitransparent amorphous silicon position detector sensors. More than 100 units have been characterized. They show a very high performance. To illustrate a multipoint application, we present results from the monitoring of five sensors placed in a 5.5-m-long light path.

  14. Analysis of a Zero Suppression Scheme for a Silicon Drift Detector.

    CERN Document Server

    Mazza, G; CERN. Geneva

    1996-01-01

    This paper covers the first results of a study concerning some of the elements of the SDD (Silicon Drift Detector) read system for the ITS (Inner Tracking System). In particular we examine here some of the features of data compression at the analog level, and develop a first concept of a possible circuit implementation.

  15. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    NARCIS (Netherlands)

    Sokolov, Oleksiy

    2006-01-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5∼TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of

  16. Improvement of Infrared Detectors for Tissue Oximetry using Black Silicon Nanostructures

    DEFF Research Database (Denmark)

    Petersen, Søren Dahl; Davidsen, Rasmus Schmidt; Alcala, Lucia R.;

    2014-01-01

    We present a nanostructured surface, made of dry etched black silicon, which lowers the reflectance for light incident at all angles. This surface is fabricated on infrared detectors used for tissue oximetry, where the detection of weak diffuse light signals is important. Monte Carlo simulations...

  17. Test beam results of heavily irradiated magnetic Czochralski silicon (MCz-Si) strip detectors

    CERN Document Server

    Luukka, P; Korjenevski, S; Maenpaa, T; Viljanen, H; Demina, R; Gotra, Y; Lemaitre, V; Moilanen, H; Militaru, O; Bhattacharya, S; Neuland, M; Maksimow, M; Harkonen, J; Kortelainen, M J; Spiegel, L; Hartmann, F; Dierlamm, A; Tuovinen, E; Lampen, T; Simonis, H J; Betchart, B; Czellar, S; Tuominiemi, J; Keutgen, T; Frey, M; Karimaki, V

    2010-01-01

    Strip detectors with an area of 16 cm(2) were processed on high resistivity n-type magnetic Czochralski silicon. In addition, detectors were processed on high resistivity Float Zone wafers with the same mask set for comparison. The detectors were irradiated to several different fluences up to the fluence of 3 x 10(15) 1 MeV n(eq)/cm(2) with protons or with mixed protons and neutrons. The detectors were fully characterized with CV- and IV-measurements prior to and after the irradiation. The beam test was carried out at the CERN H2 beam line using a silicon beam telescope that determines the tracks of the incoming particles and hence provides a reference measurement for the detector characterization. The n-type MCz-Si strip detectors have an acceptable SIN at least up to the fluence of 1 x 10(15) n(eq)/cm(2) and thus, they are a feasible option for the strip detector layers in the SLHC tracking systems. (C) 2009 Elsevier B.V. All rights reserved.

  18. Charge collection characterization of a 3D silicon radiation detector by using 3D simulations

    CERN Document Server

    Kalliopuska, J; Orava, R

    2007-01-01

    In 3D detectors, the electrodes are processed within the bulk of the sensor material. Therefore, the signal charge is collected independently of the wafer thickness and the collection process is faster due to shorter distances between the charge collection electrodes as compared to a planar detector structure. In this paper, 3D simulations are used to assess the performance of a 3D detector structure in terms of charge sharing, efficiency and speed of charge collection, surface charge, location of the primary interaction and the bias voltage. The measured current pulse is proposed to be delayed due to the resistance–capacitance (RC) product induced by the variation of the serial resistance of the pixel electrode depending on the depth of the primary interaction. Extensive simulations are carried out to characterize the 3D detector structures and to verify the proposed explanation for the delay of the current pulse. A method for testing the hypothesis experimentally is suggested.

  19. Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations.

    Science.gov (United States)

    Sótér, A; Todoroki, K; Kobayashi, T; Barna, D; Horváth, D; Hori, M

    2014-02-01

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons experiment at the Antiproton Decelerator (AD) facility of CERN constructed segmented scintillators to detect and track the charged pions which emerge from antiproton annihilations in a future superconducting radiofrequency Paul trap for antiprotons. A system of 541 cast and extruded scintillator bars were arranged in 11 detector modules which provided a spatial resolution of 17 mm. Green wavelength-shifting fibers were embedded in the scintillators, and read out by silicon photomultipliers which had a sensitive area of 1 × 1 mm(2). The photoelectron yields of various scintillator configurations were measured using a negative pion beam of momentum p ≈ 1 GeV/c. Various fibers and silicon photomultipliers, fiber end terminations, and couplings between the fibers and scintillators were compared. The detectors were also tested using the antiproton beam of the AD. Nonlinear effects due to the saturation of the silicon photomultiplier were seen at high annihilation rates of the antiprotons.

  20. Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations

    CERN Document Server

    Sótér, A; Kobayashi, T; Barna, D; Horvath, D; Hori, M

    2014-01-01

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) experiment at the Antiproton Decelerator (AD) facility of CERN constructed segmented scintillators to detect and track the charged pions which emerge from antiproton annihilations in a future superconducting radiofrequency Paul trap for antiprotons. A system of 541 cast and extruded scintillator bars were arranged in 11 detector modules which provided a spatial resolution of 17 mm. Green wavelength-shifting fibers were embedded in the scintillators, and read out by silicon photomultipliers which had a sensitive area of 1 x 1 mm^2. The photoelectron yields of various scintillator configurations were measured using a negative pion beam of momentum p ~ 1 GeV/c. Various fibers and silicon photomultipliers, fiber end terminations, and couplings between the fibers and scintillators were compared. The detectors were also tested using the antiproton beam of the AD. Nonlinear effects due to the saturation of the silicon photomultiplier were seen a...

  1. Development of Hybrid and Monolithic Silicon Micropattern Detectors

    CERN Multimedia

    Beker, H; Snoeys, W; Campbell, M; Lemeilleur, F; Ropotar, I

    2002-01-01

    %RD-19 \\\\ \\\\ In a collaborative effort between particle physics institutes and microelectronics industry we are undertaking the development of true 2-dimensional semiconductor particle detectors with on-chip signal processing and information extraction: the so-called micropattern detector. This detector is able to cope in a robust way with high multiplicity events at high rates, while allowing for a longer detector lifetime under irradiation and a thinner sensitive depletion region. Therefore, it will be ideally suited for the complicated events in the LHC p-p collider experiments. Following a $^{\\prime}$stepping stone$^{\\prime}$ approach several telescopes of pixel planes, totalling now 600 cm$^{2}$ with \\(>\\)~1~M elements have been used in the WA97, NA50 and NA57 lead ion experiments. This new technology has facilitated the tracking considerably (see Fig.1). Not only Si but also GaAs and possibly diamond matrices can be connected to the readout matrix. Tests with GaAs pixel detectors with the RD-19 readout ...

  2. Spectroscopic measurements with a silicon drift detector having a continuous implanted drift cathode-voltage divider

    CERN Document Server

    Bonvicini, V; D'Acunto, L; Franck, D; Gregorio, A; Pihet, P; Rashevsky, A; Vacchi, A; Vinogradov, L I; Zampa, N

    2000-01-01

    A silicon drift detector (SDD) prototype where the drift electrode also plays the role of a high-voltage divider has been realised and characterised for spectroscopic applications at near-room temperatures. Among the advantages of this design, is the absence of metal on the sensitive surface which makes this detector interesting for soft X-rays. The detector prototype has a large sensitive area (2x130 mm sup 2) and the charge is collected by two anodes (butterfly-like detector). The energy resolution of a such a detector has been investigated at near-room temperatures using a commercial, hybrid, low-noise charge-sensitive preamplifier. The results obtained for the X-ray lines from sup 5 sup 5 Fe and sup 2 sup 4 sup 1 Am are presented.

  3. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    CERN Document Server

    Sokolov, Oleksiy

    2006-01-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5∼TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of the ITS use double-sided silicon strip detectors. This thesis focuses on testing of these detectors and performance studies of the detector module prototypes at the beam test. Silicon strip detector layers will require about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bond...

  4. Electronics and readout of a large area silicon detector for LHC

    Energy Technology Data Exchange (ETDEWEB)

    Borer, K.; Munday, D.J.; Parker, M.A.; Anghinolfi, F.; Aspell, P.; Campbell, M.; Chilingarov, A.; Jarron, P.; Heijne, E.H.M.; Santiard, J.C.; Scampoli, P.; Verweij, H.; Goessling, C.; Lisowski, B.; Reichold, A.; Spiwoks, R.; Tsesmelis, E.; Benslama, K.; Bonino, R.; Clark, A.G.; Couyoumtzelis, C.; Kambara, H.; Wu, X.; Fretwurst, E.; Lindstroem, G.; Schultz, T.; Bardos, R.A.; Gorfine, G.W.; Moorhead, G.F.; Taylor, G.N.; Tovey, S.N.; Bibby, J.H.; Hawkings, R.J.; Kundu, N.; Weidberg, A.; Campbell, D.; Murray, P.; Seller, P.; Teiger, J. (Univ. of Bern (Switzerland) Cavendish Lab., Univ. of Cambridge (United Kingdom) CERN, Geneva (Switzerland) Inst. fuer Physik, Univ. Dortmund (Germany) DPNC, Geneva Univ. (Switzerland) 1. Inst. fur Experimentalphysik, Hamburg (Germany) School of Physics, Univ. of Melbourne, Parkville, VIC (Australia) Dept. of Nuclear Physics, Oxford Univ. (United Kingdom) Rutherford Appleton Lab., Chilton, Didcot (United Kingdom) Centre d' Etudes Nucleaires de Saclay, 91 Gif

    1994-04-21

    The purpose of the RD2 project is to evaluate the feasibility of a silicon tracker and/or preshower detector for LHC. Irradiation studies with doses equivalent to those expected at LHC have been performed to determine the behavior of operational parameters such as leakage current, depletion voltage and charge collection during the life of the detector. The development of fast, dense, low power and low cost signal processing electronics is one of the major activities of the collaboration. We describe the first fully functional integrated analog memory chip with asynchronous read and write operations and level 1 trigger capture capabilities. A complete test beam system using this analog memory chip at 66 MHz has been successfully operated with RD2 prototype silicon detectors during various test runs. The flexibility of the electronics and readout have allowed us to easily interface our set-up to other data acquisition systems. Mechanical studies are in progress to design a silicon tracking detector with several million channels that may be operated at low (0-10 C) temperature, while maintaining the required geometrical precision. Prototype readout boards for such a detector are being developed and simulation studies are being performed to optimize the readout architecture. (orig.)

  5. Electronics and readout of a large area silicon detector for LHC

    Science.gov (United States)

    Borer, K.; Munday, D. J.; Parker, M. A.; Anghinolfi, F.; Aspell, P.; Campbell, M.; Chilingarov, A.; Jarron, P.; Heijne, E. H. M.; Santiard, J. C.; Scampoli, P.; Verweij, H.; Gössling, C.; Lisowski, B.; Reichold, A.; Spiwoks, R.; Tsesmelis, E.; Benslama, K.; Bonino, R.; Clark, A. G.; Couyoumtzelis, C.; Kambara, H.; Wu, X.; Fretwurst, E.; Lindstroem, G.; Schultz, T.; Bardos, R. A.; Gorfine, G. W.; Moorhead, G. F.; Taylor, G. N.; Tovey, S. N.; Bibby, J. H.; Hawkings, R. J.; Kundu, N.; Weidberg, A.; Campbell, D.; Murray, P.; Seller, P.; Teiger, J.

    1994-04-01

    The purpose of the RD2 project is to evaluate the feasibility of a silicon tracker and/or preshower detector for LHC. Irradiation studies with doses equivalent to those expected at LHC have been performed to determine the behavior of operational parameters such as leakage current, depletion voltage and charge collection during the life of the detector. The development of fast, dense, low power and low cost signal processing electronics is one of the major activities of the collaboration. We describe the first fully functional integrated analog memory chip with asynchronous read and write operations and level 1 trigger capture capabilities. A complete test beam system using this analog memory chip at 66 MHz has been successfully operated with RD2 prototype silicon detectors during various test runs. The flexibility of the electronics and readout have allowed us to easily interface our set-up to other data acquistion systems. Mechanical studies are in progress to design a silicon tracking detector with several million channels that may be operated at low (0-10°C) temperature, while maintaining the required geometrical precision. Prototype readout boards for such a detector are being developed and simulation studies are being performed to optimize the readout architecture.

  6. Silicon strip tracking detector development and prototyping for the Phase-II upgrade of the ATLAS experiment

    Science.gov (United States)

    Kuehn, S.

    2016-07-01

    In about ten years from now, the Phase-II upgrade of the LHC will be carried out. Due to increased luminosity, a severe radiation dose and high particle rates will occur for the experiments. In consequence, several detector components will have to be upgraded. In the ATLAS experiment, the current inner detector will be replaced by an all-silicon tracking detector with the goal of at least delivering the present detector performance also in the harsh Phase-II LHC conditions. This report presents the current planning and results from first prototype measurements of the upgrade silicon strip tracking detector.

  7. Electronics and mechanics for the Silicon Vertex Detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Irmler, C; Bergauer, T; Friedl, M; Gfall, I; Valentan, M, E-mail: irmler@hephy.oeaw.ac.a [Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2010-12-15

    A major upgrade of the KEK-B factory (Tsukuba, Japan), aiming at a peak luminosity of 8 x 10{sup 35}cm{sup -2}s{sup -1}, which is 40 times the present value, is foreseen until 2014. Consequently an upgrade of the Belle detector and in particular its Silicon Vertex Detector (SVD) is required. We will introduce the concept and prototypes of the full readout chain of the Belle II SVD. Its APV25 based front-end utilizes the Origami chip-on-sensor concept, while the back-end VME system provides online data processing as well as hit time finding using FPGAs. Furthermore, the design of the double-sided silicon detectors and the mechanics will be discussed.

  8. Design of the readout electronics for the DAMPE Silicon Tracker detector

    Science.gov (United States)

    Zhang, Fei; Peng, Wen-Xi; Gong, Ke; Wu, Di; Dong, Yi-Fan; Qiao, Rui; Fan, Rui-Rui; Wang, Jin-Zhou; Wang, Huan-Yu; Wu, Xin; La Marra, Daniel; Azzarello, Philipp; Gallo, Valentina; Ambrosi, Giovanni; Nardinocchi, Andrea

    2016-11-01

    The Silicon Tracker (STK) is one of the detectors of the DAMPE satellite used to measure the incidence direction of high energy cosmic rays. It consists of 6 X-Y double layers of silicon micro-strip detectors with 73728 readout channels. It is a great challenge to read out the channels and process the huge volume of data in the harsh environment of space. 1152 Application Specific Integrated Circuits (ASIC) and 384 ADCs are used to read out the detector channels. 192 Tracker Front-end Hybrid (TFH) modules and 8 identical Tracker Readout Board (TRB) modules are designed to control and digitalize the front signals. In this paper, the design of the readout electronics for the STK and its performance are presented in detail.

  9. Design of the readout electronics for the DAMPE Silicon Tracker detector

    CERN Document Server

    Zhang, Fei; Gong, Ke; Wu, Di; Dong, Yi-Fan; Qiao, Rui; Fan, Rui-Rui; Wang, Jin-Zhou; Wang, Huan-Yu; Wu, Xin; La Marra, Daniel; Azzarello, Philipp; Gallo, Valentina; Ambrosi, Giovanni; Nardinocchi, Andrea

    2016-01-01

    The Silicon Tracker (STK) is a detector of the DAMPE satellite to measure the incidence direction of high energy cosmic ray. It consists of 6 X-Y double layers of silicon micro-strip detectors with 73,728 readout channels. It's a great challenge to readout the channels and process the huge volume of data in the critical space environment. 1152 Application Specific Integrated Circuits (ASIC) and 384 ADCs are adopted to readout the detector channels. The 192 Tracker Front-end Hybrid (TFH) modules and 8 identical Tracker Readout Board (TRB) modules are designed to control and digitalize the front signals. In this paper, the design of the readout electronics for STK and its performance will be presented in detail.

  10. Application of the silicon photomultipliers for detectors in the GlueX experiment

    Energy Technology Data Exchange (ETDEWEB)

    Somov, Sergey V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, Moscow, 115409, Russia; Tolstukhin, Ivan [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, Moscow, 115409, Russia; Somov, Alexander S. [Jefferson Lab, Newport News, VA

    2015-11-01

    The GlueX detector in Hall D at Jefferson Lab is instrumented with about 5000 Silicon Photomultipliers (SiPM) manufactured by Hamamatsu Corporation [2]. These photo sensors have properties similar to conventional photomultipliers but can be operated at high magnetic fields. Silicon photomultipliers with a sensitive area of 3x3 mm2 are used to detect light from the following GlueX scintillator detectors: the tagger microscope, pair spectrometer, and start counter. Arrays of 4x4 SiPMs sensors were chosen for the instrumentation of the barrel electromagnetic calorimeter. The tagger microscope must operate at high rates (up to 2.5 MHz) and provide time measurements with a resolution better than 0.3 ns. The paper will describe some results of the characterization of SiPMs for various GlueX sub-detectors.

  11. COTS Silicon diodes as radiation detectores in proton and heavy charged particle radiotherapy

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Jäkel, Oliver

    resolution is needed. The detector system consists of a silicon photodiode with a retail price less than 1 Euro encapsulated in a polyoxymethylene housing, connected to a dosimetry elec- trometer. In MV photons beams the output factors, the temperature behavior and the noise properties are similar...... chambers of the same volume. In this paper, a detector based on a low-cost BPW-34 photodiode is developed and charac- terized for the use in proton and carbon ion beams. The BPW-34 photodiode has a well defined sensitive volume of 2.7 × 2.7 mm2 × 10 μm which is suitable in situations where a high spatial......, 3] This low-cost inhouse made detectors based on a commercially available silicon diode was suc- cessfully tested at the Heidelberg Ion Beam Therapy Center for the characterization carbon ion beams....

  12. Signal generation in highly irradiated silicon microstrip detectors for the ATLAS experiment

    CERN Document Server

    Ruggiero, G

    2003-01-01

    Silicon detectors are the most diffused tracking devices in High Energy Physics (HEP). The reason of such success can be found in the characteristics of the material together with the existing advanced technology for the fabrication of these devices. Nevertheless in many modem HEP experiments the observation of vary rare events require data taking at high luminosity with a consequent extremely intense hadron radiation field that damages the silicon and degrades the performance of these devices. In this thesis work a detailed study of the signal generation in microstrip detectors has been produced with a special care for the ATLAS semiconductor tracker geometry. This has required a development of an appropriate setup to perform measurements with Transient Current/ Charge Technique. This has allowed studying the evolution of the signal in several microstrips detector samples irradiated at fluences covering the range expected in the ATLAS Semiconductor Tracker. For a better understanding of these measurements a ...

  13. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    Science.gov (United States)

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  14. Performance evaluation of a very high resolution small animal PET imager using silicon scatter detectors

    Science.gov (United States)

    Park, Sang-June; Rogers, W. Leslie; Huh, Sam; Kagan, Harris; Honscheid, Klaus; Burdette, Don; Chesi, Enrico; Lacasta, Carlos; Llosa, Gabriela; Mikuz, Marko; Studen, Andrej; Weilhammer, Peter; Clinthorne, Neal H.

    2007-05-01

    A very high resolution positron emission tomography (PET) scanner for small animal imaging based on the idea of inserting a ring of high-granularity solid-state detectors into a conventional PET scanner is under investigation. A particularly interesting configuration of this concept, which takes the form of a degenerate Compton camera, is shown capable of providing sub-millimeter resolution with good sensitivity. We present a Compton PET system and estimate its performance using a proof-of-concept prototype. A prototype single-slice imaging instrument was constructed with two silicon detectors 1 mm thick, each having 512 1.4 mm × 1.4 mm pads arranged in a 32 × 16 array. The silicon detectors were located edgewise on opposite sides and flanked by two non-position sensitive BGO detectors. The scanner performance was measured for its sensitivity, energy, timing, spatial resolution and resolution uniformity. Using the experimental scanner, energy resolution for the silicon detectors is 1%. However, system energy resolution is dominated by the 23% FWHM BGO resolution. Timing resolution for silicon is 82.1 ns FWHM due to time-walk in trigger devices. Using the scattered photons, time resolution between the BGO detectors is 19.4 ns FWHM. Image resolution of 980 µm FWHM at the center of the field-of-view (FOV) is obtained from a 1D profile of a 0.254 mm diameter 18F line source image reconstructed using the conventional 2D filtered back-projection (FBP). The 0.4 mm gap between two line sources is resolved in the image reconstructed with both FBP and the maximum likelihood expectation maximization (ML-EM) algorithm. The experimental instrument demonstrates sub-millimeter resolution. A prototype having sensitivity high enough for initial small animal images can be used for in vivo studies of small animal models of metabolism, molecular mechanism and the development of new radiotracers.

  15. Mechanical properties of D0 Run IIB silicon detector staves

    Energy Technology Data Exchange (ETDEWEB)

    Lanfranco, Giobatta; Fast, James; /Fermilab

    2001-06-01

    A proposed stave design for the D0 Run IIb silicon tracker outer layers featuring central cooling channels and a composite shell mechanical structure is evaluated for self-deflection and deflection due to external loads. This paper contains an introduction to the stave structure, a section devoted to composite lamina and laminate properties and finally a section discussing the beam deflections expected for assembled staves using these laminates.

  16. Directly UV-written silica-on-silicon planar waveguides with low insertion loss

    DEFF Research Database (Denmark)

    Zauner, Dan; Kulstad, K.; Rathje, Jacob;

    1998-01-01

    The coupling loss between directly W-written planar waveguides and standard telecom fibre has been reduced by index matching the three layer structure used for UV writing. Insertion losses down to 0.1 dB for 3 cm long waveguides have been achieved.......The coupling loss between directly W-written planar waveguides and standard telecom fibre has been reduced by index matching the three layer structure used for UV writing. Insertion losses down to 0.1 dB for 3 cm long waveguides have been achieved....

  17. Short p-type silicon microstrip detectors in 3D-stc technology

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S. [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder Strasse 3b, D-79104 Freiburg i. Br. (Germany)], E-mail: simon.eckert@physik.uni-freiburg.de; Jakobs, K.; Kuehn, S.; Parzefall, U. [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder Strasse 3b, D-79104 Freiburg i. Br. (Germany); Dalla-Betta, G.-F.; Zoboli, A. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita degli Studi di Trento, via Sommarive 14, I-38050 Povo di Trento (Italy); Pozza, A.; Zorzi, N. [FBK-irst Trento, Microsystems Division, via Sommarive 18, I-38050 Povo di Trento (Italy)

    2008-10-21

    The luminosity upgrade of the Large Hadron Collider (LHC), the sLHC, will constitute an extremely challenging radiation environment for tracking detectors. Significant improvements in radiation hardness are needed to cope with the increased radiation dose, requiring new tracking detectors. In the upgraded ATLAS detector the region from 20 to 50 cm distance to the beam will be covered by silicon strip detectors (SSD) with short strips. These will have to withstand a 1 MeV neutron equivalent fluence of about 1x10{sup 15}n{sub eq}/cm{sup 2}, hence extreme radiation resistance is necessary. For the short strips, we propose to use SSD realised in the radiation tolerant 3D technology, where rows of columns-etched into the silicon bulk-are joined together to form strips. To demonstrate the feasibility of 3D SSD for the sLHC, we have built prototype modules using 3D-single-type-column (stc) SSD with short strips and front-end electronics from the present ATLAS SCT. The modules were read out with the SCT Data Acquisition system and tested with an IR-laser. We report on the performance of these 3D modules, in particular the noise at 40 MHz which constitutes a measurement of the effective detector capacitance. Conclusions about options for using 3D SSD detectors for tracking at the sLHC are drawn.

  18. The CMS Silicon Tracker Detector: an Overview of the R&D Current Status

    CERN Document Server

    Santocchia, A; Angarano, M; Azzi, P; Babucci, E; Bacchetta, N; Bader, A; Bagliesi, G; Bartalini, P; Basti, A; Biggeri, U; Bilei, G M; Bisello, D; Boemi, D; Da Rold, M; Bosi, F; Borrello, L; Bozzi, C; Breuker, H; Candelori, A; Caner, A; Dell'Orso, R; Castaldi, R; Carstro, A; Checcucci, B; Ciampolini, P; Creanza, D; Elliot-Peisert, A; de Palma, M; Della Marina, R; Bruzzi, M; Catacchini, E; Civinini, C; Connotte, J; Gu, W H; Luebelsmeyer, K; D'Alessandro, R; Pandoulas, D; Sielding, R; Wittmer, B; Fiore, L; Maggi, G; My, S; Raso, G; Selvaggi; Silvestris; Tempesta, P; Piperov, S; Tricomi, A; Potenza, R; French, M; Focardi, E; Meschini, M; Parrini, G; Pieri, M; Glessing, B; Hammerstrom, R; Huhtinen, M; Mannelli, M; Marchioro, A; Schmitt, B; Stefanini, G; Eklund, C; Karimäki, V; Skog, K; Tuuva, T; Hall, G; McEvoy, B; Ramond, M; Watts, S; Giraldo, A; Loreti, M; Martignon, G; Paccagnella, A; Stavitsky, I; Lariccia, P; Mantovani, G; Passeri, D; Servoli, L; Wang, Y; Giassi, A; Verdini, P G; Vannini, C; Tonelli, G; Xie, Z; Messineo, A; Palla, F; Raffaelli, F; Sguazzoni, G; Starodumov, A; Freudenreich, K; Lustermann, W; Viertel, G; Krammer, M; Hrubec, J

    1998-01-01

    The paper describes the Silicon Tracking System of the Compact Muon Solenoid ( CMS) and reviews the most recent results of the R&D activity on radiation resistant microstrip silicon detectors. The Silicon Tracker of CMS consists of 5 layers of microstrip detectors in the barrel and 10 disks on either side of the end-cap region. The detectors of the innermost layers ( 22.5 cm radial distance from the beam pipe) are required to operate up to an integrated fluence of 1.6 10 ^14 1-MeV-equivalent neutrons per cm2. The results, obtained with single-sided prototypes irradiated with a neutron fluence up to 2*10^14 n/cm2 in terms of signal-to-noise ratio, efficiency and spatial resolution are described. We also show a comparison between device simulations, laboratory measurements and experimental results. Lastly we describe the complex system prototypes which have been recently built to address the system aspects of such a large silicon tracker.

  19. Multi-wire detector characterization for daily quality control on IMRT; Caracterizacao de um detector planar de multiplos fios para controle de qualidade diario de tratamentos com IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Vilma A.; Watanabe, Erika Y.; Santos, Gabriela R.; Menegussi, Gisela, E-mail: vilmaferrari@uol.com.br [Instituto do Cancer do Estado de Sao Paulo (ICESP), SP (Brazil). Setor de Radioterapia

    2012-08-15

    Several dosimetry devices are being developed for quality control of radiation treatments using modern techniques as, for example, the Intensity Modulated Radiation Therapy (IMRT). The main function of these devices are to daily quality control of treatments of patients submitted to IMRT technique. The aim of this study is to characterize a type of planar multi-wire detector - DAVID (PTW) - for use in clinical practice. It was evaluated the influence of the system in the radiation beam by measuring the absorption factors and surface dose. We also analyzed the dose-linearity, reproducibility, the dependence with the dose rate and the angle of the linac head. Small errors in the position of the multi-leaf were inserted to evaluate the sensitivity of the system. The results showed that the detector can absorb up to 6.7% of the dose, depending of the energy beam and the field size. A significant increase in surface dose was observed, indicating that individual analysis is necessary for each patient. The system showed good reproducibility, linear response with dose, low dependence with dose rate and low dependence with the angle of the linac head. When small errors were inserted in the position of the multi-leaf, the system was able to detect them. Thus, the detector DAVID proved to be suitable for daily verification of IMRT treatments. (author)

  20. The CMS Silicon Pixel detector for HL-LHC

    CERN Document Server

    Steinbrueck, Georg

    2016-01-01

    The LHC is planning an upgrade program which will bring the luminosity to about 5~$\\times10^{34}$~cm$^{-2}$s$^{-1}$ in 2026, with the goal of an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges of higher data rates and increased radiation. To maintain its physics potential in this harsh environment, the CMS detector will undergo a major upgrade program known as the Phase II upgrade. The new Phase II pixel detector will require a high bandwidth readout system and highly radiation tolerant sensors and on-detector ASICs. Several technologies for the sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs with acceptance extended from $\\vert\\eta\\vert<2.4$ to $\\vert\\eta\\vert<4$, are presented together with performance estimates.

  1. Silicon strip tracking detector development and prototyping for the Phase-2 Upgrade of the ATLAS experiment

    CERN Document Server

    Kuehn, Susanne; The ATLAS collaboration

    2015-01-01

    In about ten years from now, the Phase-2 upgrade of the LHC is planned. This will result in a severe radiation dose and high particle rates for the multipurpose exeperiments because of a foreseen luminosity of ten times higher the LHC design luminosity. Several detector components will have to be upgraded in the experiments. In the ATLAS experiment the current inner detector will be replaced by an all silicon tracking detector aiming for high performance. The poster will present the development and the latest prototyping of the upgrade silicon strip tracking detector. Its layout foresees low mass and modular double-sided structures for the barrel and forward region. Silicon sensors and readout electronics, so-called modules, are planned to be assembled double-sided on larger carbon-core structures. The modularity allows assembly and testing at multiple sites. Many components need to be developed and their prototyping towards full-size components is ongoing. New developments and test results will be presented....

  2. Radiation monitoring and beam dump system of the OPAL silicon microvertex detector

    Science.gov (United States)

    Biebel, O.; Braibant, S.; de Jong, S. J.; Hammarström, R.; Hilgers, R.; Honma, A. K.; Jovanovic, P.; Lauber, J. A.; Neal, H. A.

    1998-02-01

    The radiation monitoring and beam dump system of the OPAL silicon microvertex detector is described. This system was designed and implemented to measure the radiation dose over time scales varying from a millisecond to a year, and to induce a fast beam dump if the radiation exceeds a given threshold in dose and in dose rate within a very small time interval. The system uses reverse-biased silicon diodes as sensitive elements and good stability is achieved by AC coupling of the amplifiers to the sensors.

  3. Performance of a wide pitch n-on-n silicon detector with floating strips

    CERN Document Server

    Charles, M J; Dijkstra, H; Dormond, O; Ferro-Luzzi, M; Frei, R; Gagliardi, G; Kappert, L; Ketel, T; Klous, S; Libby, J; Malinow, D; Österberg, K; Palacios, J P; Parkes, C; Parzefall, U; Ruf, T; Sizun, P; Teubert, F; Witek, M

    2002-01-01

    First measurements of charge sharing and collection for a 95 micron pitch n-on-n silicon sensor with floating strips are presented. These measurements were made with an analogue front-end sampling at 40 MHz. The charge collection performance is compared to a region of the detector where the strips are bonded consecutively. Strips with a significant signal are found to be correlated with opposite polarity signals in the strips neighbouring them. This phenomenon is described and compared to measurements with alternative silicon sensors and electronics.

  4. Laboratory and test beam results from a large-area silicon drift detector

    CERN Document Server

    Bonvicini, V; Giubellino, P; Gregorio, A; Idzik, M; Kolojvari, A A; Montaño-Zetina, L M; Nouais, D; Petta, C; Rashevsky, A; Randazzo, N; Reito, S; Tosello, F; Vacchi, A; Vinogradov, L I; Zampa, N

    2000-01-01

    A very large-area (6.75*8 cm/sup 2/) silicon drift detector with integrated high-voltage divider has been designed, produced and fully characterised in the laboratory by means of ad hoc designed MOS injection electrodes. The detector is of the "butterfly" type, the sensitive area being subdivided into two regions with a maximum drift length of 3.3 cm. The device was also tested in a pion beam (at the CERN PS) tagged by means of a microstrip detector telescope. Bipolar VLSI front-end cells featuring a noise of 250 e/sup -/ RMS at 0 pF with a slope of 40 e/sup -//pF have been used to read out the signals. The detector showed an excellent stability and featured the expected characteristics. Some preliminary results will be presented. (12 refs).

  5. A monolithically integrated detector-preamplifier on high-resistivity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holland, S.; Spieler, H.

    1990-02-01

    A monolithically integrated detector-preamplifier on high-resistivity silicon has been designed, fabricated and characterized. The detector is a fully depleted p-i-n diode and the preamplifier is implemented in a depletion-mode PMOS process which is compatible with detector processing. The amplifier is internally compensated and the measured gain-bandwidth product is 30 MHz with an input-referred noise of 15 nV/{radical}Hz in the white noise regime. Measurements with an Am{sup 241} radiation source yield an equivalent input noise charge of 800 electrons at 200 ns shaping time for a 1.4 mm{sup 2} detector with on-chip amplifier in an experimental setup with substantial external pickup.

  6. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Science.gov (United States)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  7. Low-temperature TCT characterization of heavily proton irradiated p-type magnetic Czochralski silicon detectors

    CERN Document Server

    Härkönen, J; Luukka, P; Kassamakov, I; Autioniemi, M; Tuominen, E; Sane, P; Pusa, P; Räisänen, J; Eremin, V; Verbitskaya, E; Li, Z

    2007-01-01

    n+/p−/p+ pad detectors processed at the Microelectronics Center of Helsinki University of Technology on boron-doped p-type high-resistivity magnetic Czochralski (MCz-Si) silicon substrates have been investigated by the transient current technique (TCT) measurements between 100 and 240 K. The detectors were irradiated by 9 MeV protons at the Accelerator Laboratory of University of Helsinki up to 1 MeV neutron equivalent fluence of 2×1015 n/cm2. In some of the detectors the thermal donors (TD) were introduced by intentional heat treatment at 430 °C. Hole trapping time constants and full depletion voltage values were extracted from the TCT data. We observed that hole trapping times in the order of 10 ns were found in heavily (above 1×1015 neq/cm2) irradiated samples. These detectors could be fully depleted below 500 V in the temperature range of 140–180 K.

  8. The silicon photomultipliers in the detector subsystems of the GlueX experiment

    Science.gov (United States)

    Somov, A.; Barbosa, F.; Tolstukhin, I.; Somov, S. V.; Berdnikov, V. V.

    2017-01-01

    The subsystem detectors of GlueX experiment use silicon photomultiplier (SiPM). Around five thousand SiPM’s in total uses in the detectors of experiment. The detectors operate in condition of load level 2MHz and up to 104 pixels «fired» with ∼0.3ns time resolution. The list of such detectors: the tagger microscope, the pair spectrometer, the start counter which surrounded the liquid hydrogen target; the electromagnetic barrel calorimeter to measure energy and direction of secondary photons comes from the target. We present the results of the time resolution measurements and the relaxation time measurements for two SiPM types in experimental conditions.

  9. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    Science.gov (United States)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  10. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  11. Investigation of cutting edge in edge-on silicon microstrip detector

    Energy Technology Data Exchange (ETDEWEB)

    Vrtacnik, D., E-mail: Danilo.Vrtacnik@fe.uni-lj.s [Faculty of Electrical Engineering, University of Ljubljana (Slovenia); Resnik, D.; Mozek, M.; Pecar, B.; Amon, S. [Faculty of Electrical Engineering, University of Ljubljana (Slovenia)

    2010-08-21

    Investigation of cutting edge properties in edge-on silicon microstrip detector has been performed. An advanced approach for reducing dead layer thickness has been introduced. It consists of standard wafer sawing through entire wafer thickness, followed by dry chemical etching and thin layer passivation of the cutting surface. Proposed approach is developed in such a way that no additional photolithographic process steps and critical handling with individual chips are needed after detector fabrication. Results presented in the paper show that this approach results in effective reduction of cutting edge thickness down to 50 {mu}m. Such reduction of dead layer thickness, together with applied efficient current termination technique resulted in substantial improvement of detector structure performance. By described optimization of detector dead layer thickness, detection efficiency has been improved up to 15%.

  12. Planarization and fabrication of bridges across deep grooves or holes in silicon using a dry film photoresist followed by an etch back

    NARCIS (Netherlands)

    Spiering, V.L.; Spiering, V.L.; Berenschot, Johan W.; Elwenspoek, Michael Curt

    A technique is presented that provides planarization after a very deep etching step in silicon. This offers the possibility for not only resist spinning and layer patterning but also for realization of bridges and cantilevers across deep grooves or holes. The technique contains a standard dry film

  13. Analysis and Quantification of Coupling Mechanisms of External Signal Perturbations on Silicon Detectors for Particle Physics Experiments

    Science.gov (United States)

    Arteche, F.; Rivetta, C.; Iglesias, M.; Echeverria, I.

    2016-05-01

    Silicon detectors have been used in astrophysics satellites and particle detectors for high energy physics (HEP) experiments. For HEP applications, EMC studies have been conducted in silicon detectors to characterize the impact of external noise on the system. They have shown that problems associated with the new generation of silicon detectors are related with interferences generated by the power supplies and auxiliary equipment connected to the device. Characterization of these interferences along with the coupling and their propagation into the susceptible front-end circuits is required for a successful integration of these systems. This paper presents the analysis of the sensitivity curves and coupling mechanisms between the noise and the front-end electronics that have been observed during the characterization of two silicon detector prototypes: the CMS-Silicon tracker detector (CMS-ST) and Silicon Vertex Detector (Belle II-SVD). As a result of these studies, it is possible to identify critical elements in prototypes to take corrective actions in the design and improve the front-end electronics performance.

  14. Low-temperature technique of thin silicon ion implanted epitaxial detectors

    Science.gov (United States)

    Kordyasz, A. J.; Le Neindre, N.; Parlog, M.; Casini, G.; Bougault, R.; Poggi, G.; Bednarek, A.; Kowalczyk, M.; Lopez, O.; Merrer, Y.; Vient, E.; Frankland, J. D.; Bonnet, E.; Chbihi, A.; Gruyer, D.; Borderie, B.; Ademard, G.; Edelbruck, P.; Rivet, M. F.; Salomon, F.; Bini, M.; Valdré, S.; Scarlini, E.; Pasquali, G.; Pastore, G.; Piantelli, S.; Stefanini, A.; Olmi, A.; Barlini, S.; Boiano, A.; Rosato, E.; Meoli, A.; Ordine, A.; Spadaccini, G.; Tortone, G.; Vigilante, M.; Vanzanella, E.; Bruno, M.; Serra, S.; Morelli, L.; Guerzoni, M.; Alba, R.; Santonocito, D.; Maiolino, C.; Cinausero, M.; Gramegna, F.; Marchi, T.; Kozik, T.; Kulig, P.; Twaróg, T.; Sosin, Z.; Gaşior, K.; Grzeszczuk, A.; Zipper, W.; Sarnecki, J.; Lipiński, D.; Wodzińska, H.; Brzozowski, A.; Teodorczyk, M.; Gajewski, M.; Zagojski, A.; Krzyżak, K.; Tarasiuk, K. J.; Khabanowa, Z.; Kordyasz, Ł.

    2015-02-01

    A new technique of large-area thin ion implanted silicon detectors has been developed within the R&D performed by the FAZIA Collaboration. The essence of the technique is the application of a low-temperature baking process instead of high-temperature annealing. This thermal treatment is performed after B+ ion implantation and Al evaporation of detector contacts, made by using a single adjusted Al mask. Extremely thin silicon pads can be therefore obtained. The thickness distribution along the X and Y directions was measured for a prototype chip by the energy loss of α-particles from 241Am ( = 5.5 MeV). Preliminary tests on the first thin detector (area ≈ 20 × 20 mm2) were performed at the INFN-LNS cyclotron in Catania (Italy) using products emitted in the heavy-ion reaction 84Kr ( E = 35 A MeV) + 112Sn. The ΔE - E ion identification plot was obtained using a telescope consisting of our thin ΔE detector (21 μm thick) followed by a typical FAZIA 510 μm E detector of the same active area. The charge distribution of measured ions is presented together with a quantitative evaluation of the quality of the Z resolution. The threshold is lower than 2 A MeV depending on the ion charge.

  15. Low-temperature technique of thin silicon ion implanted epitaxial detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kordyasz, A.J.; Bednarek, A. [Warsaw University, Heavy Ion Laboratory, Warsaw (Poland); Le Neindre, N.; Bougault, R.; Lopez, O.; Merrer, Y.; Vient, E. [Universite de Caen, LPC, IN2P3-CNRS, ENSICAEN, Caen-Cedex (France); Parlog, M. [Universite de Caen, LPC, IN2P3-CNRS, ENSICAEN, Caen-Cedex (France); ' ' Horia Hulubei' ' National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest Magurele (Romania); Casini, G.; Poggi, G.; Bini, M.; Valdre, S.; Scarlini, E.; Pasquali, G.; Pastore, G.; Piantelli, S.; Stefanini, A.; Olmi, A.; Barlini, S. [INFN Firenze, Sesto Fiorentino (Italy); Universita di Firenze, Sesto Fiorentino (Firenze) (Italy); Kowalczyk, M. [Warsaw University, Heavy Ion Laboratory, Warsaw (Poland); University of Warsaw, Institute of Experimental Physics, Warsaw (Poland); Frankland, J.D.; Bonnet, E.; Chbihi, A.; Gruyer, D. [CEA et IN2P3-CNRS, GANIL, Caen-Cedex 05 (France); Borderie, B.; Ademard, G.; Edelbruck, P.; Rivet, M.F.; Salomon, F. [IN2P3-CNRS, Institut de Physique Nucleaire, Orsay-Cedex (France); Boiano, A.; Rosato, E.; Meoli, A.; Ordine, A.; Spadaccini, G.; Tortone, G.; Vigilante, M.; Vanzanella, E. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Scienze Fisiche, Napoli (Italy); INFN, Napoli (Italy); Bruno, M.; Serra, S.; Morelli, L.; Guerzoni, M. [INFN, Bologna (Italy); Universita di Bologna, Bologna (Italy); Alba, R.; Santonocito, D.; Maiolino, C. [INFN, Catania (Italy); Universita di Catania, LNS, Catania (Italy); Cinausero, M.; Gramegna, F.; Marchi, T. [INFN LNL Legnaro, Legnaro (Padova) (Italy); Kozik, T.; Kulig, P.; Twarog, T.; Sosin, Z. [Jagiellonian University, Cracow (Poland); Gasior, K.; Grzeszczuk, A.; Zipper, W. [University of Silesia, Silesian University, Katowice (Poland); Sarnecki, J.; Lipinski, D.; Wodzinska, H.; Brzozowski, A.; Teodorczyk, M.; Gajewski, M.; Zagojski, A.; Krzyzak, K. [Institute of Electronic Materials Technology, Warsaw (Poland); Tarasiuk, K.J. [University of Warsaw, Institute of Experimental Physics, Warsaw (Poland); Khabanowa, Z. [Faculty of Physics, Warsaw University of Technology, Warsaw (Poland); Kordyasz, L. [Warsaw University of Technology, Faculty of Mechatronics, Institute of Mikromechanics and Photonics, Department of Design of Precision Devices, Warsaw (Poland)

    2015-02-01

    A new technique of large-area thin ion implanted silicon detectors has been developed within the R and D performed by the FAZIA Collaboration. The essence of the technique is the application of a low-temperature baking process instead of high-temperature annealing. This thermal treatment is performed after B{sup +} ion implantation and Al evaporation of detector contacts, made by using a single adjusted Al mask. Extremely thin silicon pads can be therefore obtained. The thickness distribution along the X and Y directions was measured for a prototype chip by the energy loss of α-particles from {sup 241}Am (left angle E{sub α} right angle = 5.5 MeV). Preliminary tests on the first thin detector (area ∼ 20 x 20 mm{sup 2}) were performed at the INFN-LNS cyclotron in Catania (Italy) using products emitted in the heavy-ion reaction {sup 84}Kr (E = 35 A MeV) + {sup 112}Sn. The ΔE - E ion identification plot was obtained using a telescope consisting of our thin ΔE detector (21 μm thick) followed by a typical FAZIA 510 μm E detector of the same active area. The charge distribution of measured ions is presented together with a quantitative evaluation of the quality of the Z resolution. The threshold is lower than 2 A MeV depending on the ion charge. (orig.)

  16. Annealing Studies of magnetic Czochralski silicon radiation detectors

    CERN Document Server

    Pellegrini, G; Fleta, C; Lozano, M; Rafí, J M; Ullán, M

    2005-01-01

    Silicon wafers grown by the Magnetic Czochralski (MCZ) method have been processed in form of pad diodes at Instituto de Microelectrónica de Barcelona (IMB-CNM) facilities. The n-type MCZ wafers were manufactured by Okmetic and they have a nominal resistivity of 1 kΩ cm. Diodes were characterized by reverse current and capacitance measurements before and after irradiations. The MCZ diodes were irradiated in a 24 GeV proton beam at CERN PS facilities and their annealing behavior with time was compared to that shown by oxygenated FZ diodes processed in the same way. FZ and MCZ diodes were irradiated up to fluences of 1016 p/cm2 which corresponds to the maximum fluence foreseen in the inner part of the future ATLAS upgrade in view of a Super-LHC with an increase in the luminosity.

  17. Assembly procedure of the module (half-stave) of the ALICE Silicon Pixel Detector

    CERN Document Server

    Caselle, M; Antinori, F; Burns, M; Campbell, M; Chochula, P; Dinapoli, R; Elia, D; Formenti, F; Fini, R A; Ghidini, B; Kluge, A; Lenti, V; Manzari, V; Meddi, F; Morel, M; Navach, F; Nilsson, P; Pepato, Adriano; Riedler, P; Santoro, R; Stefanini, G; Viesti, G; Wyllie, K

    2004-01-01

    The Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). The detector includes 1200 readout ASICs, each containing 8192 pixel cells, bump-bonded to Si sensor elements. The thickness of the readout chip and the sensor element is 150mum and 200mum, respectively. Low-mass solutions are implemented for the bus and the mechanical support. In this contribution, we describe the basic module (half-stave) of the two SPD layers and we give an overview of its assembly procedure.

  18. TOFFEE: a full custom amplifier-comparator chip for timing applications with silicon detectors

    Science.gov (United States)

    Cenna, F.; Cartiglia, N.; Di Francesco, A.; Olave, J.; Da Rocha Rolo, M.; Rivetti, A.; Silva, J. C.; Silva, R.; Varela, J.

    2017-03-01

    We report on the design of a full custom amplifier-comparator readout chip for silicon detectors with internal gain designed for precise timing applications. The ASIC has been developed in UMC 110 nm CMOS technology and is aimed to fulfill the CMS-TOTEM Precision Proton Spectrometer (CT-PPS) time resolution requirements (~ 30 ps per detector plane). It features LVDS outputs and the signal dynamic range matches the requirements of the High Precision TDC (HPTDC) system. The preliminary measurements results with a test board are included.

  19. Noise considerations of the Beetle amplifier used with long silicon strip detectors

    CERN Document Server

    Köstner, S

    2005-01-01

    An attempt is made to predict the thermal noise and the shot noise for silicon strip detectors connected to the Beetle preamplifier from basic electronic noise principles. The calibration pulse shapes are used to determine the frequency dependant gain function of the Beetle. The calculated noise values are compared with measurements on the prototype ladders. In addition the signal propagation in the very long ladders is studied using a spice simulation. From this the effect of the thermal noise originating from the ohmic resistors of the detector readout strips is estimated.

  20. Characterization of the VEGA ASIC coupled to large area position-sensitive Silicon Drift Detectors

    CERN Document Server

    Campana, R; Fuschino, F; Ahangarianabhari, M; Macera, D; Bertuccio, G; Grassi, M; Labanti, C; Marisaldi, M; Malcovati, P; Rachevski, A; Zampa, G; Zampa, N; Andreani, L; Baldazzi, G; Del Monte, E; Favre, Y; Feroci, M; Muleri, F; Rashevskaya, I; Vacchi, A; Ficorella, F; Giacomini, G; Picciotto, A; Zuffa, M

    2014-01-01

    Low-noise, position-sensitive Silicon Drift Detectors (SDDs) are particularly useful for experiments in which a good energy resolution combined with a large sensitive area is required, as in the case of X-ray astronomy space missions and medical applications. This paper presents the experimental characterization of VEGA, a custom Application Specific Integrated Circuit (ASIC) used as the front-end electronics for XDXL-2, a large-area (30.5 cm^2) SDD prototype. The ASICs were integrated on a specifically developed PCB hosting also the detector. Results on the ASIC noise performances, both stand-alone and bonded to the large area SDD, are presented and discussed.

  1. Laser measurement of absolute charge collection efficiency of a silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Bazant, Pavel; Broz, Jan; Dolezal, Zdenek; Drasal, Zbynek [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Kodys, Peter [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic)], E-mail: peter.kodys@mff.curi.cz; Kvasnicka, Peter; Reznicek, Pavel [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic)

    2007-10-21

    A setup for testing silicon position sensitive detectors using a focused pulsed laser beam has been developed. An optical head monitoring the intensity of both incident laser light and reflected light improves long-term stability and reproducibility of measurements. We show that measurements using red (682 nm) laser light are reliable and robust, providing 4% precision for collected charge determination in our studies. Measurements using infrared light (1055 nm) are highly sensitive to fine details of detector material properties, which cannot be easily measured and/or compensated for.

  2. Influence of the Leakage Current on the Performance of Large Area Silicon Drift Detectors

    CERN Document Server

    Rashevsky, A; CERN. Geneva; Piemonte, C

    2000-01-01

    Abstract In this paper we investigate the influence of the leakage current on the performance of Silicon Drift Detectors. First, analytical considerations are given in order to highlight the problems, specific for this type of detector, that emerge with leakage current. Then the obtained results are compared with the data of laboratory measurements. Aiming at a mass production of SDDs for the Inner Tracking System of the ALICE experiment at LHC, we propose a simple and fast measurement for a preliminary selection before passing to a detailed acceptance test.

  3. Functional test of a Radon sensor based on a high-resistivity-silicon BJT detector

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, G.F., E-mail: dallabe@disi.unitn.it [DISI, Università di Trento, and INFN Trento, Trento (Italy); RSens srl, Modena (Italy); Tyzhnevyi, V. [DISI, Università di Trento, and INFN Trento, Trento (Italy); Bosi, A.; Bonaiuti, M. [RSens srl, Modena (Italy); Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Forti, F.; Giorgi, M.A.; Morsani, F.; Paoloni, E.; Rizzo, G.; Walsh, J. [Dipartimento di Fisica, Università di Pisa, and INFN Pisa, Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN Pisa, Pisa (Italy); Ciolini, R.; Curzio, G.; D' Errico, F.; Del Gratta, A. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Università di Pisa, Pisa (Italy); Bidinelli, L. [En and tech, Università di Modena e Reggio Emilia, Reggio Emilia (Italy); RSens srl, Modena (Italy); and others

    2013-08-01

    A battery-powered, wireless Radon sensor has been designed and realized using a BJT, fabricated on a high-resistivity-silicon substrate, as a radiation detector. Radon daughters are electrostatically collected on the detector surface. Thanks to the BJT internal amplification, real-time α particle detection is possible using simple readout electronics, which records the particle arrival time and charge. Functional tests at known Radon concentrations, demonstrated a sensitivity up to 4.9 cph/(100 Bq/m{sup 3}) and a count rate of 0.05 cph at nominally-zero Radon concentration.

  4. Study of Parametric Instability of gravitational wave detectors using silicon test masses

    CERN Document Server

    Zhang, Jue; Ju, Li; Blair, David

    2016-01-01

    Parametric instability is an intrinsic risk in high power laser interferometer gravitational wave detectors, in which the optical cavity modes interact with the acoustic modes of the mirrors leading to exponential growth of the acoustic vibration. In this paper, we investigate the potential parametric instability for a proposed next generation gravitational wave detector based on cooled silicon test masses. It is shown that there would be about 2 unstable modes per test mass, with the highest parametric gain of ~76. The importance of developing suitable instability suppression schemes is emphasized.

  5. Data Compression for the ALICE Silicon Drift Detector

    CERN Document Server

    De Remigis, P; CERN. Geneva; Mazza, G; Werbrouck, A E; Cavagnino, D

    1998-01-01

    The problem faced when transmitting data coming from the ADC is a typical data compression one. The data to compress may be viewed as a bit stream array containing values in the integer range [0, 255]. A large amount of these values (about 95%) should be around 0 [Alice, 1995], even though the noise will make them generally different from 0. The charges may be imagined as isolated hills (with an approximate gaussian shape) on a (approximately) planar surface. The characteristics required for the algorithm are: compression coefficient c03, which means a compression ratio C30 (where c=1/C=n0/ n1 where n0 is the number of bits exciting the algorithm and n1 is the number of bits entering the algorithm), high operating speed, easy hardware implementation, minimal size of the data structures used, low power consumption, simplicity and degree of lossiness of the algorithm tunable with parameters. A compression algorithm is termed lossy if the decompressed data is not the original data, while it is called lossless ...

  6. Ultraviolet antireflection coatings for use in silicon detector design

    Science.gov (United States)

    Hamden, Erika T.; Greer, Frank; Hoenk, Michael E.; Blacksberg, Jordana; Dickie, Matthew R.; Nikzad, Shouleh; Martin, D. Christopher; Schiminovich, David

    2011-07-01

    We report on the development of coatings for a charged-coupled device (CCD) detector optimized for use in a fixed dispersion UV spectrograph. Because of the rapidly changing index of refraction of Si, single layer broadband antireflection (AR) coatings are not suitable to increase quantum efficiency at all wavelengths of interest. Instead, we describe a creative solution that provides excellent performance over UV wavelengths. We describe progress in the development of a coated CCD detector with theoretical quantum efficiencies (QEs) of greater than 60% at wavelengths from 120 to 300nm. This high efficiency may be reached by coating a backside-illuminated, thinned, delta-doped CCD with a series of thin film AR coatings. The materials tested include MgF2 (optimized for highest performance from 120--150nm), SiO2 (150--180nm), Al2O3 (180--240nm), MgO (200--250nm), and HfO2 (240--300nm). A variety of deposition techniques were tested and a selection of coatings that minimized reflectance on a Si test wafer were applied to functional devices. We also discuss future uses and improvements, including graded and multilayer coatings.

  7. Ultraviolet antireflection coatings for use in silicon detector design

    Energy Technology Data Exchange (ETDEWEB)

    Hamden, Erika T.; Greer, Frank; Hoenk, Michael E.; Blacksberg, Jordana; Dickie, Matthew R.; Nikzad, Shouleh; Martin, D. Christopher; Schiminovich, David

    2011-07-20

    We report on the development of coatings for a charged-coupled device (CCD) detector optimized for use in a fixed dispersion UV spectrograph. Because of the rapidly changing index of refraction of Si, single layer broadband antireflection (AR) coatings are not suitable to increase quantum efficiency at all wavelengths of interest. Instead, we describe a creative solution that provides excellent performance over UV wavelengths. We describe progress in the development of a coated CCD detector with theoretical quantum efficiencies (QEs) of greater than 60% at wavelengths from 120 to 300 nm. This high efficiency may be reached by coating a backside-illuminated, thinned, delta-doped CCD with a series of thin film AR coatings. The materials tested include MgF{sub 2} (optimized for highest performance from 120-150 nm), SiO{sub 2} (150-180 nm), Al{sub 2}O{sub 3} (180-240 nm), MgO (200-250 nm), and HfO{sub 2} (240-300 nm). A variety of deposition techniques were tested and a selection of coatings that minimized reflectance on a Si test wafer were applied to functional devices. We also discuss future uses and improvements, including graded and multilayer coatings.

  8. Portable Neutron Generator with 9-Section Silicon $\\alpha $-Detector

    CERN Document Server

    Bystritsky, V M; Kadyshevskij, V G; Khasaev, T O; Kobzev, A P; Presnyakov, Yu K; Rogov,Yu N; Ryzhkov, V I; Sapozhnikov, M G; Sissakian, A N; Slepnev, V M; Zamyatin, N I

    2006-01-01

    The characteristics of the portable neutron generator with a built-in $\\alpha $-detector are presented. Based on the "tagged" neutron method (TNM) the generator ~is being used for identification of ~the hidden chemical compounds. One of the special features of such generators compared to generators traditionally used and produced in industry is that the generator is a source of monoenergetic "tagged" 14.1 MeV neutrons produced in the binary nuclear reaction $d+t \\to \\alpha $ (3.5 MeV) $+n$ (14.1~MeV). Unambiguous information about the time and direction of the neutron emitted from the target can be obtained by recording an $\\alpha $ particle by the multi-pixel $\\alpha $-detector placed inside the neutron tube. The study of the "tagged" neutron method (TNM) shows that the use of the ($\\alpha $--$\\gamma $) coincidence reduces the gamma background induced by scattered neutrons by a factor of more than 200, which allows the detection and identification of small quantities of explosives, drugs, and toxic agents. T...

  9. HgCdTe and silicon detectors and FPAs for remote sensing applications

    Science.gov (United States)

    D'Souza, Arvind I.; Stapelbroek, Maryn G.; Robinson, James E.

    2004-02-01

    Photon detectors and focal plane arrays (FPAs) are fabricated from HgCdTe and silicon in many varieties. With appropriate choices for bandgap in HgCdTe, detector architecture, dopants, and operating temperature, HgCdTe and silicon can cover the spectral range from ultraviolet to the very-long-wavelength infrared (VLWIR), exhibit high internal gain to allow photon counting over this broad spectral range, and can be made in large array formats for imaging. DRS makes HgCdTe and silicon detectors and FPAs with unique architectures for a variety of applications. Detector characteristics of High Density Vertically Integrated Photodiode (HDVIP) HdCdTe detectors as well as Focal Plane Arrays (FPAs) are presented in this paper. MWIR[λc(78 K) = 5 μm] HDVIP detectors RoA performance was measured to within a factor or two or three of theoretical. In addition, 256 x 256 detector arrays were fabricated. Initial measurements had seven out of ten FPAs having operabilities greater than 99.45% with the best 256 x 256 array having only two inoperable pixels. LWIR [λc(78K)~10 μm] 640 X 480 arrays and a variety of single color linear arrays have also been fabricated. In addition, two-color arrays have been fabricated. DRS has explored HgCdTe avalanche photo diodes (APDs) in the λc = 2.2 μm to 5 μm range. The λc = 5 μm APDs have greater than 200 DC gain values at 8 Volts bias. Large-format to 10242 Arsenic-doped (Si:As, λc ~ 28 μm), Blocked-Impurity-Band (BIB) detectors have been developed for a variety of pixel formats and have been optimized for low, moderate, and high infrared backgrounds. Antimony-doped silicon (Si:Sb) BIB arrays having response to wavelengths > 40 μm have also been demonstrated. Avalanche processes in Si:As at low temperatures (~ 8 K) have led to two unique solid-state photon-counting detectors adapted to infrared and visible wavelengths. The infrared device is the solid-state photomultiplier (SSPM). A related device optimized for the visible spectral

  10. Higher-order Laguerre-Gauss modes in (non-) planar four-mirror cavities for future gravitational wave detectors.

    Science.gov (United States)

    Noack, Andreas; Bogan, Christina; Willke, Benno

    2017-02-15

    One of the limiting noise sources in the current generation of gravitational wave detectors, such as the advanced laser interferometer gravitational wave observatory (aLIGO), is the thermal noise in the interferometer's test mass coatings. One proposed method to reduce the coupling of this noise source to the gravitational wave readout is using a laser beam in the higher-order spatial LG33 mode within the interferometer. Here we show that the current four-mirror cavities of aLIGO are not compatible with Laguerre-Gauss modes due to astigmatism. A non-degeneracy of modes of the same order could be observed in experiment and simulation. We demonstrate that a non-planar cavity could be used instead as it compensates for the astigmatism and transmits the LG33 mode undisturbed.

  11. DLTS measurements of radiation induced defects in epitaxial and MCz silicon detectors

    Science.gov (United States)

    Hönniger, F.; Fretwurst, E.; Lindström, G.; Kramberger, G.; Pintilie, I.; Röder, R.

    2007-12-01

    n-Type epitaxial silicon layers of different thickness and resistivity, grown on highly Sb doped CZ-substrate by ITME (Warsaw), and n-type MCz silicon supplied by Okmetic (Finland) were used for the processing of planar diodes at CiS (Erfurt). For the epi-diodes a standard as well as a diffusion oxygenation process was employed. Irradiations had been performed with 26 MeV protons at the cyclotron of the Karlsruhe University and with neutrons at the TRIGA reactor of the Ljubljana University. Microscopic investigations using the DLTS method were done. The correlation of the IO2i-defect and the oxygen concentration was studied by a depth-profile measurement. The annealing behavior of the IO2i-defect at different temperatures was investigated and the activation energy extracted.

  12. DLTS measurements of radiation induced defects in epitaxial and MCz silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F. [Institute for Experimental Physics, University of Hamburg (Germany)], E-mail: frank.hoenniger@desy.de; Fretwurst, E.; Lindstroem, G. [Institute for Experimental Physics, University of Hamburg (Germany); Kramberger, G. [Josef Stefan Institute, University of Ljubljana (Slovenia); Pintilie, I. [National Institute for Materials Physics, Bucharest (Romania); Roeder, R. [CiS Institut fuer Mikrosensorik gGmbH, Erfurt (Germany)

    2007-12-11

    n-Type epitaxial silicon layers of different thickness and resistivity, grown on highly Sb doped CZ-substrate by ITME (Warsaw), and n-type MCz silicon supplied by Okmetic (Finland) were used for the processing of planar diodes at CiS (Erfurt). For the epi-diodes a standard as well as a diffusion oxygenation process was employed. Irradiations had been performed with 26 MeV protons at the cyclotron of the Karlsruhe University and with neutrons at the TRIGA reactor of the Ljubljana University. Microscopic investigations using the DLTS method were done. The correlation of the IO{sub 2i}-defect and the oxygen concentration was studied by a depth-profile measurement. The annealing behavior of the IO{sub 2i}-defect at different temperatures was investigated and the activation energy extracted.

  13. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-09-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN.

  14. Measurements of timing resolution of ultra-fast silicon detectors with the SAMPIC WTDC

    CERN Document Server

    Breton, Dominique

    2016-01-01

    The SAMpler for PICosecond time (SAMPIC) chip has been designed by a collaboration including CEA/IRFU/SEDI, Saclay and CNRS/LAL/SERDI, Orsay. It benefits from both the quick response of a time to digital converter (TDC) and the versatility of a waveform digitizer to perform accurate timing measurements. Thanks to the sampled signals, smart algorithms making best use of the pulse shape can be used to maximize time resolution. A software framework has been developed to analyse the SAMPIC output data and extract timing information by using either a constant fraction discriminator or a fast cross-correlation algorithm. SAMPIC timing capabilities together with the software framework have been tested using Gaussian signals generated by a signal generator or by silicon detectors pulsed with an infra-red laser. Under these ideal experimental conditions, the SAMPIC chip has proven to be capable of timing resolutions down to 4 (40) ps with synthesized (silicon detector) signals.

  15. OLA, A low-noise bipolar amplifier for the readout of Silicon Drift Detectors

    Science.gov (United States)

    Dabrowski, W.; Białas, W.; Bonazzola, G.; Bonvicini, V.; Ceretto, F.; Giubellino, P.; Idzik, M.; Prest, M.; Riccati, L.; Zampa, N.

    1995-11-01

    A very low noise, 32-channel preamplifier/shaper chip has been designed for the analogue readout of silicon detectors. The circuit has been optimised in view of the operation of Silicon Drift Detectors, which have very low capacitance and produce gaussian signals of σ up to ˜ 100 ns. The chip (OLA) has been designed and manufactured using the SHPi full-custom bipolar process by Tektronix. Each channel is composed by a preamplifier, a shaper and a symmetrical line driver, which allows to drive either a positive and a negative single ended output separately on 50 Ω impedance or a differential twisted pair. The intrinsic peaking time of the circuit is ˜ 60 ns, and the noise is below 250 electrons at zero input load capacitance. The power consumption is 2 mW/channel, mostly due to the output driver.

  16. Low-noise monolithic bipolar front-end for silicon drift detectors

    Science.gov (United States)

    Dabrowski, W.; Bialas, W.; Bonazzola, G.; Bonvicini, W.; Casati, L.; Ceretto, F.; Giubellino, P.; Prest, M.; Riccati, L.; Zampa, N.

    1999-01-01

    A very low noise, 32-channel preamplifier/shaper chip has been designed for the analogue readout of silicon detectors. The circuit has been optimized in view of the operation of silicon drift detectors, which have very low capacitance and produce gaussian signals of σ of few tens of ns. The chip (OLA) has been designed and manufactured using the SHPi full-custom bipolar process by Tektronix. Each channel is composed by a preamplifier, a shaper and a symmetrical line driver, which allows to drive either a positive and a negative single ended output separately on 50 Ω impedance or a differential twisted pair. The intrinsic peaking time of the circuit is ˜60 ns, and the noise is below 250 electrons at zero input load capacitance. The power consumption is 2 mW/channel, mostly due to the output driver.

  17. Test of CMS tracker silicon detector modules with the ARC readout system

    CERN Document Server

    Axer, M; Flügge, G; Franke, T; Hegner, B; Hermanns, T; Kasselmann, S T; Mnich, J; Nowack, A; Pooth, O; Pottgens, M

    2004-01-01

    The CMS tracker will be equipped with 16,000 silicon microstrip detector modules covering a surface of approximately 220 m**2. For quality control, a compact and inexpensive DAQ system is needed to monitor the mass production in industry and in the CMS production centres. To meet these requirements a set-up called APV Readout Controller (ARC) system was developed and distributed among all collaborating institutes to perform full readout tests of hybrids and modules at each production step. The system consists of all necessary hardware components, C++ based readout software using LabVIEW **1 Lab VIEW is a product of National Instruments, Austin, USA. as graphical user interface and provides full database connection to track every single module component during the production phase. Two preseries of Tracker End Cap (TEC) silicon detector modules have been produced by the TEC community and tested with the ARC system at Aachen. The results of the second series are presented.

  18. Measurements of timing resolution of ultra-fast silicon detectors with the SAMPIC waveform digitizer

    Science.gov (United States)

    Breton, D.; De Cacqueray, V.; Delagnes, E.; Grabas, H.; Maalmi, J.; Minafra, N.; Royon, C.; Saimpert, M.

    2016-11-01

    The SAMpler for PICosecond time (SAMPIC) chip has been designed by a collaboration including CEA/IRFU/SEDI, Saclay and CNRS/LAL/SERDI, Orsay. It benefits from both the quick response of a time to digital converter and the versatility of a waveform digitizer to perform accurate timing measurements. Thanks to the sampled signals, smart algorithms making best use of the pulse shape can be used to improve time resolution. A software framework has been developed to analyse the SAMPIC output data and extract timing information by using either a constant fraction discriminator or a fast cross-correlation algorithm. SAMPIC timing capabilities together with the software framework have been tested using pulses generated by a signal generator or by a silicon detector illuminated by a pulsed infrared laser. Under these ideal experimental conditions, the SAMPIC chip has proven to be capable of timing resolutions down to 4 ps with synthesized signals and 40 ps with silicon detector signals.

  19. A bonding study toward the quality assurance of Belle-II silicon vertex detector modules

    Science.gov (United States)

    Kang, K. H.; Jeon, H. B.; Park, H.; Uozumi, S.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Joo, C. W.; Kandra, J.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaia, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-09-01

    A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor "Origami" method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force.

  20. Performance of Silicon Pixel Detectors at Small Track Incidence Angles for the ATLAS Inner Tracker Upgrade

    CERN Document Server

    Viel, Simon; The ATLAS collaboration; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian Choate; Wu, Sau Lan; Yang, Hongtao

    2015-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN.

  1. Count rate performance of a silicon-strip detector for photon-counting spectral CT

    Science.gov (United States)

    Liu, X.; Grönberg, F.; Sjölin, M.; Karlsson, S.; Danielsson, M.

    2016-08-01

    A silicon-strip detector is developed for spectral computed tomography. The detector operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we evaluate the count-rate performance of the detector in a clinical CT environment. The output counts of the detector are measured for x-ray tube currents up to 500 mA at 120 kV tube voltage, which produces a maximum photon flux of 485 Mphotons/s/mm2 for the unattenuated beam. The corresponding maximum count-rate loss of the detector is around 30% and there are no saturation effects. A near linear relationship between the input and output count rates can be observed up to 90 Mcps/mm2, at which point only 3% of the input counts are lost. This means that the loss in the diagnostically relevant count-rate region is negligible. A semi-nonparalyzable dead-time model is used to describe the count-rate performance of the detector, which shows a good agreement with the measured data. The nonparalyzable dead time τn for 150 evaluated detector elements is estimated to be 20.2±5.2 ns.

  2. CsI-Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS)

    Science.gov (United States)

    Najafi, M. A.; Dillmann, I.; Bosch, F.; Faestermann, T.; Gao, B.; Gernhäuser, R.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Popp, U.; Sanjari, M. S.; Spillmann, U.; Steck, M.; Stöhlker, T.; Weick, H.

    2016-11-01

    A heavy-ion detector was developed for decay studies in the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. This detector serves as a prototype for the in-pocket particle detectors for future experiments with the Collector Ring (CR) at FAIR (Facility for Antiproton and Ion Research). The detector includes a stack of six silicon pad sensors, a double-sided silicon strip detector (DSSD), and a CsI(Tl) scintillation detector. It was used successfully in a recent experiment for the detection of the β+-decay of highly charged 142Pm60+ ions. Based on the ΔE / E technique for particle identification and an energy resolution of 0.9% for ΔE and 0.5% for E (Full Width at Half Maximum (FWHM)), the detector is well-suited to distinguish neighbouring isobars in the region of interest.

  3. Silicon Drift Detector for Soft x-ray Spectrometer in Fusion Plasmas

    Institute of Scientific and Technical Information of China (English)

    LI Mei; JU Hong-jun

    2008-01-01

    Silicon drift detector(SDD) is used in the soft x-ray pulse height analyzer(PHA) to measure soft x-ray emissions in fusion plasmas. SDD has the virtues of high count rates and high energy resolution, and the good performances at work temperature of about -10 ℃ achieved by single stage peltier element. The performance and first experimental results from SDD system are presented.

  4. A CAD investigation of depletion mechanisms in irradiated silicon microstrip detectors

    CERN Document Server

    Passeri, D; Bilei, G M

    1999-01-01

    The numerical simulation of a silicon microstrip detector is discussed. Physical models for the bulk radiation damage have been taken into account, based on a generalized Shockley-Read-Hall expression of the recombination rate. The actual shape of depletion layer, depending on the radiation fluence, has been investigated. The build-up of a dual depletion layer, as reported in some literature works, has been described and interpreted.

  5. Development of a scintillation detector with a photosensor based on matrices of silicon photomultipliers

    Science.gov (United States)

    Yanin, A. F.; Dzaparova, I. M.; Gorbacheva, E. A.; Kurenya, A. N.; Kochkarov, M. M.; Petkov, V. B.; Sergeev, A. V.

    2017-01-01

    Scintillation detector with matrices of silicon photomultipliers (SiPM) as multi-channel photosensors is under development. The use of SiPM matrices gives a possibility to do a snapshot of glowing track of charged particle traversing a scintillator. The snapshots of the events inside the scintillator were taken for the two SiPM matrices arrangements. The comparison characteristics of snapshots for these arrangements are presented.

  6. Experience with the SVX-H chip in the construction of the L3 silicon microvertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Battiston, R. (INFN-Sezione di Perugia (Italy) Univ. degli Studi di Perugia (Italy)); Bertucci, B. (INFN-Sezione di Perugia (Italy) Univ. degli Studi di Perugia (Italy)); Bilei, G. (INFN-Sezione di Perugia (Italy) Univ. degli Studi di Perugia (Italy)); Checcucci, B. (INFN-Sezione di Perugia (Italy) Univ. degli Studi di Perugia (Italy)); Servoli, L. (INFN-Sezione di Perugia (Italy) Univ. degli Studi di Perugia (Italy)); Wang, S.J. (INFN-Sezione di Perugia (Italy) Univ. degli Studi di Perugia (Italy)); Passaleva, G. (INFN-Sezione di Firenze (Italy) Univ. degli Studi di Perugia (Italy)); Bay, A. (Univ. of Geneva, Geneva (Switzerland)); Burger, W.J. (Univ. of Geneva, Geneva (Switzerland)); Extermann, P. (Univ. of Geneva, Geneva (Switzerland)); Susinno, G. (Univ. of Geneva, Geneva (Switzerland)); Brooks, M. (Los Alamos National Lab., NM (United States)); Kapustinsky, J.S. (Los Alamos National Lab., NM (United States)); Kinnison, W.W. (Los Alamos National Lab., NM (United State

    1994-04-21

    The SVX is a charge preamplifier with a sample and hold stage and sparse readout capability developed at the Lawrence Berkeley Laboratory. The SVX radiation hard version has been used by the SMD collaboration to build the L3 Silicon Microvertex Detector where double-sided AC coupled silicon sensors are read out. The SVX-H test procedure in the SMD detector assembly phase will be described as well as the obtained results. (orig.)

  7. The design and construction of a double-sided Silicon Microvertex Detector for the L3 experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Adam, A. [Technical Univ., Budapest (Hungary). Physical Inst.; Ahlen, S.; Marin, A.; Zhou, B. [Boston Univ., MA (United States); Ambrosi, G.; Babucci, E.; Bertucci, B.; Biasini, M.; Bilei, G.M.; Caria, M.; Checcucci, B.; Easo, S.; Fiandrini, E.; Krastev, V.R.; Massetti, R.; Pauluzzi, M.; Santocchia, A.; Servoli, L. [INFN/Universita di Perugia (Italy); Baschirotto, A.; Bosetti, M.; Pensotti, S.; Rancoita, P.G.; Rattaggi, M.; Terzi, G. [INFN/Universita di Milano (Italy); Battiston, R. [CERN, Geneva (Switzerland)]|[INFN/Universita di Perugia (Italy); Bay, A.; Burger, W.J.; Extermann, P.; Perrin, E.; Susinno, G.F. [Univ. of Geneva (Switzerland); Bencze, G.Y.L.; Kornis, J.; Toth, J. [KFKI/Research Inst. for Particle and Nuclear Physics, Budapest (Hungary); Bobbink, G.J.; Duinker, P. [NIKHEF, Amsterdam (Netherlands); Brooks, M.L.; Coan, T.E.; Kapustinsky, J.S.; Kinnison, W.W.; Lee, D.M.; Mills, G.B.; Thompson, T.C. [Los Alamos National Lab., NM (United States); Busenitz, J.; DiBitonto, D. [Univ. of Alabama, Tuscaloosa, AL (United States); Camps, C.; Commichau, V.; Hangartner, K.; Schmitz, P. [RWTH, Aachen (Germany). 3. Physikalisches Institut; Castellini, G. [INFN/IROE, Firenze (Italy); Chen, A.; Hou, S.; Lin, W.T. [NCU, Chung/Li (Taiwan, Province of China); Gougas, A.; Kim, D.; Paul, T. [Johns Hopkins Univ., Baltimore, MD (United States); Hauviller, C.; Herve, A.; Josa, I. [CERN, Geneva (Switzerland); Landi, G. [INFN/Universita di Firenze (Italy); Lebeau, M. [LAPP, Annecy (France); Lecomte, P.; Viertel, G.M.; Waldmeier, S. [ETH Zurich (Switzerland); Leiste, R. [CERN, Geneva (Switzerland)]|[DESY-IFH, Zeuthen (Germany); Lejeune, E.; Weill, R. [Univ. of Lausanne (Switzerland); Lohmann, W.; Nowak, H.; Sachwitz, M.; Schoeniech, B.; Tonisch, F.; Trowitzsch, G.; Vogt, H. [DESY-IFH, Zeuthen (Germany); Passaleva, G. [INFN/Universita di Firenze (Italy)]|[INFN/Universita di Perugia (Italy); Yeh, S.C. [National Tsing Hua Univ., Hsinchu (Taiwan)

    1993-12-01

    A Silicon Microvertex Detector (SMD) has been commissioned for the L3 experiment at the Large Electron-Positron colliding-beam accelerator (LEP) at the European Center for Nuclear Physics, (CERN). The SMD is a 72,672 channel, two layer barrel tracker that is comprised of 96 ac-coupled, double-sided silicon detectors. Details of the design and construction are presented.

  8. LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector

    Science.gov (United States)

    Ovejero, M. C.; Pérez Vega-Leal, A.; Gallardo, M. I.; Espino, J. M.; Selva, A.; Cortés-Giraldo, M. A.; Arráns, R.

    2017-02-01

    The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.

  9. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    Directory of Open Access Journals (Sweden)

    Michael A. Marrs

    2016-07-01

    Full Text Available Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  10. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    Science.gov (United States)

    Marrs, Michael A; Raupp, Gregory B

    2016-07-26

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  11. Sine wave gating silicon single-photon detectors for multiphoton entanglement experiments

    Science.gov (United States)

    Zhou, Nan; Jiang, Wen-Hao; Chen, Luo-Kan; Fang, Yu-Qiang; Li, Zheng-Da; Liang, Hao; Chen, Yu-Ao; Zhang, Jun; Pan, Jian-Wei

    2017-08-01

    Silicon single-photon detectors (SPDs) are the key devices for detecting single photons in the visible wavelength range. Here we present high detection efficiency silicon SPDs dedicated to the generation of multiphoton entanglement based on the technique of high-frequency sine wave gating. The silicon single-photon avalanche diode components are acquired by disassembling 6 commercial single-photon counting modules (SPCMs). Using the new quenching electronics, the average detection efficiency of SPDs is increased from 68.6% to 73.1% at a wavelength of 785 nm. These sine wave gating SPDs are then applied in a four-photon entanglement experiment, and the four-fold coincidence count rate is increased by 30% without degrading its visibility compared with the original SPCMs.

  12. The Vacuum Silicon Photomultiplier Tube (VSiPMT): A new version of a hybrid photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Stefano, E-mail: srusso@na.infn.i [Universita di Napoli ' Federico II' , Dipartimento di Scienze fisiche, via Cintia 80126 Napoli (Italy); Barbarino, Giancarlo [Universita di Napoli ' Federico II' , Dipartimento di Scienze fisiche, via Cintia 80126 Napoli (Italy); Asmundis, Riccardo de; De Rosa, Gianfranca [Istituto Nazionale di fisica Nucleare, sezione di Napoli, Complesso di Monte S. Angelo Ed. 6, via Cintia 80126 Napoli (Italy)

    2010-11-01

    The future astroparticle experiments will study both energetic phenomena and extremely rare events from astrophysical sources. Since most of these families of experiments are carried out by using scintillation phenomena, Cherenkov or fluorescence radiation, the development of photosensitive detectors seems to be the right way to increase the experimental sensitivity. Therefore we propose an innovative design for a modern, high gain, silicon-based Vacuum Silicon Photomultiplier Tube (VSiPMT), which combines three fully established and well-understood technologies: the manufacture of hemispherical vacuum tubes with the possibility of very large active areas, the photocathode glass deposition and the novel Geiger-mode avalanche silicon photodiode (G-APD) for which a mass production is today available. This new design, based on G-APD as the electron multiplier, allows overcoming the limits of a classical PMT dynode chain.

  13. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    Science.gov (United States)

    Marrs, Michael A.; Raupp, Gregory B.

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  14. Alignment of the CMS Silicon Tracker -- and how to improve detectors in the future

    CERN Document Server

    Kleinwort, Claus

    2010-01-01

    The complex system of the CMS all-silicon Tracker, with 15\\,148 silicon strip and 1440 silicon pixel modules, requires sophisticated alignment procedures. In order to achieve an optimal track-parameter resolution, the position and orientation of its modules need to be determined with a precision of few micrometers. The alignment of pixels modules is crucial for the analyses requiring a precise vertex reconstruction. The aligned geometry is based on the analysis of several million reconstructed tracks recorded during the commissioning of the CMS experiment, both with cosmic rays and with the first proton-proton collisions. Statistical precision of the alignment of the module with respect to the particle trajectories to less than 10 microns has been achieved. The results have been validated by several data-driven studies (track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution) and compared with predictions obtained from a detailed detector simulation.

  15. Silicon strip detector for a novel 2D dosimetric method for radiotherapy treatment verification

    Energy Technology Data Exchange (ETDEWEB)

    Bocci, A., E-mail: abocci@us.es [National Accelerator Centre (CNA), 41092 Seville (Spain); Cortes-Giraldo, M.A.; Gallardo, M.I.; Espino, J.M. [Department of Atomic, Molecular and Nuclear Physics (FAMN), University of Seville, 41012 Seville (Spain); Arrans, R. [Virgen Macarena University Hospital, 41009 Seville (Spain); Alvarez, M.A.G. [National Accelerator Centre (CNA), 41092 Seville (Spain); Department of Atomic, Molecular and Nuclear Physics (FAMN), University of Seville, 41012 Seville (Spain); Abou-Haiedar, Z. [National Accelerator Centre (CNA), 41092 Seville (Spain); Quesada, J.M. [Department of Atomic, Molecular and Nuclear Physics (FAMN), University of Seville, 41012 Seville (Spain); Perez Vega-Leal, A. [School of Engineering, University of Seville, 41092 Seville (Spain); Perez Nieto, F.J. [Instalaciones Inabensa S.A., 41007 Seville (Spain)

    2012-05-01

    The aim of this work is to characterize a silicon strip detector and its associated data acquisition system, based on discrete electronics, to obtain in a near future absorbed dose maps in axial planes for complex radiotherapy treatments, using a novel technique. The experimental setup is based on two phantom prototypes: the first one is a polyethylene slab phantom used to characterize the detector in terms of linearity, percent depth dose, reproducibility, uniformity and penumbra. The second one is a cylindrical phantom, specifically designed and built to recreate conditions close to those normally found in clinical environments, for treatment planning assessment. This system has been used to study the dosimetric response of the detector, in the axial plane of the phantom, as a function of its angle with respect to the irradiation beam. A software has been developed to operate the rotation of this phantom and to acquire signals from the silicon strip detector. As an innovation, the detector was positioned inside the cylindrical phantom parallel to the beam axis. Irradiation experiments were carried out with a Siemens PRIMUS linac operating in the 6 MV photon mode at the Virgen Macarena Hospital. Monte Carlo simulations were performed using Geant4 toolkit and results were compared to Treatment Planning System (TPS) calculations for the absorbed dose-to-water case. Geant4 simulations were used to estimate the sensitivity of the detector in different experimental configurations, in relation to the absorbed dose in each strip. A final calibration of the detector in this clinical setup was obtained by comparing experimental data with TPS calculations.

  16. Micro-fabricated Silicon Devices for Advanced Thermal Management and Integration of Particle Tracking Detectors

    CERN Document Server

    Romagnoli, Giulia; Gambaro, Carla

    Since their first studies targeting the cooling of high-power computing chips, micro-channel devices are proven to provide a very efficient cooling system. In the last years micro-channel cooling has been successfully applied to the cooling of particle detectors at CERN. Thanks to their high thermal efficiency, they can guarantee a good heat sink for the cooling of silicon trackers, fundamental for the reduction of the radiation damage caused by the beam interactions. The radiation damage on the silicon detector is increasing with temperature and furthermore the detectors are producing heat that should be dissipated in the supporting structure. Micro-channels guarantee a distributed and uniform thermal exchange, thanks to the high flexibility of the micro-fabrication process that allows a large variety of channel designs. The thin nature of the micro-channels etched inside silicon wafers, is fulfilling the physics requirement of minimization of the material crossed by the particle beam. Furthermore micro-chan...

  17. Czochralski Silicon as a Detector Material for S-LHC Tracker Volumes

    CERN Document Server

    Spiegel, Leonard; Betchart, Burt; Bhattacharya, Saptaparna; Czellar, Sandor; Demina, Regina; Dierlamm, Alexander; Frey, Martin; Gotra, Yuri; Härkönen, Jaakko; Hartmann, Frank; Kassamakov, Ivan; Korjenevski, Sergey; Kortelainen, Matti J; Lampén, Tapio; Luukka, Panja; Mäenpää, Teppo; Moilanen, Henri; Narain, Meenakshi; Neuland, Maike; Orbaker, Douglas; Simonis, Hans-Jürgen; Steck, Pia; Tuominen, Eija; Tuovinen, Esa

    2011-01-01

    With an expected ten-fold increase in luminosity in S-LHC, the radiation environment in the tracker volumes will be considerably harsher for silicon-based detectors than the already harsh LHC environment. Since 2006, a group of CMS institutes, using a modified CMS DAQ system, has been exploring the use of Magnetic Czochralski silicon as a detector element for the strip tracker layers in S-LHC experiments. Both p+/n-/n+ and n+/p-/p+ sensors have been characterized, irradiated with proton and neutron sources, assembled into modules, and tested in a CERN beamline. There have been three beam studies to date and results from these suggest that both p+/n-/n+ and n+/p-/p+ Magnetic Czochralski silicon are sufficiently radiation hard for the $R>25$ cm regions of S-LHC tracker volumes. The group has also explored the use of forward biasing for heavily irradiated detectors, and although this mode requires sensor temperatures less than -50\\,$^\\circ$C, the charge collection efficiency appears to be promising.

  18. Testbeam studies of silicon microstrip sensor architectures modified to facilitate detector module mass production

    CERN Document Server

    Poley, Anne-luise; The ATLAS collaboration

    2016-01-01

    For the High Luminosity Upgrade of the LHC, the Inner Detector of the ATLAS detector will be replaced by an all-silicon tracker, consisting of pixel and strip sensor detector modules. Silicon strip sensors are being developed to meet both the tracking requirements in a high particle density environment and constraints imposed by the construction process. Several thousand wire bonds per module, connecting sensor strips and readout channels, need to be produced with high reliability and speed, requiring wire bond pads of sufficient size on each sensor strip. These sensor bond pads change the local sensor architecture and the resulting electric field and thus alter the sensor performance. These sensor regions with bond pads, which account for up to 10 % of a silicon strip sensor, were studied using both an electron beam at DESY and a micro-focused X-ray beam at the Diamond Light Source. This contribution presents measurements of the effective strip width in sensor regions where the structure of standard parallel...

  19. Silicon Strip detectors for the ATLAS End-Cap Tracker at the HL-LHC

    CERN Document Server

    Soldevila Serrano, Urmila

    Inside physics programme of the LHC different experiment upgrades are foreseen. After the phase-II upgrade of the ATLAS detector the luminosity will be increased up to 5-7.5x10E34 cm-2s-1. This will mean a considerable increase in the radiation levels, above 10E16 neq/cm2 in the inner regions. This thesis is focused on the development of silicon microstrip detectors enough radiation hard to cope with the particle fluence expected at the ATLAS detector during HL-LHC experiment. In particular on the electrical characterization of silicon sensors for the ATLAS End-Caps. Different mechanical and thermal tests are shown using a Petal core as well as the electrical characterization of the silicon sensors that will be used with the Petal structure. Charge collection efficiency studies are carried out on sensors with different irradiation fluences using the ALiBaVa system and two kinds of strips connection are also analized (DC and AC ganging) with a laser system. The Petalet project is presented and the electrical c...

  20. Fabrication and characterization of surface barrier detector from commercial silicon substrate; Fabricacao e caracterizacao de detector de barreira de superficie a partir de substrato de silicio comercial

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Julio Batista Rodrigues

    2016-10-01

    In this work it was developed radiation detectors silicon surface barrier that were capable of detecting the presence of gamma radiation from a low energy of iodine-125 seeds used in brachytherapy treatments. >From commercial silicon substrates detectors were developed, one sequence left of chemical treatments to the surfaces of these substrates with the intention of minimizing the possible noise generated, validation of the samples obtained as diodes, ensuring detector characteristics and effective use as detector for Iodine-125 radioactive sources with energy of about 25 keV and Americium-251 with energy on the order of 59 keV. Finished performing the analysis of the obtained energy spectra and so it was possible to observe the ability of these detectors to measure the energy from these seeds. (author)

  1. Tunable silica-on-silicon planar lightwave circuits for signal processing applications

    Science.gov (United States)

    Callender, Claire L.; Dumais, Patrick; Jacob, Sarkis; Blanchetière, Chantal; Ledderhof, Chris; Samadi, Payman; Kostko, Irina A.; Xia, Bing; Chen, Lawrence R.

    2009-06-01

    The development of silica planar lightwave circuits (PLCs) employing multiple phase-shifting elements to achieve optical signal processing is presented. Thermo-optic switching in Mach Zehnder interferometer (MZI) structures has been demonstrated with typical switching powers of 250-300 mW. 6-loop lattice-form MZI devices designed with specific filter responses have been fabricated, packaged, and tested. 10 GHz to 40 GHz pulse repetition rate multiplication has been achieved, and the tunability of the 6 phase control elements allows the generation of arbitrary 4-bit binary code patterns. Further improvements in complexity, power consumption, loss, and polarization sensitivity in these devices are discussed.

  2. Radiation damage in proton-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Joern

    2009-07-15

    In this work radiation hardness of 75 {mu}m, 100 {mu}m and 150 {mu}m thick epitaxial silicon pad diodes of both standard and oxygenated material was investigated. Damage after 24 GeV/c proton irradiation in a 1MeV neutron equivalent fluence range between 10{sup 14} cm{sup -2} and 10{sup 16} cm{sup -2} was studied and isothermal annealing experiments at 80 C were carried out. Standard CV/IV measurements could be performed up to 4 x 10{sup 15} cm{sup -2}. The volume-normalised reverse current was found to increase linearly with fluence with a slope independent of the thickness and impurity concentration. However, due to large fluctuations the fluences had to be renormalised using the current-related damage parameter. Concerning the depletion voltage, nearly all materials remained at a moderate level up to 4 x 10{sup 15} cm{sup -2}. During short-term annealing acceptors annealed out, whereas others were introduced during the long-term annealing. The stable damage was characterised by donor removal at low fluences and fluence-proportional predominant donor introduction for highly irradiated diodes, depending on the oxygen level. No type inversion was observed. Time-resolved measurements with a new 670 nm laser-TCT setup made the determination of the trapping time constant with the charge correction method possible. The results agreed with expectations and showed a linear increase of trapping probability with fluence. The electric field exhibited a double peak structure in highly irradiated diodes. Charge collection efficiency measurements with {alpha}-particles were independent of oxygen concentration, but showed an improved efficiency for thinner diodes. A comparison to simulation revealed systematic discrepancies. A non-constant trapping time parameter was proposed as possible solution. (orig.)

  3. A fast, high-granularity silicon multiplicity detector for the NA50 experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Alessandro, B. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Alexeline, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Baglin, C. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Bisi, V. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bonazzola, G. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bonello, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bussiere, A. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Capony, V. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Crovato, R. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Dabrowski, W. [Academy of Min. and Metall., Cracow (Poland). Fac. of Phys. and Nucl. Tech.; De Remigis, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); De Witt, J. [SCIPP, Santa Cruz (United States); Forlen, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Giubellino, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Grybos, P. [Academy of Min. and Metall., Cracow (Poland). Fac. of Phys. and Nucl. Tech.; Idzik, M. [Academy of Min. and Metall., Cracow (Poland). Fac. of Phys. and Nucl. Tech.; Kossakowski, R. [Grenoble-1 Univ., 74 -Annecy (France). Lab. de Physique des Particules; Marzari-Chiesa, A. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Masera, M. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Monteno, M. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Prado da Silva, W. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Ramello, L. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Rato Mendes, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Riccati, L. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Sartori, M. [Istituto Nazionale di Fisica Nucleare, Turin (Italy)

    1995-06-01

    We have designed a silicon detector to measure the angular distribution and the multiplicity of charged secondaries produced in high-energy Pb-Pb interactions. It will be used to characterize the events in the NA50 experiment. The experiment will have to function at very high rate, and the silicon detectors will have to operate in the high-radiation area close to the target. Therefore, the detector will have to be very fast (dead time below 50 ns), radiation resistant (up to the Mrad level as dose and up to more than 10{sup 13} particles/cm{sup 2} as non-ionizing damage) and of high granularity. The conditions on noise, speed and radiation hardness are comparable to the ones foreseen at the future Large Hadron Collider at CERN. We present here the detector design, discuss some of the solutions which have been investigated and report first results on the components of the system which have been designed and produced up to now. (orig.).

  4. Operational Experience, Improvements, and Performance of the CDF Run II Silicon Vertex Detector

    CERN Document Server

    Aaltonen, T; Boveia, A.; Brau, B.; Bolla, G; Bortoletto, D; Calancha, C; Carron, S.; Cihangir, S.; Corbo, M.; Clark, D.; Di Ruzza, B.; Eusebi, R.; Fernandez, J.P.; Freeman, J.C.; Garcia, J.E.; Garcia-Sciveres, M.; Gonzalez, O.; Grinstein, S.; Hartz, M.; Herndon, M.; Hill, C.; Hocker, A.; Husemann, U.; Incandela, J.; Issever, C.; Jindariani, S.; Junk, T.R.; Knoepfel, K.; Lewis, J.D.; Martinez-Ballarin, R.; Mathis, M.; Mattson, M.; Merkel, P; Mondragon, M.N.; Moore, R.; Mumford, J.R.; Nahn, S.; Nielsen, J.; Nelson, T.K.; Pavlicek, V.; Pursley, J.; Redondo, I.; Roser, R.; Schultz, K.; Spalding, J.; Stancari, M.; Stanitzki, M.; Stuart, D.; Sukhanov, A.; Tesarek, R.; Treptow, K.; Wallny, R.; Worm, S.

    2013-01-01

    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, an...

  5. Charge collection mapping of a novel ultra-thin silicon strip detector for hadrontherapy beam monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bouterfa, Mohamed, E-mail: mohamed.bouterfa@uclouvain.be [ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve (Belgium); Alexandre, Geoffrey; Cortina Gil, Eduardo [IRPM Institute, Universite catholique de Louvain, Louvain-la-Neuve (Belgium); Flandre, Denis [ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve (Belgium)

    2013-12-21

    In precise hadrontherapy treatments, the particle beam must be monitored in real time without being degraded. Silicon strip detectors have been fabricated over an area as large as 4.5×4.5 cm{sup 2} with ultra low thickness of 20μm. These offer the following considerable advantages: significantly reduced beam scattering, higher radiation hardness which leads to improved detector lifetime, and much better collection efficiency. In a previous work, the novel sensor has been described and a global macroscopic dosimetry characterization has been proposed. This provides practical information for the detector daily use but not about the local microscopic knowledge of the sensor. This work therefore presents a micrometric-accuracy charge-collection characterization of this new generation of ultra-thin silicon strip detectors. This goal is reached thanks to a 1060 nm-wavelength micrometric-sized laser that can be positioned relatively to the sensor with a submicron precision for the three different axes. This study gives a much better knowledge of the inefficient areas of the sensor and allows therefore optimization for future designs.

  6. Charge collection mapping of a novel ultra-thin silicon strip detector for hadrontherapy beam monitoring

    Science.gov (United States)

    Bouterfa, Mohamed; Alexandre, Geoffrey; Cortina Gil, Eduardo; Flandre, Denis

    2013-12-01

    In precise hadrontherapy treatments, the particle beam must be monitored in real time without being degraded. Silicon strip detectors have been fabricated over an area as large as 4.5×4.5 cm2 with ultra low thickness of 20 μm. These offer the following considerable advantages: significantly reduced beam scattering, higher radiation hardness which leads to improved detector lifetime, and much better collection efficiency. In a previous work, the novel sensor has been described and a global macroscopic dosimetry characterization has been proposed. This provides practical information for the detector daily use but not about the local microscopic knowledge of the sensor. This work therefore presents a micrometric-accuracy charge-collection characterization of this new generation of ultra-thin silicon strip detectors. This goal is reached thanks to a 1060 nm-wavelength micrometric-sized laser that can be positioned relatively to the sensor with a submicron precision for the three different axes. This study gives a much better knowledge of the inefficient areas of the sensor and allows therefore optimization for future designs.

  7. Output factor determination for dose measurements in axial and perpendicular planes using a silicon strip detector

    Science.gov (United States)

    Abou-Haïdar, Z.; Bocci, A.; Alvarez, M. A. G.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Ovejero, M. C.; Quesada, J. M.; Arráns, R.; Prieto, M. Ruiz; Vega-Leal, A. Pérez; Nieto, F. J. Pérez

    2012-04-01

    In this work we present the output factor measurements of a clinical linear accelerator using a silicon strip detector coupled to a new system for complex radiation therapy treatment verification. The objective of these measurements is to validate the system we built for treatment verification. The measurements were performed at the Virgin Macarena University Hospital in Seville. Irradiations were carried out with a Siemens ONCOR™ linac used to deliver radiotherapy treatment for cancer patients. The linac was operating in 6 MV photon mode; the different sizes of the fields were defined with the collimation system provided within the accelerator head. The output factor was measured with the silicon strip detector in two different layouts using two phantoms. In the first, the active area of the detector was placed perpendicular to the beam axis. In the second, the innovation consisted of a cylindrical phantom where the detector was placed in an axial plane with respect to the beam. The measured data were compared with data given by a commercial treatment planning system. Results were shown to be in a very good agreement between the compared set of data.

  8. 3D design and electric simulation of a silicon drift detector using a spiral biasing adapter

    Science.gov (United States)

    Li, Yu-yun; Xiong, Bo; Li, Zheng

    2016-09-01

    The detector system of combining a spiral biasing adapter (SBA) with a silicon drift detector (SBA-SDD) is largely different from the traditional silicon drift detector (SDD), including the spiral SDD. It has a spiral biasing adapter of the same design as a traditional spiral SDD and an SDD with concentric rings having the same radius. Compared with the traditional spiral SDD, the SBA-SDD separates the spiral's functions of biasing adapter and the p-n junction definition. In this paper, the SBA-SDD is simulated using a Sentaurus TCAD tool, which is a full 3D device simulation tool. The simulated electric characteristics include electric potential, electric field, electron concentration, and single event effect. Because of the special design of the SBA-SDD, the SBA can generate an optimum drift electric field in the SDD, comparable with the conventional spiral SDD, while the SDD can be designed with concentric rings to reduce surface area. Also the current and heat generated in the SBA are separated from the SDD. To study the single event response, we simulated the induced current caused by incident heavy ions (20 and 50 μm penetration length) with different linear energy transfer (LET). The SBA-SDD can be used just like a conventional SDD, such as X-ray detector for energy spectroscopy and imaging, etc.

  9. Development and operation of tracking detectors in silicon technology for the LHCb upgrade

    CERN Document Server

    Rodriguez Perez, Pablo; Adeva, Bernardo

    The LHCb experiment is one of the four main experiments at the Large Hadron Collider (LHC) at CERN. It uses the energy density provided by the LHC to attempt to probe asymmetries between particles and antiparticles that can not be explained by the Standard Model, and thus provide evidence that would allow us to build a new model of fundamental physics. This thesis covers the author's work in the Silicon Tracker $(\\textit{ST})$ and VErtex LOcator $(\\textit{VELO})$ detectors of the LHCb experiment. The thesis explains the installation and commissioning of the $ST$, as well as the development of the slow control for the detector. The $ST$ is a silicon micro-strip detector which provides precise momentum measurements of ionizing particles coming from the collisions. The $ST$consists of two sub-detectors: the Tracker Turicensis $ (TT)$, located upstream of the 4 Tm dipole magnet covering the full acceptance of the experiment, and the Inner Tracker $(IT)$, which covers the region of highest particle density closest...

  10. Beam test characterization of CMS silicon pixel detectors for the phase-1 upgrade

    Science.gov (United States)

    Korol, I.

    2015-10-01

    The Silicon Pixel Detector forms the innermost part of the CMS tracking system and is critical to track and vertex reconstruction. Being in close proximity to the beam interaction point, it is exposed to the highest radiation levels in the silicon tracker. In order to preserve the tracking performance with the LHC luminosity increase which is foreseen for the next years, the CMS collaboration has decided to build a new pixel detector with four barrel layers mounted around a reduced diameter beam pipe, as compared to the present three layer pixel detector in the central region. A new digital version of the front-end readout chip has been designed and tested; it has increased data buffering and readout link speed to maintain high efficiency at increasing occupancy. In addition, it offers lower charge thresholds that will improve the tracking efficiency and position resolution. Single chip modules have been evaluated in the DESY electron test beam in terms of charge collection, noise, tracking efficiency and position resolution before and after irradiation with 24 GeV protons from the CERN Proton Synchroton equivalent to the fluence expected after 500 fb-1 of integrated luminosity in the fourth layer of the pixel tracker. High efficiency and an excellent position resolution have been observed which are well maintained even after the proton irradiation. The results are well described by the CMS pixel detector simulation.

  11. A Silicon Strip Detector for the Phase II High Luminosity Upgrade of the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    INSPIRE-00425747; McMahon, Stephen J

    2015-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider (LHC) that detects proton-proton collisions at a centre of mass energy of 14 TeV. The Semiconductor Tracker is part of the Inner Detector, implemented using silicon microstrip detectors with binary read-out, providing momentum measurement of charged particles with excellent resolution. The operation of the LHC and the ATLAS experiment started in 2010, with ten years of operation expected until major upgrades are needed in the accelerator and the experiments. The ATLAS tracker will need to be completely replaced due to the radiation damage and occupancy of some detector elements and the data links at high luminosities. These upgrades after the first ten years of operation are named the Phase-II Upgrade and involve a re-design of the LHC, resulting in the High Luminosity Large Hadron Collider (HL-LHC). This thesis presents the work carried out in the testing of the ATLAS Phase-II Upgrade electronic systems in the future strips tracker a...

  12. Study of timing performance of Silicon Photomultiplier and application for a Cherenkov detector

    CERN Document Server

    Ahmed, G S M; Marton, J; Suzuki, K

    2010-01-01

    Silicon photomultipliers are very versatile photo detectors due to their high photon detection efficiency, fast response, single photon counting capability, high amplification, and their insensitivity to magnetic fields. At our institute we are studying the performance of these photo detectors at various operating conditions. On the basis of the experience in the laboratory we built a prototype of a timing Cherenkov detector consisting of a quartz radiator with two $3\\times 3$ mm$^2$ MPPCs S10362-33-100C from Hamamatsu Photonics as photodetectors. The MPPC sensors were operated with Peltier cooling to minimize thermal noise and to avoid gain drifts. The test measurements at the DA$\\Phi$NE Beam-Test Facility (BTF) at the Laboratori Nazionali di Frascati (LNF) with pulsed 490 MeV electrons and the results on timing performance with Cherenkov photons are presented.

  13. Analysis of Silicon Photomultiplier Detector Waveforms from Cosmic Rays using Digital Signal Processing Techniques

    Science.gov (United States)

    Castro, Juan; Zavala, Favian; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    Silicon photomultiplier detectors exhibit high gain, low operating voltage, are insensitive to magnetic fields, and can detect light at the single photon level, making them very attractive for applications in fields such as particle physics, astrophysics, and medical physics. However, they exhibit effects that may prevent their optimal operation, including thermally induced high dark count rate, after pulse effects, and cross talk produced from photons in nearby pixels. In this presentation, we describe our coincidence setup using two scintillator pads and a Hamamatsu multipixel photon counter (MPPC) to gather cosmic ray produced signal pulses, and our methods of analysis for the detector waveforms. In particular, we discuss our methods of digitization, software implementation of low pass and Gaussian type filters, and the application of a domino ring sampler (DRS4) digitizing board to obtain signal waveforms to determine the operating characteristics for these detectors. Department of Education grant number P031S90007.

  14. Silicon microstrip detectors for digital mammography - evaluation and spatial resolution study

    CERN Document Server

    Mali, T; Mikuz, M

    2001-01-01

    Silicon microstrip detectors were used to build an experimental X-ray imaging setup. The detectors were used in an 'edge-on' geometry, with the photons hitting the detector from the side. Efficiencies up to 90% at 20 keV photon energy could be achieved. The system was tested using a standard mammographic phantom. Images of modeled microcalcifications with various diameters down to 200 mu m and images of modeled tumors were made. Spatial resolution of the system was studied on an X-ray test pattern with frequency of line-pairs between 1 and 10l p/mm. An appropriate scanning step combined with knowledge of the system's line spread function was used to deconvolve the measured image and increase the spatial resolution. In this way the effective pixel size was reduced as much as for a factor of approx 3.

  15. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Sevilla, S., E-mail: Sergio.Gonzalez.Sevilla@cern.ch [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Barbier, G. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Anghinolfi, F. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Cadoux, F.; Clark, A. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Dabrowski, W.; Dwuznik, M. [AGH University of Sceince and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Ferrere, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Garcia, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Ikegami, Y. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hara, K. [University of Tsukuba, School of Pure and Applied Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Jakobs, K. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Kaplon, J. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Koriki, T. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Lacasta, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); La Marra, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Marti i Garcia, S. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Parzefall, U. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Pohl, M. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Terada, S. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2011-04-21

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10{sup 34} cm{sup -2} s{sup -1}. It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown.

  16. Progresses in the pulse shape identification with silicon detectors within the FAZIA Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Bardelli, L., E-mail: bardelli@fi.infn.it [Universita degli Studi di Firenze (Italy); I.N.F.N Sezione di Firenze (Italy); Bini, M. [Universita degli Studi di Firenze (Italy); I.N.F.N Sezione di Firenze (Italy); Casini, G. [I.N.F.N Sezione di Firenze (Italy); Edelbruck, P. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Pasquali, G.; Poggi, G. [Universita degli Studi di Firenze (Italy); I.N.F.N Sezione di Firenze (Italy); Barlini, S. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Berjillos, R. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Borderie, B. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Bougault, R. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Bruno, M. [Universita degli Studi di Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Carboni, S. [Universita degli Studi di Firenze (Italy); I.N.F.N Sezione di Firenze (Italy); Chbihi, A. [Grand Accelerateur National d' Ions Lourds, Bd Henri Becquerel, BP 55027-14076 CAEN Cedex 05 (France); D' Agostino, M. [Universita degli Studi di Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Duenas, J.A. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Gautier, J.M. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Gramegna, F. [I.N.F.N. Laboratori Nazionali di Legnaro (Italy); Huss, C. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Kordyasz, A.J. [Heavy Ion Laboratory, Warsaw University, Pasteura 5a, 02-093 Warsaw (Poland); Kozik, T. [Jagiellonian University, Institute of Physics, Reymonta 4, 30-059 Krakow (Poland); and others

    2011-10-21

    In the last few years the FAZIA collaboration has been investigating the properties of silicon detectors - in particular the crystal orientation and resistivity non-uniformity - in order to better pin down the detector characteristics that influence their performances for particle identification using {Delta}E-E and Pulse Shape Analysis (PSA) techniques. In this paper we present the first particle identification results obtained with detectors selected for good resistivity uniformity and using a 'non-channeled' configuration. A new digital electronics was also designed for the R and D phase of FAZIA and was tested under beam for the first time. A quantitative procedure to measure the observed performances is applied in order to quantify the particle identification thresholds. Particle identification thresholds of {approx}2.5AMeV for Z{approx}3-10 have been reached with the studied reaction.

  17. Progresses in the pulse shape identification with silicon detectors within the FAZIA Collaboration

    Science.gov (United States)

    Bardelli, L.; Bini, M.; Casini, G.; Edelbruck, P.; Pasquali, G.; Poggi, G.; Barlini, S.; Berjillos, R.; Borderie, B.; Bougault, R.; Bruno, M.; Carboni, S.; Chbihi, A.; D'Agostino, M.; Dueñas, J. A.; Gautier, J. M.; Gramegna, F.; Huss, C.; Kordyasz, A. J.; Kozik, T.; Kravchuk, V. L.; Le Neindre, N.; Lopez, O.; Martel, I.; Morelli, L.; Ordine, A.; Rivet, M. F.; Rosato, E.; Scarlini, E.; Spadaccini, G.; Tobia, G.; Vigilante, M.; Wanlin, E.; Fazia Collaboration

    2011-10-01

    In the last few years the FAZIA [1] collaboration has been investigating the properties of silicon detectors - in particular the crystal orientation and resistivity non-uniformity - in order to better pin down the detector characteristics that influence their performances for particle identification using ΔE-E and Pulse Shape Analysis (PSA) techniques. In this paper we present the first particle identification results obtained with detectors selected for good resistivity uniformity and using a "non-channeled" configuration. A new digital electronics was also designed for the R&D phase of FAZIA and was tested under beam for the first time. A quantitative procedure to measure the observed performances is applied in order to quantify the particle identification thresholds. Particle identification thresholds of ˜2.5 AMeV for Z˜3-10 have been reached with the studied reaction.

  18. Development of the Pixelated Photon Detector Using Silicon on Insulator Technology for TOF-PET

    CERN Document Server

    Koyama, Akihiro; Takahashi, Hiroyuki; Orita, Tadashi; Arai, Yasuo; Kurachi, Ikuo; Miyoshi, Toshinobu; Nio, Daisuke; Hamasaki, Ryutaro

    2015-01-01

    To measure light emission pattern in scintillator, higher sensitivity and faster response are required to photo detector. Such as single photon avalanche diode (SPAD), conventional pixelated photo detector is operated at Geiger avalanche multiplication. However higher gain of SPAD seems very attractive, photon detection efficiency per unit area is low. This weak point is mainly caused by Geiger avalanche mechanism. To overcome these difficulties, we designed Pixelated Linear Avalanche Integration Detector using Silicon on Insulator technology (SOI-Plaid). To avoid dark count noise and dead time comes from quench circuit, we are planning to use APD in linear multiplication mode. SOI technology enables laminating readout circuit and APD layer, and high-speed and low-noise signal reading regardless smaller gain of linear APD. This study shows design of linear APD by using SOI fabrication process. We designed test element group (TEG) of linear APD and inspected optimal structure of linear APD.

  19. A radiation damage test for double-sided silicon strip detectors

    CERN Document Server

    Iwata, Y; Ikeda, M; Kitabayashi, H; Ohmoto, T; Kondo, T; Unno, Y; Terada, S; Kohriki, T; Takashima, R

    2002-01-01

    In order to investigate the p-side strip isolation, position sensitivity and charge collection of type-inverted double-sided silicon microstrip detectors, signal amplitude and charge sharing of adjacent strips were measured by using a laser test stand, following the irradiation with a flux of 3.8x10 sup 1 sup 3 /cm sup 2 of 12 GeV protons. The irradiated detectors indicated high bulk resistivity, which results in maintaining a position sensitivity of the ohmic contact side even below the full depletion voltage. This fact suggests a possibility of operation of a double-sided detector whose full depletion voltage becomes higher than its breakdown limit because of a radiation damage.

  20. A position sensitive silicon detector for AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    CERN Multimedia

    Gligorova, A

    2014-01-01

    The AEḡIS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is located at the Antiproton Decelerator (AD) at CERN and studies antimatter. The main goal of the AEḡIS experiment is to carry out the first measurement of the gravitational acceleration for antimatter in Earth’s gravitational field to a 1% relative precision. Such a measurement would test the Weak Equivalence Principle (WEP) of Einstein’s General Relativity. The gravitational acceleration for antihydrogen will be determined using a set of gravity measurement gratings (Moiré deflectometer) and a position sensitive detector. The vertical shift due to gravity of the falling antihydrogen atoms will be detected with a silicon strip detector, where the annihilation of antihydrogen will take place. This poster presents part of the development process of this detector.

  1. Directly-deposited blocking filters for high-performance silicon x-ray detectors

    Science.gov (United States)

    Bautz, M.; Kissel, S.; Masterson, R.; Ryu, K.; Suntharalingam, V.

    2016-07-01

    Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E X-ray spectral resolution of the detector is sensitive to the charge collection efficiency in the immediate vicinity of its entrance surface, so it is important that any filter layer is deposited without disturbing the electric field distribution there. We have successfully deposited aluminum blocking filters, ranging in thickness from 70 to 220nm, on back-illuminated CCD X-ray detectors passivated by means of molecular beam epitaxy. Here we report measurements showing that directly deposited filters have little or no effect on soft X-ray spectral resolution. We also find that in applications requiring very large optical density (> OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.

  2. High Quality Factor MBE-grown Aluminum on Silicon Planar Resonators

    Science.gov (United States)

    Megrant, Anthony; Chen, Z.; Chiaro, B.; Dunsworth, A.; Quintana, C.; Campbell, B.; Barends, R.; Chen, Y.; Fowler, A.; Hoi, I.-C.; Jeffrey, E.; Kelly, J.; Mutus, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Palmstrom, C.; Martinis, J. M.; Cleland, A. N.

    2015-03-01

    Linear arrays of planer Xmon qubit circuits fabricated using thin aluminum films on sapphire substrates have resulted in long coherence times and high fidelity gates. Scaling up to larger circuits, including two-dimensional qubit arrays, may however benefit from building circuits on silicon instead of sapphire substrates. I will present recent tests in this direction, reporting on measurements of superconducting coplanar waveguide resonators fabricated using aluminum films deposited on silicon in a molecular beam epitaxy (MBE) system. These resonators exhibit exceptional performance, with quality factors at low temperatures and single photon excitation energies exceeding 5x106. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office Grant W911NF-09-1-0375.

  3. Silicon Vertex Tracker for PHENIX Upgrade at RICH: Capabilities and Detector Technology

    Science.gov (United States)

    Nouicer, R.

    From the wealth of data obtained from the first three years of RHIC operation, the four RHIC experiments, BRAHMS, PHENIX, PHOBOS and STAR, have concluded that a high density partonic matter is formed at central Au+Au collisions at sNN = 200 GeV. The research focus now shifts from initial discovery to a detailed exploration of partonic matter. Particles carrying heavy flavor, i.e. charm or beauty quarks, are powerful tool for study the properties of the hot and dense medium created in high-energy nuclear collisions at RHIC. At the relatively low transverse momentum region, the collective motion of the heavy flavor will be a sensitive signal for the thermalization of light flavors. They also allow to probe the spin structure of the proton in a new and precise way. An upgrade of RHIC (RHIC-II) is intended for the second half of the decade, with a luminosity increase to about 20-40 times the design value of 8 × 10^26 cm-2 s-1 for Au+Au, and 2 × 10^32 cm-2 s-1 for polarized proton beams. The PHENIX collaboration plans to upgrade its experiment to exploit with an enhanced detector new physics then in reach. For this purpose, we are constructing the Silicon Vertex Tracker (VTX). The VTX detector will provide us the tool to measure new physics observables that are not accessible at the present RHIC or available only with very limited accuracy. These include a precise determination of the charm production cross section, transverse momentum spectra at high-pT region for particles carrying beauty quarks as well the detection of recoil jets in direct photon production. The VTX detector consists of four layers of barrel detectors located in the region of pseudorapidity |η| < 1.2 and covers almost 2π azimuthal angle. The pseudorapidity, η, is defined as η = -ln[tan(θ/2)], where θ is the emission angle relative to the beam axis. The inner two silicon barrels consists of silicon pixel sensors and their technology is the ALICE1LHCb sensor-readout hybrid, which was developed

  4. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2013-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  5. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Perez Cavalcanti, T; The ATLAS collaboration

    2012-01-01

    The hit signals read out from pixels on planar semi-conductor sensors are grouped into clusters, to reconstruct the location where a charged particle passed through. The resolution of the individual pixel sizes can be improved significantly using the information from the cluster of adjacent pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years giving an excellent performance. However, in dense environments, such as those inside high-energy jets, is likely that the charge deposited by two or more close-by tracks merges into one single cluster. A new pattern recognition algorithm based on neural network methods has been developed for the ATLAS Pixel Detector. This can identify the shared clusters, split them if necessary, and estimate the positions of all particles traversing the cluster. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurements to tracks within jets, and improves the positional accuracy with respect to stand...

  6. Fabrication of Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors

    Science.gov (United States)

    Crowe, E.; Bennett, C. L.; Chuss, D. T.; Denis, K. L.; Eimer, J.; Lourie, N.; Marriage, T.; Moseley, S. H.; Rostem, K.; Stevenson, T. R.; Towner, D.; U-Yen, K.; Wollack, E. J.

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for gravitational waves from a posited epoch of inflation early in the universe s history. We are currently developing detectors that address the challenges of this measurement by combining the excellent beam-forming attributes of feedhorns with the low-noise performance of Transition-Edge sensors. These detectors utilize a planar orthomode transducer that maps the horizontal and vertical linear polarized components in a dual-mode waveguide to separate microstrip lines. On-chip filters define the bandpass in each channel, and the signals are terminated in resistors that are thermally coupled to the transition-edge sensors operating at 150 mK.

  7. Silicon subsystem mechanical engineering closeout report for the Solenoidal Detector Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, J.; Christensen, R.W.; Hayman, G.; Jones, D.C.; Ross, R.; Wilds, W.; Yeamans, S.; Ziock, H.J.

    1995-02-01

    The authors group at Los Alamos National Laboratory was responsible for the mechanical engineering of the silicon tracking system of the Solenoidal Detector Collaboration (SDC) experiment of the Superconducting Super Collider (SSC) project. The responsibility included the overall design of the system from the mechanical point of view, development and integration of the cooling system, which was required to remove the heat generated by the front-end electronics, assembly of the system to extremely tight tolerances, and verification that the construction and operational stability and alignment tolerances would be met. A detailed description of the concepts they developed and the work they performed can be found in a report titled ``Silicon Subsystem Mechanical Engineering Work for the Solenoidal Detector Collaboration`` which they submitted to the SSC Laboratory. In addition to the mechanical engineering work, they also performed activation, background, and shielding studies for the SSC program. Much of the work they performed was potentially useful for other future high energy physics (HEP) projects. This report describes the closeout work that was performed for the Los Alamos SDC project. Four major tasks were identified for completion: (1) integration of the semi-automated assembly station being developed and construction of a precision part to demonstrate solutions to important general assembly problems (the station was designed to build precision silicon tracker subassemblies); (2) build a state-of-the-art TV holography (TVH) system to use for detector assembly stability tests; (3) design, build, and test a water based cooling system for a full silicon shell prototype; and (4) complete and document the activation, background, and shielding studies, which is covered in a separate report.

  8. Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell

    DEFF Research Database (Denmark)

    Chen, Leifeng; Yu, Hua; Zhong, Jiasong

    2015-01-01

    The photovoltaic conversion efficiency of a solar cell fabricated by a simple electrophoretic method with a planar transparent hybrid of graphenes (GPs) and single wall carbon nanotubes (SCNTs)/n-type silicon heterojunction was significantly increased compared to GPs/n-Si and SCNTs/n-Si solar cells...... by doping the hybrid film with Au nanoparticles, and the power conversion efficiency can be increased to 8.8%. The fabrication processes are simple, low cost and fit for scaling. The results demonstrate that planar transparent hybrid of GPs/SCNTs/n-Si heterojunction is efficient for solar energy conversion...

  9. Influence of crystal-orientation effects on pulse-shape-based identification of heavy-ions stopped in silicon detectors

    Science.gov (United States)

    Bardelli, L.; Bini, M.; Casini, G.; Pasquali, G.; Poggi, G.; Barlini, S.; Becla, A.; Berjillos, R.; Borderie, B.; Bougault, R.; Bruno, M.; Cinausero, M.; D'Agostino, M.; de Sanctis, J.; Dueñas, J. A.; Edelbruck, P.; Geraci, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lavergne, L.; Marini, P.; Nannini, A.; Negoita, F.; Olmi, A.; Ordine, A.; Piantelli, S.; Rauly, E.; Rivet, M. F.; Rosato, E.; Scian, C.; Stefanini, A. A.; Vannini, G.; Velica, S.; Vigilante, M.; Fazia Collaboration

    2009-07-01

    Current and charge signals have been collected for Se ions at 408 MeV, S at 160 MeV and Ni at 703 MeV, all stopped in silicon detectors. Some detectors were cut 0∘ off the axis and some off the axis. Important effects on the shape of the silicon current and charge signals have been observed, depending on the orientation of the impinging ion relative to the crystal axes and planes. A degradation of the energy and risetime resolution of about a factor ˜3 with respect to the measured optimal values (for example 7∘ off-axis orientation) is observed for ion impinging directions close to crystal axes and/or planes, i.e. the common scenario for normal incidence on 0∘ cut detectors. For Pulse Shape Analysis applications, the necessity of using such "random" oriented silicon detectors is demonstrated.

  10. Influence of crystal-orientation effects on pulse-shape-based identification of heavy-ions stopped in silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bardelli, L. [University of Florence (Italy); I.N.F.N. Sezione di Firenze (Italy)], E-mail: bardelli@fi.infn.it; Bini, M. [University of Florence (Italy); I.N.F.N. Sezione di Firenze (Italy); Casini, G. [I.N.F.N. Sezione di Firenze (Italy); Pasquali, G.; Poggi, G. [University of Florence (Italy); I.N.F.N. Sezione di Firenze (Italy); Barlini, S. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Becla, A. [Jagiellonian University, Institute of Physics, Reymonta 4, 30-059 Krakow (Poland); Berjillos, R. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Borderie, B. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Bougault, R. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Bruno, M. [University of Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Cinausero, M. [I.N.F.N. Laboratori Nazionali di Legnaro (Italy); D' Agostino, M.; De Sanctis, J. [University of Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Duenas, J.A. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Edelbruck, P. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Geraci, E. [University of Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Gramegna, F. [I.N.F.N. Laboratori Nazionali di Legnaro (Italy); Kordyasz, A. [Heavy Ion Laboratory, Warsaw University, Pasteura 5a, 02-093 Warsaw (Poland); Kozik, T. [Jagiellonian University, Institute of Physics, Reymonta 4, 30-059 Krakow (Poland)] (and others)

    2009-07-01

    Current and charge signals have been collected for Se ions at 408 MeV, S at 160 MeV and Ni at 703 MeV, all stopped in silicon detectors. Some detectors were cut 0 deg. off the <111> axis and some off the <100> axis. Important effects on the shape of the silicon current and charge signals have been observed, depending on the orientation of the impinging ion relative to the crystal axes and planes. A degradation of the energy and risetime resolution of about a factor {approx}3 with respect to the measured optimal values (for example 7 deg. off-axis orientation) is observed for ion impinging directions close to crystal axes and/or planes, i.e. the common scenario for normal incidence on 0 deg. cut detectors. For Pulse Shape Analysis applications, the necessity of using such 'random' oriented silicon detectors is demonstrated.

  11. Characterization of Ni/SnPb-TiW/Pt Flip Chip Interconnections in Silicon Pixel Detector Modules

    CERN Document Server

    Karadzhinova, Aneliya; Härkönen, Jaakko; Luukka, Panja-riina; Mäenpää, Teppo; Tuominen, Eija; Haeggstrom, Edward; Kalliopuska, Juha; Vahanen, Sami; Kassamakov, Ivan

    2014-01-01

    In contemporary high energy physics experiments, silicon detectors are essential for recording the trajectory of new particles generated by multiple simultaneous collisions. Modern particle tracking systems may feature 100 million channels, or pixels, which need to be individually connected to read-out chains. Silicon pixel detectors are typically connected to readout chips by flip-chip bonding using solder bumps. High-quality electro-mechanical flip-chip interconnects minimizes the number of dead read-out channels in the particle tracking system. Furthermore, the detector modules must endure handling during installation and withstand heat generation and cooling during operation. Silicon pixel detector modules were constructed by flip-chip bonding 16 readout chips to a single sensor. Eutectic SnPb solder bumps were deposited on the readout chips and the sensor chips were coated with TiW/Pt thin film UBM (under bump metallization). The modules were assembled at Advacam Ltd, Finland. We studied the uniformity o...

  12. A two dimensional silicon detectors array for quality assurance in stereotactic radiotherapy: MagicPlate-512

    Energy Technology Data Exchange (ETDEWEB)

    Aldosari, A. H.; Petasecca, M., E-mail: marcop@uow.edu.au; Espinoza, A.; Newall, M.; Fuduli, I.; Porumb, C.; Alshaikh, S.; Alrowaili, Z. A.; Weaver, M.; Metcalfe, P.; Lerch, M. L. F.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500 (Australia); Carolan, M. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia and Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500 (Australia); Perevertaylo, V. [SPA-BIT, KIEV 02232 (Ukraine)

    2014-09-15

    Purpose: Silicon diode arrays are commonly implemented in radiation therapy quality assurance applications as they have a number of advantages including: real time operation (compared to the film) and high spatial resolution, large dynamic range and small size (compared to ionizing chambers). Most diode arrays have detector pitch that is too coarse for routine use in small field applications. The goal of this work is to characterize the two-dimensional monolithic silicon diode array named “MagicPlate-512” (MP512) designed for QA in stereotactic body radiation therapy (SBRT) and stereotactic radio surgery (SRS). Methods: MP512 is a silicon monolithic detector manufactured on ap-type substrate. An array contains of 512 pixels with size 0.5 × 0.5 mm{sup 2} and pitch 2 mm with an overall dimension of 52 × 52 mm{sup 2}. The MP512 monolithic detector is wire bonded on a printed circuit board 0.5 mm thick and covered by a thin layer of raisin to preserve the silicon detector from moisture and chemical contamination and to protect the bonding wires. Characterization of the silicon monolithic diode array response was performed, and included pixels response uniformity, dose linearity, percent depth dose, output factor, and beam profiling for beam sizes relevant to SBRT and SRS and depth dose response in comparison with ionization chamber. Results: MP512 shows a good dose linearity (R{sup 2} = 0.998) and repeatability within 0.2%. The measured depth dose response for field size of 10 × 10 cm{sup 2} agreed to within 1.3%, when compared to a CC13 ionization chamber for depths in PMMA up to 30 cm. The output factor of a 6 MV Varian 2100EX medical linac beam measured by MP512 at the isocenter agrees to within 2% when compared to PTW diamond, Scanditronix point EDD-2 diode and MOSkin detectors for field sizes down to 1 × 1 cm{sup 2}. An over response of 4% was observed for square beam size smaller than 1 cm when compared to EBT3 films, while the beam profiles (FWHM) of MP

  13. Fabrication of a Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors

    Science.gov (United States)

    Crowe, Erik J.; Bennett, Charles L.; Chuss, David T.; Denis, Kevin L.; Eimer, Joseph; Lourie, Nathan; Marriage, Tobias; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas R.; Towner, Deborah; U-Yen, Kongpop

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for evidence for gravitational waves from a posited epoch of inflation early in the Universe s history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with excellent control of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs we present work on the fabrication of micromachined silicon, producing conductive quarter-wave backshort assemblies for the CLASS 40 GHz focal plane. Each 40 GHz backshort assembly consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through-wafer vias to provide a 2.04 mm long square waveguide delay section. The third wafer terminates the waveguide delay in a short. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detector chips with the quarter-wave backshort assemblies.

  14. The spatial resolution of silicon-based electron detectors in {beta}-autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Cabello, Jorge; Wells, Kevin [Centre for Vision, Speech and Signal Processing, Faculty of Electronics and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom)], E-mail: jcabello@ific.uv.es, E-mail: k.wells@surrey.ac.uk

    2010-03-21

    Thin tissue autoradiography is an imaging modality where ex-vivo tissue sections are placed in direct contact with autoradiographic film. These tissue sections contain a radiolabelled ligand bound to a specific biomolecule under study. This radioligand emits {beta} - or {beta}+ particles ionizing silver halide crystals in the film. High spatial resolution autoradiograms are obtained using low energy radioisotopes, such as {sup 3}H where an intrinsic 0.1-1 {mu}m spatial resolution can be achieved. Several digital alternatives have been presented over the past few years to replace conventional film but their spatial resolution has yet to equal film, although silicon-based imaging technologies have demonstrated higher sensitivity compared to conventional film. It will be shown in this work how pixel size is a critical parameter for achieving high spatial resolution for low energy uncollimated beta imaging. In this work we also examine the confounding factors impeding silicon-based technologies with respect to spatial resolution. The study considers charge diffusion in silicon and detector noise, and this is applied to a range of radioisotopes typically used in autoradiography. Finally an optimal detector geometry to obtain the best possible spatial resolution for a specific technology and a specific radioisotope is suggested.

  15. 3D silicon pixel detectors for the High-Luminosity LHC

    CERN Document Server

    Lange, J.

    2016-01-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50x250 um2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12--15 mW/cm2 at a fluence of about 1e16 neq/cm2, measured at -25 degree C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50x50 and 25x100 um2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1--2V before irradiation.

  16. Development of the silicon Multiplicity Detector for the NA50 experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Alessandro, B. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Alexeline, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Baglin, C. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Bisi, V. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bonazzola, G. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bonello, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bussiere, A. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Capony, V. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Crovato, R. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Dabrowski, W. [Faculty of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Cracow (Poland); De Remigis, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); De Witt, J. [SCIPP, Santa Cruz, CA (United States); Forlen, M. [Grenoble-1 Univ., 74 -Annecy (France). Lab. de Physique des Particules; Giubellino, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Grybos, P. [Faculty of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Cracow (Poland); Idzik, M. [Faculty of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Cracow (Poland); Kossakowski, R. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Marzari-Chiesa, A. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Masera, M. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Monteno, M. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Prado da Silva, W. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Ramello, L. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Rato Mendes, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Riccati, L. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Sartori, M.S. [Istituto Nazionale di Fisica Nucleare, Turin (Italy)

    1995-11-01

    We have designed a silicon microstrip detector to measure angular distribution and multiplicity of charged particles produced in high-energy Pb-Pb interactions for the NA50 experiment.NA50 will investigate the production of resonances decaying to dimuons at the CERN SpS. Given the low cross-section for these reactions, the experiment will have to function at very high rate, while the need to limit the background due to decays of {pi} and K mesons imposes an absorber very close to the target, resulting in a very short space available for the multiplicity detector.The multiplicity detector will therefore have to be very fast (dead time below 50ns), radiation resistant (up to the Mrad level as dose and up to more than 10{sup 13}particles/cm{sup 2} as non-ionizing damage), compact (less than 12cm along the beam) and of high granularity (in order to achieve a good resolution in central collisions with up to 1000 particles in the acceptance). The conditions on noise, speed and radiation hardness are comparable to the ones foreseen at the future Large Hadron Collider at CERN.We present the detector design and the first results on the components of the system which have been produced and tested up to now. In particular, we report on the performance achieved by the first complete detector modules (including two full-custom VLSI ASICs) and by the transputer-based readout system. (orig.).

  17. Performance of CMS silicon microstrip detectors with the APV6 readout chip

    CERN Document Server

    Meschini, M; Angarano, M M; Azzi, P; Babucci, E; Bacchetta, N; Bader, A J; Bagliesi, G; Basti, A; Biggeri, U; Bilei, G M; Bisello, D; Boemi, D; Bosi, F; Borrello, L; Bozzi, C; Braibant, S; Breuker, Horst; Bruzzi, Mara; Buffini, A; Busoni, S; Candelori, A; Caner, A; Castaldi, R; Castro, A; Catacchini, E; Checcucci, B; Ciampolini, P; Civinini, C; Creanza, D; D'Alessandro, R; Da Rold, M; Demaria, N; De Palma, M; Dell'Orso, R; Della Marina, R; Dutta, S; Eklund, C; Peisert, Anna; Feld, L; Fiore, L; Focardi, E; French, M; Freudenreich, Klaus; Fürtjes, A; Giassi, A; Giorgi, M A; Giraldo, A; Glessing, B; Gu, W H; Hall, G; Hammarström, R; Hebbeker, T; Hrubec, Josef; Huhtinen, M; Kaminski, A; Karimäki, V; Saint-Koenig, M; Krammer, Manfred; Lariccia, P; Lenzi, M; Loreti, M; Lübelsmeyer, K; Lustermann, W; Mättig, P; Maggi, G; Mannelli, M; Mantovani, G C; Marchioro, A; Mariotti, C; Martignon, G; McEvoy, B; Messineo, A; My, S; Paccagnella, A; Palla, Fabrizio; Pandoulas, D; Papi, A; Parrini, G; Passeri, D; Pieri, M; Piperov, S; Potenza, R; Radicci, V; Raffaelli, F; Raymond, M; Santocchia, A; Schmitt, B; Selvaggi, G; Servoli, L; Sguazzoni, G; Siedling, R; Silvestris, L; Skog, K; Starodumov, Andrei; Stavitski, I; Stefanini, G; Tempesta, P; Tonelli, G; Tricomi, A; Tuuva, T; Vannini, C; Verdini, P G; Viertel, Gert M; Xie, Z; Li Ya Hong; Watts, S; Wittmer, B

    2000-01-01

    We present results obtained with full-size wedge silicon microstrip detectors bonded to APV6 (Raymond et al., Proceedings of the 3rd Workshop on Electronics for LHC Experiments, CERN/LHCC/97-60) readout chips. We used two identical modules, each consisting of two crystals bonded together. One module was irradiated with 1.7*10/sup 14/ neutrons/cm/sup 2/. The detectors have been characterized both in the laboratory and by exposing them to a beam of minimum ionizing particles. The results obtained are a good starting point for the evaluation of the performance of the "ensemble" detector plus readout chip in a version very similar to the final production one. We detected the signal from minimum ionizing particles with a signal-to- noise ratio ranging from 9.3 for the irradiated detector up to 20.5 for the non-irradiated detector, provided the parameters of the readout chips are carefully tuned. (9 refs).

  18. Performance of CMS silicon microstrip detectors with the APV6 readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Meschini, M. E-mail: meschini@fi.infn.it; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D' Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell' Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; McEvoy, B.; Messineo, A.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Li Yahong; Watts, S.; Wittmer, B

    2000-06-01

    We present results obtained with full-size wedge silicon microstrip detectors bonded to APV6 (Raymond et al., Proceedings of the 3rd Workshop on Electronics for LHC Experiments, CERN/LHCC/97-60) readout chips. We used two identical modules, each consisting of two crystals bonded together. One module was irradiated with 1.7x10{sup 14} neutrons/cm{sup 2}. The detectors have been characterized both in the laboratory and by exposing them to a beam of minimum ionizing particles. The results obtained are a good starting point for the evaluation of the performance of the 'ensemble' detector plus readout chip in a version very similar to the final production one. We detected the signal from minimum ionizing particles with a signal-to-noise ratio ranging from 9.3 for the irradiated detector up to 20.5 for the non-irradiated detector, provided the parameters of the readout chips are carefully tuned.

  19. HV Test of the CTS Edgeless Silicon Detector in Vacuum and Close to a Grounded Plate

    CERN Document Server

    Eremin, Vladimir; Ruggiero, Gennaro

    2007-01-01

    The TOTEM Roman Pot Silicon sensors will be operated in vacuum to minimise the mechanical stress of the thin metal window which separates the detector package from the ultra high vacuum of the beam. To approach the beam axis as close as possible the detectors will be mounted with their edge at a distance of the order 100 - 200 um from the thin metal window. As the detectors will be run in overdepletion mode to allow the full charge collection within the shaping time of the readout electronics, there will be a potential drop of more than 100 V across their edge. Moreover this potential drop might need to be further increased with the accumulated radiation dose. The main goals of the tests described in this note are: - Characterisation of the voltage-current characteristics when the detector edge is in the direct vicinity of a grounded metal plate which simulates the above mentioned vacuum window; - Demonstration of the detector operation in vacuum at different pressures.

  20. 3D track reconstruction capability of a silicon hybrid active pixel detector

    Science.gov (United States)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri; Burian, Petr; Broulim, Pavel; Jakubek, Jan

    2017-06-01

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 × 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for "4D" particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation ( x, y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm.