Planar real polynomial differential systems of degree n > 3 having a weak focus of high order
International Nuclear Information System (INIS)
Llibre, J.; Rabanal, R.
2008-06-01
We construct planar polynomial differential systems of even (respectively odd) degree n > 3, of the form linear plus a nonlinear homogeneous part of degree n having a weak focus of order n 2 -1 (respectively (n 2 -1)/2 ) at the origin. As far as we know this provides the highest order known until now for a weak focus of a polynomial differential system of arbitrary degree n. (author)
Chromatic polynomials of planar triangulations, the Tutte upper bound and chromatic zeros
International Nuclear Information System (INIS)
Shrock, Robert; Xu Yan
2012-01-01
Tutte proved that if G pt is a planar triangulation and P(G pt , q) is its chromatic polynomial, then |P(G pt , τ + 1)| ⩽ (τ − 1) n−5 , where τ=(1+√5 )/2 and n is the number of vertices in G pt . Here we study the ratio r(G pt ) = |P(G pt , τ + 1)|/(τ − 1) n−5 for a variety of planar triangulations. We construct infinite recursive families of planar triangulations G pt,m depending on a parameter m linearly related to n and show that if P(G pt,m , q) only involves a single power of a polynomial, then r(G pt,m ) approaches zero exponentially fast as n → ∞. We also construct infinite recursive families for which P(G pt,m , q) is a sum of powers of certain functions and show that for these, r(G pt,m ) may approach a finite nonzero constant as n → ∞. The connection between the Tutte upper bound and the observed chromatic zero(s) near to τ + 1 is investigated. We report the first known graph for which the zero(s) closest to τ + 1 is not real, but instead is a complex-conjugate pair. Finally, we discuss connections with the nonzero ground-state entropy of the Potts antiferromagnet on these families of graphs. (paper)
Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11
International Nuclear Information System (INIS)
Wang, S.; Yu, P.
2006-01-01
In this article, a systematic procedure has been explored to studying general Z q -equivariant planar polynomial Hamiltonian vector fields for the maximal number of closed orbits and the maximal number of limit cycles after perturbation. Following the procedure by taking special consideration of Z 12 -equivariant vector fields of degree 11, the maximal of 99 closed orbits are obtained under a well-defined coefficient group. Consequently, perturbation parameter control in limit cycle computation leads to the existence of 121 limit cycles in the perturbed Hamiltonian vector field, which gives rise to the lower bound of Hilbert number of 11th-order systems as H(11) ≥ 11 2 . Two conjectures are proposed regarding the maximal number of closed orbits for equivariant polynomial Hamiltonian vector fields and the maximal number of limit cycles bifurcated from the well defined Hamiltonian vector fields after perturbation
Coexistence of algebraic and non-algebraic limit cycles for quintic polynomial differential systems
Directory of Open Access Journals (Sweden)
Ahmed Bendjeddou
2017-03-01
Full Text Available In the work by Gine and Grau [11], a planar differential system of degree nine admitting a nested configuration formed by an algebraic and a non-algebraic limit cycles explicitly given was presented. As an improvement, we obtain by a new method a similar result for a family of quintic polynomial differential systems.
Cubic and quartic planar differential systems with exact algebraic limit cycles
Directory of Open Access Journals (Sweden)
Ahmed Bendjeddou
2011-01-01
Full Text Available We construct cubic and quartic polynomial planar differential systems with exact limit cycles that are ovals of algebraic real curves of degree four. The result obtained for the cubic case generalizes a proposition of [9]. For the quartic case, we deduce for the first time a class of systems with four algebraic limit cycles and another for which nested configurations of limit cycles occur.
Solving polynomial systems using no-root elimination blending schemes
Barton, Michael
2011-12-01
Searching for the roots of (piecewise) polynomial systems of equations is a crucial problem in computer-aided design (CAD), and an efficient solution is in strong demand. Subdivision solvers are frequently used to achieve this goal; however, the subdivision process is expensive, and a vast number of subdivisions is to be expected, especially for higher-dimensional systems. Two blending schemes that efficiently reveal domains that cannot contribute by any root, and therefore significantly reduce the number of subdivisions, are proposed. Using a simple linear blend of functions of the given polynomial system, a function is sought after to be no-root contributing, with all control points of its BernsteinBézier representation of the same sign. If such a function exists, the domain is purged away from the subdivision process. The applicability is demonstrated on several CAD benchmark problems, namely surfacesurfacesurface intersection (SSSI) and surfacecurve intersection (SCI) problems, computation of the Hausdorff distance of two planar curves, or some kinematic-inspired tasks. © 2011 Elsevier Ltd. All rights reserved.
On the number of polynomial solutions of Bernoulli and Abel polynomial differential equations
Cima, A.; Gasull, A.; Mañosas, F.
2017-12-01
In this paper we determine the maximum number of polynomial solutions of Bernoulli differential equations and of some integrable polynomial Abel differential equations. As far as we know, the tools used to prove our results have not been utilized before for studying this type of questions. We show that the addressed problems can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then we approach to these equations either applying several tools developed to study extended Fermat problems for polynomial equations, or reducing the question to the computation of the genus of some associated planar algebraic curves.
Discrete-time state estimation for stochastic polynomial systems over polynomial observations
Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.
2018-07-01
This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.
Many-body orthogonal polynomial systems
International Nuclear Information System (INIS)
Witte, N.S.
1997-03-01
The fundamental methods employed in the moment problem, involving orthogonal polynomial systems, the Lanczos algorithm, continued fraction analysis and Pade approximants has been combined with a cumulant approach and applied to the extensive many-body problem in physics. This has yielded many new exact results for many-body systems in the thermodynamic limit - for the ground state energy, for excited state gaps, for arbitrary ground state avenges - and are of a nonperturbative nature. These results flow from a confluence property of the three-term recurrence coefficients arising and define a general class of many-body orthogonal polynomials. These theorems constitute an analytical solution to the Lanczos algorithm in that they are expressed in terms of the three-term recurrence coefficients α and β. These results can also be applied approximately for non-solvable models in the form of an expansion, in a descending series of the system size. The zeroth order order this expansion is just the manifestation of the central limit theorem in which a Gaussian measure and hermite polynomials arise. The first order represents the first non-trivial order, in which classical distribution functions like the binomial distributions arise and the associated class of orthogonal polynomials are Meixner polynomials. Amongst examples of systems which have infinite order in the expansion are q-orthogonal polynomials where q depends on the system size in a particular way. (author)
Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach
Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer
2018-02-01
This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.
International Nuclear Information System (INIS)
Shrock, Robert; Xu Yan
2012-01-01
We present an analysis of the structure and properties of chromatic polynomials P(G pt,m-vector, q) of one-parameter and multi-parameter families of planar triangulation graphs G pt,m-vector , where m-vector = (m 1 ,…,m p ) is a vector of integer parameters. We use these to study the ratio of |P(G pt,m-vector, τ+1)| to the Tutte upper bound (τ − 1) n−5 , where τ=(1+√5)/2 and n is the number of vertices in G pt,m-vector . In particular, we calculate limiting values of this ratio as n → ∞ for various families of planar triangulations. We also use our calculations to analyze zeros of these chromatic polynomials. We study a large class of families G pt,m-vector with p = 1 and p = 2 and show that these have a structure of the form P(G pt,m ,q) = c G pt ,1 λ 1 m + c G pt ,2 λ 2 m + c G pt ,3 λ 3 m for p = 1, where λ 1 = q − 2, λ 2 = q − 3, and λ 3 = −1, and P(G pt,m-vector ,q) =Σ i 1 =1 3 Σ i 2 =1 3 c G pt ,i 1 i 2 λ i 1 m 1 λ i 2 m 2 for p = 2. We derive properties of the coefficients c G pt ,i-vector and show that P(G pt,m-vector ,q) has a real chromatic zero that approaches (1/2)(3+√5) as one or more of the m i → ∞. The generalization to p ⩾ 3 is given. Further, we present a one-parameter family of planar triangulations with real zeros that approach 3 from below as m → ∞. Implications for the ground-state entropy of the Potts antiferromagnet are discussed. (paper)
Automated curved planar reformation of 3D spine images
International Nuclear Information System (INIS)
Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo
2005-01-01
Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks
Algebraic limit cycles in polynomial systems of differential equations
International Nuclear Information System (INIS)
Llibre, Jaume; Zhao Yulin
2007-01-01
Using elementary tools we construct cubic polynomial systems of differential equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct a cubic polynomial system of differential equations having an algebraic homoclinic loop of degree 3. Moreover, we show that there are polynomial systems of differential equations of arbitrary degree that have algebraic limit cycles of degree 3, as well as give an example of a cubic polynomial system of differential equations with two algebraic limit cycles of degree 4
Morphing Planar Graph Drawings with a Polynomial Number of Steps
DEFF Research Database (Denmark)
Alamdari, Soroush; Angelini, Patrizio; Chan, Timothy M.
2013-01-01
In 1944, Cairns proved the following theorem: given any two straight-line planar drawings of a triangulation with the same outer face, there exists a morph (i.e., a continuous transformation) between the two drawings so that the drawing remains straight-line planar at all times. Cairns’s original...
Solution of linear transport equation using Chebyshev polynomials and Laplace transform
International Nuclear Information System (INIS)
Cardona, A.V.; Vilhena, M.T.M.B. de
1994-01-01
The Chebyshev polynomials and the Laplace transform are combined to solve, analytically, the linear transport equation in planar geometry, considering isotropic scattering and the one-group model. Numerical simulation is presented. (author)
Polynomial algebra of discrete models in systems biology.
Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard
2010-07-01
An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.
Dynamic balancing of planar mechanisms using toric geometry
Moore, Brian; Schicho, Josef; Gosselin, Clement M.
2007-01-01
In this paper, a new method to determine the complete set of dynamically balanced planar four-bar mechanims is presented. Using complex variables to model the kinematics of the mechanism, the dynamic balancing constraints are written as algebraic equations over complex variables and joint angular velocities. After elimination of the joint angular velocity variables, the problem is formulated as a problem of factorization of Laurent polynomials. Using toric polynomial division, necessary and s...
Freud, Géza
1971-01-01
Orthogonal Polynomials contains an up-to-date survey of the general theory of orthogonal polynomials. It deals with the problem of polynomials and reveals that the sequence of these polynomials forms an orthogonal system with respect to a non-negative m-distribution defined on the real numerical axis. Comprised of five chapters, the book begins with the fundamental properties of orthogonal polynomials. After discussing the momentum problem, it then explains the quadrature procedure, the convergence theory, and G. Szegő's theory. This book is useful for those who intend to use it as referenc
H∞ Control of Polynomial Fuzzy Systems: A Sum of Squares Approach
Directory of Open Access Journals (Sweden)
Bomo W. Sanjaya
2014-07-01
Full Text Available This paper proposes the control design ofa nonlinear polynomial fuzzy system with H∞ performance objective using a sum of squares (SOS approach. Fuzzy model and controller are represented by a polynomial fuzzy model and controller. The design condition is obtained by using polynomial Lyapunov functions that not only guarantee stability but also satisfy the H∞ performance objective. The design condition is represented in terms of an SOS that can be numerically solved via the SOSTOOLS. A simulation study is presented to show the effectiveness of the SOS-based H∞ control designfor nonlinear polynomial fuzzy systems.
Ratio asymptotics of Hermite-Pade polynomials for Nikishin systems
International Nuclear Information System (INIS)
Aptekarev, A I; Lopez, Guillermo L; Rocha, I A
2005-01-01
The existence of ratio asymptotics is proved for a sequence of multiple orthogonal polynomials with orthogonality relations distributed among a system of m finite Borel measures with support on a bounded interval of the real line which form a so-called Nikishin system. For m=1 this result reduces to Rakhmanov's celebrated theorem on the ratio asymptotics for orthogonal polynomials on the real line.
Stable piecewise polynomial vector fields
Directory of Open Access Journals (Sweden)
Claudio Pessoa
2012-09-01
Full Text Available Let $N={y>0}$ and $S={y<0}$ be the semi-planes of $mathbb{R}^2$ having as common boundary the line $D={y=0}$. Let $X$ and $Y$ be polynomial vector fields defined in $N$ and $S$, respectively, leading to a discontinuous piecewise polynomial vector field $Z=(X,Y$. This work pursues the stability and the transition analysis of solutions of $Z$ between $N$ and $S$, started by Filippov (1988 and Kozlova (1984 and reformulated by Sotomayor-Teixeira (1995 in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields $Z_{epsilon}$, defined by averaging $X$ and $Y$. This family approaches $Z$ when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002 providing conditions on $(X,Y$ for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on $mathbb{R}^2$. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.
STABILITY SYSTEMS VIA HURWITZ POLYNOMIALS
Directory of Open Access Journals (Sweden)
BALTAZAR AGUIRRE HERNÁNDEZ
2017-01-01
Full Text Available To analyze the stability of a linear system of differential equations ẋ = Ax we can study the location of the roots of the characteristic polynomial pA(t associated with the matrix A. We present various criteria - algebraic and geometric - that help us to determine where the roots are located without calculating them directly.
Exact polynomial solutions of second order differential equations and their applications
International Nuclear Information System (INIS)
Zhang Yaozhong
2012-01-01
We find all polynomials Z(z) such that the differential equation where X(z), Y(z), Z(z) are polynomials of degree at most 4, 3, 2, respectively, has polynomial solutions S(z) = ∏ n i=1 (z − z i ) of degree n with distinct roots z i . We derive a set of n algebraic equations which determine these roots. We also find all polynomials Z(z) which give polynomial solutions to the differential equation when the coefficients of X(z) and Y(z) are algebraically dependent. As applications to our general results, we obtain the exact (closed-form) solutions of the Schrödinger-type differential equations describing: (1) two Coulombically repelling electrons on a sphere; (2) Schrödinger equation from the kink stability analysis of φ 6 -type field theory; (3) static perturbations for the non-extremal Reissner–Nordström solution; (4) planar Dirac electron in Coulomb and magnetic fields; and (5) O(N) invariant decatic anharmonic oscillator. (paper)
Connected feedback vertex set in planar graphs
Grigoriev, Alexander; Sitters, René
2010-01-01
We study the problem of finding a minimum tree spanning the faces of a given planar graph. We show that a constant factor approximation follows from the unconnected version if the minimum degree is 3. Moreover, we present a polynomial time approximation scheme for both the connected and unconnected
Algebraic polynomial system solving and applications
Bleylevens, I.W.M.
2010-01-01
The problem of computing the solutions of a system of multivariate polynomial equations can be approached by the Stetter-Möller matrix method which casts the problem into a large eigenvalue problem. This Stetter-Möller matrix method forms the starting point for the development of computational
Constant Width Planar Computation Characterizes ACC0
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt
2006-01-01
We obtain a characterization of ACC0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...
H∞ Control of Polynomial Fuzzy Systems: A Sum of Squares Approach
Bomo W. Sanjaya; Bambang Riyanto Trilaksono; Arief Syaichu-Rohman
2014-01-01
This paper proposes the control design ofa nonlinear polynomial fuzzy system with H∞ performance objective using a sum of squares (SOS) approach. Fuzzy model and controller are represented by a polynomial fuzzy model and controller. The design condition is obtained by using polynomial Lyapunov functions that not only guarantee stability but also satisfy the H∞ performance objective. The design condition is represented in terms of an SOS that can be numerically solved via the SOSTOOLS. A simul...
Recurrence approach and higher order polynomial algebras for superintegrable monopole systems
Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong
2018-05-01
We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.
Skew-orthogonal polynomials, differential systems and random matrix theory
International Nuclear Information System (INIS)
Ghosh, S.
2007-01-01
We study skew-orthogonal polynomials with respect to the weight function exp[-2V (x)], with V (x) = Σ K=1 2d (u K /K)x K , u 2d > 0, d > 0. A finite subsequence of such skew-orthogonal polynomials arising in the study of Orthogonal and Symplectic ensembles of random matrices, satisfy a system of differential-difference-deformation equation. The vectors formed by such subsequence has the rank equal to the degree of the potential in the quaternion sense. These solutions satisfy certain compatibility condition and hence admit a simultaneous fundamental system of solutions. (author)
A general U-block model-based design procedure for nonlinear polynomial control systems
Zhu, Q. M.; Zhao, D. Y.; Zhang, Jianhua
2016-10-01
The proposition of U-model concept (in terms of 'providing concise and applicable solutions for complex problems') and a corresponding basic U-control design algorithm was originated in the first author's PhD thesis. The term of U-model appeared (not rigorously defined) for the first time in the first author's other journal paper, which established a framework for using linear polynomial control system design approaches to design nonlinear polynomial control systems (in brief, linear polynomial approaches → nonlinear polynomial plants). This paper represents the next milestone work - using linear state-space approaches to design nonlinear polynomial control systems (in brief, linear state-space approaches → nonlinear polynomial plants). The overall aim of the study is to establish a framework, defined as the U-block model, which provides a generic prototype for using linear state-space-based approaches to design the control systems with smooth nonlinear plants/processes described by polynomial models. For analysing the feasibility and effectiveness, sliding mode control design approach is selected as an exemplary case study. Numerical simulation studies provide a user-friendly step-by-step procedure for the readers/users with interest in their ad hoc applications. In formality, this is the first paper to present the U-model-oriented control system design in a formal way and to study the associated properties and theorems. The previous publications, in the main, have been algorithm-based studies and simulation demonstrations. In some sense, this paper can be treated as a landmark for the U-model-based research from intuitive/heuristic stage to rigour/formal/comprehensive studies.
Directory of Open Access Journals (Sweden)
Hamed Kharrati
2012-01-01
Full Text Available This study presents an improved model and controller for nonlinear plants using polynomial fuzzy model-based (FMB systems. To minimize mismatch between the polynomial fuzzy model and nonlinear plant, the suitable parameters of membership functions are determined in a systematic way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic algorithm (GA is used to form the shape of membership functions in polynomial forms, which are afterwards used in fuzzy modeling. To validate the model, a controller based on proposed polynomial fuzzy systems is designed and then applied to both original nonlinear plant and fuzzy model for comparison. Additionally, stability analysis for the proposed polynomial FMB control system is investigated employing Lyapunov theory and a sum of squares (SOS approach. Moreover, the form of the membership functions is considered in stability analysis. The SOS-based stability conditions are attained using SOSTOOLS. Simulation results are also given to demonstrate the effectiveness of the proposed method.
Planar dynamical systems selected classical problems
Liu, Yirong; Huang, Wentao
2014-01-01
This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasona
Tsai, Shun Hung; Chen, Yu-An; Chen, Yu-Wen; Lo, Ji-Chang; Lam, Hak-Keung
2017-01-01
A novel stabilization problem for T-S polynomial fuzzy system with time-delay is investigated in this paper. Firstly, a polynomial fuzzy controller for T-S polynomial fuzzy system with time-delay is proposed. In addition, based on polynomial Lyapunov-Krasovskii function and the developed polynomial slack variable matrices, a novel stabilization condition for T-S polynomial fuzzy system with time-delay is presented in terms of sum-of-square (SOS) form. Lastly, nonlinear system with time-delay ...
Liu, Chuang; Lam, H. K.
2015-01-01
In this paper, we propose a polynomial fuzzy observer controller for nonlinear systems, where the design is achieved through the stability analysis of polynomial-fuzzy-model-based (PFMB) observer-control system. The polynomial fuzzy observer estimates the system states using estimated premise variables. The estimated states are then employed by the polynomial fuzzy controller for the feedback control of nonlinear systems represented by the polynomial fuzzy model. The system stability of the P...
General Reducibility and Solvability of Polynomial Equations ...
African Journals Online (AJOL)
General Reducibility and Solvability of Polynomial Equations. ... Unlike quadratic, cubic, and quartic polynomials, the general quintic and higher degree polynomials cannot be solved algebraically in terms of finite number of additions, ... Galois Theory, Solving Polynomial Systems, Polynomial factorization, Polynomial Ring ...
Geometry of infinite planar maps with high degrees
DEFF Research Database (Denmark)
Budd, Timothy George; Curien, Nicolas
2017-01-01
We study the geometry of infinite random Boltzmann planar maps with vertices of high degree. These correspond to the duals of the Boltzmann maps associated to a critical weight sequence (qk)k≥0 for the faces with polynomial decay k-ɑ with ɑ ∈ (3/2,5/2)which have been studied by Le Gall & Miermont...
Automatic Control Systems Modeling by Volterra Polynomials
Directory of Open Access Journals (Sweden)
S. V. Solodusha
2012-01-01
Full Text Available The problem of the existence of the solutions of polynomial Volterra integral equations of the first kind of the second degree is considered. An algorithm of the numerical solution of one class of Volterra nonlinear systems of the first kind is developed. Numerical results for test examples are presented.
Constant Width Planar Computation Characterizes ACC^{0}
DEFF Research Database (Denmark)
Hansen, K.A.
2004-01-01
We obtain a characterization of ACC 0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...
Planar graphical models which are easy
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Laboratory; Chernyak, Vladimir [WAYNE STATE UNIV
2009-01-01
We describe a rich family of binary variables statistical mechanics models on planar graphs which are equivalent to Gaussian Grassmann Graphical models (free fermions). Calculation of partition function (weighted counting) in the models is easy (of polynomial complexity) as reduced to evaluation of determinants of matrixes linear in the number of variables. In particular, this family of models covers Holographic Algorithms of Valiant and extends on the Gauge Transformations discussed in our previous works.
Directory of Open Access Journals (Sweden)
Tianjin Huang
2017-08-01
Full Text Available We present in this paper a polynomial fitting method applicable to segments of footprints measured by the Geoscience Laser Altimeter System (GLAS to estimate glacier thickness change. Our modification makes the method applicable to complex topography, such as a large mountain glacier. After a full analysis of the planar fitting method to characterize errors of estimates due to complex topography, we developed an improved fitting method by adjusting a binary polynomial surface to local topography. The improved method and the planar fitting method were tested on the accumulation areas of the Naimona’nyi glacier and Yanong glacier on along-track facets with lengths of 1000 m, 1500 m, 2000 m, and 2500 m, respectively. The results show that the improved method gives more reliable estimates of changes in elevation than planar fitting. The improved method was also tested on Guliya glacier with a large and relatively flat area and the Chasku Muba glacier with very complex topography. The results in these test sites demonstrate that the improved method can give estimates of glacier thickness change on glaciers with a large area and a complex topography. Additionally, the improved method based on GLAS Data and Shuttle Radar Topography Mission-Digital Elevation Model (SRTM-DEM can give estimates of glacier thickness change from 2000 to 2008/2009, since it takes the 2000 SRTM-DEM as a reference, which is a longer period than 2004 to 2008/2009, when using the GLAS data only and the planar fitting method.
Hamed Kharrati; Sohrab Khanmohammadi; Witold Pedrycz; Ghasem Alizadeh
2012-01-01
This study presents an improved model and controller for nonlinear plants using polynomial fuzzy model-based (FMB) systems. To minimize mismatch between the polynomial fuzzy model and nonlinear plant, the suitable parameters of membership functions are determined in a systematic way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic algorithm (GA) is used to form the shape of membership functions in polynomial forms, which are afterwards used in fuzzy m...
Nonnegativity of uncertain polynomials
Directory of Open Access Journals (Sweden)
iljak Dragoslav D.
1998-01-01
Full Text Available The purpose of this paper is to derive tests for robust nonnegativity of scalar and matrix polynomials, which are algebraic, recursive, and can be completed in finite number of steps. Polytopic families of polynomials are considered with various characterizations of parameter uncertainty including affine, multilinear, and polynomic structures. The zero exclusion condition for polynomial positivity is also proposed for general parameter dependencies. By reformulating the robust stability problem of complex polynomials as positivity of real polynomials, we obtain new sufficient conditions for robust stability involving multilinear structures, which can be tested using only real arithmetic. The obtained results are applied to robust matrix factorization, strict positive realness, and absolute stability of multivariable systems involving parameter dependent transfer function matrices.
International Nuclear Information System (INIS)
Aguirre-Hernández, B.; Campos-Cantón, E.; López-Renteria, J.A.; Díaz González, E.C.
2015-01-01
In this paper, we consider characteristic polynomials of n-dimensional systems that determine a segment of polynomials. One parameter is used to characterize this segment of polynomials in order to determine the maximal interval of dissipativity and unstability. Then we apply this result to the generation of a family of attractors based on a class of unstable dissipative systems (UDS) of type affine linear systems. This class of systems is comprised of switched linear systems yielding strange attractors. A family of these chaotic switched systems is determined by the maximal interval of perturbation of the matrix that governs the dynamics for still having scroll attractors
International Nuclear Information System (INIS)
van Diejen, J.F.
1997-01-01
Two families (type A and type B) of confluent hypergeometric polynomials in several variables are studied. We describe the orthogonality properties, differential equations, and Pieri-type recurrence formulas for these families. In the one-variable case, the polynomials in question reduce to the Hermite polynomials (type A) and the Laguerre polynomials (type B), respectively. The multivariable confluent hypergeometric families considered here may be used to diagonalize the rational quantum Calogero models with harmonic confinement (for the classical root systems) and are closely connected to the (symmetric) generalized spherical harmonics investigated by Dunkl. (orig.)
Computational Study on a PTAS for Planar Dominating Set Problem
Directory of Open Access Journals (Sweden)
Qian-Ping Gu
2013-01-01
Full Text Available The dominating set problem is a core NP-hard problem in combinatorial optimization and graph theory, and has many important applications. Baker [JACM 41,1994] introduces a k-outer planar graph decomposition-based framework for designing polynomial time approximation scheme (PTAS for a class of NP-hard problems in planar graphs. It is mentioned that the framework can be applied to obtain an O(2ckn time, c is a constant, (1+1/k-approximation algorithm for the planar dominating set problem. We show that the approximation ratio achieved by the mentioned application of the framework is not bounded by any constant for the planar dominating set problem. We modify the application of the framework to give a PTAS for the planar dominating set problem. With k-outer planar graph decompositions, the modified PTAS has an approximation ratio (1 + 2/k. Using 2k-outer planar graph decompositions, the modified PTAS achieves the approximation ratio (1+1/k in O(22ckn time. We report a computational study on the modified PTAS. Our results show that the modified PTAS is practical.
Polynomial Heisenberg algebras
International Nuclear Information System (INIS)
Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M
2004-01-01
Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively
Solving polynomial systems using no-root elimination blending schemes
Barton, Michael
2011-01-01
Searching for the roots of (piecewise) polynomial systems of equations is a crucial problem in computer-aided design (CAD), and an efficient solution is in strong demand. Subdivision solvers are frequently used to achieve this goal; however
Superiority of legendre polynomials to Chebyshev polynomial in ...
African Journals Online (AJOL)
In this paper, we proved the superiority of Legendre polynomial to Chebyshev polynomial in solving first order ordinary differential equation with rational coefficient. We generated shifted polynomial of Chebyshev, Legendre and Canonical polynomials which deal with solving differential equation by first choosing Chebyshev ...
Polynomials associated with equilibria of affine Toda-Sutherland systems
International Nuclear Information System (INIS)
Odake, S; Sasaki, R
2004-01-01
An affine Toda-Sutherland system is a quasi-exactly solvable multi-particle dynamics based on an affine simple root system. It is a 'cross' between two well-known integrable multi-particle dynamics, an affine Toda molecule (exponential potential, periodic nearest-neighbour interaction) and a Sutherland system (inverse sine-square interaction). Polynomials describing the equilibrium positions of affine Toda-Sutherland systems are determined for all affine simple root systems
Efficient linear precoding for massive MIMO systems using truncated polynomial expansion
Müller, Axel
2014-06-01
Massive multiple-input multiple-output (MIMO) techniques have been proposed as a solution to satisfy many requirements of next generation cellular systems. One downside of massive MIMO is the increased complexity of computing the precoding, especially since the relatively \\'antenna-efficient\\' regularized zero-forcing (RZF) is preferred to simple maximum ratio transmission. We develop in this paper a new class of precoders for single-cell massive MIMO systems. It is based on truncated polynomial expansion (TPE) and mimics the advantages of RZF, while offering reduced and scalable computational complexity that can be implemented in a convenient parallel fashion. Using random matrix theory we provide a closed-form expression of the signal-to-interference-and-noise ratio under TPE precoding and compare it to previous works on RZF. Furthermore, the sum rate maximizing polynomial coefficients in TPE precoding are calculated. By simulation, we find that to maintain a fixed peruser rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and signal-to-noise ratio. © 2014 IEEE.
Li, Xiaomiao; Lam, Hak Keung; Song, Ge; Liu, Fucai
2017-01-01
This paper deals with the stability and positivity analysis of polynomial-fuzzy-model-based ({PFMB}) control systems with time delay, which is formed by a polynomial fuzzy model and a polynomial fuzzy controller connected in a closed loop, under imperfect premise matching. To improve the design and realization flexibility, the polynomial fuzzy model and the polynomial fuzzy controller are allowed to have their own set of premise membership functions. A sum-of-squares (SOS)-based stability ana...
International Nuclear Information System (INIS)
Haggag, M.H.; Al-Gorashi, A.K.; Machali, H.M.
2013-01-01
In this study, the integral form of the radiative transfer equation in planar slab with isotropic scattering has been studied by using the Chebyshev polynomial approximation which is called TN method. The scalar flux is expanded in terms of Chebyshev polynomials in the space variable. The expansion coefficients are solutions to a system of linear algebraic equations. Analytical expressions are given for the scalar and angular flux everywhere in the slab. Numerical calculations are done for the transmissivity and reflectivity of slabs with various values of the single scattering albedo. Calculations are also carried out for the transmitted and reflected angular intensity at the slab boundaries. Our numerical results are in a very good agreement with other results, as shown in the tables
Miller, W., Jr.; Li, Q.
2015-04-01
The Wilson and Racah polynomials can be characterized as basis functions for irreducible representations of the quadratic symmetry algebra of the quantum superintegrable system on the 2-sphere, HΨ = EΨ, with generic 3-parameter potential. Clearly, the polynomials are expansion coefficients for one eigenbasis of a symmetry operator L2 of H in terms of an eigenbasis of another symmetry operator L1, but the exact relationship appears not to have been made explicit. We work out the details of the expansion to show, explicitly, how the polynomials arise and how the principal properties of these functions: the measure, 3-term recurrence relation, 2nd order difference equation, duality of these relations, permutation symmetry, intertwining operators and an alternate derivation of Wilson functions - follow from the symmetry of this quantum system. This paper is an exercise to show that quantum mechancal concepts and recurrence relations for Gausian hypergeometrc functions alone suffice to explain these properties; we make no assumptions about the structure of Wilson polynomial/functions, but derive them from quantum principles. There is active interest in the relation between multivariable Wilson polynomials and the quantum superintegrable system on the n-sphere with generic potential, and these results should aid in the generalization. Contracting function space realizations of irreducible representations of this quadratic algebra to the other superintegrable systems one can obtain the full Askey scheme of orthogonal hypergeometric polynomials. All of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2,C). All of the polynomials produced are interpretable as quantum expansion coefficients. It is important to extend this process to higher dimensions.
International Nuclear Information System (INIS)
Miller, W Jr; Li, Q
2015-01-01
The Wilson and Racah polynomials can be characterized as basis functions for irreducible representations of the quadratic symmetry algebra of the quantum superintegrable system on the 2-sphere, HΨ = EΨ, with generic 3-parameter potential. Clearly, the polynomials are expansion coefficients for one eigenbasis of a symmetry operator L 2 of H in terms of an eigenbasis of another symmetry operator L 1 , but the exact relationship appears not to have been made explicit. We work out the details of the expansion to show, explicitly, how the polynomials arise and how the principal properties of these functions: the measure, 3-term recurrence relation, 2nd order difference equation, duality of these relations, permutation symmetry, intertwining operators and an alternate derivation of Wilson functions - follow from the symmetry of this quantum system. This paper is an exercise to show that quantum mechancal concepts and recurrence relations for Gausian hypergeometrc functions alone suffice to explain these properties; we make no assumptions about the structure of Wilson polynomial/functions, but derive them from quantum principles. There is active interest in the relation between multivariable Wilson polynomials and the quantum superintegrable system on the n-sphere with generic potential, and these results should aid in the generalization. Contracting function space realizations of irreducible representations of this quadratic algebra to the other superintegrable systems one can obtain the full Askey scheme of orthogonal hypergeometric polynomials. All of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2,C). All of the polynomials produced are interpretable as quantum expansion coefficients. It is important to extend this process to higher dimensions. (paper)
Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong
2018-04-01
We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.
Sum-of-squares based observer design for polynomial systems with a known fixed time delay
Czech Academy of Sciences Publication Activity Database
Rehák, Branislav
2015-01-01
Roč. 51, č. 5 (2015), s. 858-873 ISSN 0023-5954 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : sum-of-squares polynomial * observer * polynomial system Subject RIV: BC - Control Systems Theory Impact factor: 0.628, year: 2015 http://www.kybernetika.cz/content/2015/5/856
Vortices and polynomials: non-uniqueness of the Adler–Moser polynomials for the Tkachenko equation
International Nuclear Information System (INIS)
Demina, Maria V; Kudryashov, Nikolai A
2012-01-01
Stationary and translating relative equilibria of point vortices in the plane are studied. It is shown that stationary equilibria of any system containing point vortices with arbitrary choice of circulations can be described with the help of the Tkachenko equation. It is also obtained that translating relative equilibria of point vortices with arbitrary circulations can be constructed using a generalization of the Tkachenko equation. Roots of any pair of polynomials solving the Tkachenko equation and the generalized Tkachenko equation are proved to give positions of point vortices in stationary and translating relative equilibria accordingly. These results are valid even if the polynomials in a pair have multiple or common roots. It is obtained that the Adler–Moser polynomial provides non-unique polynomial solutions of the Tkachenko equation. It is shown that the generalized Tkachenko equation possesses polynomial solutions with degrees that are not triangular numbers. (paper)
Finite-Time Stability and Controller Design of Continuous-Time Polynomial Fuzzy Systems
Directory of Open Access Journals (Sweden)
Xiaoxing Chen
2017-01-01
Full Text Available Finite-time stability and stabilization problem is first investigated for continuous-time polynomial fuzzy systems. The concept of finite-time stability and stabilization is given for polynomial fuzzy systems based on the idea of classical references. A sum-of-squares- (SOS- based approach is used to obtain the finite-time stability and stabilization conditions, which include some classical results as special cases. The proposed conditions can be solved with the help of powerful Matlab toolbox SOSTOOLS and a semidefinite-program (SDP solver. Finally, two numerical examples and one practical example are employed to illustrate the validity and effectiveness of the provided conditions.
Bifurcation in Z2-symmetry quadratic polynomial systems with delay
International Nuclear Information System (INIS)
Zhang Chunrui; Zheng Baodong
2009-01-01
Z 2 -symmetry systems are considered. Firstly the general forms of Z 2 -symmetry quadratic polynomial system are given, and then a three-dimensional Z 2 equivariant system is considered, which describes the relations of two predator species for a single prey species. Finally, the explicit formulas for determining the Fold and Hopf bifurcations are obtained by using the normal form theory and center manifold argument.
Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach.
Tanaka, Kazuo; Ohtake, Hiroshi; Wang, Hua O
2009-04-01
This paper presents the guaranteed cost control of polynomial fuzzy systems via a sum of squares (SOS) approach. First, we present a polynomial fuzzy model and controller that are more general representations of the well-known Takagi-Sugeno (T-S) fuzzy model and controller, respectively. Second, we derive a guaranteed cost control design condition based on polynomial Lyapunov functions. Hence, the design approach discussed in this paper is more general than the existing LMI approaches (to T-S fuzzy control system designs) based on quadratic Lyapunov functions. The design condition realizes a guaranteed cost control by minimizing the upper bound of a given performance function. In addition, the design condition in the proposed approach can be represented in terms of SOS and is numerically (partially symbolically) solved via the recent developed SOSTOOLS. To illustrate the validity of the design approach, two design examples are provided. The first example deals with a complicated nonlinear system. The second example presents micro helicopter control. Both the examples show that our approach provides more extensive design results for the existing LMI approach.
Arabic text classification using Polynomial Networks
Directory of Open Access Journals (Sweden)
Mayy M. Al-Tahrawi
2015-10-01
Full Text Available In this paper, an Arabic statistical learning-based text classification system has been developed using Polynomial Neural Networks. Polynomial Networks have been recently applied to English text classification, but they were never used for Arabic text classification. In this research, we investigate the performance of Polynomial Networks in classifying Arabic texts. Experiments are conducted on a widely used Arabic dataset in text classification: Al-Jazeera News dataset. We chose this dataset to enable direct comparisons of the performance of Polynomial Networks classifier versus other well-known classifiers on this dataset in the literature of Arabic text classification. Results of experiments show that Polynomial Networks classifier is a competitive algorithm to the state-of-the-art ones in the field of Arabic text classification.
A companion matrix for 2-D polynomials
International Nuclear Information System (INIS)
Boudellioua, M.S.
1995-08-01
In this paper, a matrix form analogous to the companion matrix which is often encountered in the theory of one dimensional (1-D) linear systems is suggested for a class of polynomials in two indeterminates and real coefficients, here referred to as two dimensional (2-D) polynomials. These polynomials arise in the context of 2-D linear systems theory. Necessary and sufficient conditions are also presented under which a matrix is equivalent to this companion form. (author). 6 refs
Gassara, H.; El Hajjaji, A.; Chaabane, M.
2017-07-01
This paper investigates the problem of observer-based control for two classes of polynomial fuzzy systems with time-varying delay. The first class concerns a special case where the polynomial matrices do not depend on the estimated state variables. The second one is the general case where the polynomial matrices could depend on unmeasurable system states that will be estimated. For the last case, two design procedures are proposed. The first one gives the polynomial fuzzy controller and observer gains in two steps. In the second procedure, the designed gains are obtained using a single-step approach to overcome the drawback of a two-step procedure. The obtained conditions are presented in terms of sum of squares (SOS) which can be solved via the SOSTOOLS and a semi-definite program solver. Illustrative examples show the validity and applicability of the proposed results.
Chromatic polynomials of random graphs
International Nuclear Information System (INIS)
Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian
2010-01-01
Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.
Homogenous polynomially parameter-dependent H∞ filter designs of discrete-time fuzzy systems.
Zhang, Huaguang; Xie, Xiangpeng; Tong, Shaocheng
2011-10-01
This paper proposes a novel H(∞) filtering technique for a class of discrete-time fuzzy systems. First, a novel kind of fuzzy H(∞) filter, which is homogenous polynomially parameter dependent on membership functions with an arbitrary degree, is developed to guarantee the asymptotic stability and a prescribed H(∞) performance of the filtering error system. Second, relaxed conditions for H(∞) performance analysis are proposed by using a new fuzzy Lyapunov function and the Finsler lemma with homogenous polynomial matrix Lagrange multipliers. Then, based on a new kind of slack variable technique, relaxed linear matrix inequality-based H(∞) filtering conditions are proposed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approach.
Directory of Open Access Journals (Sweden)
Chih-Hong Lin
2015-01-01
Full Text Available Because the V-belt continuously variable transmission (CVT system driven by permanent magnet synchronous motor (PMSM has much unknown nonlinear and time-varying characteristics, the better control performance design for the linear control design is a time consuming procedure. In order to overcome difficulties for design of the linear controllers, the hybrid recurrent Laguerre-orthogonal-polynomial neural network (NN control system which has online learning ability to respond to the system’s nonlinear and time-varying behaviors is proposed to control PMSM servo-driven V-belt CVT system under the occurrence of the lumped nonlinear load disturbances. The hybrid recurrent Laguerre-orthogonal-polynomial NN control system consists of an inspector control, a recurrent Laguerre-orthogonal-polynomial NN control with adaptive law, and a recouped control with estimated law. Moreover, the adaptive law of online parameters in the recurrent Laguerre-orthogonal-polynomial NN is derived using the Lyapunov stability theorem. Furthermore, the optimal learning rate of the parameters by means of modified particle swarm optimization (PSO is proposed to achieve fast convergence. Finally, to show the effectiveness of the proposed control scheme, comparative studies are demonstrated by experimental results.
Contributions to fuzzy polynomial techniques for stability analysis and control
Pitarch Pérez, José Luis
2014-01-01
The present thesis employs fuzzy-polynomial control techniques in order to improve the stability analysis and control of nonlinear systems. Initially, it reviews the more extended techniques in the field of Takagi-Sugeno fuzzy systems, such as the more relevant results about polynomial and fuzzy polynomial systems. The basic framework uses fuzzy polynomial models by Taylor series and sum-of-squares techniques (semidefinite programming) in order to obtain stability guarantees...
Imaging characteristics of Zernike and annular polynomial aberrations.
Mahajan, Virendra N; Díaz, José Antonio
2013-04-01
The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.
Orthogonal polynomials derived from the tridiagonal representation approach
Alhaidari, A. D.
2018-01-01
The tridiagonal representation approach is an algebraic method for solving second order differential wave equations. Using this approach in the solution of quantum mechanical problems, we encounter two new classes of orthogonal polynomials whose properties give the structure and dynamics of the corresponding physical system. For a certain range of parameters, one of these polynomials has a mix of continuous and discrete spectra making it suitable for describing physical systems with both scattering and bound states. In this work, we define these polynomials by their recursion relations and highlight some of their properties using numerical means. Due to the prime significance of these polynomials in physics, we hope that our short expose will encourage experts in the field of orthogonal polynomials to study them and derive their properties (weight functions, generating functions, asymptotics, orthogonality relations, zeros, etc.) analytically.
Lam, Hak-Keung
2016-01-01
This book presents recent research on the stability analysis of polynomial-fuzzy-model-based control systems where the concept of partially/imperfectly matched premises and membership-function dependent analysis are considered. The membership-function-dependent analysis offers a new research direction for fuzzy-model-based control systems by taking into account the characteristic and information of the membership functions in the stability analysis. The book presents on a research level the most recent and advanced research results, promotes the research of polynomial-fuzzy-model-based control systems, and provides theoretical support and point a research direction to postgraduate students and fellow researchers. Each chapter provides numerical examples to verify the analysis results, demonstrate the effectiveness of the proposed polynomial fuzzy control schemes, and explain the design procedure. The book is comprehensively written enclosing detailed derivation steps and mathematical derivations also for read...
Parallel multigrid smoothing: polynomial versus Gauss-Seidel
International Nuclear Information System (INIS)
Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray
2003-01-01
Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines
Parallel multigrid smoothing: polynomial versus Gauss-Seidel
Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray
2003-07-01
Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.
Computer Aided Analysis of TM-Multimode Planar Graded-index Optical Waveguides
International Nuclear Information System (INIS)
Ashry, M.; Nasr, A.S.; Abou El-Fadl, A.A.
2000-01-01
An algorithm is developed for analysis TM-Multimode Planar graded-index optical waveguides. A Modified Impedance Boundary Method of Moments (MIBMOM) for the analysis of planar graded-index optical waveguide structures is presented. The algorithm is used to calculate the dispersion characteristics and the field distribution of TM-multimode planar graded-index optical waveguides. The technique is based on Galerkin s procedure and the exact boundary condition at the interfaces between the graded index region and the step index cladding. Legendre polynomials are used as basis functions. The efficiency of this algorithm is examined with waveguides having various index profiles such as exponential, Gaussian and complementary error functions. The advantage of the MIBMOM is the complete solution of TM-multimode as presented which is very difficult by the other methods. With this algorithm a minimum number of basis functions to give accurate results is used. The obtained results show good agreement with the experimental results
Differential Galois theory and non-integrability of planar polynomial vector fields
Acosta-Humánez, Primitivo B.; Lázaro, J. Tomás; Morales-Ruiz, Juan J.; Pantazi, Chara
2018-06-01
We study a necessary condition for the integrability of the polynomials vector fields in the plane by means of the differential Galois Theory. More concretely, by means of the variational equations around a particular solution it is obtained a necessary condition for the existence of a rational first integral. The method is systematic starting with the first order variational equation. We illustrate this result with several families of examples. A key point is to check whether a suitable primitive is elementary or not. Using a theorem by Liouville, the problem is equivalent to the existence of a rational solution of a certain first order linear equation, the Risch equation. This is a classical problem studied by Risch in 1969, and the solution is given by the "Risch algorithm". In this way we point out the connection of the non integrability with some higher transcendent functions, like the error function.
Global sensitivity analysis by polynomial dimensional decomposition
Energy Technology Data Exchange (ETDEWEB)
Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)
2011-07-15
This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.
A Fast lattice-based polynomial digital signature system for m-commerce
Wei, Xinzhou; Leung, Lin; Anshel, Michael
2003-01-01
The privacy and data integrity are not guaranteed in current wireless communications due to the security hole inside the Wireless Application Protocol (WAP) version 1.2 gateway. One of the remedies is to provide an end-to-end security in m-commerce by applying application level security on top of current WAP1.2. The traditional security technologies like RSA and ECC applied on enterprise's server are not practical for wireless devices because wireless devices have relatively weak computation power and limited memory compared with server. In this paper, we developed a lattice based polynomial digital signature system based on NTRU's Polynomial Authentication and Signature Scheme (PASS), which enabled the feasibility of applying high-level security on both server and wireless device sides.
Polynomial fuzzy observer designs: a sum-of-squares approach.
Tanaka, Kazuo; Ohtake, Hiroshi; Seo, Toshiaki; Tanaka, Motoyasu; Wang, Hua O
2012-10-01
This paper presents a sum-of-squares (SOS) approach to polynomial fuzzy observer designs for three classes of polynomial fuzzy systems. The proposed SOS-based framework provides a number of innovations and improvements over the existing linear matrix inequality (LMI)-based approaches to Takagi-Sugeno (T-S) fuzzy controller and observer designs. First, we briefly summarize previous results with respect to a polynomial fuzzy system that is a more general representation of the well-known T-S fuzzy system. Next, we propose polynomial fuzzy observers to estimate states in three classes of polynomial fuzzy systems and derive SOS conditions to design polynomial fuzzy controllers and observers. A remarkable feature of the SOS design conditions for the first two classes (Classes I and II) is that they realize the so-called separation principle, i.e., the polynomial fuzzy controller and observer for each class can be separately designed without lack of guaranteeing the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. Although, for the last class (Class III), the separation principle does not hold, we propose an algorithm to design polynomial fuzzy controller and observer satisfying the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. All the design conditions in the proposed approach can be represented in terms of SOS and are symbolically and numerically solved via the recently developed SOSTOOLS and a semidefinite-program solver, respectively. To illustrate the validity and applicability of the proposed approach, three design examples are provided. The examples demonstrate the advantages of the SOS-based approaches for the existing LMI approaches to T-S fuzzy observer designs.
Irreducible multivariate polynomials obtained from polynomials in ...
Indian Academy of Sciences (India)
Hall, 1409 W. Green Street, Urbana, IL 61801, USA. E-mail: Nicolae. ... Theorem A. If we write an irreducible polynomial f ∈ K[X] as a sum of polynomials a0,..., an ..... This shows us that deg ai = (n − i) deg f2 for each i = 0,..., n, so min k>0.
Global structure of a polynomial autonomous system on the plane
International Nuclear Information System (INIS)
Nguyen Van Chau.
1991-10-01
This note is to study the global behaviour of a polynomial autonomous system on the plane with divergence non-positive outside a bounded set. It is shown that in some certain conditions the global structure of such system can be simple. The main result here can be seen as an improvement of the result of Olech and Meister concerning with the global asymptotical stable conjecture of Markur and Yamable and the Jacobian Conjecture. (author). 13 refs
Complex Polynomial Vector Fields
DEFF Research Database (Denmark)
Dias, Kealey
vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...... of parameter spaces into structurally stable domains, and a description of the bifurcations. For this reason, the talk will focus on these questions for complex polynomial vector fields.......The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...
Branched polynomial covering maps
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
2002-01-01
A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch ...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved.......A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...
Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions
Bernal Reza, Miguel Ángel; Sala, Antonio; JAADARI, ABDELHAFIDH; Guerra, Thierry-Marie
2011-01-01
In this paper, the stability of continuous-time polynomial fuzzy models by means of a polynomial generalization of fuzzy Lyapunov functions is studied. Fuzzy Lyapunov functions have been fruitfully used in the literature for local analysis of Takagi-Sugeno models, a particular class of the polynomial fuzzy ones. Based on a recent Taylor-series approach which allows a polynomial fuzzy model to exactly represent a nonlinear model in a compact set of the state space, it is shown that a refinemen...
Application of polynomial preconditioners to conservation laws
Geurts, Bernardus J.; van Buuren, R.; Lu, H.
2000-01-01
Polynomial preconditioners which are suitable in implicit time-stepping methods for conservation laws are reviewed and analyzed. The preconditioners considered are either based on a truncation of a Neumann series or on Chebyshev polynomials for the inverse of the system-matrix. The latter class of
Poincare map for some polynomial systems of differential equations
International Nuclear Information System (INIS)
Varin, V P
2004-01-01
One approach to the classical problem of distinguishing between a centre and a focus for a system of differential equations with polynomial right-hand sides in the plane is discussed. For a broad class of such systems necessary and sufficient conditions for a centre are expressed in terms of equations in variations of higher order. By contrast with the existing methods of investigation, attention is concentrated on the explicit calculation of the asymptotic behaviour of the Poincare map rather than on finding sufficient centre conditions as such; this also enables one to study bifurcations of birth of arbitrarily strongly degenerate cycles.
A new class of generalized polynomials associated with Hermite and Bernoulli polynomials
Directory of Open Access Journals (Sweden)
M. A. Pathan
2015-05-01
Full Text Available In this paper, we introduce a new class of generalized polynomials associated with the modified Milne-Thomson's polynomials Φ_{n}^{(α}(x,ν of degree n and order α introduced by Derre and Simsek.The concepts of Bernoulli numbers B_n, Bernoulli polynomials B_n(x, generalized Bernoulli numbers B_n(a,b, generalized Bernoulli polynomials B_n(x;a,b,c of Luo et al, Hermite-Bernoulli polynomials {_HB}_n(x,y of Dattoli et al and {_HB}_n^{(α} (x,y of Pathan are generalized to the one {_HB}_n^{(α}(x,y,a,b,c which is called the generalized polynomial depending on three positive real parameters. Numerous properties of these polynomials and some relationships between B_n, B_n(x, B_n(a,b, B_n(x;a,b,c and {}_HB_n^{(α}(x,y;a,b,c are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Bernoulli numbers and polynomials
Okounkov's BC-Type Interpolation Macdonald Polynomials and Their q=1 Limit
Koornwinder, T.H.
2015-01-01
This paper surveys eight classes of polynomials associated with A-type and BC-type root systems: Jack, Jacobi, Macdonald and Koornwinder polynomials and interpolation (or shifted) Jack and Macdonald polynomials and their BC-type extensions. Among these the BC-type interpolation Jack polynomials were
Synchronization of generalized Henon map using polynomial controller
International Nuclear Information System (INIS)
Lam, H.K.
2010-01-01
This Letter presents the chaos synchronization of two discrete-time generalized Henon map, namely the drive and response systems. A polynomial controller is proposed to drive the system states of the response system to follow those of the drive system. The system stability of the error system formed by the drive and response systems and the synthesis of the polynomial controller are investigated using the sum-of-squares (SOS) technique. Based on the Lyapunov stability theory, stability conditions in terms of SOS are derived to guarantee the system stability and facilitate the controller synthesis. By satisfying the SOS-based stability conditions, chaotic synchronization is achieved. The solution of the SOS-based stability conditions can be found numerically using the third-party Matlab toolbox SOSTOOLS. A simulation example is given to illustrate the merits of the proposed polynomial control approach.
Control design and robustness analysis of a ball and plate system by using polynomial chaos
Energy Technology Data Exchange (ETDEWEB)
Colón, Diego [University of São Paulo, Polytechnic School, LAC -PTC, São Paulo (Brazil); Balthazar, José M. [São Paulo State University - Rio Claro Campus, Rio Claro (Brazil); Reis, Célia A. dos [São Paulo State University - Bauru Campus, Bauru (Brazil); Bueno, Átila M.; Diniz, Ivando S. [São Paulo State University - Sorocaba Campus, Sorocaba (Brazil); Rosa, Suelia de S. R. F. [University of Brasilia, Brasilia (Brazil)
2014-12-10
In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.
Application of Planar Broadband Slow-Wave Systems
Directory of Open Access Journals (Sweden)
Edvardas Metlevskis
2012-04-01
Full Text Available Different types of planar broadband slow-wave systems are used for designing microwave devices. The papers published by Lithuanian scientists analyze and investigate the models of helical and meander slow-wave systems. The article carefully examines the applications of meander slow-wave systems and presents the areas where similar systems, e.g. mobile devices, RFID, wireless technologies are used and reviewed nowadays. The paper also focuses on the examples of the papers discussing antennas, filters and couplers that contain designed and fabricated meander slow-wave systems.Article in Lithuanian
International Nuclear Information System (INIS)
Nishino, Akinori; Ujino, Hideaki; Komori, Yasushi; Wadati, Miki
2000-01-01
The non-symmetric Macdonald-Koornwinder polynomials are joint eigenfunctions of the commuting Cherednik operators which are constructed from the representation theory for the affine Hecke algebra corresponding to the BC N -type root system. We present the Rodrigues formula for the non-symmetric Macdonald-Koornwinder polynomials. The raising operators are derived from the realizations of the corresponding double affine Hecke algebra. In the quasi-classical limit, the above theory reduces to that of the BC N -type Sutherland model which describes many particles with inverse-square long-range interactions on a circle with one impurity. We also present the Rodrigues formula for the non-symmetric Jacobi polynomials of type BC N which are eigenstates of the BC N -type Sutherland model
Branched polynomial covering maps
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
1999-01-01
A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....
Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials
Horozov, Emil
2016-05-01
We construct new families of vector orthogonal polynomials that have the property to be eigenfunctions of some differential operator. They are extensions of the Hermite and Laguerre polynomial systems. A third family, whose first member has been found by Y. Ben Cheikh and K. Douak is also constructed. The ideas behind our approach lie in the studies of bispectral operators. We exploit automorphisms of associative algebras which transform elementary vector orthogonal polynomial systems which are eigenfunctions of a differential operator into other systems of this type.
Mandal, Sudhansu S.; Mukherjee, Sutirtha; Ray, Koushik
2018-03-01
A method for determining the ground state of a planar interacting many-electron system in a magnetic field perpendicular to the plane is described. The ground state wave-function is expressed as a linear combination of a set of basis functions. Given only the flux and the number of electrons describing an incompressible state, we use the combinatorics of partitioning the flux among the electrons to derive the basis wave-functions as linear combinations of Schur polynomials. The procedure ensures that the basis wave-functions form representations of the angular momentum algebra. We exemplify the method by deriving the basis functions for the 5/2 quantum Hall state with a few particles. We find that one of the basis functions is precisely the Moore-Read Pfaffian wave function.
On generalized Fibonacci and Lucas polynomials
Energy Technology Data Exchange (ETDEWEB)
Nalli, Ayse [Department of Mathematics, Faculty of Sciences, Selcuk University, 42075 Campus-Konya (Turkey)], E-mail: aysenalli@yahoo.com; Haukkanen, Pentti [Department of Mathematics, Statistics and Philosophy, 33014 University of Tampere (Finland)], E-mail: mapehau@uta.fi
2009-12-15
Let h(x) be a polynomial with real coefficients. We introduce h(x)-Fibonacci polynomials that generalize both Catalan's Fibonacci polynomials and Byrd's Fibonacci polynomials and also the k-Fibonacci numbers, and we provide properties for these h(x)-Fibonacci polynomials. We also introduce h(x)-Lucas polynomials that generalize the Lucas polynomials and present properties of these polynomials. In the last section we introduce the matrix Q{sub h}(x) that generalizes the Q-matrix whose powers generate the Fibonacci numbers.
Solutions of interval type-2 fuzzy polynomials using a new ranking method
Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani
2015-10-01
A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.
Testing reachability and stabilizability of systems over polynomial rings using Gröbner bases
Habets, L.C.G.J.M.
1993-01-01
Conditions for the reachability and stabilizability of systems over polynomial rings are well-known in the literature. For a system $ \\Sigma = (A,B)$ they can be expressed as right-invertibility cconditions on the matrix $(zI - A \\mid B)$. Therefore there is quite a strong algebraic relationship
High-concentration planar microtracking photovoltaic system exceeding 30% efficiency
Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.
2017-08-01
Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system 660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.
Narimani, Mohammand; Lam, H K; Dilmaghani, R; Wolfe, Charles
2011-06-01
Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S-procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.
Bai , Shi; Bouvier , Cyril; Kruppa , Alexander; Zimmermann , Paul
2016-01-01
International audience; The general number field sieve (GNFS) is the most efficient algo-rithm known for factoring large integers. It consists of several stages, the first one being polynomial selection. The quality of the selected polynomials can be modelled in terms of size and root properties. We propose a new kind of polynomials for GNFS: with a new degree of freedom, we further improve the size property. We demonstrate the efficiency of our algorithm by exhibiting a better polynomial tha...
Demina, Maria V.
2018-05-01
The general structure of irreducible invariant algebraic curves for a polynomial dynamical system in C2 is found. Necessary conditions for existence of exponential factors related to an invariant algebraic curve are derived. As a consequence, all the cases when the classical force-free Duffing and Duffing-van der Pol oscillators possess Liouvillian first integrals are obtained. New exact solutions for the force-free Duffing-van der Pol system are constructed.
Bose and Fermi walk configurations on planar graphs
International Nuclear Information System (INIS)
Arrowsmith, D K; Bhatti, F M; Essam, J W
2012-01-01
The number, f C n (H), of n-walk configurations of type C is investigated on certain two-rooted directed planar graphs H which will be always realized as plane graphs in R 2 . C may be Bose or Fermi as defined by Inui and Katori. Both types of configuration are collections of non-crossing walks which follow the directed paths between the roots of the plane graph H. In the case of configurations of Fermi type each walk may be included only once. The number f Bose n (H) is shown to be a polynomial in n of degree n max − 1 where n max is the maximum number of walks in a Fermi configuration. The coefficient of the highest power of n in this polynomial is simply related to the number of maximal Fermi walk configurations. It is also shown that n max = c(H) + 1 where c(H) is the number of finite faces on H. Extension of these results to multi-rooted graphs is also discussed. When H is the union of paths between two sites of the directed square lattice subject to various boundary conditions Kreweras showed that the number of Bose configurations is equal to the number of n-element multi-chains on segments of Young’s lattice. He expressed this number as a determinant the elements of which are polynomials in n. We evaluate this determinant by the method of LU decomposition in the case of ‘watermelon’ configurations above a wall. In this case the polynomial is a product of linear factors but on introducing a second wall the polynomial does not completely factorize but has a factor which is the number of watermelon configurations on the largest rectangular subgraph. The number of two-rooted ‘star’ configurations is found to be the product of the numbers of watermelon configurations on the three rectangular subgraphs into which it may be partitioned. (paper)
Families of superintegrable Hamiltonians constructed from exceptional polynomials
International Nuclear Information System (INIS)
Post, Sarah; Tsujimoto, Satoshi; Vinet, Luc
2012-01-01
We introduce a family of exactly-solvable two-dimensional Hamiltonians whose wave functions are given in terms of Laguerre and exceptional Jacobi polynomials. The Hamiltonians contain purely quantum terms which vanish in the classical limit leaving only a previously known family of superintegrable systems. Additional, higher-order integrals of motion are constructed from ladder operators for the considered orthogonal polynomials proving the quantum system to be superintegrable. (paper)
On Multiple Polynomials of Capelli Type
Directory of Open Access Journals (Sweden)
S.Y. Antonov
2016-03-01
Full Text Available This paper deals with the class of Capelli polynomials in free associative algebra F{Z} (where F is an arbitrary field, Z is a countable set generalizing the construction of multiple Capelli polynomials. The fundamental properties of the introduced Capelli polynomials are provided. In particular, decomposition of the Capelli polynomials by means of the same type of polynomials is shown. Furthermore, some relations between their T -ideals are revealed. A connection between double Capelli polynomials and Capelli quasi-polynomials is established.
Chromatic polynomials for simplicial complexes
DEFF Research Database (Denmark)
Møller, Jesper Michael; Nord, Gesche
2016-01-01
In this note we consider s s -chromatic polynomials for finite simplicial complexes. When s=1 s=1 , the 1 1 -chromatic polynomial is just the usual graph chromatic polynomial of the 1 1 -skeleton. In general, the s s -chromatic polynomial depends on the s s -skeleton and its value at r...
A reachability test for systems over polynomial rings using Gröbner bases
Habets, L.C.G.J.M.
1992-01-01
Conditions for the reachability of a system over a polynomial ring are well known in the literature. However, the verification of these conditions remained a difficult problem in general. Application of the Gröbner Basis method from constructive commutative algebra makes it possible to carry out
Polynomial fuzzy model-based approach for underactuated surface vessels
DEFF Research Database (Denmark)
Khooban, Mohammad Hassan; Vafamand, Navid; Dragicevic, Tomislav
2018-01-01
The main goal of this study is to introduce a new polynomial fuzzy model-based structure for a class of marine systems with non-linear and polynomial dynamics. The suggested technique relies on a polynomial Takagi–Sugeno (T–S) fuzzy modelling, a polynomial dynamic parallel distributed compensation...... surface vessel (USV). Additionally, in order to overcome the USV control challenges, including the USV un-modelled dynamics, complex nonlinear dynamics, external disturbances and parameter uncertainties, the polynomial fuzzy model representation is adopted. Moreover, the USV-based control structure...... and a sum-of-squares (SOS) decomposition. The new proposed approach is a generalisation of the standard T–S fuzzy models and linear matrix inequality which indicated its effectiveness in decreasing the tracking time and increasing the efficiency of the robust tracking control problem for an underactuated...
Roots of the Chromatic Polynomial
DEFF Research Database (Denmark)
Perrett, Thomas
The chromatic polynomial of a graph G is a univariate polynomial whose evaluation at any positive integer q enumerates the proper q-colourings of G. It was introduced in connection with the famous four colour theorem but has recently found other applications in the field of statistical physics...... extend Thomassen’s technique to the Tutte polynomial and as a consequence, deduce a density result for roots of the Tutte polynomial. This partially answers a conjecture of Jackson and Sokal. Finally, we refocus our attention on the chromatic polynomial and investigate the density of chromatic roots...
Non-existence criteria for Laurent polynomial first integrals
Directory of Open Access Journals (Sweden)
Shaoyun Shi
2003-01-01
Full Text Available In this paper we derived some simple criteria for non-existence and partial non-existence Laurent polynomial first integrals for a general nonlinear systems of ordinary differential equations $\\dot x = f(x$, $x \\in \\mathbb{R}^n$ with $f(0 = 0$. We show that if the eigenvalues of the Jacobi matrix of the vector field $f(x$ are $\\mathbb{Z}$-independent, then the system has no nontrivial Laurent polynomial integrals.
Directory of Open Access Journals (Sweden)
Ernest G. Kalnins
2013-10-01
Full Text Available We show explicitly that all 2nd order superintegrable systems in 2 dimensions are limiting cases of a single system: the generic 3-parameter potential on the 2-sphere, S9 in our listing. We extend the Wigner-Inönü method of Lie algebra contractions to contractions of quadratic algebras and show that all of the quadratic symmetry algebras of these systems are contractions of that of S9. Amazingly, all of the relevant contractions of these superintegrable systems on flat space and the sphere are uniquely induced by the well known Lie algebra contractions of e(2 and so(3. By contracting function space realizations of irreducible representations of the S9 algebra (which give the structure equations for Racah/Wilson polynomials to the other superintegrable systems, and using Wigner's idea of ''saving'' a representation, we obtain the full Askey scheme of hypergeometric orthogonal polynomials. This relationship directly ties the polynomials and their structure equations to physical phenomena. It is more general because it applies to all special functions that arise from these systems via separation of variables, not just those of hypergeometric type, and it extends to higher dimensions.
Closed-form estimates of the domain of attraction for nonlinear systems via fuzzy-polynomial models.
Pitarch, José Luis; Sala, Antonio; Ariño, Carlos Vicente
2014-04-01
In this paper, the domain of attraction of the origin of a nonlinear system is estimated in closed form via level sets with polynomial boundaries, iteratively computed. In particular, the domain of attraction is expanded from a previous estimate, such as a classical Lyapunov level set. With the use of fuzzy-polynomial models, the domain of attraction analysis can be carried out via sum of squares optimization and an iterative algorithm. The result is a function that bounds the domain of attraction, free from the usual restriction of being positive and decrescent in all the interior of its level sets.
Polynomial stabilization of some dissipative hyperbolic systems
Czech Academy of Sciences Publication Activity Database
Ammari, K.; Feireisl, Eduard; Nicaise, S.
2014-01-01
Roč. 34, č. 11 (2014), s. 4371-4388 ISSN 1078-0947 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : exponential stability * polynomial stability * observability inequality Subject RIV: BA - General Mathematics Impact factor: 0.826, year: 2014 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=9924
Certain non-linear differential polynomials sharing a non zero polynomial
Directory of Open Access Journals (Sweden)
Majumder Sujoy
2015-10-01
functions sharing a nonzero polynomial and obtain two results which improves and generalizes the results due to L. Liu [Uniqueness of meromorphic functions and differential polynomials, Comput. Math. Appl., 56 (2008, 3236-3245.] and P. Sahoo [Uniqueness and weighted value sharing of meromorphic functions, Applied. Math. E-Notes., 11 (2011, 23-32.].
Polynomial optimization : Error analysis and applications
Sun, Zhao
2015-01-01
Polynomial optimization is the problem of minimizing a polynomial function subject to polynomial inequality constraints. In this thesis we investigate several hierarchies of relaxations for polynomial optimization problems. Our main interest lies in understanding their performance, in particular how
An algorithmic approach to solving polynomial equations associated with quantum circuits
International Nuclear Information System (INIS)
Gerdt, V.P.; Zinin, M.V.
2009-01-01
In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Groebner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Groebner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Groebner bases over F 2
Energy Technology Data Exchange (ETDEWEB)
Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2013-11-28
A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resulting in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.
Limit cycles bifurcating from the periodic annulus of cubic homogeneous polynomial centers
Directory of Open Access Journals (Sweden)
Jaume Llibre
2015-10-01
Full Text Available We obtain an explicit polynomial whose simple positive real roots provide the limit cycles which bifurcate from the periodic orbits of any cubic homogeneous polynomial center when it is perturbed inside the class of all polynomial differential systems of degree n.
Stabilizing Planar Inverted Pendulum System Based on Fuzzy Nine-point Controller
Qi Qian; Liu Feng; Tang Yong-chuan; Yang Yang
2013-01-01
In order to stabilize planar inverted pendulum, after analyzing the physical characteristics of the planar inverted pendulum system, a pendulum nine-point controller and a car nine-point controller for X-axis and Y-axis were designed respectively. Then a fuzzy coordinator was designed using the fuzzy control theory based on the priority of those two controllers, and the priority level of the pendulum is higher than the car. Thus, the control tasks of each controller in each axis were harmoniz...
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
Energy Technology Data Exchange (ETDEWEB)
Szederkenyi, Gabor; Hangos, Katalin M
2004-04-26
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
Szederkényi, Gábor; Hangos, Katalin M.
2004-04-01
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
International Nuclear Information System (INIS)
Szederkenyi, Gabor; Hangos, Katalin M.
2004-01-01
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities
Birth-death processes and associated polynomials
van Doorn, Erik A.
2003-01-01
We consider birth-death processes on the nonnegative integers and the corresponding sequences of orthogonal polynomials called birth-death polynomials. The sequence of associated polynomials linked with a sequence of birth-death polynomials and its orthogonalizing measure can be used in the analysis
Zaman, D. M. S.; Amina, M.; Dip, P. R.; Mamun, A. A.
2017-11-01
The basic properties of planar and non-planar (spherical and cylindrical) nucleus-acoustic (NA) shock structures (SSs) in a strongly coupled self-gravitating degenerate quantum plasma system (containing strongly coupled non-relativistically degenerate heavy nuclear species, weakly coupled non-relativistically degenerate light nuclear species, and inertialess non-/ultra-relativistically degenerate electrons) have been investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been used to derive the modified Burgers equation. It is shown that the strong correlation among heavy nuclear species acts as the source of dissipation and is responsible for the formation of the NA SSs with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically degenerate light nuclear species, spherical geometry, etc., significantly modify the basic features of the NA SSs. The applications of our results in astrophysical compact objects like white dwarfs and neutron stars are briefly discussed.
Extended biorthogonal matrix polynomials
Directory of Open Access Journals (Sweden)
Ayman Shehata
2017-01-01
Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.
Bannai-Ito polynomials and dressing chains
Derevyagin, Maxim; Tsujimoto, Satoshi; Vinet, Luc; Zhedanov, Alexei
2012-01-01
Schur-Delsarte-Genin (SDG) maps and Bannai-Ito polynomials are studied. SDG maps are related to dressing chains determined by quadratic algebras. The Bannai-Ito polynomials and their kernel polynomials -- the complementary Bannai-Ito polynomials -- are shown to arise in the framework of the SDG maps.
Open Problems Related to the Hurwitz Stability of Polynomials Segments
Directory of Open Access Journals (Sweden)
Baltazar Aguirre-Hernández
2018-01-01
Full Text Available In the framework of robust stability analysis of linear systems, the development of techniques and methods that help to obtain necessary and sufficient conditions to determine stability of convex combinations of polynomials is paramount. In this paper, knowing that Hurwitz polynomials set is not a convex set, a brief overview of some results and open problems concerning the stability of the convex combinations of Hurwitz polynomials is then provided.
Development of planar CT system for multi-layer PCB inspection
Energy Technology Data Exchange (ETDEWEB)
Kim, Seung Ho; Youn, Hanbean; Kam, Soohwa; Park, Eunpyeong; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)
2015-05-15
X-ray defect inspection apparatus can be used in the production line to inspect the PCB. However, a simple X-ray radiography cannot discriminate defects from the multi-layer PCBs because the layers of them overlays the defects. To complement this issue, computed tomography (CT) technology is applied to the NDT system which can offer 3-dimensional information of object. However, CT requires hundreds of projection images to examine a single PCB, hence real-time inspection is nearly impossible. In this study, we develop a planar computed tomography (pCT) system appropriate for the multi-layer PCB inspection. For the image reconstruction of planar cross-section images, we use the digital tomosynthesis (DTS) concept in association with the limited angle scanning. and performance characterization of the pCT system for the PCB inspection. The 3-d Fourier characteristics and more quantitative performance, such as contrast, uniformity, depth resolution will be presented. The cross-sectional images of multi-layer PCBs will also be demonstrated.
International Nuclear Information System (INIS)
Rossleigh, M.A.; Christian, C.L.; Craig, J.C.; Howman-Giles, R.B.; Grunewald, S.
2004-01-01
Purpose: To determine whether the provision of DMSA images obtained by pinhole collimation reduces inter-observer variability of reporting compared with planar DMSA images alone. Methods: One hundred consecutive DMSA images were independently interpreted three times (pinhole alone, planar alone, pinhole and planar) by four participating nuclear medicine specialists from different departments and in random order. The presence or absence of renal parenchymal abnormality was classified using the modified four level grading system of Goldraich with mean values for the 6 comparisons reported. Results: The proportion of DMSA images interpreted as abnormal was 31% for planar, 34% for pinhole and 33% for planar with pinhole. Agreement was 89% for planar alone, 89% for pinhole alone and 90% for planar with pinhole, with kappa values 0.74, 0.75 and 0.80 respectively for the normal-abnormal scan classification of individual children. These results did not vary appreciably whether interpretation of patients, kidneys or kidney zones was compared. Reasons for disagreement in reporting included different interpretations of 'abnormalities' as normal anatomical variations (splenic impression, fetal lobulation, duplex collecting systems, column of Bertin) or true parenchymal abnormalities, different adjustments in thresholds for reporting abnormality when images were technically suboptimal, different weighting given to pinhole and planar images when both were provided, and error. Conclusion: Four experienced nuclear medicine physicians showed substantial agreement in the interpretation of planar alone, pinhole alone and planar with pinhole DMSA images, but the provision of both sets of images, planar and pinhole, did not reduce variability. (authors)
About several classes of bi-orthogonal polynomials and discrete integrable systems
International Nuclear Information System (INIS)
Chang, Xiang-Ke; Chen, Xiao-Min; Hu, Xing-Biao; Tam, Hon-Wah
2015-01-01
By introducing some special bi-orthogonal polynomials, we derive the so-called discrete hungry quotient-difference (dhQD) algorithm and a system related to the QD-type discrete hungry Lotka–Volterra (QD-type dhLV) system, together with their Lax pairs. These two known equations can be regarded as extensions of the QD algorithm. When this idea is applied to a higher analogue of the discrete-time Toda (HADT) equation and the quotient–quotient-difference (QQD) scheme proposed by Spicer, Nijhoff and van der Kamp, two extended systems are constructed. We call these systems the hungry forms of the higher analogue discrete-time Toda (hHADT) equation and the quotient-quotient-difference (hQQD) scheme, respectively. In addition, the corresponding Lax pairs are provided. (paper)
Energy Technology Data Exchange (ETDEWEB)
Myers, N.J. [Univ. of Durham (United Kingdom)
1994-12-31
The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.
International Nuclear Information System (INIS)
Tsuji, Masataka; Meshii, Toshiyuki
2011-01-01
Highlights: → A limit moment equation applicable to planar/non-planar flaw of 0 ≤ θ ≤ π found in wall thinned straight pipes was proposed. → An idea to rationally classify planar/non-planar flaw in wall thinned pipes was proposed. → The equation based on the experimental observation focused on the fracture mode. - Abstract: In this paper, a limit bending moment equation applicable to all types of planar and non-planar flaws in wall-thinned straight pipes under bending was proposed. A system to rationally classify the planar/non-planar flaws in wall-thinned pipes was suggested based on experimental observations focused on the fracture mode. The results demonstrate the importance of distinguishing between axial and circumferential long flaws in wall-thinned pipes.
Generalizations of orthogonal polynomials
Bultheel, A.; Cuyt, A.; van Assche, W.; van Barel, M.; Verdonk, B.
2005-07-01
We give a survey of recent generalizations of orthogonal polynomials. That includes multidimensional (matrix and vector orthogonal polynomials) and multivariate versions, multipole (orthogonal rational functions) variants, and extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations are inspired by the applications in which they are applied. We also give a glimpse of these applications, which are usually generalizations of applications where classical orthogonal polynomials also play a fundamental role: moment problems, numerical quadrature, rational approximation, linear algebra, recurrence relations, and random matrices.
Application of ANNs approach for solving fully fuzzy polynomials system
Directory of Open Access Journals (Sweden)
R. Novin
2017-11-01
Full Text Available In processing indecisive or unclear information, the advantages of fuzzy logic and neurocomputing disciplines should be taken into account and combined by fuzzy neural networks. The current research intends to present a fuzzy modeling method using multi-layer fuzzy neural networks for solving a fully fuzzy polynomials system. To clarify the point, it is necessary to inform that a supervised gradient descent-based learning law is employed. The feasibility of the method is examined using computer simulations on a numerical example. The experimental results obtained from the investigation of the proposed method are valid and delivers very good approximation results.
Fast beampattern evaluation by polynomial rooting
Häcker, P.; Uhlich, S.; Yang, B.
2011-07-01
Current automotive radar systems measure the distance, the relative velocity and the direction of objects in their environment. This information enables the car to support the driver. The direction estimation capabilities of a sensor array depend on its beampattern. To find the array configuration leading to the best angle estimation by a global optimization algorithm, a huge amount of beampatterns have to be calculated to detect their maxima. In this paper, a novel algorithm is proposed to find all maxima of an array's beampattern fast and reliably, leading to accelerated array optimizations. The algorithm works for arrays having the sensors on a uniformly spaced grid. We use a general version of the gcd (greatest common divisor) function in order to write the problem as a polynomial. We differentiate and root the polynomial to get the extrema of the beampattern. In addition, we show a method to reduce the computational burden even more by decreasing the order of the polynomial.
Stochastic Estimation via Polynomial Chaos
2015-10-01
AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic
Linearizability conditions for Lotka-Volterra planar complex cubic systems
International Nuclear Information System (INIS)
Gine, Jaume; Romanovski, Valery G
2009-01-01
In this paper, we investigate the linearizability problem for the two-dimensional planar complex system x-dot=x(1-a 10 x-a 01 y-a 20 x 2 -a 11 xy-a 02 y 2 ), y-dot=(1-b 10 x-b 01 y-b 20 x 2 -b 11 xy-b 02 y 2 ). The necessary and sufficient conditions for the linearizability of this system are found. From them the conditions for isochronicity of the corresponding real system can be derived
A New Generalisation of Macdonald Polynomials
Garbali, Alexandr; de Gier, Jan; Wheeler, Michael
2017-06-01
We introduce a new family of symmetric multivariate polynomials, whose coefficients are meromorphic functions of two parameters ( q, t) and polynomial in a further two parameters ( u, v). We evaluate these polynomials explicitly as a matrix product. At u = v = 0 they reduce to Macdonald polynomials, while at q = 0, u = v = s they recover a family of inhomogeneous symmetric functions originally introduced by Borodin.
Special polynomials associated with some hierarchies
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.
2008-01-01
Special polynomials associated with rational solutions of a hierarchy of equations of Painleve type are introduced. The hierarchy arises by similarity reduction from the Fordy-Gibbons hierarchy of partial differential equations. Some relations for these special polynomials are given. Differential-difference hierarchies for finding special polynomials are presented. These formulae allow us to obtain special polynomials associated with the hierarchy studied. It is shown that rational solutions of members of the Schwarz-Sawada-Kotera, the Schwarz-Kaup-Kupershmidt, the Fordy-Gibbons, the Sawada-Kotera and the Kaup-Kupershmidt hierarchies can be expressed through special polynomials of the hierarchy studied
A Summation Formula for Macdonald Polynomials
de Gier, Jan; Wheeler, Michael
2016-03-01
We derive an explicit sum formula for symmetric Macdonald polynomials. Our expression contains multiple sums over the symmetric group and uses the action of Hecke generators on the ring of polynomials. In the special cases {t = 1} and {q = 0}, we recover known expressions for the monomial symmetric and Hall-Littlewood polynomials, respectively. Other specializations of our formula give new expressions for the Jack and q-Whittaker polynomials.
Anions, quantum particles in planar systems; Anions, particulas quanticas em sistemas planares
Energy Technology Data Exchange (ETDEWEB)
Monerat, Germano Amaral [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica]. E-mail: monerat@if.uff.br
2000-03-01
Our purpose here is to present a general review of the non-relativistic quantum-mechanical description of excitations that do not obey neither the Fermi-Dirac nor the Bose-Einstein statistics; they rather fulfill an intermediate statistics, the we called 'any-statistics'. As we shall see, this is a peculiarity of (1+1) and (1+2) dimensions, due to the fact that, in two space dimensions, the spin is not quantised, once the rotation group is Abelian. The relevance of studying theories in (1+2) dimensions is justified by the evidence that, in condensed matter physics, there are examples of planar systems, for which everything goes as if the third spatial dimension is frozen. (author)
Minimal residual method stronger than polynomial preconditioning
Energy Technology Data Exchange (ETDEWEB)
Faber, V.; Joubert, W.; Knill, E. [Los Alamos National Lab., NM (United States)] [and others
1994-12-31
Two popular methods for solving symmetric and nonsymmetric systems of equations are the minimal residual method, implemented by algorithms such as GMRES, and polynomial preconditioning methods. In this study results are given on the convergence rates of these methods for various classes of matrices. It is shown that for some matrices, such as normal matrices, the convergence rates for GMRES and for the optimal polynomial preconditioning are the same, and for other matrices such as the upper triangular Toeplitz matrices, it is at least assured that if one method converges then the other must converge. On the other hand, it is shown that matrices exist for which restarted GMRES always converges but any polynomial preconditioning of corresponding degree makes no progress toward the solution for some initial error. The implications of these results for these and other iterative methods are discussed.
International Nuclear Information System (INIS)
Guppy, C.B.
1962-03-01
In the methods adopted in this report transfer functions in the form of the ratio of two polynomials of the complex variable s are derived from sets of laplace transformed simultaneous differential equations. The set of algebraic simultaneous equations are solved using Cramer's Rule and this gives rise to determinants having polynomial elements. It is shown how the determinants are formed when transfer functions are specified. The procedure for finding the polynomial coefficients from a given determinant is fully described. The first method adopted is a direct one and reduces a determinant with first degree polynomial elements to secular form and follows this by an application of the similarity transformation to reduce the determinant to a form from which the polynomial coefficients can be read out directly. The programme is able to solve a single determinant with polynomial elements and this can be used to reduce an eigenvalue problem in the form of a secular determinant to polynomial form if the need arises. A description is given of the way in which the data is to be set out for solution by the programme. A description is also given of a method used in an earlier programme for solving polynomial determinants by curve fitting techniques using Chebyshev Polynomials. In this method determinants with polynomial elements of any degree can be solved. (author)
A Symbolic Computation Approach to Parameterizing Controller for Polynomial Hamiltonian Systems
Directory of Open Access Journals (Sweden)
Zhong Cao
2014-01-01
Full Text Available This paper considers controller parameterization method of H∞ control for polynomial Hamiltonian systems (PHSs, which involves internal stability and external disturbance attenuation. The aims of this paper are to design a controller with parameters to insure that the systems are H∞ stable and propose an algorithm for solving parameters of the controller with symbolic computation. The proposed parameterization method avoids solving Hamilton-Jacobi-Isaacs equations, and thus the obtained controllers with parameters are relatively simple in form and easy in operation. Simulation with a numerical example shows that the controller is effective as it can optimize H∞ control by adjusting parameters. All these results are expected to be of use in the study of H∞ control for nonlinear systems with perturbations.
Universal localizing bounds for compact invariant sets of natural polynomial Hamiltonian systems
International Nuclear Information System (INIS)
Starkov, Konstantin E.
2008-01-01
In this Letter we study the localization problem of compact invariant sets of natural Hamiltonian systems with a polynomial Hamiltonian. Our results are based on applying the first order extremum conditions. We compute universal localizing bounds for some domain containing all compact invariant sets of a Hamiltonian system by using one quadratic function of a simple form. These bounds depend on the value of the total energy of the system, degree and some coefficients of a potential and, in addition, some positive number got as a result of a solution of one maximization problem. Besides, under some quasihomogeneity condition(s) we generalize our construction of the localization set
Universal localizing bounds for compact invariant sets of natural polynomial Hamiltonian systems
Energy Technology Data Exchange (ETDEWEB)
Starkov, Konstantin E. [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)], E-mail: konst@citedi.mx
2008-10-06
In this Letter we study the localization problem of compact invariant sets of natural Hamiltonian systems with a polynomial Hamiltonian. Our results are based on applying the first order extremum conditions. We compute universal localizing bounds for some domain containing all compact invariant sets of a Hamiltonian system by using one quadratic function of a simple form. These bounds depend on the value of the total energy of the system, degree and some coefficients of a potential and, in addition, some positive number got as a result of a solution of one maximization problem. Besides, under some quasihomogeneity condition(s) we generalize our construction of the localization set.
Quantum entanglement via nilpotent polynomials
International Nuclear Information System (INIS)
Mandilara, Aikaterini; Akulin, Vladimir M.; Smilga, Andrei V.; Viola, Lorenza
2006-01-01
We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion for the tanglemeter and, in representative examples of up to four-qubit systems, show how the known classes appear in a natural way within our framework. We extend our approach to qutrits and higher-dimensional systems, and make contact with the recently introduced idea of generalized entanglement. Possible future developments and applications of the method are discussed
Weierstrass polynomials for links
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
1997-01-01
There is a natural way of identifying links in3-space with polynomial covering spaces over thecircle. Thereby any link in 3-space can be definedby a Weierstrass polynomial over the circle. Theequivalence relation for covering spaces over thecircle is, however, completely different from...
Golden, Ryan; Cho, Ilwoo
2015-01-01
In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...
Associated polynomials and birth-death processes
van Doorn, Erik A.
2001-01-01
We consider sequences of orthogonal polynomials with positive zeros, and pursue the question of how (partial) knowledge of the orthogonalizing measure for the {\\it associated polynomials} can lead to information about the orthogonalizing measure for the original polynomials, with a view to
DEFF Research Database (Denmark)
Rakhshan, Mohsen; Vafamand, Navid; Khooban, Mohammad Hassan
2018-01-01
This paper introduces a polynomial fuzzy model (PFM)-based maximum power point tracking (MPPT) control approach to increase the performance and efficiency of the solar photovoltaic (PV) electricity generation. The proposed method relies on a polynomial fuzzy modeling, a polynomial parallel......, a direct maximum power (DMP)-based control structure is considered for MPPT. Using the PFM representation, the DMP-based control structure is formulated in terms of SOS conditions. Unlike the conventional approaches, the proposed approach does not require exploring the maximum power operational point...
Solving the interval type-2 fuzzy polynomial equation using the ranking method
Rahman, Nurhakimah Ab.; Abdullah, Lazim
2014-07-01
Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.
Microphotonic devices for compact planar lightwave circuits and sensor systems
Cardenas Gonzalez, Jaime
2005-07-01
Higher levels of integration in planar lightwave circuits and sensor systems can reduce fabrication costs and broaden viable applications for optical network and sensor systems. For example, increased integration and functionality can lead to sensor systems that are compact enough for easy transport, rugged enough for field applications, and sensitive enough even for laboratory applications. On the other hand, more functional and compact planar lightwave circuits can make optical networks components less expensive for the metro and access markets in urban areas and allow penetration of fiber to the home. Thus, there is an important area of opportunity for increased integration to provide low cost, compact solutions in both network components and sensor systems. In this dissertation, a novel splitting structure for microcantilever deflection detection is introduced. The splitting structure is designed so that its splitting ratio is dependent on the vertical position of the microcantilever. With this structure, microcantilevers sensitized to detect different analytes or biological agents can be integrated into an array on a single chip. Additionally, the integration of a depolarizer into the optoelectronic integrated circuit in an interferometric fiber optic gyroscope is presented as a means for cost reduction. The savings come in avoiding labor intensive fiber pigtailing steps by permitting batch fabrication of these components. In particular, this dissertation focuses on the design of the waveguides and polarization rotator, and the impact of imperfect components on the performance of the depolarizer. In the area of planar lightwave circuits, this dissertation presents the development of a fabrication process for single air interface bends (SAIBs). SAIBs can increase integration by reducing the area necessary to make a waveguide bend. Fabrication and measurement of a 45° SAIB with a bend efficiency of 93.4% for TM polarization and 92.7% for TE polarization are
Scattering theory and orthogonal polynomials
International Nuclear Information System (INIS)
Geronimo, J.S.
1977-01-01
The application of the techniques of scattering theory to the study of polynomials orthogonal on the unit circle and a finite segment of the real line is considered. The starting point is the recurrence relations satisfied by the polynomials instead of the orthogonality condition. A set of two two terms recurrence relations for polynomials orthogonal on the real line is presented and used. These recurrence relations play roles analogous to those satisfied by polynomials orthogonal on unit circle. With these recurrence formulas a Wronskian theorem is proved and the Christoffel-Darboux formula is derived. In scattering theory a fundamental role is played by the Jost function. An analogy is deferred of this function and its analytic properties and the locations of its zeros investigated. The role of the analog Jost function in various properties of these orthogonal polynomials is investigated. The techniques of inverse scattering theory are also used. The discrete analogues of the Gelfand-Levitan and Marchenko equations are derived and solved. These techniques are used to calculate asymptotic formulas for the orthogonal polynomials. Finally Szego's theorem on toeplitz and Hankel determinants is proved using the recurrence formulas and some properties of the Jost function. The techniques of inverse scattering theory are used to calculate the correction terms
International Nuclear Information System (INIS)
Bedini, Andrea; Jacobsen, Jesper Lykke
2010-01-01
Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N = 100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ∼ exp(1.516√N), a substantial improvement over the exponential running time ∼exp (0.245N) provided by the hitherto best-known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.
A New Method for Research on the Center-Focus Problem of Differential Systems
Zhou, Zhengxin
2014-01-01
We will introduce Mironenko’s method to discuss the Poincaré center-focus problem, and compare the methods of Lyapunov and Mironenko. We apply the Mironenko method to discuss the qualitative behavior of solutions of some planar polynomial differential systems and derive the sufficient conditions for a critical point to be a center.
Anions, quantum particles in planar systems
International Nuclear Information System (INIS)
Monerat, Germano Amaral
2000-03-01
Our purpose here is to present a general review of the non-relativistic quantum-mechanical description of excitations that do not obey neither the Fermi-Dirac nor the Bose-Einstein statistics; they rather fulfill an intermediate statistics, the we called 'any-statistics'. As we shall see, this is a peculiarity of (1+1) and (1+2) dimensions, due to the fact that, in two space dimensions, the spin is not quantised, once the rotation group is Abelian. The relevance of studying theories in (1+2) dimensions is justified by the evidence that, in condensed matter physics, there are examples of planar systems, for which everything goes as if the third spatial dimension is frozen. (author)
Fermionic formula for double Kostka polynomials
Liu, Shiyuan
2016-01-01
The $X=M$ conjecture asserts that the $1D$ sum and the fermionic formula coincide up to some constant power. In the case of type $A,$ both the $1D$ sum and the fermionic formula are closely related to Kostka polynomials. Double Kostka polynomials $K_{\\Bla,\\Bmu}(t),$ indexed by two double partitions $\\Bla,\\Bmu,$ are polynomials in $t$ introduced as a generalization of Kostka polynomials. In the present paper, we consider $K_{\\Bla,\\Bmu}(t)$ in the special case where $\\Bmu=(-,\\mu'').$ We formula...
Relations between Möbius and coboundary polynomials
Jurrius, R.P.M.J.
2012-01-01
It is known that, in general, the coboundary polynomial and the Möbius polynomial of a matroid do not determine each other. Less is known about more specific cases. In this paper, we will investigate if it is possible that the Möbius polynomial of a matroid, together with the Möbius polynomial of
Matrix product formula for Macdonald polynomials
Cantini, Luigi; de Gier, Jan; Wheeler, Michael
2015-09-01
We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik-Zamolodchikov equations, which arise by considering representations of the Zamolodchikov-Faddeev and Yang-Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1.
Matrix product formula for Macdonald polynomials
International Nuclear Information System (INIS)
Cantini, Luigi; Gier, Jan de; Michael Wheeler
2015-01-01
We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik–Zamolodchikov equations, which arise by considering representations of the Zamolodchikov–Faddeev and Yang–Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1. (paper)
Euler polynomials and identities for non-commutative operators
De Angelis, Valerio; Vignat, Christophe
2015-12-01
Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.
Recognition of Arabic Sign Language Alphabet Using Polynomial Classifiers
Directory of Open Access Journals (Sweden)
M. Al-Rousan
2005-08-01
Full Text Available Building an accurate automatic sign language recognition system is of great importance in facilitating efficient communication with deaf people. In this paper, we propose the use of polynomial classifiers as a classification engine for the recognition of Arabic sign language (ArSL alphabet. Polynomial classifiers have several advantages over other classifiers in that they do not require iterative training, and that they are highly computationally scalable with the number of classes. Based on polynomial classifiers, we have built an ArSL system and measured its performance using real ArSL data collected from deaf people. We show that the proposed system provides superior recognition results when compared with previously published results using ANFIS-based classification on the same dataset and feature extraction methodology. The comparison is shown in terms of the number of misclassified test patterns. The reduction in the rate of misclassified patterns was very significant. In particular, we have achieved a 36% reduction of misclassifications on the training data and 57% on the test data.
Vertex models, TASEP and Grothendieck polynomials
International Nuclear Information System (INIS)
Motegi, Kohei; Sakai, Kazumitsu
2013-01-01
We examine the wavefunctions and their scalar products of a one-parameter family of integrable five-vertex models. At a special point of the parameter, the model investigated is related to an irreversible interacting stochastic particle system—the so-called totally asymmetric simple exclusion process (TASEP). By combining the quantum inverse scattering method with a matrix product representation of the wavefunctions, the on-/off-shell wavefunctions of the five-vertex models are represented as a certain determinant form. Up to some normalization factors, we find that the wavefunctions are given by Grothendieck polynomials, which are a one-parameter deformation of Schur polynomials. Introducing a dual version of the Grothendieck polynomials, and utilizing the determinant representation for the scalar products of the wavefunctions, we derive a generalized Cauchy identity satisfied by the Grothendieck polynomials and their duals. Several representation theoretical formulae for the Grothendieck polynomials are also presented. As a byproduct, the relaxation dynamics such as Green functions for the periodic TASEP are found to be described in terms of the Grothendieck polynomials. (paper)
On the Laurent polynomial rings
International Nuclear Information System (INIS)
Stefanescu, D.
1985-02-01
We describe some properties of the Laurent polynomial rings in a finite number of indeterminates over a commutative unitary ring. We study some subrings of the Laurent polynomial rings. We finally obtain two cancellation properties. (author)
Mahmood, Zahid; Ning, Huansheng; Ghafoor, AtaUllah
2017-03-24
Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node. The polynomial generation method uses security credentials and secure hash function. Symmetric cryptographic parameters are efficient in computation, communication, and the storage required. The security justification of the proposed scheme has been completed by using Rubin logic, which guarantees that the protocol attains mutual validation and session key agreement property strongly among the participating entities. Simulation scenarios are performed using NS 2.35 to validate the results for storage, communication, latency, energy, and polynomial calculation costs during authentication, session key generation, node migration, secure joining, and leaving phases. EKM is efficient regarding storage, computation, and communication overhead and can protect WSN-based IoT infrastructure.
Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials
Ait-Haddou, Rachid
2015-06-07
We show that a weighted least squares approximation of q-Bézier coefficients provides the best polynomial degree reduction in the q-L2-norm. We also provide a finite analogue of this result with respect to finite q-lattices and we present applications of these results to q-orthogonal polynomials. © 2015 Elsevier Inc. All rights reserved.
Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials
Ait-Haddou, Rachid; Goldman, Ron
2015-01-01
We show that a weighted least squares approximation of q-Bézier coefficients provides the best polynomial degree reduction in the q-L2-norm. We also provide a finite analogue of this result with respect to finite q-lattices and we present applications of these results to q-orthogonal polynomials. © 2015 Elsevier Inc. All rights reserved.
A note on a nonresonance condition at zero for first-order planar systems
Directory of Open Access Journals (Sweden)
Maurizio Garrione
2015-01-01
Full Text Available We introduce a Landesman-Lazer type nonresonance condition at zero for planar systems and discuss its rotational interpretation. We then show an application concerning multiplicity of T-periodic solutions to unforced Hamiltonian systems like $$ Ju'=\
Computing the Alexander Polynomial Numerically
DEFF Research Database (Denmark)
Hansen, Mikael Sonne
2006-01-01
Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically.......Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically....
Density of Real Zeros of the Tutte Polynomial
DEFF Research Database (Denmark)
Ok, Seongmin; Perrett, Thomas
2018-01-01
The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane. This ....... This is the first density result for the real zeros of the Tutte polynomial in a region of positive volume. Our result almost confirms a conjecture of Jackson and Sokal except for one region which is related to an open problem on flow polynomials.......The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane...
Density of Real Zeros of the Tutte Polynomial
DEFF Research Database (Denmark)
Ok, Seongmin; Perrett, Thomas
2017-01-01
The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane. This ....... This is the first density result for the real zeros of the Tutte polynomial in a region of positive volume. Our result almost confirms a conjecture of Jackson and Sokal except for one region which is related to an open problem on flow polynomials.......The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane...
Parallel Construction of Irreducible Polynomials
DEFF Research Database (Denmark)
Frandsen, Gudmund Skovbjerg
Let arithmetic pseudo-NC^k denote the problems that can be solved by log space uniform arithmetic circuits over the finite prime field GF(p) of depth O(log^k (n + p)) and size polynomial in (n + p). We show that the problem of constructing an irreducible polynomial of specified degree over GF(p) ...... of polynomials is in arithmetic NC^3. Our algorithm works over any field and compared to other known algorithms it does not assume the ability to take p'th roots when the field has characteristic p....
Directory of Open Access Journals (Sweden)
A.K. Parida
2016-09-01
Full Text Available In this paper Chebyshev polynomial functions based locally recurrent neuro-fuzzy information system is presented for the prediction and analysis of financial and electrical energy market data. The normally used TSK-type feedforward fuzzy neural network is unable to take the full advantage of the use of the linear fuzzy rule base in accurate input–output mapping and hence the consequent part of the rule base is made nonlinear using polynomial or arithmetic basis functions. Further the Chebyshev polynomial functions provide an expanded nonlinear transformation to the input space thereby increasing its dimension for capturing the nonlinearities and chaotic variations in financial or energy market data streams. Also the locally recurrent neuro-fuzzy information system (LRNFIS includes feedback loops both at the firing strength layer and the output layer to allow signal flow both in forward and backward directions, thereby making the LRNFIS mimic a dynamic system that provides fast convergence and accuracy in predicting time series fluctuations. Instead of using forward and backward least mean square (FBLMS learning algorithm, an improved Firefly-Harmony search (IFFHS learning algorithm is used to estimate the parameters of the consequent part and feedback loop parameters for better stability and convergence. Several real world financial and energy market time series databases are used for performance validation of the proposed LRNFIS model.
Optimization over polynomials : Selected topics
Laurent, M.; Jang, Sun Young; Kim, Young Rock; Lee, Dae-Woong; Yie, Ikkwon
2014-01-01
Minimizing a polynomial function over a region defined by polynomial inequalities models broad classes of hard problems from combinatorics, geometry and optimization. New algorithmic approaches have emerged recently for computing the global minimum, by combining tools from real algebra (sums of
Realisation of an anode supported planar SOFC system
Energy Technology Data Exchange (ETDEWEB)
Buchkremer, H.P.; Stoever, D. [Institut fuer Werkstoffe der Energietechnik, Juelich (Germany); Diekmann, U. [Zentralabteilung Technologie, Juelich (Germany)] [and others
1996-12-31
Lowering the operating temperature of S0FCs to below 800{degrees}C potentially lowers production costs of a SOFC system because of a less expensive periphery and is able to guarantee sufficient life time of the stack. One way of achieving lower operating temperatures is the development of new high conductive electrolyte materials. The other way, still based on state-of-the-art material, i.e. yttria-stabilized zirconia (YSZ) electrolyte, is the development of a thin film electrolyte concept. In the Forschungszentrum Julich a program was started to produce a supported planar SOFC with an YSZ electrolyte thickness between 10 to 20 put. One of the electrodes, i.e. the anode, was used as support, in order not to increase the number of components in the SOFC. The high electronic conductivity of the anode-cermet allows the use of relatively thick layers without increasing the cell resistance. An additional advantage of the supported planar concept is the possibility to produce single cells larger than 10 x 10 cm x cm, that is with an effective electrode cross area of several hundred cm{sup 2}.
Directory of Open Access Journals (Sweden)
Wang Mingjie
2017-01-01
Full Text Available A framework of non-intrusive polynomial chaos expansion method (PC was proposed to investigate the statistic characteristics of the response of structural-acoustic system containing random uncertainty. The PC method does not need to reformulate model equations, and the statistics of the response can be evaluated directly. The results show that compared to the direct Monte Carlo method (MCM based on the original numerical model, the PC method is effective and more efficient.
Polynomial chaos expansion with random and fuzzy variables
Jacquelin, E.; Friswell, M. I.; Adhikari, S.; Dessombz, O.; Sinou, J.-J.
2016-06-01
A dynamical uncertain system is studied in this paper. Two kinds of uncertainties are addressed, where the uncertain parameters are described through random variables and/or fuzzy variables. A general framework is proposed to deal with both kinds of uncertainty using a polynomial chaos expansion (PCE). It is shown that fuzzy variables may be expanded in terms of polynomial chaos when Legendre polynomials are used. The components of the PCE are a solution of an equation that does not depend on the nature of uncertainty. Once this equation is solved, the post-processing of the data gives the moments of the random response when the uncertainties are random or gives the response interval when the variables are fuzzy. With the PCE approach, it is also possible to deal with mixed uncertainty, when some parameters are random and others are fuzzy. The results provide a fuzzy description of the response statistical moments.
Efficient computation of Laguerre polynomials
A. Gil (Amparo); J. Segura (Javier); N.M. Temme (Nico)
2017-01-01
textabstractAn efficient algorithm and a Fortran 90 module (LaguerrePol) for computing Laguerre polynomials . Ln(α)(z) are presented. The standard three-term recurrence relation satisfied by the polynomials and different types of asymptotic expansions valid for . n large and . α small, are used
Orthogonal polynomials in transport theories
International Nuclear Information System (INIS)
Dehesa, J.S.
1981-01-01
The asymptotical (k→infinity) behaviour of zeros of the polynomials gsub(k)sup((m)(ν)) encountered in the treatment of direct and inverse problems of scattering in neutron transport as well as radiative transfer theories is investigated in terms of the amplitude antiwsub(k) of the kth Legendre polynomial needed in the expansion of the scattering function. The parameters antiwsub(k) describe the anisotropy of scattering of the medium considered. In particular, it is shown that the asymptotical density of zeros of the polynomials gsub(k)sup(m)(ν) is an inverted semicircle for the anisotropic non-multiplying scattering medium
New polynomial-based molecular descriptors with low degeneracy.
Directory of Open Access Journals (Sweden)
Matthias Dehmer
Full Text Available In this paper, we introduce a novel graph polynomial called the 'information polynomial' of a graph. This graph polynomial can be derived by using a probability distribution of the vertex set. By using the zeros of the obtained polynomial, we additionally define some novel spectral descriptors. Compared with those based on computing the ordinary characteristic polynomial of a graph, we perform a numerical study using real chemical databases. We obtain that the novel descriptors do have a high discrimination power.
Need for higher order polynomial basis for polynomial nodal methods employed in LWR calculations
International Nuclear Information System (INIS)
Taiwo, T.A.; Palmiotti, G.
1997-01-01
The paper evaluates the accuracy and efficiency of sixth order polynomial solutions and the use of one radial node per core assembly for pressurized water reactor (PWR) core power distributions and reactivities. The computer code VARIANT was modified to calculate sixth order polynomial solutions for a hot zero power benchmark problem in which a control assembly along a core axis is assumed to be out of the core. Results are presented for the VARIANT, DIF3D-NODAL, and DIF3D-finite difference codes. The VARIANT results indicate that second order expansion of the within-node source and linear representation of the node surface currents are adequate for this problem. The results also demonstrate the improvement in the VARIANT solution when the order of the polynomial expansion of the within-node flux is increased from fourth to sixth order. There is a substantial saving in computational time for using one radial node per assembly with the sixth order expansion compared to using four or more nodes per assembly and fourth order polynomial solutions. 11 refs., 1 tab
Algebraic invariant curves of plane polynomial differential systems
Tsygvintsev, Alexei
2001-01-01
We consider a plane polynomial vector field P(x,y) dx + Q(x,y) dy of degree m>1. With each algebraic invariant curve of such a field we associate a compact Riemann surface with the meromorphic differential ω = dx/P = dy/Q. The asymptotic estimate of the degree of an arbitrary algebraic invariant curve is found. In the smooth case this estimate has already been found by Cerveau and Lins Neto in a different way.
International Nuclear Information System (INIS)
Viswanathan, V.K.
1981-01-01
This paper describes the need for non-raytracing schemes in the optical design and analysis of large carbon-dioxide lasers like the Gigawatt, Gemini, and Helios lasers currently operational at Los Alamos, and the Antares laser fusion system under construction. The scheme currently used at Los Alamos involves characterizing the various optical components with a Zernike polynomial set obtained by the digitization of experimentally produced interferograms of the components. A Fast Fourier Transform code then propagates the complex amplitude and phase of the beam through the whole system and computes the optical parameters of interest. The analysis scheme is illustrated through examples of the Gigawatt, Gemini, and Helios systems. A possible way of using the Zernike polynomials in optical design problems of this type is discussed. Comparisons between the computed values and experimentally obtained results are made and it is concluded that this appears to be a valid approach. As this is a review article, some previously published results are also used where relevant
Sheffer and Non-Sheffer Polynomial Families
Directory of Open Access Journals (Sweden)
G. Dattoli
2012-01-01
Full Text Available By using the integral transform method, we introduce some non-Sheffer polynomial sets. Furthermore, we show how to compute the connection coefficients for particular expressions of Appell polynomials.
Lam, H K
2012-02-01
This paper investigates the stability of sampled-data output-feedback (SDOF) polynomial-fuzzy-model-based control systems. Representing the nonlinear plant using a polynomial fuzzy model, an SDOF fuzzy controller is proposed to perform the control process using the system output information. As only the system output is available for feedback compensation, it is more challenging for the controller design and system analysis compared to the full-state-feedback case. Furthermore, because of the sampling activity, the control signal is kept constant by the zero-order hold during the sampling period, which complicates the system dynamics and makes the stability analysis more difficult. In this paper, two cases of SDOF fuzzy controllers, which either share the same number of fuzzy rules or not, are considered. The system stability is investigated based on the Lyapunov stability theory using the sum-of-squares (SOS) approach. SOS-based stability conditions are obtained to guarantee the system stability and synthesize the SDOF fuzzy controller. Simulation examples are given to demonstrate the merits of the proposed SDOF fuzzy control approach.
Generalized Pseudospectral Method and Zeros of Orthogonal Polynomials
Directory of Open Access Journals (Sweden)
Oksana Bihun
2018-01-01
Full Text Available Via a generalization of the pseudospectral method for numerical solution of differential equations, a family of nonlinear algebraic identities satisfied by the zeros of a wide class of orthogonal polynomials is derived. The generalization is based on a modification of pseudospectral matrix representations of linear differential operators proposed in the paper, which allows these representations to depend on two, rather than one, sets of interpolation nodes. The identities hold for every polynomial family pνxν=0∞ orthogonal with respect to a measure supported on the real line that satisfies some standard assumptions, as long as the polynomials in the family satisfy differential equations Apν(x=qν(xpν(x, where A is a linear differential operator and each qν(x is a polynomial of degree at most n0∈N; n0 does not depend on ν. The proposed identities generalize known identities for classical and Krall orthogonal polynomials, to the case of the nonclassical orthogonal polynomials that belong to the class described above. The generalized pseudospectral representations of the differential operator A for the case of the Sonin-Markov orthogonal polynomials, also known as generalized Hermite polynomials, are presented. The general result is illustrated by new algebraic relations satisfied by the zeros of the Sonin-Markov polynomials.
On the Connection Coefficients of the Chebyshev-Boubaker Polynomials
Directory of Open Access Journals (Sweden)
Paul Barry
2013-01-01
Full Text Available The Chebyshev-Boubaker polynomials are the orthogonal polynomials whose coefficient arrays are defined by ordinary Riordan arrays. Examples include the Chebyshev polynomials of the second kind and the Boubaker polynomials. We study the connection coefficients of this class of orthogonal polynomials, indicating how Riordan array techniques can lead to closed-form expressions for these connection coefficients as well as recurrence relations that define them.
Linear precoding based on polynomial expansion: reducing complexity in massive MIMO
Mueller, Axel; Kammoun, Abla; Bjö rnson, Emil; Debbah, Mé rouane
2016-01-01
By deriving new random matrix results, we obtain a deterministic expression for the asymptotic signal-to-interference-and-noise ratio (SINR) achieved by TPE precoding in massive MIMO systems. Furthermore, we provide a closed-form expression for the polynomial coefficients that maximizes this SINR. To maintain a fixed per-user rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and the signal-to-noise ratio.
Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng
2016-03-01
This paper deals with the problem of control synthesis of discrete-time Takagi-Sugeno fuzzy systems by employing a novel multiinstant homogenous polynomial approach. A new multiinstant fuzzy control scheme and a new class of fuzzy Lyapunov functions, which are homogenous polynomially parameter-dependent on both the current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting functions, are proposed for implementing the object of relaxed control synthesis. Then, relaxed stabilization conditions are derived with less conservatism than existing ones. Furthermore, the relaxation quality of obtained stabilization conditions is further ameliorated by developing an efficient slack variable approach, which presents a multipolynomial dependence on the normalized fuzzy weighting functions at the current and past instants of time. Two simulation examples are given to demonstrate the effectiveness and benefits of the results developed in this paper.
Zhu, Yuanheng; Zhao, Dongbin; Yang, Xiong; Zhang, Qichao
2018-02-01
Sum of squares (SOS) polynomials have provided a computationally tractable way to deal with inequality constraints appearing in many control problems. It can also act as an approximator in the framework of adaptive dynamic programming. In this paper, an approximate solution to the optimal control of polynomial nonlinear systems is proposed. Under a given attenuation coefficient, the Hamilton-Jacobi-Isaacs equation is relaxed to an optimization problem with a set of inequalities. After applying the policy iteration technique and constraining inequalities to SOS, the optimization problem is divided into a sequence of feasible semidefinite programming problems. With the converged solution, the attenuation coefficient is further minimized to a lower value. After iterations, approximate solutions to the smallest -gain and the associated optimal controller are obtained. Four examples are employed to verify the effectiveness of the proposed algorithm.
Polynomial sequences generated by infinite Hessenberg matrices
Directory of Open Access Journals (Sweden)
Verde-Star Luis
2017-01-01
Full Text Available We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.
Special polynomials associated with rational solutions of some hierarchies
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.
2009-01-01
New special polynomials associated with rational solutions of the Painleve hierarchies are introduced. The Hirota relations for these special polynomials are found. Differential-difference hierarchies to find special polynomials are presented. These formulae allow us to search special polynomials associated with the hierarchies. It is shown that rational solutions of the Caudrey-Dodd-Gibbon, the Kaup-Kupershmidt and the modified hierarchy for these ones can be obtained using new special polynomials.
Itoh, Shoji; Sugihara, Masaaki
2016-01-01
We present a theorem that defines the direction of a preconditioned system for the bi-conjugate gradient (BiCG) method, and we extend it to preconditioned bi-Lanczos-type algorithms. We show that the direction of a preconditioned system is switched by construction and by the settings of the initial shadow residual vector. We analyze and compare the polynomial structures of four preconditioned BiCG algorithms.
Linear precoding based on polynomial expansion: reducing complexity in massive MIMO
Mueller, Axel
2016-02-29
Massive multiple-input multiple-output (MIMO) techniques have the potential to bring tremendous improvements in spectral efficiency to future communication systems. Counterintuitively, the practical issues of having uncertain channel knowledge, high propagation losses, and implementing optimal non-linear precoding are solved more or less automatically by enlarging system dimensions. However, the computational precoding complexity grows with the system dimensions. For example, the close-to-optimal and relatively “antenna-efficient” regularized zero-forcing (RZF) precoding is very complicated to implement in practice, since it requires fast inversions of large matrices in every coherence period. Motivated by the high performance of RZF, we propose to replace the matrix inversion and multiplication by a truncated polynomial expansion (TPE), thereby obtaining the new TPE precoding scheme which is more suitable for real-time hardware implementation and significantly reduces the delay to the first transmitted symbol. The degree of the matrix polynomial can be adapted to the available hardware resources and enables smooth transition between simple maximum ratio transmission and more advanced RZF. By deriving new random matrix results, we obtain a deterministic expression for the asymptotic signal-to-interference-and-noise ratio (SINR) achieved by TPE precoding in massive MIMO systems. Furthermore, we provide a closed-form expression for the polynomial coefficients that maximizes this SINR. To maintain a fixed per-user rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and the signal-to-noise ratio.
Cosmographic analysis with Chebyshev polynomials
Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando
2018-05-01
The limits of standard cosmography are here revised addressing the problem of error propagation during statistical analyses. To do so, we propose the use of Chebyshev polynomials to parametrize cosmic distances. In particular, we demonstrate that building up rational Chebyshev polynomials significantly reduces error propagations with respect to standard Taylor series. This technique provides unbiased estimations of the cosmographic parameters and performs significatively better than previous numerical approximations. To figure this out, we compare rational Chebyshev polynomials with Padé series. In addition, we theoretically evaluate the convergence radius of (1,1) Chebyshev rational polynomial and we compare it with the convergence radii of Taylor and Padé approximations. We thus focus on regions in which convergence of Chebyshev rational functions is better than standard approaches. With this recipe, as high-redshift data are employed, rational Chebyshev polynomials remain highly stable and enable one to derive highly accurate analytical approximations of Hubble's rate in terms of the cosmographic series. Finally, we check our theoretical predictions by setting bounds on cosmographic parameters through Monte Carlo integration techniques, based on the Metropolis-Hastings algorithm. We apply our technique to high-redshift cosmic data, using the Joint Light-curve Analysis supernovae sample and the most recent versions of Hubble parameter and baryon acoustic oscillation measurements. We find that cosmography with Taylor series fails to be predictive with the aforementioned data sets, while turns out to be much more stable using the Chebyshev approach.
Multilevel weighted least squares polynomial approximation
Haji-Ali, Abdul-Lateef
2017-06-30
Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that, using an optimal distribution of sample locations, the number of samples required to achieve quasi-optimal approximation in a given polynomial subspace scales, up to a logarithmic factor, linearly in the dimension of this space. However, in many applications, the computation of samples includes a numerical discretization error. Thus, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose a multilevel method that utilizes samples computed with different accuracies and is able to match the accuracy of single-level approximations with reduced computational cost. We derive complexity bounds under certain assumptions about polynomial approximability and sample work. Furthermore, we propose an adaptive algorithm for situations where such assumptions cannot be verified a priori. Finally, we provide an efficient algorithm for the sampling from optimal distributions and an analysis of computationally favorable alternative distributions. Numerical experiments underscore the practical applicability of our method.
Optimization of polynomials in non-commuting variables
Burgdorf, Sabine; Povh, Janez
2016-01-01
This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms.
Relations between zeros of special polynomials associated with the Painleve equations
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.; Demina, Maria V.
2007-01-01
A method for finding relations of roots of polynomials is presented. Our approach allows us to get a number of relations between the zeros of the classical polynomials as well as the roots of special polynomials associated with rational solutions of the Painleve equations. We apply the method to obtain the relations for the zeros of several polynomials. These are: the Hermite polynomials, the Laguerre polynomials, the Yablonskii-Vorob'ev polynomials, the generalized Okamoto polynomials, and the generalized Hermite polynomials. All the relations found can be considered as analogues of generalized Stieltjes relations
On polynomial solutions of the Heun equation
International Nuclear Information System (INIS)
Gurappa, N; Panigrahi, Prasanta K
2004-01-01
By making use of a recently developed method to solve linear differential equations of arbitrary order, we find a wide class of polynomial solutions to the Heun equation. We construct the series solution to the Heun equation before identifying the polynomial solutions. The Heun equation extended by the addition of a term, -σ/x, is also amenable for polynomial solutions. (letter to the editor)
A new Arnoldi approach for polynomial eigenproblems
Energy Technology Data Exchange (ETDEWEB)
Raeven, F.A.
1996-12-31
In this paper we introduce a new generalization of the method of Arnoldi for matrix polynomials. The new approach is compared with the approach of rewriting the polynomial problem into a linear eigenproblem and applying the standard method of Arnoldi to the linearised problem. The algorithm that can be applied directly to the polynomial eigenproblem turns out to be more efficient, both in storage and in computation.
Bifurcation theory for finitely smooth planar autonomous differential systems
Han, Maoan; Sheng, Lijuan; Zhang, Xiang
2018-03-01
In this paper we establish bifurcation theory of limit cycles for planar Ck smooth autonomous differential systems, with k ∈ N. The key point is to study the smoothness of bifurcation functions which are basic and important tool on the study of Hopf bifurcation at a fine focus or a center, and of Poincaré bifurcation in a period annulus. We especially study the smoothness of the first order Melnikov function in degenerate Hopf bifurcation at an elementary center. As we know, the smoothness problem was solved for analytic and C∞ differential systems, but it was not tackled for finitely smooth differential systems. Here, we present their optimal regularity of these bifurcation functions and their asymptotic expressions in the finite smooth case.
Orthogonal Polynomials and Special Functions
Assche, Walter
2003-01-01
The set of lectures from the Summer School held in Leuven in 2002 provide an up-to-date account of recent developments in orthogonal polynomials and special functions, in particular for algorithms for computer algebra packages, 3nj-symbols in representation theory of Lie groups, enumeration, multivariable special functions and Dunkl operators, asymptotics via the Riemann-Hilbert method, exponential asymptotics and the Stokes phenomenon. The volume aims at graduate students and post-docs working in the field of orthogonal polynomials and special functions, and in related fields interacting with orthogonal polynomials, such as combinatorics, computer algebra, asymptotics, representation theory, harmonic analysis, differential equations, physics. The lectures are self-contained requiring only a basic knowledge of analysis and algebra, and each includes many exercises.
Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
International Nuclear Information System (INIS)
Ndayiragije, F; Van Assche, W
2013-01-01
Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to r > 1 different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Following a recent construction of Miki, Tsujimoto, Vinet and Zhedanov (for multiple Meixner polynomials of the first kind), we construct r > 1 non-Hermitian oscillator Hamiltonians in r dimensions which are simultaneously diagonalizable and for which the common eigenstates are expressed in terms of multiple Meixner polynomials of the second kind. (paper)
Colouring and knot polynomials
International Nuclear Information System (INIS)
Welsh, D.J.A.
1991-01-01
These lectures will attempt to explain a connection between the recent advances in knot theory using the Jones and related knot polynomials with classical problems in combinatorics and statistical mechanics. The difficulty of some of these problems will be analysed in the context of their computational complexity. In particular we shall discuss colourings and groups valued flows in graphs, knots and the Jones and Kauffman polynomials, the Ising, Potts and percolation problems of statistical physics, computational complexity of the above problems. (author). 20 refs, 9 figs
Robust ∞ Filtering of 2D Roesser Discrete Systems: A Polynomial Approach
Directory of Open Access Journals (Sweden)
Chakir El-Kasri
2012-01-01
procedure for generating conditions for the existence of a 2D discrete filter such that, for all admissible uncertainties, the error system is asymptotically stable, and the ∞ norm of the transfer function from the noise signal to the estimation error is below a prespecified level. These conditions are expressed as parameter-dependent linear matrix inequalities. Using homogeneous polynomially parameter-dependent filters of arbitrary degree on the uncertain parameters, the proposed method extends previous results in the quadratic framework and the linearly parameter-dependent framework, thus reducing its conservatism. Performance of the proposed method, in comparison with that of existing methods, is illustrated by two examples.
Uniqueness and zeros of q-shift difference polynomials
Indian Academy of Sciences (India)
In this paper, we consider the zero distributions of -shift difference polynomials of meromorphic functions with zero order, and obtain two theorems that extend the classical Hayman results on the zeros of differential polynomials to -shift difference polynomials. We also investigate the uniqueness problem of -shift ...
Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger
2016-05-01
Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated
Completeness of the ring of polynomials
DEFF Research Database (Denmark)
Thorup, Anders
2015-01-01
Consider the polynomial ring R:=k[X1,…,Xn]R:=k[X1,…,Xn] in n≥2n≥2 variables over an uncountable field k. We prove that R is complete in its adic topology, that is, the translation invariant topology in which the non-zero ideals form a fundamental system of neighborhoods of 0. In addition we pro...
Factoring polynomials over arbitrary finite fields
Lange, T.; Winterhof, A.
2000-01-01
We analyse an extension of Shoup's (Inform. Process. Lett. 33 (1990) 261–267) deterministic algorithm for factoring polynomials over finite prime fields to arbitrary finite fields. In particular, we prove the existence of a deterministic algorithm which completely factors all monic polynomials of
Additive and polynomial representations
Krantz, David H; Suppes, Patrick
1971-01-01
Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz
Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I
International Nuclear Information System (INIS)
Tsuchida, Takayuki; Wolf, Thomas
2005-01-01
We perform a classification of integrable systems of mixed scalar and vector evolution equations with respect to higher symmetries. We consider polynomial systems that are homogeneous under a suitable weighting of variables. This paper deals with the KdV weighting, the Burgers (or potential KdV or modified KdV) weighting, the Ibragimov-Shabat weighting and two unfamiliar weightings. The case of other weightings will be studied in a subsequent paper. Making an ansatz for undetermined coefficients and using a computer package for solving bilinear algebraic systems, we give the complete lists of second-order systems with a third-order or a fourth-order symmetry and third-order systems with a fifth-order symmetry. For all but a few systems in the lists, we show that the system (or, at least a subsystem of it) admits either a Lax representation or a linearizing transformation. A thorough comparison with recent work of Foursov and Olver is made
Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I
Energy Technology Data Exchange (ETDEWEB)
Tsuchida, Takayuki [Department of Physics, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan); Wolf, Thomas [Department of Mathematics, Brock University, St Catharines, ON L2S 3A1 (Canada)
2005-09-02
We perform a classification of integrable systems of mixed scalar and vector evolution equations with respect to higher symmetries. We consider polynomial systems that are homogeneous under a suitable weighting of variables. This paper deals with the KdV weighting, the Burgers (or potential KdV or modified KdV) weighting, the Ibragimov-Shabat weighting and two unfamiliar weightings. The case of other weightings will be studied in a subsequent paper. Making an ansatz for undetermined coefficients and using a computer package for solving bilinear algebraic systems, we give the complete lists of second-order systems with a third-order or a fourth-order symmetry and third-order systems with a fifth-order symmetry. For all but a few systems in the lists, we show that the system (or, at least a subsystem of it) admits either a Lax representation or a linearizing transformation. A thorough comparison with recent work of Foursov and Olver is made.
A Determinant Expression for the Generalized Bessel Polynomials
Directory of Open Access Journals (Sweden)
Sheng-liang Yang
2013-01-01
Full Text Available Using the exponential Riordan arrays, we show that a variation of the generalized Bessel polynomial sequence is of Sheffer type, and we obtain a determinant formula for the generalized Bessel polynomials. As a result, the Bessel polynomial is represented as determinant the entries of which involve Catalan numbers.
A generalization of the Bernoulli polynomials
Directory of Open Access Journals (Sweden)
Pierpaolo Natalini
2003-01-01
Full Text Available A generalization of the Bernoulli polynomials and, consequently, of the Bernoulli numbers, is defined starting from suitable generating functions. Furthermore, the differential equations of these new classes of polynomials are derived by means of the factorization method introduced by Infeld and Hull (1951.
Information-theoretic lengths of Jacobi polynomials
Energy Technology Data Exchange (ETDEWEB)
Guerrero, A; Dehesa, J S [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, Granada (Spain); Sanchez-Moreno, P, E-mail: agmartinez@ugr.e, E-mail: pablos@ugr.e, E-mail: dehesa@ugr.e [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain)
2010-07-30
The information-theoretic lengths of the Jacobi polynomials P{sup ({alpha}, {beta})}{sub n}(x), which are information-theoretic measures (Renyi, Shannon and Fisher) of their associated Rakhmanov probability density, are investigated. They quantify the spreading of the polynomials along the orthogonality interval [- 1, 1] in a complementary but different way as the root-mean-square or standard deviation because, contrary to this measure, they do not refer to any specific point of the interval. The explicit expressions of the Fisher length are given. The Renyi lengths are found by the use of the combinatorial multivariable Bell polynomials in terms of the polynomial degree n and the parameters ({alpha}, {beta}). The Shannon length, which cannot be exactly calculated because of its logarithmic functional form, is bounded from below by using sharp upper bounds to general densities on [- 1, +1] given in terms of various expectation values; moreover, its asymptotics is also pointed out. Finally, several computational issues relative to these three quantities are carefully analyzed.
Transversals of Complex Polynomial Vector Fields
DEFF Research Database (Denmark)
Dias, Kealey
Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field. Given...... a concrete polynomial, it seems to take quite a bit of work to prove that it is generic, i.e. structurally stable. This has been done for a special class of degree d polynomial vector fields having simple equilibrium points at the d roots of unity, d odd. In proving that such vector fields are generic...
On Multiple Interpolation Functions of the -Genocchi Polynomials
Directory of Open Access Journals (Sweden)
Jin Jeong-Hee
2010-01-01
Full Text Available Abstract Recently, many mathematicians have studied various kinds of the -analogue of Genocchi numbers and polynomials. In the work (New approach to q-Euler, Genocchi numbers and their interpolation functions, "Advanced Studies in Contemporary Mathematics, vol. 18, no. 2, pp. 105–112, 2009.", Kim defined new generating functions of -Genocchi, -Euler polynomials, and their interpolation functions. In this paper, we give another definition of the multiple Hurwitz type -zeta function. This function interpolates -Genocchi polynomials at negative integers. Finally, we also give some identities related to these polynomials.
Planarity certification of ATLAS Micromegas detector panels
Energy Technology Data Exchange (ETDEWEB)
Mueller, Ralph; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard; Hertenberger, Ralf; Loesel, Philipp; Herrmann, Maximilian [LMU Muenchen (Germany); Zibell, Andre [JMU Wuerzburg (Germany)
2016-07-01
During the second long LHC shutdown, 2019/20, the precision tracking detectors of the ATLAS muon spectrometer in the inner end caps will be replaced using Micromegas, a planar gas-detector technology. Modules of 2 m{sup 2} area are built in quadruplets from five precisely planar sandwich panels that define the anodes and the cathodes of the four active detector planes. A panel is composed of three consecutive layers FR4 - aluminum honeycomb - FR4. Single plane spatial particle resolution below 100 μm is achievable when the deviations from planarity of the strip-anodes do not exceed 80 μm RMS over the whole active area and the parallelism of the readout strips is within 30 μm. In order to measure the dimensional accuracy of each panel, laser distance sensors combined with a coordinate measurement system have been investigated. The sensor requirements to measure the planarity of the panels are a resolution of 0.3 μm and a beam spot diameter of ∼20 μm, well below 100 μ m the size of the smallest structures. We report on achieved planarities of the panels and the performance of the laser sensor system. A panel with an RMS better than 30 μm was build and the evolution of its planarity due to humidity and temperature effects is shown.
Polynomial regression analysis and significance test of the regression function
International Nuclear Information System (INIS)
Gao Zhengming; Zhao Juan; He Shengping
2012-01-01
In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)
The modified Gauss diagonalization of polynomial matrices
International Nuclear Information System (INIS)
Saeed, K.
1982-10-01
The Gauss algorithm for diagonalization of constant matrices is modified for application to polynomial matrices. Due to this modification the diagonal elements become pure polynomials rather than rational functions. (author)
Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation
Gordon, Sheldon P.; Yang, Yajun
2017-01-01
This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…
Numerical Simulation of Polynomial-Speed Convergence Phenomenon
Li, Yao; Xu, Hui
2017-11-01
We provide a hybrid method that captures the polynomial speed of convergence and polynomial speed of mixing for Markov processes. The hybrid method that we introduce is based on the coupling technique and renewal theory. We propose to replace some estimates in classical results about the ergodicity of Markov processes by numerical simulations when the corresponding analytical proof is difficult. After that, all remaining conclusions can be derived from rigorous analysis. Then we apply our results to seek numerical justification for the ergodicity of two 1D microscopic heat conduction models. The mixing rate of these two models are expected to be polynomial but very difficult to prove. In both examples, our numerical results match the expected polynomial mixing rate well.
Exceptional polynomials and SUSY quantum mechanics
Indian Academy of Sciences (India)
Abstract. We show that for the quantum mechanical problem which admit classical Laguerre/. Jacobi polynomials as solutions for the Schrödinger equations (SE), will also admit exceptional. Laguerre/Jacobi polynomials as solutions having the same eigenvalues but with the ground state missing after a modification of the ...
Institute of Scientific and Technical Information of China (English)
XU Xiu-Wei; REN Ting-Qi; LIU Shu-Yan; MA Qiu-Ming; LIU Sheng-Dian
2007-01-01
Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's), we present the analytic expression of arbitrary matrix elements for BEQPO's. As a preliminary application, we obtain the exact expressions of partition function about the boson quadratic polynomial system, matrix elements in particle-number, coordinate, and momentum representation, and P representation for the BEQPO's.
Polynomial asymptotic stability of damped stochastic differential equations
Directory of Open Access Journals (Sweden)
John Appleby
2004-08-01
Full Text Available The paper studies the polynomial convergence of solutions of a scalar nonlinear It\\^{o} stochastic differential equation\\[dX(t = -f(X(t\\,dt + \\sigma(t\\,dB(t\\] where it is known, {\\it a priori}, that $\\lim_{t\\rightarrow\\infty} X(t=0$, a.s. The intensity of the stochastic perturbation $\\sigma$ is a deterministic, continuous and square integrable function, which tends to zero more quickly than a polynomially decaying function. The function $f$ obeys $\\lim_{x\\rightarrow 0}\\mbox{sgn}(xf(x/|x|^\\beta = a$, for some $\\beta>1$, and $a>0$.We study two asymptotic regimes: when $\\sigma$ tends to zero sufficiently quickly the polynomial decay rate of solutions is the same as for the deterministic equation (when $\\sigma\\equiv0$. When $\\sigma$ decays more slowly, a weaker almost sure polynomial upper bound on the decay rate of solutions is established. Results which establish the necessity for $\\sigma$ to decay polynomially in order to guarantee the almost sure polynomial decay of solutions are also proven.
International Nuclear Information System (INIS)
Konakli, Katerina; Sudret, Bruno
2016-01-01
The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input
Energy Technology Data Exchange (ETDEWEB)
Konakli, Katerina, E-mail: konakli@ibk.baug.ethz.ch; Sudret, Bruno
2016-09-15
The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input
Complex Polynomial Vector Fields
DEFF Research Database (Denmark)
The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...... or meromorphic (allowing poles as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic...... vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...
Degenerate r-Stirling Numbers and r-Bell Polynomials
Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.
2018-01-01
The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.
Commutators with idempotent values on multilinear polynomials in ...
Indian Academy of Sciences (India)
Multilinear polynomial; derivations; generalized polynomial identity; prime ring; right ideal. Abstract. Let R be a prime ring of characteristic different from 2, C its extended centroid, d a nonzero derivation of R , f ( x 1 , … , x n ) a multilinear polynomial over C , ϱ a nonzero right ideal of R and m > 1 a fixed integer such that.
Polynomial weights and code constructions
DEFF Research Database (Denmark)
Massey, J; Costello, D; Justesen, Jørn
1973-01-01
polynomial included. This fundamental property is then used as the key to a variety of code constructions including 1) a simplified derivation of the binary Reed-Muller codes and, for any primepgreater than 2, a new extensive class ofp-ary "Reed-Muller codes," 2) a new class of "repeated-root" cyclic codes...... of long constraint length binary convolutional codes derived from2^r-ary Reed-Solomon codes, and 6) a new class ofq-ary "repeated-root" constacyclic codes with an algebraic decoding algorithm.......For any nonzero elementcof a general finite fieldGF(q), it is shown that the polynomials(x - c)^i, i = 0,1,2,cdots, have the "weight-retaining" property that any linear combination of these polynomials with coefficients inGF(q)has Hamming weight at least as great as that of the minimum degree...
The generalized Yablonskii-Vorob'ev polynomials and their properties
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.; Demina, Maria V.
2008-01-01
Rational solutions of the generalized second Painleve hierarchy are classified. Representation of the rational solutions in terms of special polynomials, the generalized Yablonskii-Vorob'ev polynomials, is introduced. Differential-difference relations satisfied by the polynomials are found. Hierarchies of differential equations related to the generalized second Painleve hierarchy are derived. One of these hierarchies is a sequence of differential equations satisfied by the generalized Yablonskii-Vorob'ev polynomials
2-variable Laguerre matrix polynomials and Lie-algebraic techniques
International Nuclear Information System (INIS)
Khan, Subuhi; Hassan, Nader Ali Makboul
2010-01-01
The authors introduce 2-variable forms of Laguerre and modified Laguerre matrix polynomials and derive their special properties. Further, the representations of the special linear Lie algebra sl(2) and the harmonic oscillator Lie algebra G(0,1) are used to derive certain results involving these polynomials. Furthermore, the generating relations for the ordinary as well as matrix polynomials related to these matrix polynomials are derived as applications.
Subharmonic solutions of planar Hamiltonian systems via the Poincaré́-Birkhoff theorem
Directory of Open Access Journals (Sweden)
Alberto Boscaggin
2011-06-01
Full Text Available We revisit some recent results obtained in [1] about the existence of subharmonic solutions for a class of (nonautonomous planar Hamiltonian systems, and we compare them with the existing literature. New applications to undamped second order equations are discussed, as well.
Alshamary, Haider Ali Jasim
2016-01-04
© 2015 IEEE. This paper considers the joint maximum likelihood (ML) channel estimation and data detection problem for massive SIMO (single input multiple output) wireless systems. We propose efficient algorithms achieving the exact ML non-coherent data detection, for both constant-modulus constellations and nonconstant-modulus constellations. Despite a large number of unknown channel coefficients in massive SIMO systems, we show that the expected computational complexity is linear in the number of receive antennas and polynomial in channel coherence time. To the best of our knowledge, our algorithms are the first efficient algorithms to achieve the exact joint ML channel estimation and data detection performance for massive SIMO systems with general constellations. Simulation results show our algorithms achieve considerable performance gains at a low computational complexity.
Alshamary, Haider Ali Jasim; Al-Naffouri, Tareq Y.; Zaib, Alam; Xu, Weiyu
2016-01-01
© 2015 IEEE. This paper considers the joint maximum likelihood (ML) channel estimation and data detection problem for massive SIMO (single input multiple output) wireless systems. We propose efficient algorithms achieving the exact ML non-coherent data detection, for both constant-modulus constellations and nonconstant-modulus constellations. Despite a large number of unknown channel coefficients in massive SIMO systems, we show that the expected computational complexity is linear in the number of receive antennas and polynomial in channel coherence time. To the best of our knowledge, our algorithms are the first efficient algorithms to achieve the exact joint ML channel estimation and data detection performance for massive SIMO systems with general constellations. Simulation results show our algorithms achieve considerable performance gains at a low computational complexity.
Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations
DEFF Research Database (Denmark)
Sørensen, Dan Erik Krarup
1996-01-01
We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.......Polynomials of the Cremer type correspond to parameters at the boundary of ahyperbolic component of the Mandelbrot set. In this paper we concentrate onthe main cardioid component. We investigate the differences between two-sided(i.e. alternating) and one-sided parabolic perturbations.In the two-sided case, we prove...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...
A note on some identities of derangement polynomials.
Kim, Taekyun; Kim, Dae San; Jang, Gwan-Woo; Kwon, Jongkyum
2018-01-01
The problem of counting derangements was initiated by Pierre Rémond de Montmort in 1708 (see Carlitz in Fibonacci Q. 16(3):255-258, 1978, Clarke and Sved in Math. Mag. 66(5):299-303, 1993, Kim, Kim and Kwon in Adv. Stud. Contemp. Math. (Kyungshang) 28(1):1-11 2018. A derangement is a permutation that has no fixed points, and the derangement number [Formula: see text] is the number of fixed-point-free permutations on an n element set. In this paper, we study the derangement polynomials and investigate some interesting properties which are related to derangement numbers. Also, we study two generalizations of derangement polynomials, namely higher-order and r -derangement polynomials, and show some relations between them. In addition, we express several special polynomials in terms of the higher-order derangement polynomials by using umbral calculus.
Topological quantum information, virtual Jones polynomials and Khovanov homology
International Nuclear Information System (INIS)
Kauffman, Louis H
2011-01-01
In this paper, we give a quantum statistical interpretation of the bracket polynomial state sum 〈K〉, the Jones polynomial V K (t) and virtual knot theory versions of the Jones polynomial, including the arrow polynomial. We use these quantum mechanical interpretations to give new quantum algorithms for these Jones polynomials. In those cases where the Khovanov homology is defined, the Hilbert space C(K) of our model is isomorphic with the chain complex for Khovanov homology with coefficients in the complex numbers. There is a natural unitary transformation U:C(K) → C(K) such that 〈K〉 = Trace(U), where 〈K〉 denotes the evaluation of the state sum model for the corresponding polynomial. We show that for the Khovanov boundary operator ∂:C(K) → C(K), we have the relationship ∂U + U∂ = 0. Consequently, the operator U acts on the Khovanov homology, and we obtain a direct relationship between the Khovanov homology and this quantum algorithm for the Jones polynomial. (paper)
Polynomial solutions of the Monge-Ampère equation
Energy Technology Data Exchange (ETDEWEB)
Aminov, Yu A [B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar' kov (Ukraine)
2014-11-30
The question of the existence of polynomial solutions to the Monge-Ampère equation z{sub xx}z{sub yy}−z{sub xy}{sup 2}=f(x,y) is considered in the case when f(x,y) is a polynomial. It is proved that if f is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the x, y-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction of such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.
Zeros and uniqueness of Q-difference polynomials of meromorphic ...
Indian Academy of Sciences (India)
Meromorphic functions; Nevanlinna theory; logarithmic order; uniqueness problem; difference-differential polynomial. Abstract. In this paper, we investigate the value distribution of -difference polynomials of meromorphic function of finite logarithmic order, and study the zero distribution of difference-differential polynomials ...
Laguerre polynomials by a harmonic oscillator
Baykal, Melek; Baykal, Ahmet
2014-09-01
The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators.
Image Compression Based On Wavelet, Polynomial and Quadtree
Directory of Open Access Journals (Sweden)
Bushra A. SULTAN
2011-01-01
Full Text Available In this paper a simple and fast image compression scheme is proposed, it is based on using wavelet transform to decompose the image signal and then using polynomial approximation to prune the smoothing component of the image band. The architect of proposed coding scheme is high synthetic where the error produced due to polynomial approximation in addition to the detail sub-band data are coded using both quantization and Quadtree spatial coding. As a last stage of the encoding process shift encoding is used as a simple and efficient entropy encoder to compress the outcomes of the previous stage.The test results indicate that the proposed system can produce a promising compression performance while preserving the image quality level.
Julia Sets of Orthogonal Polynomials
DEFF Research Database (Denmark)
Christiansen, Jacob Stordal; Henriksen, Christian; Petersen, Henrik Laurberg
2018-01-01
For a probability measure with compact and non-polar support in the complex plane we relate dynamical properties of the associated sequence of orthogonal polynomials fPng to properties of the support. More precisely we relate the Julia set of Pn to the outer boundary of the support, the lled Julia...... set to the polynomial convex hull K of the support, and the Green's function associated with Pn to the Green's function for the complement of K....
An introduction to orthogonal polynomials
Chihara, Theodore S
1978-01-01
Assuming no further prerequisites than a first undergraduate course in real analysis, this concise introduction covers general elementary theory related to orthogonal polynomials. It includes necessary background material of the type not usually found in the standard mathematics curriculum. Suitable for advanced undergraduate and graduate courses, it is also appropriate for independent study. Topics include the representation theorem and distribution functions, continued fractions and chain sequences, the recurrence formula and properties of orthogonal polynomials, special functions, and some
Polynomial selection in number field sieve for integer factorization
Directory of Open Access Journals (Sweden)
Gireesh Pandey
2016-09-01
Full Text Available The general number field sieve (GNFS is the fastest algorithm for factoring large composite integers which is made up by two prime numbers. Polynomial selection is an important step of GNFS. The asymptotic runtime depends on choice of good polynomial pairs. In this paper, we present polynomial selection algorithm that will be modelled with size and root properties. The correlations between polynomial coefficient and number of relations have been explored with experimental findings.
Wang, S.; Huang, G. H.; Baetz, B. W.; Huang, W.
2015-11-01
This paper presents a polynomial chaos ensemble hydrologic prediction system (PCEHPS) for an efficient and robust uncertainty assessment of model parameters and predictions, in which possibilistic reasoning is infused into probabilistic parameter inference with simultaneous consideration of randomness and fuzziness. The PCEHPS is developed through a two-stage factorial polynomial chaos expansion (PCE) framework, which consists of an ensemble of PCEs to approximate the behavior of the hydrologic model, significantly speeding up the exhaustive sampling of the parameter space. Multiple hypothesis testing is then conducted to construct an ensemble of reduced-dimensionality PCEs with only the most influential terms, which is meaningful for achieving uncertainty reduction and further acceleration of parameter inference. The PCEHPS is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability. A detailed comparison between the HYMOD hydrologic model, the ensemble of PCEs, and the ensemble of reduced PCEs is performed in terms of accuracy and efficiency. Results reveal temporal and spatial variations in parameter sensitivities due to the dynamic behavior of hydrologic systems, and the effects (magnitude and direction) of parametric interactions depending on different hydrological metrics. The case study demonstrates that the PCEHPS is capable not only of capturing both expert knowledge and probabilistic information in the calibration process, but also of implementing an acceleration of more than 10 times faster than the hydrologic model without compromising the predictive accuracy.
Polynomial solutions of nonlinear integral equations
International Nuclear Information System (INIS)
Dominici, Diego
2009-01-01
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials
Polynomial solutions of nonlinear integral equations
Energy Technology Data Exchange (ETDEWEB)
Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu
2009-05-22
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.
Laguerre polynomials by a harmonic oscillator
International Nuclear Information System (INIS)
Baykal, Melek; Baykal, Ahmet
2014-01-01
The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators. (paper)
Remarks on determinants and the classical polynomials
International Nuclear Information System (INIS)
Henning, J.J.; Kranold, H.U.; Louw, D.F.B.
1986-01-01
As motivation for this formal analysis the problem of Landau damping of Bernstein modes is discussed. It is shown that in the case of a weak but finite constant external magnetic field, the analytical structure of the dispersion relations is of such a nature that longitudinal waves propagating orthogonal to the external magnetic field are also damped, contrary to normal belief. In the treatment of the linearized Vlasov equation it is found convenient to generate certain polynomials by the problem at hand and to explicitly write down expressions for these polynomials. In the course of this study methods are used that relate to elementary but fairly unknown functional relationships between power sums and coefficients of polynomials. These relationships, also called Waring functions, are derived. They are then used in other applications to give explicit expressions for the generalized Laguerre polynomials in terms of determinant functions. The properties of polynomials generated by a wide class of generating functions are investigated. These relationships are also used to obtain explicit forms for the cumulants of a distribution in terms of its moments. It is pointed out that cumulants (or moments, for that matter) do not determine a distribution function
General quantum polynomials: irreducible modules and Morita equivalence
International Nuclear Information System (INIS)
Artamonov, V A
1999-01-01
In this paper we continue the investigation of the structure of finitely generated modules over rings of general quantum (Laurent) polynomials. We obtain a description of the lattice of submodules of periodic finitely generated modules and describe the irreducible modules. We investigate the problem of Morita equivalence of rings of general quantum polynomials, consider properties of division rings of fractions, and solve Zariski's problem for quantum polynomials
Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
Ndayiragije, François; Van Assche, Walter
2013-01-01
Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to $r>1$ different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Followi...
Multivariable biorthogonal continuous--discrete Wilson and Racah polynomials
International Nuclear Information System (INIS)
Tratnik, M.V.
1990-01-01
Several families of multivariable, biorthogonal, partly continuous and partly discrete, Wilson polynomials are presented. These yield limit cases that are purely continuous in some of the variables and purely discrete in the others, or purely discrete in all the variables. The latter are referred to as the multivariable biorthogonal Racah polynomials. Interesting further limit cases include the multivariable biorthogonal Hahn and dual Hahn polynomials
Primitive polynomials selection method for pseudo-random number generator
Anikin, I. V.; Alnajjar, Kh
2018-01-01
In this paper we suggested the method for primitive polynomials selection of special type. This kind of polynomials can be efficiently used as a characteristic polynomials for linear feedback shift registers in pseudo-random number generators. The proposed method consists of two basic steps: finding minimum-cost irreducible polynomials of the desired degree and applying primitivity tests to get the primitive ones. Finally two primitive polynomials, which was found by the proposed method, used in pseudorandom number generator based on fuzzy logic (FRNG) which had been suggested before by the authors. The sequences generated by new version of FRNG have low correlation magnitude, high linear complexity, less power consumption, is more balanced and have better statistical properties.
Neck curve polynomials in neck rupture model
International Nuclear Information System (INIS)
Kurniadi, Rizal; Perkasa, Yudha S.; Waris, Abdul
2012-01-01
The Neck Rupture Model is a model that explains the scission process which has smallest radius in liquid drop at certain position. Old fashion of rupture position is determined randomly so that has been called as Random Neck Rupture Model (RNRM). The neck curve polynomials have been employed in the Neck Rupture Model for calculation the fission yield of neutron induced fission reaction of 280 X 90 with changing of order of polynomials as well as temperature. The neck curve polynomials approximation shows the important effects in shaping of fission yield curve.
The finite Fourier transform of classical polynomials
Dixit, Atul; Jiu, Lin; Moll, Victor H.; Vignat, Christophe
2014-01-01
The finite Fourier transform of a family of orthogonal polynomials $A_{n}(x)$, is the usual transform of the polynomial extended by $0$ outside their natural domain. Explicit expressions are given for the Legendre, Jacobi, Gegenbauer and Chebyshev families.
Superintegrability in two-dimensional Euclidean space and associated polynomial solutions
International Nuclear Information System (INIS)
Kalnins, E.G.; Miller, W. Jr; Pogosyan, G.S.
1996-01-01
In this work we examine the basis functions for those classical and quantum mechanical systems in two dimensions which admit separation of variables in at least two coordinate systems. We do this for the corresponding systems defined in Euclidean space and on the two dimensional sphere. We present all of these cases from a unified point of view. In particular, all of the spectral functions that arise via variable separation have their essential features expressed in terms of their zeros. The principal new results are the details of the polynomial base for each of the nonsubgroup base, not just the subgroup cartesian and polar coordinate case, and the details of the structure of the quadratic algebras. We also study the polynomial eigenfunctions in elliptic coordinates of the N-dimensional isotropic quantum oscillator. 28 refs., 1 tab
From sequences to polynomials and back, via operator orderings
Energy Technology Data Exchange (ETDEWEB)
Amdeberhan, Tewodros, E-mail: tamdeber@tulane.edu; Dixit, Atul, E-mail: adixit@tulane.edu; Moll, Victor H., E-mail: vhm@tulane.edu [Department of Mathematics, Tulane University, New Orleans, Louisiana 70118 (United States); De Angelis, Valerio, E-mail: vdeangel@xula.edu [Department of Mathematics, Xavier University of Louisiana, New Orleans, Louisiana 70125 (United States); Vignat, Christophe, E-mail: vignat@tulane.edu [Department of Mathematics, Tulane University, New Orleans, Louisiana 70118, USA and L.S.S. Supelec, Universite d' Orsay (France)
2013-12-15
Bender and Dunne [“Polynomials and operator orderings,” J. Math. Phys. 29, 1727–1731 (1988)] showed that linear combinations of words q{sup k}p{sup n}q{sup n−k}, where p and q are subject to the relation qp − pq = ı, may be expressed as a polynomial in the symbol z=1/2 (qp+pq). Relations between such polynomials and linear combinations of the transformed coefficients are explored. In particular, examples yielding orthogonal polynomials are provided.
Connection coefficients between Boas-Buck polynomial sets
Cheikh, Y. Ben; Chaggara, H.
2006-07-01
In this paper, a general method to express explicitly connection coefficients between two Boas-Buck polynomial sets is presented. As application, we consider some generalized hypergeometric polynomials, from which we derive some well-known results including duplication and inversion formulas.
New realisation of Preisach model using adaptive polynomial approximation
Liu, Van-Tsai; Lin, Chun-Liang; Wing, Home-Young
2012-09-01
Modelling system with hysteresis has received considerable attention recently due to the increasing accurate requirement in engineering applications. The classical Preisach model (CPM) is the most popular model to demonstrate hysteresis which can be represented by infinite but countable first-order reversal curves (FORCs). The usage of look-up tables is one way to approach the CPM in actual practice. The data in those tables correspond with the samples of a finite number of FORCs. This approach, however, faces two major problems: firstly, it requires a large amount of memory space to obtain an accurate prediction of hysteresis; secondly, it is difficult to derive efficient ways to modify the data table to reflect the timing effect of elements with hysteresis. To overcome, this article proposes the idea of using a set of polynomials to emulate the CPM instead of table look-up. The polynomial approximation requires less memory space for data storage. Furthermore, the polynomial coefficients can be obtained accurately by using the least-square approximation or adaptive identification algorithm, such as the possibility of accurate tracking of hysteresis model parameters.
Least squares orthogonal polynomial approximation in several independent variables
International Nuclear Information System (INIS)
Caprari, R.S.
1992-06-01
This paper begins with an exposition of a systematic technique for generating orthonormal polynomials in two independent variables by application of the Gram-Schmidt orthogonalization procedure of linear algebra. It is then demonstrated how a linear least squares approximation for experimental data or an arbitrary function can be generated from these polynomials. The least squares coefficients are computed without recourse to matrix arithmetic, which ensures both numerical stability and simplicity of implementation as a self contained numerical algorithm. The Gram-Schmidt procedure is then utilised to generate a complete set of orthogonal polynomials of fourth degree. A theory for the transformation of the polynomial representation from an arbitrary basis into the familiar sum of products form is presented, together with a specific implementation for fourth degree polynomials. Finally, the computational integrity of this algorithm is verified by reconstructing arbitrary fourth degree polynomials from their values at randomly chosen points in their domain. 13 refs., 1 tab
International Nuclear Information System (INIS)
Marquette, Ian
2015-01-01
Four new families of two-dimensional quantum superintegrable systems are constructed from k-step extension of the harmonic oscillator and the radial oscillator. Their wavefunctions are related with Hermite and Laguerre exceptional orthogonal polynomials (EOP) of type III. We show that ladder operators obtained from alternative construction based on combinations of supercharges in the Krein-Adler and Darboux Crum (or state deleting and creating) approaches can be used to generate a set of integrals of motion and a corresponding polynomial algebra that provides an algebraic derivation of the full spectrum and total number of degeneracies. Such derivation is based on finite dimensional unitary representations (unirreps) and doesn't work for integrals build from standard ladder operators in supersymmetric quantum mechanics (SUSYQM) as they contain singlets isolated from excited states. In this paper, we also rely on a novel approach to obtain the finite dimensional unirreps based on the action of the integrals of motion on the wavefunctions given in terms of these EOP. We compare the results with those obtained from the Daskaloyannis approach and the realizations in terms of deformed oscillator algebras for one of the new families in the case of 1-step extension. This communication is a review of recent works. (paper)
Cusumano, J. P.; Moon, F. C.
1995-01-01
In this two-part paper, the results of an investigation into the non-linear dynamics of a flexible cantilevered rod (the elastica) with a thin rectangular cross-section are presented. An experimental examination of the dynamics of the elastica over a broad parameter range forms the core of Part I. In Part II, the experimental work is related to a theoretical study of the mechanics of the elastica, and the study of a two-degree-of-freedom model obtained by modal projection. The experimental system used in this investigation is a rod with clamped-free boundary conditions, forced by sinusoidally displacing the clamped end. Planar periodic motions of the driven elastica are shown to lose stability at distinct resonant wedges, and the resulting motions are shown in general to be non-planar, chaotic, bending-torsion oscillations. Non-planar motions in all resonances exhibit energy cascading and dynamic two-well phenomena, and a family of asymmetric, bending-torsion non-linear modes is discovered. Correlation dimension calculations are used to estimate the number of active degrees of freedom in the system.
International Nuclear Information System (INIS)
Yasa, F.; Anli, F.; Guengoer, S.
2007-01-01
We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general
Novaes, Douglas D.; Teixeira, Marco A.; Zeli, Iris O.
2018-05-01
Generic bifurcation theory was classically well developed for smooth differential systems, establishing results for k-parameter families of planar vector fields. In the present study we focus on a qualitative analysis of 2-parameter families, , of planar Filippov systems assuming that Z 0,0 presents a codimension-two minimal set. Such object, named elementary simple two-fold cycle, is characterized by a regular trajectory connecting a visible two-fold singularity to itself, for which the second derivative of the first return map is nonvanishing. We analyzed the codimension-two scenario through the exhibition of its bifurcation diagram.
On Roots of Polynomials and Algebraically Closed Fields
Directory of Open Access Journals (Sweden)
Schwarzweller Christoph
2017-10-01
Full Text Available In this article we further extend the algebraic theory of polynomial rings in Mizar [1, 2, 3]. We deal with roots and multiple roots of polynomials and show that both the real numbers and finite domains are not algebraically closed [5, 7]. We also prove the identity theorem for polynomials and that the number of multiple roots is bounded by the polynomial’s degree [4, 6].
Topological string partition functions as polynomials
International Nuclear Information System (INIS)
Yamaguchi, Satoshi; Yau Shingtung
2004-01-01
We investigate the structure of the higher genus topological string amplitudes on the quintic hypersurface. It is shown that the partition functions of the higher genus than one can be expressed as polynomials of five generators. We also compute the explicit polynomial forms of the partition functions for genus 2, 3, and 4. Moreover, some coefficients are written down for all genus. (author)
Rotation of 2D orthogonal polynomials
Czech Academy of Sciences Publication Activity Database
Yang, B.; Flusser, Jan; Kautský, J.
2018-01-01
Roč. 102, č. 1 (2018), s. 44-49 ISSN 0167-8655 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Rotation invariants * Orthogonal polynomials * Recurrent relation * Hermite-like polynomials * Hermite moments Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.995, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0483250.pdf
q-analogue of the Krawtchouk and Meixner orthogonal polynomials
International Nuclear Information System (INIS)
Campigotto, C.; Smirnov, Yu.F.; Enikeev, S.G.
1993-06-01
The comparative analysis of Krawtchouk polynomials on a uniform grid with Wigner D-functions for the SU(2) group is presented. As a result the partnership between corresponding properties of the polynomials and D-functions is established giving the group-theoretical interpretation of the Krawtchouk polynomials properties. In order to extend such an analysis on the quantum groups SU q (2) and SU q (1,1), q-analogues of Krawtchouk and Meixner polynomials of a discrete variable are studied. The total set of characteristics of these polynomials is calculated, including the orthogonality condition, normalization factor, recurrent relation, the explicit analytic expression, the Rodrigues formula, the difference derivative formula and various particular cases and values. (R.P.) 22 refs.; 2 tabs
Skew-orthogonal polynomials and random matrix theory
Ghosh, Saugata
2009-01-01
Orthogonal polynomials satisfy a three-term recursion relation irrespective of the weight function with respect to which they are defined. This gives a simple formula for the kernel function, known in the literature as the Christoffel-Darboux sum. The availability of asymptotic results of orthogonal polynomials and the simple structure of the Christoffel-Darboux sum make the study of unitary ensembles of random matrices relatively straightforward. In this book, the author develops the theory of skew-orthogonal polynomials and obtains recursion relations which, unlike orthogonal polynomials, depend on weight functions. After deriving reduced expressions, called the generalized Christoffel-Darboux formulas (GCD), he obtains universal correlation functions and non-universal level densities for a wide class of random matrix ensembles using the GCD. The author also shows that once questions about higher order effects are considered (questions that are relevant in different branches of physics and mathematics) the ...
Some properties of generalized self-reciprocal polynomials over finite fields
Directory of Open Access Journals (Sweden)
Ryul Kim
2014-07-01
Full Text Available Numerous results on self-reciprocal polynomials over finite fields have been studied. In this paper we generalize some of these to a-self reciprocal polynomials defined in [4]. We consider some properties of the divisibility of a-reciprocal polynomials and characterize the parity of the number of irreducible factors for a-self reciprocal polynomials over finite fields of odd characteristic.
Hyponormal quantization of planar domains exponential transform in dimension two
Gustafsson, Björn
2017-01-01
This book exploits the classification of a class of linear bounded operators with rank-one self-commutators in terms of their spectral parameter, known as the principal function. The resulting dictionary between two dimensional planar shapes with a degree of shade and Hilbert space operators turns out to be illuminating and beneficial for both sides. An exponential transform, essentially a Riesz potential at critical exponent, is at the heart of this novel framework; its best rational approximants unveil a new class of complex orthogonal polynomials whose asymptotic distribution of zeros is thoroughly studied in the text. Connections with areas of potential theory, approximation theory in the complex domain and fluid mechanics are established. The text is addressed, with specific aims, at experts and beginners in a wide range of areas of current interest: potential theory, numerical linear algebra, operator theory, inverse problems, image and signal processing, approximation theory, mathematical physics.
Polynomial Digital Control of a Series Equal Liquid Tanks
Directory of Open Access Journals (Sweden)
Bobála Vladimír
2016-01-01
Full Text Available Time-delays are mainly caused by the time required to transport mass, energy or information, but they can also be caused by processing time or accumulation. Typical examples of such processes are e.g. pumps, liquid storing tanks, distillation columns or some types of chemical reactors. In many cases time-delay is caused by the effect produced by the accumulation of a large number of low-order systems. Several industrial processes have the time-delay effect produced by the accumulation of a great number of low-order systems with the identical dynamic. The dynamic behavior of series these low-order systems is expressed by high-order system. One of possibilities of control of such processes is their approximation by low-order model with time-delay. The paper is focused on the design of the digital polynomial control of a set of equal liquid cylinder atmospheric tanks. The designed control algorithms are realized using the digital Smith Predictor (SP based on polynomial approach – by minimization of the Linear Quadratic (LQ criterion. The LQ criterion was combined with pole assignment.
Coherent states for a polynomial su(1, 1) algebra and a conditionally solvable system
International Nuclear Information System (INIS)
Sadiq, Muhammad; Inomata, Akira; Junker, Georg
2009-01-01
In a previous paper (2007 J. Phys. A: Math. Theor. 40 11105), we constructed a class of coherent states for a polynomially deformed su(2) algebra. In this paper, we first prepare the discrete representations of the nonlinearly deformed su(1, 1) algebra. Then we extend the previous procedure to construct a discrete class of coherent states for a polynomial su(1, 1) algebra which contains the Barut-Girardello set and the Perelomov set of the SU(1, 1) coherent states as special cases. We also construct coherent states for the cubic algebra related to the conditionally solvable radial oscillator problem.
on the performance of Autoregressive Moving Average Polynomial
African Journals Online (AJOL)
Timothy Ademakinwa
Distributed Lag (PDL) model, Autoregressive Polynomial Distributed Lag ... Moving Average Polynomial Distributed Lag (ARMAPDL) model. ..... Global Journal of Mathematics and Statistics. Vol. 1. ... Business and Economic Research Center.
Simulation of aspheric tolerance with polynomial fitting
Li, Jing; Cen, Zhaofeng; Li, Xiaotong
2018-01-01
The shape of the aspheric lens changes caused by machining errors, resulting in a change in the optical transfer function, which affects the image quality. At present, there is no universally recognized tolerance criterion standard for aspheric surface. To study the influence of aspheric tolerances on the optical transfer function, the tolerances of polynomial fitting are allocated on the aspheric surface, and the imaging simulation is carried out by optical imaging software. Analysis is based on a set of aspheric imaging system. The error is generated in the range of a certain PV value, and expressed as a form of Zernike polynomial, which is added to the aspheric surface as a tolerance term. Through optical software analysis, the MTF of optical system can be obtained and used as the main evaluation index. Evaluate whether the effect of the added error on the MTF of the system meets the requirements of the current PV value. Change the PV value and repeat the operation until the acceptable maximum allowable PV value is obtained. According to the actual processing technology, consider the error of various shapes, such as M type, W type, random type error. The new method will provide a certain development for the actual free surface processing technology the reference value.
Symmetric functions and orthogonal polynomials
Macdonald, I G
1997-01-01
One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.
Applications of polynomial optimization in financial risk investment
Zeng, Meilan; Fu, Hongwei
2017-09-01
Recently, polynomial optimization has many important applications in optimization, financial economics and eigenvalues of tensor, etc. This paper studies the applications of polynomial optimization in financial risk investment. We consider the standard mean-variance risk measurement model and the mean-variance risk measurement model with transaction costs. We use Lasserre's hierarchy of semidefinite programming (SDP) relaxations to solve the specific cases. The results show that polynomial optimization is effective for some financial optimization problems.
Polynomially Riesz elements | Živković-Zlatanović | Quaestiones ...
African Journals Online (AJOL)
A Banach algebra element ɑ ∈ A is said to be "polynomially Riesz", relative to the homomorphism T : A → B, if there exists a nonzero complex polynomial p(z) such that the image Tp ∈ B is quasinilpotent. Keywords: Homomorphism of Banach algebras, polynomially Riesz element, Fredholm spectrum, Browder element, ...
Symmetric integrable-polynomial factorization for symplectic one-turn-map tracking
International Nuclear Information System (INIS)
Shi, Jicong
1993-01-01
It was found that any homogeneous polynomial can be written as a sum of integrable polynomials of the same degree which Lie transformations can be evaluated exactly. By utilizing symplectic integrators, an integrable-polynomial factorization is developed to convert a symplectic map in the form of Dragt-Finn factorization into a product of Lie transformations associated with integrable polynomials. A small number of factorization bases of integrable polynomials enable one to use high order symplectic integrators so that the high-order spurious terms can be greatly suppressed. A symplectic map can thus be evaluated with desired accuracy
A fast numerical test of multivariate polynomial positiveness with applications
Czech Academy of Sciences Publication Activity Database
Augusta, Petr; Augustová, Petra
2018-01-01
Roč. 54, č. 2 (2018), s. 289-303 ISSN 0023-5954 Institutional support: RVO:67985556 Keywords : stability * multidimensional systems * positive polynomials * fast Fourier transforms * numerical algorithm Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 0.379, year: 2016 https://www.kybernetika.cz/content/2018/2/289/paper.pdf
Connections between the matching and chromatic polynomials
Directory of Open Access Journals (Sweden)
E. J. Farrell
1992-01-01
Full Text Available The main results established are (i a connection between the matching and chromatic polynomials and (ii a formula for the matching polynomial of a general complement of a subgraph of a graph. Some deductions on matching and chromatic equivalence and uniqueness are made.
On Generalisation of Polynomials in Complex Plane
Directory of Open Access Journals (Sweden)
Maslina Darus
2010-01-01
Full Text Available The generalised Bell and Laguerre polynomials of fractional-order in complex z-plane are defined. Some properties are studied. Moreover, we proved that these polynomials are univalent solutions for second order differential equations. Also, the Laguerre-type of some special functions are introduced.
Technique for image interpolation using polynomial transforms
Escalante Ramírez, B.; Martens, J.B.; Haskell, G.G.; Hang, H.M.
1993-01-01
We present a new technique for image interpolation based on polynomial transforms. This is an image representation model that analyzes an image by locally expanding it into a weighted sum of orthogonal polynomials. In the discrete case, the image segment within every window of analysis is
Interlacing of zeros of quasi-orthogonal meixner polynomials | Driver ...
African Journals Online (AJOL)
... interlacing of zeros of quasi-orthogonal Meixner polynomials Mn(x;β; c) with the zeros of their nearest orthogonal counterparts Mt(x;β + k; c), l; n ∈ ℕ, k ∈ {1; 2}; is also discussed. Mathematics Subject Classication (2010): 33C45, 42C05. Key words: Discrete orthogonal polynomials, quasi-orthogonal polynomials, Meixner
Localization of periodic orbits of polynomial vector fields of even degree by linear functions
Energy Technology Data Exchange (ETDEWEB)
Starkov, Konstantin E. [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)] e-mail: konst@citedi.mx
2005-08-01
This paper is concerned with the localization problem of periodic orbits of polynomial vector fields of even degree by using linear functions. Conditions of the localization of all periodic orbits in sets of a simple structure are obtained. Our results are based on the solution of the conditional extremum problem and the application of homogeneous polynomial forms of even degrees. As examples, the Lanford system, the jerky system with one quadratic monomial and a quartically perturbed harmonic oscillator are considered.
Localization of periodic orbits of polynomial vector fields of even degree by linear functions
International Nuclear Information System (INIS)
Starkov, Konstantin E.
2005-01-01
This paper is concerned with the localization problem of periodic orbits of polynomial vector fields of even degree by using linear functions. Conditions of the localization of all periodic orbits in sets of a simple structure are obtained. Our results are based on the solution of the conditional extremum problem and the application of homogeneous polynomial forms of even degrees. As examples, the Lanford system, the jerky system with one quadratic monomial and a quartically perturbed harmonic oscillator are considered
Discriminants and functional equations for polynomials orthogonal on the unit circle
International Nuclear Information System (INIS)
Ismail, M.E.H.; Witte, N.S.
2000-01-01
We derive raising and lowering operators for orthogonal polynomials on the unit circle and find second order differential and q-difference equations for these polynomials. A general functional equation is found which allows one to relate the zeros of the orthogonal polynomials to the stationary values of an explicit quasi-energy and implies recurrences on the orthogonal polynomial coefficients. We also evaluate the discriminants and quantized discriminants of polynomials orthogonal on the unit circle
On the Lorentz degree of a product of polynomials
Ait-Haddou, Rachid
2015-01-01
In this note, we negatively answer two questions of T. Erdélyi (1991, 2010) on possible lower bounds on the Lorentz degree of product of two polynomials. We show that the correctness of one question for degree two polynomials is a direct consequence of a result of Barnard et al. (1991) on polynomials with nonnegative coefficients.
Strong result for real zeros of random algebraic polynomials
Directory of Open Access Journals (Sweden)
T. Uno
2001-01-01
Full Text Available An estimate is given for the lower bound of real zeros of random algebraic polynomials whose coefficients are non-identically distributed dependent Gaussian random variables. Moreover, our estimated measure of the exceptional set, which is independent of the degree of the polynomials, tends to zero as the degree of the polynomial tends to infinity.
Large degree asymptotics of generalized Bessel polynomials
J.L. López; N.M. Temme (Nico)
2011-01-01
textabstractAsymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the
International Nuclear Information System (INIS)
Benasser Algehawi, Mohammed; Samsudin, Azman
2010-01-01
We present a method to extract key pairs needed for the Identity Based Encryption (IBE) scheme from extended Chebyshev polynomial over finite fields Z p . Our proposed scheme relies on the hard problem and the bilinear property of the extended Chebyshev polynomial over Z p . The proposed system is applicable, secure, and reliable.
Linear operator pencils on Lie algebras and Laurent biorthogonal polynomials
International Nuclear Information System (INIS)
Gruenbaum, F A; Vinet, Luc; Zhedanov, Alexei
2004-01-01
We study operator pencils on generators of the Lie algebras sl 2 and the oscillator algebra. These pencils are linear in a spectral parameter λ. The corresponding generalized eigenvalue problem gives rise to some sets of orthogonal polynomials and Laurent biorthogonal polynomials (LBP) expressed in terms of the Gauss 2 F 1 and degenerate 1 F 1 hypergeometric functions. For special choices of the parameters of the pencils, we identify the resulting polynomials with the Hendriksen-van Rossum LBP which are widely believed to be the biorthogonal analogues of the classical orthogonal polynomials. This places these examples under the umbrella of the generalized bispectral problem which is considered here. Other (non-bispectral) cases give rise to some 'nonclassical' orthogonal polynomials including Tricomi-Carlitz and random-walk polynomials. An application to solutions of relativistic Toda chain is considered
Higher order branching of periodic orbits from polynomial isochrones
Directory of Open Access Journals (Sweden)
B. Toni
1999-09-01
Full Text Available We discuss the higher order local bifurcations of limit cycles from polynomial isochrones (linearizable centers when the linearizing transformation is explicitly known and yields a polynomial perturbation one-form. Using a method based on the relative cohomology decomposition of polynomial one-forms complemented with a step reduction process, we give an explicit formula for the overall upper bound of branch points of limit cycles in an arbitrary $n$ degree polynomial perturbation of the linear isochrone, and provide an algorithmic procedure to compute the upper bound at successive orders. We derive a complete analysis of the nonlinear cubic Hamiltonian isochrone and show that at most nine branch points of limit cycles can bifurcate in a cubic polynomial perturbation. Moreover, perturbations with exactly two, three, four, six, and nine local families of limit cycles may be constructed.
A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Expansions
Butler, T.; Dawson, C.; Wildey, T.
2011-01-01
We develop computable a posteriori error estimates for linear functionals of a solution to a general nonlinear stochastic differential equation with random model/source parameters. These error estimates are based on a variational analysis applied to stochastic Galerkin methods for forward and adjoint problems. The result is a representation for the error estimate as a polynomial in the random model/source parameter. The advantage of this method is that we use polynomial chaos representations for the forward and adjoint systems to cheaply produce error estimates by simple evaluation of a polynomial. By comparison, the typical method of producing such estimates requires repeated forward/adjoint solves for each new choice of random parameter. We present numerical examples showing that there is excellent agreement between these methods. © 2011 Society for Industrial and Applied Mathematics.
Electrical alignment of antenna coordinate system in a planar near-field setup
DEFF Research Database (Denmark)
Mynster, Anders P.; Nielsen, Jeppe Majlund; Pivnenko, Sergey
2011-01-01
In this paper, a simple and efficient electrical alignment procedure known as flip-test is adapted and applied to check and correct two errors in the mechanical setup of a planar near-field system: the mis-pointing of the z-axis of the antenna coordinate system with respect to the scan plane...... and the displacement of the center point of the scan plane with respect to the z-axis of the antenna coordinate system. Simulations of the errors and their correction algorithms were carried out with different models of antennas composed of Hertzian dipoles and an optimum algorithm was then selected. The proposed...
On the estimation of the degree of regression polynomial
International Nuclear Information System (INIS)
Toeroek, Cs.
1997-01-01
The mathematical functions most commonly used to model curvature in plots are polynomials. Generally, the higher the degree of the polynomial, the more complex is the trend that its graph can represent. We propose a new statistical-graphical approach based on the discrete projective transformation (DPT) to estimating the degree of polynomial that adequately describes the trend in the plot
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel
2007-10-09
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
On Some Extensions of Szasz Operators Including Boas-Buck-Type Polynomials
Directory of Open Access Journals (Sweden)
Sezgin Sucu
2012-01-01
Full Text Available This paper is concerned with a new sequence of linear positive operators which generalize Szasz operators including Boas-Buck-type polynomials. We establish a convergence theorem for these operators and give the quantitative estimation of the approximation process by using a classical approach and the second modulus of continuity. Some explicit examples of our operators involving Laguerre polynomials, Charlier polynomials, and Gould-Hopper polynomials are given. Moreover, a Voronovskaya-type result is obtained for the operators containing Gould-Hopper polynomials.
Mirror symmetry, toric branes and topological string amplitudes as polynomials
Energy Technology Data Exchange (ETDEWEB)
Alim, Murad
2009-07-13
The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)
Mirror symmetry, toric branes and topological string amplitudes as polynomials
International Nuclear Information System (INIS)
Alim, Murad
2009-01-01
The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)
Design of a novel 6-DOF planar maglev system
International Nuclear Information System (INIS)
Lai, Y.-C.; Yen, J.-Y.
2006-01-01
This paper describes a novel single-deck and six degree-of-freedom (DOF) planar maglev positioning system design. The proposed design uses an array of solenoids to levitate and to hold a permanent magnet carrier in place. The solenoids are excited separately to generate restoring forces when the permanent magnet carrier is displaced from its equilibrium position. The research uses the ANSOFT finite element analysis simulation to analyze the solenoid restoring forces and to motivate a suitable permanent magnets arrangement. Active control on the solenoid currents is then used to maintain the carrier position. The system identification is carried out by perturbing the experimental set-up from its equilibrium position. The simulation results based on the identification models show that simple control is effective for maintaining the carrier position. Initial implementation has also showed that the concept is feasible
Hong, X; Harris, C J
2000-01-01
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Energy Technology Data Exchange (ETDEWEB)
Campigotto, C
1993-12-01
The first part is concerned with the introduction of quantum groups as an extension of Lie groups. In particular, we study the case of unitary enveloping algebras in dimension 2. We then connect the quantum group formalism to the construction of g CGC recurrent relations. In addition, we construct g-deformed Krawtchouck and Meixner orthogonal polynomials and list their respective main characteristics. The second part deals with some dynamical systems from a classical, a quantum and a gp-analogue point of view. We investigate the Coulomb Kepler system by using the canonical namical systems which contain as special cases some interesting systems for nuclear of atomic physics and for quantum chemistry, such as the Hartmann system, the ring-shaped oscillator, the Smarodinsky-Winternitz system, the Aharonov-Bohen system and the dyania of Dirac and Schroedinger. (author). 291 refs.
On associated polynomials and decay rates for birth-death processes
van Doorn, Erik A.
2001-01-01
We consider sequences of orthogonal polynomials and pursue the question of how (partial) knowledge of the orthogonalizing measure for the {\\it associated polynomials} can lead to information about the orthogonalizing measure for the original polynomials. In particular, we relate the supports of the
On associated polynomials and decay rates for birth-death processes
van Doorn, Erik A.
2003-01-01
We consider sequences of orthogonal polynomials and pursue the question of how (partial) knowledge of the orthogonalizing measure for the associated polynomials can lead to information about the orthogonalizing measure for the original polynomials. In particular, we relate the supports of the two
Quantized vortices in the ideal bose gas: a physical realization of random polynomials.
Castin, Yvan; Hadzibabic, Zoran; Stock, Sabine; Dalibard, Jean; Stringari, Sandro
2006-02-03
We propose a physical system allowing one to experimentally observe the distribution of the complex zeros of a random polynomial. We consider a degenerate, rotating, quasi-ideal atomic Bose gas prepared in the lowest Landau level. Thermal fluctuations provide the randomness of the bosonic field and of the locations of the vortex cores. These vortices can be mapped to zeros of random polynomials, and observed in the density profile of the gas.
Statistics of stationary points of random finite polynomial potentials
International Nuclear Information System (INIS)
Mehta, Dhagash; Niemerg, Matthew; Sun, Chuang
2015-01-01
The stationary points (SPs) of the potential energy landscapes (PELs) of multivariate random potentials (RPs) have found many applications in many areas of Physics, Chemistry and Mathematical Biology. However, there are few reliable methods available which can find all the SPs accurately. Hence, one has to rely on indirect methods such as Random Matrix theory. With a combination of the numerical polynomial homotopy continuation method and a certification method, we obtain all the certified SPs of the most general polynomial RP for each sample chosen from the Gaussian distribution with mean 0 and variance 1. While obtaining many novel results for the finite size case of the RP, we also discuss the implications of our results on mathematics of random systems and string theory landscapes. (paper)
Some Polynomials Associated with the r-Whitney Numbers
Indian Academy of Sciences (India)
26
Abstract. In the present article we study three families of polynomials associated with ... [29, 39] for their relations with the Bernoulli and generalized Bernoulli polynomials and ... generating functions in a similar way as in the classical cases.
The Bessel polynomials and their differential operators
International Nuclear Information System (INIS)
Onyango Otieno, V.P.
1987-10-01
Differential operators associated with the ordinary and the generalized Bessel polynomials are defined. In each case the commutator bracket is constructed and shows that the differential operators associated with the Bessel polynomials and their generalized form are not commutative. Some applications of these operators to linear differential equations are also discussed. (author). 4 refs
Shyu, H. C.; Reed, I. S.; Truong, T. K.; Hsu, I. S.; Chang, J. J.
1987-01-01
A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-Pw technology.
Rank one chaos in a class of planar systems with heteroclinic cycle.
Chen, Fengjuan; Han, Maoan
2009-12-01
In this paper, we study rank one chaos in a class of planar systems with heteroclinic cycle. We first find a stable limit cycle inside the heteroclinic cycle. We then add an external periodic forcing to create rank one chaos. We follow a step-by-step procedure guided by the theory of rank one chaos to find experimental evidence of strange attractors with Sinai, Ruelle, and Bowen measures.
Conference on Commutative rings, integer-valued polynomials and polynomial functions
Frisch, Sophie; Glaz, Sarah; Commutative Algebra : Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions
2014-01-01
This volume presents a multi-dimensional collection of articles highlighting recent developments in commutative algebra. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non- Noetherian ring theory as well as integer-valued polynomials and functions. Specific topics include: · Homological dimensions of Prüfer-like rings · Quasi complete rings · Total graphs of rings · Properties of prime ideals over various rings · Bases for integer-valued polynomials · Boolean subrings · The portable property of domains · Probabilistic topics in Intn(D) · Closure operations in Zariski-Riemann spaces of valuation domains · Stability of do...
Planar reorientation maneuvers of space multibody systems using internal controls
Reyhanoglu, Mahmut; Mcclamroch, N. H.
1992-01-01
In this paper a reorientation maneuvering strategy for an interconnection of planar rigid bodies in space is developed. It is assumed that there are no exogeneous torques, and torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero in this paper. The maneuver strategy uses the nonintegrability of the expression for the angular momentum. We demonstrate that large-angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is briefly summarized. Specifications and computer simulations of a specific reorientation maneuver, and the corresponding control strategies, are described.
International Nuclear Information System (INIS)
Gerdt, Vladimir P.; Severyanov, Vasily M.
2006-01-01
A C package is presented that allows a user for an input quantum circuit to generate a set of multivariate polynomials over the finite field Z 2 whose total number of solutions in Z 2 determines the output of the quantum computation defined by the circuit. The generated polynomial system can further be converted to the canonical Grobner basis form which provides a universal algorithmic tool for counting the number of common roots of the polynomials
Energy Technology Data Exchange (ETDEWEB)
Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn
2009-10-02
Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, and their hierarchies, are derived from a four-by-four discrete matrix eigenvalue problem. The bi-Hamiltonian structure for every integrable coupling in the two hierarchies obtained is established by means of the discrete variational identity. Ultimately, Liouvolle integrability of the obtained integrable couplings is demonstrated.
Two characteristics of planar intertwined basins of attraction
International Nuclear Information System (INIS)
Ding Changming
2012-01-01
Highlights: ► A new mathematical definition of intertwined basins of attraction is proposed. ► Basins are intertwined iff a limit set of stable manifold contains at least two points. ► Basins are intertwined iff the closure of stable manifold is not arc-connected. ► The intertwining property is preserved by topologically equivalent dynamical systems. - Abstract: In this paper, we investigate the intertwined basins of attraction for planar dynamical systems. We prove that the intertwining property is preserved by topologically equivalent systems. Two necessary and sufficient conditions for a planar system having intertwined basins are given.
Sibling curves of quadratic polynomials | Wiggins | Quaestiones ...
African Journals Online (AJOL)
Sibling curves were demonstrated in [1, 2] as a novel way to visualize the zeroes of real valued functions. In [3] it was shown that a polynomial of degree n has n sibling curves. This paper focuses on the algebraic and geometric properites of the sibling curves of real and complex quadratic polynomials. Key words: Quadratic ...
Dual exponential polynomials and linear differential equations
Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne
2018-01-01
We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.
Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng
2012-12-01
This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.
International Nuclear Information System (INIS)
Zhang Tie-Yan; Zhao Yan; Xie Xiang-Peng
2012-01-01
This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach. (general)
Generalized Freud's equation and level densities with polynomial
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 2. Generalized Freud's equation and level densities with polynomial potential. Akshat Boobna Saugata Ghosh. Research Articles Volume 81 ... Keywords. Orthogonal polynomial; Freud's equation; Dyson–Mehta method; methods of resolvents; level density.
International Nuclear Information System (INIS)
Takahashi, Akito; Yamamoto, Junji; Ebisuya, Mituo; Sumita, Kenji
1979-01-01
A new method for calculating the anisotropic neutron transport is proposed for the angular spectral analysis of D-T fusion reactor neutronics. The method is based on the transport equation with new type of anisotropic scattering kernels formulated by a single function I sub(i) (μ', μ) instead of polynomial expansion, for instance, Legendre polynomials. In the calculation of angular flux spectra by using scattering kernels with the Legendre polynomial expansion, we often observe the oscillation with negative flux. But in principle this oscillation disappears by this new method. In this work, we discussed anisotropic scattering kernels of the elastic scattering and the inelastic scatterings which excite discrete energy levels. The other scatterings were included in isotropic scattering kernels. An approximation method, with use of the first collision source written by the I sub(i) (μ', μ) function, was introduced to attenuate the ''oscillations'' when we are obliged to use the scattering kernels with the Legendre polynomial expansion. Calculated results with this approximation showed remarkable improvement for the analysis of the angular flux spectra in a slab system of lithium metal with the D-T neutron source. (author)
An iterative method for the canard explosion in general planar systems
DEFF Research Database (Denmark)
Brøns, Morten
2013-01-01
The canard explosion is the change of amplitude and period of a limit cycle born in a Hopf bifurcation in a very narrow parameter interval. The phenomenon is well understood in singular perturbation problems where a small parameter controls the slow/fast dynamics. However, canard explosions are a...... on the van der Pol equation, showing that the asymptotics of the method is correct, and on a templator model for a self-replicating system....... are also observed in systems where no such parameter can obviously be identied. Here we show how the iterative method of Roussel and Fraser, devised to construct regular slow manifolds, can be used to determine a canard point in a general planar system of nonlinear ODEs. We demonstrate the method...
An overview on polynomial approximation of NP-hard problems
Directory of Open Access Journals (Sweden)
Paschos Vangelis Th.
2009-01-01
Full Text Available The fact that polynomial time algorithm is very unlikely to be devised for an optimal solving of the NP-hard problems strongly motivates both the researchers and the practitioners to try to solve such problems heuristically, by making a trade-off between computational time and solution's quality. In other words, heuristic computation consists of trying to find not the best solution but one solution which is 'close to' the optimal one in reasonable time. Among the classes of heuristic methods for NP-hard problems, the polynomial approximation algorithms aim at solving a given NP-hard problem in poly-nomial time by computing feasible solutions that are, under some predefined criterion, as near to the optimal ones as possible. The polynomial approximation theory deals with the study of such algorithms. This survey first presents and analyzes time approximation algorithms for some classical examples of NP-hard problems. Secondly, it shows how classical notions and tools of complexity theory, such as polynomial reductions, can be matched with polynomial approximation in order to devise structural results for NP-hard optimization problems. Finally, it presents a quick description of what is commonly called inapproximability results. Such results provide limits on the approximability of the problems tackled.
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
A note on the zeros of Freud-Sobolev orthogonal polynomials
Moreno-Balcazar, Juan J.
2007-10-01
We prove that the zeros of a certain family of Sobolev orthogonal polynomials involving the Freud weight function e-x4 on are real, simple, and interlace with the zeros of the Freud polynomials, i.e., those polynomials orthogonal with respect to the weight function e-x4. Some numerical examples are shown.
About the solvability of matrix polynomial equations
Netzer, Tim; Thom, Andreas
2016-01-01
We study self-adjoint matrix polynomial equations in a single variable and prove existence of self-adjoint solutions under some assumptions on the leading form. Our main result is that any self-adjoint matrix polynomial equation of odd degree with non-degenerate leading form can be solved in self-adjoint matrices. We also study equations of even degree and equations in many variables.
Two polynomial representations of experimental design
Notari, Roberto; Riccomagno, Eva; Rogantin, Maria-Piera
2007-01-01
In the context of algebraic statistics an experimental design is described by a set of polynomials called the design ideal. This, in turn, is generated by finite sets of polynomials. Two types of generating sets are mostly used in the literature: Groebner bases and indicator functions. We briefly describe them both, how they are used in the analysis and planning of a design and how to switch between them. Examples include fractions of full factorial designs and designs for mixture experiments.
q-Bernoulli numbers and q-Bernoulli polynomials revisited
Directory of Open Access Journals (Sweden)
Kim Taekyun
2011-01-01
Full Text Available Abstract This paper performs a further investigation on the q-Bernoulli numbers and q-Bernoulli polynomials given by Acikgöz et al. (Adv Differ Equ, Article ID 951764, 9, 2010, some incorrect properties are revised. It is point out that the generating function for the q-Bernoulli numbers and polynomials is unreasonable. By using the theorem of Kim (Kyushu J Math 48, 73-86, 1994 (see Equation 9, some new generating functions for the q-Bernoulli numbers and polynomials are shown. Mathematics Subject Classification (2000 11B68, 11S40, 11S80
Computing Galois Groups of Eisenstein Polynomials Over P-adic Fields
Milstead, Jonathan
The most efficient algorithms for computing Galois groups of polynomials over global fields are based on Stauduhar's relative resolvent method. These methods are not directly generalizable to the local field case, since they require a field that contains the global field in which all roots of the polynomial can be approximated. We present splitting field-independent methods for computing the Galois group of an Eisenstein polynomial over a p-adic field. Our approach is to combine information from different disciplines. We primarily, make use of the ramification polygon of the polynomial, which is the Newton polygon of a related polynomial. This allows us to quickly calculate several invariants that serve to reduce the number of possible Galois groups. Algorithms by Greve and Pauli very efficiently return the Galois group of polynomials where the ramification polygon consists of one segment as well as information about the subfields of the stem field. Second, we look at the factorization of linear absolute resolvents to further narrow the pool of possible groups.
International Nuclear Information System (INIS)
Miller, Willard Jr
2014-01-01
We describe a contraction theory for 2nd order superintegrable systems, showing that all such systems in 2 dimensions are limiting cases of a single system: the generic 3-parameter potential on the 2-sphere, S9 in our listing. Analogously, all of the quadratic symmetry algebras of these systems can be obtained by a sequence of contractions starting from S9. By contracting function space realizations of irreducible representations of the S9 algebra (which give the structure equations for Racah/Wilson polynomials) to the other superintegrable systems one obtains the full Askey scheme of orthogonal hypergeometric polynomials.This relates the scheme directly to explicitly solvable quantum mechanical systems. Amazingly, all of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2, C). The present paper concentrates on describing this intimate link between Lie algebra and superintegrable system contractions, with the detailed calculations presented elsewhere. Joint work with E. Kalnins, S. Post, E. Subag and R. Heinonen.
Guts of surfaces and the colored Jones polynomial
Futer, David; Purcell, Jessica
2013-01-01
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have p...
Computing Tutte polynomials of contact networks in classrooms
Hincapié, Doracelly; Ospina, Juan
2013-05-01
Objective: The topological complexity of contact networks in classrooms and the potential transmission of an infectious disease were analyzed by sex and age. Methods: The Tutte polynomials, some topological properties and the number of spanning trees were used to algebraically compute the topological complexity. Computations were made with the Maple package GraphTheory. Published data of mutually reported social contacts within a classroom taken from primary school, consisting of children in the age ranges of 4-5, 7-8 and 10-11, were used. Results: The algebraic complexity of the Tutte polynomial and the probability of disease transmission increases with age. The contact networks are not bipartite graphs, gender segregation was observed especially in younger children. Conclusion: Tutte polynomials are tools to understand the topology of the contact networks and to derive numerical indexes of such topologies. It is possible to establish relationships between the Tutte polynomial of a given contact network and the potential transmission of an infectious disease within such network
Polynomial model inversion control: numerical tests and applications
Novara, Carlo
2015-01-01
A novel control design approach for general nonlinear systems is described in this paper. The approach is based on the identification of a polynomial model of the system to control and on the on-line inversion of this model. Extensive simulations are carried out to test the numerical efficiency of the approach. Numerical examples of applicative interest are presented, concerned with control of the Duffing oscillator, control of a robot manipulator and insulin regulation in a type 1 diabetic p...
Directory of Open Access Journals (Sweden)
Bangyong Sun
2014-01-01
Full Text Available The polynomial regression method is employed to calculate the relationship of device color space and CIE color space for color characterization, and the performance of different expressions with specific parameters is evaluated. Firstly, the polynomial equation for color conversion is established and the computation of polynomial coefficients is analysed. And then different forms of polynomial equations are used to calculate the RGB and CMYK’s CIE color values, while the corresponding color errors are compared. At last, an optimal polynomial expression is obtained by analysing several related parameters during color conversion, including polynomial numbers, the degree of polynomial terms, the selection of CIE visual spaces, and the linearization.
Exponential time paradigms through the polynomial time lens
Drucker, A.; Nederlof, J.; Santhanam, R.; Sankowski, P.; Zaroliagis, C.
2016-01-01
We propose a general approach to modelling algorithmic paradigms for the exact solution of NP-hard problems. Our approach is based on polynomial time reductions to succinct versions of problems solvable in polynomial time. We use this viewpoint to explore and compare the power of paradigms such as
Root and Critical Point Behaviors of Certain Sums of Polynomials
Indian Academy of Sciences (India)
13
There is an extensive literature concerning roots of sums of polynomials. Many papers and books([5], [6],. [7]) have written about these polynomials. Perhaps the most immediate question of sums of polynomials,. A + B = C, is “given bounds for the roots of A and B, what bounds can be given for the roots of C?” By. Fell [3], if ...
The Planar Sandwich and Other 1D Planar Heat Flow Test Problems in ExactPack
Energy Technology Data Exchange (ETDEWEB)
Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-01-24
This report documents the implementation of several related 1D heat flow problems in the verification package ExactPack [1]. In particular, the planar sandwich class defined in Ref. [2], as well as the classes PlanarSandwichHot, PlanarSandwichHalf, and other generalizations of the planar sandwich problem, are defined and documented here. A rather general treatment of 1D heat flow is presented, whose main results have been implemented in the class Rod1D. All planar sandwich classes are derived from the parent class Rod1D.
Predicting physical time series using dynamic ridge polynomial neural networks.
Directory of Open Access Journals (Sweden)
Dhiya Al-Jumeily
Full Text Available Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques.
The chromatic polynomial and list colorings
DEFF Research Database (Denmark)
Thomassen, Carsten
2009-01-01
We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph.......We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph....
Design of a polynomial ring based symmetric homomorphic encryption scheme
Directory of Open Access Journals (Sweden)
Smaranika Dasgupta
2016-09-01
Full Text Available Security of data, especially in clouds, has become immensely essential for present-day applications. Fully homomorphic encryption (FHE is a great way to secure data which is used and manipulated by untrusted applications or systems. In this paper, we propose a symmetric FHE scheme based on polynomial over ring of integers. This scheme is somewhat homomorphic due to accumulation of noise after few operations, which is made fully homomorphic using a refresh procedure. After certain amount of homomorphic computations, large ciphertexts are refreshed for proper decryption. The hardness of the scheme is based on the difficulty of factorizing large integers. Also, it requires polynomial addition which is computationally cost effective. Experimental results are shown to support our claim.
BSDEs with polynomial growth generators
Directory of Open Access Journals (Sweden)
Philippe Briand
2000-01-01
Full Text Available In this paper, we give existence and uniqueness results for backward stochastic differential equations when the generator has a polynomial growth in the state variable. We deal with the case of a fixed terminal time, as well as the case of random terminal time. The need for this type of extension of the classical existence and uniqueness results comes from the desire to provide a probabilistic representation of the solutions of semilinear partial differential equations in the spirit of a nonlinear Feynman-Kac formula. Indeed, in many applications of interest, the nonlinearity is polynomial, e.g, the Allen-Cahn equation or the standard nonlinear heat and Schrödinger equations.
A Genetic algorithm for evaluating the zeros (roots) of polynomial ...
African Journals Online (AJOL)
This paper presents a Genetic Algorithm software (which is a computational, search technique) for finding the zeros (roots) of any given polynomial function, and optimizing and solving N-dimensional systems of equations. The software is particularly useful since most of the classic schemes are not all embracing.
Large N Penner matrix model and a novel asymptotic formula for the generalized Laguerre polynomials
International Nuclear Information System (INIS)
Deo, N
2003-01-01
The Gaussian Penner matrix model is re-examined in the light of the results which have been found in double-well matrix models. The orthogonal polynomials for the Gaussian Penner model are shown to be the generalized Laguerre polynomials L (α) n (x) with α and x depending on N, the size of the matrix. An asymptotic formula for the orthogonal polynomials is derived following closely the orthogonal polynomial method of Deo (1997 Nucl. Phys. B 504 609). The universality found in the double-well matrix model is extended to include non-polynomial potentials. An asymptotic formula is also found for the Laguerre polynomial using the saddle-point method by rescaling α and x with N. Combining these results a novel asymptotic formula is found for the generalized Laguerre polynomials (different from that given in Szego's book) in a different asymptotic regime. This may have applications in mathematical and physical problems in the future. The density-density correlators are derived and are the same as those found for the double-well matrix models. These correlators in the smoothed large N limit are sensitive to odd and even N where N is the size of the matrix. These results for the two-point density-density correlation function may be useful in finding eigenvalue effects in experiments in mesoscopic systems or small metallic grains. There may be applications to string theory as well as the tunnelling of an eigenvalue from one valley to the other being an important quantity there
A comparison of companion matrix methods to find roots of a trigonometric polynomial
Boyd, John P.
2013-08-01
A trigonometric polynomial is a truncated Fourier series of the form fN(t)≡∑j=0Naj cos(jt)+∑j=1N bj sin(jt). It has been previously shown by the author that zeros of such a polynomial can be computed as the eigenvalues of a companion matrix with elements which are complex valued combinations of the Fourier coefficients, the "CCM" method. However, previous work provided no examples, so one goal of this new work is to experimentally test the CCM method. A second goal is introduce a new alternative, the elimination/Chebyshev algorithm, and experimentally compare it with the CCM scheme. The elimination/Chebyshev matrix (ECM) algorithm yields a companion matrix with real-valued elements, albeit at the price of usefulness only for real roots. The new elimination scheme first converts the trigonometric rootfinding problem to a pair of polynomial equations in the variables (c,s) where c≡cos(t) and s≡sin(t). The elimination method next reduces the system to a single univariate polynomial P(c). We show that this same polynomial is the resultant of the system and is also a generator of the Groebner basis with lexicographic ordering for the system. Both methods give very high numerical accuracy for real-valued roots, typically at least 11 decimal places in Matlab/IEEE 754 16 digit floating point arithmetic. The CCM algorithm is typically one or two decimal places more accurate, though these differences disappear if the roots are "Newton-polished" by a single Newton's iteration. The complex-valued matrix is accurate for complex-valued roots, too, though accuracy decreases with the magnitude of the imaginary part of the root. The cost of both methods scales as O(N3) floating point operations. In spite of intimate connections of the elimination/Chebyshev scheme to two well-established technologies for solving systems of equations, resultants and Groebner bases, and the advantages of using only real-valued arithmetic to obtain a companion matrix with real-valued elements
Directory of Open Access Journals (Sweden)
V. P. Gribkova
2014-01-01
Full Text Available The paper offers a new method for approximate solution of one type of singular integral equations for elasticity theory which have been studied by other authors. The approximate solution is found in the form of asymptotic polynomial function of a low degree (first approximation based on the Chebyshev second order polynomial. Other authors have obtained a solution (only in separate points using a method of mechanical quadrature and though they used also the Chebyshev polynomial of the second order they applied another system of junctures which were used for the creation of the required formulas.The suggested method allows not only to find an approximate solution for the whole interval in the form of polynomial, but it also makes it possible to obtain a remainder term in the form of infinite expansion where coefficients are linear functional of the given integral equation and basis functions are the Chebyshev polynomial of the second order. Such presentation of the remainder term of the first approximation permits to find a summand of the infinite series, which will serve as a start for fulfilling the given solution accuracy. This number is a degree of the asymptotic polynomial (second approximation, which will give the approximation to the exact solution with the given accuracy. The examined polynomial functions tend asymptotically to the polynomial of the best uniform approximation in the space C, created for the given operator.The paper demonstrates a convergence of the approximate solution to the exact one and provides an error estimation. The proposed algorithm for obtaining of the approximate solution and error estimation is easily realized with the help of computing technique and does not require considerable preliminary preparation during programming.
Comparison of rectangular and dual-planar positron emission mammography scanners
International Nuclear Information System (INIS)
Qi, Jinyi; Kuo, Chaincy; Huesman, Ronald H.; Klein, Gregory J.; Moses, William W.; Reutter, Bryan W.
2002-01-01
Breast imaging using dedicated positron emission tomography (PEM) has gained much interest in the medical imaging field. In this paper, we compare the performance between a rectangular geometry and a parallel dual-planar geometry. Both geometries are studied with depth of interaction (DOI) detectors and non- DOI detectors. We compare the Fisher-information matrix, lesion detection, and quantitation of the four systems. The lesion detectability is measured by the signal-to-noise ratio (SNR) of a prewhitening numerical observer for detecting a known hot spot on a uniform background. Results show that the rectangular system with DOI has the highest SNR for the detection task and the lowest bias at any given noise level for the quantitation task. They also show that for small simulated lesions the parallel dual-planar system with DOI detectors outperforms the rectangular system with non-DOI detectors, while the rectangular system with non-DOI detectors can outperform the parallel dual-planar system with DOI detectors for large simulated lesions
Positive polynomials and robust stabilization with fixed-order controllers
Czech Academy of Sciences Publication Activity Database
Henrion, Didier; Šebek, M.; Kučera, V.
2003-01-01
Roč. 48, č. 7 (2003), s. 1178-1186 ISSN 0018-9286 R&D Projects: GA ČR GA102/02/0709; GA MŠk ME 496 Institutional research plan: CEZ:AV0Z1075907 Keywords : fixed-order control lers * linear matrix inequality * polynomials, robust control Subject RIV: BC - Control Systems Theory Impact factor: 1.896, year: 2003
Polynomial chaos functions and stochastic differential equations
International Nuclear Information System (INIS)
Williams, M.M.R.
2006-01-01
The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory
Bernoulli numbers and polynomials from a more general point of view
International Nuclear Information System (INIS)
Dattoli, G.; Cesarano, C.; Lorenzutta, S.
2000-01-01
In this work it is applied the method of generating function, to introduce new forms of Bernoulli numbers and polynomials, which are exploited to derive further classes of partial sums involving generalized many index many variable polynomials. Analogous considerations are developed for the Euler numbers and polynomials [it
Generalizations of an integral for Legendre polynomials by Persson and Strang
Diekema, E.; Koornwinder, T.H.
2012-01-01
Persson and Strang (2003) evaluated the integral over [−1,1] of a squared odd degree Legendre polynomial divided by x2 as being equal to 2. We consider a similar integral for orthogonal polynomials with respect to a general even orthogonality measure, with Gegenbauer and Hermite polynomials as
Eye aberration analysis with Zernike polynomials
Molebny, Vasyl V.; Chyzh, Igor H.; Sokurenko, Vyacheslav M.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.
1998-06-01
New horizons for accurate photorefractive sight correction, afforded by novel flying spot technologies, require adequate measurements of photorefractive properties of an eye. Proposed techniques of eye refraction mapping present results of measurements for finite number of points of eye aperture, requiring to approximate these data by 3D surface. A technique of wave front approximation with Zernike polynomials is described, using optimization of the number of polynomial coefficients. Criterion of optimization is the nearest proximity of the resulted continuous surface to the values calculated for given discrete points. Methodology includes statistical evaluation of minimal root mean square deviation (RMSD) of transverse aberrations, in particular, varying consecutively the values of maximal coefficient indices of Zernike polynomials, recalculating the coefficients, and computing the value of RMSD. Optimization is finished at minimal value of RMSD. Formulas are given for computing ametropia, size of the spot of light on retina, caused by spherical aberration, coma, and astigmatism. Results are illustrated by experimental data, that could be of interest for other applications, where detailed evaluation of eye parameters is needed.
Animating Nested Taylor Polynomials to Approximate a Function
Mazzone, Eric F.; Piper, Bruce R.
2010-01-01
The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…
Learning Read-constant Polynomials of Constant Degree modulo Composites
DEFF Research Database (Denmark)
Chattopadhyay, Arkadev; Gavaldá, Richard; Hansen, Kristoffer Arnsfelt
2011-01-01
Boolean functions that have constant degree polynomial representation over a fixed finite ring form a natural and strict subclass of the complexity class \\textACC0ACC0. They are also precisely the functions computable efficiently by programs over fixed and finite nilpotent groups. This class...... is not known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable...
Design of a Control System for a Maglev Planar Motor Based on Two-Dimension Linear Interpolation
Directory of Open Access Journals (Sweden)
Feng Xing
2017-08-01
Full Text Available In order to realize the high speed and high-precision control of a maglev planar motor, a high-precision electromagnetic model is needed in the first place, which can also contribute to meeting the real-time running requirements. Traditionally, the electromagnetic model is based on analytical calculations. However, this neglects the model simplification and the manufacturing errors, which may bring certain errors to the model. Aiming to handle this inaccuracy, this paper proposes a novel design method for a maglev planar motor control system based on two-dimensional linear interpolation. First, the magnetic field is divided into several regions according to the symmetry of the Halbach magnetic array, and the uniform grid method is adopted to partition one of these regions. Second, targeting this region, it is possible to sample the electromagnetic forces and torques on each node of the grid and obtain the complete electromagnetic model in this region through the two-dimensional linear interpolation method. Third, the whole electromagnetic model of the maglev planar motor can be derived according to the symmetry of the magnetic field. Finally, the decoupling method and controller are designed according to this electromagnetic model, and thereafter, the control model can be established. The designed control system is demonstrated through simulations and experiments to feature better accuracy and meet the requirements of real-time control.
Modeling and analysis of a novel planar eddy current damper
Zhang, He; Kou, Baoquan; Jin, Yinxi; Zhang, Lu; Zhang, Hailin; Li, Liyi
2014-05-01
In this paper, a novel 2-DOF permanent magnet planar eddy current damper is proposed, of which the stator is made of a copper plate and the mover is composed of two orthogonal 1-D permanent magnet arrays with a double sided structure. The main objective of the planar eddy current damper is to provide two orthogonal damping forces for dynamic systems like the 2-DOF high precision positioning system. Firstly, the basic structure and the operating principle of the planar damper are introduced. Secondly, the analytical model of the planar damper is established where the magnetic flux density distribution of the permanent magnet arrays is obtained by using the equivalent magnetic charge method and the image method. Then, the analytical expressions of the damping force and damping coefficient are derived. Lastly, to verify the analytical model, the finite element method (FEM) is adopted for calculating the flux density and a planar damper prototype is manufactured and thoroughly tested. The results from FEM and experiments are in good agreement with the ones from the analytical expressions indicating that the analytical model is reasonable and correct.
Planar Submillimeter-Wave Mixer Technology with Integrated Antenna
Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand
2010-01-01
High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).
International Nuclear Information System (INIS)
Holen, Roel van; Vandenberghe, Stefaan; Staelens, Steven; Lemahieu, Ignace
2008-01-01
The main remaining challenge for a gamma camera is to overcome the existing trade-off between collimator spatial resolution and system sensitivity. This problem, strongly limiting the performance of parallel hole collimated gamma cameras, can be overcome by applying new collimator designs such as rotating slat (RS) collimators which have a much higher photon collection efficiency. The drawback of a RS collimated gamma camera is that, even for obtaining planar images, image reconstruction is needed, resulting in noise accumulation. However, nowadays iterative reconstruction techniques with accurate system modeling can provide better image quality. Because the impact of this modeling on image quality differs from one system to another, an objective assessment of the image quality obtained with a RS collimator is needed in comparison to classical projection images obtained using a parallel hole (PH) collimator. In this paper, a comparative study of image quality, achieved with system modeling, is presented. RS data are reconstructed to planar images using maximum likelihood expectation maximization (MLEM) with an accurate Monte Carlo derived system matrix while PH projections are deconvolved using a Monte Carlo derived point-spread function. Contrast-to-noise characteristics are used to show image quality for cold and hot spots of varying size. Influence of the object size and contrast is investigated using the optimal contrast-to-noise ratio (CNR o ). For a typical phantom setup, results show that cold spot imaging is slightly better for a PH collimator. For hot spot imaging, the CNR o of the RS images is found to increase with increasing lesion diameter and lesion contrast while it decreases when background dimensions become larger. Only for very large background dimensions in combination with low contrast lesions, the use of a PH collimator could be beneficial for hot spot imaging. In all other cases, the RS collimator scores better. Finally, the simulation of a
Complex centers of polynomial differential equations
Directory of Open Access Journals (Sweden)
Mohamad Ali M. Alwash
2007-07-01
Full Text Available We present some results on the existence and nonexistence of centers for polynomial first order ordinary differential equations with complex coefficients. In particular, we show that binomial differential equations without linear terms do not have complex centers. Classes of polynomial differential equations, with more than two terms, are presented that do not have complex centers. We also study the relation between complex centers and the Pugh problem. An algorithm is described to solve the Pugh problem for equations without complex centers. The method of proof involves phase plane analysis of the polar equations and a local study of periodic solutions.
Differential recurrence formulae for orthogonal polynomials
Directory of Open Access Journals (Sweden)
Anton L. W. von Bachhaus
1995-11-01
Full Text Available Part I - By combining a general 2nd-order linear homogeneous ordinary differential equation with the three-term recurrence relation possessed by all orthogonal polynomials, it is shown that sequences of orthogonal polynomials which satisfy a differential equation of the above mentioned type necessarily have a differentiation formula of the type: gn(xY'n(x=fn(xYn(x+Yn-1(x. Part II - A recurrence formula of the form: rn(xY'n(x+sn(xY'n+1(x+tn(xY'n-1(x=0, is derived using the result of Part I.
Considering a non-polynomial basis for local kernel regression problem
Silalahi, Divo Dharma; Midi, Habshah
2017-01-01
A common used as solution for local kernel nonparametric regression problem is given using polynomial regression. In this study, we demonstrated the estimator and properties using maximum likelihood estimator for a non-polynomial basis such B-spline to replacing the polynomial basis. This estimator allows for flexibility in the selection of a bandwidth and a knot. The best estimator was selected by finding an optimal bandwidth and knot through minimizing the famous generalized validation function.
Quantitative Boltzmann-Gibbs Principles via Orthogonal Polynomial Duality
Ayala, Mario; Carinci, Gioia; Redig, Frank
2018-06-01
We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantified. This implies a quantitative generalization of the Boltzmann-Gibbs principle. In the context of independent random walkers, we complete this program, including also fluctuation fields in non-stationary context (local equilibrium). For other interacting particle systems with duality such as the symmetric exclusion process, similar results can be obtained, under precise conditions on the n particle dynamics.
Pulsed laser planarization of metal films for multilevel interconnects
International Nuclear Information System (INIS)
Tuckerman, D.B.; Schmitt, R.L.
1985-05-01
Multilevel interconnect schemes for integrated circuits generally require one or more planarization steps, in order to maintain an acceptably flat topography for lithography and thin-film step coverage on the higher levels. Traditional approaches have involved planarization of the interlevel insulation (dielectric) layers, either by spin-on application (e.g., polyimide), or by reflow (e.g., phosphosilicate glass). We have pursued an alternative approach, in which each metal level is melted (hence planarized) using a pulsed laser prior to patterning. Short (approx.1 μs) pulses are used to preclude undesirable metallurgical reactions between the film, adhesion or barrier layer, and dielectric layer. Laser planarization of metals is particularly well suited to multilevel systems which include ground or power planes. Results are presented for planarization of gold films on SiO 2 dielectric layers using a flashlamp-pumped dye laser. The pulse duration is approx.1 μs, which allows the heat pulse to uniformly penetrate the gold while not penetrating substantially through the underlying SiO 2 (hence not perturbing the lower levels of metal). Excellent planarization of the gold films is achieved (less than 0.1 μm surface roughness, even starting with extreme topographic variations), as well as improved conductivity. To demonstrate the process, numerous planarized two-layer structures (transmission lines under a ground plane) were fabricated and characterized. 9 refs., 2 figs
The computation of bond percolation critical polynomials by the deletion–contraction algorithm
International Nuclear Information System (INIS)
Scullard, Christian R
2012-01-01
Although every exactly known bond percolation critical threshold is the root in [0,1] of a lattice-dependent polynomial, it has recently been shown that the notion of a critical polynomial can be extended to any periodic lattice. The polynomial is computed on a finite subgraph, called the base, of an infinite lattice. For any problem with exactly known solution, the prediction of the bond threshold is always correct for any base containing an arbitrary number of unit cells. For unsolved problems, the polynomial is referred to as the generalized critical polynomial and provides an approximation that becomes more accurate with increasing number of bonds in the base, appearing to approach the exact answer. The polynomials are computed using the deletion–contraction algorithm, which quickly becomes intractable by hand for more than about 18 bonds. Here, I present generalized critical polynomials calculated with a computer program for bases of up to 36 bonds for all the unsolved Archimedean lattices, except the kagome lattice, which was considered in an earlier work. The polynomial estimates are generally within 10 −5 –10 −7 of the numerical values, but the prediction for the (4,8 2 ) lattice, though not exact, is not ruled out by simulations. (paper)
Development of planar SOE/SOFC reversible cell
International Nuclear Information System (INIS)
Kusunoki, A.; Matsubara, H.; Kikuoka, Y.; Yanagi, C.; Kugimiya, K.; Yoshino, M.; Tokura, M.; Watanabe, K.; Ueda, S.; Sumi, M.; Miyamoto, H.; Tokunaga, S.
1993-01-01
A new energy storage system using SOE/SOFC (solid oxide electrolysis-solid oxide fuel cells) reversible cells is presented, where a unit cell works as a fuel cell during a period of high electric power demand and alternately works as an electrolysis cell during a period of low power demand. A planar cell configuration is used which allows for a compact and low cost energy storage and load leveling system for power stations. Tests were performed to verify the reversibility of the planar cell, at 1000 deg C, with YSZ (Yttria stabilized zirconia) as the solid electrolyte, to improve the cell performance by reducing the overvoltage in electrolysis, and to obtain fundamental characteristics of a reversible cell. 3 figs
A high-order q-difference equation for q-Hahn multiple orthogonal polynomials
DEFF Research Database (Denmark)
Arvesú, J.; Esposito, Chiara
2012-01-01
A high-order linear q-difference equation with polynomial coefficients having q-Hahn multiple orthogonal polynomials as eigenfunctions is given. The order of the equation coincides with the number of orthogonality conditions that these polynomials satisfy. Some limiting situations when are studie....... Indeed, the difference equation for Hahn multiple orthogonal polynomials given in Lee [J. Approx. Theory (2007), ), doi: 10.1016/j.jat.2007.06.002] is obtained as a limiting case....
On the Lorentz degree of a product of polynomials
Ait-Haddou, Rachid
2015-01-01
In this note, we negatively answer two questions of T. Erdélyi (1991, 2010) on possible lower bounds on the Lorentz degree of product of two polynomials. We show that the correctness of one question for degree two polynomials is a direct consequence
Generalized Freud's equation and level densities with polynomial potential
Boobna, Akshat; Ghosh, Saugata
2013-08-01
We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.
Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights
Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.
2009-12-01
We obtain the (contracted) weak zero asymptotics for orthogonal polynomials with respect to Sobolev inner products with exponential weights in the real semiaxis, of the form , with [gamma]>0, which include as particular cases the counterparts of the so-called Freud (i.e., when [phi] has a polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) weights. In addition, the boundness of the distance of the zeros of these Sobolev orthogonal polynomials to the convex hull of the support and, as a consequence, a result on logarithmic asymptotics are derived.
Bläsius, T.; Radermacher, M.; Rutter, I.; Steffen, B.; Baier, C.; van den Brand, M.; Eder, J.; Hinchey, M.; Margaria, T.
2017-01-01
We study the problem of computing straight-line drawings of non-planar graphs with few crossings. We assume that a crossing-minimization algorithm is applied first, yielding a planarization, i.e., a planar graph with a dummy vertex for each crossing, that fixes the topology of the resulting drawing.
Application of Power Geometry and Normal Form Methods to the Study of Nonlinear ODEs
Edneral, Victor
2018-02-01
This paper describes power transformations of degenerate autonomous polynomial systems of ordinary differential equations which reduce such systems to a non-degenerative form. Example of creating exact first integrals of motion of some planar degenerate system in a closed form is given.
Current advances on polynomial resultant formulations
Sulaiman, Surajo; Aris, Nor'aini; Ahmad, Shamsatun Nahar
2017-08-01
Availability of computer algebra systems (CAS) lead to the resurrection of the resultant method for eliminating one or more variables from the polynomials system. The resultant matrix method has advantages over the Groebner basis and Ritt-Wu method due to their high complexity and storage requirement. This paper focuses on the current resultant matrix formulations and investigates their ability or otherwise towards producing optimal resultant matrices. A determinantal formula that gives exact resultant or a formulation that can minimize the presence of extraneous factors in the resultant formulation is often sought for when certain conditions that it exists can be determined. We present some applications of elimination theory via resultant formulations and examples are given to explain each of the presented settings.
Some Results on the Independence Polynomial of Unicyclic Graphs
Directory of Open Access Journals (Sweden)
Oboudi Mohammad Reza
2018-05-01
Full Text Available Let G be a simple graph on n vertices. An independent set in a graph is a set of pairwise non-adjacent vertices. The independence polynomial of G is the polynomial I(G,x=∑k=0ns(G,kxk$I(G,x = \\sum\
Optical magnetism in planar metamaterial heterostructures.
Papadakis, Georgia T; Fleischman, Dagny; Davoyan, Artur; Yeh, Pochi; Atwater, Harry A
2018-01-18
Harnessing artificial optical magnetism has previously required complex two- and three-dimensional structures, such as nanoparticle arrays and split-ring metamaterials. By contrast, planar structures, and in particular dielectric/metal multilayer metamaterials, have been generally considered non-magnetic. Although the hyperbolic and plasmonic properties of these systems have been extensively investigated, their assumed non-magnetic response limits their performance to transverse magnetic (TM) polarization. We propose and experimentally validate a mechanism for artificial magnetism in planar multilayer metamaterials. We also demonstrate that the magnetic properties of high-index dielectric/metal hyperbolic metamaterials can be anisotropic, leading to magnetic hyperbolic dispersion in certain frequency regimes. We show that such systems can support transverse electric polarized interface-bound waves, analogous to their TM counterparts, surface plasmon polaritons. Our results open a route for tailoring optical artificial magnetism in lithography-free layered systems and enable us to generalize the plasmonic and hyperbolic properties to encompass both linear polarizations.
Design of special planar linkages
Zhao, Jing-Shan; Ma, Ning; Chu, Fulei
2013-01-01
Planar linkages play a very important role in mechanical engineering. As the simplest closed chain mechanisms, planar four-bar linkages are widely used in mechanical engineering, civil engineering and aerospace engineering.Design of Special Planar Linkages proposes a uniform design theory for planar four-bar linkages. The merit of the method proposed in this book is that it allows engineers to directly obtain accurate results when there are such solutions for the specified n precise positions; otherwise, the best approximate solutions will be found. This book discusses the kinematics and reach
Polynomial Poisson algebras: Gel'fand-Kirillov problem and Poisson spectra
Lecoutre, César
2014-01-01
We study the fields of fractions and the Poisson spectra of polynomial Poisson algebras.\\ud \\ud First we investigate a Poisson birational equivalence problem for polynomial Poisson algebras over a field of arbitrary characteristic. Namely, the quadratic Poisson Gel'fand-Kirillov problem asks whether the field of fractions of a Poisson algebra is isomorphic to the field of fractions of a Poisson affine space, i.e. a polynomial algebra such that the Poisson bracket of two generators is equal to...
Diouf, C.; Younes, M.; Noaja, A.; Azou, S.; Telescu, M.; Morel, P.; Tanguy, N.
2017-11-01
The linearization performance of various digital baseband pre-distortion schemes is evaluated in this paper for a coherent optical OFDM (CO-OFDM) transmitter employing a semiconductor optical amplifier (SOA). In particular, the benefits of using a parallel two-box (PTB) behavioral model, combining a static nonlinear function with a memory polynomial (MP) model, is investigated for mitigating the system nonlinearities and compared to the memoryless and MP models. Moreover, the robustness of the predistorters under different operating conditions and system uncertainties is assessed based on a precise SOA physical model. The PTB scheme proves to be the most effective linearization technique for the considered setup, with an excellent performance-complexity tradeoff over a wide range of conditions.
On an Inequality Concerning the Polar Derivative of a Polynomial
Indian Academy of Sciences (India)
Abstract. In this paper, we present a correct proof of an -inequality concerning the polar derivative of a polynomial with restricted zeros. We also extend Zygmund's inequality to the polar derivative of a polynomial.
Classification of complex polynomial vector fields in one complex variable
DEFF Research Database (Denmark)
Branner, Bodil; Dias, Kealey
2010-01-01
This paper classifies the global structure of monic and centred one-variable complex polynomial vector fields. The classification is achieved by means of combinatorial and analytic data. More specifically, given a polynomial vector field, we construct a combinatorial invariant, describing...... the topology, and a set of analytic invariants, describing the geometry. Conversely, given admissible combinatorial and analytic data sets, we show using surgery the existence of a unique monic and centred polynomial vector field realizing the given invariants. This is the content of the Structure Theorem......, the main result of the paper. This result is an extension and refinement of Douady et al. (Champs de vecteurs polynomiaux sur C. Unpublished manuscript) classification of the structurally stable polynomial vector fields. We further review some general concepts for completeness and show that vector fields...
Can a polynomial interpolation improve on the Kaplan-Yorke dimension?
International Nuclear Information System (INIS)
Richter, Hendrik
2008-01-01
The Kaplan-Yorke dimension can be derived using a linear interpolation between an h-dimensional Lyapunov exponent λ (h) >0 and an h+1-dimensional Lyapunov exponent λ (h+1) <0. In this Letter, we use a polynomial interpolation to obtain generalized Lyapunov dimensions and study the relationships among them for higher-dimensional systems
International Nuclear Information System (INIS)
Freund, P.G.O.
1992-01-01
We establish a previously conjectured connection between p-adics and quantum groups. We find in Sklyanin's two parameter elliptic quantum algebra and its generalizations, the conceptual basis for the Macdonald polynomials, which 'interpolate' between the zonal spherical functions of related real and p-adic symmetric spaces. The elliptic quantum algebras underlie the Z n -Baxter models. We show that in the n→∞ limit, the Jost function for the scattering of first level excitations in the Z n -Baxter model coincides with the Harish-Chandra-like c-function constructed from the Macdonald polynomials associated to the root system A 1 . The partition function of the Z 2 -Baxter model itself is also expressed in terms of this Macdonald-Harish-Chandra c-function albeit in a less simple way. We relate the two parameters q and t of the Macdonald polynomials to the anisotropy and modular parameters of the Baxter model. In particular the p-acid 'regimes' in the Macdonald polynomials correspond to a discrete sequence of XXZ models. We also discuss the possibility of 'q-deforming' Euler products. (orig.)
Random polynomials and expected complexity of bisection methods for real solving
DEFF Research Database (Denmark)
Emiris, Ioannis Z.; Galligo, André; Tsigaridas, Elias
2010-01-01
, and by Edelman and Kostlan in order to estimate the real root separation of degree d polynomials with i.i.d. coefficients that follow two zero-mean normal distributions: for SO(2) polynomials, the i-th coefficient has variance (d/i), whereas for Weyl polynomials its variance is 1/i!. By applying results from....... The second part of the paper shows that the expected number of real roots of a degree d polynomial in the Bernstein basis is √2d ± O(1), when the coefficients are i.i.d. variables with moderate standard deviation. Our paper concludes with experimental results which corroborate our analysis....
O(N) symmetries, sum rules for generalized Hermite polynomials and squeezed states
International Nuclear Information System (INIS)
Daboul, Jamil; Mizrahi, Salomon S
2005-01-01
Quantum optics has been dealing with coherent states, squeezed states and many other non-classical states. The associated mathematical framework makes use of special functions as Hermite polynomials, Laguerre polynomials and others. In this connection we here present some formal results that follow directly from the group O(N) of complex transformations. Motivated by the squeezed states structure, we introduce the generalized Hermite polynomials (GHP), which include as particular cases, the Hermite polynomials as well as the heat polynomials. Using generalized raising operators, we derive new sum rules for the GHP, which are covariant under O(N) transformations. The GHP and the associated sum rules become useful for evaluating Wigner functions in a straightforward manner. As a byproduct, we use one of these sum rules, on the operator level, to obtain raising and lowering operators for the Laguerre polynomials and show that they generate an sl(2, R) ≅ su(1, 1) algebra
On integral and finite Fourier transforms of continuous q-Hermite polynomials
International Nuclear Information System (INIS)
Atakishiyeva, M. K.; Atakishiyev, N. M.
2009-01-01
We give an overview of the remarkably simple transformation properties of the continuous q-Hermite polynomials H n (x vertical bar q) of Rogers with respect to the classical Fourier integral transform. The behavior of the q-Hermite polynomials under the finite Fourier transform and an explicit form of the q-extended eigenfunctions of the finite Fourier transform, defined in terms of these polynomials, are also discussed.
On polynomial selection for the general number field sieve
Kleinjung, Thorsten
2006-12-01
The general number field sieve (GNFS) is the asymptotically fastest algorithm for factoring large integers. Its runtime depends on a good choice of a polynomial pair. In this article we present an improvement of the polynomial selection method of Montgomery and Murphy which has been used in recent GNFS records.
Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos
Directory of Open Access Journals (Sweden)
F. Santonja
2012-01-01
Full Text Available Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology. Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large variability and it is not possible to determine them exactly, and it is necessary to introduce randomness. In this paper, we present an application of the polynomial chaos approach to epidemiological mathematical models based on ordinary differential equations with random coefficients. Taking into account the variability of the transmission parameters of the model, this approach allows us to obtain an auxiliary system of differential equations, which is then integrated numerically to obtain the first-and the second-order moments of the output stochastic processes. A sensitivity analysis based on the polynomial chaos approach is also performed to determine which parameters have the greatest influence on the results. As an example, we will apply the approach to an obesity epidemic model.
Introduction to the spectral theory of polynomial operator pencils
Markus, A S
1988-01-01
This monograph contains an exposition of the foundations of the spectral theory of polynomial operator pencils acting in a Hilbert space. Spectral problems for polynomial pencils have attracted a steady interest in the last 35 years, mainly because they arise naturally in such diverse areas of mathematical physics as differential equations and boundary value problems, controllable systems, the theory of oscillations and waves, elasticity theory, and hydromechanics. In this book, the author devotes most of his attention to the fundamental results of Keldysh on multiple completeness of the eigenvectors and associate vectors of a pencil, and on the asymptotic behavior of its eigenvalues and generalizations of these results. The author also presents various theorems on spectral factorization of pencils which grew out of known results of M. G. Kreibreven and Heinz Langer. A large portion of the book involves the theory of selfadjoint pencils, an area having numerous applications. Intended for mathematicians, resea...
A study of coFeB magnetic yoke based on planar electromagnet
Qin, L.; Li, Q.; Yuan, Yong J.
2017-07-01
This paper studies the fabrication of a novel planar electromagnet consisting of a planar copper coil and a magnetic yoke. CoFeB was used as the magnetic yoke material instead of the traditional permanent magnets. The planar electromagnet was fabricated and optimized to maximize the electromagnetic force, especially with varying CoFeB thickness. The micro-planar electromagnet was fabricated successfully by the traditional micro-electro-mechanical-system (MEMS) techniques and XRD, VSM were used to characterize the performance of the electromagnet. The planar electromagnet exhibits superior perpendicular magnetic anisotropy (PMA) and 0.006 emu of MS was achieved following 2 min deposition of CoFeB thin film. By integrating with other micro apparatuses, it is anticipated that the planar electromagnet will have potential applications in areas such as biosensors, biological medicine, drug delivery, chemical analysis and environmental monitoring.
Global Monte Carlo Simulation with High Order Polynomial Expansions
International Nuclear Information System (INIS)
William R. Martin; James Paul Holloway; Kaushik Banerjee; Jesse Cheatham; Jeremy Conlin
2007-01-01
The functional expansion technique (FET) was recently developed for Monte Carlo simulation. The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, the coefficients of which can be estimated via the usual random walk process in a conventional Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is simply the conventional histogram tally, corresponding to a flat mode. This research project studied the applicability of using the FET to estimate the fission source, from which fission sites can be sampled for the next generation. The idea is that individual fission sites contribute to expansion modes that may span the geometry being considered, possibly increasing the communication across a loosely coupled system and thereby improving convergence over the conventional fission bank approach used in most production Monte Carlo codes. The project examined a number of basis functions, including global Legendre polynomials as well as 'local' piecewise polynomials such as finite element hat functions and higher order versions. The global FET showed an improvement in convergence over the conventional fission bank approach. The local FET methods showed some advantages versus global polynomials in handling geometries with discontinuous material properties. The conventional finite element hat functions had the disadvantage that the expansion coefficients could not be estimated directly but had to be obtained by solving a linear system whose matrix elements were estimated. An alternative fission matrix-based response matrix algorithm was formulated. Studies were made of two alternative applications of the FET, one based on the kernel density estimator and one based on Arnoldi's method of minimized iterations. Preliminary results for both methods indicate improvements in fission source convergence. These developments indicate that the FET has promise for speeding up Monte Carlo fission source convergence
Application of Power Geometry and Normal Form Methods to the Study of Nonlinear ODEs
Directory of Open Access Journals (Sweden)
Edneral Victor
2018-01-01
Full Text Available This paper describes power transformations of degenerate autonomous polynomial systems of ordinary differential equations which reduce such systems to a non-degenerative form. Example of creating exact first integrals of motion of some planar degenerate system in a closed form is given.
Raising and Lowering Operators for Askey-Wilson Polynomials
Directory of Open Access Journals (Sweden)
Siddhartha Sahi
2007-01-01
Full Text Available In this paper we describe two pairs of raising/lowering operators for Askey-Wilson polynomials, which result from constructions involving very different techniques. The first technique is quite elementary, and depends only on the ''classical'' properties of these polynomials, viz. the q-difference equation and the three term recurrence. The second technique is less elementary, and involves the one-variable version of the double affine Hecke algebra.
International Nuclear Information System (INIS)
Cooling, C.M.; Williams, M.M.R.; Nygaard, E.T.; Eaton, M.D.
2013-01-01
Highlights: • A point kinetics model for the Medical Isotope Production Reactor is formulated. • Reactivity insertions are simulated using this model. • Polynomial chaos is used to simulate uncertainty in reactor parameters. • The computational efficiency of polynomial chaos is compared to that of Monte Carlo. -- Abstract: This paper models a conceptual Medical Isotope Production Reactor (MIPR) using a point kinetics model which is used to explore power excursions in the event of a reactivity insertion. The effect of uncertainty of key parameters is modelled using intrusive polynomial chaos. It is found that the system is stable against reactivity insertions and power excursions are all bounded and tend towards a new equilibrium state due to the negative feedbacks inherent in Aqueous Homogeneous Reactors (AHRs). The Polynomial Chaos Expansion (PCE) method is found to be much more computationally efficient than that of Monte Carlo simulation in this application
Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.
2008-10-01
We study the asymptotic behavior of the zeros of a sequence of polynomials whose weighted norms, with respect to a sequence of weight functions, have the same nth root asymptotic behavior as the weighted norms of certain extremal polynomials. This result is applied to obtain the (contracted) weak zero distribution for orthogonal polynomials with respect to a Sobolev inner product with exponential weights of the form e-[phi](x), giving a unified treatment for the so-called Freud (i.e., when [phi] has polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) cases. In addition, we provide a new proof for the bound of the distance of the zeros to the convex hull of the support for these Sobolev orthogonal polynomials.
Mathematical Use Of Polynomials Of Different End Periods Of ...
African Journals Online (AJOL)
This paper focused on how polynomials of different end period of random numbers can be used in the application of encryption and decryption of a message. Eight steps were used in generating information on how polynomials of different end periods of random numbers in the application of encryption and decryption of a ...
Computational Technique for Teaching Mathematics (CTTM): Visualizing the Polynomial's Resultant
Alves, Francisco Regis Vieira
2015-01-01
We find several applications of the Dynamic System Geogebra--DSG related predominantly to the basic mathematical concepts at the context of the learning and teaching in Brasil. However, all these works were developed in the basic level of Mathematics. On the other hand, we discuss and explore, with DSG's help, some applications of the polynomial's…
Computing derivative-based global sensitivity measures using polynomial chaos expansions
International Nuclear Information System (INIS)
Sudret, B.; Mai, C.V.
2015-01-01
In the field of computer experiments sensitivity analysis aims at quantifying the relative importance of each input parameter (or combinations thereof) of a computational model with respect to the model output uncertainty. Variance decomposition methods leading to the well-known Sobol' indices are recognized as accurate techniques, at a rather high computational cost though. The use of polynomial chaos expansions (PCE) to compute Sobol' indices has allowed to alleviate the computational burden though. However, when dealing with large dimensional input vectors, it is good practice to first use screening methods in order to discard unimportant variables. The derivative-based global sensitivity measures (DGSMs) have been developed recently in this respect. In this paper we show how polynomial chaos expansions may be used to compute analytically DGSMs as a mere post-processing. This requires the analytical derivation of derivatives of the orthonormal polynomials which enter PC expansions. Closed-form expressions for Hermite, Legendre and Laguerre polynomial expansions are given. The efficiency of the approach is illustrated on two well-known benchmark problems in sensitivity analysis. - Highlights: • Derivative-based global sensitivity measures (DGSM) have been developed for screening purpose. • Polynomial chaos expansions (PC) are used as a surrogate model of the original computational model. • From a PC expansion the DGSM can be computed analytically. • The paper provides the derivatives of Hermite, Legendre and Laguerre polynomials for this purpose
Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems
International Nuclear Information System (INIS)
Bulgadaev, S.A.; Kusmartsev, F.V.
2005-01-01
Explicit expressions for magnetoresistance R of planar and layered strongly inhomogeneous two-phase systems are obtained, using exact dual transformation, connecting effective conductivities of in-plane isotropic two-phase systems with and without magnetic field. These expressions allow to describe the magnetoresistance of various inhomogeneous media at arbitrary concentrations x and magnetic fields H. All expressions show large linear magnetoresistance effect with different dependencies on the phase concentrations. The corresponding plots of the x- and H-dependencies of R(x,H) are represented for various values, respectively, of magnetic field and concentrations at some values of inhomogeneity parameter. The obtained results show a remarkable similarity with the existing experimental data on linear magnetoresistance in silver chalcogenides Ag 2+δ Se. A possible physical explanation of this similarity is proposed. It is shown that the random, stripe type, structures of inhomogeneities are the most suitable for a fabrication of magnetic sensors and a storage of information at room temperatures
The Jones polynomial as a new invariant of topological fluid dynamics
International Nuclear Information System (INIS)
Ricca, Renzo L; Liu, Xin
2014-01-01
A new method based on the use of the Jones polynomial, a well-known topological invariant of knot theory, is introduced to tackle and quantify topological aspects of structural complexity of vortex tangles in ideal fluids. By re-writing the Jones polynomial in terms of helicity, the resulting polynomial becomes then function of knot topology and vortex circulation, providing thus a new invariant of topological fluid dynamics. Explicit computations of the Jones polynomial for some standard configurations, including the Whitehead link and the Borromean rings (whose linking numbers are zero), are presented for illustration. In the case of a homogeneous, isotropic tangle of vortex filaments with same circulation, the new Jones polynomial reduces to some simple algebraic expression, that can be easily computed by numerical methods. This shows that this technique may offer a new setting and a powerful tool to detect and compute topological complexity and to investigate relations with energy, by tackling fundamental aspects of turbulence research. (paper)
PLOTNFIT.4TH, Data Plotting and Curve Fitting by Polynomials
International Nuclear Information System (INIS)
Schiffgens, J.O.
1990-01-01
1 - Description of program or function: PLOTnFIT is used for plotting and analyzing data by fitting nth degree polynomials of basis functions to the data interactively and printing graphs of the data and the polynomial functions. It can be used to generate linear, semi-log, and log-log graphs and can automatically scale the coordinate axes to suit the data. Multiple data sets may be plotted on a single graph. An auxiliary program, READ1ST, is included which produces an on-line summary of the information contained in the PLOTnFIT reference report. 2 - Method of solution: PLOTnFIT uses the least squares method to calculate the coefficients of nth-degree (up to 10. degree) polynomials of 11 selected basis functions such that each polynomial fits the data in a least squares sense. The procedure incorporated in the code uses a linear combination of orthogonal polynomials to avoid 'i11-conditioning' and to perform the curve fitting task with single-precision arithmetic. 3 - Restrictions on the complexity of the problem - Maxima of: 225 data points per job (or graph) including all data sets 8 data sets (or tasks) per job (or graph)
Multivariate Local Polynomial Regression with Application to Shenzhen Component Index
Directory of Open Access Journals (Sweden)
Liyun Su
2011-01-01
Full Text Available This study attempts to characterize and predict stock index series in Shenzhen stock market using the concepts of multivariate local polynomial regression. Based on nonlinearity and chaos of the stock index time series, multivariate local polynomial prediction methods and univariate local polynomial prediction method, all of which use the concept of phase space reconstruction according to Takens' Theorem, are considered. To fit the stock index series, the single series changes into bivariate series. To evaluate the results, the multivariate predictor for bivariate time series based on multivariate local polynomial model is compared with univariate predictor with the same Shenzhen stock index data. The numerical results obtained by Shenzhen component index show that the prediction mean squared error of the multivariate predictor is much smaller than the univariate one and is much better than the existed three methods. Even if the last half of the training data are used in the multivariate predictor, the prediction mean squared error is smaller than the univariate predictor. Multivariate local polynomial prediction model for nonsingle time series is a useful tool for stock market price prediction.
First-Order Polynomial Heisenberg Algebras and Coherent States
International Nuclear Information System (INIS)
Castillo-Celeita, M; Fernández C, D J
2016-01-01
The polynomial Heisenberg algebras (PHA) are deformations of the Heisenberg- Weyl algebra characterizing the underlying symmetry of the supersymmetric partners of the Harmonic oscillator. When looking for the simplest system ruled by PHA, however, we end up with the harmonic oscillator. In this paper we are going to realize the first-order PHA through the harmonic oscillator. The associated coherent states will be also constructed, which turn out to be the well known even and odd coherent states. (paper)
Twisted Polynomials and Forgery Attacks on GCM
DEFF Research Database (Denmark)
Abdelraheem, Mohamed Ahmed A. M. A.; Beelen, Peter; Bogdanov, Andrey
2015-01-01
Polynomial hashing as an instantiation of universal hashing is a widely employed method for the construction of MACs and authenticated encryption (AE) schemes, the ubiquitous GCM being a prominent example. It is also used in recent AE proposals within the CAESAR competition which aim at providing...... in an improved key recovery algorithm. As cryptanalytic applications of our twisted polynomials, we develop the first universal forgery attacks on GCM in the weak-key model that do not require nonce reuse. Moreover, we present universal weak-key forgeries for the nonce-misuse resistant AE scheme POET, which...
A polynomial based model for cell fate prediction in human diseases.
Ma, Lichun; Zheng, Jie
2017-12-21
Cell fate regulation directly affects tissue homeostasis and human health. Research on cell fate decision sheds light on key regulators, facilitates understanding the mechanisms, and suggests novel strategies to treat human diseases that are related to abnormal cell development. In this study, we proposed a polynomial based model to predict cell fate. This model was derived from Taylor series. As a case study, gene expression data of pancreatic cells were adopted to test and verify the model. As numerous features (genes) are available, we employed two kinds of feature selection methods, i.e. correlation based and apoptosis pathway based. Then polynomials of different degrees were used to refine the cell fate prediction function. 10-fold cross-validation was carried out to evaluate the performance of our model. In addition, we analyzed the stability of the resultant cell fate prediction model by evaluating the ranges of the parameters, as well as assessing the variances of the predicted values at randomly selected points. Results show that, within both the two considered gene selection methods, the prediction accuracies of polynomials of different degrees show little differences. Interestingly, the linear polynomial (degree 1 polynomial) is more stable than others. When comparing the linear polynomials based on the two gene selection methods, it shows that although the accuracy of the linear polynomial that uses correlation analysis outcomes is a little higher (achieves 86.62%), the one within genes of the apoptosis pathway is much more stable. Considering both the prediction accuracy and the stability of polynomial models of different degrees, the linear model is a preferred choice for cell fate prediction with gene expression data of pancreatic cells. The presented cell fate prediction model can be extended to other cells, which may be important for basic research as well as clinical study of cell development related diseases.
Multi-projector auto-calibration and placement optimization for non-planar surfaces
Li, Dong; Xie, Jinghui; Zhao, Lu; Zhou, Lijing; Weng, Dongdong
2015-10-01
Non-planar projection has been widely applied in virtual reality and digital entertainment and exhibitions because of its flexible layout and immersive display effects. Compared with planar projection, a non-planar projection is more difficult to achieve because projector calibration and image distortion correction are difficult processes. This paper uses a cylindrical screen as an example to present a new method for automatically calibrating a multi-projector system in a non-planar environment without using 3D reconstruction. This method corrects the geometric calibration error caused by the screen's manufactured imperfections, such as an undulating surface or a slant in the vertical plane. In addition, based on actual projection demand, this paper presents the overall performance evaluation criteria for the multi-projector system. According to these criteria, we determined the optimal placement for the projectors. This method also extends to surfaces that can be parameterized, such as spheres, ellipsoids, and paraboloids, and demonstrates a broad applicability.
Fractional order differentiation by integration with Jacobi polynomials
Liu, Dayan
2012-12-01
The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess [22], [23]. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises. © 2012 IEEE.
Fractional order differentiation by integration with Jacobi polynomials
Liu, Dayan; Gibaru, O.; Perruquetti, Wilfrid; Laleg-Kirati, Taous-Meriem
2012-01-01
The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess [22], [23]. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises. © 2012 IEEE.
Compressive Sensing with Cross-Validation and Stop-Sampling for Sparse Polynomial Chaos Expansions
Energy Technology Data Exchange (ETDEWEB)
Huan, Xun; Safta, Cosmin; Sargsyan, Khachik; Vane, Zachary Phillips; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, Habib N.
2017-07-01
Compressive sensing is a powerful technique for recovering sparse solutions of underdetermined linear systems, which is often encountered in uncertainty quanti cation analysis of expensive and high-dimensional physical models. We perform numerical investigations employing several com- pressive sensing solvers that target the unconstrained LASSO formulation, with a focus on linear systems that arise in the construction of polynomial chaos expansions. With core solvers of l1 ls, SpaRSA, CGIST, FPC AS, and ADMM, we develop techniques to mitigate over tting through an automated selection of regularization constant based on cross-validation, and a heuristic strategy to guide the stop-sampling decision. Practical recommendations on parameter settings for these tech- niques are provided and discussed. The overall method is applied to a series of numerical examples of increasing complexity, including large eddy simulations of supersonic turbulent jet-in-cross flow involving a 24-dimensional input. Through empirical phase-transition diagrams and convergence plots, we illustrate sparse recovery performance under structures induced by polynomial chaos, accuracy and computational tradeoffs between polynomial bases of different degrees, and practi- cability of conducting compressive sensing for a realistic, high-dimensional physical application. Across test cases studied in this paper, we find ADMM to have demonstrated empirical advantages through consistent lower errors and faster computational times.
Determination of the paraxial focal length using Zernike polynomials over different apertures
Binkele, Tobias; Hilbig, David; Henning, Thomas; Fleischmann, Friedrich
2017-02-01
The paraxial focal length is still the most important parameter in the design of a lens. As presented at the SPIE Optics + Photonics 2016, the measured focal length is a function of the aperture. The paraxial focal length can be found when the aperture approaches zero. In this work, we investigate the dependency of the Zernike polynomials on the aperture size with respect to 3D space. By this, conventional wavefront measurement systems that apply Zernike polynomial fitting (e.g. Shack-Hartmann-Sensor) can be used to determine the paraxial focal length, too. Since the Zernike polynomials are orthogonal over a unit circle, the aperture used in the measurement has to be normalized. By shrinking the aperture and keeping up with the normalization, the Zernike coefficients change. The relation between these changes and the paraxial focal length are investigated. The dependency of the focal length on the aperture size is derived analytically and evaluated by simulation and measurement of a strong focusing lens. The measurements are performed using experimental ray tracing and a Shack-Hartmann-Sensor. Using experimental ray tracing for the measurements, the aperture can be chosen easily. Regarding the measurements with the Shack-Hartmann- Sensor, the aperture size is fixed. Thus, the Zernike polynomials have to be adapted to use different aperture sizes by the proposed method. By doing this, the paraxial focal length can be determined from the measurements in both cases.
Vanishing of Littlewood-Richardson polynomials is in P
Adve, Anshul; Robichaux, Colleen; Yong, Alexander
2017-01-01
J. DeLoera-T. McAllister and K. D. Mulmuley-H. Narayanan-M. Sohoni independently proved that determining the vanishing of Littlewood-Richardson coefficients has strongly polynomial time computational complexity. Viewing these as Schubert calculus numbers, we prove the generalization to the Littlewood-Richardson polynomials that control equivariant cohomology of Grassmannians. We construct a polytope using the edge-labeled tableau rule of H. Thomas-A. Yong. Our proof then combines a saturation...
Smoothing optimization of supporting quadratic surfaces with Zernike polynomials
Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu
2018-03-01
A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.
Non-planar ABJ theory and parity
International Nuclear Information System (INIS)
Caputa, Pawel; Kristjansen, Charlotte; Zoubos, Konstantinos
2009-01-01
While the ABJ Chern-Simons-matter theory and its string theory dual manifestly lack parity invariance, no sign of parity violation has so far been observed on the weak coupling spin chain side. In particular, the planar two-loop dilatation generator of ABJ theory is parity invariant. In this Letter we derive the non-planar part of the two-loop dilatation generator of ABJ theory in its SU(2)xSU(2) sub-sector. Applying the dilatation generator to short operators, we explicitly demonstrate that, for operators carrying excitations on both spin chains, the non-planar part breaks parity invariance. For operators with only one type of excitation, however, parity remains conserved at the non-planar level. We furthermore observe that, as for ABJM theory, the degeneracy between planar parity pairs is lifted when non-planar corrections are taken into account.
Non-planar ABJ Theory and Parity
DEFF Research Database (Denmark)
Caputa, Pawel; Kristjansen, Charlotte; Zoubos, Konstantinos
2009-01-01
we derive the non-planar part of the two-loop dilatation generator of ABJ theory in its SU(2)xSU(2) sub-sector. Applying the dilatation generator to short operators, we explicitly demonstrate that, for operators carrying excitations on both spin chains, the non-planar part breaks parity invariance......While the ABJ Chern-Simons-matter theory and its string theory dual manifestly lack parity invariance, no sign of parity violation has so far been observed on the weak coupling spin chain side. In particular, the planar two-loop dilatation generator of ABJ theory is parity invariant. In this letter....... For operators with only one type of excitation, however, parity remains conserved at the non-planar level. We furthermore observe that, as for ABJM theory, the degeneracy between planar parity pairs is lifted when non-planar corrections are taken into account....
Recurrence coefficients for discrete orthonormal polynomials and the Painlevé equations
International Nuclear Information System (INIS)
Clarkson, Peter A
2013-01-01
We investigate semi-classical generalizations of the Charlier and Meixner polynomials, which are discrete orthogonal polynomials that satisfy three-term recurrence relations. It is shown that the coefficients in these recurrence relations can be expressed in terms of Wronskians of modified Bessel functions and confluent hypergeometric functions, respectively for the generalized Charlier and generalized Meixner polynomials. These Wronskians arise in the description of special function solutions of the third and fifth Painlevé equations. (paper)
Expansion of Sobolev functions in series in Laguerre polynomials
International Nuclear Information System (INIS)
Selyakov, K.I.
1985-01-01
The solution of the integral equation for the Sobolev functions is represented in the form of series in Laguerre polynomials. The coefficients of these series are simultaneously the coefficients of the power series for the Ambartsumyan-Chandrasekhar H functions. Infinite systems of linear algebraic equations with Toeplitz matrices are given for the coefficients of the series. Numerical results and approximate expressions are given for the case of isotropic scattering
Chen, Sheng; Hong, Xia; Khalaf, Emad F; Alsaadi, Fuad E; Harris, Chris J
2017-12-01
Complex-valued (CV) B-spline neural network approach offers a highly effective means for identifying and inverting practical Hammerstein systems. Compared with its conventional CV polynomial-based counterpart, a CV B-spline neural network has superior performance in identifying and inverting CV Hammerstein systems, while imposing a similar complexity. This paper reviews the optimality of the CV B-spline neural network approach. Advantages of B-spline neural network approach as compared with the polynomial based modeling approach are extensively discussed, and the effectiveness of the CV neural network-based approach is demonstrated in a real-world application. More specifically, we evaluate the comparative performance of the CV B-spline and polynomial-based approaches for the nonlinear iterative frequency-domain decision feedback equalization (NIFDDFE) of single-carrier Hammerstein channels. Our results confirm the superior performance of the CV B-spline-based NIFDDFE over its CV polynomial-based counterpart.
Design and Use of a Learning Object for Finding Complex Polynomial Roots
Benitez, Julio; Gimenez, Marcos H.; Hueso, Jose L.; Martinez, Eulalia; Riera, Jaime
2013-01-01
Complex numbers are essential in many fields of engineering, but students often fail to have a natural insight of them. We present a learning object for the study of complex polynomials that graphically shows that any complex polynomials has a root and, furthermore, is useful to find the approximate roots of a complex polynomial. Moreover, we…
GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi
Czech Academy of Sciences Publication Activity Database
Henrion, Didier; Lasserre, J.-B.
č. 2 (2003), s. 165-194 ISSN 0098-3500 R&D Projects: GA MŠk ME 496 Institutional research plan: CEZ:AV0Z1075907 Keywords : polynomial programming * semidefinite programming * linear matrix inequality Subject RIV: BC - Control Systems Theory Impact factor: 0.979, year: 2003
Two polynomial division inequalities in
Directory of Open Access Journals (Sweden)
Goetgheluck P
1998-01-01
Full Text Available This paper is a first attempt to give numerical values for constants and , in classical estimates and where is an algebraic polynomial of degree at most and denotes the -metric on . The basic tools are Markov and Bernstein inequalities.
Asymptotics for the ratio and the zeros of multiple Charlier polynomials
Ndayiragije, François; Van Assche, Walter
2011-01-01
We investigate multiple Charlier polynomials and in particular we will use the (nearest neighbor) recurrence relation to find the asymptotic behavior of the ratio of two multiple Charlier polynomials. This result is then used to obtain the asymptotic distribution of the zeros, which is uniform on an interval. We also deal with the case where one of the parameters of the various Poisson distributions depend on the degree of the polynomial, in which case we obtain another asymptotic distributio...
Euler Polynomials and Identities for Non-Commutative Operators
De Angelis, V.; Vignat, C.
2015-01-01
Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt, expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, due to J.-C. Pain, links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Fig...
Motion video analysis using planar parallax
Sawhney, Harpreet S.
1994-04-01
Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.
Local polynomial Whittle estimation of perturbed fractional processes
DEFF Research Database (Denmark)
Frederiksen, Per; Nielsen, Frank; Nielsen, Morten Ørregaard
We propose a semiparametric local polynomial Whittle with noise (LPWN) estimator of the memory parameter in long memory time series perturbed by a noise term which may be serially correlated. The estimator approximates the spectrum of the perturbation as well as that of the short-memory component...... of the signal by two separate polynomials. Including these polynomials we obtain a reduction in the order of magnitude of the bias, but also in‡ate the asymptotic variance of the long memory estimate by a multiplicative constant. We show that the estimator is consistent for d 2 (0; 1), asymptotically normal...... for d ε (0, 3/4), and if the spectral density is infinitely smooth near frequency zero, the rate of convergence can become arbitrarily close to the parametric rate, pn. A Monte Carlo study reveals that the LPWN estimator performs well in the presence of a serially correlated perturbation term...
Polynomial Vector Fields in One Complex Variable
DEFF Research Database (Denmark)
Branner, Bodil
In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias.......In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias....
Khader, M M
2013-10-01
In this paper, an efficient numerical method for solving the fractional delay differential equations (FDDEs) is considered. The fractional derivative is described in the Caputo sense. The proposed method is based on the derived approximate formula of the Laguerre polynomials. The properties of Laguerre polynomials are utilized to reduce FDDEs to a linear or nonlinear system of algebraic equations. Special attention is given to study the error and the convergence analysis of the proposed method. Several numerical examples are provided to confirm that the proposed method is in excellent agreement with the exact solution.
Directory of Open Access Journals (Sweden)
Hjalmar Rosengren
2006-12-01
Full Text Available We study multivariable Christoffel-Darboux kernels, which may be viewed as reproducing kernels for antisymmetric orthogonal polynomials, and also as correlation functions for products of characteristic polynomials of random Hermitian matrices. Using their interpretation as reproducing kernels, we obtain simple proofs of Pfaffian and determinant formulas, as well as Schur polynomial expansions, for such kernels. In subsequent work, these results are applied in combinatorics (enumeration of marked shifted tableaux and number theory (representation of integers as sums of squares.
Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type.
Sidharth, Manjari; Agrawal, P N; Araci, Serkan
2017-01-01
The present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012). We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a direct approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness. Furthermore, we study the approximation of functions whose derivatives are locally of bounded variation.
Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type
Directory of Open Access Journals (Sweden)
Manjari Sidharth
2017-05-01
Full Text Available Abstract The present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012. We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a direct approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness. Furthermore, we study the approximation of functions whose derivatives are locally of bounded variation.
Recent Studies on the Aromaticity and Antiaromaticity of Planar Cyclooctatetraene
Directory of Open Access Journals (Sweden)
Masahiko Iyoda
2010-02-01
Full Text Available Cyclooctatetraene (COT, the first 4nπ-electron system to be studied, adopts an inherently nonplanar tub-shaped geometry of D2d symmetry with alternating single and double bonds, and hence behaves as a nonaromatic polyene rather than an antiaromatic compound. Recently, however, considerable 8π-antiaromatic paratropicity has been shown to be generated in planar COT rings even with the bond alternated D4h structure. In this review, we highlight recent theoretical and experimental studies on the antiaromaticity of hypothetical and actual planar COT. In addition, theoretically predicted triplet aromaticity and stacked aromaticity of planar COT are also briefly described.
Analysis of the Level-Release Polynomial from a Hydroelectric Plant
Directory of Open Access Journals (Sweden)
Ieda Hidalgo
2012-02-01
Full Text Available The mathematic representation of the tailrace elevation as function of the water release can be modified, for example, by the geomorphologic impact of large floods. The level-release polynomial from a hydroelectric plant is important information to computational models used for optimization and simulation of the power generation systems operation. They depend on data quality to provide reliable results. Therefore, this paper presents a method for adjusting of the tailrace polynomial based on operation data recorded by the plant’s owner or company. The proposed method uses a non-linear regression tool, such as Trendline in Excel. A case study has been applied to the data from a large Brazilian hydroelectric plant whose operation is under the coordination of the Electric System ational Operator. The benefits of the data correction are analyzed using a simulation model for the hydroelectric plants operation. This simulator is used to reproduce the past operation of the plant, first with official data and second with adjusted data. The results show significant improvements in terms of quality of the data, contributing to bring the real and simulated operation closer.
An extension of Krawtchouk\\'s polynomials to the contstruction of ...
African Journals Online (AJOL)
A simple method is described for the construction of a set of orthogonal polynomials for any case where the proportions of observations follow a binomial distribution. The least squares equation which fits the data is determined using the properties of orthogonal polynomials and the analysis of variance technique.
Geometry of polynomials and root-finding via path-lifting
Kim, Myong-Hi; Martens, Marco; Sutherland, Scott
2018-02-01
Using the interplay between topological, combinatorial, and geometric properties of polynomials and analytic results (primarily the covering structure and distortion estimates), we analyze a path-lifting method for finding approximate zeros, similar to those studied by Smale, Shub, Kim, and others. Given any polynomial, this simple algorithm always converges to a root, except on a finite set of initial points lying on a circle of a given radius. Specifically, the algorithm we analyze consists of iterating where the t k form a decreasing sequence of real numbers and z 0 is chosen on a circle containing all the roots. We show that the number of iterates required to locate an approximate zero of a polynomial f depends only on log\\vert f(z_0)/ρ_\\zeta\\vert (where ρ_\\zeta is the radius of convergence of the branch of f-1 taking 0 to a root ζ) and the logarithm of the angle between f(z_0) and certain critical values. Previous complexity results for related algorithms depend linearly on the reciprocals of these angles. Note that the complexity of the algorithm does not depend directly on the degree of f, but only on the geometry of the critical values. Furthermore, for any polynomial f with distinct roots, the average number of steps required over all starting points taken on a circle containing all the roots is bounded by a constant times the average of log(1/ρ_\\zeta) . The average of log(1/ρ_\\zeta) over all polynomials f with d roots in the unit disk is \
Planar graphs theory and algorithms
Nishizeki, T
1988-01-01
Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.
The Combinatorial Rigidity Conjecture is False for Cubic Polynomials
DEFF Research Database (Denmark)
Henriksen, Christian
2003-01-01
We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995.......We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995....
International Nuclear Information System (INIS)
Calogero, F.
1978-01-01
Let zsub(j)(α, β) be the jth zero of the Jacobi polynomial J sub(n)sup(α,β)(z), and xsub(j) the jth zero of the Hermite polynomial Hsub(n)(x). Then, as t→infinity, zsub(j)(at,bt)=(b-a)/(b+a)+t sup(-1/2)c x sub(j)+t -1 4/3(n+1/2+xsub(j) 2 )(a-b)/(a+b) 2 +0(t sup(-3/2)), with c=(ab)sup(1/2) [(a+b)/2]sup(-3/2) a>0, b>0. This formula implies the limit relation n exclamation mark lim sub(t→infinity) [t sup(-n/2)J sub(n)sup(at,bt) ((b-a)/(b+a)+t sup(-1/2)x)] = [(a+b)c/4]sup(n) Hsub(n)(chi/c). (author)
Polynomials formalism of quantum numbers
International Nuclear Information System (INIS)
Kazakov, K.V.
2005-01-01
Theoretical aspects of the recently suggested perturbation formalism based on the method of quantum number polynomials are considered in the context of the general anharmonicity problem. Using a biatomic molecule by way of example, it is demonstrated how the theory can be extrapolated to the case of vibrational-rotational interactions. As a result, an exact expression for the first coefficient of the Herman-Wallis factor is derived. In addition, the basic notions of the formalism are phenomenologically generalized and expanded to the problem of spin interaction. The concept of magneto-optical anharmonicity is introduced. As a consequence, an exact analogy is drawn with the well-known electro-optical theory of molecules, and a nonlinear dependence of the magnetic dipole moment of the system on the spin and wave variables is established [ru
Congruences concerning Legendre polynomials III
Sun, Zhi-Hong
2010-01-01
Let $p>3$ be a prime, and let $R_p$ be the set of rational numbers whose denominator is coprime to $p$. Let $\\{P_n(x)\\}$ be the Legendre polynomials. In this paper we mainly show that for $m,n,t\\in R_p$ with $m\
Global Polynomial Kernel Hazard Estimation
DEFF Research Database (Denmark)
Hiabu, Munir; Miranda, Maria Dolores Martínez; Nielsen, Jens Perch
2015-01-01
This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically redu...
Optimal Conformal Polynomial Projections for Croatia According to the Airy/Jordan Criterion
Directory of Open Access Journals (Sweden)
Dražen Tutić
2009-05-01
Full Text Available The paper describes optimal conformal polynomial projections for Croatia according to the Airy/Jordan criterion. A brief introduction of history and theory of conformal mapping is followed by descriptions of conformal polynomial projections and their current application. The paper considers polynomials of degrees 1 to 10. Since there are conditions in which the 1st degree polynomial becomes the famous Mercator projection, it was not considered specifically for Croatian territory. The area of Croatia was defined as a union of national territory and the continental shelf. Area definition data were taken from the Euro Global Map 1:1 000 000 for Croatia, as well as from two maritime delimitation treaties. Such an irregular area was approximated with a regular grid consisting of 11 934 ellipsoidal trapezoids 2' large. The Airy/Jordan criterion for the optimal projection is defined as minimum of weighted mean of Airy/Jordan measure of distortion in points. The value of the Airy/Jordan criterion is calculated from all 11 934 centres of ellipsoidal trapezoids, while the weights are equal to areas of corresponding ellipsoidal trapezoids. The minimum is obtained by Nelder and Mead’s method, as implemented in the fminsearch function of the MATLAB package. Maps of Croatia representing the distribution of distortions are given for polynomial degrees 2 to 6 and 10. Increasing the polynomial degree results in better projections considering the criterion, and the 6th degree polynomial provides a good ratio of formula complexity and criterion value.
Polynomial realization of the Uq (sl(3)) Gel'fand-(Weyl)-Zetlin basis
International Nuclear Information System (INIS)
Dobrev, V.K.; Truini, P.
1996-01-01
We give an explicit realization of the U ≡ U q (sl(3)) Gel'fand-(Weyl)-Zetlin (GWZ) basis as polynomial functions in three variables. This realization is obtained in two complementary ways. First we establish a 1-to-1 correspondence between the abstract GWZ basis and explicit polynomials in the quantum subgroup U + of the raising generators. We then use an explicit construction of arbitrary lowest weight (holomorphic) representations of U in terms of three variables on which the generators of U are realized as q-difference operators. Applying the GWZ corresponding polynomials in this realization to the lowest weight vector (the function 1) produces one realization of our GWZ basis. Another realization of the GWZ polynomial basis is found by the explicit diagonalization of the operators of isospin I-circumflex 2 , third component of isospin I-circumflex z , and hypercharge Y-circumflex, in the same realization as q-difference operators. The result is that the eigenvectors can be written in terms of q-hypergeometric polynomials in our three variables. Finally we construct an explicit scalar product (adapting the Shapovalov form to our setting). Using it we prove the orthogonality of our GWZ polynomials for which we use both realizations. This provides a polynomial construction for the orthonormal GWZ basis. We work for generic q, leaving the root of unity case for a following paper. It seems that our results are new also in the classical situation (q=1). (author). 20 refs
Real zeros of classes of random algebraic polynomials
Directory of Open Access Journals (Sweden)
K. Farahmand
2003-01-01
Full Text Available There are many known asymptotic estimates for the expected number of real zeros of an algebraic polynomial a0+a1x+a2x2+⋯+an−1xn−1 with identically distributed random coefficients. Under different assumptions for the distribution of the coefficients {aj}j=0n−1 it is shown that the above expected number is asymptotic to O(logn. This order for the expected number of zeros remains valid for the case when the coefficients are grouped into two, each group with a different variance. However, it was recently shown that if the coefficients are non-identically distributed such that the variance of the jth term is (nj the expected number of zeros of the polynomial increases to O(n. The present paper provides the value for this asymptotic formula for the polynomials with the latter variances when they are grouped into three with different patterns for their variances.
a Unified Matrix Polynomial Approach to Modal Identification
Allemang, R. J.; Brown, D. L.
1998-04-01
One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.
Czech Academy of Sciences Publication Activity Database
Knížek, J.; Tichý, Petr; Beránek, L.; Šindelář, Jan; Vojtěšek, B.; Bouchal, P.; Nenutil, R.; Dedík, O.
2010-01-01
Roč. 7, č. 10 (2010), s. 48-60 ISSN 0974-5718 Grant - others:GA MZd(CZ) NS9812; GA ČR(CZ) GAP304/10/0868 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10750506 Keywords : polynomial regression * orthogonalization * numerical methods * markers * biomarkers Subject RIV: BA - General Mathematics
Nuclear-magnetic-resonance quantum calculations of the Jones polynomial
International Nuclear Information System (INIS)
Marx, Raimund; Spoerl, Andreas; Pomplun, Nikolas; Schulte-Herbrueggen, Thomas; Glaser, Steffen J.; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Myers, John M.
2010-01-01
The repertoire of problems theoretically solvable by a quantum computer recently expanded to include the approximate evaluation of knot invariants, specifically the Jones polynomial. The experimental implementation of this evaluation, however, involves many known experimental challenges. Here we present experimental results for a small-scale approximate evaluation of the Jones polynomial by nuclear magnetic resonance (NMR); in addition, we show how to escape from the limitations of NMR approaches that employ pseudopure states. Specifically, we use two spin-1/2 nuclei of natural abundance chloroform and apply a sequence of unitary transforms representing the trefoil knot, the figure-eight knot, and the Borromean rings. After measuring the nuclear spin state of the molecule in each case, we are able to estimate the value of the Jones polynomial for each of the knots.
Weierstrass method for quaternionic polynomial root-finding
Falcão, M. Irene; Miranda, Fernando; Severino, Ricardo; Soares, M. Joana
2018-01-01
Quaternions, introduced by Hamilton in 1843 as a generalization of complex numbers, have found, in more recent years, a wealth of applications in a number of different areas which motivated the design of efficient methods for numerically approximating the zeros of quaternionic polynomials. In fact, one can find in the literature recent contributions to this subject based on the use of complex techniques, but numerical methods relying on quaternion arithmetic remain scarce. In this paper we propose a Weierstrass-like method for finding simultaneously {\\sl all} the zeros of unilateral quaternionic polynomials. The convergence analysis and several numerical examples illustrating the performance of the method are also presented.
Ahmed, Sajid
2016-11-24
Various examples of methods and systems are provided for direct closed-form finite alphabet constant-envelope waveforms for planar array beampatterns. In one example, a method includes defining a waveform covariance matrix based at least in part upon a two-dimensional fast Fourier transform (2D-FFT) analysis of a frequency domain matrix Hf associated with a planar array of antennas. Symbols can be encoded based upon the waveform covariance matrix and the encoded symbols can be transmitted via the planar array of antennas. In another embodiment, a system comprises an N x M planar array of antennas and transmission circuitry configured to transmit symbols via a two-dimensional waveform beampattern defined based at least in part upon a 2D-FFT analysis of a frequency domain matrix Hf associated with the planar array of antennas.
A set of sums for continuous dual q-2-Hahn polynomials
International Nuclear Information System (INIS)
Gade, R. M.
2009-01-01
An infinite set {τ (l) (y;r,z)} r,lisanelementofN 0 of linear sums of continuous dual q -2 -Hahn polynomials with prefactors depending on a complex parameter z is studied. The sums τ (l) (y;r,z) have an interpretation in context with tensor product representations of the quantum affine algebra U q ' (sl(2)) involving both a positive and a negative discrete series representation. For each l>0, the sum τ (l) (y;r,z) can be expressed in terms of the sum τ (0) (y;r,z), continuous dual q 2 -Hahn polynomials, and their associated polynomials. The sum τ (0) (y;r,z) is obtained as a combination of eight basic hypergeometric series. Moreover, an integral representation is provided for the sums τ (l) (y;r,z) with the complex parameter restricted by |zq| -2 -Hahn polynomials.
Fibonacci-like Differential Equations with a Polynomial Non-Homogeneous Part
Asveld, P.R.J.
1989-01-01
We investigate non-homogeneous linear differential equations of the form $x''(t) + x'(t) - x(t) = p(t)$ where $p(t)$ is either a polynomial or a factorial polynomial in $t$. We express the solution of these differential equations in terms of the coefficients of $p(t)$, in the initial conditions, and
Sparse DOA estimation with polynomial rooting
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Fernandez Grande, Efren
2015-01-01
Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve highresol......Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve...... highresolution imaging. Utilizing the dual optimal variables of the CS optimization problem, it is shown with Monte Carlo simulations that the DOAs are accurately reconstructed through polynomial rooting (Root-CS). Polynomial rooting is known to improve the resolution in several other DOA estimation methods...
Tersi, Luca; Barré, Arnaud; Fantozzi, Silvia; Stagni, Rita
2013-03-01
Model-based mono-planar and bi-planar 3D fluoroscopy methods can quantify intact joints kinematics with performance/cost trade-off. The aim of this study was to compare the performances of mono- and bi-planar setups to a marker-based gold-standard, during dynamic phantom knee acquisitions. Absolute pose errors for in-plane parameters were lower than 0.6 mm or 0.6° for both mono- and bi-planar setups. Mono-planar setups resulted critical in quantifying the out-of-plane translation (error bi-planar in quantifying the rotation along bone longitudinal axis (error bi-planar (error comparable to bi-planar, but with halved computational costs, halved segmentation time and halved ionizing radiation dose. Bi-planar analysis better compensated for the out-of-plane uncertainty that is differently propagated to relative kinematics depending on the setup. To take its full benefits, the motion task to be investigated should be designed to maintain the joint inside the visible volume introducing constraints with respect to mono-planar analysis.
Tracing a planar algebraic curve
International Nuclear Information System (INIS)
Chen Falai; Kozak, J.
1994-09-01
In this paper, an algorithm that determines a real algebraic curve is outlined. Its basic step is to divide the plane into subdomains that include only simple branches of the algebraic curve without singular points. Each of the branches is then stably and efficiently traced in the particular subdomain. Except for the tracing, the algorithm requires only a couple of simple operations on polynomials that can be carried out exactly if the coefficients are rational, and the determination of zeros of several polynomials of one variable. (author). 5 refs, 4 figs
Fuadah, A. N.; Maulanisa, N. F.; Ismardi, A.; Sugandi, G.
2017-05-01
This paper presents comparison study of simulation and fabrication characterized two type planar springs at micro-fabricated electromagnetic power generator for an ambient vibration energy harvesting system. The power generator utilized a LASER-machined FR4-PCB planar spring, a copper coil, and NdFeB magnet. In order to change resonant frequency, we developed a gimbal suspension structure for the fabrication of spring. The NdFeB permanent magnet was applied as inertial mass. The system was specially designed to harvest low ambient vibrations from 20 to several hundred hertz and low acceleration. The dimension of fabricated energy harvester had 2.5 x 2.5 cm2 in size. In this study we present two different design of cantilever, which is has two and four cantilever, respectively. The different designed given different resonance frequency to the system. The result of simulation giving resonance frequency of two cantilever membrane 22.6 Hz and four cantilever membrane 110.3 Hz. The measurements result has generated 0.135 V with resonance frequency 39 Hz of two cantilever membrane appropriate for human motions, four cantilever membrane has generated 0.174 V with resonance frequency106 Hz appropriate for machine industries.
Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation
Kadoura, Ahmad Salim; Siripatana, Adil; Sun, Shuyu; Knio, Omar; Hoteit, Ibrahim
2016-01-01
In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard
Polynomials in finite geometries and combinatorics
Blokhuis, A.; Walker, K.
1993-01-01
It is illustrated how elementary properties of polynomials can be used to attack extremal problems in finite and euclidean geometry, and in combinatorics. Also a new result, related to the problem of neighbourly cylinders is presented.
Dirichlet polynomials, majorization, and trumping
International Nuclear Information System (INIS)
Pereira, Rajesh; Plosker, Sarah
2013-01-01
Majorization and trumping are two partial orders which have proved useful in quantum information theory. We show some relations between these two partial orders and generalized Dirichlet polynomials, Mellin transforms, and completely monotone functions. These relations are used to prove a succinct generalization of Turgut’s characterization of trumping. (paper)
The neighbourhood polynomial of some families of dendrimers
Nazri Husin, Mohamad; Hasni, Roslan
2018-04-01
The neighbourhood polynomial N(G,x) is generating function for the number of faces of each cardinality in the neighbourhood complex of a graph and it is defined as (G,x)={\\sum }U\\in N(G){x}|U|, where N(G) is neighbourhood complex of a graph, whose vertices of the graph and faces are subsets of vertices that have a common neighbour. A dendrimers is an artificially manufactured or synthesized molecule built up from branched units called monomers. In this paper, we compute this polynomial for some families of dendrimer.
A new derivation of the highest-weight polynomial of a unitary lie algebra
International Nuclear Information System (INIS)
P Chau, Huu-Tai; P Van, Isacker
2000-01-01
A new method is presented to derive the expression of the highest-weight polynomial used to build the basis of an irreducible representation (IR) of the unitary algebra U(2J+1). After a brief reminder of Moshinsky's method to arrive at the set of equations defining the highest-weight polynomial of U(2J+1), an alternative derivation of the polynomial from these equations is presented. The method is less general than the one proposed by Moshinsky but has the advantage that the determinantal expression of the highest-weight polynomial is arrived at in a direct way using matrix inversions. (authors)
A probabilistic approach of sum rules for heat polynomials
International Nuclear Information System (INIS)
Vignat, C; Lévêque, O
2012-01-01
In this paper, we show that the sum rules for generalized Hermite polynomials derived by Daboul and Mizrahi (2005 J. Phys. A: Math. Gen. http://dx.doi.org/10.1088/0305-4470/38/2/010) and by Graczyk and Nowak (2004 C. R. Acad. Sci., Ser. 1 338 849) can be interpreted and easily recovered using a probabilistic moment representation of these polynomials. The covariance property of the raising operator of the harmonic oscillator, which is at the origin of the identities proved in Daboul and Mizrahi and the dimension reduction effect expressed in the main result of Graczyk and Nowak are both interpreted in terms of the rotational invariance of the Gaussian distributions. As an application of these results, we uncover a probabilistic moment interpretation of two classical integrals of the Wigner function that involve the associated Laguerre polynomials. (paper)
A polynomial expansion method and its application in the coupled Zakharov-Kuznetsov equations
International Nuclear Information System (INIS)
Huang Wenhua
2006-01-01
A polynomial expansion method is presented to solve nonlinear evolution equations. Applying this method, the coupled Zakharov-Kuznetsov equations in fluid system are studied and many exact travelling wave solutions are obtained. These solutions include solitary wave solutions, periodic solutions and rational type solutions
Parallel-fed planar dipole antenna arrays for low-observable platforms
Singh, Hema; Jha, Rakesh Mohan
2016-01-01
This book focuses on determination of scattering of parallel-fed planar dipole arrays in terms of reflection and transmission coefficients at different levels of the array system. In aerospace vehicles, the phased arrays are often in planar configuration. The radar cross section (RCS) of the vehicle is mainly due to its structure and the antennas mounted over it. There can be situation when the signatures due to antennas dominate over the structural RCS of the platform. This necessitates the study towards the reduction and control of antenna/ array RCS. The planar dipole array is considered as a stacked linear dipole array. A systematic, step-by-step approach is used to determine the RCS pattern including the finite dimensions of dipole antenna elements. The mutual impedance between the dipole elements for planar configuration is determined. The scattering till second-level of couplers in parallel feed network is taken into account. The phase shifters are modelled as delay line. All the couplers in the feed n...
A Combinatorial Proof of a Result on Generalized Lucas Polynomials
Directory of Open Access Journals (Sweden)
Laugier Alexandre
2016-09-01
Full Text Available We give a combinatorial proof of an elementary property of generalized Lucas polynomials, inspired by [1]. These polynomials in s and t are defined by the recurrence relation 〈n〉 = s〈n-1〉+t〈n-2〉 for n ≥ 2. The initial values are 〈0〉 = 2; 〈1〉= s, respectively.
A Kantorovich Type of Szasz Operators Including Brenke-Type Polynomials
Directory of Open Access Journals (Sweden)
Fatma Taşdelen
2012-01-01
convergence properties of these operators by using Korovkin's theorem. We also present the order of convergence with the help of a classical approach, the second modulus of continuity, and Peetre's -functional. Furthermore, an example of Kantorovich type of the operators including Gould-Hopper polynomials is presented and Voronovskaya-type result is given for these operators including Gould-Hopper polynomials.
Lower bounds for the circuit size of partially homogeneous polynomials
Czech Academy of Sciences Publication Activity Database
Le, Hong-Van
2017-01-01
Roč. 225, č. 4 (2017), s. 639-657 ISSN 1072-3374 Institutional support: RVO:67985840 Keywords : partially homogeneous polynomials * polynomials Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) https://link.springer.com/article/10.1007/s10958-017-3483-4
Generalized catalan numbers, sequences and polynomials
KOÇ, Cemal; GÜLOĞLU, İsmail; ESİN, Songül
2010-01-01
In this paper we present an algebraic interpretation for generalized Catalan numbers. We describe them as dimensions of certain subspaces of multilinear polynomials. This description is of utmost importance in the investigation of annihilators in exterior algebras.
Multilevel weighted least squares polynomial approximation
Haji-Ali, Abdul-Lateef; Nobile, Fabio; Tempone, Raul; Wolfers, Sö ren
2017-01-01
, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose
Canonical basis for type A4 (II) - Polynomial elements in one variable
International Nuclear Information System (INIS)
Hu Yuwang; Ye Jiachen
2003-12-01
All the 62 monomial elements in the canonical basis B of the quantized enveloping algebra for type A 4 have been determined. According to Lusztig's idea, the elements in the canonical basis B consist of monomials and linear combinations of monomials (for convenience, we call them polynomials). In this note, we compute all the 144 polynomial elements in one variable in the canonical basis B of the quantized enveloping algebra for type A 4 based on our joint note. We conjecture that there are other polynomial elements in two or three variables in the canonical basis B, which include independent variables and dependent variables. Moreover, it is conjectured that there are no polynomial elements in the canonical basis B with four or more variables. (author)
Discrete-Time Filter Synthesis using Product of Gegenbauer Polynomials
N. Stojanovic; N. Stamenkovic; I. Krstic
2016-01-01
A new approximation to design continuoustime and discrete-time low-pass filters, presented in this paper, based on the product of Gegenbauer polynomials, provides the ability of more flexible adjustment of passband and stopband responses. The design is achieved taking into account a prescribed specification, leading to a better trade-off among the magnitude and group delay responses. Many well-known continuous-time and discrete-time transitional filter based on the classical polynomial approx...
Bounds and asymptotics for orthogonal polynomials for varying weights
Levin, Eli
2018-01-01
This book establishes bounds and asymptotics under almost minimal conditions on the varying weights, and applies them to universality limits and entropy integrals. Orthogonal polynomials associated with varying weights play a key role in analyzing random matrices and other topics. This book will be of use to a wide community of mathematicians, physicists, and statisticians dealing with techniques of potential theory, orthogonal polynomials, approximation theory, as well as random matrices. .
On Linear Combinations of Two Orthogonal Polynomial Sequences on the Unit Circle
Directory of Open Access Journals (Sweden)
Suárez C
2010-01-01
Full Text Available Let be a monic orthogonal polynomial sequence on the unit circle. We define recursively a new sequence of polynomials by the following linear combination: , , . In this paper, we give necessary and sufficient conditions in order to make be an orthogonal polynomial sequence too. Moreover, we obtain an explicit representation for the Verblunsky coefficients and in terms of and . Finally, we show the relation between their corresponding Carathéodory functions and their associated linear functionals.
On the existence of polynomial Lyapunov functions for rationally stable vector fields
DEFF Research Database (Denmark)
Leth, Tobias; Wisniewski, Rafal; Sloth, Christoffer
2018-01-01
This paper proves the existence of polynomial Lyapunov functions for rationally stable vector fields. For practical purposes the existence of polynomial Lyapunov functions plays a significant role since polynomial Lyapunov functions can be found algorithmically. The paper extents an existing result...... on exponentially stable vector fields to the case of rational stability. For asymptotically stable vector fields a known counter example is investigated to exhibit the mechanisms responsible for the inability to extend the result further....
Energy Technology Data Exchange (ETDEWEB)
Degroote, M. [Rice Univ., Houston, TX (United States); Henderson, T. M. [Rice Univ., Houston, TX (United States); Zhao, J. [Rice Univ., Houston, TX (United States); Dukelsky, J. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Scuseria, G. E. [Rice Univ., Houston, TX (United States)
2018-01-03
We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The e ective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero. Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.
On Modular Counting with Polynomials
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt
2006-01-01
For any integers m and l, where m has r sufficiently large (depending on l) factors, that are powers of r distinct primes, we give a construction of a (symmetric) polynomial over Z_m of degree O(\\sqrt n) that is a generalized representation (commonly also called weak representation) of the MODl f...
Directory of Open Access Journals (Sweden)
Đorđević Bojan D.
2013-01-01
Full Text Available The description and prediction of the thermophysical and transport properties of ternary organic non-electrolyte systems including water by the polynomial equations are reviewed. Empirical equations of Radojković et al. (also known as Redlich-Kister, Kohler, Jacob-Fitzner, Colinet, Tsao-Smith, Toop, Scatchard et al. and Rastogi et al. are compared with experimental data of available papers appeared in well know international journals (Fluid Phase Equilibria, Journal of Chemical and Engineering Data, Journal of Chemical Thermodynamics, Journal of Solution Chemistry, Journal of the Serbian Chemical Society, The Canadian Journal of Chemical Engineering, Journal of Molecular Liquids, Thermochimica Acta, etc.. The applicability of empirical models to estimate excess molar volumes, VE, excess viscosities, ηE, excess free energies of activation of a viscous flow,
Planar Near-Field Measurements of Ground Penetrating Radar Antennas
DEFF Research Database (Denmark)
Meincke, Peter; Hansen, Thorkild
2004-01-01
Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....
Bernoulli numbers and polynomials from a more general point of view
Energy Technology Data Exchange (ETDEWEB)
Dattoli, G. [ENEA, Centro Ricerche Frascati, Frascati, RM(Italy). Div. Fisica Applicata; Cesarano, C. [Ulm Univ., Ulm (Germany). Dept. of Mathematics; Lonzellutta, S. [ENEA, Centro Ricerche E. Clementel, Bologna (Italy). Div. Fisica Applicata
2000-07-01
In this work it is applied the method of generating function, to introduce new forms of Bernoulli numbers and polynomials, which are exploited to derive further classes of partial sums involving generalized many index many variable polynomials. Analogous considerations are developed for the Euler numbers and polynomials. [Italian] Si applica il metodo della funzione generatrice per introdurre nuove forme di numeri e polinomi di Bernoulli che vengono utilizzati per sviluppare e per calcolare somme parziali che coinvolgono polinomi a piu' indici ed a piu' variabili. Si sviluppano considerazioni analoghe per i polinomi ed i numeri di Eulero.
Quantum Hurwitz numbers and Macdonald polynomials
Harnad, J.
2016-11-01
Parametric families in the center Z(C[Sn]) of the group algebra of the symmetric group are obtained by identifying the indeterminates in the generating function for Macdonald polynomials as commuting Jucys-Murphy elements. Their eigenvalues provide coefficients in the double Schur function expansion of 2D Toda τ-functions of hypergeometric type. Expressing these in the basis of products of power sum symmetric functions, the coefficients may be interpreted geometrically as parametric families of quantum Hurwitz numbers, enumerating weighted branched coverings of the Riemann sphere. Combinatorially, they give quantum weighted sums over paths in the Cayley graph of Sn generated by transpositions. Dual pairs of bases for the algebra of symmetric functions with respect to the scalar product in which the Macdonald polynomials are orthogonal provide both the geometrical and combinatorial significance of these quantum weighted enumerative invariants.
Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies
International Nuclear Information System (INIS)
Hampton, Jerrad; Doostan, Alireza
2015-01-01
Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ 1 -minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy
Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies
Hampton, Jerrad; Doostan, Alireza
2015-01-01
Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ1-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.
Välimäki, Vesa; Pekonen, Jussi; Nam, Juhan
2012-01-01
Digital subtractive synthesis is a popular music synthesis method, which requires oscillators that are aliasing-free in a perceptual sense. It is a research challenge to find computationally efficient waveform generation algorithms that produce similar-sounding signals to analog music synthesizers but which are free from audible aliasing. A technique for approximately bandlimited waveform generation is considered that is based on a polynomial correction function, which is defined as the difference of a non-bandlimited step function and a polynomial approximation of the ideal bandlimited step function. It is shown that the ideal bandlimited step function is equivalent to the sine integral, and that integrated polynomial interpolation methods can successfully approximate it. Integrated Lagrange interpolation and B-spline basis functions are considered for polynomial approximation. The polynomial correction function can be added onto samples around each discontinuity in a non-bandlimited waveform to suppress aliasing. Comparison against previously known methods shows that the proposed technique yields the best tradeoff between computational cost and sound quality. The superior method amongst those considered in this study is the integrated third-order B-spline correction function, which offers perceptually aliasing-free sawtooth emulation up to the fundamental frequency of 7.8 kHz at the sample rate of 44.1 kHz. © 2012 Acoustical Society of America.
Tensor calculus in polar coordinates using Jacobi polynomials
Vasil, Geoffrey M.; Burns, Keaton J.; Lecoanet, Daniel; Olver, Sheehan; Brown, Benjamin P.; Oishi, Jeffrey S.
2016-11-01
Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.
A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation
Oruç, Ömer
2018-04-01
In this paper, a new mixed method based on Lucas and Fibonacci polynomials is developed for numerical solutions of 1D and 2D sinh-Gordon equations. Firstly time variable discretized by central finite difference and then unknown function and its derivatives are expanded to Lucas series. With the help of these series expansion and Fibonacci polynomials, matrices for differentiation are derived. With this approach, finding the solution of sinh-Gordon equation transformed to finding the solution of an algebraic system of equations. Lucas series coefficients are acquired by solving this system of algebraic equations. Then by plugginging these coefficients into Lucas series expansion numerical solutions can be obtained consecutively. The main objective of this paper is to demonstrate that Lucas polynomial based method is convenient for 1D and 2D nonlinear problems. By calculating L2 and L∞ error norms of some 1D and 2D test problems efficiency and performance of the proposed method is monitored. Acquired accurate results confirm the applicability of the method.
Real-root property of the spectral polynomial of the Treibich-Verdier potential and related problems
Chen, Zhijie; Kuo, Ting-Jung; Lin, Chang-Shou; Takemura, Kouichi
2018-04-01
We study the spectral polynomial of the Treibich-Verdier potential. Such spectral polynomial, which is a generalization of the classical Lamé polynomial, plays fundamental roles in both the finite-gap theory and the ODE theory of Heun's equation. In this paper, we prove that all the roots of such spectral polynomial are real and distinct under some assumptions. The proof uses the classical concept of Sturm sequence and isomonodromic theories. We also prove an analogous result for a polynomial associated with a generalized Lamé equation, where we apply a new approach based on the viewpoint of the monodromy data.
On Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2
Directory of Open Access Journals (Sweden)
Tian-Xiao He
2009-01-01
Full Text Available Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or polynomial sequences defined by linear recurrence relations. The applications using the method to solve some algebraic and ordinary differential equations are presented.
Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline
Directory of Open Access Journals (Sweden)
Ravi Kanth A.S.V.
2016-01-01
Full Text Available In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.
Directory of Open Access Journals (Sweden)
S. Vukotic
2016-08-01
Full Text Available Digital polynomial-based interpolation filters implemented using the Farrow structure are used in Digital Signal Processing (DSP to calculate the signal between its discrete samples. The two basic design parameters for these filters are number of polynomial-segments defining the finite length of impulse response, and order of polynomials in each polynomial segment. The complexity of the implementation structure and the frequency domain performance depend on these two parameters. This contribution presents estimation formulae for length and polynomial order of polynomial-based filters for various types of requirements including attenuation in stopband, width of transitions band, deviation in passband, weighting in passband/stopband.
Invariant hyperplanes and Darboux integrability of polynomial vector fields
International Nuclear Information System (INIS)
Zhang Xiang
2002-01-01
This paper is composed of two parts. In the first part, we provide an upper bound for the number of invariant hyperplanes of the polynomial vector fields in n variables. This result generalizes those given in Artes et al (1998 Pac. J. Math. 184 207-30) and Llibre and Rodriguez (2000 Bull. Sci. Math. 124 599-619). The second part gives an extension of the Darboux theory of integrability to polynomial vector fields on algebraic varieties
A Formally Verified Conflict Detection Algorithm for Polynomial Trajectories
Narkawicz, Anthony; Munoz, Cesar
2015-01-01
In air traffic management, conflict detection algorithms are used to determine whether or not aircraft are predicted to lose horizontal and vertical separation minima within a time interval assuming a trajectory model. In the case of linear trajectories, conflict detection algorithms have been proposed that are both sound, i.e., they detect all conflicts, and complete, i.e., they do not present false alarms. In general, for arbitrary nonlinear trajectory models, it is possible to define detection algorithms that are either sound or complete, but not both. This paper considers the case of nonlinear aircraft trajectory models based on polynomial functions. In particular, it proposes a conflict detection algorithm that precisely determines whether, given a lookahead time, two aircraft flying polynomial trajectories are in conflict. That is, it has been formally verified that, assuming that the aircraft trajectories are modeled as polynomial functions, the proposed algorithm is both sound and complete.
On selfadjoint functors satisfying polynomial relations
DEFF Research Database (Denmark)
Agerholm, Troels; Mazorchuk, Volodomyr
2011-01-01
We study selfadjoint functors acting on categories of finite dimen- sional modules over finite dimensional algebras with an emphasis on functors satisfying some polynomial relations. Selfadjoint func- tors satisfying several easy relations, in particular, idempotents and square roots of a sum...
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
Energy Technology Data Exchange (ETDEWEB)
Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
International Nuclear Information System (INIS)
Ahlfeld, R.; Belkouchi, B.; Montomoli, F.
2016-01-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10
Bayer Demosaicking with Polynomial Interpolation.
Wu, Jiaji; Anisetti, Marco; Wu, Wei; Damiani, Ernesto; Jeon, Gwanggil
2016-08-30
Demosaicking is a digital image process to reconstruct full color digital images from incomplete color samples from an image sensor. It is an unavoidable process for many devices incorporating camera sensor (e.g. mobile phones, tablet, etc.). In this paper, we introduce a new demosaicking algorithm based on polynomial interpolation-based demosaicking (PID). Our method makes three contributions: calculation of error predictors, edge classification based on color differences, and a refinement stage using a weighted sum strategy. Our new predictors are generated on the basis of on the polynomial interpolation, and can be used as a sound alternative to other predictors obtained by bilinear or Laplacian interpolation. In this paper we show how our predictors can be combined according to the proposed edge classifier. After populating three color channels, a refinement stage is applied to enhance the image quality and reduce demosaicking artifacts. Our experimental results show that the proposed method substantially improves over existing demosaicking methods in terms of objective performance (CPSNR, S-CIELAB E, and FSIM), and visual performance.
Polynomial expansion of the precoder for power minimization in large-scale MIMO systems
Sifaou, Houssem
2016-07-26
This work focuses on the downlink of a single-cell large-scale MIMO system in which the base station equipped with M antennas serves K single-antenna users. In particular, we are interested in reducing the implementation complexity of the optimal linear precoder (OLP) that minimizes the total power consumption while ensuring target user rates. As most precoding schemes, a major difficulty towards the implementation of OLP is that it requires fast inversions of large matrices at every new channel realizations. To overcome this issue, we aim at designing a linear precoding scheme providing the same performance of OLP but with lower complexity. This is achieved by applying the truncated polynomial expansion (TPE) concept on a per-user basis. To get a further leap in complexity reduction and allow for closed-form expressions of the per-user weighting coefficients, we resort to the asymptotic regime in which M and K grow large with a bounded ratio. Numerical results are used to show that the proposed TPE precoding scheme achieves the same performance of OLP with a significantly lower implementation complexity. © 2016 IEEE.
Polynomials in algebraic analysis
Multarzyński, Piotr
2012-01-01
The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...
From Jack to Double Jack Polynomials via the Supersymmetric Bridge
Lapointe, Luc; Mathieu, Pierre
2015-07-01
The Calogero-Sutherland model occurs in a large number of physical contexts, either directly or via its eigenfunctions, the Jack polynomials. The supersymmetric counterpart of this model, although much less ubiquitous, has an equally rich structure. In particular, its eigenfunctions, the Jack superpolynomials, appear to share the very same remarkable combinatorial and structural properties as their non-supersymmetric version. These super-functions are parametrized by superpartitions with fixed bosonic and fermionic degrees. Now, a truly amazing feature pops out when the fermionic degree is sufficiently large: the Jack superpolynomials stabilize and factorize. Their stability is with respect to their expansion in terms of an elementary basis where, in the stable sector, the expansion coefficients become independent of the fermionic degree. Their factorization is seen when the fermionic variables are stripped off in a suitable way which results in a product of two ordinary Jack polynomials (somewhat modified by plethystic transformations), dubbed the double Jack polynomials. Here, in addition to spelling out these results, which were first obtained in the context of Macdonal superpolynomials, we provide a heuristic derivation of the Jack superpolynomial case by performing simple manipulations on the supersymmetric eigen-operators, rendering them independent of the number of particles and of the fermionic degree. In addition, we work out the expression of the Hamiltonian which characterizes the double Jacks. This Hamiltonian, which defines a new integrable system, involves not only the expected Calogero-Sutherland pieces but also combinations of the generators of an underlying affine {widehat{sl}_2} algebra.
Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.
Temel, Burcin; Mills, Greg; Metiu, Horia
2008-03-27
We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the wave function Psi by minimizing the least-squares error in the function (H Psi - E Psi), where E is the desired scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving the Secrest-Johnson model of two-dimensional inelastic scattering, which has been studied previously using the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for other methods, by matching the wave function in the interaction region to the correct asymptotic states at the specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy. This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed, and the Chebyshev basis set is a good alternative in such situations.
Global sensitivity analysis using sparse grid interpolation and polynomial chaos
International Nuclear Information System (INIS)
Buzzard, Gregery T.
2012-01-01
Sparse grid interpolation is widely used to provide good approximations to smooth functions in high dimensions based on relatively few function evaluations. By using an efficient conversion from the interpolating polynomial provided by evaluations on a sparse grid to a representation in terms of orthogonal polynomials (gPC representation), we show how to use these relatively few function evaluations to estimate several types of sensitivity coefficients and to provide estimates on local minima and maxima. First, we provide a good estimate of the variance-based sensitivity coefficients of Sobol' (1990) [1] and then use the gradient of the gPC representation to give good approximations to the derivative-based sensitivity coefficients described by Kucherenko and Sobol' (2009) [2]. Finally, we use the package HOM4PS-2.0 given in Lee et al. (2008) [3] to determine the critical points of the interpolating polynomial and use these to determine the local minima and maxima of this polynomial. - Highlights: ► Efficient estimation of variance-based sensitivity coefficients. ► Efficient estimation of derivative-based sensitivity coefficients. ► Use of homotopy methods for approximation of local maxima and minima.
Application of Chybeshev Polynomials in Factorizations of Balancing and Lucas-Balancing Numbers
Directory of Open Access Journals (Sweden)
Prasanta Kumar Ray
2012-01-01
Full Text Available In this paper, with the help of orthogonal polynomial especially Chybeshev polynomials of first and second kind, number theory and linear algebra intertwined to yield factorization of the balancing and Lucas-balancing numbers.
Space complexity in polynomial calculus
Czech Academy of Sciences Publication Activity Database
Filmus, Y.; Lauria, M.; Nordström, J.; Ron-Zewi, N.; Thapen, Neil
2015-01-01
Roč. 44, č. 4 (2015), s. 1119-1153 ISSN 0097-5397 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : proof complexity * polynomial calculus * lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.841, year: 2015 http://epubs.siam.org/doi/10.1137/120895950
Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan
2016-01-01
Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.
Modeling the planar configuration of extraordinary magnetoresistance
International Nuclear Information System (INIS)
El-Ahmar, S; Pozniak, A A
2015-01-01
Recently the planar version of the extraordinary magnetoresistance (EMR) magnetic field sensor has been constructed and verified in practice. Planar configuration of the EMR device gives many technological advantages, it is simpler than the classic and allows one to build the sensor using electric materials of the new type (such as graphene or topological insulators) much easier. In this work the planar configuration of the EMR sensor is investigated by performing computational simulations using the finite element method (FEM). The computational comparison of the planar and classic configurations of EMR is presented using three-dimensional models. Various variants of the geometry of EMR sensor components are pondered and compared in the planar and classic version. Size of the metal overlap is considered for sensor optimization as well as various semiconductor-metal contact resistance dependences of the EMR signal. Based on computational simulations, a method for optimal placement of electric terminals in a planar EMR device is proposed. (paper)