WorldWideScience

Sample records for planar lightwave circuit

  1. Frontiers in Planar Lightwave Circuit Technology Design, Simulation, and Fabrication

    CERN Document Server

    Janz, Siegfried; Tanev, Stoyan

    2005-01-01

    This book is the result of the NATO Advanced Research Workshop on Frontiers in Planar Lightwave Circuit Technology, which took place in Ottawa, Canada from September 21-25, 2004. Many of the world’s leading experts in integrated photonic design, theory and experiment were invited to give lectures in their fields of expertise, and participate in discussions on current research and applications, as well as the new directions planar lightwave circuit technology is evolving towards. The sum of their contributions to this book constitutes an excellent record of many key issues and scientific problems in planar lightwave circuit research at the time of writing. In this volume the reader will find detailed overviews of experimental and theoretical work in high index contrast waveguide systems, micro-optical resonators, nonlinear optics, and advanced optical simulation methods, as well as articles describing emerging applications of integrated optics for medical and biological applications.

  2. Microphotonic devices for compact planar lightwave circuits and sensor systems

    Science.gov (United States)

    Cardenas Gonzalez, Jaime

    2005-07-01

    Higher levels of integration in planar lightwave circuits and sensor systems can reduce fabrication costs and broaden viable applications for optical network and sensor systems. For example, increased integration and functionality can lead to sensor systems that are compact enough for easy transport, rugged enough for field applications, and sensitive enough even for laboratory applications. On the other hand, more functional and compact planar lightwave circuits can make optical networks components less expensive for the metro and access markets in urban areas and allow penetration of fiber to the home. Thus, there is an important area of opportunity for increased integration to provide low cost, compact solutions in both network components and sensor systems. In this dissertation, a novel splitting structure for microcantilever deflection detection is introduced. The splitting structure is designed so that its splitting ratio is dependent on the vertical position of the microcantilever. With this structure, microcantilevers sensitized to detect different analytes or biological agents can be integrated into an array on a single chip. Additionally, the integration of a depolarizer into the optoelectronic integrated circuit in an interferometric fiber optic gyroscope is presented as a means for cost reduction. The savings come in avoiding labor intensive fiber pigtailing steps by permitting batch fabrication of these components. In particular, this dissertation focuses on the design of the waveguides and polarization rotator, and the impact of imperfect components on the performance of the depolarizer. In the area of planar lightwave circuits, this dissertation presents the development of a fabrication process for single air interface bends (SAIBs). SAIBs can increase integration by reducing the area necessary to make a waveguide bend. Fabrication and measurement of a 45° SAIB with a bend efficiency of 93.4% for TM polarization and 92.7% for TE polarization are

  3. Hybrid planar lightwave circuits for defense and aerospace applications

    Science.gov (United States)

    Zhang, Hua; Bidnyk, Serge; Yang, Shiquan; Balakrishnan, Ashok; Pearson, Matt; O'Keefe, Sean

    2010-04-01

    We present innovations in Planar Lightwave Circuits (PLCs) that make them ideally suited for use in advanced defense and aerospace applications. We discuss PLCs that contain no micro-optic components, no moving parts, pose no spark or fire hazard, are extremely small and lightweight, and are capable of transporting and processing a range of optical signals with exceptionally high performance. This PLC platform is designed for on-chip integration of active components such as lasers and detectors, along with transimpedance amplifiers and other electronics. These active components are hybridly integrated with our silica-on-silicon PLCs using fully-automated robotics and image recognition technology. This PLC approach has been successfully applied to the design and fabrication of multi-channel transceivers for aerospace applications. The chips contain hybrid DFB lasers and high-efficiency detectors, each capable of running over 10 Gb/s, with mixed digital and analog traffic multiplexed to a single optical fiber. This highlyintegrated functionality is combined onto a silicon chip smaller than 4 x 10 mm, weighing failures after extreme temperature cycling through a range of > 125 degC, and more than 2,000 hours operating at 95 degC ambient air temperature. We believe that these recent advancements in planar lightwave circuits are poised to revolutionize optical communications and interconnects in the aerospace and defense industries.

  4. Laser printed glass planar lightwave circuits with integrated fiber alignment structures

    Science.gov (United States)

    Desmet, A.; Radosavljevic, A.; Missinne, J.; Van Thourhout, D.; Van Steenberge, G.

    2018-02-01

    Femtosecond laser inscription allows straightforward manufacturing of glass planar lightwave circuits such as waveguides, interferometers, directional couplers, resonators and more complex structures. Fiber alignment structures are needed to facilitate communication with the glass planar lightwave circuit. In this study, a technique is described to create optical waveguides and alignment structures in the same laser exposure step. Using an industrial ytterbium-doped 1030 nm fiber laser pulses of 400 fs were focused into glass with a 0.4 NA objective causing permanent alteration of the material. Depending on laser parameters this modification allows direct writing of waveguides or the creation of channels after exposing the irradiated volumes to an etchant such as KOH. Writing of channels and waveguides with different laser powers, frequencies, polarisations, stage translation speeds and scan densities were investigated in fused silica and borosilicate glass. Waveguides with controlled dimensions were created, as well as etched U-grooves with a diameter of 126 μm and a sidewall roughness Ra of 255 nm. Cut back measurements were performed giving a waveguide propagation loss of 1.1 dB/cm in borosilicate glass. A coupling loss of 0.7 dB was measured for a transition between the waveguide and standard single mode fiber at 1550 nm, using index matching liquid. The described technique eliminates active alignment requirements and is useful for many applications such as microfluidic sensing, PLCs, fan-out connectors for multicore fibers and quantum optical networks.

  5. Low power consumption 4-channel variable optical attenuator array based on planar lightwave circuit technique

    International Nuclear Information System (INIS)

    Ren Mei-Zhen; Zhang Jia-Shun; An Jun-Ming; Wang Yue; Wang Liang-Liang; Li Jian-Guang; Wu Yuan-Da; Yin XiaoJie; Hu Xiong-Wei

    2017-01-01

    The power consumption of a variable optical attenuator (VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis. The simulation results showed that the power consumption reduces as the depth of the heat-insulating grooves is deeper, the up-cladding is thinner, the down-cladding is thicker, and the width of the cladding ridge is narrower. The materials component and thickness of the electrodes were also optimized to guarantee the driving voltage under 5 V. The power consumption was successfully reduced to as low as 155 mW at an attenuation of 30 dB in the experiment. (paper)

  6. Two-Dimensional Planar Lightwave Circuit Integrated Spatial Filter Array and Method of Use Thereof

    Science.gov (United States)

    Ai, Jun (Inventor); Dimov, Fedor (Inventor)

    2015-01-01

    A large coherent two-dimensional (2D) spatial filter array (SFA), 30 by 30 or larger, is produced by coupling a 2D planar lightwave circuit (PLC) array with a pair of lenslet arrays at the input and output side. The 2D PLC array is produced by stacking a plurality of chips, each chip with a plural number of straight PLC waveguides. A pupil array is coated onto the focal plane of the lenslet array. The PLC waveguides are produced by deposition of a plural number of silica layers on the silicon wafer, followed by photolithography and reactive ion etching (RIE) processes. A plural number of mode filters are included in the silica-on-silicon waveguide such that the PLC waveguide is transparent to the fundamental mode but higher order modes are attenuated by 40 dB or more.

  7. 300-MHz-repetition-rate, all-fiber, femtosecond laser mode-locked by planar lightwave circuit-based saturable absorber.

    Science.gov (United States)

    Kim, Chur; Kim, Dohyun; Cheong, YeonJoon; Kwon, Dohyeon; Choi, Sun Young; Jeong, Hwanseong; Cha, Sang Jun; Lee, Jeong-Woo; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon

    2015-10-05

    We show the implementation of fiber-pigtailed, evanescent-field-interacting, single-walled carbon nanotube (CNT)-based saturable absorbers (SAs) using standard planar lightwave circuit (PLC) fabrication processes. The implemented PLC-CNT-SA device is employed to realize self-starting, high-repetition-rate, all-fiber ring oscillators at telecommunication wavelength. We demonstrate all-fiber Er ring lasers operating at 303-MHz (soliton regime) and 274-MHz (stretched-pulse regime) repetition-rates. The 303-MHz (274-MHz) laser centered at 1555 nm (1550 nm) provides 7.5 nm (19 nm) spectral bandwidth. After extra-cavity amplilfication, the amplified pulse train of the 303-MHz (274-MHz) laser delivers 209 fs (178 fs) pulses. To our knowledge, this corresponds to the highest repetition-rates achieved for femtosecond lasers employing evanescent-field-interacting SAs. The demonstrated SA fabrication method, which is based on well-established PLC processes, also shows a potential way for mass-producible and lower-cost waveguide-type SA devices suitable for all-fiber and waveguide lasers.

  8. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics.

    Science.gov (United States)

    Weigel, Peter O; Savanier, Marc; DeRose, Christopher T; Pomerene, Andrew T; Starbuck, Andrew L; Lentine, Anthony L; Stenger, Vincent; Mookherjea, Shayan

    2016-03-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.

  9. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    Science.gov (United States)

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; Pomerene, Andrew T.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan

    2016-01-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost. PMID:26927022

  10. Optically amplifying planar glass waveguides: Laser on a chip

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas

    with UV-light and that permanent Bragg-gratings can be induced. Planar waveguide lasers with integrated Bragg-gratings are manufactured and characterised. It is shown that linewidths below 125 kHz and output powers around 0.5 mW can be obtained, and that the manufactured lasers are resistant to mechanical...... lightwave circuits, as well as provide the gain medium for integrated planar waveguide lasers. The work and the obtained results are presented in this thesis: The manufacturing of silica thin films is described and it is shown that the refractive index of the films can be controlled by germanium co...... as well as thermal influence. A simple method for producing an array of planar waveguide lasers is presented and it is shown that the difference in output wavelength of the individual lasers can be controlled with great accuracy....

  11. Planar waveguide amplifiers and laser in erbium doped silica

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Kristensen, Martin

    1999-01-01

    with UV-light and that permanent Bragg-gratings can be induced. Planar waveguide lasers with integrated Bragg-gratings are manufactured and characterised. It is shown that linewidths below 125 kHz and output powers around 0.5 mW can be obtained, and that the manufactured lasers are resistant to mechanical...... lightwave circuits, as well as provide the gain medium for integrated planar waveguide lasers. The work and the obtained results are presented in this thesis: The manufacturing of silica thin films is described and it is shown that the refractive index o fthe films can be controlled by germanium co...... as well as thermal influence. A simple method for producing an array of planar waveguide lasers is presented and it is shown that the difference in output wavelength of the individual lasers can be controlled with great accuracy....

  12. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit.

    Science.gov (United States)

    Guan, Binbin; Scott, Ryan P; Qin, Chuan; Fontaine, Nicolas K; Su, Tiehui; Ferrari, Carlo; Cappuzzo, Mark; Klemens, Fred; Keller, Bob; Earnshaw, Mark; Yoo, S J B

    2014-01-13

    We demonstrate free-space space-division-multiplexing (SDM) with 15 orbital angular momentum (OAM) states using a three-dimensional (3D) photonic integrated circuit (PIC). The hybrid device consists of a silica planar lightwave circuit (PLC) coupled to a 3D waveguide circuit to multiplex/demultiplex OAM states. The low excess loss hybrid device is used in individual and two simultaneous OAM states multiplexing and demultiplexing link experiments with a 20 Gb/s, 1.67 b/s/Hz quadrature phase shift keyed (QPSK) signal, which shows error-free performance for 379,960 tested bits for all OAM states.

  13. A planar waveguide optical discrete Fourier transformer design for 160 Gb/s all-optical OFDM systems

    Science.gov (United States)

    Li, Wei; Liang, Xiaojun; Ma, Weidong; Zhou, Tianhong; Huang, Benxiong; Liu, Deming

    2010-01-01

    A cost-effective all-optical discrete Fourier transformer (ODFT) is designed based on a silicon planar lightwave circuit (PLC), which can be applied to all-optical orthogonal frequency division multiplexing (OFDM) transmission systems and can be achieved by current techniques. It consists of 2 × 2 directional couplers, phase shifters and optical delay lines. Metal-film heaters are used as phase shifters, according to the thermooptic effect of SiO 2. Based on the ODFT, a 160 Gb/s OFDM system is set up. Simulation results show excellent bit error rate (BER) and optical signal-to-noise ratio (OSNR) performances after 400 km transmission.

  14. Raman assisted lightwave synthesized frequency sweeper

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2010-01-01

    We present a Lightwave Synthesized Frequency Sweeper comprising a Raman amplifier for loss compensation. The generated pulse train contains 123 pulses and has a flat signal level as well as a low noise level.......We present a Lightwave Synthesized Frequency Sweeper comprising a Raman amplifier for loss compensation. The generated pulse train contains 123 pulses and has a flat signal level as well as a low noise level....

  15. Intelligent switches of integrated lightwave circuits with core telecommunication functions

    Science.gov (United States)

    Izhaky, Nahum; Duer, Reuven; Berns, Neil; Tal, Eran; Vinikman, Shirly; Schoenwald, Jeffrey S.; Shani, Yosi

    2001-05-01

    We present a brief overview of a promising switching technology based on Silica on Silicon thermo-optic integrated circuits. This is basically a 2D solid-state optical device capable of non-blocking switching operation. Except of its excellent performance (insertion lossvariable output power control (attenuation), for instance, to equalize signal levels and compensate for unbalanced different optical input powers, or to equalize unbalanced EDFA gain curve. We examine the market segments appropriate for the switch size and technology, followed by a discussion of the basic features of the technology. The discussion is focused on important requirements from the switch and the technology (e.g., insertion loss, power consumption, channel isolation, extinction ratio, switching time, and heat dissipation). The mechanical design is also considered. It must take into account integration of optical fiber, optical planar wafer, analog electronics and digital microprocessor controls, embedded software, and heating power dissipation. The Lynx Photon.8x8 switch is compared to competing technologies, in terms of typical market performance requirements.

  16. Investigation for connecting waveguide in off-planar integrated circuits.

    Science.gov (United States)

    Lin, Jie; Feng, Zhifang

    2017-09-01

    The transmission properties of a vertical waveguide connected by different devices in off-planar integrated circuits are designed, investigated, and analyzed in detail by the finite-difference time-domain method. The results show that both guide bandwidth and transmission efficiency can be adjusted effectively by shifting the vertical waveguide continuously. Surprisingly, the wide guide band (0.385[c/a]∼0.407[c/a]) and well transmission (-6  dB) are observed simultaneously in several directions when the vertical waveguide is located at a specific location. The results are very important for all-optical integrated circuits, especially in compact integration.

  17. Will lightwave communications be useful

    International Nuclear Information System (INIS)

    Thorndike, A.

    1977-01-01

    Within the last ten years or so, glass fibers have been developed that are capable of transmitting optical signals over distances that are long enough to have potential use for many kinds of communications. They may replace wires, coaxial cable, and microwave links in many applications, and some forecasters expect them to do so within the next ten years or so. A technology assessment of lightwave communication systems is presented

  18. Hybridization of active and passive elements for planar photonic components and interconnects

    Science.gov (United States)

    Pearson, M.; Bidnyk, S.; Balakrishnan, A.

    2007-02-01

    The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.

  19. A full-duplex CATV/wireless-over-fiber lightwave transmission system.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Ying, Cheng-Ling; Cheng, Chun-Jen; Lin, Che-Yu; Wan, Zhi-Wei; Chen, Jian-Hua

    2015-04-06

    A full-duplex CATV/wireless-over-fiber lightwave transmission system consisting of one broadband light source (BLS), two optical interleavers (ILs), one intensity modulator, and one phase modulator is proposed and experimentally demonstrated. The downstream light is optically promoted from 10Gbps/25GHz microwave (MW) data signal to 10Gbps/100GHz and 10Gbps/50GHz millimeter-wave (MMW) data signals in fiber-wireless convergence, and intensity-modulated with 50-550 MHz CATV signal. For up-link transmission, the downstream light is phase-remodulated with 10Gbps/25GHz MW data signal in fiber-wireless convergence. Over a 40-km single-mode fiber (SMF) and a 10-m radio frequency (RF) wireless transport, bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed to perform well in such full-duplex CATV/wireless-over-fiber lightwave transmission systems. This full-duplex 100-GHz/50-GHz/25-GHz/550-MHz lightwave transmission system is an attractive alternative. This transmission system not only presents its advancement in the integration of fiber backbone and CATV/wireless feeder networks, but also it provides the advantages of a communication channel for higher data rates and bandwidth.

  20. Topics in lightwave transmission systems

    CERN Document Server

    Li, Tingye

    1991-01-01

    Topics in Lightwave Transmission Systems is a second volume of a treatise on optical fiber communications that is devoted to the science, engineering, and application of information transmission via optical fibers. The first volume, published in 1985, dealt exclusively with fiber fabrication. The present volume contains topics that pertain to subsystems and systems. The book contains five chapters and begins with discussions of transmitters and receivers, which are basic to systems now operating in the field. Subsequent chapters cover topics relating to coherent systems: frequency and phase m

  1. Accurate simulation of Raman amplified lightwave synthesized frequency sweeper

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Olesen, Anders Sig; Rottwitt, Karsten

    2011-01-01

    A lightwave synthesized frequency sweeper using a Raman amplifier for loss compensation is presented together with a numerical model capable of predicting the shape of individual pulses as well as the overall envelope of more than 100 pulses. The generated pulse envelope consists of 116 pulses wi...

  2. A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-VLLC integration

    International Nuclear Information System (INIS)

    Tsai, Wen-Shing; Lu, Hai-Han; Li, Chung-Yi; Chen, Bo-Rui; Lin, Hung-Hsien; Lin, Dai-Hua

    2016-01-01

    A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-visible laser light communication (VLLC) integration is proposed and experimentally demonstrated. To be the first one of its kind in employing light injection and optoelectronic feedback techniques in a fiber-VLLC integration lightwave transmission system, the light is successfully directly modulated with Community Access Television (CATV), 16-QAM, and 16-QAM-OFDM signals. Over a 40 km SMF and a 10 m free-space VLLC transport, good performances of carrier-to-noise ratio (CNR)/composite second-order (CSO)/composite triple-beat (CTB)/bit error rate (BER) are achieved for CATV/16-QAM/16-QAM-OFDM signals transmission. Such a hybrid lightwave transmission system would be very useful since it can provide broadband integrated services including CATV, Internet, and telecommunication services over both distribute fiber and in-building networks. (letter)

  3. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits

    DEFF Research Database (Denmark)

    Ding, Yunhong; Bacco, Davide; Dalgaard, Kjeld

    2017-01-01

    is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually......-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling...

  4. A simple three dimensional wide-angle beam propagation method

    Science.gov (United States)

    Ma, Changbao; van Keuren, Edward

    2006-05-01

    The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.

  5. Adapting the mode profile of planar waveguides to single-mode fibers : a novel method

    NARCIS (Netherlands)

    Smit, M.K.; Vreede, De A.H.

    1991-01-01

    A novel method for coupling single-mode fibers to planar optical circuits with small waveguide dimensions is proposed. The method eliminates the need to apply microoptics or to adapt the waveguide dimensions within the planar circuit to the fiber dimensions. Alignment tolerances are comparable to

  6. Constant Width Planar Computation Characterizes ACC0

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt

    2006-01-01

    We obtain a characterization of ACC0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...

  7. Comparison of short-circuit characteristics of trench gate and planar gate U-shaped channel SOI-LIGBTs

    Science.gov (United States)

    Zhang, Long; Zhu, Jing; Sun, Weifeng; Zhao, Minna; Huang, Xuequan; Chen, Jiajun; Shi, Longxing; Chen, Jian; Ding, Desheng

    2017-09-01

    Comparison of short-circuit (SC) characteristics of 500 V rated trench gate U-shaped channel (TGU) SOI-LIGBT and planar gate U-shaped channel (PGU) SOI-LIGBT is made for the first time in this paper. The on-state carrier profile of the TGU structure is reshaped by the dual trenches (a gate trench G1 and a hole barrier trench G2), which leads to a different conduction behavior from that of the PGU structure. The TGU structure exhibits a higher latchup immunity but a severer self-heating effect. At current density (JC) 640 A/cm2. Comparison of layouts and fabrication processes are also made between the two types of devices.

  8. 3D integration of planar crossbar memristive devices with CMOS substrate

    International Nuclear Information System (INIS)

    Lin, Peng; Pi, Shuang; Xia, Qiangfei

    2014-01-01

    Planar memristive devices with bottom electrodes embedded into the substrates were integrated on top of CMOS substrates using nanoimprint lithography to implement hybrid circuits with a CMOL-like architecture. The planar geometry eliminated the mechanically and electrically weak parts, such as kinks in the top electrodes in a traditional crossbar structure, and allowed the use of thicker and thus less resistive metal wires as the bottom electrodes. Planar memristive devices integrated with CMOS have demonstrated much lower programing voltages and excellent switching uniformity. With the inclusion of the Moiré pattern, the integration process has sub-20 nm alignment accuracy, opening opportunities for 3D hybrid circuits in applications in the next generation of memory and unconventional computing. (paper)

  9. Wavy Channel TFT-Based Digital Circuits

    KAUST Repository

    Hanna, Amir

    2016-02-23

    We report a wavy channel (WC) architecture thin-film transistor-based digital circuitry using ZnO as a channel material. The novel architecture allows for extending device width by integrating vertical finlike substrate corrugations giving rise to 50% larger device width, without occupying extra chip area. The enhancement in the output drive current is 100%, when compared with conventional planar architecture for devices occupying the same chip area. The current increase is attributed to both the extra device width and 50% enhancement in field-effect mobility due to electrostatic gating effects. Fabricated inverters show that WC inverters can achieve two times the peak-to-peak output voltage for the same input when compared with planar devices. In addition, WC inverters show 30% faster rise and fall times, and can operate up to around two times frequency of the planar inverters for the same peak-to-peak output voltage. WC NOR circuits have shown 70% higher peak-to-peak output voltage, over their planar counterparts, and WC pass transistor logic multiplexer circuit has shown more than five times faster high-to-low propagation delay compared with its planar counterpart at a similar peak-to-peak output voltage.

  10. Wavy Channel TFT-Based Digital Circuits

    KAUST Repository

    Hanna, Amir; Hussain, Aftab M.; Hussain, Aftab M.; Hussain, Aftab M.; Omran, Hesham; Alsharif, Sarah M.; Salama, Khaled N.; Hussain, Muhammad Mustafa

    2016-01-01

    We report a wavy channel (WC) architecture thin-film transistor-based digital circuitry using ZnO as a channel material. The novel architecture allows for extending device width by integrating vertical finlike substrate corrugations giving rise to 50% larger device width, without occupying extra chip area. The enhancement in the output drive current is 100%, when compared with conventional planar architecture for devices occupying the same chip area. The current increase is attributed to both the extra device width and 50% enhancement in field-effect mobility due to electrostatic gating effects. Fabricated inverters show that WC inverters can achieve two times the peak-to-peak output voltage for the same input when compared with planar devices. In addition, WC inverters show 30% faster rise and fall times, and can operate up to around two times frequency of the planar inverters for the same peak-to-peak output voltage. WC NOR circuits have shown 70% higher peak-to-peak output voltage, over their planar counterparts, and WC pass transistor logic multiplexer circuit has shown more than five times faster high-to-low propagation delay compared with its planar counterpart at a similar peak-to-peak output voltage.

  11. Constant Width Planar Computation Characterizes ACC0

    DEFF Research Database (Denmark)

    Hansen, K.A.

    2004-01-01

    We obtain a characterization of ACC 0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...

  12. Analog lightwave links for detector front-ends at the LHC

    International Nuclear Information System (INIS)

    Baird, A.; Dowell, J.; Duthie, P.

    1995-01-01

    Lightwave links are being developed for volume application in the transfer of analog signals from the tracking detector front-ends to the readout electronics. The links are based on electro-optic intensity modulators which are mounted on detectors and connected by optical fibers to remotely located transceivers (lasers and photoreceivers). The modulators are 3--5 semiconductor reflective devices based on multi-quantum well structures. The transceivers will be integrated devices of a novel design. Modulator prototypes have been fabricated and tested. Neutron and γ-ray irradiation studies have been performed on modulators and fibers. The main results achieved so far are reported and key system issues are reviewed. This work is part of the CERN DRDC project RD23 project RD23

  13. Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chieh; Chu, Chien-An; Chen, Bo-Rui; Lin, Chun-Yu; Peng, Peng-Chun

    2015-12-14

    A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate.

  14. Foundations for microstrip circuit design

    CERN Document Server

    Edwards, Terry

    2016-01-01

    Building on the success of the previous three editions, Foundations for Microstrip Circuit Design offers extensive new, updated and revised material based upon the latest research. Strongly design-oriented, this fourth edition provides the reader with a fundamental understanding of this fast expanding field making it a definitive source for professional engineers and researchers and an indispensable reference for senior students in electronic engineering. Topics new to this edition: microwave substrates, multilayer transmission line structures, modern EM tools and techniques, microstrip and planar transmision line design, transmission line theory, substrates for planar transmission lines, Vias, wirebonds, 3D integrated interposer structures, computer-aided design, microstrip and power-dependent effects, circuit models, microwave network analysis, microstrip passive elements, and slotline design fundamentals.

  15. A new integrated microwave SQUID circuit design

    International Nuclear Information System (INIS)

    Erne, S.N.; Finnegan, T.F.

    1980-01-01

    In this paper we consider the design and operation of a planar thin-film rf-SQUID circuit which can be realized via microwave-integrated-circuit (MIC) techniques and which differs substantially from pervious microwave SQUID configurations involving either mechanical point-contact or cylindrical thin-film micro-bridge geometries. (orig.)

  16. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    Science.gov (United States)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  17. Mutual couling reduction using a lumped LC circuit

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2004-01-01

    A technique to reduce the mutual coupling between two Planar Inverted F Antennas (PIFA) is presented in this paper. By the use of a parallel LC circuit it is possible to reduce the mutual coupling between two antennas. This results in a 16 % improvement in the radiation efficiency.......A technique to reduce the mutual coupling between two Planar Inverted F Antennas (PIFA) is presented in this paper. By the use of a parallel LC circuit it is possible to reduce the mutual coupling between two antennas. This results in a 16 % improvement in the radiation efficiency....

  18. Heterostructure-based high-speed/high-frequency electronic circuit applications

    Science.gov (United States)

    Zampardi, P. J.; Runge, K.; Pierson, R. L.; Higgins, J. A.; Yu, R.; McDermott, B. T.; Pan, N.

    1999-08-01

    With the growth of wireless and lightwave technologies, heterostructure electronic devices are commodity items in the commercial marketplace [Browne J. Power-amplifier MMICs drive commercial circuits. Microwaves & RF, 1998. p. 116-24.]. In particular, HBTs are an attractive device for handset power amplifiers at 900 MHz and 1.9 GHz for CDMA applications [Lum E. GaAs technology rides the wireless wave. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 11-13; "Rockwell Ramps Up". Compound Semiconductor, May/June 1997.]. At higher frequencies, both HBTs and p-HEMTs are expected to dominate the marketplace. For high-speed lightwave circuit applications, heterostructure based products on the market for OC-48 (2.5 Gb/s) and OC-192 (10 Gb/s) are emerging [http://www.nb.rockwell.com/platforms/network_access/nahome.html#5.; http://www.nortel.com/technology/opto/receivers/ptav2.html.]. Chips that operate at 40 Gb/ have been demonstrated in a number of research laboratories [Zampardi PJ, Pierson RL, Runge K, Yu R, Beccue SM, Yu J, Wang KC. hybrid digital/microwave HBTs for >30 Gb/s optical communications. IEDM Technical Digest, 1995. p. 803-6; Swahn T, Lewin T, Mokhtari M, Tenhunen H, Walden R, Stanchina W. 40 Gb/s 3 Volt InP HBT ICs for a fiber optic demonstrator system. Proceedings of the 1996 GaAs IC Symposium, 1996. p. 125-8; Suzuki H, Watanabe K, Ishikawa K, Masuda H, Ouchi K, Tanoue T, Takeyari R. InP/InGaAs HBT ICs for 40 Gbit/s optical transmission systems. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 215-8]. In addition to these two markets, another area where heterostructure devices are having significant impact is for data conversion [Walden RH. Analog-to digital convertor technology comparison. Proceedings of the 1994 GaAs IC Symposium, 1994. p. 217-9; Poulton K, Knudsen K, Corcoran J, Wang KC, Nubling RB, Chang M-CF, Asbeck PM, Huang RT. A 6-b, 4 GSa/s GaAs HBT ADC. IEEE J Solid-State Circuits 1995;30:1109-18; Nary K, Nubling R, Beccue S, Colleran W

  19. Bi-directional triplexer with butterfly MMI coupler using SU-8 polymer waveguides

    Science.gov (United States)

    Mareš, David; Jeřábek, Vítězslav; Prajzler, Václav

    2015-01-01

    We report about a design of a bi-directional planar optical multiplex/demultiplex filter (triplexer) for the optical part of planar hybrid WDM bi-directional transceiver in fiber-to-the-home (FTTH) PON applications. The triplex lightwave circuit is based on the Epoxy Novolak Resin SU-8 waveguides on the silica-on-silicon substrate with Polymethylmethacrylate cladding layer. The triplexer is comprised of a linear butterfly concept of multimode interference (MMI) coupler separating downstream optical signals of 1490 nm and 1550 nm. For the upstream channel of 1310 nm, an additional directional coupler (DC) is used to add optical signal of 1310 nm propagating in opposite direction. The optical triplexer was designed and optimized using beam propagation method. The insertion losses, crosstalk attenuation, and extinction ratio for all three inputs/outputs were investigated. The intended triplexer was designed using the parameters of the separated DC and MMI filter to approximate the idealized direct connection of both devices.

  20. Lightwave-driven quasiparticle collisions on a subcycle timescale.

    Science.gov (United States)

    Langer, F; Hohenleutner, M; Schmid, C P; Poellmann, C; Nagler, P; Korn, T; Schüller, C; Sherwin, M S; Huttner, U; Steiner, J T; Koch, S W; Kira, M; Huber, R

    2016-05-12

    Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances--called quasiparticles--such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.

  1. Resonant tunnelling optoelectronic circuits

    NARCIS (Netherlands)

    Figueiredo, J.M.L.; Patarata Romeira, B.M.; Slight, T.J.; Ironside, C.N.; Kim, Ki Young

    2010-01-01

    Nowadays, most communication networks such as local area networks (LANs), metropolitan area networks (MANs), and wide area networks (WANs) have replaced or are about to replace coaxial cable or twisted copper wire with fiber optical cables. Light-wave communication systems comprise a transmitter

  2. Optical chirp z-transform processor with a simplified architecture.

    Science.gov (United States)

    Ngo, Nam Quoc

    2014-12-29

    Using a simplified chirp z-transform (CZT) algorithm based on the discrete-time convolution method, this paper presents the synthesis of a simplified architecture of a reconfigurable optical chirp z-transform (OCZT) processor based on the silica-based planar lightwave circuit (PLC) technology. In the simplified architecture of the reconfigurable OCZT, the required number of optical components is small and there are no waveguide crossings which make fabrication easy. The design of a novel type of optical discrete Fourier transform (ODFT) processor as a special case of the synthesized OCZT is then presented to demonstrate its effectiveness. The designed ODFT can be potentially used as an optical demultiplexer at the receiver of an optical fiber orthogonal frequency division multiplexing (OFDM) transmission system.

  3. Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors

    KAUST Repository

    Hanna, Amir

    2016-11-01

    This dissertation presents a unique concept for a device architecture named the nanotube (NT) architecture, which is capable of higher drive current compared to the Gate-All-Around Nanowire architecture when applied to heterostructure Tunnel Field Effect Transistors. Through the use of inner/outer core-shell gates, heterostructure NT TFET leverages physically larger tunneling area thus achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. We discuss the physics of p-type (Silicon/Indium Arsenide) and n-type (Silicon/Germanium hetero-structure) based TFETs. Numerical TCAD simulations have shown that NT TFETs have 5x and 1.6 x higher normalized ION when compared to GAA NW TFET for p and n-type TFETs, respectively. This is due to the availability of larger tunneling junction cross sectional area, and lower Shockley-Reed-Hall recombination, while achieving sub 60 mV/dec performance for more than 5 orders of magnitude of drain current, thus enabling scaling down of Vdd to 0.5 V. This dissertation also introduces a novel thin-film-transistors architecture that is named the Wavy Channel (WC) architecture, which allows for extending device width by integrating vertical fin-like substrate corrugations giving rise to up to 50% larger device width, without occupying extra chip area. The novel architecture shows 2x higher output drive current per unit chip area when compared to conventional planar architecture. The current increase is attributed to both the extra device width and 50% enhancement in field effect mobility due to electrostatic gating effects. Digital circuits are fabricated to demonstrate the potential of integrating WC TFT based circuits. WC inverters have shown 2× the peak-to-peak output voltage for the same input, and ~2× the operation frequency of the planar inverters for the same peak-to-peak output voltage. WC NAND circuits have shown 2× higher peak-to-peak output voltage, and 3× lower high-to-low propagation

  4. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    Science.gov (United States)

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

  5. Pulsed laser planarization of metal films for multilevel interconnects

    International Nuclear Information System (INIS)

    Tuckerman, D.B.; Schmitt, R.L.

    1985-05-01

    Multilevel interconnect schemes for integrated circuits generally require one or more planarization steps, in order to maintain an acceptably flat topography for lithography and thin-film step coverage on the higher levels. Traditional approaches have involved planarization of the interlevel insulation (dielectric) layers, either by spin-on application (e.g., polyimide), or by reflow (e.g., phosphosilicate glass). We have pursued an alternative approach, in which each metal level is melted (hence planarized) using a pulsed laser prior to patterning. Short (approx.1 μs) pulses are used to preclude undesirable metallurgical reactions between the film, adhesion or barrier layer, and dielectric layer. Laser planarization of metals is particularly well suited to multilevel systems which include ground or power planes. Results are presented for planarization of gold films on SiO 2 dielectric layers using a flashlamp-pumped dye laser. The pulse duration is approx.1 μs, which allows the heat pulse to uniformly penetrate the gold while not penetrating substantially through the underlying SiO 2 (hence not perturbing the lower levels of metal). Excellent planarization of the gold films is achieved (less than 0.1 μm surface roughness, even starting with extreme topographic variations), as well as improved conductivity. To demonstrate the process, numerous planarized two-layer structures (transmission lines under a ground plane) were fabricated and characterized. 9 refs., 2 figs

  6. Leakage Inductance Calculation for Planar Transformers with a Magnetic Shunt

    DEFF Research Database (Denmark)

    Jun, Zhang; Ouyang, Ziwei; Duffy, M. C.

    2013-01-01

    The magnetic shunt is generally inserted in a planar transformer to increase the leakage inductance which can be utilized as the series inductor in resonant circuits such as the LLC resonant converter. This paper presents a calculation methodology for the leakage inductance of the transformer...

  7. Circuit and bond polytopes on series–parallel graphs

    OpenAIRE

    Borne , Sylvie; Fouilhoux , Pierre; Grappe , Roland; Lacroix , Mathieu; Pesneau , Pierre

    2015-01-01

    International audience; In this paper, we describe the circuit polytope on series–parallel graphs. We first show the existence of a compact extended formulation. Though not being explicit, its construction process helps us to inductively provide the description in the original space. As a consequence, using the link between bonds and circuits in planar graphs, we also describe the bond polytope on series–parallel graphs.

  8. Development of a diffuse element matrix in 'planar' technology. A particular application: logical gate with coupled emitter; Etude et realisation d'une matrice d'elements diffuses selon la technologie 'planar'. Application particuliere: porte logique a emetteurs couples

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1967-06-01

    In a first part, after a brief recall concerning 'planar' technology we discuss the various parasitic elements associated with integrated circuits components. Mathematical formulae of these elements are derived. In a second part, we present a matrix of 22 transistors and 12 resistors which has been realized. This matrix enables the integration of the major part of nuclear circuits. Some of the obtained circuits are shown, particularly an emitter coupled logic gate which presents good electrical behaviour. (author) [French] Dans uns premiere partie, apres un bref rappel de la technologie 'planar' nous etudions les divers elements parasites associes a tout composant d'un circuit integre. Un developpement sommaire des expressions mathematiques de ces elements est propose. Dans une seconde partie nous presentons la matrice de 22 transistors et 12 resistances que nous avons realisee. Cette matrice repond aux principaux besoins de l'electronique nucleaire. Nous proposons ensuite quelques exemples de circuits realises a partir de cette matrice dont notamment une porte logique a emetteurs couples de performances tres interessantes. (auteur)

  9. Modeling and optimization of planar microcoils

    International Nuclear Information System (INIS)

    Beyzavi, Ali; Nguyen, Nam-Trung

    2008-01-01

    Magnetic actuation has emerged as a useful tool for manipulating particles, droplets and biological samples in microfluidics. A planar coil is one of the suitable candidates for magnetic actuation and has the potential to be integrated in digital microfluidic devices. A simple model of microcoils is needed to optimize their use in actuation applications. This paper first develops an analytical model for calculating the magnetic field of a planar microcoil. The model was validated by experimental data from microcoils fabricated on printed circuit boards (PCB). The model was used for calculating the field strength and the force acting on a magnetic object. Finally, the effect of different coil parameters such as the magnitude of the electric current, the gap between the wires and the number of wire segments is discussed. Both analytical and experimental results show that a smaller gap size between wire segments, more wire segments and a higher electric current can increase both the magnitude and the gradient of the magnetic field, and consequently cause a higher actuating force. The planar coil analyzed in the paper is suitable for applications in magnetic droplet-based microfluidics

  10. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.

    Science.gov (United States)

    Chou, Yu-Hsun; Hong, Kuo-Bin; Chang, Chun-Tse; Chang, Tsu-Chi; Huang, Zhen-Ting; Cheng, Pi-Ju; Yang, Jhen-Hong; Lin, Meng-Hsien; Lin, Tzy-Rong; Chen, Kuo-Ping; Gwo, Shangjr; Lu, Tien-Chang

    2018-02-14

    Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits.

  11. Lightwave-driven quasiparticle collisions on a sub-cycle timescale

    Science.gov (United States)

    Langer, F.; Hohenleutner, M.; Schmid, C.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.

    2016-01-01

    Ever since Ernest Rutherford first scattered α-particles from gold foils1, collision experiments have revealed unique insights into atoms, nuclei, and elementary particles2. In solids, many-body correlations also lead to characteristic resonances3, called quasiparticles, such as excitons, dropletons4, polarons, or Cooper pairs. Their structure and dynamics define spectacular macroscopic phenomena, ranging from Mott insulating states via spontaneous spin and charge order to high-temperature superconductivity5. Fundamental research would immensely benefit from quasiparticle colliders, but the notoriously short lifetimes of quasiparticles6 have challenged practical solutions. Here we exploit lightwave-driven charge transport7–24, the backbone of attosecond science9–13, to explore ultrafast quasiparticle collisions directly in the time domain: A femtosecond optical pulse creates excitonic electron–hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying wave packet dynamics, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands17–19 of the optical excitation. A full quantum theory explains our observations microscopically. This approach opens the door to collision experiments with a broad variety of complex quasiparticles and suggests a promising new way of sub-femtosecond pulse generation. PMID:27172045

  12. Design of a Compact Planar Rectenna for Wireless Power Transfer in the ISM Band

    OpenAIRE

    Fang Zhang; Xin Liu; Fan-Yi Meng; Qun Wu; Jong-Chul Lee; Jin-Feng Xu; Cong Wang; Nam-Young Kim

    2014-01-01

    This paper presents a compact planar rectenna with high conversion efficiency in the ISM band. The proposed rectenna is developed by the decomposing of a planar rectenna topology into two functional parts and then recombining the two parts into a new topology to make the rectenna size reduction. The operation mechanism of the antenna and rectifying circuit in the proposed novel topology is explained and the design methodology is presented in detail. The proposed topology not only reduces the ...

  13. At grade optical crossover for monolithic optial circuits

    Science.gov (United States)

    Jamieson, Robert S. (Inventor)

    1983-01-01

    Planar optical circuits may be made to cross through each other, (thus eliminating extra steps required to fabricate elevated, nonintersecting crossovers) by control of the dimensions of the crossing light conductors (10, 12) to be significantly greater than d=0.89.lambda. and the angle of crossing as nearly 90.degree. as conveniently possible. A light trap may be provided just ahead of the intersection to trap any light being reflected in the source conductor at angles greater than about 45.degree.. The light trap may take the form of triangular shaped portions (16a, 16b) on each side of the source conductor with the far side of the triangular portion receiving incident light at an angle so that incident light will be reflected to the other side, or it may take the form of windows (18a, 18b) in place of the triangular portions. Planar optical circuit boards (21-23) may be fabricated and stacked to form a keyboard (20) with intersecting conductors (26-29) and keyholes (0-9) where conductors merge at the broad side of the circuit boards. These keyholes may be prearranged to form an array or matrix of keyholes.

  14. Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.

    Science.gov (United States)

    Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José

    2015-12-14

    We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme.

  15. Lithographic technology for microwave integrated circuits

    OpenAIRE

    Shepherd, PR; Evans, PSA; Ramsey, BJ; Harrison, DJ

    1997-01-01

    Conductive lithographic films (CLFs) have been developed primarily as substitutes for resin/laminate boards, which share properties with the metallisation patterns used in planar microwave integrated circuits (MICs). The authors examine the microwave properties of the films and show that, although the losses are greater, they have potential as an alternative to the traditional manufacturing process of MICs.

  16. Improving the Short-Circuit Reliability in IGBTs

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Rahimo, Munaf

    2018-01-01

    takes place during the IGBT short-circuit, whose time-varying element is the Miller capacitance, which is involved in the amplification mechanism. This hypothesis has been validated through simulations and its mitigation is possible by increasing the electric field at the emitter of the IGBT......In this paper, the oscillation mechanism limiting the ruggedness of IGBTs is investigated through both circuit and device analysis. The work presented here is based on a time-domain approach for two different IGBT cell structures (i.e., trench-gate and planar), illustrating the 2-D effects during...

  17. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  18. Development of a diffuse element matrix in 'planar' technology. A particular application: logical gate with coupled emitter

    International Nuclear Information System (INIS)

    Rousseau, P.

    1968-01-01

    In a first part, after a brief recall concerning 'planar' technology we discuss the various parasitic elements associated with integrated circuits components. Mathematical formulae of these elements are derived. In a second part, we present a matrix of 22 transistors and 12 resistors which has been realized. This matrix enables the integration of the major part of nuclear circuits. Some of the obtained circuits are shown, particularly an emitter coupled logic gate which presents good electrical behaviour. (author) [fr

  19. Investigation of noise in Lightwave Synthesized Frequency Sweeper seeded LIDAR anemometers from leakage through the Acousto Optic Modulators

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Lindelöw, Per Jonas Petter

    2009-01-01

    Train (FSPT) modulated lidars the leakage will give rise to rapidly growing noise in the bins which corresponds to the signal from low radial wind velocities. It is likely that noise canceling techniques similar to those used for RIN removal has to be deployed for measurements of low wind velocities.......Lightwave Synthesized Frequency Sweepers (LSFS) have potential use as lightsources in lidar anemometers. In this paper noise due to leakage in the acousto optic modulators in an LSFS is investigated. Theoretical expressions describing the build-up of noise in the LSFS due to leakage are derived...

  20. Fiber Bragg grating sensor interrogators on chip: challenges and opportunities

    Science.gov (United States)

    Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio

    2017-04-01

    In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.

  1. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer.

    Science.gov (United States)

    Sun, Weihai; Li, Yunlong; Ye, Senyun; Rao, Haixia; Yan, Weibo; Peng, Haitao; Li, Yu; Liu, Zhiwei; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin; Bian, Zuqiang; Huang, Chunhui

    2016-05-19

    During the past several years, methylammonium lead halide perovskites have been widely investigated as light absorbers for thin-film photovoltaic cells. Among the various device architectures, the inverted planar heterojunction perovskite solar cells have attracted special attention for their relatively simple fabrication and high efficiencies. Although promising efficiencies have been obtained in the inverted planar geometry based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) sulfonic acid ( PSS) as the hole transport material (HTM), the hydrophilicity of the PSS is a critical factor for long-term stability. In this paper, a CuOx hole transport layer from a facile solution-processed method was introduced into the inverted planar heterojunction perovskite solar cells. After the optimization of the devices, a champion PCE of 17.1% was obtained with an open circuit voltage (Voc) of 0.99 V, a short-circuit current (Jsc) of 23.2 mA cm(-2) and a fill factor (FF) of 74.4%. Furthermore, the unencapsulated device cooperating with the CuOx film exhibited superior performance in the stability test, compared to the device involving the PSS layer, indicating that CuOx could be a promising HTM for replacing PSS in inverted planar heterojunction perovskite solar cells.

  2. Efficient Planar Structured Perovskite Solar Cells with Enhanced Open-Circuit Voltage and Suppressed Charge Recombination Based on a Slow Grown Perovskite Layer from Lead Acetate Precursor.

    Science.gov (United States)

    Li, Cong; Guo, Qiang; Wang, Zhibin; Bai, Yiming; Liu, Lin; Wang, Fuzhi; Zhou, Erjun; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-12-06

    For planar structured organic-inorganic hybrid perovskite solar cells (PerSCs) with the poly(3,4-ethylenedioxythiophene:polystyrene sulfonate) (PEDOT:PSS) hole transport layer, the open-circuit voltage (V oc ) of the device is limited to be about 1.0 V, resulting in inferior performance in comparison with TiO 2 -based planar counterparts. Therefore, increasing V oc of the PEDOT:PSS-based planar device is an important way to enhance the efficiency of the PerSCs. Herein, we demonstrate a novel approach for perovskite film formation and the film is formed by slow growth from lead acetate precursor via a one-step spin-coating process without the thermal annealing (TA) process. Because the perovskite layer grows slowly and naturally, high-quality perovskite film can be achieved with larger crystalline particles, less defects, and smoother surface morphology. Ultraviolet absorption, X-ray diffraction, scanning electron microscopy, steady-state fluorescence spectroscopy (photoluminescence), and time-resolved fluorescence spectroscopy are used to clarify the crystallinity, morphology, and internal defects of perovskite thin films. The power conversion efficiency of p-i-n PerSCs based on slow-grown film (16.33%) shows greatly enhanced performance compared to that of the control device based on traditional thermally annealed perovskite film (14.33%). Furthermore, the V oc of the slow-growing device reaches 1.12 V, which is 0.1 V higher than that of the TA device. These findings indicate that slow growth of the perovskite layer from lead acetate precursor is a promising approach to achieve high-quality perovskite film for high-performance PerSCs.

  3. An adjustable RF tuning element for microwave, millimeter wave, and submillimeter wave integrated circuits

    Science.gov (United States)

    Lubecke, Victor M.; Mcgrath, William R.; Rutledge, David B.

    1991-01-01

    Planar RF circuits are used in a wide range of applications from 1 GHz to 300 GHz, including radar, communications, commercial RF test instruments, and remote sensing radiometers. These circuits, however, provide only fixed tuning elements. This lack of adjustability puts severe demands on circuit design procedures and materials parameters. We have developed a novel tuning element which can be incorporated into the design of a planar circuit in order to allow active, post-fabrication tuning by varying the electrical length of a coplanar strip transmission line. It consists of a series of thin plates which can slide in unison along the transmission line, and the size and spacing of the plates are designed to provide a large reflection of RF power over a useful frequency bandwidth. Tests of this structure at 1 GHz to 3 Ghz showed that it produced a reflection coefficient greater than 0.90 over a 20 percent bandwidth. A 2 GHz circuit incorporating this tuning element was also tested to demonstrate practical tuning ranges. This structure can be fabricated for frequencies as high as 1000 GHz using existing micromachining techniques. Many commercial applications can benefit from this micromechanical RF tuning element, as it will aid in extending microwave integrated circuit technology into the high millimeter wave and submillimeter wave bands by easing constraints on circuit technology.

  4. Design and application of multilayer monolithic microwave integrated circuit transformers

    Energy Technology Data Exchange (ETDEWEB)

    Economides, S.B

    1999-07-01

    The design and performance of planar spiral transformers, using multilayer GaAs and silicon MMIC technology, are presented. This multilayer technology gives new opportunities for improving the performance of planar transformers, couplers and baluns. Planar transformers have high parasitic resistance and capacitance and low levels of coupling. Using multilayer technology these problems are overcome by applying a multilayer structure of three metal layers separated by two polyimide dielectric layers. The improvements gained by placing the conductors on different metal layers, and using conductors raised on polyimide layers for low capacitance, have been investigated. The circuits were fabricated using a novel experimental fabrication process, which uses entirely standard materials and techniques and is compatible with BJT's and silicon-germanium HBT's. The transformers were all characterised up to 20 GHz using RF-on-wafer measurements. They demonstrated good performance, considering the experimental nature of in-house multilayer technology and the difficulties in simulating these three-dimensional new geometries. With high resistivity substrates, the silicon components achieved virtually the same performance as their gallium arsenide counterparts. The transformers were then used in simulations of transformer-coupled HBT amplifier circuits, to demonstrate their capabilities. It was shown that these circuits present good performance compared to standard off-the shelf component circuits and are very promising for use in most multilayer MMIC applications. The structures were further used in coupling configurations, and applied in balun circuits and pushpull amplifiers. The spiral transformer coupler can operate at low frequencies without using up much chip area. In a balun configuration, the balun can compensate for coupling and phase imbalance and operates over 5 to 15 GHz. The spiral coupler does not always need multilayer processing, so the balun may be

  5. 8×8 Planar Phased Array Antenna with High Efficiency and Insensitivity Properties for 5G Mobile Base Stations

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2016-01-01

    An insensitive planar phased array antenna with high efficiency function for 5G applications is introduced in this study. 64-elements of compact slot-loop antenna elements have been used to form the 8×8 planar array. The antenna is designed on a low cost FR4 substrate and has good performance in ...... at both sides of the substrate and could be used for mobile base station (MBS) applications. The proposed planar array could be integrated with the transceivers on the low-cost printed circuit boards (PCBs) to reduce the manufacturing cost....

  6. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors.

    Science.gov (United States)

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C P; Gelinck, Gerwin H; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-10-20

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.

  7. Transmitter and Translating Receiver Design For 64-ary Pulse Position Modulation (PPM)

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2010-01-20

    This paper explores the architecture and design of an optically-implemented 64-ary PPM transmitter and direct-translating receiver that effectively translates incoming electrically-generated bit streams into optical PPM symbols (and vice-versa) at > 1 Gb/s data rates. The PPM transmitter is a cascade of optical switches operating at the frame rate. A corresponding receiver design is more difficult to architect and implement, since increasing data rates lead to correspondingly shorter decision times (slot times and frame times). We describe a solution in the form of a time-to-space mapping arrayed receiver that performs a translating algorithm represented as a code map. The technique for generating the code map is described, and the implementation of the receiver as a planar lightwave circuit is given. The techniques for implementing the transmitter and receiver can be generalized for any case of M-ary PPM.

  8. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    In typical circuit QED systems on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present design considerations for the 3D microwave cavity as well as the superconducting transmon qubit. Moreover, we show experimental data of a high purity aluminum cavity demonstrating quality factors above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. Our experiments also demonstrate that the quality factor is less dependent on the power compared to planar resonator geometries. Furthermore, we present strategies for tuning both the cavity and the qubit individually.

  9. Design of a planar ultra-wideband four-way power divider/combiner using defected ground structures

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Cimoli, Bruno; Midili, Virginio

    2017-01-01

    This work presents the design of a planar ultra-wideband (UWB) four-way power divider/combiner. A prototype has been fabricated on a printed circuit board and characterized. For achieving the frequency response required in UWB applications, each branch of the divider is conceived as a three...

  10. Modeling and Characteristic Analysis of Wireless Ultrasonic Vibration Energy Transmission Channels through Planar and Curved Metal Barriers

    Directory of Open Access Journals (Sweden)

    DingXin Yang

    2018-01-01

    Full Text Available Wireless ultrasonic vibration energy transmission systems through metal barriers based on piezoelectric transducers have drawn a lot of focus due to the advantage of nonpenetration of the barriers, thus maintaining the integrity of sealed structures. It is meaningful to investigate appropriate modeling methods and to characterize such wireless ultrasonic energy transmission channels with different geometric shapes. In this paper, equivalent circuit modeling and finite element modeling methods are applied to the planar metal barrier channel, and a 3-dimensional finite element modeling method is applied to the cylindrical metallic barrier channel. Meanwhile, the experimental setup is established and measurements are carried out to validate the effectiveness of the corresponding modeling methods. The results show that Leach’s equivalent circuit modeling method and finite element modeling method are nearly similarly effective in characterizing the planar metal barrier channel. But for a cylindrical metal barrier, only the three-dimensional finite element modeling method is effective. Furthermore, we found that, for the planar barrier, the effect of standing waves on the efficiency of wireless energy transmission is dominated. But for the curved barrier, only the resonant phenomenon of the piezoelectric transducer exists.

  11. Thermal analysis of wirelessly powered thermo-pneumatic micropump based on planar LC circuit

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Pei Song; Nafea, Marwan; Leow, Pei Ling; Ali, Mohamed Sultan Mohamed [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2016-06-15

    This paper studies the thermal behavior of a wireless powered micropump operated using thermo-pneumatic actuation. Numerical analysis was performed to investigate the temporal conduction of the planar inductor-capacitor (LC) wireless heater and the heating chamber. The result shows that the temperature at the heating chamber reaches steady state temperature of 46.7.deg.C within 40 seconds. The finding was further verified with experimental works through the fabrication of the planar LC heater (RF sensitive actuator) and micropump device using MEMS fabrication technique. The fabricated device delivers a minimum volume of 0.096 μL at the temperature of 29.deg.C after being thermally activated for 10 s. The volume dispensed from the micropump device can precisely controlled by an increase of the electrical heating power within the cut-off input power of 0.22 W. Beyond the power, the heat transfer to the heating chamber exhibits non-linear behavior. In addition, wireless operation of the fabricated device shows successful release of color dye when the micropump is immersed in DI-water containing dish and excited by tuning the RF power.

  12. Thermal analysis of wirelessly powered thermo-pneumatic micropump based on planar LC circuit

    International Nuclear Information System (INIS)

    Chee, Pei Song; Nafea, Marwan; Leow, Pei Ling; Ali, Mohamed Sultan Mohamed

    2016-01-01

    This paper studies the thermal behavior of a wireless powered micropump operated using thermo-pneumatic actuation. Numerical analysis was performed to investigate the temporal conduction of the planar inductor-capacitor (LC) wireless heater and the heating chamber. The result shows that the temperature at the heating chamber reaches steady state temperature of 46.7.deg.C within 40 seconds. The finding was further verified with experimental works through the fabrication of the planar LC heater (RF sensitive actuator) and micropump device using MEMS fabrication technique. The fabricated device delivers a minimum volume of 0.096 μL at the temperature of 29.deg.C after being thermally activated for 10 s. The volume dispensed from the micropump device can precisely controlled by an increase of the electrical heating power within the cut-off input power of 0.22 W. Beyond the power, the heat transfer to the heating chamber exhibits non-linear behavior. In addition, wireless operation of the fabricated device shows successful release of color dye when the micropump is immersed in DI-water containing dish and excited by tuning the RF power.

  13. Silicon carbide MOSFET integrated circuit technology

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.M.; Downey, E.; Ghezzo, M.; Kretchmer, J.; Krishnamurthy, V.; Hennessy, W.; Michon, G. [General Electric Co., Schenectady, NY (United States). Corporate Research and Development Center

    1997-07-16

    The research and development activities carried out to demonstrate the status of MOS planar technology for the manufacture of high temperature SiC ICs will be described. These activities resulted in the design, fabrication and demonstration of the World`s first SiC analog IC - a monolithic MOSFET operational amplifier. Research tasks required for the development of a planar SiC MOSFET IC technology included characterization of the SiC/SiO{sub 2} interface using thermally grown oxides: high temperature (350 C) reliability studies of thermally grown oxides: ion implantation studies of donor (N) and acceptor (B) dopants to form junction diodes: epitaxial layer characterization: N channel inversion and depletion mode MOSFETs; device isolation methods and finally integrated circuit design, fabrication and testing of the World`s first monolithic SiC operational amplifier IC. These studies defined a SiC n-channel depletion mode MOSFET IC technology and outlined tasks required to improve all types of SiC devices. For instance, high temperature circuit drift instabilities at 350 C were discovered and characterized. This type of instability needs to be understood and resolved because it affects the high temperature reliability of other types of SiC devices. Improvements in SiC wafer surface quality and the use of deposited oxides instead of thermally grown SiO{sub 2} gate dielectrics will probably be required for enhanced reliability. The slow reverse recovery time exhibited by n{sup +}-p diodes formed by N ion implantation is a problem that needs to be resolved for all types of planar bipolar devices. The reproducibility of acceptor implants needs to be improved before CMOS ICs and many types of power device structures will be manufacturable. (orig.) 51 refs.

  14. Equivalent Circuit of a High Q Tunable PIFA

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej

    2011-01-01

    This paper presents an Equivalent Circuit Model (ECM) for a high Quality factor (Q) tunable Planar Inverted F Antenna (PIFA). A PIFA is described and simulated with the Finite-Difference Time-Domain (FDTD) method. The resonance behavior of the proposed ECM is compared to the FDTD results and shows...... a match. The ECM is also valid when the PIFA is made tunable with an additional capacitor....

  15. CH₃NH₃PbI₃-based planar solar cells with magnetron-sputtered nickel oxide.

    Science.gov (United States)

    Cui, Jin; Meng, Fanping; Zhang, Hua; Cao, Kun; Yuan, Huailiang; Cheng, Yibing; Huang, Feng; Wang, Mingkui

    2014-12-24

    Herein we report an investigation of a CH3NH3PbI3 planar solar cell, showing significant power conversion efficiency (PCE) improvement from 4.88% to 6.13% by introducing a homogeneous and uniform NiO blocking interlayer fabricated with the reactive magnetron sputtering method. The sputtered NiO layer exhibits enhanced crystallization, high transmittance, and uniform surface morphology as well as a preferred in-plane orientation of the (200) plane. The PCE of the sputtered-NiO-based perovskite p-i-n planar solar cell can be further promoted to 9.83% when a homogeneous and dense perovskite layer is formed with solvent-engineering technology, showing an impressive open circuit voltage of 1.10 V. This is about 33% higher than that of devices using the conventional spray pyrolysis of NiO onto a transparent conducting glass. These results highlight the importance of a morphology- and crystallization-compatible interlayer toward a high-performance inverted perovskite planar solar cell.

  16. A high open-circuit voltage gallium nitride betavoltaic microbattery

    International Nuclear Information System (INIS)

    Cheng, Zaijun; Chen, Xuyuan; San, Haisheng; Feng, Zhihong; Liu, Bo

    2012-01-01

    A high open-circuit voltage betavoltaic microbattery based on a gallium nitride (GaN) p–i–n homojunction is demonstrated. As a beta-absorbing layer, the low electron concentration of the n-type GaN layer is achieved by the process of Fe compensation doping. Under the irradiation of a planar solid 63 Ni source with activity of 0.5 mCi, the open-circuit voltage of the fabricated microbattery with 2 × 2 mm 2 area reaches as much as 1.64 V, which is the record value reported for betavoltaic batteries with 63 Ni source, the short-circuit current was measured as 568 pA and the conversion effective of 0.98% was obtained. The experimental results suggest that GaN is a high-potential candidate for developing the betavoltaic microbattery. (paper)

  17. Planar self-aligned imprint lithography for coplanar plasmonic nanostructures fabrication

    KAUST Repository

    Wan, Weiwei

    2014-03-01

    Nanoimprint lithography (NIL) is a cost-efficient nanopatterning technology because of its promising advantages of high throughput and high resolution. However, accurate multilevel overlay capability of NIL required for integrated circuit manufacturing remains a challenge due to the high cost of achieving mechanical alignment precision. Although self-aligned imprint lithography was developed to avoid the need of alignment for the vertical layered structures, it has limited usage in the manufacture of the coplanar structures, such as integrated plasmonic devices. In this paper, we develop a new process of planar self-alignment imprint lithography (P-SAIL) to fabricate the metallic and dielectric structures on the same plane. P-SAIL transfers the multilevel imprint processes to a single-imprint process which offers higher efficiency and less cost than existing manufacturing methods. Such concept is demonstrated in an example of fabricating planar plasmonic structures consisting of different materials. © 2014 Springer-Verlag Berlin Heidelberg.

  18. Developing magnonic architectures in circuit QED

    Science.gov (United States)

    Karenowska, Alexy; van Loo, Arjan; Morris, Richard; Kosen, Sandoko

    The development of low-temperature experiments aimed at exploring and exploiting magnonic systems at the quantum level is rapidly becoming a highly active and innovative area of microwave magnetics research. Magnons are easily excited over the microwave frequency range typical of established solid-state quantum circuit technology, and couple readily to electromagnetic fields. These facts, in combination with the highly tunable dispersion of the excitations, make them a particularly interesting proposition in the context of quantum device design. In this talk, we survey recent progress made in our group in the area of the hybridization of planar superconducting circuit technology (circuit-QED) with magnon systems. We discuss the technical requirements of successful experiments, including the choice of suitable materials. We go on to describe the results of investigations including the study spin-wave propagation in magnetic waveguides at the single magnon level, the investigation of magnon modes in spherical magnetic resonators, and the development of systems incorporating Josephson-junction based qubits. The authors would like to acknowledge funding by the EPSRC through Grant EP/K032690/1.

  19. Development of a physically-based planar inductors VHDL-AMS model for integrated power converter design

    Science.gov (United States)

    Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé

    2014-05-01

    Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.

  20. High-quality planar high-Tc Josephson junctions

    International Nuclear Information System (INIS)

    Bergeal, N.; Grison, X.; Lesueur, J.; Faini, G.; Aprili, M.; Contour, J.P.

    2005-01-01

    Reproducible high-T c Josephson junctions have been made in a rather simple two-step process using ion irradiation. A microbridge (1 to 5 μm wide) is firstly designed by ion irradiating a c-axis-oriented YBa 2 Cu 3 O 7-δ film through a gold mask such as the nonprotected part becomes insulating. A lower T c part is then defined within the bridge by irradiating with a much lower fluence through a narrow slit (20 nm) opened in a standard electronic photoresist. These planar junctions, whose settings can be finely tuned, exhibit reproducible and nearly ideal Josephson characteristics. This process can be used to produce complex Josephson circuits

  1. Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates

    International Nuclear Information System (INIS)

    Joachim, C; Martrou, D; Gauthier, S; Rezeq, M; Troadec, C; Jie Deng; Chandrasekhar, N

    2010-01-01

    The scientific and technical challenges involved in building the planar electrical connection of an atomic scale circuit to N electrodes (N > 2) are discussed. The practical, laboratory scale approach explored today to assemble a multi-access atomic scale precision interconnection machine is presented. Depending on the surface electronic properties of the targeted substrates, two types of machines are considered: on moderate surface band gap materials, scanning tunneling microscopy can be combined with scanning electron microscopy to provide an efficient navigation system, while on wide surface band gap materials, atomic force microscopy can be used in conjunction with optical microscopy. The size of the planar part of the circuit should be minimized on moderate band gap surfaces to avoid current leakage, while this requirement does not apply to wide band gap surfaces. These constraints impose different methods of connection, which are thoroughly discussed, in particular regarding the recent progress in single atom and molecule manipulations on a surface.

  2. A study on the beta voltaic micro-nuclear battery based on the planar technology silicon detector

    International Nuclear Information System (INIS)

    Zhang Kai; He Gaokui; Huang Xiaojian; Liu Yang; Meng Xin; Hao Xiaoyong

    2011-01-01

    It describes briefly the beta voltaic micro-nuclear battery based on the planar technology silicon detector and radioisotope. Different sensitive area of silicon detectors are used to cooperate with 63 Ni source to buildup of beta voltaic micro-nuclear batteries. The experimental data show that the larger sensitive area the silicon detector has, the higher open circuit voltage it produces, and the open circuit voltage of single cell has reached an excellent result from 0.15 V to 0.30 V. It is possible to get high output power by series or parallel connecting the beta voltaic micro-nuclear batteries. (authors)

  3. Design of a Compact Planar Rectenna for Wireless Power Transfer in the ISM Band

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    2014-01-01

    Full Text Available This paper presents a compact planar rectenna with high conversion efficiency in the ISM band. The proposed rectenna is developed by the decomposing of a planar rectenna topology into two functional parts and then recombining the two parts into a new topology to make the rectenna size reduction. The operation mechanism of the antenna and rectifying circuit in the proposed novel topology is explained and the design methodology is presented in detail. The proposed topology not only reduces the rectenna design cycle time but also leads to easy realization at the required frequency ranges with a very low cost. For validation, a 2.45 GHz rectenna system is designed and measured to show their microwave performances.

  4. Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells

    Science.gov (United States)

    Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho

    2018-03-01

    Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.

  5. Novel Low Loss Wide-Band Multi-Port Integrated Circuit Technology for RF/Microwave Applications

    Science.gov (United States)

    Simons, Rainee N.; Goverdhanam, Kavita; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)

    2001-01-01

    In this paper, novel low loss, wide-band coplanar stripline technology for radio frequency (RF)/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth, and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semi-conductor devices and microelectromechanical systems (MEMS).

  6. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir

    2015-12-04

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (ZnO) present promising opportunity in that regard, still wide area of improvement exists to increase the performance further. Here, we show a wavy channel (WC) architecture for ZnO integrated TFT which increases transistor width without chip area penalty, enabling high performance in material agnostic way. We further demonstrate digital logic NAND circuit using the WC architecture and compare it to the conventional planar architecture. The WC architecture circuits have shown 2× higher peak-to-peak output voltage for the same input voltage. They also have 3× lower high-to-low propagation delay times, respectively, when compared to the planar architecture. The performance enhancement is attributed to both extra device width and enhanced field effect mobility due to higher gate field electrostatics control.

  7. Design of coated standing nanowire array solar cell performing beyond the planar efficiency limits

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong, E-mail: wzshen@sjtu.edu.cn [Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-05-28

    The single standing nanowire (SNW) solar cells have been proven to perform beyond the planar efficiency limits in both open-circuit voltage and internal quantum efficiency due to the built-in concentration and the shifting of the absorption front. However, the expandability of these nano-scale units to a macro-scale photovoltaic device remains unsolved. The main difficulty lies in the simultaneous preservation of an effective built-in concentration in each unit cell and a broadband high absorption capability of their array. Here, we have provided a detailed theoretical guideline for realizing a macro-scale solar cell that performs furthest beyond the planar limits. The key lies in a complementary design between the light-trapping of the single SNWs and that of the photonic crystal slab formed by the array. By tuning the hybrid HE modes of the SNWs through the thickness of a coaxial dielectric coating, the optimized coated SNW array can sustain an absorption rate over 97.5% for a period as large as 425 nm, which, together with the inherited carrier extraction advantage, leads to a cell efficiency increment of 30% over the planar limit. This work has demonstrated the viability of a large-size solar cell that performs beyond the planar limits.

  8. Circuital characteristics and radiation properties of an UWB electric-magnetic planar antenna for Ku-band applications

    NARCIS (Netherlands)

    Haider, S.N.; Caratelli, D.; Yarovoy, A.G.

    2013-01-01

    A planar, directive antenna with large fractional bandwidth is introduced in this paper. A detailed discussion on the proposed antenna topology and its architecture is reported. The proposed element is a combination of a patch and a loop radiator. A proper combination of the electric field radiator

  9. All-zigzag graphene nanoribbons for planar interconnect application

    Science.gov (United States)

    Chen, Po-An; Chiang, Meng-Hsueh; Hsu, Wei-Chou

    2017-07-01

    A feasible "lightning-shaped" zigzag graphene nanoribbon (ZGNR) structure for planar interconnects is proposed. Based on the density functional theory and non-equilibrium Green's function, the electron transport properties are evaluated. The lightning-shaped structure increases significantly the conductance of the graphene interconnect with an odd number of zigzag chains. This proposed technique can effectively utilize the linear I-V characteristic of asymmetric ZGNRs for interconnect application. Variability study accounting for width/length variation and the edge effect is also included. The transmission spectra, transmission eigenstates, and transmission pathways are analyzed to gain the physical insights. This lightning-shaped ZGNR enables all 2D material-based devices and circuits on flexible and transparent substrates.

  10. Nanoscale displacement sensing using microfabricated variable-inductance planar coils

    Science.gov (United States)

    Coskun, M. Bulut; Thotahewa, Kasun; Ying, York-Sing; Yuce, Mehmet; Neild, Adrian; Alan, Tuncay

    2013-09-01

    Microfabricated spiral inductors were employed for nanoscale displacement detection, suitable for use in implantable pressure sensor applications. We developed a variable inductor sensor consisting of two coaxially positioned planar coils connected in series to a measurement circuit. The devices were characterized by varying the air gap between the coils hence changing the inductance, while a Colpitts oscillator readout was used to obtain corresponding frequencies. Our approach shows significant advantages over existing methodologies combining a displacement resolution of 17 nm and low hysteresis (0.15%) in a 1 × 1 mm2 device. We show that resolution could be further improved by shrinking the device's lateral dimensions.

  11. Demonstration of a High Open-Circuit Voltage GaN Betavoltaic Microbattery

    International Nuclear Information System (INIS)

    Cheng Zai-Jun; San Hai-Sheng; Chen Xu-Yuan; Liu Bo; Feng Zhi-Hong

    2011-01-01

    A high open-circuit voltage betavoltaic microbattery based on a GaN p-i-n diode is demonstrated. Under the irradiation of a 4×4 mm 2 planar solid 63 Ni source with an activity of 2 mCi, the open-circuit voltage V oc of the fabricated single 2×2mm 2 cell reaches as high as 1.62 V, the short-circuit current density J sc is measured to be 16nA/cm 2 . The microbattery has a fill factor of 55%, and the energy conversion efficiency of beta radiation into electricity reaches to 1.13%. The results suggest that GaN is a highly promising potential candidate for long-life betavoltaic microbatteries used as power supplies for microelectromechanical system devices. (cross-disciplinary physics and related areas of science and technology)

  12. A planar beam splitter for millimetre and sub-millimetre heterodyne mixer array

    OpenAIRE

    Tan, BK; Yassin, G

    2017-01-01

    We present the design of a four-port planar circuit beam splitter comprising a microstrip and a coplanar waveguide (CPW) crossing each other. The CPW is fabricated in the ground plane (bottom layer) and the microstrip is deposited on top of the dielectric layer. A small section of the microstrip line is bent and aligned parallel to the central conductor of the bottom CPW, allowing the level of power coupling to be easily controlled by changing the length of the aligned section. The simple lay...

  13. Comment on 'Current Budget of the Atmospheric Electric Global Circuit'

    Science.gov (United States)

    Driscoll, Kevin T.; Blakeslee, Richard J.

    1996-01-01

    In this paper, three major issues relevant to Kasemir's new model will be addressed. The first concerns Kasemir's assertion that there are significant differences between the potentials associated with the new model and the conventional model. A recalculation of these potentials reveals that both models provide equivalent results for the potential difference between the Earth and ionosphere. The second issue to be addressed is Kasemir's assertion that discrepancies in the electric potentials associated with both models can be attributed to modeling the Earth as a sphere, instead of as a planar surface. A simple analytical comparison will demonstrate that differences in the equations for the potentials of the atmosphere derived with a spherical and a planar Earth are negligible for applications to global current flow. Finally, the third issue to be discussed is Kasemir's claim that numerous aspects of the conventional model are incorrect, including the role of the ionosphere in global current flow as well as the significance of cloud-to-ground lightning in supplying charge to the global circuit. In order to refute these misconceptions, it will be shown that these aspects related to the flow of charge in the atmosphere are accurately described by the conventional model of the global circuit.

  14. A voltage biased superconducting quantum interference device bootstrap circuit

    International Nuclear Information System (INIS)

    Xie Xiaoming; Wang Huiwu; Wang Yongliang; Dong Hui; Jiang Mianheng; Zhang Yi; Krause, Hans-Joachim; Braginski, Alex I; Offenhaeusser, Andreas; Mueck, Michael

    2010-01-01

    We present a dc superconducting quantum interference device (SQUID) readout circuit operating in the voltage bias mode and called a SQUID bootstrap circuit (SBC). The SBC is an alternative implementation of two existing methods for suppression of room-temperature amplifier noise: additional voltage feedback and current feedback. Two circuit branches are connected in parallel. In the dc SQUID branch, an inductively coupled coil connected in series provides the bias current feedback for enhancing the flux-to-current coefficient. The circuit branch parallel to the dc SQUID branch contains an inductively coupled voltage feedback coil with a shunt resistor in series for suppressing the preamplifier noise current by increasing the dynamic resistance. We show that the SBC effectively reduces the preamplifier noise to below the SQUID intrinsic noise. For a helium-cooled planar SQUID magnetometer with a SQUID inductance of 350 pH, a flux noise of about 3 μΦ 0 Hz -1/2 and a magnetic field resolution of less than 3 fT Hz -1/2 were obtained. The SBC leads to a convenient direct readout electronics for a dc SQUID with a wider adjustment tolerance than other feedback schemes.

  15. Planar Perovskite Solar Cells with High Open-Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant.

    Science.gov (United States)

    Saygili, Yasemin; Turren-Cruz, Silver-Hamill; Olthof, Selina; Saes, Bartholomeus Wilhelmus Henricus; Pehlivan, Ilknur Bayrak; Saliba, Michael; Meerholz, Klaus; Edvinsson, Tomas; Zakeeruddin, Shaik M; Grätzel, Michael; Correa-Baena, Juan-Pablo; Hagfeldt, Anders; Freitag, Marina; Tress, Wolfgang

    2018-04-26

    In perovskite solar cells (PSCs), the most commonly used hole transport material (HTM) is spiro-OMeTAD, which is typically doped by metalorganic complexes, for example, based on Co, to improve charge transport properties and thereby enhance the photovoltaic performance of the device. In this study, we report a new hemicage-structured iron complex, 1,3,5-tris(5'-methyl-2,2'-bipyridin-5-yl)ethylbenzene Fe(III)-tris(bis(trifluoromethylsulfonyl)imide), as a p-type dopant for spiro-OMeTAD. The formal redox potential of this compound was measured as 1.29 V vs. the standard hydrogen electrode, which is slightly (20 mV) more positive than that of the commercial cobalt dopant FK209. Photoelectron spectroscopy measurements confirm that the iron complex acts as an efficient p-dopant, as evidenced in an increase of the spiro-OMeTAD work function. When fabricating planar PSCs with the HTM spiro-OMeTAD doped by 5 mol % of the iron complex, a power conversion efficiency of 19.5 % (AM 1.5G, 100 mW cm -2 ) is achieved, compared to 19.3 % for reference devices with FK209. Open circuit voltages exceeding 1.2 V at 1 sun and reaching 1.27 V at 3 suns indicate that recombination at the perovskite/HTM interface is low when employing this iron complex. This work contributes to recent endeavors to reduce recombination losses in perovskite solar cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Integrated circuits and logic operations based on single-layer MoS2.

    Science.gov (United States)

    Radisavljevic, Branimir; Whitwick, Michael Brian; Kis, Andras

    2011-12-27

    Logic circuits and the ability to amplify electrical signals form the functional backbone of electronics along with the possibility to integrate multiple elements on the same chip. The miniaturization of electronic circuits is expected to reach fundamental limits in the near future. Two-dimensional materials such as single-layer MoS(2) represent the ultimate limit of miniaturization in the vertical dimension, are interesting as building blocks of low-power nanoelectronic devices, and are suitable for integration due to their planar geometry. Because they are less than 1 nm thin, 2D materials in transistors could also lead to reduced short channel effects and result in fabrication of smaller and more power-efficient transistors. Here, we report on the first integrated circuit based on a two-dimensional semiconductor MoS(2). Our integrated circuits are capable of operating as inverters, converting logical "1" into logical "0", with room-temperature voltage gain higher than 1, making them suitable for incorporation into digital circuits. We also show that electrical circuits composed of single-layer MoS(2) transistors are capable of performing the NOR logic operation, the basis from which all logical operations and full digital functionality can be deduced.

  17. Free-standing GaN grating couplers and rib waveguide for planar photonics at telecommunication wavelength

    Science.gov (United States)

    Liu, Qifa; Wang, Wei

    2018-01-01

    Gallium Nitride (GaN) free-standing planar photonic device at telecommunication wavelength based on GaN-on-silicon platform was presented. The free-standing structure was realized by particular double-side fabrication process, which combining GaN front patterning, Si substrate back releasing and GaN slab etching. The actual device parameters were identified via the physical characterizations employing scanning electron microscope (SEM), atomic force microscope (AFM) and reflectance spectra testing. High coupling efficiency and good light confinement properties of the gratings and rib waveguide at telecommunication wavelength range were verified by finite element method (FEM) simulation. This work illustrates the potential of new GaN photonic structure which will enable new functions for planar photonics in communication and sensing applications, and is favorable for the realization of integrated optical circuit.

  18. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  19. Label-based routing for a family of scale-free, modular, planar and unclustered graphs

    International Nuclear Information System (INIS)

    Comellas, Francesc; Miralles, Alicia

    2011-01-01

    We give an optimal labeling and routing algorithm for a family of scale-free, modular and planar graphs with zero clustering. The relevant properties of this family match those of some networks associated with technological and biological systems with a low clustering, including some electronic circuits and protein networks. The existence of an efficient routing protocol for this graph model should help when designing communication algorithms in real networks and also in the understanding of their dynamic processes.

  20. Optical interconnection for a polymeric PLC device using simple positional alignment.

    Science.gov (United States)

    Ryu, Jin Hwa; Kim, Po Jin; Cho, Cheon Soo; Lee, El-Hang; Kim, Chang-Seok; Jeong, Myung Yung

    2011-04-25

    This study proposes a simple cost-effective method of optical interconnection between a planar lightwave circuit (PLC) device chip and an optical fiber. It was conducted to minimize and overcome the coupling loss caused by lateral offset which is due to the process tolerance and the dimensional limitation existing between PLC device chips and fiber array blocks with groove structures. A PLC device chip and a fiber array block were simultaneously fabricated in a series of polymer replication processes using the original master. The dimensions (i.e., width and thickness) of the under-clad of the PLC device chip were identical to those of the fiber array block. The PLC device chip and optical fiber were aligned by simple positional control for the vertical direction of the PLC device chip under a particular condition. The insertion loss of the proposed 1 x 2 multimode optical splitter device interconnection was 4.0 dB at 850 nm and the coupling loss was below 0.1 dB compared with single-fiber based active alignment.

  1. Planar Silicon Optical Waveguide Light Modulators

    DEFF Research Database (Denmark)

    Leistiko, Otto; Bak, H.

    1994-01-01

    that values in the nanosecond region should be possible, however, the measured values are high, 20 microseconds, due to the large area of the injector junctions, 1× 10¿2 cm2, and the limitations imposed by the detection circuit. The modulating properties of these devices are impressive, measurements......The results of an experimental investigation of a new type of optical waveguide based on planar technology in which the liglht guiding and modulation are achieved by exploiting free carrier effects in silicon are presented. Light is guided between the n+ substrate and two p+ regions, which also...... serve as carrier injectors for controling absorption. Light confinement of single mode devices is good, giving spot sizes of 9 ¿m FWHM. Insertion loss measurements indicate that the absorption losses for these waveguides are extremely low, less 1 dB/cm. Estimates of the switching speed indicate...

  2. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2′:5′,2′′- terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C 71-butyric acid methyl ester (PC 71BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current. © 2012 American

  3. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.

    Science.gov (United States)

    Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.

  4. Design and analysis of planar spiral resonator bandstop filter for microwave frequency

    Science.gov (United States)

    Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad

    2017-11-01

    In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.

  5. Analysis and Synthesis of Leaky-Wave Devices in Planar Technology

    Science.gov (United States)

    Martinez Ros, Alejandro Javier

    The work developed along this doctoral thesis has been focused on the analysis and synthesis of microwave devices in planar technology. In particular, several types of devices based on the radiation mechanism of leaky waves have been studied. Typically, the radiation properties in leaky-wave devices are determined by the complex propagation constant of the leaky mode, wherein the phase constant is responsible for the pointing angle and the leakage rate for the intensity of the radiated fields. In this manner, by controlling both amplitude and phase of the leaky mode, an effective control over the device's radiation diagram can be obtained. Moreover, with the purpose of efficiently obtaining the leaky mode's radiation properties as function of the main geometrical parameters of the structure, several modal tools based on the transverse resonance analysis of the structure have been performed. In order to demonstrate this simultaneous control over the complex propagation constant in planar technology, several types of leaky-wave devices, including antennas (LWAs), multiplexors and near-field focusing systems, have been designed and manufactured in the technology of substrate integrated waveguide (SIW). This recently proposed technology, allows the design of devices based on classical waveguide technology with standard manufacturing techniques used for printed circuit board (PCB) designs. In this way, most of the parts that form a communication system can be integrated into a single substrate, thus reducing its cost and providing a more robust and compact device, which has less losses compared to other planar technologies such as the microstrip. El trabajo llevado a cabo durante la realizacion de esta tesis doctoral, se ha centrado en el analisis y sintesis de dispositivos de microondas en tecnologia planar. En concreto, se han estudiado diferentes tipos de dispositivos basados en radiacion por ondas de fuga "leaky waves", en los cuales las propiedades de radiacion

  6. The Planar Sandwich and Other 1D Planar Heat Flow Test Problems in ExactPack

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    This report documents the implementation of several related 1D heat flow problems in the verification package ExactPack [1]. In particular, the planar sandwich class defined in Ref. [2], as well as the classes PlanarSandwichHot, PlanarSandwichHalf, and other generalizations of the planar sandwich problem, are defined and documented here. A rather general treatment of 1D heat flow is presented, whose main results have been implemented in the class Rod1D. All planar sandwich classes are derived from the parent class Rod1D.

  7. Proposal of limit moment equation applicable to planar/non-planar flaw in wall thinned pipes under bending

    International Nuclear Information System (INIS)

    Tsuji, Masataka; Meshii, Toshiyuki

    2011-01-01

    Highlights: → A limit moment equation applicable to planar/non-planar flaw of 0 ≤ θ ≤ π found in wall thinned straight pipes was proposed. → An idea to rationally classify planar/non-planar flaw in wall thinned pipes was proposed. → The equation based on the experimental observation focused on the fracture mode. - Abstract: In this paper, a limit bending moment equation applicable to all types of planar and non-planar flaws in wall-thinned straight pipes under bending was proposed. A system to rationally classify the planar/non-planar flaws in wall-thinned pipes was suggested based on experimental observations focused on the fracture mode. The results demonstrate the importance of distinguishing between axial and circumferential long flaws in wall-thinned pipes.

  8. Ion-damage-free planarization or shallow angle sectioning of solar cells for mapping grain orientation and nanoscale photovoltaic properties

    Science.gov (United States)

    Kutes, Yasemin; Luria, Justin; Sun, Yu; Moore, Andrew; Aguirre, Brandon A.; Cruz-Campa, Jose L.; Aindow, Mark; Zubia, David; Huey, Bryan D.

    2017-05-01

    Ion beam milling is the most common modern method for preparing specific features for microscopic analysis, even though concomitant ion implantation and amorphization remain persistent challenges, particularly as they often modify materials properties of interest. Atomic force microscopy (AFM), on the other hand, can mechanically mill specific nanoscale regions in plan-view without chemical or high energy ion damage, due to its resolution, directionality, and fine load control. As an example, AFM-nanomilling (AFM-NM) is implemented for top-down planarization of polycrystalline CdTe thin film solar cells, with a resulting decrease in the root mean square (RMS) roughness by an order of magnitude, even better than for a low incidence FIB polished surface. Subsequent AFM-based property maps reveal a substantially stronger contrast, in this case of the short-circuit current or open circuit voltage during light exposure. Electron back scattering diffraction (EBSD) imaging also becomes possible upon AFM-NM, enabling direct correlations between the local materials properties and the polycrystalline microstructure. Smooth shallow-angle cross-sections are demonstrated as well, based on targeted oblique milling. As expected, this reveals a gradual decrease in the average short-circuit current and maximum power as the underlying CdS and electrode layers are approached, but a relatively consistent open-circuit voltage through the diminishing thickness of the CdTe absorber. AFM-based nanomilling is therefore a powerful tool for material characterization, uniquely providing ion-damage free, selective area, planar smoothing or low-angle sectioning of specimens while preserving their functionality. This enables novel, co-located advanced AFM measurements, EBSD analysis, and investigations by related techniques that are otherwise hindered by surface morphology or surface damage.

  9. Variability in DMSA reporting following urinary tract infection in children: pinhole, planar, and pinhole with planar

    International Nuclear Information System (INIS)

    Rossleigh, M.A.; Christian, C.L.; Craig, J.C.; Howman-Giles, R.B.; Grunewald, S.

    2004-01-01

    Purpose: To determine whether the provision of DMSA images obtained by pinhole collimation reduces inter-observer variability of reporting compared with planar DMSA images alone. Methods: One hundred consecutive DMSA images were independently interpreted three times (pinhole alone, planar alone, pinhole and planar) by four participating nuclear medicine specialists from different departments and in random order. The presence or absence of renal parenchymal abnormality was classified using the modified four level grading system of Goldraich with mean values for the 6 comparisons reported. Results: The proportion of DMSA images interpreted as abnormal was 31% for planar, 34% for pinhole and 33% for planar with pinhole. Agreement was 89% for planar alone, 89% for pinhole alone and 90% for planar with pinhole, with kappa values 0.74, 0.75 and 0.80 respectively for the normal-abnormal scan classification of individual children. These results did not vary appreciably whether interpretation of patients, kidneys or kidney zones was compared. Reasons for disagreement in reporting included different interpretations of 'abnormalities' as normal anatomical variations (splenic impression, fetal lobulation, duplex collecting systems, column of Bertin) or true parenchymal abnormalities, different adjustments in thresholds for reporting abnormality when images were technically suboptimal, different weighting given to pinhole and planar images when both were provided, and error. Conclusion: Four experienced nuclear medicine physicians showed substantial agreement in the interpretation of planar alone, pinhole alone and planar with pinhole DMSA images, but the provision of both sets of images, planar and pinhole, did not reduce variability. (authors)

  10. Compact and high-sensitivity 100-Gb/s (4 × 25 Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer.

    Science.gov (United States)

    Yoshimatsu, Toshihide; Nada, Masahiro; Oguma, Manabu; Yokoyama, Haruki; Ohno, Tetsuichiro; Doi, Yoshiyuki; Ogawa, Ikuo; Takahashi, Hiroshi; Yoshida, Eiji

    2012-12-10

    We demonstrate an integrated 100 GbE receiver optical sub-assembly (ROSA) that incorporates a monolithic four-channel avalanche photodiode (APD) array and a planer lightwave circuit (PLC) based LAN-WDM demultiplexer. A record minimum receiver sensitivity of -20 dBm and 50-km error-free SMF transmission without an optical amplifier have been achieved.

  11. Phosphorus diffusion with the help of the solid planar source in the manufacturing of the integrated circuits

    Directory of Open Access Journals (Sweden)

    B. A. Shangereeva

    2008-02-01

    Full Text Available The results of the development and realization of the basic process of the phosphorus diffusion for the formation of the active region of the power silicon transistor have been considered. It is shown that the obtained optimum technological conditions of the phosphorus diffusion using solid planar source allow to get the transistors with improved electrophysical parameters.

  12. A SQUID gradiometer module with wire-wound pickup antenna and integrated voltage feedback circuit

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Guofeng [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yi, E-mail: y.zhang@fz-juelich.de [Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Zhang Shulin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Krause, Hans-Joachim [Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); and others

    2012-10-15

    The performance of the direct readout schemes for dc SQUID, Additional Positive Feedback (APF), noise cancellation (NC) and SQUID bootstrap circuit (SBC), have been studied in conjunction with planar SQUID magnetometers. In this paper, we examine the NC technique applied to a niobium SQUID gradiometer module with an Nb wire-wound antenna connecting to a dual-loop SQUID chip with an integrated voltage feedback circuit for suppression of the preamplifier noise contribution. The sensitivity of the SQUID gradiometer module is measured to be about 1 fT/(cm {radical}Hz) in the white noise range in a magnetically shielded room. Using such gradiometer, both MCG and MEG signals are recorded.

  13. How to draw a planarization

    NARCIS (Netherlands)

    Bläsius, T.; Radermacher, M.; Rutter, I.; Steffen, B.; Baier, C.; van den Brand, M.; Eder, J.; Hinchey, M.; Margaria, T.

    2017-01-01

    We study the problem of computing straight-line drawings of non-planar graphs with few crossings. We assume that a crossing-minimization algorithm is applied first, yielding a planarization, i.e., a planar graph with a dummy vertex for each crossing, that fixes the topology of the resulting drawing.

  14. Prospects of Ternary Cd1-x Zn x S as an Electron Transport Layer and Associated Interface Defects in a Planar Lead Halide Perovskite Solar Cell via Numerical Simulation

    Science.gov (United States)

    Chowdhury, Towhid Hossain; Ferdaous, Mohammad Tanvirul; Wadi, Mohd. Aizat Abdul; Chelvanathan, Puvaneswaran; Amin, Nowshad; Islam, Ashraful; Kamaruddin, Nurhafiza; Zin, Muhammad Irsyamuddin M.; Ruslan, Mohd Hafidz; Sopian, Kamaruzzaman Bin; Akhtaruzzaman, Md.

    2018-03-01

    In this study we present a ternary alloy, Cd1-x Zn x S as an electron transport layer for a planar lead halide perovskite solar cell via numerical simulation with solar cell capacitance simulator (SCAPS) software. Performance dependence on molar composition variation in the Cd1-x Zn x S alloy was studied for the mixed perovskite CH3NH3PbI3-x Cl x absorber and spiro-OMeTAD hole transport material in a planar perovskite solar cell. Additionally, the defects on both Cd1-x Zn x S/CH3NH3PbI3-x Cl x and CH3NH3PbI3-x Cl x /spiro-OMeTAD interface were thoroughly investigated. Simultaneously, a thickness of 700 nm for CH3NH3PbI3-x Cl x absorber with 50-nm-thick Cd0.2Zn0.8S (x = 0.8) was optimized. Analysis of the numerical solutions via SCAPS provides a trend and pattern for Cd0.2Zn0.8S as an effective electron transport layer for planar perovskite solar cells with a yield efficiency up to 24.83%. The planar perovskite solar cell shows an open-circuit voltage of 1.224 V, short-circuit current density of 25.283 mA/cm2 and a fill factor of 80.22.

  15. Design of special planar linkages

    CERN Document Server

    Zhao, Jing-Shan; Ma, Ning; Chu, Fulei

    2013-01-01

    Planar linkages play a very important role in mechanical engineering. As the simplest closed chain mechanisms, planar four-bar linkages are widely used in mechanical engineering, civil engineering and aerospace engineering.Design of Special Planar Linkages proposes a uniform design theory for planar four-bar linkages. The merit of the method proposed in this book is that it allows engineers to directly obtain accurate results when there are such solutions for the specified n precise positions; otherwise, the best approximate solutions will be found. This book discusses the kinematics and reach

  16. Wirelessly powered electrowetting-on-dielectric (EWOD) by planar receiver coils

    Science.gov (United States)

    Byun, Sang Hyun; Yuan, Junqi; Yoon, Myung Gon; Cho, Sung Kwon

    2015-03-01

    Electrowetting-on-dielectric (EWOD) is one of the most versatile methods used to control the wettability of liquids using electrical input. In most applications, EWOD is applied using physical wiring, which may restrict its application to implantable EWOD devices. In order to resolve this issue, we have studied and developed a wirelessly powered EWOD by using planar coils at the receiver that are fabricated out of a printed circuit board (PCB) by means of standard micro photolithography. Unlike conventional, bulky, spool coil type, the planar coil type lends itself to compact design and easy integration with EWOD chips. The present wireless powering principle is based on magnetic induction, which is very efficient when the transmitter and receiver coils are close to each other. The voltage obtained at the receiver is much higher than typically required EWOD voltages (>50 V) using a high transmission frequency (~MHz). The span of the EWOD contact angle is over 40°. In addition, amplitude modulation (AM) is implemented in the present wireless powering setup, followed by demodulation, in order to oscillate droplets at low frequency. This technique ensures smooth and reliable droplet movements. The wirelessly powered EWOD is used to transport a droplet and is mounted in a mini-boat which it powers and propels.

  17. An analysis of the operation of a single-pole relay integrated circuit device with a controlled reset ratio

    Energy Technology Data Exchange (ETDEWEB)

    Reshetov, N.E.

    1980-01-01

    Relay equipment using semiconductor components (such as those containing gates using planar transformers, and a relay in networks which control the operational time of a relay) are widely used in the automation equipment of electric power systems. A scheme where a gate in the form of an integrated circuit is used is given.

  18. Covalent functionalization of octagraphene with magnetic octahedral B6- and non-planar C6- clusters

    Science.gov (United States)

    Chigo-Anota, E.; Cárdenas-Jirón, G.; Salazar Villanueva, M.; Bautista Hernández, A.; Castro, M.

    2017-10-01

    The interaction between the magnetic boron octahedral (B6-) and non-planar (C6-) carbon clusters with semimetal nano-sheet of octa-graphene (C64H24) in the gas phase is studied by means of DFT calculations. These results reveal that non-planar-1 (anion) carbon cluster exhibits structural stability, low chemical reactivity, magnetic (1.0 magneton bohr) and semiconductor behavior. On the other hand, there is chemisorption phenomena when the stable B6- and C6- clusters are absorbed on octa-graphene nanosheets. Such absorption generates high polarity and the low-reactivity remains as on the individual pristine cases. Electronic charge transference occurs from the clusters toward the nanosheets, producing a reduction of the work function for the complexes and also induces a magnetic behavior on the functionalized sheets. The quantum descriptors obtained for these systems reveal that they are feasible candidates for the design of molecular circuits, magnetic devices, and nano-vehicles for drug delivery.

  19. Non-planar ABJ theory and parity

    International Nuclear Information System (INIS)

    Caputa, Pawel; Kristjansen, Charlotte; Zoubos, Konstantinos

    2009-01-01

    While the ABJ Chern-Simons-matter theory and its string theory dual manifestly lack parity invariance, no sign of parity violation has so far been observed on the weak coupling spin chain side. In particular, the planar two-loop dilatation generator of ABJ theory is parity invariant. In this Letter we derive the non-planar part of the two-loop dilatation generator of ABJ theory in its SU(2)xSU(2) sub-sector. Applying the dilatation generator to short operators, we explicitly demonstrate that, for operators carrying excitations on both spin chains, the non-planar part breaks parity invariance. For operators with only one type of excitation, however, parity remains conserved at the non-planar level. We furthermore observe that, as for ABJM theory, the degeneracy between planar parity pairs is lifted when non-planar corrections are taken into account.

  20. Non-planar ABJ Theory and Parity

    DEFF Research Database (Denmark)

    Caputa, Pawel; Kristjansen, Charlotte; Zoubos, Konstantinos

    2009-01-01

    we derive the non-planar part of the two-loop dilatation generator of ABJ theory in its SU(2)xSU(2) sub-sector. Applying the dilatation generator to short operators, we explicitly demonstrate that, for operators carrying excitations on both spin chains, the non-planar part breaks parity invariance......While the ABJ Chern-Simons-matter theory and its string theory dual manifestly lack parity invariance, no sign of parity violation has so far been observed on the weak coupling spin chain side. In particular, the planar two-loop dilatation generator of ABJ theory is parity invariant. In this letter....... For operators with only one type of excitation, however, parity remains conserved at the non-planar level. We furthermore observe that, as for ABJM theory, the degeneracy between planar parity pairs is lifted when non-planar corrections are taken into account....

  1. A Demonstrator Analog Signal Processing Circuit in a Radiation Hard SOI-CMOS Technology

    CERN Multimedia

    2002-01-01

    % RD-9 A Demonstrator Analog Signal Processing Circuit in a Radiation Hard SOI-CMOS Technology \\\\ \\\\Radiation hardened SOI-CMOS (Silicon-On-Insulator, Complementary Metal-Oxide- \\linebreak Semiconductor planar microelectronic circuit technology) was a likely candidate technology for mixed analog-digital signal processing electronics in experiments at the future high luminosity hadron colliders. We have studied the analog characteristics of circuit designs realized in the Thomson TCS radiation hard technologies HSOI3-HD. The feature size of this technology was 1.2 $\\mu$m. We have irradiated several devices up to 25~Mrad and 3.10$^{14}$ neutrons cm$^{-2}$. Gain, noise characteristics and speed have been measured. Irradiation introduces a degradation which in the interesting bandwidth of 0.01~MHz~-~1~MHz is less than 40\\%. \\\\ \\\\Some specific SOI phenomena have been studied in detail, like the influence on the noise spectrum of series resistence in the thin silicon film that constitutes the body of the transistor...

  2. A Novel Method for Proximity Detection of Moving Targets Using a Large-Scale Planar Capacitive Sensor System

    Directory of Open Access Journals (Sweden)

    Yong Ye

    2016-05-01

    Full Text Available A novel method for proximity detection of moving targets (with high dielectric constants using a large-scale (the size of each sensor is 31 cm × 19 cm planar capacitive sensor system (PCSS is proposed. The capacitive variation with distance is derived, and a pair of electrodes in a planar capacitive sensor unit (PCSU with a spiral shape is found to have better performance on sensitivity distribution homogeneity and dynamic range than three other shapes (comb shape, rectangular shape, and circular shape. A driving excitation circuit with a Clapp oscillator is proposed, and a capacitance measuring circuit with sensitivity of 0.21 V p − p / pF is designed. The results of static experiments and dynamic experiments demonstrate that the voltage curves of static experiments are similar to those of dynamic experiments; therefore, the static data can be used to simulate the dynamic curves. The dynamic range of proximity detection for three projectiles is up to 60 cm, and the results of the following static experiments show that the PCSU with four neighboring units has the highest sensitivity (the sensitivities of other units are at least 4% lower; when the attack angle decreases, the intensity of sensor signal increases. This proposed method leads to the design of a feasible moving target detector with simple structure and low cost, which can be applied in the interception system.

  3. 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF

    Science.gov (United States)

    Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta; hide

    2012-01-01

    GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.

  4. Planar graphs theory and algorithms

    CERN Document Server

    Nishizeki, T

    1988-01-01

    Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.

  5. Receiver Architecture for 12.5 Gb/s 16-ary Pulse Position Modulation (PPM) Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Gagliardi, R M; Hernandez, V J; Bennett, C V

    2008-07-11

    PPM is a signaling scheme that enables the transmission of multiple bits per symbol [1]. It has found favor in the regime of free space optical communications ('FSO' or 'Lasercom'); however, PPM has yet to be widely applied to fiber optic-based communications. Its limitation in fiber results from the exceedingly high bandwidth requirements needed to electronically process a directly detected pulse, especially as the symbol rate increases and the pulse width correspondingly decreases. As a solution, we introduced the concept of a virtual quadrant receiver for receiving 1.25 Gb/s 4-ary PPM, where photonic processing reduced the number of required electronic components [2]. In this paper, we extend these photonic process techniques to a 16-ary, 12.5 Gb/s (10 Gb/s plus 8B/10B line coding) PPM communications system for fiber optic avionics, wherein much of the receiver processing is enabled by techniques based on planar lightwave circuits (PLCs). The architecture is applicable to higher input data rates and M-ary PPM. In the following, we present the PPM encoding and decoding architectures and numerically simulated results.

  6. Microwave-signal generation in a planar Gunn diode with radiation exposure taken into account

    Energy Technology Data Exchange (ETDEWEB)

    Obolenskaya, E. S., E-mail: bess009@mail.ru, E-mail: obolensk@rf.unn.ru; Tarasova, E. A.; Churin, A. Yu.; Obolensky, S. V. [Lobachevsky State University of Nizhny Novgorod (NNSU) (Russian Federation); Kozlov, V. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-12-15

    Microwave-signal generation in planar Gunn diodes with a two-dimensional electron gas, in which we previously studied steady-state electron transport, is theoretically studied. The applicability of a control electrode similar to a field-effect transistor gate to control the parameters of the output diode microwave signal is considered. The results of physical-topological modeling of semiconductor structures with different diode active-region structures, i.e., without a quantum well, with one and two quantum wells separated by a potential barrier, are compared. The calculated results are compared with our previous experimental data on recording Gunn generation in a Schottky-gate field-effect transistor. It is theoretically and experimentally shown that the power of the signal generated by the planar Gunn diode with a quantum well and a control electrode is sufficient to implement monolithic integrated circuits of different functionalities. It is theoretically and experimentally shown that the use of a control electrode on account of the introduction of corrective feedback allows a significant increase in the radiation resistance of a microwave generator with Schottky-gate field-effect transistors.

  7. Microwave-signal generation in a planar Gunn diode with radiation exposure taken into account

    International Nuclear Information System (INIS)

    Obolenskaya, E. S.; Tarasova, E. A.; Churin, A. Yu.; Obolensky, S. V.; Kozlov, V. A.

    2016-01-01

    Microwave-signal generation in planar Gunn diodes with a two-dimensional electron gas, in which we previously studied steady-state electron transport, is theoretically studied. The applicability of a control electrode similar to a field-effect transistor gate to control the parameters of the output diode microwave signal is considered. The results of physical-topological modeling of semiconductor structures with different diode active-region structures, i.e., without a quantum well, with one and two quantum wells separated by a potential barrier, are compared. The calculated results are compared with our previous experimental data on recording Gunn generation in a Schottky-gate field-effect transistor. It is theoretically and experimentally shown that the power of the signal generated by the planar Gunn diode with a quantum well and a control electrode is sufficient to implement monolithic integrated circuits of different functionalities. It is theoretically and experimentally shown that the use of a control electrode on account of the introduction of corrective feedback allows a significant increase in the radiation resistance of a microwave generator with Schottky-gate field-effect transistors.

  8. Two new planar coil designs for a high pressure radio frequency plasma source

    Science.gov (United States)

    Munsat, T.; Hooke, W. M.; Bozeman, S. P.; Washburn, S.

    1995-04-01

    Two planar coil designs for a high pressure rf plasma source are investigated using spectroscopic techniques and circuit analysis. In an Ar plasma a truncated version of the commonly used ``spiral'' coil is found to produce improvements in peak electron density of 20% over the full version. A coil with figure-8 geometry is found to move plasma inhomogeneities off of center and produce electron densities comparable to the spiral coils. Both of these characteristics are advantageous in industrial applications. Coil design characteristics for favorable power coupling are also determined, including the necessity of closed hydrodynamic plasma loops and the drawback of closely situated antiparallel coil currents.

  9. In vitro quantification of the performance of model-based mono-planar and bi-planar fluoroscopy for 3D joint kinematics estimation.

    Science.gov (United States)

    Tersi, Luca; Barré, Arnaud; Fantozzi, Silvia; Stagni, Rita

    2013-03-01

    Model-based mono-planar and bi-planar 3D fluoroscopy methods can quantify intact joints kinematics with performance/cost trade-off. The aim of this study was to compare the performances of mono- and bi-planar setups to a marker-based gold-standard, during dynamic phantom knee acquisitions. Absolute pose errors for in-plane parameters were lower than 0.6 mm or 0.6° for both mono- and bi-planar setups. Mono-planar setups resulted critical in quantifying the out-of-plane translation (error bi-planar in quantifying the rotation along bone longitudinal axis (error bi-planar (error comparable to bi-planar, but with halved computational costs, halved segmentation time and halved ionizing radiation dose. Bi-planar analysis better compensated for the out-of-plane uncertainty that is differently propagated to relative kinematics depending on the setup. To take its full benefits, the motion task to be investigated should be designed to maintain the joint inside the visible volume introducing constraints with respect to mono-planar analysis.

  10. MCM Polarimetric Radiometers for Planar Arrays

    Science.gov (United States)

    Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd

    2007-01-01

    A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase

  11. Planar versus bulk heterojunction perovskite microstructures: Impact of morphology on photovoltaic properties and recombination dynamics

    Science.gov (United States)

    Singh, Ranbir; Shukla, Vivek Kumar

    2018-05-01

    In this work, we compare the planar and bulk heterojunction (BHJ) perovskite thin films for their morphologies, photovoltaic properties, and recombination dynamics. The BHJ perovskite thin films were prepared with the addition of fullerene derivative [6, 6]-Phenyl-C60 butyric acid methyl ester (PC60BM). The addition of PC60BM in perovskite provides a pinhole free film with high absorption coefficient and better charge transfer. The solar cells fabricated with BHJ perovskite exhibits power conversion efficiency (PCE) of 13.5%, with remarkably increased short-circuit current density (JSC) of 20.1 mAcm-2 and reduced recombination rate.

  12. Equivalent circuit models of two-layer flexure beams with excitation by temperature, humidity, pressure, piezoelectric or piezomagnetic interactions

    Directory of Open Access Journals (Sweden)

    U. Marschner

    2014-09-01

    Full Text Available Two-layer flexure beams often serve as basic transducers in actuators and sensors. In this paper a generalized description of their stimuli-influenced mechanical behavior is derived. For small deflection angles this description includes a multi-port circuit or network representation with lumped elements for a beam part of finite length. A number of coupled finite beam parts model the dynamic behavior including the first natural frequencies of the beam. For piezoelectric and piezomagnetic interactions, reversible transducer models are developed. The piezomagnetic two-layer beam model is extended to include solenoid and planar coils. Linear network theory is applied in order to determine network parameters and to simplify the circuit representation. The resulting circuit model is the basis for a fast simulation of the dynamic system behavior with advanced circuit simulators and, thus, the optimization of the system. It is also a useful tool for understanding and explaining this multi-domain system through basic principles of general system theory.

  13. The design and manufacture of a notch structure for a planar InP Gunn diode

    International Nuclear Information System (INIS)

    Bai Yang; Jia Rui; Wu De-Qi; Jin Zhi; Liu Xin-Yu

    2013-01-01

    A planar InP-based Gunn diode with a notch doping structure is designed and fabricated for integration into millimeter-wave and terahertz integrated circuits. We design two kinds of InP-based Gunn diodes. One has a fixed diameter of cathode area, but has variable spacing between anode and cathode; the other has fixed spacing, but a varying diameter. The threshold voltage and saturated current exhibit their strong dependences on the spacing (10 μm–20 μm) and diameter (40 μm–60 μm) of the InP Gunn diode. The threshold voltage is approximately 4.5 V and the saturated current is in a range of 293 mA–397 mA. In this work, the diameter of the diode and the space between anode and cathode are optimized. The devices are fabricated using a wet etching technique and show excellent performances. The results strongly suggest that low-cost and reliable InP planar Gunn diodes can be used as single chip terahertz sources. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Modeling the planar configuration of extraordinary magnetoresistance

    International Nuclear Information System (INIS)

    El-Ahmar, S; Pozniak, A A

    2015-01-01

    Recently the planar version of the extraordinary magnetoresistance (EMR) magnetic field sensor has been constructed and verified in practice. Planar configuration of the EMR device gives many technological advantages, it is simpler than the classic and allows one to build the sensor using electric materials of the new type (such as graphene or topological insulators) much easier. In this work the planar configuration of the EMR sensor is investigated by performing computational simulations using the finite element method (FEM). The computational comparison of the planar and classic configurations of EMR is presented using three-dimensional models. Various variants of the geometry of EMR sensor components are pondered and compared in the planar and classic version. Size of the metal overlap is considered for sensor optimization as well as various semiconductor-metal contact resistance dependences of the EMR signal. Based on computational simulations, a method for optimal placement of electric terminals in a planar EMR device is proposed. (paper)

  15. The importance of an external circuit in a particle-in-cell/Monte Carlo collisions model for a direct current planar magnetron

    International Nuclear Information System (INIS)

    Bultinck, E.; Kolev, I.; Bogaerts, A.; Depla, D.

    2008-01-01

    In modeling direct current (dc) discharges, such as dc magnetrons, a current-limiting device is often neglected. In this study, it is shown that an external circuit consisting of a voltage source and a resistor is inevitable in calculating the correct cathode current. Avoiding the external circuit can cause the current to converge (if at all) to a wrong volt-ampere regime. The importance of this external circuit is studied by comparing the results with those of a model without current-limiting device. For this purpose, a 2d3v particle-in-cell/Monte Carlo collisions model was applied to calculate discharge characteristics, such as cathode potential and current, particle fluxes and densities, and potential distribution in the plasma. It is shown that the calculated cathode current is several orders of magnitude lower when an external circuit is omitted, leading to lower charged particle fluxes and densities, and a wider plasma sheath. Also, it was shown, that only simulations with external circuit can bring the cathode current into a certain plasma regime, which has its own typical properties. In this work, the normal and abnormal regimes were studied

  16. Contracting a planar graph efficiently

    DEFF Research Database (Denmark)

    Holm, Jacob; Italiano, Giuseppe F.; Karczmarz, Adam

    2017-01-01

    the data structure, we can achieve optimal running times for decremental bridge detection, 2-edge connectivity, maximal 3-edge connected components, and the problem of finding a unique perfect matching for a static planar graph. Furthermore, we improve the running times of algorithms for several planar...

  17. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Eder, Peter; Fischer, Michael; Goetz, Jan; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Muenchen (Germany); Haeberlein, Max; Wulschner, Karl Friedrich [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Fedorov, Kirill; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-07-01

    In typical circuit QED systems, on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present studies on transmon qubits capacitively coupled to 3D cavities. The internal quality factors of our 3D cavities, machined out of high purity aluminum, are above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. For characterization of the sample, we perform dispersive shift measurements up to the third energy level of the qubit. We show simulations and data describing the effect of the transmon geometry on it's capacitive properties. In addition, we present progress towards an integrated quantum memory application.

  18. Inkjet-based adaptive planarization (Conference Presentation)

    Science.gov (United States)

    Singhal, Shrawan; Grigas, Michelle M.; Khusnatdinov, Niyaz; Sreenivasan, Srinivasan V.

    2017-03-01

    Planarization is a critical unit step in the lithography process because it enables patterning of surfaces with versatile pattern density without compromising on the stringent planarity and depth-of-focus requirements. In addition to nanoscale pattern density variation, parasitics such as pre-existing wafer topography, can corrupt the desired process output after planarization. The topography of any surface can be classified in three broad categories, depending upon the amplitude and spatial wavelength of the same [1], [2]: (i) nominal shape, (ii) nanotopography and (iii) roughness. The nominal shape is given by the largest spatial wavelengths, typically back is one technique used for micron scale device manufacturing [3]. As the name implies, a glass dielectric is spin-coated on the substrate followed by etching in a chemistry that ensures equal etching rates for both the sacrificial glass and the underlying film or substrate material. Photoresists may also be used instead of glass. However, the global planarity that can be achieved by this technique is limited. Also, planarization over a large isolated topographical feature has been studied for the reverse-tone Jet-and-Flash Imprint Lithography process, also known as JFIL-R [4]. This relies on surface tension and capillary effects to smoothen a spin-coated Si containing film that can be etched to obtain a smooth profile. To meet the stringent requirement of planarity in submicron device technologies Chemical Mechanical Planarization (CMP) is the most widely used planarization technology [5], [6]. It uses a combination of abrasive laden chemical slurry and a mechanical pad for achieving planar profiles. The biggest concern with CMP is the dependence of material removal rate on the pattern density of material, leading to the formation of a step between the high density and low-density. The step shows up as a long-range thickness variation in the planarized film, similar in scale to pre-existing substrate topography

  19. Compositional and electrical properties of line and planar defects in Cu(In,Ga)Se2 thin films for solar cells - a review

    International Nuclear Information System (INIS)

    Abou-Ras, Daniel; Schmidt, Sebastian S.; Schaefer, Norbert; Kavalakkatt, Jaison; Rissom, Thorsten; Unold, Thomas; Mainz, Roland; Weber, Alfons; Kirchartz, Thomas; Simsek Sanli, Ekin; Aken, Peter A. van; Ramasse, Quentin M.; Kleebe, Hans-Joachim; Azulay, Doron; Balberg, Isaac; Millo, Oded; Cojocaru-Miredin, Oana; Barragan-Yani, Daniel; Albe, Karsten; Haarstrich, Jakob; Ronning, Carsten

    2016-01-01

    The present review gives an overview of the various reports on properties of line and planar defects in Cu(In,Ga)(S,Se) 2 thin films for high-efficiency solar cells. We report results from various analysis techniques applied to characterize these defects at different length scales, which allow for drawing a consistent picture on structural and electronic defect properties. A key finding is atomic reconstruction detected at line and planar defects, which may be one mechanism to reduce excess charge densities and to relax deep-defect states from midgap to shallow energy levels. On the other hand, nonradiative Shockley-Read-Hall recombination is still enhanced with respect to defect-free grain interiors, which is correlated with substantial reduction of luminescence intensities. Comparison of the microscopic electrical properties of planar defects in Cu(In,Ga)(S,Se) 2 thin films with two-dimensional device simulations suggest that these defects are one origin of the reduced open-circuit voltage of the photovoltaic devices. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. An architecture for integrating planar and 3D cQED devices

    Energy Technology Data Exchange (ETDEWEB)

    Axline, C.; Reagor, M.; Heeres, R.; Reinhold, P.; Wang, C.; Shain, K.; Pfaff, W.; Chu, Y.; Frunzio, L.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2016-07-25

    Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter, and high-Q stripline resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.

  1. Low temperature processed planar heterojunction perovskite solar cells employing silver nanowires as top electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianhua; Li, Fushan, E-mail: fushanli@hotmail.com; Yang, Kaiyu; Veeramalai, Chandrasekar Perumal; Guo, Tailiang

    2016-04-30

    Graphical abstract: - Highlights: • All solution processed perovskite solar cells were realized with Ag nanowires. • ZnO nanoparticles were used as electron transport layer. • The solar cells showed a photovoltaic behavior with efficiency of 9.21%. • Device performance showed negligible difference between forward and reverse scan. - Abstract: In this paper, we reported a low temperature processed planar heterojunction perovskite solar cell employing silver nanowires as the top electrode and ZnO nanoparticles as the electron transport layer. The CH{sub 3}NH{sub 3}PbI{sub 3} perovskite was grown as the light absorber via two-step spin-coating technique. The as-fabricated perovskite solar cell exhibited the highest power conversion efficiency of 9.21% with short circuit current density of 19.75 mA cm{sup −2}, open circuit voltage of 1.02, and fill factor value of 0.457. The solar cell's performance showed negligible difference between the forward and reverse bias scan. This work paves a way for realizing low cost solution processable solar cells.

  2. Effects of K3[Fe(CN)6] slurry's pH value and applied potential on tungsten removal rate for chemical-mechanical planarization application

    Energy Technology Data Exchange (ETDEWEB)

    Akonko, S.B.; Li, D.Y.; Ziomek-Moroz, M.; Hawk, J.A.; Miller, A.; Cadien, K.

    2005-07-01

    Chemical-mechanical planarization (CMP) is an important process for building multilevel interconnections for electronic devices. Directly planarizing tungsten, which is used as via or contact in microelectronic circuits, by wear is a difficult process because of its high hardness. Therefore, an effective approach has been developed to facilitate planarizing tungsten surface by removing a continuously growing passive film on tungsten when exposed to a low-pH potassium ferricyanide slurry. Since the passive film is softer than tungsten, this chemical mechanical planarization process is effective. In this work, in order to determine effects of corrosion and wear on tungsten removal rate, attempts were made to investigate corrosion, wear, and corrosive wear behavior of tungsten in K3[Fe(CN)6] slurries. Electrochemical and tribological experiments were carried out for different slurry pH values and potentials using a rotating pin-on-disc tribometer. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize surface films formed at the different pH levels and potentials. It was demonstrated that the tungsten removal rate increased with increasing slurry pH and potential. Mechanisms involved are discussed.

  3. Piecewise planar Möbius bands

    DEFF Research Database (Denmark)

    Gravesen, Jens

    2005-01-01

    t is shown that a closed polygon with an odd number of vertices is the median of exactly one piecewise planar cylinder and one piecewise planar Möbius band, intersecting each other orthogonally. A closed polygon with an even number of vertices is in the generic case neither the median...

  4. Performance of a Planar Leaky-Wave Slit Antenna for Different Values of Substrate Thickness

    Directory of Open Access Journals (Sweden)

    Niamat Hussain

    2017-10-01

    Full Text Available This paper presents the performance of a planar, low-profile, and wide-gain-bandwidth leaky-wave slit antenna in different thickness values of high-permittivity gallium arsenide substrates at terahertz frequencies. The proposed antenna designs consisted of a periodic array of 5 × 5 metallic square patches and a planar feeding structure. The patch array was printed on the top side of the substrate, and the feeding structure, which is an open-ended leaky-wave slot line, was etched on the bottom side of the substrate. The antenna performed as a Fabry-Perot cavity antenna at high thickness levels (H = 160 μm and H = 80 μm, thus exhibiting high gain but a narrow gain bandwidth. At low thickness levels (H = 40 μm and H = 20 μm, it performed as a metasurface antenna and showed wide-gain-bandwidth characteristics with a low gain value. Aside from the advantage of achieving useful characteristics for different antennas by just changing the substrate thickness, the proposed antenna design exhibited a low profile, easy integration into circuit boards, and excellent low-cost mass production suitability.

  5. VHDL-AMS modelling and simulation of a planar electrostatic micromotor

    Science.gov (United States)

    Endemaño, A.; Fourniols, J. Y.; Camon, H.; Marchese, A.; Muratet, S.; Bony, F.; Dunnigan, M.; Desmulliez, M. P. Y.; Overton, G.

    2003-09-01

    System level simulation results of a planar electrostatic micromotor, based on analytical models of the static and dynamic torque behaviours, are presented. A planar variable capacitance (VC) electrostatic micromotor designed, fabricated and tested at LAAS (Toulouse) in 1995 is simulated using the high level language VHDL-AMS (VHSIC (very high speed integrated circuits) hardware description language-analog mixed signal). The analytical torque model is obtained by first calculating the overlaps and capacitances between different electrodes based on a conformal mapping transformation. Capacitance values in the order of 10-16 F and torque values in the order of 10-11 N m have been calculated in agreement with previous measurements and simulations from this type of motor. A dynamic model has been developed for the motor by calculating the inertia coefficient and estimating the friction-coefficient-based values calculated previously for other similar devices. Starting voltage results obtained from experimental measurement are in good agreement with our proposed simulation model. Simulation results of starting voltage values, step response, switching response and continuous operation of the micromotor, based on the dynamic model of the torque, are also presented. Four VHDL-AMS blocks were created, validated and simulated for power supply, excitation control, micromotor torque creation and micromotor dynamics. These blocks can be considered as the initial phase towards the creation of intellectual property (IP) blocks for microsystems in general and electrostatic micromotors in particular.

  6. Improved Dynamic Planar Point Location

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Arge, Lars; Georgiadis, Loukas

    2006-01-01

    We develop the first linear-space data structures for dynamic planar point location in general subdivisions that achieve logarithmic query time and poly-logarithmic update time.......We develop the first linear-space data structures for dynamic planar point location in general subdivisions that achieve logarithmic query time and poly-logarithmic update time....

  7. Planar impact experiments for EOS measurements

    International Nuclear Information System (INIS)

    Furnish, M.D.

    1993-01-01

    The community concerned with the numerical modeling of groundshock produced by underground nuclear tests must have access to materials data to benchmark models of rock behavior. Historically the primary source of these data has been planar impact experiments. These experiments have involved gun, explosive and electrical launchers. Other methods of introducing planar shocks include shock driving by in-contact explosives or laser bursts. This paper briefly describes gun launcher-based planar impact methods used to characterize geological materials at Sandia National Laboratories

  8. Compositional and electrical properties of line and planar defects in Cu(In,Ga)Se{sub 2} thin films for solar cells - a review

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Ras, Daniel; Schmidt, Sebastian S.; Schaefer, Norbert; Kavalakkatt, Jaison; Rissom, Thorsten; Unold, Thomas; Mainz, Roland; Weber, Alfons [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin (Germany); Kirchartz, Thomas [Forschungszentrum Juelich, Institut fuer Energie- und Klimaforschung (IEK-5), Photovoltaik, 52428, Juelich (Germany); Simsek Sanli, Ekin; Aken, Peter A. van [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart (Germany); Ramasse, Quentin M. [SuperSTEM Laboratory, SciTech Daresbury Campus, Keckwick Lane, Daresbury, WA4 4AD (United Kingdom); Kleebe, Hans-Joachim [Technische Universitaet Darmstadt, Institut fuer Angewandte Geowissenschaften, Schnittspahnstrasse 9, 64287, Darmstadt (Germany); Azulay, Doron; Balberg, Isaac; Millo, Oded [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Cojocaru-Miredin, Oana [RWTH Aachen, Physikalisches Institut IA, Sommerfeldstr. 14, 52074, Aachen (Germany); Barragan-Yani, Daniel; Albe, Karsten [Technische Universitaet Darmstadt, FG Materialmodellierung, Jovanka-Bontschits-Str. 2, 64287, Darmstadt (Germany); Haarstrich, Jakob; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich Schiller Universitaet Jena, Max-Wien-Platz 1, 07743, Jena (Germany)

    2016-05-15

    The present review gives an overview of the various reports on properties of line and planar defects in Cu(In,Ga)(S,Se){sub 2} thin films for high-efficiency solar cells. We report results from various analysis techniques applied to characterize these defects at different length scales, which allow for drawing a consistent picture on structural and electronic defect properties. A key finding is atomic reconstruction detected at line and planar defects, which may be one mechanism to reduce excess charge densities and to relax deep-defect states from midgap to shallow energy levels. On the other hand, nonradiative Shockley-Read-Hall recombination is still enhanced with respect to defect-free grain interiors, which is correlated with substantial reduction of luminescence intensities. Comparison of the microscopic electrical properties of planar defects in Cu(In,Ga)(S,Se){sub 2} thin films with two-dimensional device simulations suggest that these defects are one origin of the reduced open-circuit voltage of the photovoltaic devices. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Elegant Face-Down Liquid-Space-Restricted Deposition of CsPbBr3 Films for Efficient Carbon-Based All-Inorganic Planar Perovskite Solar Cells.

    Science.gov (United States)

    Teng, Pengpeng; Han, Xiaopeng; Li, Jiawei; Xu, Ya; Kang, Lei; Wang, Yangrunqian; Yang, Ying; Yu, Tao

    2018-03-21

    It is a great challenge to obtain the uniform films of bromide-rich perovskites such as CsPbBr 3 in the two-step sequential solution process (two-step method), which was mainly due to the decomposition of the precursor films in solution. Herein, we demonstrated a novel and elegant face-down liquid-space-restricted deposition to inhibit the decomposition and fabricate high-quality CsPbBr 3 perovskite films. This method is highly reproducible, and the surface of the films was smooth and uniform with an average grain size of 860 nm. As a consequence, the planar perovskite solar cells (PSCs) without the hole-transport layer based on CsPbBr 3 and carbon electrodes exhibit enhanced power conversion efficiency (PCE) along with high open circuit voltage ( V OC ). The champion device has achieved a PCE of 5.86% with a V OC of 1.34 V, which to our knowledge is the highest performing CsPbBr 3 PSC in planar structure. Our results suggest an efficient and low-cost route to fabricate the high-quality planar all-inorganic PSCs.

  10. Contact planarization of ensemble nanowires

    Science.gov (United States)

    Chia, A. C. E.; LaPierre, R. R.

    2011-06-01

    The viability of four organic polymers (S1808, SC200, SU8 and Cyclotene) as filling materials to achieve planarization of ensemble nanowire arrays is reported. Analysis of the porosity, surface roughness and thermal stability of each filling material was performed. Sonication was used as an effective method to remove the tops of the nanowires (NWs) to achieve complete planarization. Ensemble nanowire devices were fully fabricated and I-V measurements confirmed that Cyclotene effectively planarizes the NWs while still serving the role as an insulating layer between the top and bottom contacts. These processes and analysis can be easily implemented into future characterization and fabrication of ensemble NWs for optoelectronic device applications.

  11. Quality control on planar n-in-n pixel sensors — Recent progress of ATLAS planar pixel sensors

    International Nuclear Information System (INIS)

    Klingenberg, R.

    2013-01-01

    To extend the physics reach of the Large Hadron Collider (LHC), upgrades to the accelerator are planned which will increase the peak luminosity by a factor 5–10. To cope with the increased occupancy and radiation damage, the ATLAS experiment plans to introduce an all-silicon inner tracker with the high luminosity upgrade (HL-LHC). To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Upgrade Planar Pixel Sensor (PPS) R and D Project was established. Main areas of research are the performance of planar pixel sensors at highest fluences, the exploration of possibilities for cost reduction to enable the instrumentation of large areas, the achievement of slim or active edges to provide low geometric inefficiencies without the need for shingling of modules and the investigation of the operation of highly irradiated sensors at low thresholds to increase the efficiency. The Insertable b-layer (IBL) is the first upgrade project within the ATLAS experiment and will employ a new detector layer consisting of silicon pixel sensors, which were improved and prototyped in the framework of the planar pixel sensor R and D project. A special focus of this paper is the status of the development and testing of planar n-in-n pixel sensors including the quality control of the on-going series production and postprocessing of sensor wafers. A high yield of produced planar sensor wafers and FE-I4 double chip sensors after first steps of post-processing including under bump metallization and dicing is observed. -- Highlights: ► Prototypes of irradiated planar n-in-n sensors have been successfully tested under laboratory conditions. ► A quality assurance programme on the series production of planar sensors for the IBL has started. ► A high yield of double chip sensors during the series production is observed which are compatible to the specifications to this detector component.

  12. Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells.

    Science.gov (United States)

    Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon

    2016-07-28

    In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm(-2)), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved.

  13. Short- circuit tests of circuit breakers

    OpenAIRE

    Chorovský, P.

    2015-01-01

    This paper deals with short-circuit tests of low voltage electrical devices. In the first part of this paper, there are described basic types of short- circuit tests and their principles. Direct and indirect (synthetic) tests with more details are described in the second part. Each test and principles are explained separately. Oscilogram is obtained from short-circuit tests of circuit breakers at laboratory. The aim of this research work is to propose a test circuit for performing indirect test.

  14. Modified planar functions and their components

    DEFF Research Database (Denmark)

    Anbar Meidl, Nurdagül; Meidl, Wilfried Meidl

    2017-01-01

    functions in odd characteristic as a vectorial bent function. We finally point out that though these components behave somewhat different than the multivariate bent4 functions, they are bent or semibent functions shifted by a certain quadratic term, a property which they share with their multivariate......Zhou ([20]) introduced modified planar functions in order to describe (2n; 2n; 2n; 1) relative difference sets R as a graph of a function on the finite field F2n, and pointed out that projections of R are difference sets that can be described by negabent or bent4 functions, which are Boolean...... functions given in multivariate form. One of the objectives of this paper is to contribute to the understanding of these component functions of modified planar functions. Moreover, we obtain a description of modified planar functions by their components which is similar to that of the classical planar...

  15. Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows.

    Science.gov (United States)

    Piracha, Afaq H; Rath, Patrik; Ganesan, Kumaravelu; Kühn, Stefan; Pernice, Wolfram H P; Prawer, Steven

    2016-05-11

    Diamond has emerged as a promising platform for nanophotonic, optical, and quantum technologies. High-quality, single crystalline substrates of acceptable size are a prerequisite to meet the demanding requirements on low-level impurities and low absorption loss when targeting large photonic circuits. Here, we describe a scalable fabrication method for single crystal diamond membrane windows that achieves three major goals with one fabrication method: providing high quality diamond, as confirmed by Raman spectroscopy; achieving homogeneously thin membranes, enabled by ion implantation; and providing compatibility with established planar fabrication via lithography and vertical etching. On such suspended diamond membranes we demonstrate a suite of photonic components as building blocks for nanophotonic circuits. Monolithic grating couplers are used to efficiently couple light between photonic circuits and optical fibers. In waveguide coupled optical ring resonators, we find loaded quality factors up to 66 000 at a wavelength of 1560 nm, corresponding to propagation loss below 7.2 dB/cm. Our approach holds promise for the scalable implementation of future diamond quantum photonic technologies and all-diamond photonic metrology tools.

  16. Orientifold Planar Equivalence: The Chiral Condensate

    DEFF Research Database (Denmark)

    Armoni, Adi; Lucini, Biagio; Patella, Agostino

    2008-01-01

    The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric...

  17. Overview of Planar Magnetic Technology — Fundamental Properties

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2014-01-01

    The momentum towards high efficiency, high frequency, and high power density in power supplies limits wide use of conventional wire-wound magnetic components. This article gives an overview of planar magnetic technologies with respect to the development of modern power electronics. The major...... advantages and disadvantages in the use of planar magnetics for high frequency power converters are covered, and publications on planar magnetics are reviewed. A detailed survey of winding conduction loss, leakage inductance and winding capacitance for planar magnetics is presented so power electronics...

  18. Commutation circuit for an HVDC circuit breaker

    Science.gov (United States)

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  19. Generation of J_0-Bessel-Gauss beam by a heterogeneous refractive index map

    KAUST Repository

    San Roman Alerigi, Damian

    2012-07-01

    In this paper, we present the theoretical studies of a refractive index map to implement a Gauss to a J0-Bessel-Gauss convertor. We theoretically demonstrate the viability of a device that could be fabricated on a Si/Si1-yOy/Si1-x-yGexCy platform or by photo-refractive media. The proposed device is 200 ?m in length and 25 ?m in width, and its refractive index varies in controllable steps across the light propagation and transversal directions. The computed conversion efficiency and loss are 90%, and -0.457 dB, respectively. The theoretical results, obtained from the beam conversion efficiency, self-regeneration, and propagation through an opaque obstruction, demonstrate that a two-dimensional (2D) graded index map of the refractive index can be used to transform a Gauss beam into a J0-Bessel-Gauss beam. To the best of our knowledge, this is the first demonstration of such beam transformation by means of a 2D index-mapping that is fully integrable in silicon photonics based planar lightwave circuits (PLCs). The concept device is significant for the eventual development of a new array of technologies, such as micro optical tweezers, optical traps, beam reshaping and nonlinear beam diode lasers. © 2012 Optical Society of America.

  20. Generation of J_0-Bessel-Gauss beam by a heterogeneous refractive index map

    KAUST Repository

    San Roman Alerigi, Damian; Alsunaidi, Mohammad; Ben Slimane, Ahmed; Ng, Tien Khee; Ooi, Boon S.; Zhang, Yaping

    2012-01-01

    In this paper, we present the theoretical studies of a refractive index map to implement a Gauss to a J0-Bessel-Gauss convertor. We theoretically demonstrate the viability of a device that could be fabricated on a Si/Si1-yOy/Si1-x-yGexCy platform or by photo-refractive media. The proposed device is 200 ?m in length and 25 ?m in width, and its refractive index varies in controllable steps across the light propagation and transversal directions. The computed conversion efficiency and loss are 90%, and -0.457 dB, respectively. The theoretical results, obtained from the beam conversion efficiency, self-regeneration, and propagation through an opaque obstruction, demonstrate that a two-dimensional (2D) graded index map of the refractive index can be used to transform a Gauss beam into a J0-Bessel-Gauss beam. To the best of our knowledge, this is the first demonstration of such beam transformation by means of a 2D index-mapping that is fully integrable in silicon photonics based planar lightwave circuits (PLCs). The concept device is significant for the eventual development of a new array of technologies, such as micro optical tweezers, optical traps, beam reshaping and nonlinear beam diode lasers. © 2012 Optical Society of America.

  1. Some remarks on non-planar Feynman diagrams

    International Nuclear Information System (INIS)

    Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz

    2013-12-01

    Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.

  2. Some remarks on non-planar Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz [Silesia Univ., Katowice (Poland). Inst. of Physics; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-12-15

    Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.

  3. Planar InP-based Schottky barrier diodes for terahertz applications

    International Nuclear Information System (INIS)

    Zhou Jingtao; Yang Chengyue; Ge Ji; Jin Zhi

    2013-01-01

    Based on characteristics such as low barrier and high electron mobility of lattice matched In 0.53 Ga 0.47 As layer, InP-based Schottky barrier diodes (SBDs) exhibit the superiorities in achieving a lower turn-on voltage and series resistance in comparison with GaAs ones. Planar InP-based SBDs have been developed in this paper. Measurements show that a low forward turn-on voltage of less than 0.2 V and a cutoff frequency of up to 3.4 THz have been achieved. The key factors of the diode such as series resistance and the zero-biased junction capacitance are measured to be 3.32 Ω; and 9.1 fF, respectively. They are highly consistent with the calculated values. The performances of the InP-based SBDs in this work, such as low noise and low loss, are promising for applications in the terahertz mixer, multiplier and detector circuits. (semiconductor devices)

  4. Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers

    Science.gov (United States)

    Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R.; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H.; Davies, Alexander Giles; Linfield, Edmund H.; Liu, Hui Chun; Wang, Qi Jie

    2014-01-01

    We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors. PMID:25403796

  5. Planarity certification of ATLAS Micromegas detector panels

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Ralph; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard; Hertenberger, Ralf; Loesel, Philipp; Herrmann, Maximilian [LMU Muenchen (Germany); Zibell, Andre [JMU Wuerzburg (Germany)

    2016-07-01

    During the second long LHC shutdown, 2019/20, the precision tracking detectors of the ATLAS muon spectrometer in the inner end caps will be replaced using Micromegas, a planar gas-detector technology. Modules of 2 m{sup 2} area are built in quadruplets from five precisely planar sandwich panels that define the anodes and the cathodes of the four active detector planes. A panel is composed of three consecutive layers FR4 - aluminum honeycomb - FR4. Single plane spatial particle resolution below 100 μm is achievable when the deviations from planarity of the strip-anodes do not exceed 80 μm RMS over the whole active area and the parallelism of the readout strips is within 30 μm. In order to measure the dimensional accuracy of each panel, laser distance sensors combined with a coordinate measurement system have been investigated. The sensor requirements to measure the planarity of the panels are a resolution of 0.3 μm and a beam spot diameter of ∼20 μm, well below 100 μ m the size of the smallest structures. We report on achieved planarities of the panels and the performance of the laser sensor system. A panel with an RMS better than 30 μm was build and the evolution of its planarity due to humidity and temperature effects is shown.

  6. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  7. Measuring circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for measuring circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listings

  8. Yangian-type symmetries of non-planar leading singularities

    Energy Technology Data Exchange (ETDEWEB)

    Frassek, Rouven [Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Meidinger, David [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany)

    2016-05-18

    We take up the study of integrable structures behind non-planar contributions to scattering amplitudes in N = 4 super Yang-Mills theory. Focusing on leading singularities, we derive the action of the Yangian generators on color-ordered subsets of the external states. Each subset corresponds to a single boundary of the non-planar on-shell diagram. While Yangian invariance is broken, we find that higher-level Yangian generators still annihilate the non-planar on-shell diagram. For a given diagram, the number of these generators is governed by the degree of non-planarity. Furthermore, we present additional identities involving integrable transfer matrices. In particular, for diagrams on a cylinder we obtain a conservation rule similar to the Yangian invariance condition of planar on-shell diagrams. To exemplify our results, we consider a five-point MHV on-shell function on a cylinder.

  9. Planar heterojunction perovskite solar cell based on CdS electron transport layer

    KAUST Repository

    Abulikemu, Mutalifu

    2017-07-02

    We report on planar heterojunction perovskite solar cells employing a metal chalcogenide (CdS) electron transport layer with power conversion efficiency up to 10.8%. The CdS layer was deposited via solution-process chemical bath deposition at low-temperature (60°C). Pinhole-free and uniform thin films were obtained with good structural, optical and morphological properties. An optimal layer thickness of 60nm yielded an improved open-circuit voltage and fill factor compared to the standard TiO2-based solar cells. Devices showed a higher reproducibility of the results compared to TiO2-based ones. We also tested the effect of annealing temperature on the CdS film and the effect of CdCl2 treatment followed by high temperature annealing (410°C) that is expected to passivate the surface, thus eliminating eventual trap-states inducing recombination.

  10. Planar heterojunction perovskite solar cell based on CdS electron transport layer

    KAUST Repository

    Abulikemu, Mutalifu; Barbe, Jeremy; El Labban, Abdulrahman; Eid, Jessica; Del Gobbo, Silvano

    2017-01-01

    We report on planar heterojunction perovskite solar cells employing a metal chalcogenide (CdS) electron transport layer with power conversion efficiency up to 10.8%. The CdS layer was deposited via solution-process chemical bath deposition at low-temperature (60°C). Pinhole-free and uniform thin films were obtained with good structural, optical and morphological properties. An optimal layer thickness of 60nm yielded an improved open-circuit voltage and fill factor compared to the standard TiO2-based solar cells. Devices showed a higher reproducibility of the results compared to TiO2-based ones. We also tested the effect of annealing temperature on the CdS film and the effect of CdCl2 treatment followed by high temperature annealing (410°C) that is expected to passivate the surface, thus eliminating eventual trap-states inducing recombination.

  11. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg

    2001-01-01

    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...

  12. Planar Poincare chart - A planar graphic representation of the state of light polarization

    Science.gov (United States)

    Tedjojuwono, Ken K.; Hunter, William W., Jr.; Ocheltree, Stewart L.

    1989-01-01

    The planar Poincare chart, which represents the complete planar equivalence of the Poincare sphere, is proposed. The four sets of basic lines are drawn on two separate charts for the generalization and convenience of reading the scale. The chart indicates the rotation of the principal axes of linear birefringent material. The relationships between parameters of the two charts are given as 2xi-2phi (orientation angle of the major axis-ellipticity angle) pair and 2alpha-delta (angle of amplitude ratio-phase difference angle) pair. The results are useful for designing and analyzing polarization properties of optical components with birefringent properties.

  13. Resonance circuits for adiabatic circuits

    Directory of Open Access Journals (Sweden)

    C. Schlachta

    2003-01-01

    Full Text Available One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.

  14. Flat panel planar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  15. Energy efficient circuit design using nanoelectromechanical relays

    Science.gov (United States)

    Venkatasubramanian, Ramakrishnan

    Nano-electromechanical (NEM) relays are a promising class of emerging devices that offer zero off-state leakage and behave like an ideal switch. Recent advances in planar fabrication technology have demonstrated that microelectromechanical (MEMS) scale miniature relays could be manufactured reliably and could be used to build fully functional, complex integrated circuits. The zero leakage operation of relays has renewed the interest in relay based low power logic design. This dissertation explores circuit architectures using NEM relays and NEMS-CMOS heterogeneous integration. Novel circuit topologies for sequential logic, memory, and power management circuits have been proposed taking into consideration the NEM relay device properties and optimizing for energy efficiency and area. In nanoscale electromechanical devices, dispersion forces like Van der Waals' force (vdW) affect the pull-in stability of the relay devices significantly. Verilog-A electromechanical model of the suspended gate relay operating at 1V with a nominal air gap of 5 - 10nm has been developed taking into account all the electrical, mechanical and dispersion effects. This dissertation explores different relay based latch and flip-flop topologies. It has been shown that as few as 4 relay cells could be used to build flip-flops. An integrated voltage doubler based flip flop that improves the performance by 2X by overdriving Vgb has been proposed. Three NEM relay based parallel readout memory bitcell architectures have been proposed that have faster access time, and remove the reliability issues associated with previously reported serial readout architectures. A paradigm shift in design of power switches using NEM relays is proposed. An interesting property of the relay device is that the ON state resistance (Ron) of the NEM relay switch is constant and is insensitive to the gate slew rate. This coupled with infinite OFF state resistance (Roff ) offers significant area and power advantages over CMOS

  16. Planar Algebra of the Subgroup-Subfactor

    Indian Academy of Sciences (India)

    The crucial step in this identification is an exhibition of a model for the basic construction tower, and thereafter of the standard invariant of R ⋊ H ⊂ R ⋊ G in terms of operator matrices. We also obtain an identification between the planar algebra of the fixed algebra subfactor R G ⊂ R H and the -invariant planar subalgebra ...

  17. Syntheses of planar 1,5,2,4,6,8-dithiotetrazocine derivatives and thermodynamic study on intermolecular charge transfer for developing efficient organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao-Zhi, E-mail: zhangchaozhi@nuist.edu.cn [Department of Chemistry, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Shen, Dan [Department of Chemistry, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Yuan, Yang [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Song, Ming-Xia; Li, Shi-Juan [Department of Chemistry, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Cao, Hui, E-mail: yccaoh@hotmail.com [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044 (China)

    2016-07-01

    A series of planar 1,5,2,4,6,8-dithiotetrazocine derivatives were synthesized for study on charge transfer at donor/acceptor interface. The fluorescence quenching spectra, and the highest occupied molecular orbital (−6.10 ∼ −6.25 eV) and the lowest unoccupied molecular orbital (−3.45 ∼ −3.58 eV) energy levels of these 1,5,2,4,6,8-dithiotetrazocine derivatives show that they would be potential acceptor materials. Based on theoretical calculations, thermodynamic study on charge transfer at donor/acceptor interface was carried out. The results of experiments and theoretical calculations show that the electrons could transfer spontaneously from poly(3-hexylthiophene) to these acceptors. The percentages of fluorescence quenching increase with negative Gibbs free energy values increasing in the charge transfer procedures. Therefore, short circuit current values of organic solar cells would increase with the Gibbs free energy values increasing. This paper suggests a useful way for developing efficient organic solar cells. - Highlights: • Syntheses of planar 1,5,2,4,6,8-dithiotetrazocine derivatives for develop effective acceptor. • Electrons at excited state in P3HT could transfer spontaneously to these acceptors. • Thermodynamic study on charge transfer at donor/acceptor interface. • Short circuit currents would be predicted by Gibbs free energy in procedure of charge transfer.

  18. Technical errors in planar bone scanning.

    Science.gov (United States)

    Naddaf, Sleiman Y; Collier, B David; Elgazzar, Abdelhamid H; Khalil, Magdy M

    2004-09-01

    Optimal technique for planar bone scanning improves image quality, which in turn improves diagnostic efficacy. Because planar bone scanning is one of the most frequently performed nuclear medicine examinations, maintaining high standards for this examination is a daily concern for most nuclear medicine departments. Although some problems such as patient motion are frequently encountered, the degraded images produced by many other deviations from optimal technique are rarely seen in clinical practice and therefore may be difficult to recognize. The objectives of this article are to list optimal techniques for 3-phase and whole-body bone scanning, to describe and illustrate a selection of deviations from these optimal techniques for planar bone scanning, and to explain how to minimize or avoid such technical errors.

  19. Effects of Different Solvents on the Planar Hetero-junction Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Lin Shunquan

    2015-01-01

    Full Text Available The perovskite (CH3NH3PbI3 films on the planar hetero-junction perovskite solar cells (PHJ-PSCs are fabricated by “two-steps” process with the wet spin-coating method. The precursor (PbI2 solutions are compounded with 4 types of solvents: N-Methyl Pyrrolidone (NMP, γ-butyrolactone (GBL, Dimethyl Sulfoxide (DMSO and N, N-dimethylformamide (DMF. All the solutions have the same concentration. The influences of different precursor solvents to the micro-structures of CH3NH3PbI3 films and device performance are studied. Atomic force microscopy (AFM and scanning electron microscope (SEM are used to characterize the CH3NH3PbI3 films. The results indicate that the CH3NH3PbI3 film using DMF solvent possesses more rough morphology and thickest thickness. The monolithic PHJ-PSCs devices based on DMF solvent are tested under a standard one sun of simulated solar irradiation (AM1.5. The results show that the open-circuit voltage (Voc reaches 872mV, the short-circuit current (Jsc reaches 9.35mA/cm2, the filling factor(FF is 0.62 and the photo-current conversion efficiency (PCE is 5.05%. DMF is the best one among these 4 types of solvents for PHJ-PSCs.

  20. Project Circuits in a Basic Electric Circuits Course

    Science.gov (United States)

    Becker, James P.; Plumb, Carolyn; Revia, Richard A.

    2014-01-01

    The use of project circuits (a photoplethysmograph circuit and a simple audio amplifier), introduced in a sophomore-level electric circuits course utilizing active learning and inquiry-based methods, is described. The development of the project circuits was initiated to promote enhanced engagement and deeper understanding of course content among…

  1. Q factor of megahertz LC circuits based on thin films of YBaCuO high-temperature superconductor

    Science.gov (United States)

    Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.

    2008-05-01

    High-frequency properties of resonant structures based on thin films of YBa2Cu3O7 δ high-temperature superconductor are studied experimentally in the frequency range 30 100 MHz. The structures planar induction coils with a self-capacitance fabricated on neodymium gallate and lanthanum aluminate substrates. The unloaded Q factor of the circuits exceeds 2 × 105 at 77 K and 40 MHz. Possible loss mechanisms that determine the Q factor of the superconducting resonant structures in the megahertz range are considered.

  2. Fabrication of Si-based planar type patch clamp biosensor using silicon on insulator substrate

    International Nuclear Information System (INIS)

    Zhang, Z.L.; Asano, T.; Uno, H.; Tero, R.; Suzui, M.; Nakao, S.; Kaito, T.; Shibasaki, K.; Tominaga, M.; Utsumi, Y.; Gao, Y.L.; Urisu, T.

    2008-01-01

    The aim of this paper is to fabricate the planar type patch clamp ion-channel biosensor, which is suitable for the high throughput screening, using silicon-on-insulator (SOI) substrate. The micropore with 1.2 μm diameter is formed through the top Si layer and the SiO 2 box layer of the SOI substrate by focused ion beam (FIB). Then the substrate is assembled into the microfluidic circuit. The human embryonic kidney 293 (HEK-293) cell transfected with transient receptor potential vanilloid type 1 (TRPV1) is positioned on the micropore and the whole-cell configuration is formed by the suction. Capsaicin is added to the extracellular solution as a ligand molecule, and the channel current showing the desensitization unique to TRPV1 is measured successfully

  3. Planar Fully-Depleted-Silicon-On-Insulator technologies: Toward the 28 nm node and beyond

    Science.gov (United States)

    Doris, B.; DeSalvo, B.; Cheng, K.; Morin, P.; Vinet, M.

    2016-03-01

    This paper presents a comprehensive overview of the research done in the last decade on planar Fully-Depleted-Silicon-On-Insulator (FDSOI) technologies in the frame of the joint development program between IBM, ST Microelectronics and CEA-LETI. In particular, we review the technological developments ranging from substrate engineering to process modules that enable functionality and improve FDSOI performance over several generations. Various multi Vt integration schemes to maximize the benefits of the thin BOX FDSOI platform are discussed. Manufacturability as well as scalability concerns are highlighted and addressed. In addition, this work provides understanding of the performance/power trade-offs for FDSOI circuits and device variability. Finally, clear directions for future application-specific products are given, demonstrating that FDSOI is an attractive CMOS option for next generation high performance and low-power applications.

  4. Fabrication of Si-based planar type patch clamp biosensor using silicon on insulator substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.L.; Asano, T. [Graduate University for Advanced Studies, Myodaiji, Okazaki, 444-8585 (Japan); Uno, H. [Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 (Japan); Tero, R. [Graduate University for Advanced Studies, Myodaiji, Okazaki, 444-8585 (Japan); Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 (Japan); Suzui, M.; Nakao, S. [Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 (Japan); Kaito, T. [SII NanoTechnology Inc., 36-1, Takenoshita, Oyama-cho, Sunto-gun, Shizuoka, 410-1393 (Japan); Shibasaki, K.; Tominaga, M. [Okazaki Institute for Integrative Bioscience, 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787 (Japan); Utsumi, Y. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2, Koto, Kamigori, Ako-gun, Hyogo, 678-1205 (Japan); Gao, Y.L. [Department of Physics and Astronomy, Rochester University, Rochester, New York 14627 (United States); Urisu, T. [Graduate University for Advanced Studies, Myodaiji, Okazaki, 444-8585 (Japan); Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 (Japan)], E-mail: urisu@ims.ac.jp

    2008-03-03

    The aim of this paper is to fabricate the planar type patch clamp ion-channel biosensor, which is suitable for the high throughput screening, using silicon-on-insulator (SOI) substrate. The micropore with 1.2 {mu}m diameter is formed through the top Si layer and the SiO{sub 2} box layer of the SOI substrate by focused ion beam (FIB). Then the substrate is assembled into the microfluidic circuit. The human embryonic kidney 293 (HEK-293) cell transfected with transient receptor potential vanilloid type 1 (TRPV1) is positioned on the micropore and the whole-cell configuration is formed by the suction. Capsaicin is added to the extracellular solution as a ligand molecule, and the channel current showing the desensitization unique to TRPV1 is measured successfully.

  5. On Longest Cycles in Essentially 4-Connected Planar Graphs

    Directory of Open Access Journals (Sweden)

    Fabrici Igor

    2016-08-01

    Full Text Available A planar 3-connected graph G is essentially 4-connected if, for any 3-separator S of G, one component of the graph obtained from G by removing S is a single vertex. Jackson and Wormald proved that an essentially 4-connected planar graph on n vertices contains a cycle C such that . For a cubic essentially 4-connected planar graph G, Grünbaum with Malkevitch, and Zhang showed that G has a cycle on at least ¾ n vertices. In the present paper the result of Jackson and Wormald is improved. Moreover, new lower bounds on the length of a longest cycle of G are presented if G is an essentially 4-connected planar graph of maximum degree 4 or G is an essentially 4-connected maximal planar graph.

  6. Designing TSVs for 3D Integrated Circuits

    CERN Document Server

    Khan, Nauman

    2013-01-01

    This book explores the challenges and presents best strategies for designing Through-Silicon Vias (TSVs) for 3D integrated circuits.  It describes a novel technique to mitigate TSV-induced noise, the GND Plug, which is superior to others adapted from 2-D planar technologies, such as a backside ground plane and traditional substrate contacts. The book also investigates, in the form of a comparative study, the impact of TSV size and granularity, spacing of C4 connectors, off-chip power delivery network, shared and dedicated TSVs, and coaxial TSVs on the quality of power delivery in 3-D ICs. The authors provide detailed best design practices for designing 3-D power delivery networks.  Since TSVs occupy silicon real-estate and impact device density, this book provides four iterative algorithms to minimize the number of TSVs in a power delivery network. Unlike other existing methods, these algorithms can be applied in early design stages when only functional block- level behaviors and a floorplan are available....

  7. Planar half-cell shaped precursor body

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a half-cell shaped precursor body of either anode type or cathode type, the half-cell shaped precursor body being prepared to be free sintered to form a sintered or pre-sintered half-cell being adapted to be stacked in a solid oxide fuel cell stack. The obtained half......-cell has an improved planar shape, which remains planar also after a sintering process and during temperature fluctuations....

  8. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  9. Attractive planar panelization using dynamic relaxation principles

    NARCIS (Netherlands)

    Gauss, Florian; Teuffel, Patrick

    2015-01-01

    In the presented paper a new method is proposed to approximate a given NURBS surface with a PQ (Planar Quad) mesh. The desired mesh layout will be generated in then attracted to the target surface. The process iteratively pulls the mesh vertices towards the target surface and then planarizes the

  10. Planar Hall effect bridge magnetic field sensors

    DEFF Research Database (Denmark)

    Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.

    2010-01-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....

  11. Column Planarity and Partially-Simultaneous Geometric Embedding

    Czech Academy of Sciences Publication Activity Database

    Barba, L.; Evans, W.; Hoffmann, M.; Kusters, V.; Saumell, Maria; Speckmann, B.

    2017-01-01

    Roč. 21, č. 6 (2017), s. 983-1002 ISSN 1526-1719 Grant - others:GA MŠk(CZ) LO1506; GA MŠk(CZ) EE2.3.30.0038 Institutional support: RVO:67985807 Keywords : column planarity * unlabeled level planarity * simultaneous geometric embedding Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics

  12. Planar Elongation Measurements on Soft Elastomers

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Skov, Anne Ladegaard; Rasmussen, Henrik K.

    2009-01-01

    A new fixture to the filament stretch rheometer (FSR) has been developed to measure planar elongation of soft polymeric networks. To validate this new technique, soft polymeric networks of poly(propyleneoxide) (PPO) were investigated during deformation.......A new fixture to the filament stretch rheometer (FSR) has been developed to measure planar elongation of soft polymeric networks. To validate this new technique, soft polymeric networks of poly(propyleneoxide) (PPO) were investigated during deformation....

  13. Planar metasurface retroreflector

    Science.gov (United States)

    Arbabi, Amir; Arbabi, Ehsan; Horie, Yu; Kamali, Seyedeh Mahsa; Faraon, Andrei

    2017-07-01

    Metasurfaces are two-dimensional arrangements of subwavelength scatterers that control the propagation of optical waves. Here, we show that cascaded metasurfaces, each performing a predefined mathematical transformation, provide a new optical design framework that enables new functionalities not yet demonstrated with single metasurfaces. Specifically, we demonstrate that retroreflection can be achieved with two vertically stacked planar metasurfaces, the first performing a spatial Fourier transform and its inverse, and the second imparting a spatially varying momentum to the Fourier transform of the incident light. Using this concept, we fabricate and test a planar monolithic near-infrared retroreflector composed of two layers of silicon nanoposts, which reflects light along its incident direction with a normal incidence efficiency of 78% and a large half-power field of view of 60°. The metasurface retroreflector demonstrates the potential of cascaded metasurfaces for implementing novel high-performance components, and enables low-power and low-weight passive optical transmitters.

  14. Chaotic non-planar vibrations of the thin elastica. Part I: Experimental observation of planar instability

    Science.gov (United States)

    Cusumano, J. P.; Moon, F. C.

    1995-01-01

    In this two-part paper, the results of an investigation into the non-linear dynamics of a flexible cantilevered rod (the elastica) with a thin rectangular cross-section are presented. An experimental examination of the dynamics of the elastica over a broad parameter range forms the core of Part I. In Part II, the experimental work is related to a theoretical study of the mechanics of the elastica, and the study of a two-degree-of-freedom model obtained by modal projection. The experimental system used in this investigation is a rod with clamped-free boundary conditions, forced by sinusoidally displacing the clamped end. Planar periodic motions of the driven elastica are shown to lose stability at distinct resonant wedges, and the resulting motions are shown in general to be non-planar, chaotic, bending-torsion oscillations. Non-planar motions in all resonances exhibit energy cascading and dynamic two-well phenomena, and a family of asymmetric, bending-torsion non-linear modes is discovered. Correlation dimension calculations are used to estimate the number of active degrees of freedom in the system.

  15. Computational Study on a PTAS for Planar Dominating Set Problem

    Directory of Open Access Journals (Sweden)

    Qian-Ping Gu

    2013-01-01

    Full Text Available The dominating set problem is a core NP-hard problem in combinatorial optimization and graph theory, and has many important applications. Baker [JACM 41,1994] introduces a k-outer planar graph decomposition-based framework for designing polynomial time approximation scheme (PTAS for a class of NP-hard problems in planar graphs. It is mentioned that the framework can be applied to obtain an O(2ckn time, c is a constant, (1+1/k-approximation algorithm for the planar dominating set problem. We show that the approximation ratio achieved by the mentioned application of the framework is not bounded by any constant for the planar dominating set problem. We modify the application of the framework to give a PTAS for the planar dominating set problem. With k-outer planar graph decompositions, the modified PTAS has an approximation ratio (1 + 2/k. Using 2k-outer planar graph decompositions, the modified PTAS achieves the approximation ratio (1+1/k in O(22ckn time. We report a computational study on the modified PTAS. Our results show that the modified PTAS is practical.

  16. Belief propagation and loop series on planar graphs

    International Nuclear Information System (INIS)

    Chertkov, Michael; Teodorescu, Razvan; Chernyak, Vladimir Y

    2008-01-01

    We discuss a generic model of Bayesian inference with binary variables defined on edges of a planar graph. The Loop Calculus approach of Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R) [cond-mat/0601487]; 2006 J. Stat. Mech. P06009 [cond-mat/0603189]) is used to evaluate the resulting series expansion for the partition function. We show that, for planar graphs, truncating the series at single-connected loops reduces, via a map reminiscent of the Fisher transformation (Fisher 1961 Phys. Rev. 124 1664), to evaluating the partition function of the dimer-matching model on an auxiliary planar graph. Thus, the truncated series can be easily re-summed, using the Pfaffian formula of Kasteleyn (1961 Physics 27 1209). This allows us to identify a big class of computationally tractable planar models reducible to a dimer model via the Belief Propagation (gauge) transformation. The Pfaffian representation can also be extended to the full Loop Series, in which case the expansion becomes a sum of Pfaffian contributions, each associated with dimer matchings on an extension to a subgraph of the original graph. Algorithmic consequences of the Pfaffian representation, as well as relations to quantum and non-planar models, are discussed

  17. Ultra-low power integrated circuit design circuits, systems, and applications

    CERN Document Server

    Li, Dongmei; Wang, Zhihua

    2014-01-01

    This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices. Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers; Describes all key building blocks of ultra-low power circuits, from a systems perspective; Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.

  18. Planar quantum squeezing and atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    He, Q. Y.; Drummond, P. D.; Reid, M. D. [ARC Centre of Excellence for Quantum-Atom Optics, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Peng Shiguo [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2011-08-15

    We obtain a lower bound on the sum of two orthogonal spin component variances in a plane. This gives a planar uncertainty relation which holds even when the Heisenberg relation is not useful. We investigate the asymptotic, large-J limit and derive the properties of the planar quantum squeezed states that saturate this uncertainty relation. These states extend the concept of spin squeezing to any two conjugate spin directions. We show that planar quantum squeezing can be achieved experimentally as the ground state of a Bose-Einstein condensate in two coupled potential wells with a critical attractive interaction. These states reduce interferometric phase noise at all phase angles simultaneously. This is useful for one-shot interferometric phase measurements where the measured phase is completely unknown. Our results can also be used to derive entanglement criteria for multiple spins J at separated sites, with applications in quantum information.

  19. Searching for planar signatures in WMAP

    International Nuclear Information System (INIS)

    Abramo, L. Raul; Bernui, Armando; Pereira, Thiago S.

    2009-01-01

    We search for planar deviations of statistical isotropy in the Wilkinson Microwave Anisotropy Probe (WMAP) data by applying a recently introduced angular-planar statistics both to full-sky and to masked temperature maps, including in our analysis the effect of the residual foreground contamination and systematics in the foreground removing process as sources of error. We confirm earlier findings that full-sky maps exhibit anomalies at the planar (l) and angular (l) scales (l,l) = (2,5),(4,7), and (6,8), which seem to be due to unremoved foregrounds since this features are present in the full-sky map but not in the masked maps. On the other hand, our test detects slightly anomalous results at the scales (l,l) = (10,8) and (2,9) in the masked maps but not in the full-sky one, indicating that the foreground cleaning procedure (used to generate the full-sky map) could not only be creating false anomalies but also hiding existing ones. We also find a significant trace of an anomaly in the full-sky map at the scale (l,l) = (10,5), which is still present when we consider galactic cuts of 18.3% and 28.4%. As regards the quadrupole (l = 2), we find a coherent over-modulation over the whole celestial sphere, for all full-sky and cut-sky maps. Overall, our results seem to indicate that current CMB maps derived from WMAP data do not show significant signs of anisotropies, as measured by our angular-planar estimator. However, we have detected a curious coherence of planar modulations at angular scales of the order of the galaxy's plane, which may be an indication of residual contaminations in the full- and cut-sky maps

  20. Substrate and coating defect planarization strategies for high-laser-fluence multilayer mirrors

    International Nuclear Information System (INIS)

    Stolz, Christopher J.; Wolfe, Justin E.; Mirkarimi, Paul B.; Folta, James A.; Adams, John J.; Menor, Marlon G.; Teslich, Nick E.; Soufli, Regina; Menoni, Carmen S.; Patel, Dinesh

    2015-01-01

    Planarizing or smoothing over nodular defects in multilayer mirrors can be accomplished by a discrete deposit-and-etch process that exploits the angle-dependent etching rate of optical materials. Typically, nodular defects limit the fluence on mirrors irradiated at 1064 nm with 10 ns pulse lengths due to geometrically- and interference-induced light intensification. Planarized hafina/silica multilayer mirrors have demonstrated > 125 J/cm 2 laser resistance for single-shot testing and 50 J/cm 2 for multi-shot testing for nodular defects originating on the substrate surface. Two planarization methods were explored: thick planarization layers on the substrate surface and planarized silica layers throughout the multilayer in which only the silica layers that are below one half of the incoming electric field value are etched. This paper also describes the impact of planarized defects that are buried within the multilayer structure compared to planarized substrate particulate defects. - Highlights: • Defect planarization significantly improves multilayer mirror laser resistance • Substrate and coating defects have both been effectively planarized • Single and multishot laser resistance improvement was demonstrated

  1. Electronic circuit encyclopedia 2

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ho

    1992-10-15

    This book is composed of 15 chapters, which are amplification of weak signal and measurement circuit audio control and power amplification circuit, data transmission and wireless system, forwarding and isolation, signal converting circuit, counter and comparator, discriminator circuit, oscillation circuit and synthesizer, digital and circuit on computer image processing circuit, sensor drive circuit temperature sensor circuit, magnetic control and application circuit, motor driver circuit, measuring instrument and check tool and power control and stability circuit.

  2. Electronic circuit encyclopedia 2

    International Nuclear Information System (INIS)

    Park, Sun Ho

    1992-10-01

    This book is composed of 15 chapters, which are amplification of weak signal and measurement circuit audio control and power amplification circuit, data transmission and wireless system, forwarding and isolation, signal converting circuit, counter and comparator, discriminator circuit, oscillation circuit and synthesizer, digital and circuit on computer image processing circuit, sensor drive circuit temperature sensor circuit, magnetic control and application circuit, motor driver circuit, measuring instrument and check tool and power control and stability circuit.

  3. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  4. Collective of mechatronics circuit

    International Nuclear Information System (INIS)

    1987-02-01

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  5. Collective of mechatronics circuit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-02-15

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  6. Beyond level planarity

    NARCIS (Netherlands)

    Angelini, P.; Da Lozzo, G.; Di Battista, G.; Frati, F.; Patrignani, M.; Rutter, I.; Hu, Y.; Nöllenburg, M.

    2016-01-01

    In this paper we settle the computational complexity of two open problems related to the extension of the notion of level planarity to surfaces different from the plane. Namely, we show that the problems of testing the existence of a level embedding of a level graph on the surface of the rolling

  7. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics.

    Science.gov (United States)

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2013-01-01

    The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit composition strategy has generalized purpose and can be extended to more

  8. Experimental Device for Learning of Logical Circuit Design using Integrated Circuits

    OpenAIRE

    石橋, 孝昭

    2012-01-01

    This paper presents an experimental device for learning of logical circuit design using integrated circuits and breadboards. The experimental device can be made at a low cost and can be used for many subjects such as logical circuits, computer engineering, basic electricity, electrical circuits and electronic circuits. The proposed device is effective to learn the logical circuits than the usual lecture.

  9. Robust magnon-photon coupling in a planar-geometry hybrid of inverted split-ring resonator and YIG film.

    Science.gov (United States)

    Bhoi, Biswanath; Kim, Bosung; Kim, Junhoe; Cho, Young-Jun; Kim, Sang-Koog

    2017-09-20

    We experimentally demonstrate strongly enhanced coupling between excited magnons in an Yttrium Iron Garnet (YIG) film and microwave photons in an inverted pattern of split-ring resonator (noted as ISRR). The anti-crossing effects of the ISRR's photon mode and the YIG's magnon modes were found from |S 21 |-versus-frequency measurements for different strengths and directions of externally applied magnetic fields. The spin-number-normalized coupling strength (i.e. single spin-photon coupling) [Formula: see text] was determined to 0.194 Hz ([Formula: see text] = 90 MHz) at 3.7 GHz frequency. Furthermore, we found that additional fine features in the anti-crossing region originate from the excitation of different spin-wave modes (such as the magnetostatic surface and the backward-volume magnetostatic spin-waves) rather than the Kittel-type mode. These spin-wave modes, as coupled with the ISRR mode, modify the anti-crossing effect as well as their coupling strength. An equivalent circuit model very accurately reproduced the observed anti-crossing effect and its coupling strength variation with the magnetic field direction in the planar-geometry ISRR/YIG hybrid system. This work paves the way for the design of new types of high-gain magnon-photon coupling systems in planar geometry.

  10. Evaluation of cardiac function using multi-shot echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi; Tanitame, Nobuko; Hata, Ryoichiro; Hirai, Nobuhiko; Ikeda, Midori; Ono, Chiaki; Fukuoka, Haruhito; Ito, Katsuhide [Hiroshima Univ. (Japan). School of Medicine

    1998-01-01

    In this study, we performed multi-shot echo planar imaging (8 shot, TR/TE/FL=55 ms/18 ms/60 degrees) and k-space segmented fast gradient echo sequence (8 views per segment, TR/TE/FL=9.9 ms/1.8 ms/30 degrees) to assess cardiac function in healthy volunteers. Transaxial sections of the entire heart were obtained with both sequences in ECG triggered, breath hold, and with a 256 x 128 matrix. Resulting temporal resolution was 55 ms for echo planar imaging, and 71 ms for k-space segmented fast gradient echo sequence, respectively. Ventricular volume and ejection fraction of both ventricles and left ventricular mass obtained with multi-shot echo planar imaging were assessed in comparison with k-space segmented fast gradient echo sequence. Measurements of left ventricular volume, ejection fraction and mass obtained with multi-shot echo planar imaging demonstrated close correlation with those obtained with k-space segmented fast gradient echo sequence. Right ventricular volumes obtained with echo planar imaging were significantly higher than those obtained with k-space segmented fast gradient echo sequence. This tendency is considered to be due to differing contrast between right ventricular myocardium and fat tissue observed with echo planar imaging relative to that observed with fast gradient echo sequence, because fat suppression is always performed in echo planar images. Multi-shot echo planar imaging can be a reliable tool for measurement of cardiac functional parameters, although wall motion analysis of the left ventricle requires higher temporal resolution and a short axial section. (K.H.)

  11. Generators for finite depth subfactor planar algebras

    Indian Academy of Sciences (India)

    The main result of Kodiyalam and Tupurani [3] shows that a subfactor planar algebra of finite depth is singly generated with a finite presentation. If P is a subfactor planar algebra of depth k, it is shown there that a single 2k-box generates P. It is natural to ask what the smallest s is such that a single s-box generates P. While ...

  12. Useful properties of spinal circuits for learning and performing planar reaches

    Science.gov (United States)

    Tsianos, George A.; Goodner, Jared; Loeb, Gerald E.

    2014-10-01

    Objective. We developed a detailed model of the spinal circuitry plus musculoskeletal system (SC + MS) for the primate arm and investigated its role in sensorimotor control, learning and storing of movement repertoires. Approach. Recently developed models of spinal circuit connectivity, neurons and muscle force/energetics were integrated and in some cases refined to construct the most comprehensive model of the SC + MS to date. The SC + MS’s potential contributions to center-out reaching movement were assessed by employing an extremely simple model of the brain that issued only step commands. Main results. The SC + MS was able to generate physiological muscle dynamics underlying reaching across different directions, distances, speeds, and even in the midst of strong dynamic perturbations (i.e. viscous curl field). For each task, there were many different combinations of brain inputs that generated physiological performance. Natural patterns of recruitment and low metabolic cost emerged for about half of the learning trials when a purely kinematic cost function was used and for all of the trials when an estimate of metabolic energy consumption was added to the cost function. Solutions for different tasks could be interpolated to generate intermediate movement and the range over which interpolation was successful was consistent with experimental reports. Significance. This is the first demonstration that a realistic model of the SC + MS is capable of generating the required dynamics of center-out reaching. The interpolability observed is important for the feasibility of storing motor programs in memory rather than computing them from internal models of the musculoskeletal plant. Successful interpolation of command programs required them to have similar muscle recruitment patterns, which are thought by many to arise from hard-wired muscle synergies rather than learned as in our model system. These properties of the SC + MS along with its tendency to generate

  13. Slots in dielectric image line as mode launchers and circuit elements

    Science.gov (United States)

    Solbach, K.

    1981-01-01

    A planar resonator model is used to investigate slots in the ground plane of dielectric image lines. An equivalent circuit representation of the slot discontinuity is obtained, and the launching efficiency of the slot as a mode launcher is analyzed. Slots are also shown to be useful in the realization of dielectric image line array antennas. It is found that the slot discontinuity can be shown as a T-junction of the dielectric image line and a metal waveguide. The launching efficiency is found to increase with the dielectric constant of the dielectric image line, exhibiting a maximum value for guides whose height is slightly less than half a wavelength in the dielectric medium. The measured launching efficiencies of low permittivity dielectric image lines are found to be in good agreement with calculated values

  14. Color Coding of Circuit Quantities in Introductory Circuit Analysis Instruction

    Science.gov (United States)

    Reisslein, Jana; Johnson, Amy M.; Reisslein, Martin

    2015-01-01

    Learning the analysis of electrical circuits represented by circuit diagrams is often challenging for novice students. An open research question in electrical circuit analysis instruction is whether color coding of the mathematical symbols (variables) that denote electrical quantities can improve circuit analysis learning. The present study…

  15. Design of an improved RCD buffer circuit for full bridge circuit

    Science.gov (United States)

    Yang, Wenyan; Wei, Xueye; Du, Yongbo; Hu, Liang; Zhang, Liwei; Zhang, Ou

    2017-05-01

    In the full bridge inverter circuit, when the switch tube suddenly opened or closed, the inductor current changes rapidly. Due to the existence of parasitic inductance of the main circuit. Therefore, the surge voltage between drain and source of the switch tube can be generated, which will have an impact on the switch and the output voltage. In order to ab sorb the surge voltage. An improve RCD buffer circuit is proposed in the paper. The peak energy will be absorbed through the buffer capacitor of the circuit. The part energy feedback to the power supply, another part release through the resistor in the form of heat, and the circuit can absorb the voltage spikes. This paper analyzes the process of the improved RCD snubber circuit, According to the specific parameters of the main circuit, a reasonable formula for calculating the resistance capacitance is given. A simulation model will be modulated in Multisim, which compared the waveform of tube voltage and the output waveform of the circuit without snubber circuit with the improved RCD snubber circuit. By comparing and analyzing, it is proved that the improved buffer circuit can absorb surge voltage. Finally, experiments are demonstrated to validate that the correctness of the RC formula and the improved RCD snubber circuit.

  16. Evanescent field refractometry in planar optical fiber.

    Science.gov (United States)

    Holmes, Christopher; Jantzen, Alexander; Gray, Alan C; Gow, Paul C; Carpenter, Lewis G; Bannerman, Rex H S; Gates, James C; Smith, Peter G R

    2018-02-15

    This Letter demonstrates a refractometer in integrated optical fiber, a new optical platform that planarizes fiber using flame hydrolysis deposition (FHD). The unique advantage of the technology is survivability in harsh environments. The platform is mechanically robust, and can survive elevated temperatures approaching 1000°C and exposure to common solvents, including acetone, gasoline, and methanol. For the demonstrated refractometer, fabrication was achieved through wet etching an SMF-28 fiber to a diameter of 8 μm before FHD planarization. An external refractive index was monitored using fiber Bragg gratings (FBGs), written into the core of the planarized fiber. A direct comparison to alternative FBG refractometers is made, for which the developed platform is shown to have comparable sensitivity, with the added advantage of survivability in harsh environments.

  17. Analog circuit design designing dynamic circuit response

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    This second volume, Designing Dynamic Circuit Response builds upon the first volume Designing Amplifier Circuits by extending coverage to include reactances and their time- and frequency-related behavioral consequences.

  18. Nonlinear Saturation Amplitude in Classical Planar Richtmyer–Meshkov Instability

    International Nuclear Information System (INIS)

    Liu Wan-Hai; Jiang Hong-Bin; Ma Wen-Fang; Wang Xiang

    2016-01-01

    The classical planar Richtmyer–Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh–Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI. (paper)

  19. The peeling process of infinite Boltzmann planar maps

    DEFF Research Database (Denmark)

    Budd, Timothy George

    2016-01-01

    criterion has a very simple interpretation. The finite random planar maps under consideration were recently proved to possess a well-defined local limit known as the infinite Boltzmann planar map (IBPM). Inspired by recent work of Curien and Le Gall, we show that the peeling process on the IBPM can...

  20. Planar dynamical systems selected classical problems

    CERN Document Server

    Liu, Yirong; Huang, Wentao

    2014-01-01

    This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasona

  1. Current in heavy-current planar diode with discrete emission surface

    International Nuclear Information System (INIS)

    Belomyttsev, S.Ya.; Korovin, S.D.; Pegel', I.V

    1999-01-01

    Dependence of current in a high-current planar diode on the size of emission centres was studied. Essential effect of emission surface microstructure on the current value in the planar diode was demonstrated. It was determined that if the distance between the emitter essentially exceeded their size then current dependence on the ratio of size to the value of the diode gap was an exponential function with 3/2 index. Current dependence on voltage obeyed the exponential law with 3/2 index up to higher voltage values in the planar diode with discrete emission surface in contrast to the case of a planar diode with homogeneous emission surface [ru

  2. The Effect of Post-Baking Temperature and Thickness of ZnO Electron Transport Layers for Efficient Planar Heterojunction Organometal-Trihalide Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Kun-Mu Lee

    2017-11-01

    Full Text Available Solution-processed zinc oxide (ZnO-based planar heterojunction perovskite photovoltaic device is reported in this study. The photovoltaic device benefits from the ZnO film as a high-conductivity and high-transparent electron transport layer. The optimal electron transport layer thickness and post-baking temperature for ZnO are systematically studied by scanning electron microscopy, photoluminescence and time-resolved photoluminescence spectroscopy, and X-ray diffraction. Optimized perovskite solar cells (PSCs show an open-circuit voltage, a short-circuit current density, and a fill factor of 1.04 V, 18.71 mA/cm2, and 70.2%, respectively. The highest power conversion efficiency of 13.66% was obtained when the device was prepared with a ZnO electron transport layer with a thickness of ~20 nm and when post-baking at 180 °C for 30 min. Finally, the stability of the highest performance ZnO-based PSCs without encapsulation was investigated in detail.

  3. Radio-over-optical waveguide system-on-wafer for massive delivery capacity 5G MIMO access networks

    Science.gov (United States)

    Binh, Le N.

    2017-01-01

    Delivering maximum information capacity over MIMO antennae systems beam steering is critical so as to achieve the flexibility via beam steering, maximizing the number of users or community of users in Gb/s rate per user over distributed cloud-based optical-wireless access networks. This paper gives an overview of (i) demands of optical - wireless delivery with high flexibility, especially the beam steering of multi-Tbps information channels to information hungry community of users via virtualized beam steering MIMO antenna systems at the free-license mmW region; (ii) Proposing a novel photonic planar integrated waveguide systems composing several passive and active, passive and amplification photonic devices so as to generate mmW carrier and embedded baseband information channels to feed to antenna elements; (iii) Integration techniques to generate a radio over optical waveguide (RoOW) system-on-wafer (SoW) comprising MIMO planar antenna elements and associate photonic integrated circuits for both up- and down- links; (iv) Challenges encountered in the implementation of the SoW in both wireless and photonic domains; (v) Photonic modulation techniques to achieve maximum transmission capacity per wavelength per MIMO antenna system. (vi) A view on control-feedback systems for fast and accurate generation of phase pattern for MIMO beam steering via a bank of optical phase modulators to mmW carrier phases and their preservation in the converted mmW domain . (vi) The overall operational principles of the novel techniques and technologies based on the coherent mixing of two lightwave channels The entire SoW can be implemented on SOI Si-photonic technology or via hybrid integration. These technological developments and their pros- and cons- will be discussed to achieve 50Tera-bps over the extended 110 channel Cband single mode fiber with mmW centered at 58.6GHz and 7GHz free-license band.

  4. Hydrogenated arsenenes as planar magnet and Dirac material

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengli; Cai, Bo; Zeng, Haibo, E-mail: Huziyu@csrc.ac.cn, E-mail: zeng.haibo@njust.edu.cn [Institute of Optoelectronics and Nanomaterials, Herbert Gleiter Institute of Nanoscience, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Hu, Yonghong [Institute of Optoelectronics and Nanomaterials, Herbert Gleiter Institute of Nanoscience, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100 (China); Hu, Ziyu, E-mail: Huziyu@csrc.ac.cn, E-mail: zeng.haibo@njust.edu.cn [Beijing Computational Science Research Center, Beijing 100084 (China)

    2015-07-13

    Arsenene and antimonene are predicted to have 2.49 and 2.28 eV band gaps, which have aroused intense interest in the two-dimensional (2D) semiconductors for nanoelectronic and optoelectronic devices. Here, the hydrogenated arsenenes are reported to be planar magnet and 2D Dirac materials based on comprehensive first-principles calculations. The semi-hydrogenated (SH) arsenene is found to be a quasi-planar magnet, while the fully hydrogenated (FH) arsenene is a planar Dirac material. The buckling height of pristine arsenene is greatly decreased by the hydrogenation, resulting in a planar and relatively low-mass-density sheet. The electronic structures of arsenene are also evidently altered after hydrogenating from wide-band-gap semiconductor to metallic material for SH arsenene, and then to Dirac material for FH arsenene. The SH arsenene has an obvious magnetism, mainly contributed by the p orbital of the unsaturated As atom. Such magnetic and Dirac materials modified by hydrogenation of arsenene may have potential applications in future optoelectronic and spintronic devices.

  5. Hydrogenated arsenenes as planar magnet and Dirac material

    International Nuclear Information System (INIS)

    Zhang, Shengli; Cai, Bo; Zeng, Haibo; Hu, Yonghong; Hu, Ziyu

    2015-01-01

    Arsenene and antimonene are predicted to have 2.49 and 2.28 eV band gaps, which have aroused intense interest in the two-dimensional (2D) semiconductors for nanoelectronic and optoelectronic devices. Here, the hydrogenated arsenenes are reported to be planar magnet and 2D Dirac materials based on comprehensive first-principles calculations. The semi-hydrogenated (SH) arsenene is found to be a quasi-planar magnet, while the fully hydrogenated (FH) arsenene is a planar Dirac material. The buckling height of pristine arsenene is greatly decreased by the hydrogenation, resulting in a planar and relatively low-mass-density sheet. The electronic structures of arsenene are also evidently altered after hydrogenating from wide-band-gap semiconductor to metallic material for SH arsenene, and then to Dirac material for FH arsenene. The SH arsenene has an obvious magnetism, mainly contributed by the p orbital of the unsaturated As atom. Such magnetic and Dirac materials modified by hydrogenation of arsenene may have potential applications in future optoelectronic and spintronic devices

  6. Hydrogenated arsenenes as planar magnet and Dirac material

    Science.gov (United States)

    Zhang, Shengli; Hu, Yonghong; Hu, Ziyu; Cai, Bo; Zeng, Haibo

    2015-07-01

    Arsenene and antimonene are predicted to have 2.49 and 2.28 eV band gaps, which have aroused intense interest in the two-dimensional (2D) semiconductors for nanoelectronic and optoelectronic devices. Here, the hydrogenated arsenenes are reported to be planar magnet and 2D Dirac materials based on comprehensive first-principles calculations. The semi-hydrogenated (SH) arsenene is found to be a quasi-planar magnet, while the fully hydrogenated (FH) arsenene is a planar Dirac material. The buckling height of pristine arsenene is greatly decreased by the hydrogenation, resulting in a planar and relatively low-mass-density sheet. The electronic structures of arsenene are also evidently altered after hydrogenating from wide-band-gap semiconductor to metallic material for SH arsenene, and then to Dirac material for FH arsenene. The SH arsenene has an obvious magnetism, mainly contributed by the p orbital of the unsaturated As atom. Such magnetic and Dirac materials modified by hydrogenation of arsenene may have potential applications in future optoelectronic and spintronic devices.

  7. Solution-Processed hybrid Sb2 S3 planar heterojunction solar cell

    Science.gov (United States)

    Huang, Wenxiao; Borazan, Ismail; Carroll, David

    Thin-film solar cells based on inorganic absorbers permit a high efficiency and stability. Among or those absorber candidates, recently Sb2S3 has attracted extensive attention because of its suitable band gap (1.5eV ~1.7 eV) , strong optical absorption, low-cost and earth-abundant constituents. Currently high-efficiency Sb2S3 solar cells have absorber layer deposited on nanostructured TiO2 electrodes in combination with organic hole transport material (HTM) on top. However it's challenging to fill the nanostructured TiO2 layer with Sb2S3 and subsequently by HTM, this leads to uncovered surface permits charge recombination. And the existing of Sb2S3/TiO2/HTM triple interface will enhance the recombination due to the surface trap state. Therefore, a planar junction cell would not only have simpler structure with less steps to fabricate but also ideally also have a higher open circuit voltage because of less interface carrier recombination. By far there is limited research focusing on planar Sb2S3 solar cell, so the feasibility is still unclear. Here, we developed a low-toxic solution method to fabricate Sb2S3 thin film solar cell, then we studied the morphology of the Sb2S3 layer and its impact to the device performance. The best device with a structure of FTO/TiO2/Sb2S3/P3HT/Ag has PCE over 5% which is similar or higher than yet the best nanostructure devices with the same HTM. Furthermore, based on solution engineering and surface modification, we improved the Sb2S3 film quality and achieved a record PCE. .

  8. The number of colorings of planar graphs with no separating triangles

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2017-01-01

    A classical result of Birkhoff and Lewis implies that every planar graph with . n vertices has at least . 152n-1 distinct 5-vertex-colorings. Equality holds for planar triangulations with . n-4 separating triangles. We show that, if a planar graph has no separating triangle, then it has at least ...

  9. Planar waveguides and other confined geometries theory, technology, production, and novel applications

    CERN Document Server

    2015-01-01

    This book provides a comprehensive overview of the theoretical concepts and experimental applications of planar waveguides and other confined geometries, such as optical fibres. Covering a broad array of advanced topics, it begins with a sophisticated discussion of planar waveguide theory, and covers subjects including efficient production of planar waveguides, materials selection, nonlinear effects, and applications including species analytics down to single-molecule identification, and thermo-optical switching using planar waveguides. Written by specialists in the techniques and applications covered, this book will be a useful resource for advanced graduate students and researchers studying planar waveguides and optical fibers.

  10. Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization

    Science.gov (United States)

    Sulyma, Christopher Michael

    This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu

  11. Determination of crystallographic and macroscopic orientation of planar structures in TEM

    DEFF Research Database (Denmark)

    Huang, X.; Liu, Q.

    1998-01-01

    With the aid of a double-tilt holder in a transmission electron microscope (TEM), simple methods are described for determination of the crystallographic orientation of a planar structure and for calculation of the macroscopic orientation of the planar structure. The correlation between a planar...... structure and a crystallographic plane can be found by comparing the differences in their trace directions on the projection plane and inclination angles with respect to that plane. The angles between the traces of planar structures and the sample axis measured from the TEM micrographs, which have been...

  12. Manufacturing of planar ceramic interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  13. The simple method to co-register planar image with photograph

    International Nuclear Information System (INIS)

    Jang, Sung June; Kim, Seok Ki; Kang, Keon Wook

    2005-01-01

    Generally scintigraphic image presents the highly specific functional information. Sometimes, there can be limited information of patients anatomical landmark required to identify the lesion in planar nuclear medicine image. In this study, we applied the simple fusion method of planar scintigraphy and plain photography and validated the techniques with our own software. We used three fiducial marks which were comprised with Tc-99m. We obtained planar image with single head gamma camera (ARGUS ADAC laboratory, USA) and photograph using a general digital camera (CANON JAPAN). The coordinates of three marks were obtained in photograph and planar scintigraphy image. Based on these points, we took affine transformation and then fused these two images. To evaluate the precision, we compared with different depth. To find out the depth of lesion, the images were acquired in different angles and we compared the real depth and the geometrically calculated depth. At the same depth with mark, the each discordance was less than 1 mm. When the photograph were taken at the distance with 1 m and 2 m, the point 30 cm off the center were discordant in 5 mm and 2 mm each. We used this method in the localization of the remnant thyroid tissue on I-131 whole body scan with photo image. The simple method to co-register planar image with photography was reliable and easy to use. By this method, we could localize the lesion on the planar scintigraphy more accurately with other planar images (i.e. photograph) and predict the depth of the lesion without tomographic image

  14. A study of coFeB magnetic yoke based on planar electromagnet

    Science.gov (United States)

    Qin, L.; Li, Q.; Yuan, Yong J.

    2017-07-01

    This paper studies the fabrication of a novel planar electromagnet consisting of a planar copper coil and a magnetic yoke. CoFeB was used as the magnetic yoke material instead of the traditional permanent magnets. The planar electromagnet was fabricated and optimized to maximize the electromagnetic force, especially with varying CoFeB thickness. The micro-planar electromagnet was fabricated successfully by the traditional micro-electro-mechanical-system (MEMS) techniques and XRD, VSM were used to characterize the performance of the electromagnet. The planar electromagnet exhibits superior perpendicular magnetic anisotropy (PMA) and 0.006 emu of MS was achieved following 2 min deposition of CoFeB thin film. By integrating with other micro apparatuses, it is anticipated that the planar electromagnet will have potential applications in areas such as biosensors, biological medicine, drug delivery, chemical analysis and environmental monitoring.

  15. Planar millimeter wave radar frontend for automotive applications

    Directory of Open Access Journals (Sweden)

    J. Grubert

    2003-01-01

    Full Text Available A fully integrated planar sensor for 77 GHz automotive applications is presented. The frontend consists of a transceiver multichip module and an electronically steerable microstrip patch array. The antenna feed network is based on a modified Rotman-lens and connected to the array in a multilayer approach offering higher integration. Furthermore, the frontend comprises a phase lock loop to allow proper frequency-modulated continuous wave (FMCW radar operation. The latest experimental results verify the functionality of this advanced frontend design featuring automatic cruise control, precrash sensing and cut-in detection. These promising radar measurements give reason to a detailed theoretical investigation of system performance. Employing commercially available MMIC various circuit topologies are compared based on signal-tonoise considerations. Different scenarios for both sequential and parallel lobing hint to more advanced sensor designs and better performance. These improvements strongly depend on the availability of suitable MMIC and reliable packaging technologies. Within our present approach possible future MMIC developments are already considered and, thus, can be easily adapted by the flexible frontend design. Es wird ein integrierter planarer Sensor für 77 GHz Radaranwendungen vorgestellt. Das Frontend besteht aus einem Sende- und Empfangs-Multi-Chip-Modul und einer elektronisch schwenkbaren Antenne. Das Speisenetzwerk der Antenne basiert auf einer modifizierten Rotman- Linse. Für eine kompakte Bauweise sind Antenne und Speisenetzwerk mehrlagig integriert. Weiterhin umfasst das Frontend eine Phasenregelschleife für eine präzise Steuerung des frequenzmodulierten Dauerstrichradars. Die aktuellen Messergebnisse bestätigen die Funktionalit¨at dieses neuartigen Frontend-Designs, das automatische Geschwindigkeitsregelung, Kollisionswarnung sowie Nahbereichsüberwachung ermöglicht. Die Qualität der Messergebnisse hat weiterf

  16. Design and measurements of the double layer planar motor

    NARCIS (Netherlands)

    Rovers, J.M.M.; Jansen, J.W.; Lomonova, E.

    2013-01-01

    Moving-magnet magnetically levitated planar motors are considered for use as a wafer stage in the semiconductor lithographic industry. This puts high requirements on the accuracy and the dissipated power and cooling performance of such motors. A novel planar motor topology is developed, which

  17. Conformal, planarizing and bridging AZ5214-E layers deposited by a 'draping' technique on non-planar III V substrates

    Science.gov (United States)

    Eliás, P.; Strichovanec, P.; Kostic, I.; Novák, J.

    2006-12-01

    A draping technique was tested for the deposition of positive-tone AZ5214-E photo-resist layers on non-planar (1 0 0)-oriented III-V substrates, which had a variety of three-dimensional (3D) topographies micromachined in them that consisted, e.g., of mesa ridges confined to side facets with variable tilt, inverted pyramidal holes and stubs confined to perpendicular side facets. All objects were sharp-edged. In each draping experiment, an AZ5214-E sheet was (1) formed floating on the water surface, (2) lowered onto a non-planar substrate and (3) draped over it during drying to form either self-sustained, or conformal, or planarizing layers over the non-planar substrates. The draping process is based on the depression of the glass transition temperature Tg of AZ5214-E material induced by penetrant water molecules that interact with AZ5214-E. During the process, the molecules are initially trapped under an AZ5214-E sheet and then transported out through the sheet via permeation. The water-AZ5214-E interaction modifies the stiffness κ of the sheet. The magnitude of the effect depends on temperature T and on partial water vapour pressure difference p(T, P, κ): the net effect is that Tg = f(C(T, P), p(T, P, κ)) is lowered as the concentration C of water increases with T and p, where P is the permeability of the sheet. The interaction depressed the Tg of the sheets as low as or lower than 53 °C for 6 µm thick sheets. At room temperature T Tg, the sheet becomes rubbery and mouldable by adhesion and capillary forces. As a result, it can either contour or planarize the topography depending on its geometry and thickness of the sheet.

  18. Fluorescence based fiber optic and planar waveguide biosensors. A review

    International Nuclear Information System (INIS)

    Benito-Peña, Elena; Valdés, Mayra Granda; Glahn-Martínez, Bettina; Moreno-Bondi, Maria C.

    2016-01-01

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  19. Fluorescence based fiber optic and planar waveguide biosensors. A review

    Energy Technology Data Exchange (ETDEWEB)

    Benito-Peña, Elena [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Valdés, Mayra Granda [Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana (Cuba); Glahn-Martínez, Bettina [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Moreno-Bondi, Maria C., E-mail: mcmbondi@quim.ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain)

    2016-11-02

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  20. Circuit analysis for dummies

    CERN Document Server

    Santiago, John

    2013-01-01

    Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help

  1. Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells.

    Science.gov (United States)

    Liang, Lusheng; Huang, Zhifeng; Cai, Longhua; Chen, Weizhong; Wang, Baozeng; Chen, Kaiwu; Bai, Hua; Tian, Qingyong; Fan, Bin

    2014-12-10

    Suitable electrode interfacial layers are essential to the high performance of perovskite planar heterojunction solar cells. In this letter, we report magnetron sputtered zinc oxide (ZnO) film as the cathode interlayer for methylammonium lead iodide (CH3NH3PbI3) perovskite solar cell. Scanning electron microscopy and X-ray diffraction analysis demonstrate that the sputtered ZnO films consist of c-axis aligned nanorods. The solar cells based on this ZnO cathode interlayer showed high short circuit current and power conversion efficiency. Besides, the performance of the device is insensitive to the thickness of ZnO cathode interlayer. Considering the high reliability and maturity of sputtering technique both in lab and industry, we believe that the sputtered ZnO films are promising cathode interlayers for perovskite solar cells, especially in large-scale production.

  2. Influence of a MoOx interlayer on the open-circuit voltage in organic photovoltaic cells

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J.

    2013-07-01

    Metal-oxides have been used as interlayers at the anode-organic interface in organic photovoltaic cells (OPVs) to increase the open-circuit voltage (VOC). We examine the role of MoOx in determining the maximum VOC in a planar heterojunction OPV and find that the interlayer strongly affects the temperature dependence of VOC. Boron subphthalocyanine chloride (SubPc)-C60 OPVs that contain no interlayer show a maximum VOC of 1.2 V at low temperature, while those with MoOx show no saturation, reaching VOC > 1.4 V. We propose that the MoOx-SubPc interface forms a Schottky junction that provides an additional contribution to VOC at low temperature.

  3. Current limiter circuit system

    Science.gov (United States)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  4. The voltage—current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits

    International Nuclear Information System (INIS)

    Bao Bo-Cheng; Feng Fei; Dong Wei; Pan Sai-Hu

    2013-01-01

    A flux-controlled memristor characterized by smooth cubic nonlinearity is taken as an example, upon which the voltage—current relationships (VCRs) between two parallel memristive circuits — a parallel memristor and capacitor circuit (the parallel MC circuit), and a parallel memristor and inductor circuit (the parallel ML circuit) — are investigated. The results indicate that the VCR between these two parallel memristive circuits is closely related to the circuit parameters, and the frequency and amplitude of the sinusoidal voltage stimulus. An equivalent circuit model of the memristor is built, upon which the circuit simulations and experimental measurements of both the parallel MC circuit and the parallel ML circuit are performed, and the results verify the theoretical analysis results

  5. Ambient mass spectrometry: From the planar to the non-planar surface analysis

    Czech Academy of Sciences Publication Activity Database

    Rejšek, Jan; Vrkoslav, Vladimír; Cvačka, Josef

    2017-01-01

    Roč. 15, č. 1 (2017), s. 31 ISSN 2336-7202. [Mezioborové setkání mladých biologů, biochemiků a chemiků /17./. 30.05.2017-01.06.2017, Milovy] Institutional support: RVO:61388963 Keywords : ambient mass spectrometry * thin layer chromatography * non-planar surface analysis Subject RIV: CB - Analytical Chemistry, Separation

  6. SPECT versus planar bone radionuclide imaging in the detection of spondylolysis

    International Nuclear Information System (INIS)

    Whitten, C.G.; El-Khoury, G.Y.; Chang, P.J.; Seabold, J.E.; Found, E.M.; Renfrew, D.L.

    1991-01-01

    This paper evaluates the relative performance and ease of interpretation of SPECT versus planar radionuclide bone imaging in the detection of spondylolysis. The authors studied all patients presenting with back pain suggestive of spondylolysis from November 1989 to January 1991 who underwent bone scanning; patients underwent both planar and SPECT imaging. The planar and SPECT images were randomly mixed and independently interpreted by four observers for presence or absence of spondylolysis and ease of interpretation for each scan. Receiver operating characteristic (ROC) and analysis of variance (ANOVA) were used. Of 72 patients, 19 had confirmed spondylolysis, and 53 did not. While ROC analysis showed that SPECT performed slightly better than planar imaging for all four observers, the difference was not statistically significant. ANOVA results suggest that planar imaging was significantly easier to use than SPECT and that ease of use was strongly correlated with the observer's confidence in the diagnosis

  7. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics.

    Directory of Open Access Journals (Sweden)

    Yunxia Gao

    Full Text Available BACKGROUND: The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. METHODS: Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. RESULTS: Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. CONCLUSIONS: The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit

  8. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.518 Electric equipment and circuits; overload and short circuit protection... installed so as to protect all electric equipment and circuits against short circuit and overloads. Three...

  9. Tunable Channel Drop Filter in a Two-Dimensional Photonic Crystal Modulated by a Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Photonic crystals (PCs have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical circuits. We propose a novel tunable PC channel drop filter based on nematic liquid crystals and investigate its properties numerically by using the finite-difference time-domain (FDTD method. The refractive indices of liquid crystals can be actively modulated after infiltrating nematic liquid crystals into the microcavity in PC waveguides with square lattices. Then we can control light propagation in a PC waveguide. We analyze the Q -factors and resonance frequencies of a tunable PC channel drop filter by considering various indices modulation of liquid crystals. The novel component can be used as wavelength division multiplexing in photonic integrated circuits.

  10. Wavy Channel architecture thin film transistor (TFT) using amorphous zinc oxide for high-performance and low-power semiconductor circuits

    KAUST Repository

    Hanna, Amir; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2015-01-01

    We report a Wavy Channel (WC) architecture thin film transistor (TFT) for extended device width by integrating continuous vertical fin like features with lateral continuous plane in the substrate. For a WC TFT which has 50% larger device width, the enhancement in the output drive current is 100%, when compared to a conventional planar TFT consuming the same chip area. This current increase is attributed to both the extra width and enhanced field effect mobility due to corner effects. This shows the potential of WC architecture to boast circuit performance without the need for aggressive gate length scaling. © 2015 IEEE.

  11. Wavy Channel architecture thin film transistor (TFT) using amorphous zinc oxide for high-performance and low-power semiconductor circuits

    KAUST Repository

    Hanna, Amir

    2015-08-12

    We report a Wavy Channel (WC) architecture thin film transistor (TFT) for extended device width by integrating continuous vertical fin like features with lateral continuous plane in the substrate. For a WC TFT which has 50% larger device width, the enhancement in the output drive current is 100%, when compared to a conventional planar TFT consuming the same chip area. This current increase is attributed to both the extra width and enhanced field effect mobility due to corner effects. This shows the potential of WC architecture to boast circuit performance without the need for aggressive gate length scaling. © 2015 IEEE.

  12. Development of a two-dimensional skin friction balance nulling circuit using multivariable control theory

    Science.gov (United States)

    Tripp, John S.; Patek, Stephen D.

    1988-01-01

    Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.

  13. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Science.gov (United States)

    2010-07-01

    ... short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct type and capacity shall be installed so as to protect all electric equipment and circuits against short...

  14. The value of filtered planar images in pediatric DMSA scans

    International Nuclear Information System (INIS)

    Mohammed, A.M.; Naddaf, S.Y.; Elgazzar, A.H.; Al-Abdul Salam, A.A.; Omar, A.A.

    2006-01-01

    The study was designed to demonstrate the value of filtered planar images in paediatric DMSA scanning. One hundred and seventy three patients ranged in age from 15 days to 12 years (mean: 4.3 years) with urinary tract infection (UTI) and clinical and/or laboratory suspicion of acute pyelonephritis (APN) were retrospectively studied. Planar images were filtered using Butterworth filter. The scan findings were reported as positive, negative or equivocal for cortical defects. Each scan was read in a double-blind fashion by two nuclear medicine physicians to evaluate inter-observer variations. Each kidney was divided into three zones, upper, middle and lower, and each zone was graded as positive, negative or equivocal for the presence of renal defects. Renal cortical defects were found in 66 patients (91 kidneys and 186 zones) with filtered images, 58 patients (81 kidneys and 175 zones) with planar images, and 69 patients (87 kidneys and 180 zones) with SPECT images. McNemar's test revealed statistically significant difference between filtered and planar images (p=0.038 for patients, 0.021 for kidneys and 0.034 for number of zones). Inter-observer agreement was 0.877 for filtered images, 0.915 for planar images and 0.915 for SPECT images. It was concluded that filtered planar images of renal cortex are comparable to SPECT images and can be used effectively in place of SPECT, when required, to shorten imaging time and eliminate motion artifacts, especially in the paediatric population. (author)

  15. Modeling and analysis of a novel planar eddy current damper

    Science.gov (United States)

    Zhang, He; Kou, Baoquan; Jin, Yinxi; Zhang, Lu; Zhang, Hailin; Li, Liyi

    2014-05-01

    In this paper, a novel 2-DOF permanent magnet planar eddy current damper is proposed, of which the stator is made of a copper plate and the mover is composed of two orthogonal 1-D permanent magnet arrays with a double sided structure. The main objective of the planar eddy current damper is to provide two orthogonal damping forces for dynamic systems like the 2-DOF high precision positioning system. Firstly, the basic structure and the operating principle of the planar damper are introduced. Secondly, the analytical model of the planar damper is established where the magnetic flux density distribution of the permanent magnet arrays is obtained by using the equivalent magnetic charge method and the image method. Then, the analytical expressions of the damping force and damping coefficient are derived. Lastly, to verify the analytical model, the finite element method (FEM) is adopted for calculating the flux density and a planar damper prototype is manufactured and thoroughly tested. The results from FEM and experiments are in good agreement with the ones from the analytical expressions indicating that the analytical model is reasonable and correct.

  16. Volumetric and chemical control auxiliary circuit for a PWR primary circuit

    International Nuclear Information System (INIS)

    Costes, D.

    1990-01-01

    The volumetric and chemical control circuit has an expansion tank with at least one water-steam chamber connected to the primary circuit by a sampling pipe and a reinjection pipe. The sampling pipe feeds jet pumps controlled by valves. An action on these valves and pumps regulates the volume of the water in the primary circuit. A safety pipe controlled by a flap automatically injects water from the chamber into the primary circuit in case of ruptures. The auxiliary circuit has also systems for purifying the water and controlling the boric acid and hydrogen content [fr

  17. Dynamical analysis of surface-insulated planar wire array Z-pinches

    Science.gov (United States)

    Li, Yang; Sheng, Liang; Hei, Dongwei; Li, Xingwen; Zhang, Jinhai; Li, Mo; Qiu, Aici

    2018-05-01

    The ablation and implosion dynamics of planar wire array Z-pinches with and without surface insulation are compared and discussed in this paper. This paper first presents a phenomenological model named the ablation and cascade snowplow implosion (ACSI) model, which accounts for the ablation and implosion phases of a planar wire array Z-pinch in a single simulation. The comparison between experimental data and simulation results shows that the ACSI model could give a fairly good description about the dynamical characteristics of planar wire array Z-pinches. Surface insulation introduces notable differences in the ablation phase of planar wire array Z-pinches. The ablation phase is divided into two stages: insulation layer ablation and tungsten wire ablation. The two-stage ablation process of insulated wires is simulated in the ACSI model by updating the formulas describing the ablation process.

  18. Anisotropic Magnus Force in Type-II Superconductors with Planar Defects

    Science.gov (United States)

    Monroy, Ricardo Vega; Gomez, Eliceo Cortés

    2015-02-01

    The effect of planar defects on the Magnus force in type-II superconductors is studied. It is shown that the deformation of the vortex due to the presence of a planar defect leads to a local decrease in the mean free path of electrons in the vortex. This effect reduces the effective Magnus coefficient in normal direction to the planar defect, leading to an anisotropic regime of the Hall effect. The presented developments here can qualitatively explain experimental observations of the anisotropic Hall effect in high- T c superconductors in the mixed state.

  19. HP Ge planar detectors

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Soldatov, A.M.; Osipenko, B.P.; Yurkowski, J.; Podkopaev, O.I.

    1989-01-01

    Parameters of planar detectors manufactured of HP Ge are presented. The possibilities to use multilayer spectrometers on the base of such semiconductor detectors for nuclear physics experiments are discussed. It is shown that the obtained detectors including high square ones have spectrometrical characteristics close to limiting possible values. 9 refs.; 3 figs.; 1 tab

  20. Slices: A shape-proxy based on planar sections

    KAUST Repository

    McCrae, James

    2011-12-01

    Minimalist object representations or shape-proxies that spark and inspire human perception of shape remain an incompletely understood, yet powerful aspect of visual communication. We explore the use of planar sections, i.e., the contours of intersection of planes with a 3D object, for creating shape abstractions, motivated by their popularity in art and engineering. We first perform a user study to show that humans do define consistent and similar planar section proxies for common objects. Interestingly, we observe a strong correlation between user-defined planes and geometric features of objects. Further we show that the problem of finding the minimum set of planes that capture a set of 3D geometric shape features is both NP-hard and not always the proxy a user would pick. Guided by the principles inferred from our user study, we present an algorithm that progressively selects planes to maximize feature coverage, which in turn influence the selection of subsequent planes. The algorithmic framework easily incorporates various shape features, while their relative importance values are computed and validated from the user study data. We use our algorithm to compute planar slices for various objects, validate their utility towards object abstraction using a second user study, and conclude showing the potential applications of the extracted planar slice shape proxies.

  1. Quasi-planar elemental clusters in pair interactions approximation

    Directory of Open Access Journals (Sweden)

    Chkhartishvili Levan

    2016-01-01

    Full Text Available The pair-interactions approximation, when applied to describe elemental clusters, only takes into account bonding between neighboring atoms. According to this approach, isomers of wrapped forms of 2D clusters – nanotubular and fullerene-like structures – and truly 3D clusters, are generally expected to be more stable than their quasi-planar counterparts. This is because quasi-planar clusters contain more peripheral atoms with dangling bonds and, correspondingly, fewer atoms with saturated bonds. However, the differences in coordination numbers between central and peripheral atoms lead to the polarization of bonds. The related corrections to the molar binding energy can make small, quasi-planar clusters more stable than their 2D wrapped allotropes and 3D isomers. The present work provides a general theoretical frame for studying the relative stability of small elemental clusters within the pair interactions approximation.

  2. Application of holographic elements in displays and planar illuminators

    Science.gov (United States)

    Putilin, Andrew; Gustomiasov, Igor

    2007-05-01

    Holographic Optical Elements (HOE's) on planar waveguides can be used to design the planar optics for backlit units, color selectors or filters, lenses for virtual reality displays. The several schemes for HOE recording are proposed to obtain planar stereo backlit unit and private eye displays light source. It is shown in the paper that the specific light transformation grating permits to construct efficient backlit units for display holograms and LCD. Several schemes of reflection/transmission backlit units and scattering films based on holographic optical elements are also proposed. The performance of the waveguide HOE can be optimized using the parameters of recording scheme and etching parameters. The schemes of HOE application are discussed and some experimental results are shown.

  3. Group theoretical construction of planar noncommutative phase spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ngendakumana, Ancille, E-mail: nancille@yahoo.fr; Todjihoundé, Leonard, E-mail: leonardt@imsp.uac.org [Institut de Mathématiques et des Sciences Physiques (IMSP), Porto-Novo (Benin); Nzotungicimpaye, Joachim, E-mail: kimpaye@kie.ac.rw [Kigali Institute of Education (KIE), Kigali (Rwanda)

    2014-01-15

    Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given.

  4. Group theoretical construction of planar noncommutative phase spaces

    International Nuclear Information System (INIS)

    Ngendakumana, Ancille; Todjihoundé, Leonard; Nzotungicimpaye, Joachim

    2014-01-01

    Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given

  5. Miniaturized Air-Driven Planar Magnetic Generators

    Directory of Open Access Journals (Sweden)

    Jingjing Zhao

    2015-10-01

    Full Text Available This paper presents the design, analysis, fabrication and testing of two miniaturized air-driven planar magnetic generators. In order to reduce the magnetic resistance torque, Generator 1 establishes a static magnetic field by consisting a multilayer planar coil as the stator and two multi-pole permanent-magnet (PM rotors on both sides of the coil. To further decrease the starting torque and save more space, Generator 2 adopts the multilayer planar coil as the rotor and the multi-pole PMs as the stator, eliminating the casing without compromising the magnetic structure or output performance. The prototypes were tested gathering energy from wind which can work at a low wind speed of 1~2 m/s. Prototype of Generator 1 is with a volume of 2.61 cm3 and its normalized voltage reaches 485 mV/krpm. Prototype of Generator 2 has a volume of 0.92 cm3 and a normalized voltage as high as 538 mV/krpm. Additionally, output voltage can be estimated at better than 96% accuracy by the theoretical model developed in this paper. The two micro generators are capable of producing substantial electricity with little volume to serve as compact power conversion devices.

  6. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  7. The circuit designer's companion

    CERN Document Server

    Williams, Tim

    1991-01-01

    The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function.This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are foll

  8. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1972-01-01

    Electronic Devices and Circuits, Volume 3 provides a comprehensive account on electronic devices and circuits and includes introductory network theory and physics. The physics of semiconductor devices is described, along with field effect transistors, small-signal equivalent circuits of bipolar transistors, and integrated circuits. Linear and non-linear circuits as well as logic circuits are also considered. This volume is comprised of 12 chapters and begins with an analysis of the use of Laplace transforms for analysis of filter networks, followed by a discussion on the physical properties of

  9. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  10. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  11. Electric circuits essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph

  12. Approximate circuits for increased reliability

    Science.gov (United States)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  13. Routed planar networks

    Directory of Open Access Journals (Sweden)

    David J. Aldous

    2016-04-01

    Full Text Available Modeling a road network as a planar graph seems very natural. However, in studying continuum limits of such networks it is useful to take {\\em routes} rather than {\\em edges} as primitives. This article is intended to introduce the relevant (discrete setting notion of {\\em routed network} to graph theorists. We give a naive classification of all 71 topologically different such networks on 4 leaves, and pose a variety of challenging research questions.

  14. Short-circuit logic

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2010-01-01

    Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of

  15. Planar waveguide laser in Er/Al-doped germanosilicate

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Hübner, Jörg; Kristensen, Martin

    1999-01-01

    A singlemode DBR laser is demonstrated in an Er/Al-doped germanosilicate planar waveguide. 0.4 mW of output power has been obtained at 1.553 mu m using internal Bragg reflectors produced by UV-induced index modulations.......A singlemode DBR laser is demonstrated in an Er/Al-doped germanosilicate planar waveguide. 0.4 mW of output power has been obtained at 1.553 mu m using internal Bragg reflectors produced by UV-induced index modulations....

  16. Design principles and realization of electro-optical circuit boards

    Science.gov (United States)

    Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry

    2013-02-01

    The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.

  17. Planar channeling in superlattices: Theory

    International Nuclear Information System (INIS)

    Ellison, J.A.; Picraux, S.T.; Allen, W.R.; Chu, W.K.

    1988-01-01

    The well-known continuum model theory for planar channeled energetic particles in perfect crystals is extended to layered crystalline structures and applied to superlattices. In a strained-layer structure, the planar channels with normals which are not perpendicular to the growth direction change their direction at each interface, and this dramatically influences the channeling behavior. The governing equation of motion for a planar channeled ion in a strained-layer superlattice with equal layer thicknesses is a one degree of freedom nonlinear oscillator which is periodically forced with a sequence of δ functions. These δ functions, which are of equal spacing and amplitude with alternating sign, represent the tilts at each of the interfaces. Thus upon matching an effective channeled particle wavelength, corresponding to a natural period of the nonlinear oscillator, to the period of the strained-layer superlattice, corresponding to the periodic forcing, strong resonance effects are expected. The condition of one effective wavelength per period corresponds to a rapid dechanneling at a well-defined depth (catastrophic dechanneling), whereas two wavelengths per period corresponds to no enhanced dechanneling after the first one or two layers (resonance channeling). A phase plane analysis is used to characterize the channeled particle motion. Detailed calculations using the Moliere continuum potential are compared with our previously described modified harmonic model, and new results are presented for the phase plane evolution, as well as the dechanneling as a function of depth, incident angle, energy, and layer thickness. General scaling laws are developed and nearly universal curves are obtained for the dechanneling versus depth under catastrophic dechanneling

  18. Load testing circuit

    DEFF Research Database (Denmark)

    2009-01-01

    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...

  19. Parallel-fed planar dipole antenna arrays for low-observable platforms

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on determination of scattering of parallel-fed planar dipole arrays in terms of reflection and transmission coefficients at different levels of the array system. In aerospace vehicles, the phased arrays are often in planar configuration. The radar cross section (RCS) of the vehicle is mainly due to its structure and the antennas mounted over it. There can be situation when the signatures due to antennas dominate over the structural RCS of the platform. This necessitates the study towards the reduction and control of antenna/ array RCS. The planar dipole array is considered as a stacked linear dipole array. A systematic, step-by-step approach is used to determine the RCS pattern including the finite dimensions of dipole antenna elements. The mutual impedance between the dipole elements for planar configuration is determined. The scattering till second-level of couplers in parallel feed network is taken into account. The phase shifters are modelled as delay line. All the couplers in the feed n...

  20. A planar microfluidic mixer based on logarithmic spirals

    International Nuclear Information System (INIS)

    Scherr, Thomas; Nandakumar, Krishnaswamy; Quitadamo, Christian; Tesvich, Preston; Park, Daniel Sang-Won; Hayes, Daniel; Monroe, W Todd; Tiersch, Terrence; Choi, Jin-Woo

    2012-01-01

    A passive, planar micromixer design based on logarithmic spirals is presented. The device was fabricated using polydimethylsiloxane soft photolithography techniques, and mixing performance was characterized via numerical simulation and fluorescent microscopy. Mixing efficiency initially declined as the Reynolds number increased, and this trend continued until a Reynolds number of 15 where a minimum was reached at 53%. Mixing efficiency then began to increase reaching a maximum mixing efficiency of 86% at Re = 67. Three-dimensional (3D) simulations of fluid mixing in this design were compared to other planar geometries such as the Archimedes spiral and Meandering-S mixers. The implementation of logarithmic curvature offers several unique advantages that enhance mixing, namely a variable cross-sectional area and a logarithmically varying radius of curvature that creates 3D Dean vortices. These flow phenomena were observed in simulations with multilayered fluid folding and validated with confocal microscopy. This design provides improved mixing performance over a broader range of Reynolds numbers than other reported planar mixers, all while avoiding external force fields, more complicated fabrication processes and the introduction of flow obstructions or cavities that may unintentionally affect sensitive or particulate-containing samples. Due to the planar design requiring only single-step lithographic features, this compact geometry could be easily implemented into existing micro-total analysis systems requiring effective rapid mixing. (paper)

  1. Timergenerator circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Timer/Generator Circuits Manual is an 11-chapter text that deals mainly with waveform generator techniques and circuits. Each chapter starts with an explanation of the basic principles of its subject followed by a wide range of practical circuit designs. This work presents a total of over 300 practical circuits, diagrams, and tables.Chapter 1 outlines the basic principles and the different types of generator. Chapters 2 to 9 deal with a specific type of waveform generator, including sine, square, triangular, sawtooth, and special waveform generators pulse. These chapters also include pulse gen

  2. CMOS circuits manual

    CERN Document Server

    Marston, R M

    1995-01-01

    CMOS Circuits Manual is a user's guide for CMOS. The book emphasizes the practical aspects of CMOS and provides circuits, tables, and graphs to further relate the fundamentals with the applications. The text first discusses the basic principles and characteristics of the CMOS devices. The succeeding chapters detail the types of CMOS IC, including simple inverter, gate and logic ICs and circuits, and complex counters and decoders. The last chapter presents a miscellaneous collection of two dozen useful CMOS circuits. The book will be useful to researchers and professionals who employ CMOS circu

  3. 30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; ratings and settings... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers. Circuit breakers providing short circuit protection for trailing cables shall be set so as not to exceed the...

  4. Nb multilayer planarization technology for a subnanosecond Josephson 1K-bit RAM

    International Nuclear Information System (INIS)

    Nagasawa, S.; Wada, Y.; Tsuge, H.; Hidaka, M.; Ishida, I.; Tahara, S.

    1989-01-01

    Nb multilayer planarization technology has been developed. This planarization technology consists of an etch-back technique using 2000-molecular weight polystyrene and SiO/sub 2/ for the junction layer and wiring layers, and a tapered edge etching technique for contact between individual wiring layers. A Josephson 1K-bit random access memory (RAM) has been fabricated using this planarization technology. Excellent planarity, wherein level differences in all step areas are reduced to less than 1/20th of their original value, was achieved in the multilayer structure of the RAM. Moreover, appropriate RAM operations, with 570ps minimum access time and 13mW power dissipation, were confirmed

  5. Flat panel planar optic display. Revision 4/95

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-05-01

    A prototype 10 inch flat panel Planar Optic display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic glass sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  6. Morphing Planar Graph Drawings with a Polynomial Number of Steps

    DEFF Research Database (Denmark)

    Alamdari, Soroush; Angelini, Patrizio; Chan, Timothy M.

    2013-01-01

    In 1944, Cairns proved the following theorem: given any two straight-line planar drawings of a triangulation with the same outer face, there exists a morph (i.e., a continuous transformation) between the two drawings so that the drawing remains straight-line planar at all times. Cairns’s original...

  7. Development of a Planar Undulator

    International Nuclear Information System (INIS)

    Deyhim, Alex; Johnson, Eric; Kulesza, Joe; Lyndaker, Aaron; Waterman, Dave; Eisert, Dave; Green, Michael A.; Rogers, Greg; Blomqvist, K. Ingvar

    2007-01-01

    The design of a planar pure permanent magnet undulator is presented. The design requirements and mechanical difficulties for holding, positioning, and driving the magnetic arrays are explored. The structural, thermal, and electrical considerations that influenced the design are then analyzed. And finally detailed magnetic measurements are presented

  8. Poling of Planar Silica Waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Kristensen, Martin; Jensen, Jesper Bo

    1999-01-01

    UV-written planar silica waveguides are poled using two different poling techniques, thermal poling and UV-poling. Thermal poling induces an electro-optic coefficient of 0.067 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. The induced electro-optic effect shows a linear dependence...

  9. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    Science.gov (United States)

    Clark, Lawrence T [Phoenix, AZ; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  10. Recent Studies on the Aromaticity and Antiaromaticity of Planar Cyclooctatetraene

    Directory of Open Access Journals (Sweden)

    Masahiko Iyoda

    2010-02-01

    Full Text Available Cyclooctatetraene (COT, the first 4nπ-electron system to be studied, adopts an inherently nonplanar tub-shaped geometry of D2d symmetry with alternating single and double bonds, and hence behaves as a nonaromatic polyene rather than an antiaromatic compound. Recently, however, considerable 8π-antiaromatic paratropicity has been shown to be generated in planar COT rings even with the bond alternated D4h structure. In this review, we highlight recent theoretical and experimental studies on the antiaromaticity of hypothetical and actual planar COT. In addition, theoretically predicted triplet aromaticity and stacked aromaticity of planar COT are also briefly described.

  11. Empty substrate integrated waveguide technology for E plane high-frequency and high-performance circuits

    Science.gov (United States)

    Belenguer, Angel; Cano, Juan Luis; Esteban, Héctor; Artal, Eduardo; Boria, Vicente E.

    2017-01-01

    Substrate integrated circuits (SIC) have attracted much attention in the last years because of their great potential of low cost, easy manufacturing, integration in a circuit board, and higher-quality factor than planar circuits. A first suite of SIC where the waves propagate through dielectric have been first developed, based on the well-known substrate integrated waveguide (SIW) and related technological implementations. One step further has been made with a new suite of empty substrate integrated waveguides, where the waves propagate through air, thus reducing the associated losses. This is the case of the empty substrate integrated waveguide (ESIW) or the air-filled substrate integrated waveguide (air-filled SIW). However, all these SIC are H plane structures, so classical H plane solutions in rectangular waveguides have already been mapped to most of these new SIC. In this paper a novel E plane empty substrate integrated waveguide (ESIW-E) is presented. This structure allows to easily map classical E plane solutions in rectangular waveguide to this new substrate integrated solution. It is similar to the ESIW, although more layers are needed to build the structure. A wideband transition (covering the frequency range between 33 GHz and 50 GHz) from microstrip to ESIW-E is designed and manufactured. Measurements are successfully compared with simulation, proving the validity of this new SIC. A broadband high-frequency phase shifter (for operation from 35 GHz to 47 GHz) is successfully implemented in ESIW-E, thus proving the good performance of this new SIC in a practical application.

  12. Dynamic Planar Convex Hull

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølfting; Jacob, Rico

    2002-01-01

    In this paper we determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage of the d......In this paper we determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage...... of the data structure is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects...... the convex hull, and the tangent queries to determine whether a given point is inside the convex hull. We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure....

  13. Spectroelectrochemical sensing: planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R

    2003-09-30

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 {mu}m thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO{sub 2}, where PDMDAAC=poly(dimethyl diallylammonium chloride)

  14. Spectroelectrochemical sensing: planar waveguides

    International Nuclear Information System (INIS)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R.

    2003-01-01

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 μm thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO 2 , where PDMDAAC=poly(dimethyl diallylammonium chloride)

  15. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells

    Science.gov (United States)

    Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian

    2016-05-01

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.

  16. Low latency asynchronous interface circuits

    Science.gov (United States)

    Sadowski, Greg

    2017-06-20

    In one form, a logic circuit includes an asynchronous logic circuit, a synchronous logic circuit, and an interface circuit coupled between the asynchronous logic circuit and the synchronous logic circuit. The asynchronous logic circuit has a plurality of asynchronous outputs for providing a corresponding plurality of asynchronous signals. The synchronous logic circuit has a plurality of synchronous inputs corresponding to the plurality of asynchronous outputs, a stretch input for receiving a stretch signal, and a clock output for providing a clock signal. The synchronous logic circuit provides the clock signal as a periodic signal but prolongs a predetermined state of the clock signal while the stretch signal is active. The asynchronous interface detects whether metastability could occur when latching any of the plurality of the asynchronous outputs of the asynchronous logic circuit using said clock signal, and activates the stretch signal while the metastability could occur.

  17. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  18. Transition of W7-X non-planar coils from manufacturing to assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ehrke, G. [Max-Planck-Institut fuer Plasmaphysik (IPP), EURATOM Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)], E-mail: gunnar.ehrke@ipp.mpg.de

    2009-06-15

    The main magnetic field of Wendelstein 7-X fusion experiment (W7-X) at Max-Planck-Institut fuer Plasmaphysik Greifswald, Germany will be provided by 50 non-planar coils and supported by 20 planar coils. The non-planar coils were delivered by a consortium (CON) consisting of Babcock Noell GmbH Germany (BNG) and ASG Superconductors S.p.A. Italy (ASG). The coil production ended with the delivery of the last non-planar coil in March 2008 at the manufacturing branch of BNG in Zeitz, Germany. The construction of the coils was characterised by design changes, many rework actions and resulting time delays. Due to these numerous adjustments and changes a continuous improvement process was needed. This paper will give an overview about the transition of the non-planar coils from the acceptance tests at the manufacturer site to the beginning of the assembly at IPP. Furthermore this report will highlight technical interfaces in the period of transition.

  19. Paving the Way Towards Reactive Planar Spanner Construction in Wireless Networks

    Science.gov (United States)

    Frey, Hannes; Rührup, Stefan

    A spanner is a subgraph of a given graph that supports the original graph's shortest path lengths up to a constant factor. Planar spanners and their distributed construction are of particular interest for geographic routing, which is an efficient localized routing scheme for wireless ad hoc and sensor networks. Planarity of the network graph is a key criterion for guaranteed delivery, while the spanner property supports efficiency in terms of path length. We consider the problem of reactive local spanner construction, where a node's local topology is determined on demand. Known message-efficient reactive planarization algorithms do not preserve the spanner property, while reactive spanner constructions with a low message overhead have not been described so far. We introduce the concept of direct planarization which may be an enabler of efficient reactive spanner construction. Given an edge, nodes check for all incident intersecting edges a certain geometric criterion and withdraw the edge if this criterion is not satisfied. We use this concept to derive a generic reactive topology control mechanism and consider two geometric criteria. Simulation results show that direct planarization increases the performance of localized geographic routing by providing shorter paths than existing reactive approaches.

  20. Piezoelectric drive circuit

    Science.gov (United States)

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  1. Planar and non-planar nucleus-acoustic shock structures in self-gravitating degenerate quantum plasma systems

    Science.gov (United States)

    Zaman, D. M. S.; Amina, M.; Dip, P. R.; Mamun, A. A.

    2017-11-01

    The basic properties of planar and non-planar (spherical and cylindrical) nucleus-acoustic (NA) shock structures (SSs) in a strongly coupled self-gravitating degenerate quantum plasma system (containing strongly coupled non-relativistically degenerate heavy nuclear species, weakly coupled non-relativistically degenerate light nuclear species, and inertialess non-/ultra-relativistically degenerate electrons) have been investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been used to derive the modified Burgers equation. It is shown that the strong correlation among heavy nuclear species acts as the source of dissipation and is responsible for the formation of the NA SSs with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically degenerate light nuclear species, spherical geometry, etc., significantly modify the basic features of the NA SSs. The applications of our results in astrophysical compact objects like white dwarfs and neutron stars are briefly discussed.

  2. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  3. Automated curved planar reformation of 3D spine images

    International Nuclear Information System (INIS)

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks

  4. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  5. Conservation of Planar Polarity Pathway Function Across the Animal Kingdom.

    Science.gov (United States)

    Hale, Rosalind; Strutt, David

    2015-01-01

    Planar polarity is a well-studied phenomenon resulting in the directional coordination of cells in the plane of a tissue. In invertebrates and vertebrates, planar polarity is established and maintained by the largely independent core and Fat/Dachsous/Four-jointed (Ft-Ds-Fj) pathways. Loss of function of these pathways can result in a wide range of developmental or cellular defects, including failure of gastrulation and problems with placement and function of cilia. This review discusses the conservation of these pathways across the animal kingdom. The lack of vital core pathway components in basal metazoans suggests that the core planar polarity pathway evolved shortly after, but not necessarily alongside, the emergence of multicellularity.

  6. A GaAs planar Schottky varactor diode for left-handed nonlinear transmission line applications

    International Nuclear Information System (INIS)

    Dong Jun-Rong; Yang Hao; Tian Chao; Huang Jie; Zhang Hai-Ying

    2012-01-01

    The left-handed nonlinear transmission line (LH-NLTL) based on monolithic microwave integrated circuit (MMIC) technology possesses significant advantages such as wide frequency band, high operating frequency, high conversion efficiency, and applications in millimeter and submillimeter wave frequency multiplier. The planar Schottky varactor diode (PSVD) is a major limitation to the performance of the LH-NLTL frequency multiplier as a nonlinear component. The design and the fabrication of the diode for such an application are presented. An accurate large-signal model of the diode is proposed. A 16 GHz-39.6 GHz LH-NLTL frequency doubler using our large-signal model is reported for the first time. The measured maximum output powers of the 2nd harmonic are up to 8 dBm at 26.4 GHz, and above 0 dBm from 16 GHz to 39.6 GHz when the input power is 20 dBm. The application of the LH-NLTL frequency doubler furthermore validates the accuracy of the large-signal model of the PSVD. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Electric circuits and signals

    CERN Document Server

    Sabah, Nassir H

    2007-01-01

    Circuit Variables and Elements Overview Learning Objectives Electric Current Voltage Electric Power and Energy Assigned Positive Directions Active and Passive Circuit Elements Voltage and Current Sources The Resistor The Capacitor The Inductor Concluding Remarks Summary of Main Concepts and Results Learning Outcomes Supplementary Topics on CD Problems and Exercises Basic Circuit Connections and Laws Overview Learning Objectives Circuit Terminology Kirchhoff's Laws Voltage Division and Series Connection of Resistors Current Division and Parallel Connection of Resistors D-Y Transformation Source Equivalence and Transformation Reduced-Voltage Supply Summary of Main Concepts and Results Learning Outcomes Supplementary Topics and Examples on CD Problems and Exercises Basic Analysis of Resistive Circuits Overview Learning Objectives Number of Independent Circuit Equations Node-Voltage Analysis Special Considerations in Node-Voltage Analysis Mesh-Current Analysis Special Conside...

  8. [Shunt and short circuit].

    Science.gov (United States)

    Rangel-Abundis, Alberto

    2006-01-01

    Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways.

  9. Growth and characterization of textured well-faceted ZnO on planar Si(100, planar Si(111, and textured Si(100 substrates for solar cell applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2017-09-01

    Full Text Available In this work, textured, well-faceted ZnO materials grown on planar Si(100, planar Si(111, and textured Si(100 substrates by low-pressure chemical vapor deposition (LPCVD were analyzed by X-ray diffraction (XRD, scanning electron microscopy (SEM, atomic force microscopy (AFM, and cathode luminescence (CL measurements. The results show that ZnO grown on planar Si(100, planar Si(111, and textured Si(100 substrates favor the growth of ZnO(110 ridge-like, ZnO(002 pyramid-like, and ZnO(101 pyramidal-tip structures, respectively. This could be attributed to the constraints of the lattice mismatch between the ZnO and Si unit cells. The average grain size of ZnO on the planar Si(100 substrate is slightly larger than that on the planar Si(111 substrate, while both of them are much larger than that on the textured Si(100 substrate. The average grain sizes (about 10–50 nm of the ZnO grown on the different silicon substrates decreases with the increase of their strains. These results are shown to strongly correlate with the results from the SEM, AFM, and CL as well. The reflectance spectra of these three samples show that the antireflection function provided by theses samples mostly results from the nanometer-scaled texture of the ZnO films, while the micrometer-scaled texture of the Si substrate has a limited contribution. The results of this work provide important information for optimized growth of textured and well-faceted ZnO grown on wafer-based silicon solar cells and can be utilized for efficiency enhancement and optimization of device materials and structures, such as heterojunction with intrinsic thin layer (HIT solar cells.

  10. Macromodels of digital integrated circuits for program packages of circuit engineering design

    Science.gov (United States)

    Petrenko, A. I.; Sliusar, P. B.; Timchenko, A. P.

    1984-04-01

    Various aspects of the generation of macromodels of digital integrated circuits are examined, and their effective application in program packages of circuit engineering design is considered. Three levels of macromodels are identified, and the application of such models to the simulation of circuit outputs is discussed.

  11. $1$-string $B_2$-VPG representation of planar graphs

    Directory of Open Access Journals (Sweden)

    Therese Biedl

    2016-09-01

    Full Text Available In this paper, we prove that every planar graph has a 1-string $B_2$-VPG representation—a string representation using paths in a rectangular grid that contain at most two bends. Furthermore, two paths representing vertices $u,v$ intersect precisely once whenever there is an edge between $u$ and $v$. We also show that only a subset of the possible curve shapes is necessary to represent $4$-connected planar graphs.

  12. Study of silicon-silicon nitride interface properties on planar (1 0 0), planar (1 1 1) and textured surfaces using deep-level transient spectroscopy

    International Nuclear Information System (INIS)

    Gong, Chun; Simoen, Eddy; Posthuma, Niels E; Van Kerschaver, Emmanuel; Poortmans, Jef; Mertens, Robert

    2010-01-01

    Deep-level transient spectroscopy (DLTS) has been applied to metal-insulator-semiconductor (MIS) capacitors fabricated on planar (1 0 0), planar (1 1 1) orientations and textured n-type silicon wafers. Low frequency direct plasma-enhanced chemical vapour deposition Si-SiN x interface properties with and without plasma NH 3 pre-treatment, with and without rapid thermal annealing (RTA) have been investigated. It is shown that three different kinds of defect states are identified at the Si-SiN x interface. For the planar (1 0 0) surface, samples with plasma NH 3 pre-treatment plus RTA show the lowest DLTS signals, which suggests the lowest overall interface states density. For planar (1 1 1) Si surfaces, plasma NH 3 pre-treatment and RTA yield a small improvement. With the textured surface, the RTA step improves the surface passivation quality further but no obvious impact is found with plasma NH 3 pre-treatment. Energy-dependent electron capture cross sections were also measured by small-pulse DLTS. The capture cross sections depend strongly on the energy level and decrease towards the conduction band edge.

  13. Comparison Of Planar And Wound Transformers For Flyback Forward And Half-Bridge Space Power Converters

    Science.gov (United States)

    Bjorklund, Thomas; Andreasen, John; Brosen, Finn; Matthiesen, Erik; Poulsen, Ole

    2011-10-01

    Planar technology has now entered the space domain. The big advantages of planar technology are; - Low profile - Excellent repeatability - Economical assembly - Mechanical integrity - Superior thermal characteristics This is why the general power industries increasingly are using planar magnetics in more and more applications, and therefore also why we see a rising demand for the usability of the planar technology among space application developers. The differences between wound and planar transformers have been mapped with a detailed look on the various parasitic component values, such as DC- and AC- resistance, Leakage Inductance and stray capacitance, and revealed the magnitude of the advantages of planar technology. This technical solution is proven in prototypes that have been built in different combination of PCB's and copper foil, with more or less interleaving of windings. Furthermore the transformers have been designed with several outputs stacked together with a fairly high number of primary turns, in order to have planar transformers similar to the wound types that are generally used for space applications.

  14. L(2, 1-Labelings of Some Families of Oriented Planar Graphs

    Directory of Open Access Journals (Sweden)

    Sen Sagnik

    2014-02-01

    Full Text Available In this paper we determine, or give lower and upper bounds on, the 2-dipath and oriented L(2, 1-span of the family of planar graphs, planar graphs with girth 5, 11, 16, partial k-trees, outerplanar graphs and cacti.

  15. Circuit arrangement of an electronic component for the design of fail-safe protective circuits

    International Nuclear Information System (INIS)

    Centmaier, W.; Bernhard, U.; Friederich, B.; Heisecke, I.

    1974-01-01

    The critical parameters of reactors are controlled by safety circuits. These circuits are controlled designed as logic modules operating by the 'n-out-of-m' selection principle. In most cases, a combination of a '1-out-of-3' circuit with a '2-out-of-3' circuit and separate indication is sufficient for a dynamic fail-safe circuit. The basic logic elements are AND and OR gate circuits, respectively, which are triggered by pulse trains and in which the failure of a pulse train is indicated as an error at the output. The module allows the design of safety circuits offering various degrees of safety. If the indication of an error is made on the modules, faulty components can be exchanged by the maintenance crew right away. (DG) [de

  16. Development of planar SOE/SOFC reversible cell

    International Nuclear Information System (INIS)

    Kusunoki, A.; Matsubara, H.; Kikuoka, Y.; Yanagi, C.; Kugimiya, K.; Yoshino, M.; Tokura, M.; Watanabe, K.; Ueda, S.; Sumi, M.; Miyamoto, H.; Tokunaga, S.

    1993-01-01

    A new energy storage system using SOE/SOFC (solid oxide electrolysis-solid oxide fuel cells) reversible cells is presented, where a unit cell works as a fuel cell during a period of high electric power demand and alternately works as an electrolysis cell during a period of low power demand. A planar cell configuration is used which allows for a compact and low cost energy storage and load leveling system for power stations. Tests were performed to verify the reversibility of the planar cell, at 1000 deg C, with YSZ (Yttria stabilized zirconia) as the solid electrolyte, to improve the cell performance by reducing the overvoltage in electrolysis, and to obtain fundamental characteristics of a reversible cell. 3 figs

  17. Comparison of modified driver circuit and capacitor-transfer circuit in longitudinally excited N2 laser.

    Science.gov (United States)

    Uno, Kazuyuki; Akitsu, Tetsuya; Nakamura, Kenshi; Jitsuno, Takahisa

    2013-04-01

    We developed a modified driver circuit composed of a capacitance and a spark gap, called a direct-drive circuit, for a longitudinally excited gas laser. The direct-drive circuit uses a large discharge impedance caused by a long discharge length of the longitudinal excitation scheme and eliminates the buffer capacitance used in the traditional capacitor-transfer circuit. We compared the direct-drive circuit and the capacitor-transfer circuit in a longitudinally excited N2 laser (wavelength: 337 nm). Producing high output energy with the capacitor-transfer circuit requires a large storage capacitance and a discharge tube with optimum dimensions (an inner diameter of 4 mm and a length of 10 cm in this work); in contrast, the direct-drive circuit requires a high breakdown voltage, achieved with a small storage capacitance and a large discharge tube. Additionally, for the same input energy of 792 mJ, the maximum output energy of the capacitor-transfer circuit was 174.2 μJ, and that of the direct-drive circuit was 344.7 μJ.

  18. Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator

    International Nuclear Information System (INIS)

    Mazierska, Janina; Ledenyov, Dimitri; Jacob, Mohan V; Krupka, Jerzy

    2005-01-01

    Accurate data of complex permittivity of dielectric substrates are needed for efficient design of HTS microwave planar circuits. We have tested MgO substrates from three different manufacturing batches using a dielectric resonator with superconducting parts recently developed for precise microwave characterization of laminar dielectrics at cryogenic temperatures. The measurement fixture has been fabricated using a SrLaAlO 3 post dielectric resonator with DyBa 2 Cu 3 O 7 end plates and silver-plated copper sidewalls to achieve the resolution of loss tangent measurements of 2 x 10 -6 . The tested MgO substrates exhibited the average relative permittivity of 9.63 and tanδ from 3.7 x 10 -7 to 2 x 10 -5 at frequency of 10.5 GHz in the temperature range from 14 to 80 K

  19. Numerical simulation and experimental validation of inverted planar perovskite solar cells based on NiOx hole transport layer

    Science.gov (United States)

    Wei, Xiaoqing; Wang, Xian; Jiang, Hailong; Huang, Yongliang; Han, Anjun; Gao, Qi; Bian, Jiantao; Liu, Zhengxin

    2017-12-01

    Numerical simulation of inverted planar perovskite solar cells based on NiOx hole transport layer was performed with AMPS-1D program. The simulated device parameters were shown to agree well with our experimental work. The simulated results revealed that the device contained typical p-i-n junction configuration. The optimum thickness of the absorber, the effects of the absorber quality, the defect density of interfaces, the effects of VBO and CBO, the interface contact at front and back electrodes were analyzed. Open-circuit voltage mainly depended on the defect density in CH3NH3PbI3 layer, the recombination at HTL/CH3NH3PbI3 and ETL/CH3NH3PbI3 interface, the values of VBO and CBO, while short-circuit current mainly depended on the thickness of CH3NH3PbI3 layer. Fill factor was significantly influenced by the interface contact at front and back electrodes. Remarkably, a power conversion efficiency of 21.8% is obtained under optimised conditions. Real devices with PCE of up to 15% were obtained by initially optimizing the preparation of CH3NH3PbI3 absorber layer. Our work can provide some important guidance for device design and optimization from the considerations of both theory and experiment.

  20. On the tautomerism, planarity, and vibrations of phospholes

    International Nuclear Information System (INIS)

    Oziminski, Wojciech P.; Dobrowolski, Jan Cz.

    2005-01-01

    The PH and CH tautomers of mono-, di-, tri-, tetra-, and pentaphospholes were calculated at the B3LYP/aug-cc-pVTZ level. Except for 1,2,3-triphosphole and pentaphosphole, the most stable phosphole form is one of the CH tautomers. For 1,2-diphosphole, 1,3-diphosphole, and 1,2,4-triphosphole, the energy difference between the tautomers is large and only one tautomer may be observed. For other phospholes, especially tetraphosphole, two tautomers may coexist. Non-planarity of the five membered ring is present only in the σ 3 λ 3 -P atom containing molecules, i.e., PH type of tautomers, while in the CH type of tautomers the ring is planar. As earlier reported by Nyulaszi, the PH tautomers flatten, and the energy difference between PH phosphole and the planar transition state structure decreases, as the number of P atoms in the phosphole molecule is increased. Bond length changes were discussed in terms of configuration of the atoms attached to the bond, and the molecular frequency variations were examined according to the different surroundings of the appropriate vibrators

  1. Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation

    Science.gov (United States)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2016-05-01

    In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.

  2. Numerical Analysis Of Buckling Of Von Mises Planar Truss

    Directory of Open Access Journals (Sweden)

    Kalina Martin

    2015-12-01

    Full Text Available A computational algorithm of a discrete model of von Mises planar steel truss is presented. The structure deformation is evaluated by seeking the minimal potential energy. The critical force invented by mathematical solution was compared with solution by computer algorithm. Symmetric and asymmetric effects of initial shape of geometric imperfection of axis of struts are used in model. The shapes of buckling of von Mises planar truss of selected vertical displacement of top joint are shown.

  3. Multi-projector auto-calibration and placement optimization for non-planar surfaces

    Science.gov (United States)

    Li, Dong; Xie, Jinghui; Zhao, Lu; Zhou, Lijing; Weng, Dongdong

    2015-10-01

    Non-planar projection has been widely applied in virtual reality and digital entertainment and exhibitions because of its flexible layout and immersive display effects. Compared with planar projection, a non-planar projection is more difficult to achieve because projector calibration and image distortion correction are difficult processes. This paper uses a cylindrical screen as an example to present a new method for automatically calibrating a multi-projector system in a non-planar environment without using 3D reconstruction. This method corrects the geometric calibration error caused by the screen's manufactured imperfections, such as an undulating surface or a slant in the vertical plane. In addition, based on actual projection demand, this paper presents the overall performance evaluation criteria for the multi-projector system. According to these criteria, we determined the optimal placement for the projectors. This method also extends to surfaces that can be parameterized, such as spheres, ellipsoids, and paraboloids, and demonstrates a broad applicability.

  4. Feasibility of Parylene Coating for Planar Electroporation Copper Electrodes

    Directory of Open Access Journals (Sweden)

    Vitalij NOVICKIJ

    2017-08-01

    Full Text Available This paper is focused on the feasibility study of parylene as a biocompatible coating for planar electroporation microelectrodes. The planar parallel and the circular interdigitated electrodes are applied in the analysis. The electrodes feature 100 μm width with a 300 μm gap between anode and cathode. The parylene coating thickness was varied in the 250 nm – 2 μm range. The resultant electric field distribution evaluation has been performed using the finite element method. The electrodes have been applied in electroporation experiments with Saprolegnia parasitica. For reference the additional experiments using conventional electroporation cuvette (1 mm gap have been performed. It has been determined that the parylene coating with hydrophobic properties has limited applicability for the passivation of the planar electroporation electrodes.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.14953

  5. Aging evaluation of electrical circuits using the ECCAD [Electrical Circuit Characterization and Diagnostic] system

    International Nuclear Information System (INIS)

    Edson, J.L.

    1988-01-01

    As a part of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program, an aging assessment of electrical circuits was conducted at the Shippingport Atomic Power Station Decommissioning Project. The objective of this work was to evaluate the effectiveness of the Electrical Circuit Characterization and Diagnostic (ECCAD) system in identifying circuit conditions, to determine the present condition of selected electrical circuits, and correlate the results with aging effects. To accomplish this task, a series of electrical tests was performed on each circuit using the ECCAD system, which is composed of commercially available electronic test equipment under computer control. Test results indicate that the ECCAD system is effective in detecting and identifying aging and service wear in selected electrical circuits. The major area of degradation in the circuits tested was at the termination/connection points, whereas the cables were in generally good condition

  6. Planar-Processed Polymer Transistors.

    Science.gov (United States)

    Xu, Yong; Sun, Huabin; Shin, Eul-Yong; Lin, Yen-Fu; Li, Wenwu; Noh, Yong-Young

    2016-10-01

    Planar-processed polymer transistors are proposed where the effective charge injection and the split unipolar charge transport are all on the top surface of the polymer film, showing ideal device characteristics with unparalleled performance. This technique provides a great solution to the problem of fabrication limitations, the ambiguous operating principle, and the performance improvements in practical applications of conjugated-polymer transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multi-Layer E-Textile Circuits

    Science.gov (United States)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  8. Tests of planar permanent magnet multipole focusing elements

    International Nuclear Information System (INIS)

    Cobb, J.; Tatchyn, R.

    1993-08-01

    In recent work, planar configurations of permanent magnets were proposed as substitutes for conventional current-driven iron quadrupoles in applications limited by small aperture sizes and featuring small beam occupation diameters. Important examples include the configuring of focusing lattices in small-gap insertion devices, and the implementation of compact mini-beta sections on linear or circular machines. In subsequent analysis, this approach was extended to sextupoles and higher-order multipoles. In this paper we report on initial measurements conducted at the Stanford Linear Accelerator Center on recently fabricated planar permanent magnet quadrupoles and sextupoles configured out of SmCo and NdFe/B

  9. Two characteristics of planar intertwined basins of attraction

    International Nuclear Information System (INIS)

    Ding Changming

    2012-01-01

    Highlights: ► A new mathematical definition of intertwined basins of attraction is proposed. ► Basins are intertwined iff a limit set of stable manifold contains at least two points. ► Basins are intertwined iff the closure of stable manifold is not arc-connected. ► The intertwining property is preserved by topologically equivalent dynamical systems. - Abstract: In this paper, we investigate the intertwined basins of attraction for planar dynamical systems. We prove that the intertwining property is preserved by topologically equivalent systems. Two necessary and sufficient conditions for a planar system having intertwined basins are given.

  10. Analog circuit design

    CERN Document Server

    Dobkin, Bob

    2012-01-01

    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  11. ESD analog circuits and design

    CERN Document Server

    Voldman, Steven H

    2014-01-01

    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  12. The planar cubic Cayley graphs

    CERN Document Server

    Georgakopoulos, Agelos

    2018-01-01

    The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.

  13. Casimir stress inside planar materials

    Science.gov (United States)

    Griniasty, Itay; Leonhardt, Ulf

    2017-09-01

    The Casimir force between macroscopic bodies is well understood, but not the Casimir force inside bodies. Guided by a physically intuitive picture, we develop the macroscopic theory of the renormalized Casimir stress inside planar materials (where the electromagnetic properties vary in one direction). Our theory may be applied in predicting how inhomogeneous fluids respond to Casimir forces.

  14. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  15. Influence of PbCl2 content in PbI2 solution of DMF on the absorption, crystal phase, morphology of lead halide thin films and photovoltaic performance in planar perovskite solar cells

    International Nuclear Information System (INIS)

    Wang, Mao; Shi, Chengwu; Zhang, Jincheng; Wu, Ni; Ying, Chao

    2015-01-01

    In this paper, the influence of PbCl 2 content in PbI 2 solution of DMF on the absorption, crystal phase and morphology of lead halide thin films was systematically investigated and the photovoltaic performance of the corresponding planar perovskite solar cells was evaluated. The result revealed that the various thickness lead halide thin film with the small sheet-like, porous morphology and low crystallinity can be produced by adding PbCl 2 powder into PbI 2 solution of DMF as a precursor solution. The planar perovskite solar cell based on the 300-nm-thick CH 3 NH 3 PbI 3−x Cl x thin film by the precursor solution with the mixture of 0.80 M PbI 2 and 0.20 M PbCl 2 exhibited the optimum photoelectric conversion efficiency of 10.12% along with an open-circuit voltage of 0.93 V, a short-circuit photocurrent density of 15.70 mA cm −2 and a fill factor of 0.69. - Graphical abstract: The figure showed the surface and cross-sectional SEM images of lead halide thin films using the precursor solutions: (a) 0.80 M PbI 2 , (b) 0.80 M PbI 2 +0.20 M PbCl 2 , (c) 0.80 M PbI 2 +0.40 M PbCl 2 , and (d) 0.80 M PbI 2 +0.60 M PbCl 2 . With the increase of the PbCl 2 content in precursor solution, the size of the lead halide nanosheet decreased and the corresponding thin films gradually turned to be porous with low crystallinity. - Highlights: • Influence of PbCl 2 content on absorption, crystal phase and morphology of thin film. • Influence of perovskite film thickness on photovoltaic performance of solar cell. • Lead halide thin film with small sheet-like, porous morphology and low crystallinity. • Planar solar cell with 300 nm-thick perovskite thin film achieved PCE of 10.12%.

  16. Fundamental losses in planar Bragg waveguides

    NARCIS (Netherlands)

    Vinogradov, A. V.; Mitrofanov, A. N.; Popov, A. V.; Fedin, M. A.

    2007-01-01

    This paper considers a planar Bragg waveguide. The guided modes and their dissipation due to the fundamental absorption are described. In the interacting-wave approximation, an analytical relation between the characteristics of the modes and parameters of the Bragg-waveguide geometry was

  17. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    International Nuclear Information System (INIS)

    Liangping, Wang; Mo, Li; Juanjuan, Han; Ning, Guo; Jian, Wu; Aici, Qiu

    2014-01-01

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. The kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns

  18. 'Speedy' superconducting circuits

    International Nuclear Information System (INIS)

    Holst, T.

    1994-01-01

    The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)

  19. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1968-01-01

    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  20. Planar Dirac diffusion

    International Nuclear Information System (INIS)

    Leo, Stefano de; Rotelli, Pietro

    2009-01-01

    We present the results of the planar diffusion of a Dirac particle by step and barrier potentials, when the incoming wave impinges at an arbitrary angle with the potential. Except for right-angle incidence this process is characterized by the appearance of spin flip terms. For the step potential, spin flip occurs for both transmitted and reflected waves. However, we find no spin flip in the transmitted barrier result. This is surprising because the barrier result may be derived directly from a two-step calculation. We demonstrate that the spin flip cancellation indeed occurs for each ''particle'' (wave packet) contribution. (orig.)

  1. A constant gradient planar accelerating structure for linac use

    International Nuclear Information System (INIS)

    Kang, Y.W.; Matthews, P.J.; Kustom, R.L.

    1995-01-01

    Planar accelerating millimeter-wave structures have been studied during the last few years at Argonne National Laboratory in collaboration with Technical University of Berlin. The cavity structures are intended to be manufactured by using x-ray lithography microfabrication technology. A complete structure consists of two identical planar half structures put together face-to-face. Since microfabrication technology can make a since-depth indentation on a planar substrate, realizing the constant impedance structure was possible but a constant gradient structure was difficult; changing the group velocity along the structure while maintaining the gap and the depth of the indentation constant was difficult. A constant gradient structure has been devised by introducing a cut between the adjacent cavity cells along the beam axis of each half structure. The width of the cut is varied along the longitudinal axis of the structure to have proper coupling between the cells. The result of the computer simulation on such structures is shown

  2. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ...... in the circuit. The performance of the circuit is investigated by means of numerical integration of appropriate differential equations, PSPICE simulations, and hardware experiment.......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  3. The test of VLSI circuits

    Science.gov (United States)

    Baviere, Ph.

    Tests which have proven effective for evaluating VLSI circuits for space applications are described. It is recommended that circuits be examined after each manfacturing step to gain fast feedback on inadequacies in the production system. Data from failure modes which occur during operational lifetimes of circuits also permit redefinition of the manufacturing and quality control process to eliminate the defects identified. Other tests include determination of the operational envelope of the circuits, examination of the circuit response to controlled inputs, and the performance and functional speeds of ROM and RAM memories. Finally, it is desirable that all new circuits be designed with testing in mind.

  4. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  5. MOS integrated circuit design

    CERN Document Server

    Wolfendale, E

    2013-01-01

    MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi

  6. Security electronics circuits manual

    CERN Document Server

    MARSTON, R M

    1998-01-01

    Security Electronics Circuits Manual is an invaluable guide for engineers and technicians in the security industry. It will also prove to be a useful guide for students and experimenters, as well as providing experienced amateurs and DIY enthusiasts with numerous ideas to protect their homes, businesses and properties.As with all Ray Marston's Circuits Manuals, the style is easy-to-read and non-mathematical, with the emphasis firmly on practical applications, circuits and design ideas. The ICs and other devices used in the practical circuits are modestly priced and readily available ty

  7. Changes to the shuttle circuits

    CERN Multimedia

    GS Department

    2011-01-01

    To fit with passengers expectation, there will be some changes to the shuttle circuits as from Monday 10 October. See details on http://cern.ch/ShuttleService (on line on 7 October). Circuit No. 5 is cancelled as circuit No. 1 also stops at Bldg. 33. In order to guarantee shorter travel times, circuit No. 1 will circulate on Meyrin site only and circuit No. 2, with departures from Bldg. 33 and 500, on Prévessin site only. Site Services Section

  8. Troubleshooting analog circuits

    CERN Document Server

    Pease, Robert A

    1991-01-01

    Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other

  9. Optoelectronics circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Optoelectronics Circuits Manual covers the basic principles and characteristics of the best known types of optoelectronic devices, as well as the practical applications of many of these optoelectronic devices. The book describes LED display circuits and LED dot- and bar-graph circuits and discusses the applications of seven-segment displays, light-sensitive devices, optocouplers, and a variety of brightness control techniques. The text also tackles infrared light-beam alarms and multichannel remote control systems. The book provides practical user information and circuitry and illustrations.

  10. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  11. Surfaces foliated by planar geodesics: a model forcurved wood design

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens

    2017-01-01

    Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle......Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle...

  12. Geometrical aspects of a hollow-cathode planar magnetron

    International Nuclear Information System (INIS)

    Wang, Z.; Cohen, S.A.

    1999-01-01

    A hollow-cathode planar magnetron (HCPM), built by surrounding a planar sputtering-magnetron cathode with a hollow-cathode structure (HCS) [Z. Wang and S. A. Cohen, J. Vac. Sci. Technol. A 17, 77 (1999)], is operable at substantially lower pressures than its planar-magnetron counterpart. HCPM operational parameters depend on the inner diameter D and length L of its cylindrical HCS. Only when L is greater than L 0 , a critical length, is the HCPM operable in the new low-pressure regime. The critical length varies with HCS inner diameter D. Explanations of the lower operational pressure regime, critical length, and plasma shape are proposed and compared with a one-dimension diffusion model for energetic electron transport. At pressures above 1 mTorr, Bohm diffusion (temperature congruent primary electron energy), with an ambipolar constraint, can explain the ion - electron pair creation required to sustain the discharge. At the lowest pressure, ∼0.3 mTorr, collision-limited diffusion creates fewer ion - electron pairs than required for steady state and therefore cannot explain the experimental data. The critical length L 0 is consistent with the magnetization length of the primary electrons. copyright 1999 American Institute of Physics

  13. Planar PCB Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review

    Science.gov (United States)

    Eisler, R.; Belisle, A.A.

    1996-01-01

    Ecological and toxicological aspects of polychlorinated biphenyls (PCBs) in the environment are reviewed with emphasis on biologically active congeners and fish and wildlife. Subtopics include sources and uses, chemical and biochemical properties, concentrations in field collections, lethal and sublethal effects, and recommendations for the protection of sensitive resources. All production of PCBs in the United States ceased in 1977. Of the 1.2 million tons of PCBs manufactured to date, about 65% are still in use in electrical equipment and 31% in various environmental compartments, and 4% were degraded or incinerated. The 209 PCB congeners and their metabolites show wide differences in biological effects. A significant part of the toxicity associated with commercial PCB mixtures is related to the presence of about 20 planar congeners, i.e., congeners without chlorine substitution in the ortho position. Toxic planar congeners, like other PCB congeners, have been detected in virtually all analyzed samples, regardless of collection locale. Planar PCB concentrations were usually highest in samples from near urban areas and in fat and liver tissues, filter-feeding bivalve mollusks, fish-eating birds, and carnivorous marine mammals. Adverse effects of planar PCBs on growth, survival, and reproduction are highly variable because of numerous biotic and abiotic modifiers, including interaction with other chemicals. In general, embryos and juveniles were the most sensitive stages tested to planar PCBs, and the chinook salmon, domestic chicken, mink, rhesus macaque, and laboratory white rat were among the most sensitive species. for protection of natural resources, most authorities now recommend (1) analyzation of environmental samples for planar and other potentially hazardous congeners; (2) exposure studies with representative species and specific congeners, alone and in combination with other environmental contaminants; (3) clarification of existing structure

  14. CMOS analog circuit design

    CERN Document Server

    Allen, Phillip E

    1987-01-01

    This text presents the principles and techniques for designing analog circuits to be implemented in a CMOS technology. The level is appropriate for seniors and graduate students familiar with basic electronics, including biasing, modeling, circuit analysis, and some familiarity with frequency response. Students learn the methodology of analog integrated circuit design through a hierarchically-oriented approach to the subject that provides thorough background and practical guidance for designing CMOS analog circuits, including modeling, simulation, and testing. The authors' vast industrial experience and knowledge is reflected in the circuits, techniques, and principles presented. They even identify the many common pitfalls that lie in the path of the beginning designer--expert advice from veteran designers. The text mixes the academic and practical viewpoints in a treatment that is neither superficial nor overly detailed, providing the perfect balance.

  15. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.

    Science.gov (United States)

    Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander

    2013-04-08

    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond.

  16. Integrated circuit and method of arbitration in a network on an integrated circuit.

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to an integrated circuit and to a method of arbitration in a network on an integrated circuit. According to the invention, a method of arbitration in a network on an integrated circuit is provided, the network comprising a router unit, the router unit comprising a first input

  17. Electronic Circuit Analysis Language (ECAL)

    Science.gov (United States)

    Chenghang, C.

    1983-03-01

    The computer aided design technique is an important development in computer applications and it is an important component of computer science. The special language for electronic circuit analysis is the foundation of computer aided design or computer aided circuit analysis (abbreviated as CACD and CACA) of simulated circuits. Electronic circuit analysis language (ECAL) is a comparatively simple and easy to use circuit analysis special language which uses the FORTRAN language to carry out the explanatory executions. It is capable of conducting dc analysis, ac analysis, and transient analysis of a circuit. Futhermore, the results of the dc analysis can be used directly as the initial conditions for the ac and transient analyses.

  18. The Software Reliability of Large Scale Integration Circuit and Very Large Scale Integration Circuit

    OpenAIRE

    Artem Ganiyev; Jan Vitasek

    2010-01-01

    This article describes evaluation method of faultless function of large scale integration circuits (LSI) and very large scale integration circuits (VLSI). In the article there is a comparative analysis of factors which determine faultless of integrated circuits, analysis of already existing methods and model of faultless function evaluation of LSI and VLSI. The main part describes a proposed algorithm and program for analysis of fault rate in LSI and VLSI circuits.

  19. Peak reading detector circuit

    International Nuclear Information System (INIS)

    Courtin, E.; Grund, K.; Traub, S.; Zeeb, H.

    1975-01-01

    The peak reading detector circuit serves for picking up the instants during which peaks of a given polarity occur in sequences of signals in which the extreme values, their time intervals, and the curve shape of the signals vary. The signal sequences appear in measuring the foetal heart beat frequence from amplitude-modulated ultrasonic, electrocardiagram, and blood pressure signals. In order to prevent undesired emission of output signals from, e. g., disturbing intermediate extreme values, the circuit consists of the series connections of a circuit to simulate an ideal diode, a strong unit, a discriminator for the direction of charging current, a time-delay circuit, and an electronic switch lying in the decharging circuit of the storage unit. The time-delay circuit thereby causes storing of a preliminary maximum value being used only after a certain time delay for the emission of the output signal. If a larger extreme value occurs during the delay time the preliminary maximum value is cleared and the delay time starts running anew. (DG/PB) [de

  20. Integrated packaging of multiple double sided cooling planar bond power modules

    Science.gov (United States)

    Liang, Zhenxian

    2018-04-10

    An integrated double sided cooled power module has one or multiple phase legs configuration including one or more planar power packages, each planar power package having an upper power switch unit and a lower power switch unit directly bonded and interconnected between two insulated power substrates, and further sandwiched between two heat exchangers via direct bonds. A segmented coolant manifold is interposed with the one or more planar power packages and creates a sealed enclosure that defines a coolant inlet, a coolant outlet and a coolant flow path between the inlet and the outlet. A coolant circulates along the flow path to remove heat and increase the power density of the power module.

  1. Magnonic logic circuits

    International Nuclear Information System (INIS)

    Khitun, Alexander; Bao Mingqiang; Wang, Kang L

    2010-01-01

    We describe and analyse possible approaches to magnonic logic circuits and basic elements required for circuit construction. A distinctive feature of the magnonic circuitry is that information is transmitted by spin waves propagating in the magnetic waveguides without the use of electric current. The latter makes it possible to exploit spin wave phenomena for more efficient data transfer and enhanced logic functionality. We describe possible schemes for general computing and special task data processing. The functional throughput of the magnonic logic gates is estimated and compared with the conventional transistor-based approach. Magnonic logic circuits allow scaling down to the deep submicrometre range and THz frequency operation. The scaling is in favour of the magnonic circuits offering a significant functional advantage over the traditional approach. The disadvantages and problems of the spin wave devices are also discussed.

  2. The ATLAS Planar Pixel Sensor R and D project

    International Nuclear Information System (INIS)

    Beimforde, M.

    2011-01-01

    Within the R and D project on Planar Pixel Sensor Technology for the ATLAS inner detector upgrade, the use of planar pixel sensors for highest fluences as well as large area silicon detectors is investigated. The main research goals are optimizing the signal size after irradiations, reducing the inactive sensor edges, adjusting the readout electronics to the radiation induced decrease of the signal sizes, and reducing the production costs. Planar n-in-p sensors have been irradiated with neutrons and protons up to fluences of 2x10 16 n eq /cm 2 and 1x10 16 n eq /cm 2 , respectively, to study the collected charge as a function of the irradiation dose received. Furthermore comparisons of irradiated standard 300μm and thin 140μm sensors will be presented showing an increase of signal sizes after irradiation in thin sensors. Tuning studies of the present ATLAS front end electronics show possibilities to decrease the discriminator threshold of the present FE-I3 read out chips to less than 1500 electrons. In the present pixel detector upgrade scenarios a flat stave design for the innermost layers requires reduced inactive areas at the sensor edges to ensure low geometric inefficiencies. Investigations towards achieving slim edges presented here show possibilities to reduce the width of the inactive area to less than 500μm. Furthermore, a brief overview of present simulation activities within the Planar Pixel R and D project is given.

  3. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  4. Planar-integrated single-crystalline perovskite photodetectors

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-11-09

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors.

  5. Optical magnetism in planar metamaterial heterostructures.

    Science.gov (United States)

    Papadakis, Georgia T; Fleischman, Dagny; Davoyan, Artur; Yeh, Pochi; Atwater, Harry A

    2018-01-18

    Harnessing artificial optical magnetism has previously required complex two- and three-dimensional structures, such as nanoparticle arrays and split-ring metamaterials. By contrast, planar structures, and in particular dielectric/metal multilayer metamaterials, have been generally considered non-magnetic. Although the hyperbolic and plasmonic properties of these systems have been extensively investigated, their assumed non-magnetic response limits their performance to transverse magnetic (TM) polarization. We propose and experimentally validate a mechanism for artificial magnetism in planar multilayer metamaterials. We also demonstrate that the magnetic properties of high-index dielectric/metal hyperbolic metamaterials can be anisotropic, leading to magnetic hyperbolic dispersion in certain frequency regimes. We show that such systems can support transverse electric polarized interface-bound waves, analogous to their TM counterparts, surface plasmon polaritons. Our results open a route for tailoring optical artificial magnetism in lithography-free layered systems and enable us to generalize the plasmonic and hyperbolic properties to encompass both linear polarizations.

  6. Optically controllable molecular logic circuits

    International Nuclear Information System (INIS)

    Nishimura, Takahiro; Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-01-01

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals

  7. An O(n²) maximal planarization algorithm based on PQ-trees

    NARCIS (Netherlands)

    Kant, G.

    1992-01-01

    In this paper we investigate the problem how to delete a number of edges from a nonplanar graph G such that the resulting graph G’ is maximal planar, i.e., such that we cannot add an edge e E G – G’ to G’ without destroying planarity. Actually, our algorithm is a corrected and more generalized

  8. Optimal planning of series resistor to control time constant of test circuit for high-voltage AC circuit-breakers

    OpenAIRE

    Yoon-Ho Kim; Jung-Hyeon Ryu; Jin-Hwan Kim; Kern-Joong Kim

    2016-01-01

    The equivalent test circuit that can deliver both short-circuit current and recovery voltage is used to verify the performance of high-voltage circuit breakers. Most of the parameters in this circuit can be obtained by using a simple calculation or a simulation program. The ratings of the circuit breaker include rated short-circuit breaking current, rated short-circuit making current, rated operating sequence of the circuit breaker and rated short-time current. Among these ratings, the short-...

  9. Interface Circuit For Printer Port

    Science.gov (United States)

    Tucker, Jerry H.; Yadlowsky, Ann B.

    1991-01-01

    Electronic circuit, called printer-port interface circuit (PPI) developed to overcome certain disadvantages of previous methods for connecting IBM PC or PC-compatible computer to other equipment. Has both reading and writing modes of operation. Very simple, requiring only six integrated circuits. Provides for moderately fast rates of transfer of data and uses existing unmodified circuit card in IBM PC. When used with appropriate software, circuit converts printer port on IBM PC, XT, AT, or compatible personal computer to general purpose, 8-bit-data, 16-bit address bus that connects to multitude of devices.

  10. Regular shock refraction in planar ideal MHD

    International Nuclear Information System (INIS)

    Delmont, P; Keppens, R

    2010-01-01

    We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest, in planar ideal (magneto)hydrodynamics. In the hydrodynamical case, 3 signals arise and the interface becomes Richtmyer-Meshkov unstable due to vorticity deposition on the shocked contact. In the magnetohydrodynamical case, on the other hand, when the normal component of the magnetic field does not vanish, 5 signals will arise. The interface then typically remains stable, since the Rankine-Hugoniot jump conditions in ideal MHD do not allow for vorticity deposition on a contact discontinuity. We present an exact Riemann solver based solution strategy to describe the initial self similar refraction phase. Using grid-adaptive MHD simulations, we show that after reflection from the top wall, the interface remains stable.

  11. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  12. Radiation-sensitive switching circuits

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.H.; Cockshott, C.P.

    1976-03-16

    A radiation-sensitive switching circuit has a light emitting diode which supplies light to a photo-transistor, the light being interrupted from time to time. When the photo-transistor is illuminated, current builds up and when this current reaches a predetermined value, a trigger circuit changes state. The peak output of the photo-transistor is measured and the trigger circuit is arranged to change state when the output of the device is a set proportion of the peak output, so as to allow for aging of the components. The circuit is designed to control the ignition system in an automobile engine.

  13. Four-junction superconducting circuit

    Science.gov (United States)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  14. Simplifying massive planar subdivisions

    DEFF Research Database (Denmark)

    Arge, Lars; Truelsen, Jakob; Yang, Jungwoo

    2014-01-01

    We present the first I/O- and practically-efficient algorithm for simplifying a planar subdivision, such that no point is moved more than a given distance εxy and such that neighbor relations between faces (homotopy) are preserved. Under some practically realistic assumptions, our algorithm uses ....... For example, for the contour map simplification problem it is significantly faster than the previous algorithm, while obtaining approximately the same simplification factor. Read More: http://epubs.siam.org/doi/abs/10.1137/1.9781611973198.3...

  15. Planar Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper

    2007-01-01

    demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse......Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...

  16. Evaluated Rayleigh integrals for pulsed planar expanding ring sources

    International Nuclear Information System (INIS)

    Warshaw, S.I.

    1985-01-01

    Time-domain analytic and semianalytic pressure fields acoustically radiated from expanding pulsed ring sources imbedded in a planar rigid baffle have been calculated. The source functions are radially symmetric delta-function distributions whose amplitude and argument have simple functional dependencies on radius and time. Certain cases yield closed analytic results, while others result in elliptic integrals, which are evaluated to high accuracy by Gauss-Chebyshev and modified Gauss-Legendre quadrature. These results are of value for calibrating computer simulations and convolution procedures, and estimating fields from more complex planar radiators. 3 refs., 4 figs

  17. Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator

    Energy Technology Data Exchange (ETDEWEB)

    Mazierska, Janina [Institute of Information Sciences and Technology, Massey University, Palmerston North, P. Bag 11222 (New Zealand); Ledenyov, Dimitri [Electrical and Computer Engineering, James Cook University, Townsville, Q4811 (Australia); Jacob, Mohan V [Electrical and Computer Engineering, James Cook University, Townsville, Q4811 (Australia); Krupka, Jerzy [Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej, Koszykowa 75, 00-662 Warsaw (Poland)

    2005-01-01

    Accurate data of complex permittivity of dielectric substrates are needed for efficient design of HTS microwave planar circuits. We have tested MgO substrates from three different manufacturing batches using a dielectric resonator with superconducting parts recently developed for precise microwave characterization of laminar dielectrics at cryogenic temperatures. The measurement fixture has been fabricated using a SrLaAlO{sub 3} post dielectric resonator with DyBa{sub 2}Cu{sub 3}O{sub 7} end plates and silver-plated copper sidewalls to achieve the resolution of loss tangent measurements of 2 x 10{sup -6}. The tested MgO substrates exhibited the average relative permittivity of 9.63 and tan{delta} from 3.7 x 10{sup -7} to 2 x 10{sup -5} at frequency of 10.5 GHz in the temperature range from 14 to 80 K.

  18. KAPPEL Propeller. Development of a Marine Propeller with Non-planar Lifting Surfaces

    DEFF Research Database (Denmark)

    Kappel, J.; Andersen, Poul

    2002-01-01

    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or "winglet" at the wingtip has been developed for aircraft, the application of the non-planar principle to marine propellers, dealt...... with in this paper, has led to the KAPPEL propeller with blades curved towards the suction side integrating the fin or winglet into the propeller blade. The combined theoretical, experimental and practical approach to develop and design marine propellers with non-planar lifting surfaces has resulted in propellers...

  19. Control circuit for transformer relay

    International Nuclear Information System (INIS)

    Wyatt, G.A.

    1984-01-01

    A control circuit for a transformer relay which will automatically momentarily control the transformer relay to a selected state upon energization of the control circuit. The control circuit has an energy storage element and a current director coupled in series and adapted to be coupled with the secondary winding of the transformer relay. A device for discharge is coupled across the energy storage element. The energy storage element and current director will momentarily allow a unidirectional flow of current in the secondary winding of the transformer relay upon application of energy to the control circuit. When energy is not applied to the control circuit the device for discharge will allow the energy storage element to discharge and be available for another operation of the control circuit

  20. Integrated coherent matter wave circuits

    International Nuclear Information System (INIS)

    Ryu, C.; Boshier, M. G.

    2015-01-01

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry

  1. Model Comparison Exercise Circuit Training Game and Circuit Ladder Drills to Improve Agility and Speed

    Directory of Open Access Journals (Sweden)

    Susilaturochman Hendrawan Koestanto

    2017-11-01

    Full Text Available The purpose of this study was to compare: (1 the effect of circuit training game and circuit ladder drill for the agility; (2 the effect of circuit training game and circuit ladder drill on speed; (3 the difference effect of circuit training game and circuit ladder drill for the speed (4 the difference effect of circuit training game and circuit ladder drill on agility. The type of this research was quantitative with quasi-experimental methods. The design of this research was Factorial Design, with analysing data using ANOVA. The process of data collection was done by using 30 meters sprint speed test and shuttle run test during the pretest and posttest. Furthermore, the data was analyzed by using SPSS 22.0 series. Result: The circuit training game exercise program and circuit ladder drill were significant to increase agility and speed (sig 0.000 < α = 0.005 Group I, II, III had significant differences (sig 0.000 < α = 0.005. The mean of increase in speed of group I = 0.20 seconds, group II = 0.31 seconds, and group III = 0.11 seconds. The average increase agility to group I = 0.34 seconds group II = 0.60 seconds, group III = 0.13 seconds. Based on the analysis above, it could be concluded that there was an increase in the speed and agility of each group after being given a training.

  2. Comminution circuits for compact itabirites

    Directory of Open Access Journals (Sweden)

    Pedro Ferreira Pinto

    Full Text Available Abstract In the beneficiation of compact Itabirites, crushing and grinding account for major operational and capital costs. As such, the study and development of comminution circuits have a fundamental importance for feasibility and optimization of compact Itabirite beneficiation. This work makes a comparison between comminution circuits for compact Itabirites from the Iron Quadrangle. The circuits developed are: a crushing and ball mill circuit (CB, a SAG mill and ball mill circuit (SAB and a single stage SAG mill circuit (SSSAG. For the SAB circuit, the use of pebble crushing is analyzed (SABC. An industrial circuit for 25 million tons of run of mine was developed for each route from tests on a pilot scale (grinding and industrial scale. The energy consumption obtained for grinding in the pilot tests was compared with that reported by Donda and Bond. The SSSAG route had the lowest energy consumption, 11.8kWh/t and the SAB route had the highest energy consumption, 15.8kWh/t. The CB and SABC routes had a similar energy consumption of 14.4 kWh/t and 14.5 kWh/t respectively.

  3. 30 CFR 77.506-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... short circuit protection; minimum requirements. 77.506-1 Section 77.506-1 Mineral Resources MINE SAFETY...-1 Electric equipment and circuits; overload and short circuit protection; minimum requirements. Devices providing either short circuit protection or protection against overload shall conform to the...

  4. Overview of analytical models for the design of linear and planar motors

    NARCIS (Netherlands)

    Jansen, J.W.; Smeets, J.P.C.; Overboom, T.T.; Rovers, J.M.M.; Lomonova, E.A.

    2014-01-01

    In this paper, an overview of analytical techniques for the modeling of linear and planar permanent-magnet motors is given. These models can be used complementary to finite element analyses for fast evaluations of topologies, but they are indispensable for the design of magnetically levitated planar

  5. Helical-axis stellarators with noninterlocking planar coils

    International Nuclear Information System (INIS)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits

  6. Helical-axis stellarators with noninterlocking planar coils

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits.

  7. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  8. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics

    KAUST Repository

    Chang, Y.-H.

    2018-02-26

    Polytetrafluoroethylene (PTFE) micro-porous membranes were prepared from PTFE fine powder through extruding, rolling, and uniaxial longitudinally stretching. In contrast to conventional planar transverse stretching, a novel 3D mold design of non-planar transverse stretching process was employed in this study to produce micro-porous structure. The morphology, membrane thickness, mean pore size, and porosity of the PTFE membrane were investigated. The results show that the non-planar transverse stretched membranes exhibit more uniform average pore diameter with thinner membrane thickness. Morphological changes induced by planar and non-planar transverse stretching for pore characteristics were investigated. The stretching conditions, stretching temperature and rate, affect the stretched membrane. Increasing temperature facilitated the uniformity of pore size and uniformity of membrane thickness. Moreover, increase in stretching rate resulted in finer pore size and thinner membrane.

  9. Diameter Dependence of Planar Defects in InP Nanowires.

    Science.gov (United States)

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y B; Ho, Johnny C

    2016-09-12

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of "bottom-up" InP NWs with minimized defect concentration which are suitable for various device applications.

  10. 30 CFR 75.518-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 75.518-1 Section 75.518-1 Mineral Resources MINE SAFETY... short circuit protection; minimum requirements. A device to provide either short circuit protection or...

  11. Selected collection of circuit drawings

    International Nuclear Information System (INIS)

    1977-01-01

    The many electronics circuits have been constracted in the Electronics Shop for use in nuclear experiments or other purposes of this Institute. The types of these circuits amount to about 500 items in total since 1968. This report describes the electronics circuit diagrams selected from this collection. The circuit details are not presented in this report, because these are already been published in the other technical reports. (auth.)

  12. Torsional Restraint Problem of Steel Cold-Formed Beams Restrained By Planar Members

    Science.gov (United States)

    Balázs, Ivan; Melcher, Jindřich; Pešek, Ondřej

    2017-10-01

    The effect of continuous or discrete lateral and torsional restraints of metal thinwalled members along their spans can positively influence their buckling resistance and thus contribute to more economical structural design. The prevention of displacement and rotation of the cross-section results in stabilization of the member. The restraints can practically be provided e.g. by planar members of cladding supported by metal members (purlins, girts). The rate of stabilization of a member can be quantified using values of shear and rotational stiffness provided by the adjacent planar members. While the lateral restraint effected by certain shear stiffness can be often considered as sufficient, the complete torsional restraint can be safely considered in some practical cases only. Otherwise the values of the appropriate rotational stiffness provided by adjacent planar members may not be satisfactory to ensure full torsional restraint and only incomplete restraint is available. Its verification should be performed using theoretical and experimental analyses. The paper focuses on problem of steel thin-walled coldformed beams stabilized by planar members and investigates the effect of the magnitude of the rotational stiffness provided by the planar members on the resistance of the steel members. Cold-formed steel beams supporting planar members of cladding are considered. Full lateral restraint and incomplete torsional restraint are assumed. Numerical analyses performed using a finite element method software indicate considerable influence of the torsional restraint on the buckling resistance of a steel thin-walled member. Utilization of the torsional restraint in the frame of sizing of a stabilized beam can result in more efficient structural design. The paper quantifies this effect for some selected cases and summarizes results of numerical analysis.

  13. Circuits on Cylinders

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro; Vinay, V

    2006-01-01

    We consider the computational power of constant width polynomial size cylindrical circuits and nondeterministic branching programs. We show that every function computed by a Pi2 o MOD o AC0 circuit can also be computed by a constant width polynomial size cylindrical nondeterministic branching pro...

  14. Digital circuit boards mach 1 GHz

    CERN Document Server

    Morrison, Ralph

    2012-01-01

    A unique, practical approach to the design of high-speed digital circuit boards The demand for ever-faster digital circuit designs is beginning to render the circuit theory used by engineers ineffective. Digital Circuit Boards presents an alternative to the circuit theory approach, emphasizing energy flow rather than just signal interconnection to explain logic circuit behavior. The book shows how treating design in terms of transmission lines will ensure that the logic will function, addressing both storage and movement of electrical energy on these lines. It cove

  15. Planar-channeling spatial density under statistical equilibrium

    International Nuclear Information System (INIS)

    Ellison, J.A.; Picraux, S.T.

    1978-01-01

    The phase-space density for planar channeled particles has been derived for the continuum model under statistical equilibrium. This is used to obtain the particle spatial probability density as a function of incident angle. The spatial density is shown to depend on only two parameters, a normalized incident angle and a normalized planar spacing. This normalization is used to obtain, by numerical calculation, a set of universal curves for the spatial density and also for the channeled-particle wavelength as a function of amplitude. Using these universal curves, the statistical-equilibrium spatial density and the channeled-particle wavelength can be easily obtained for any case for which the continuum model can be applied. Also, a new one-parameter analytic approximation to the spatial density is developed. This parabolic approximation is shown to give excellent agreement with the exact calculations

  16. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    Science.gov (United States)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  17. Transfer-Efficient Face Routing Using the Planar Graphs of Neighbors in High Density WSNs

    Directory of Open Access Journals (Sweden)

    Eun-Seok Cho

    2017-10-01

    Full Text Available Face routing has been adopted in wireless sensor networks (WSNs where topological changes occur frequently or maintaining full network information is difficult. For message forwarding in networks, a planar graph is used to prevent looping, and because long edges are removed by planarization and the resulting planar graph is composed of short edges, and messages are forwarded along multiple nodes connected by them even though they can be forwarded directly. To solve this, face routing using information on all nodes within 2-hop range was adopted to forward messages directly to the farthest node within radio range. However, as the density of the nodes increases, network performance plunges because message transfer nodes receive and process increased node information. To deal with this problem, we propose a new face routing using the planar graphs of neighboring nodes to improve transfer efficiency. It forwards a message directly to the farthest neighbor and reduces loads and processing time by distributing network graph construction and planarization to the neighbors. It also decreases the amount of location information to be transmitted by sending information on the planar graph nodes rather than on all neighboring nodes. Simulation results show that it significantly improves transfer efficiency.

  18. Integrated circuit cooled turbine blade

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  19. Advanced circuit simulation using Multisim workbench

    CERN Document Server

    Báez-López, David; Cervantes-Villagómez, Ofelia Delfina

    2012-01-01

    Multisim is now the de facto standard for circuit simulation. It is a SPICE-based circuit simulator which combines analog, discrete-time, and mixed-mode circuits. In addition, it is the only simulator which incorporates microcontroller simulation in the same environment. It also includes a tool for printed circuit board design.Advanced Circuit Simulation Using Multisim Workbench is a companion book to Circuit Analysis Using Multisim, published by Morgan & Claypool in 2011. This new book covers advanced analyses and the creation of models and subcircuits. It also includes coverage of transmissi

  20. MOS voltage automatic tuning circuit

    OpenAIRE

    李, 田茂; 中田, 辰則; 松本, 寛樹

    2004-01-01

    Abstract ###Automatic tuning circuit adjusts frequency performance to compensate for the process variation. Phase locked ###loop (PLL) is a suitable oscillator for the integrated circuit. It is a feedback system that compares the input ###phase with the output phase. It can make the output frequency equal to the input frequency. In this paper, PLL ###fomed of MOSFET's is presented.The presented circuit consists of XOR circuit, Low-pass filter and Relaxation ###Oscillator. On PSPICE simulation...

  1. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  2. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  3. The nature of planar faults in a dilute molybdenum-boron alloy

    International Nuclear Information System (INIS)

    Chervinskii, V.I.; Kantor, M.M.; Novikov, I.I.; Sofronova, R.M.

    1982-01-01

    Planar faults on (100) planes in dilute molybdenum-boron alloys consist of a mono- or a bilayer of boron atoms. The displacement vectors are of the general type and for mono- and bilayer faults, respectively, where the component d is close to 1/6 and normal to the fault plane. The planar faults are probably an intermediate stage of MoB or Mo 2 BC growth. (author)

  4. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  5. Direct closed-form covariance matrix and finite alphabet constant-envelope waveforms for planar array beampatterns

    KAUST Repository

    Ahmed, Sajid

    2016-11-24

    Various examples of methods and systems are provided for direct closed-form finite alphabet constant-envelope waveforms for planar array beampatterns. In one example, a method includes defining a waveform covariance matrix based at least in part upon a two-dimensional fast Fourier transform (2D-FFT) analysis of a frequency domain matrix Hf associated with a planar array of antennas. Symbols can be encoded based upon the waveform covariance matrix and the encoded symbols can be transmitted via the planar array of antennas. In another embodiment, a system comprises an N x M planar array of antennas and transmission circuitry configured to transmit symbols via a two-dimensional waveform beampattern defined based at least in part upon a 2D-FFT analysis of a frequency domain matrix Hf associated with the planar array of antennas.

  6. On the maximum number of cycles in a planar graph

    DEFF Research Database (Denmark)

    Aldred, R.E.L.; Thomassen, Carsten

    2008-01-01

    Let G be a graph on p vertices with q edges and let r = q - p + 1. We show that G has at most 15/162(r) cycles. We also show that if G is planar, then G has at most 2(r-1) + o(2(r-1)) cycles. The planar result is best possible in the sense that any prism, that is, the Cartesian product of a cycle...... and a path with one edge, has more than 2(r-1) cycles....

  7. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors.

    Science.gov (United States)

    Peng, Lele; Peng, Xu; Liu, Borui; Wu, Changzheng; Xie, Yi; Yu, Guihua

    2013-05-08

    Planar supercapacitors have recently attracted much attention owing to their unique and advantageous design for 2D nanomaterials based energy storage devices. However, improving the electrochemical performance of planar supercapacitors still remains a great challenge. Here we report for the first time a novel, high-performance in-plane supercapacitor based on hybrid nanostructures of quasi-2D ultrathin MnO2/graphene nanosheets. Specifically, the planar structures based on the δ-MnO2 nanosheets integrated on graphene sheets not only introduce more electrochemically active surfaces for absorption/desorption of electrolyte ions, but also bring additional interfaces at the hybridized interlayer areas to facilitate charge transport during charging/discharging processes. The unique structural design for planar supercapacitors enables great performance enhancements compared to graphene-only devices, exhibiting high specific capacitances of 267 F/g at current density of 0.2 A/g and 208 F/g at 10 A/g and excellent rate capability and cycling stability with capacitance retention of 92% after 7000 charge/discharge cycles. Moreover, the high planar malleability of planar supercapacitors makes possible superior flexibility and robust cyclability, yielding capacitance retention over 90% after 1000 times of folding/unfolding. Ultrathin 2D nanomaterials represent a promising material platform to realize highly flexible planar energy storage devices as the power back-ups for stretchable/flexible electronic devices.

  8. Mobilities and dislocation energies of planar faults in an ordered A 3 ...

    Indian Academy of Sciences (India)

    Present work describes the stability of possible planar faults of the A3B (D019) phase with an axial ratio less than the ideal. Mobilities and dislocation energies of various planar faults viz. antiphase boundaries (APBs), superlattice intrinsic stacking faults (SISFs) and complex stacking faults (CSFs) have been computed using ...

  9. Hysteresis data of planar perovskite solar cells fabricated with different solvents.

    Science.gov (United States)

    Seo, You-Hyun; Kim, Eun-Chong; Cho, Se-Phin; Kim, Seok-Soon; Na, Seok-In

    2018-02-01

    In this data article, we introduced the hysteresis of planar perovskite solar cells (PSCs) fabricated using dimethylformamide (DMF), gamma-butyrolactone (GBL), methyl-2-pyrrolidinone (NMP), dimethylsulfoxide (DMSO), DMF-DMSO, GBL-DMSO and NMP-DMSO as perovskite precursor solutions according to different scan directions, sweep times, and current stability. The hysteresis analyses of the planar PSCs prepared with a glass-ITO /NiO X /perovskite /PC 61 BM/BCP/Ag configuration were measured with Keithley 2400 source meter unit under 100 mW/cm 2 (AM 1.5 G). The data collected in this article compares the hysteresis of PSCs with different solvents and is directly related to our research article "High-Performance Planar Perovskite Solar Cells: Influence of Solvent upon Performance" (You-Hyun Seo et al., 2017 [1]).

  10. Hysteresis data of planar perovskite solar cells fabricated with different solvents

    Directory of Open Access Journals (Sweden)

    You-Hyun Seo

    2018-02-01

    Full Text Available In this data article, we introduced the hysteresis of planar perovskite solar cells (PSCs fabricated using dimethylformamide (DMF, gamma-butyrolactone (GBL, methyl-2-pyrrolidinone (NMP, dimethylsulfoxide (DMSO, DMF-DMSO, GBL-DMSO and NMP-DMSO as perovskite precursor solutions according to different scan directions, sweep times, and current stability. The hysteresis analyses of the planar PSCs prepared with a glass-ITO /NiOX/perovskite /PC61BM/BCP/Ag configuration were measured with Keithley 2400 source meter unit under 100 mW/cm2 (AM 1.5 G. The data collected in this article compares the hysteresis of PSCs with different solvents and is directly related to our research article “High-Performance Planar Perovskite Solar Cells: Influence of Solvent upon Performance” (You-Hyun Seo et al., 2017 [1].

  11. Arithmetic circuits for DSP applications

    CERN Document Server

    Stouraitis, Thanos

    2017-01-01

    Arithmetic Circuits for DSP Applications is a complete resource on arithmetic circuits for digital signal processing (DSP). It covers the key concepts, designs and developments of different types of arithmetic circuits, which can be used for improving the efficiency of implementation of a multitude of DSP applications. Each chapter includes various applications of the respective class of arithmetic circuits along with information on the future scope of research. Written for students, engineers, and researchers in electrical and computer engineering, this comprehensive text offers a clear understanding of different types of arithmetic circuits used for digital signal processing applications. The text includes contributions from noted researchers on a wide range of topics, including a review o circuits used in implementing basic operations like additions and multiplications; distributed arithmetic as a technique for the multiplier-less implementation of inner products for DSP applications; discussions on look ...

  12. Source-circuit design overview

    Science.gov (United States)

    Ross, R. G., Jr.

    1983-01-01

    The source circuit is the fundamental electrical building block of a large central-station array; it consists of a series-parallel network of solar cells that develops full system voltage. The array field is generally made up of a large number of parallel source circuits. Source-circuit electrical configuration is driven by a number of design considerations, which must be considered simultaneously. Array fault tolerance and hot spot heating endurance are examined in detail.

  13. Comparison of rectangular and dual-planar positron emission mammography scanners

    International Nuclear Information System (INIS)

    Qi, Jinyi; Kuo, Chaincy; Huesman, Ronald H.; Klein, Gregory J.; Moses, William W.; Reutter, Bryan W.

    2002-01-01

    Breast imaging using dedicated positron emission tomography (PEM) has gained much interest in the medical imaging field. In this paper, we compare the performance between a rectangular geometry and a parallel dual-planar geometry. Both geometries are studied with depth of interaction (DOI) detectors and non- DOI detectors. We compare the Fisher-information matrix, lesion detection, and quantitation of the four systems. The lesion detectability is measured by the signal-to-noise ratio (SNR) of a prewhitening numerical observer for detecting a known hot spot on a uniform background. Results show that the rectangular system with DOI has the highest SNR for the detection task and the lowest bias at any given noise level for the quantitation task. They also show that for small simulated lesions the parallel dual-planar system with DOI detectors outperforms the rectangular system with non-DOI detectors, while the rectangular system with non-DOI detectors can outperform the parallel dual-planar system with DOI detectors for large simulated lesions

  14. Study of turbulent flow using Half-Fourier Echo-Planar imaging

    International Nuclear Information System (INIS)

    Rodriguez, A.O.

    2006-01-01

    The Echo-Planar Imaging technique combined with a partial Fourier acquisition method was used to obtain velocity images for liquid flows in a circular cross-section pipe at Reynolds number of up to 8000. This partial-Fourier imaging scheme is able to generate shorter echo times than the full-Fourier Echo-Planar Imaging methods, reducing the signal attenuation due to T2 * and flow. Velocity images along the z axis were acquired with a time-scale of 80 ms thus obtaining a real-time description of flow in both the laminar and turbulent regimes. Velocity values and velocity fluctuations were computed with the flow image data. A comparison plot of NMR velocity and bulk velocity and a plot of velocity fluctuations were calculated to investigate the feasibility of this imaging technique. Flow encoded Echo-Planar Imaging together with a reduced data acquisition method can provide us with a real-time technique to capture instantaneous images of the flow field for both laminar and turbulent regimes. (author)

  15. Load estimation from planar PIV measurement in vortex dominated flows

    Science.gov (United States)

    McClure, Jeffrey; Yarusevych, Serhiy

    2017-11-01

    Control volume-based loading estimates are employed on experimental and synthetic numerical planar Particle Image Velocimetry (PIV) data of a stationary cylinder and a cylinder undergoing one degree-of-freedom (1DOF) Vortex Induced Vibration (VIV). The results reveal the necessity of including out of plane terms, identified from a general formulation of the control volume momentum balance, when evaluating loads from planar measurements in three-dimensional flows. Reynolds stresses from out of plane fluctuations are shown to be significant for both instantaneous and mean force estimates when the control volume encompasses vortex dominated regions. For planar measurement, invoking a divergence-free assumption allows accurate estimation of half the identified terms. Towards evaluating the fidelity of PIV-based loading estimates for obtaining the forcing function unobtrusively in VIV experiments, the accuracy of the control volume-based loading methodology is evaluated using the numerical data with synthetically generated experimental PIV error, and a comparison is made between experimental PIV-based estimates and simultaneous force balance measurements.

  16. Motion video analysis using planar parallax

    Science.gov (United States)

    Sawhney, Harpreet S.

    1994-04-01

    Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.

  17. Multistability in planar liquid crystal wells

    KAUST Repository

    Luo, Chong

    2012-06-08

    A planar bistable liquid crystal device, reported in Tsakonas, is modeled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micrometer-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W≥0, while rotated solutions only exist for W≥W c>0, where W c is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal-to-rotated and rotated-to-diagonal switching by allowing for variable anchoring strength across the domain boundary. © 2012 American Physical Society.

  18. Multistability in planar liquid crystal wells

    KAUST Repository

    Luo, Chong; Majumdar, Apala; Erban, Radek

    2012-01-01

    A planar bistable liquid crystal device, reported in Tsakonas, is modeled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micrometer-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W≥0, while rotated solutions only exist for W≥W c>0, where W c is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal-to-rotated and rotated-to-diagonal switching by allowing for variable anchoring strength across the domain boundary. © 2012 American Physical Society.

  19. Planar elliptic growth

    Energy Technology Data Exchange (ETDEWEB)

    Mineev, Mark [Los Alamos National Laboratory

    2008-01-01

    The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.

  20. Distortion Cancellation via Polyphase Multipath Circuits

    NARCIS (Netherlands)

    Mensink, E.; Klumperink, Eric A.M.; Nauta, Bram

    The central question of this paper is: can we enhance the spectral purity of nonlinear circuits with the help of polyphase multipath circuits. Polyphase multipath circuits are circuits with two or more paths that exploit phase differences between the paths to cancel unwanted signals. It turns out

  1. Variational integrators for electric circuits

    International Nuclear Information System (INIS)

    Ober-Blöbaum, Sina; Tao, Molei; Cheng, Mulin; Owhadi, Houman; Marsden, Jerrold E.

    2013-01-01

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator

  2. Behavioral synthesis of asynchronous circuits

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard

    2005-01-01

    This thesis presents a method for behavioral synthesis of asynchronous circuits, which aims at providing a synthesis flow which uses and tranfers methods from synchronous circuits to asynchronous circuits. We move the synchronous behavioral synthesis abstraction into the asynchronous handshake...... is idle. This reduces unnecessary switching activity in the individual functional units and therefore the energy consumption of the entire circuit. A collection of behavioral synthesis algorithms have been developed allowing the designer to perform time and power constrained design space exploration...

  3. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  4. 3D NAND Flash Based on Planar Cells

    Directory of Open Access Journals (Sweden)

    Andrea Silvagni

    2017-10-01

    Full Text Available In this article, the transition from 2D NAND to 3D NAND is first addressed, and the various 3D NAND architectures are compared. The article carries out a comparison of 3D NAND architectures that are based on a “punch-and-plug” process—with gate-all-around (GAA cell devices—against architectures that are based on planar cell devices. The differences and similarities between the two classes of architectures are highlighted. The differences between architectures using floating-gate (FG and charge-trap (CT devices are also considered. Although the current production of 3D NAND is based on GAA cell devices, it is suggested that architectures with planar cell devices could also be viable for mass production.

  5. Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Maki Takagishi

    2017-07-01

    Full Text Available Motile cilia in ependymal cells, which line the cerebral ventricles, exhibit a coordinated beating motion that drives directional cerebrospinal fluid (CSF flow and guides neuroblast migration. At the apical cortex of these multi-ciliated cells, asymmetric localization of planar cell polarity (PCP proteins is required for the planar polarization of microtubule dynamics, which coordinates cilia orientation. Daple is a disheveled-associating protein that controls the non-canonical Wnt signaling pathway and cell motility. Here, we show that Daple-deficient mice present hydrocephalus and their ependymal cilia lack coordinated orientation. Daple regulates microtubule dynamics at the anterior side of ependymal cells, which in turn orients the cilial basal bodies required for the directional cerebrospinal fluid flow. These results demonstrate an important role for Daple in planar polarity in motile cilia and provide a framework for understanding the mechanisms and functions of planar polarization in the ependymal cells.

  6. Image Alignment by Piecewise Planar Region Matching

    NARCIS (Netherlands)

    Lou, Z.; Gevers, T.

    2014-01-01

    Robust image registration is a challenging problem, especially when dealing with severe changes in illumination and viewpoint. Previous methods assume a global geometric model (e.g., homography) and, hence, are only able to align images under predefined constraints (e.g., planar scenes and

  7. Analysis of Bernstein's factorization circuit

    NARCIS (Netherlands)

    Lenstra, A.K.; Shamir, A.; Tomlinson, J.; Tromer, E.; Zheng, Y.

    2002-01-01

    In [1], Bernstein proposed a circuit-based implementation of the matrix step of the number field sieve factorization algorithm. These circuits offer an asymptotic cost reduction under the measure "construction cost x run time". We evaluate the cost of these circuits, in agreement with [1], but argue

  8. Efficacy of 67 gallium ECT imaging in lymphoma, infection, and lung carcinoma: A comparison with planar imaging

    International Nuclear Information System (INIS)

    Harwood, S.J.; Anderson, M.W.; Klein, R.C.; Friedman, B.I.; Carroll, R.G.

    1984-01-01

    Emission computed tomography (ECT) studies were performed on a GE 400 A/T camera and ADAC computers (system 3 and system 3300). Thirty-three sets of ECT and planar images were obtained in 20 patients over a six month period. Imaging was performed 48 hours after the intravenous administration of 5 mc of Gallium 67 citrate. No bowel preparation was employed. Comparison is made of the initial nuclear medicine report derived from planar and ECT imaging aided by clinical knowledge versus the consensus opinion of two nuclear medicine physicians reading the planar images along with minimal clinical information. The lymphoma series consists of 18 scans in 10 patients. There were 5 scans in which a false negative planar interpretation was changed to a true positive ECT interpretation. Sensitivity of planar imaging for lymphoma was 58% which rose to 100% with addition of ECT information. There were no false positives by either technique. There were 5 sets of scans in 5 lung carcinoma patients. Sensitivity of the planar images was 60% because of 2 false negative results. Sensitivity of the ECT technique was 100%. There were no false positives. The infection series consists of 10 scans in 5 patients. Sensitivity of ECT was 100%, sensitivity of planar was 66%. There was 1 false positive planar. For the total series the accuracy of planar imaging was 69% and the predictive value of a negative planar interpretation was 44%. Corresponding values for ECT imaging were 100%. The authors' experience demonstrates significant increase in sensitivity without loss of specificity resulting from the use of Emission Computed Tomography in both chest and abdomen in patients with lymphoma, infection, and lung cancer

  9. Are ghosts necessary in planar gauges?

    International Nuclear Information System (INIS)

    Kummer, W.

    1988-01-01

    The introduction of Faddeev-Popov ghosts in axial gauges and especially in the ones of the planar type is not a technical necessity for the general proof of renormalization and gauge independence. It is shown that all necessary identities for Green's functions and for one-particle-irreducible vertices arise in a completely ghost-free formulation as well

  10. High-resolution non-destructive three-dimensional imaging of integrated circuits.

    Science.gov (United States)

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H R; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-15

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography-a high-resolution coherent diffractive imaging technique-can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  11. High-resolution non-destructive three-dimensional imaging of integrated circuits

    Science.gov (United States)

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H. R.; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-01

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography—a high-resolution coherent diffractive imaging technique—can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  12. Radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Hughes, R.C.

    1977-01-01

    Electronic circuits that operate properly after exposure to ionizing radiation are necessary for nuclear weapon systems, satellites, and apparatus designed for use in radiation environments. The program to develop and theoretically model radiation-tolerant integrated circuit components has resulted in devices that show an improvement in hardness up to a factor of ten thousand over earlier devices. An inverter circuit produced functions properly after an exposure of 10 6 Gy (Si) which, as far as is known, is the record for an integrated circuit

  13. Physically based arc-circuit interaction

    International Nuclear Information System (INIS)

    Zhong-Lie, L.

    1984-01-01

    An integral arc model is extended to study the interaction of the gas blast arc with the test circuit in this paper. The deformation in the waveshapes of arc current and voltage around the current zero has been formulated to first approximation by using a simple model of arc voltage based on the arc core energy conservation. By supplementing with the time scale for the radiation, the time rates of arc processes were amended. Both the contributions of various arc processes and the influence of circuit parameters to the arc-circuit interaction have been estimated by this theory. Analysis generated a new method of calculating test circuit parameters which improves the accurate simulation of arc-circuit interaction. The new method agrees with the published experimental results

  14. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21.

    Science.gov (United States)

    Jiang, Qi; Chu, Zema; Wang, Pengyang; Yang, Xiaolei; Liu, Heng; Wang, Ye; Yin, Zhigang; Wu, Jinliang; Zhang, Xingwang; You, Jingbi

    2017-12-01

    Low temperature solution processed planar-structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI 2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI 2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI 2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm 2 ) and 20.1% in large size (1 cm 2 ) with moderate residual PbI 2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar-structure perovskite solar cells, showing the planar-structure perovskite solar cells are very promising. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    KAUST Repository

    Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L.; Dayeh, Shadi A.; Wu, Tao

    2016-01-01

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices. © 2016 American Chemical Society.

  16. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    KAUST Repository

    Shen, Youde

    2016-06-02

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices. © 2016 American Chemical Society.

  17. Integrated circuits, and design and manufacture thereof

    Science.gov (United States)

    Auracher, Stefan; Pribbernow, Claus; Hils, Andreas

    2006-04-18

    A representation of a macro for an integrated circuit layout. The representation may define sub-circuit cells of a module. The module may have a predefined functionality. The sub-circuit cells may include at least one reusable circuit cell. The reusable circuit cell may be configured such that when the predefined functionality of the module is not used, the reusable circuit cell is available for re-use.

  18. Instrumentation and test gear circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Instrumentation and Test Gear Circuits Manual provides diagrams, graphs, tables, and discussions of several types of practical circuits. The practical circuits covered in this book include attenuators, bridges, scope trace doublers, timebases, and digital frequency meters. Chapter 1 discusses the basic instrumentation and test gear principles. Chapter 2 deals with the design of passive attenuators, and Chapter 3 with passive and active filter circuits. The subsequent chapters tackle 'bridge' circuits, analogue and digital metering techniques and circuitry, signal and waveform generation, and p

  19. Multi-qubit circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Viehmann, Oliver

    2013-01-01

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  20. Multi-qubit circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Oliver

    2013-09-03

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  1. Resonance transparency with low-loss in toroidal planar metamaterial

    Science.gov (United States)

    Xiang, Tianyu; Lei, Tao; Hu, Sen; Chen, Jiao; Huang, Xiaojun; Yang, Helin

    2018-03-01

    A compact planar construction composed of asymmetric split ring resonators was designed with a low-loss, high Q-factor resonance transparency at microwave frequency. The singularity property of the proposed metamaterial owing to the enhanced toroidal dipole T is demonstrated via numerical and experimental methods. The transmission peak can reach up to 0.91 and the loss is perfectly repressed, which can be testified by radiated power, H-field distributions, and the imaginary parts of effective permittivity and permeability. The designed planar metamaterial may have numerous potential applications at microwave, terahertz, and optical frequency, e.g., for ultrasensitive sensing, slow-light devices, lasing spacers, even invisible information transfer.

  2. Planar CoB18- Cluster: a New Motif for - and Metallo-Borophenes

    Science.gov (United States)

    Chen, Teng-Teng; Jian, Tian; Lopez, Gary; Li, Wan-Lu; Chen, Xin; Li, Jun; Wang, Lai-Sheng

    2016-06-01

    Combined Photoelectron Spectroscopy (PES) and theoretical calculations have found that anion boron clusters (Bn-) are planar and quasi-planar up to B25-. Recent works show that anion pure boron clusters continued to be planar at B27-,B30-,B35- and B36-. B35- and B36- provide the first experimental evidence for the viability of the two-dimensional (2D) boron sheets (Borophene). The 2D to three-dimensional (3D) transitions are shown to happen at B40-,B39- and B28-, which possess cage-like structures. These fullerene-like boron cage clusters are named as Borospherene. Recently, borophenes or similar structures are claimed to be synthesized by several groups. Following an electronic design principle, a series of transition-metal-doped boron clusters (M©Bn-, n=8-10) are found to possess the monocyclic wheel structures. Meanwhile, CoB12- and RhB12- are revealed to adopt half-sandwich-type structures with the quasi-planar B12 moiety similar to the B12- cluster. Very lately, we show that the CoB16- cluster possesses a highly symmetric Cobalt-centered drum-like structure, with a new record of coordination number at 16. Here we report the CoB18- cluster to possess a unique planar structure, in which the Co atom is doped into the network of a planar boron cluster. PES reveals that the CoB18- cluster is a highly stable electronic system with the first adiabatic detachment energy (ADE) at 4.0 eV. Global minimum searches along with high-level quantum calculations show the global minimum for CoB18- is perfectly planar and closed shell (1A1) with C2v symmetry. The Co atom is bonded with 7 boron atoms in the closest coordination shell and the other 11 boron atoms in the outer coordination shell. The calculated vertical detachment energy (VDE) values match quite well with our experimental results. Chemical bonding analysis by the Adaptive Natural Density Partitioning (AdNDP) method shows the CoB18- cluster is π-aromatic with four 4-centered-2-electron (4c-2e) π bonds and one 19

  3. Experimental study on short-circuit characteristics of the new protection circuit of insulated gate bipolar transistor

    International Nuclear Information System (INIS)

    Ji, In-Hwan; Choi, Young-Hwan; Ha, Min-Woo; Han, Min-Koo; Choi, Yearn-Ik

    2006-01-01

    A new protection circuit employing the collector to emitter voltage (V CE ) sensing scheme for short-circuit withstanding capability of the insulated gate bipolar transistor (IGBT) is proposed and verified by experimental results. Because the current path between the gate and collector can be successfully eliminated in the proposed protection circuit, the power consumption can be reduced and the gate input impedance can be increased. Previous study is limited to dc characteristics. However, experimental results show that the proposed protection circuit successfully reduces the over-current of main IGBT by 80.4% under the short-circuit condition

  4. High voltage MOSFET switching circuit

    Science.gov (United States)

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  5. Graphene radio frequency receiver integrated circuit.

    Science.gov (United States)

    Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried

    2014-01-01

    Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.

  6. Planar shock focusing through perfect gas lens: First experimental demonstration

    International Nuclear Information System (INIS)

    Biamino, Laurent; Mariani, Christian; Jourdan, Georges; Houas, Lazhar; Vandenboomgaerde, Marc; Souffland, Denis

    2014-01-01

    When a shock wave crosses an interface between two materials, this interface becomes unstable and the Richtmyer-Meshkov instability develops. Such instability has been extensively studied in the planar case, and numerous results were presented during the previous workshops. But the Richtmyer-Meshkov (Richtmyer, 1960, 'Taylor Instability in Shock Acceleration of Compressible Fluids,' Commun. Pure Appl. Math., 13(2), pp. 297-319; Meshkov, 1969, 'Interface of Two Gases Accelerated by a Shock Wave,' Fluid Dyn., 4(5), pp. 101-104) instability also occurs in a spherical case where the convergence effects must be taken into account. As far as we know, no conventional (straight section) shock tube facility has been used to experimentally study the Richtmyer-Meshkov instability in spherical geometry. The idea originally proposed by Dimotakis and Samtaney (2006, 'Planar Shock Cylindrical Focusing by a Perfect-Gas Lens,' Phys. Fluid., 18(3), pp. 031705-031708) and later generalized by Vandenboomgaerde and Aymard (2011, 'Analytical Theory for Planar Shock Focusing Through Perfect Gas Lens and Shock Tube Experiment Designs,' Phys. Fluid., 23(1), pp. 016101-016113) was to retain the flexibility of a conventional shock tube to convert a planar shock wave into a cylindrical one through a perfect gas lens. This can be done when a planar shock wave passes through a shaped interface between two gases. By coupling the shape with the impedance mismatch at the interface, it is possible to generate a circular transmitted shock wave. In order to experimentally check the feasibility of this approach, we have implemented the gas lens technique on a conventional shock tube with the help of a convergent test section, an elliptic stereo lithographed grid, and a nitrocellulose membrane. First experimental sequences of Schlieren images have been obtained for an incident shock wave Mach number equal to 1.15 and an air/SF_6-shaped interface. Experimental results indicate that the shock that moves

  7. Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells.

    Science.gov (United States)

    Meng, Lei; You, Jingbi; Guo, Tzung-Fang; Yang, Yang

    2016-01-19

    Inorganic-organic hybrid perovskite solar cells research could be traced back to 2009, and initially showed 3.8% efficiency. After 6 years of efforts, the efficiency has been pushed to 20.1%. The pace of development was much faster than that of any type of solar cell technology. In addition to high efficiency, the device fabrication is a low-cost solution process. Due to these advantages, a large number of scientists have been immersed into this promising area. In the past 6 years, much of the research on perovskite solar cells has been focused on planar and mesoporous device structures employing an n-type TiO2 layer as the bottom electron transport layer. These architectures have achieved champion device efficiencies. However, they still possess unwanted features. Mesoporous structures require a high temperature (>450 °C) sintering process for the TiO2 scaffold, which will increase the cost and also not be compatible with flexible substrates. While the planar structures based on TiO2 (regular structure) usually suffer from a large degree of J-V hysteresis. Recently, another emerging structure, referred to as an "inverted" planar device structure (i.e., p-i-n), uses p-type and n-type materials as bottom and top charge transport layers, respectively. This structure derived from organic solar cells, and the charge transport layers used in organic photovoltaics were successfully transferred into perovskite solar cells. The p-i-n structure of perovskite solar cells has shown efficiencies as high as 18%, lower temperature processing, flexibility, and, furthermore, negligible J-V hysteresis effects. In this Account, we will provide a comprehensive comparison of the mesoporous and planar structures, and also the regular and inverted of planar structures. Later, we will focus the discussion on the development of the inverted planar structure of perovskite solar cells, including film growth, band alignment, stability, and hysteresis. In the film growth part, several

  8. Universal hydrodynamic flow in holographic planar shock collisions

    Energy Technology Data Exchange (ETDEWEB)

    Chesler, Paul M. [Department of Physics, Harvard University,Cambridge MA 02138 (United States); Kilbertus, Niki [Institut für Theoretische Physik, Universität Regensburg,D-93040 Regensburg (Germany); Schee, Wilke van der [Center for Theoretical Physics, MIT,Cambridge MA 02139 (United States)

    2015-11-20

    We study the collision of planar shock waves in AdS{sub 5} as a function of shock profile. In the dual field theory the shock waves describe planar sheets of energy whose collision results in the formation of a plasma which behaves hydrodynamically at late times. We find that the post-collision stress tensor near the light cone exhibits transient non-universal behavior which depends on both the shock width and the precise functional form of the shock profile. However, over a large range of shock widths, including those which yield qualitative different behavior near the future light cone, and for different shock profiles, we find universal behavior in the subsequent hydrodynamic evolution. Additionally, we compute the rapidity distribution of produced particles and find it to be well described by a Gaussian.

  9. High-Performance CH3NH3PbI3-Inverted Planar Perovskite Solar Cells with Fill Factor Over 83% via Excess Organic/Inorganic Halide.

    Science.gov (United States)

    Jahandar, Muhammad; Khan, Nasir; Lee, Hang Ken; Lee, Sang Kyu; Shin, Won Suk; Lee, Jong-Cheol; Song, Chang Eun; Moon, Sang-Jin

    2017-10-18

    The reduction of charge carrier recombination and intrinsic defect density in organic-inorganic halide perovskite absorber materials is a prerequisite to achieving high-performance perovskite solar cells with good efficiency and stability. Here, we fabricated inverted planar perovskite solar cells by incorporation of a small amount of excess organic/inorganic halide (methylammonium iodide (CH 3 NH 3 I; MAI), formamidinium iodide (CH(NH 2 ) 2 I; FAI), and cesium iodide (CsI)) in CH 3 NH 3 PbI 3 perovskite film. Larger crystalline grains and enhanced crystallinity in CH 3 NH 3 PbI 3 perovskite films with excess organic/inorganic halide reduce the charge carrier recombination and defect density, leading to enhanced device efficiency (MAI+: 14.49 ± 0.30%, FAI+: 16.22 ± 0.38% and CsI+: 17.52 ± 0.56%) compared to the efficiency of a control MAPbI 3 device (MAI: 12.63 ± 0.64%) and device stability. Especially, the incorporation of a small amount of excess CsI in MAPbI 3 perovskite film leads to a highly reproducible fill factor of over 83%, increased open-circuit voltage (from 0.946 to 1.042 V), and short-circuit current density (from 18.43 to 20.89 mA/cm 2 ).

  10. Investigation of Equivalent Circuit for PEMFC Assessment

    International Nuclear Information System (INIS)

    Myong, Kwang Jae

    2011-01-01

    Chemical reactions occurring in a PEMFC are dominated by the physical conditions and interface properties, and the reactions are expressed in terms of impedance. The performance of a PEMFC can be simply diagnosed by examining the impedance because impedance characteristics can be expressed by an equivalent electrical circuit. In this study, the characteristics of a PEMFC are assessed using the AC impedance and various equivalent circuits such as a simple equivalent circuit, equivalent circuit with a CPE, equivalent circuit with two RCs, and equivalent circuit with two CPEs. It was found in this study that the characteristics of a PEMFC could be assessed using impedance and an equivalent circuit, and the accuracy was highest for an equivalent circuit with two CPEs

  11. Automatic circuit analysis based on mask information

    International Nuclear Information System (INIS)

    Preas, B.T.; Lindsay, B.W.; Gwyn, C.W.

    1976-01-01

    The Circuit Mask Translator (CMAT) code has been developed which converts integrated circuit mask information into a circuit schematic. Logical operations, pattern recognition, and special functions are used to identify and interconnect diodes, transistors, capacitors, and resistances. The circuit topology provided by the translator is compatible with the input required for a circuit analysis program

  12. Guidelines for optimization of planar HDR implants

    International Nuclear Information System (INIS)

    Zwicker, R.D.; Schmidt-Ullrich, R.

    1996-01-01

    Purpose: Conventional low dose rate (LDR) planar Ir-192 implants are typically carried out using at most a few different source strengths. Remote afterloading offers a much higher degree of flexibility with individually programmable dwell times. Dedicated software is available to generate individual dwell times producing isodose surfaces which contour as closely as possible the target volume. The success of these algorithms in enclosing the target volume while sparing normal tissues is dependent on the positioning of the source guides which constrain the dwell points. In this work we provide source placement guidelines for optimal coverage and dose uniformity in planar high dose rate (HDR) implants. The resulting distributions are compared with LDR treatments in terms of dose uniformity and early and late tissue effects. Materials and methods: Computer studies were undertaken to determine source positions and dwell times for optimal dose uniformity in planar HDR implants, and the results were compared to those obtained using corresponding LDR implant geometries. The improvements in the dose distributions achieved with the remote after loader are expected to help offset the increased late tissue effects which can occur when LDR irradiation is replaced with a few large HDR fractions. Equivalent differential volume-dose (DVD) curves for early and late effects were calculated for different numbers of HDR fractions using a linear-quadratic model and compared to the corresponding curves for the LDR regime. Results: Tables of source placement parameters were generated as guidelines for achieving highly homogeneous planar HDR dose distributions. Differential volume-dose data generated inside the target volume provide a quantitative measure of the improvement in real dose homogeneity obtained with remote afterloading. The net result is a shift of the peak in the DVD curve toward lower doses relative to the LDR implant. The equivalent DVD curves for late effects obtained

  13. Thermionic integrated circuits: electronics for hostile environments

    International Nuclear Information System (INIS)

    Lynn, D.K.; McCormick, J.B.; MacRoberts, M.D.J.; Wilde, D.K.; Dooley, G.R.; Brown, D.R.

    1985-01-01

    Thermionic integrated circuits combine vacuum tube technology with integrated circuit techniques to form integrated vacuum triode circuits. These circuits are capable of extended operation in both high-temperature and high-radiation environments

  14. Comparative methods for quantifying thyroid volume using planar imaging and SPECT

    International Nuclear Information System (INIS)

    Zaidi, H.

    1996-01-01

    Thyroid volume determination using planar imaging is a procedure often performed in routine nuclear medicine, but is hampered by several physical difficulties, in particular by structures which overlie or underlie the organ of interest. SPECT enables improved accuracy over planar imaging in the determination of the volume since it is derived from the 3-D data rather than from a 2-D projection with a certain geometric assumption regarding the thyroid configuration. By using the phantoms of known volume, it was possible to estimate the accuracy of 3 different methods of determining thyroid volume from planar imaging used in clinical routine. The experimental results demonstrate that compared with conventional scintigraphy, thyroid phantom volumes were most accurately determined with SPECT when attenuation and scatter corrections are performed which allows accurate radiation dosimetry in humans without the need for assumptions on organ size or concentrations. Poster 181. (author)

  15. Optimal Design and Tradeoff Analysis of Planar Transformer in High-Power DC–DC Converters

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    The trend toward high power density, high operating frequency, and low profile in power converters has exposed a number of limitations in the use of conventional wire-wound magnetic component structures. A planar magnetic is a low-profile transformer or inductor utilizing planar windings, instead...... of the traditional windings made of Cu wires. In this paper, the most important factors for planar transformer (PT) design including winding loss, core loss, leakage inductance, and stray capacitance have individually been investigated. The tradeoffs among these factors have to be analyzed in order to achieve...

  16. On-shell structures of MHV amplitudes beyond the planar limit

    Energy Technology Data Exchange (ETDEWEB)

    Arkani-Hamed, Nima [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ (United States); Bourjaily, Jacob L. [Niels Bohr International Academy and Discovery Center,Copenhagen (Denmark); Cachazo, Freddy [Perimeter Institute for Theoretical Physics,Waterloo, Ontario (Canada); Postnikov, Alexander [Department of Mathematics, Massachusetts Institute of Technology,Cambridge, MA (United States); Trnka, Jaroslav [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA (United States)

    2015-06-25

    We initiate an exploration of on-shell functions in N = 4 SYM beyond the planar limit by providing compact, combinatorial expressions for all leading singularities of MHV amplitudes and showing that they can always be expressed as a positive sum of differently ordered Parke-Taylor tree amplitudes. This is understood in terms of an extended notion of positivity in G(2,n), the Grassmannian of 2-planes in n dimensions: a single on-shell diagram can be associated with many different “positive' regions, of which the familiar G{sub +}(2,n) associated with planar diagrams is just one example. The decomposition into Parke-Taylor factors is simply a “triangulation' of these extended positive regions. The U(1) decoupling and Kleiss-Kuijf (KK) relations satisfied by the Parke-Taylor amplitudes also follow naturally from this geometric picture. These results suggest that non-planar MHV amplitudes in N = 4 SYM at all loop orders can be expressed as a sum of polylogarithms weighted by color factors and (unordered) Parke-Taylor amplitudes.

  17. Modern TTL circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Modern TTL Circuits Manual provides an introduction to the basic principles of Transistor-Transistor Logic (TTL). This book outlines the major features of the 74 series of integrated circuits (ICs) and introduces the various sub-groups of the TTL family.Organized into seven chapters, this book begins with an overview of the basics of digital ICs. This text then examines the symbology and mathematics of digital logic. Other chapters consider a variety of topics, including waveform generator circuitry, clocked flip-flop and counter circuits, special counter/dividers, registers, data latches, com

  18. Circuit analysis with Multisim

    CERN Document Server

    Baez-Lopez, David

    2011-01-01

    This book is concerned with circuit simulation using National Instruments Multisim. It focuses on the use and comprehension of the working techniques for electrical and electronic circuit simulation. The first chapters are devoted to basic circuit analysis.It starts by describing in detail how to perform a DC analysis using only resistors and independent and controlled sources. Then, it introduces capacitors and inductors to make a transient analysis. In the case of transient analysis, it is possible to have an initial condition either in the capacitor voltage or in the inductor current, or bo

  19. Application specific integrated circuits and hybrid micro circuits for nuclear instrumentation

    International Nuclear Information System (INIS)

    Chandratre, V.B.; Sukhwani, Menka; Mukhopadhyay, P.K.; Shastrakar, R.S.; Sudheer, M.; Shedam, V.; Keni, Anubha

    2009-01-01

    Rapid development in semiconductor technology, sensors, detectors and requirements of high energy physics experiments as well as advances in commercially available nuclear instruments have lead to challenges for instrumentation. These challenges are met with development of Application Specific Integrated Circuits and Hybrid Micro Circuits. This paper discusses various activities in ASIC and HMC development in Bhabha Atomic Research Centre. (author)

  20. Connected feedback vertex set in planar graphs

    NARCIS (Netherlands)

    Grigoriev, Alexander; Sitters, René

    2010-01-01

    We study the problem of finding a minimum tree spanning the faces of a given planar graph. We show that a constant factor approximation follows from the unconnected version if the minimum degree is 3. Moreover, we present a polynomial time approximation scheme for both the connected and unconnected

  1. A planar calculus for infinite index subfactors

    OpenAIRE

    Penneys, David

    2011-01-01

    We develop an analog of Jones' planar calculus for II_1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.

  2. A Planar Calculus for Infinite Index Subfactors

    Science.gov (United States)

    Penneys, David

    2013-05-01

    We develop an analog of Jones' planar calculus for II 1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.

  3. A Fault Tolerant Integrated Circuit Memory

    OpenAIRE

    Barton, Anthony Francis

    1980-01-01

    Most commercially produced integrated circuits are incapable of tolerating manufacturing defects. The area and function of the circuits is thus limited by the probability of faults occurring within the circuit. This thesis examines techniques for using redundancy in memory circuits to provide fault tolerance and to increase storage capacity. A hierarchical memory architecture using multiple Hamming codes is introduced and analysed to determine its resistance to manufa...

  4. Trip electrical circuit of the gyrotion

    International Nuclear Information System (INIS)

    Rossi, J.O.

    1987-09-01

    The electron cyclotron resonance heating system of INPE/LAP is shown and the trip electrical circuit of the gyrotron is described, together with its fundamental aspects. The trip electrical circuit consists basically of a series regulator circuit which regulates the output voltage level and controls the pulse width time. Besides that, a protection circuit for both tubes, regulator and gyrotron, against faults in the system. (author) [pt

  5. On the genetic control of planar growth during tissue morphogenesis in plants.

    Science.gov (United States)

    Enugutti, Balaji; Kirchhelle, Charlotte; Schneitz, Kay

    2013-06-01

    Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.

  6. NASA Tech Briefs, October 2010

    Science.gov (United States)

    2010-01-01

    Topics covered include: Hybrid Architecture Active Wavefront Sensing and Control; Carbon-Nanotube-Based Chemical Gas Sensor; Aerogel-Positronium Technology for the Detection of Small Quantities of Organic and/or Toxic Materials; Graphene-Based Reversible Nano-Switch/Sensor Schottky Diode; Inductive Non-Contact Position Sensor; High-Temperature Surface-Acoustic-Wave Transducer; Grid-Sphere Electrodes for Contact with Ionospheric Plasma; Enabling IP Header Compression in COTS Routers via Frame Relay on a Simplex Link; Ka-Band SiGe Receiver Front-End MMIC for Transponder Applications; Robust Optimization Design Algorithm for High-Frequency TWTs; Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain; Method and Circuit for In-Situ Health Monitoring of Solar Cells in Space; BGen: A UML Behavior Network Generator Tool; Platform for Post-Processing Waveform-Based NDE; Electrochemical Hydrogen Peroxide Generator; Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures; Process to Create High-Fidelity Lunar Dust Simulants; Lithium-Ion Electrolytes Containing Phosphorous-Based, Flame-Retardant Additives; InGaP Heterojunction Barrier Solar Cells; Straight-Pore Microfilter with Efficient Regeneration; Determining Shear Stress Distribution in a Laminate; Self-Adjusting Liquid Injectors for Combustors; Handling Qualities Prediction of an F-16XL-Based Reduced Sonic Boom Aircraft; Tele-Robotic ATHLETE Controller for Kinematics - TRACK; Three-Wheel Brush-Wheel Sampler; Heterodyne Interferometer Angle Metrology; Aligning Astronomical Telescopes via Identification of Stars; Generation of Optical Combs in a WGM Resonator from a Bichromatic Pump; Large-Format AlGaN PIN Photodiode Arrays for UV Images; Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems; On Calculating the Zero-Gravity Surface Figure of a Mirror; Optical Modification of Casimir Forces for

  7. Implementation of Chua's circuit using simulated inductance

    Science.gov (United States)

    Gopakumar, K.; Premlet, B.; Gopchandran, K. G.

    2011-05-01

    In this study we describe how to build an inductorless version of the classic Chua's circuit. A suitable inductor for Chua's circuit is often hard to procure. The required inductor for the circuit is designed using simple circuit elements such as resistors, capacitors and operational amplifiers. The complete circuit can be implemented by using off-the-shelf components, and it can readily be integrated on a single chip. This design of Chua's circuit allows the original dynamics to be slowed down to just a few hertz, enabling implementation of sophisticated control schemes without severe time restrictions. Another novel feature of the circuit is that losses associated with capacitors due to leakages can easily be compensated by providing negative resistance using the same setup. The chaotic behaviour of the circuit is verified by PSpice and Multisim simulation and also by experimental study on a circuit breadboard. The results give excellent agreement with each other and with the results of previous investigators.

  8. CMOS circuit design, layout and simulation

    CERN Document Server

    Baker, R Jacob

    2010-01-01

    The Third Edition of CMOS Circuit Design, Layout, and Simulation continues to cover the practical design of both analog and digital integrated circuits, offering a vital, contemporary view of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and much more. Regardless of one's integrated circuit (IC) design skill level, this book allows readers to experience both the theory behind, and the hands-on implementation of, complementary metal oxide semiconductor (CMOS) IC design via detailed derivations, discussions, and hundreds of design, layout, and simulation examples.

  9. Creation and perturbation of planar networks of chemical oscillators

    Science.gov (United States)

    Tompkins, Nathan; Cambria, Matthew Carl; Wang, Adam L.; Heymann, Michael; Fraden, Seth

    2015-01-01

    Methods for creating custom planar networks of diffusively coupled chemical oscillators and perturbing individual oscillators within the network are presented. The oscillators consist of the Belousov-Zhabotinsky (BZ) reaction contained in an emulsion. Networks of drops of the BZ reaction are created with either Dirichlet (constant-concentration) or Neumann (no-flux) boundary conditions in a custom planar configuration using programmable illumination for the perturbations. The differences between the observed network dynamics for each boundary condition are described. Using light, we demonstrate the ability to control the initial conditions of the network and to cause individual oscillators within the network to undergo sustained period elongation or a one-time phase delay. PMID:26117136

  10. Study of flowability effect on self-planarization performance at SOC materials

    Science.gov (United States)

    Yun, Huichan; Kim, Jinhyung; Park, Youjung; Kim, Yoona; Jeong, Seulgi; Baek, Jaeyeol; Yoon, Byeri; Lim, Sanghak

    2017-03-01

    For multilayer process, importance of carbon-based spin-on hardmask material that replaces amorphous carbon layer (ACL) is ever increasing. Carbon-based spin-on hardmask is an organic polymer with high carbon content formulated in organic solvents for spin-coating application that is cured through baking. In comparison to CVD process for ACL, carbon-based spin-on hardmask material can offer several benefits: lower cost of ownership (CoO) and improved process time, as well as better gap-fill and planarization performances. Thus carbon-based spin-on hardmask material of high etch resistance, good gap-fill properties and global planarization performances over various pattern topographies are desired to achieve the fine patterning and high aspect ratio (A/R). In particular, good level of global planarization of spin coated layer over the underlying pattern topographies is important for self-aligned double patterning (SADP) process as it dictates the photolithographic margin. Herein, we report a copolymer carbon-based spin-on hardmask resin formulation that exhibits favorable film shrinkage profile and good etch resistance properties. By combining the favorable characteristics of each resin - one resin with good shrinkage property and the other with excellent etch resistance into the copolymer, it was possible to achieve a carbonbased spin-on hardmask formulation with desirable level of etch resistance and the planarization performances across various underlying substrate pattern topographies.

  11. Power system with an integrated lubrication circuit

    Science.gov (United States)

    Hoff, Brian D [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL; Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Lane, William H [Chillicothe, IL

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  12. Research of Driving Circuit in Coaxial Induction Coilgun

    Directory of Open Access Journals (Sweden)

    Yadong Zhang

    2013-09-01

    Full Text Available Power supply is crucial equipment in coaxial induction coil launcher.Configuration of the driving circuit influences the efficiency of the coil launcher directly.This paper gives a detailed analysis of the properties of the driving circuit construction based on the capacitor source. Three topologies of the driving circuit are compared including oscillation circuit, crowbar circuit and half-wave circuit. It is proved that which circuit has the better efficiency depends on the detailed parameters of the experiment, especially the crowbar resistance. Crowbar resistor regulates not only efficiency of the system, but also temperature rise of the coil. Electromagnetic force (EMF applied on the armature will be another question which influences service condition of the driving circuits. Oscillation circuit and crowbar circuit should apply to the asynchronous induction coil launcher and synchronous induction coil launcher, respectively. Half-wave circuit is seldom used in the experiment. Although efficiency of the half-wave circuit is very high, the speed of the armature is low. A simple independent half-wave circuit is suggested in this paper. Generally speaking, the comprehensive property of crowbar circuit is the most practical in the three typical circuits. Conclusions of the paper could provide guidelines for practice.

  13. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    lightwave may be expressed by a modulation amplitude ¯E(z,t) of the optical electric field. E(z,t). E(z,t) = 1. 2. ¯E(z ... the lightwaves is important to minimize the pulse deformation even in case of the digital formats. ...... Pure Appl. Math. 21, 467 ...

  14. The Prohibitive Link between Position-based Routing and Planarity

    Directory of Open Access Journals (Sweden)

    David Cairns

    2013-12-01

    Full Text Available Position-based routing is touted as an ideal routing strategy for resource-constrained wireless networks. One persistent barrier to adoption is due to its recovery phase, where messages are forwarded according to leftor right-hand rule (LHR. This is often referred to as face-routing. In this paper we investigate the limits of LHR with respect to planarity.We show that the gap between non-planarity and successful delivery is a single link within a single configuration. Our work begins with an analysis to enumerate all node configurations that cause intersections in the unit-disc graph. We find that left-hand rule is able to recover from all but a single case, the ‘umbrella’ configuration so named for its appearance. We use this information to propose the Prohibitive Link Detection Protocol (PLDP that can guarantee delivery over non-planar graphs using standard face-routing techniques. As the name implies, the protocol detects and circumvents the ‘bad’ links that hamper LHR. The goal of this work is to maintain routing guarantees while disturbing the network graph as little as possible. In doing so, a new starting point emerges from which to build rich distributed protocols in the spirit of CLDP and GDSTR.

  15. Hybdrid integral circuit for proportional chambers

    International Nuclear Information System (INIS)

    Yanik, R.; Khudy, M.; Povinets, P.; Strmen', P.; Grabachek, Z.; Feshchenko, A.A.

    1978-01-01

    Outlined briefly are a hybrid integrated circuit of the channel. One channel contains an input amplifier, delay circuit, and memory register on the base of the D-type flip-flop and controlled by the recording gate pulse. Provided at the output of the channel is a readout gating circuit. Presented are the flowsheet of the channel, the shaper amplifier and logical channel. At present the logical circuit was accepted for manufacture

  16. Stabilizing Planar Inverted Pendulum System Based on Fuzzy Nine-point Controller

    OpenAIRE

    Qi Qian; Liu Feng; Tang Yong-chuan; Yang Yang

    2013-01-01

    In order to stabilize planar inverted pendulum, after analyzing the physical characteristics of the planar inverted pendulum system, a pendulum nine-point controller and a car nine-point controller for X-axis and Y-axis were designed respectively. Then a fuzzy coordinator was designed using the fuzzy control theory based on the priority of those two controllers, and the priority level of the pendulum is higher than the car. Thus, the control tasks of each controller in each axis were harmoniz...

  17. Electromagnetically Induced Transparency in Symmetric Planar Metamaterial at THz Wavelengths

    Directory of Open Access Journals (Sweden)

    Abdelwaheb Ourir

    2015-03-01

    Full Text Available We report the experimental observation and the evidence of the analogue of electromagnetically-induced transparency (EIT in a symmetric planar metamaterial. This effect has been obtained in the THz range thanks to a destructive Fano-interference between the two first modes of an array of multi-gap split ring resonators deposited on a silicon substrate. This structure is a planar thin film material with four-fold symmetry. Thanks to this property, a polarization-independent transmission has been achieved. The proposed metamaterial is well adapted to variety of slow-light applications in the infrared and optical range.

  18. Four-terminal circuit element with photonic core

    Science.gov (United States)

    Sampayan, Stephen

    2017-08-29

    A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated based on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.

  19. Planar ceramic membrane assembly and oxidation reactor system

    Science.gov (United States)

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  20. Tunnelling anomalous and planar Hall effects (Conference Presentation)

    Science.gov (United States)

    Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor

    2016-10-01

    We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).

  1. Wavelet Radiosity on Arbitrary Planar Surfaces

    OpenAIRE

    Holzschuch , Nicolas; Cuny , François; Alonso , Laurent

    2000-01-01

    Colloque avec actes et comité de lecture. internationale.; International audience; Wavelet radiosity is, by its nature, restricted to parallelograms or triangles. This paper presents an innovative technique enabling wavelet radiosity computations on planar surfaces of arbitrary shape, including concave contours or contours with holes. This technique replaces the need for triangulating such complicated shapes, greatly reducing the complexity of the wavelet radiosity algorithm and the computati...

  2. High Q-factor tunable superconducting HF circuit

    CERN Document Server

    Vopilkin, E A; Pavlov, S A; Ponomarev, L I; Ganitsev, A Y; Zhukov, A S; Vladimirov, V V; Letyago, A G; Parshikov, V V

    2001-01-01

    Feasibility of constructing a high Q-factor (Q approx 10 sup 5) mechanically tunable in a wide range of frequencies (12-63 MHz) vibration circuit of HF range was considered. The tunable circuit integrates two single circuits made using YBaCuO films. The circuit frequency is tuned by changing distance X (capacity) between substrates. Potentiality of using substrates of lanthanum aluminate, neodymium gallate and strontium titanate for manufacture of single circuits was considered. Q-factor of the circuit amounted to 68000 at resonance frequency of 6.88 MHz

  3. High Q-factor tunable superconducting HF circuit

    International Nuclear Information System (INIS)

    Vopilkin, E.A.; Parafin, A.E.; Pavlov, S.A.; Ponomarev, L.I.; Ganitsev, A.Yu.; Zhukov, A.S.; Vladimirov, V.V.; Letyago, A.G.; Parshikov, V.V.

    2001-01-01

    Feasibility of constructing a high Q-factor (Q ∼ 10 5 ) mechanically tunable in a wide range of frequencies (12-63 MHz) vibration circuit of HF range was considered. The tunable circuit integrates two single circuits made using YBaCuO films. The circuit frequency is tuned by changing distance X (capacity) between substrates. Potentiality of using substrates of lanthanum aluminate, neodymium gallate and strontium titanate for manufacture of single circuits was considered. Q-factor of the circuit amounted to 68000 at resonance frequency of 6.88 MHz [ru

  4. Superconducting push-pull flux quantum logic circuits

    International Nuclear Information System (INIS)

    Murphy, J.H.; Daniel, M.R.; Przybysz, J.X.

    1993-01-01

    A superconducting digital logic circuit is described comprising: a first circuit branch including first and second Josephson junctions electrically connected in series with each other; means for applying a positive bias voltage to a first end of said circuit branch; means for applying a negative bias voltage to a second end of said circuit branch; means for applying a first dual polarity input voltage signal to a first node in said circuit branch; and means for extracting a first output voltage signal from said first node in said circuit branch

  5. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  6. Echo signal from rough planar interfaces influence of roughness, angle, range and transducer type

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P.C.; Jacobsen, S.M.

    1998-01-01

    The received electrical signal from a pulse-echo system insonifying a planar acoustical interface was measured for varying degrees of rms roughness (0-0.16 mm), angle of incidence (typically +/-7°) and range to the transducer. A planar and a focused 5 MHz transducer was used. When insonifying...... a smooth interface, the normalized spectrum of the received signals for a planar transducer exhibits an increasing number of nulls with increased angle of insonification, as predicted from numerical modeling while the dependence on insonification angle for the focused transducer was smaller and the null...... pattern was much less distinct. For the planar transducer and for the focused transducer with the interface located at the geometrical point of focus, the energy of the received signal as a function of incident angle was approximately Gaussian with maximum at 0°. For the smooth interface, the -3 dB width...

  7. A nonlinear model for surface segregation and solute trapping during planar film growth

    International Nuclear Information System (INIS)

    Han, Xiaoying; Spencer, Brian J.

    2007-01-01

    Surface segregation and solute trapping during planar film growth is one of the important issues in molecular beam epitaxy, yet the study on surface composition has been largely restricted to experimental work. This paper introduces some mathematical models of surface composition during planar film growth. Analytical solutions are obtained for the surface composition during growth

  8. Massive planar and non-planar double box integrals for light N f contributions to

    Science.gov (United States)

    von Manteuffel, Andreas; Studerus, Cedric

    2013-10-01

    We present the master integrals needed for the light fermionic two-loop corrections to top quark pair production in the gluon fusion channel. Via the method of differential equations we compute the results in terms of multiple polylogarithms in a Laurent series about d = 4, where d is the space-time dimension. The most involved topology is a non-planar double box with one internal mass. We employ the coproduct-augmented symbol calculus and show that significant simplifications are possible for selected results using an optimised set of multiple polylogarithms.

  9. A Wideband Dual-Polarized Antenna Using Planar Quasi-Open-Sleeve Dipoles for Base Station Applications

    Directory of Open Access Journals (Sweden)

    Guan-xi Zhang

    2015-01-01

    Full Text Available A wideband dual-polarized antenna for WLAN, WiMAX, and LTE base station applications is presented in this paper. The proposed antenna consists of two pairs of orthogonal planar quasi-open-sleeve dipoles along the centerlines, a balanced feeding structure and a square ground plane. The planar quasi-open-sleeve dipole comprises a pair of bowtie-shaped planar dipoles with two parallel curve parasitic elements. The introduced parallel curve parasitic elements change the path of the current of the original bowtie-shaped planar dipoles at high frequencies and hence wideband characteristic is achieved. Two pairs of the planar quasi-open-sleeve dipoles placed orthogonally further broaden the bandwidth of the antenna with dual-polarization characteristics. The proposed antenna achieves a 10-dB return loss bandwidth from 2.32 to 4.03 GHz (53.9% bandwidth using the planar quasi-open-sleeve dipole structures. The isolation between the two ports remains more than 32 dB in the whole bandwidth. Measured results show that the proposed antenna keeps the cross-polarization under −33 dB and the front-to-back ratio better than 15 dB in the operating band. The antenna has an area of 0.3λ  × 0.3λ at 2.32 GHz making it easy to be extended to an array element.

  10. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...

  11. Computer Aided Analysis of TM-Multimode Planar Graded-index Optical Waveguides

    International Nuclear Information System (INIS)

    Ashry, M.; Nasr, A.S.; Abou El-Fadl, A.A.

    2000-01-01

    An algorithm is developed for analysis TM-Multimode Planar graded-index optical waveguides. A Modified Impedance Boundary Method of Moments (MIBMOM) for the analysis of planar graded-index optical waveguide structures is presented. The algorithm is used to calculate the dispersion characteristics and the field distribution of TM-multimode planar graded-index optical waveguides. The technique is based on Galerkin s procedure and the exact boundary condition at the interfaces between the graded index region and the step index cladding. Legendre polynomials are used as basis functions. The efficiency of this algorithm is examined with waveguides having various index profiles such as exponential, Gaussian and complementary error functions. The advantage of the MIBMOM is the complete solution of TM-multimode as presented which is very difficult by the other methods. With this algorithm a minimum number of basis functions to give accurate results is used. The obtained results show good agreement with the experimental results

  12. Foot Placement Indicator for Balance of Planar Bipeds with Point Feet

    Directory of Open Access Journals (Sweden)

    Pieter van Zutven

    2013-05-01

    Full Text Available Abstract If humanoid robots are to be used in society, they should be able to maintain their balance. Knowing where to step is crucially important. In this paper we contribute an algorithm that can compute the foot step location such that bipedal balance is maintained for planar bipeds with point feet and an arbitrary number of non-massless links on a horizontal and flat ground. The algorithm is called the foot placement indicator (FPI and it extends the foot placement estimator (FPE. The FPE uses an inverted pendulum model to capture the dynamics of a humanoid robot, whereas the FPI deals with multi-body models with distributed masses. This paper analyses equilibrium sets and the stability of planar bipeds with point feet. The algorithm uses conservation of energy throughout the step, taking into account the instantaneous impact dynamics at foot strike. A simulation case study on a five-link planar biped shows the effectiveness of the FPI.

  13. Giant Planar Hall Effect in the Dirac Semimetal ZrTe5

    KAUST Repository

    Li, Peng

    2018-03-03

    Exploration and understanding of exotic topics in quantum physics such as Dirac and Weyl semimetals have become highly popular in the area of condensed matter. It has recently been predicted that a theoretical giant planar Hall effect can be induced by a chiral anomaly in Dirac and Weyl semimetals. ZrTe5 is considered an intriguing Dirac semimetal at the boundary of weak and strong topological insulators, though this claim is still controversial. In this study, we report the observation in ZrTe5 of giant planar Hall resistivity. We have also noted three different dependences of this resistivity on the magnetic field, as predicted by theory, maximum planar Hall resistivity occurs at the Lifshitz transition temperature. In addition, we have discovered a nontrivial Berry phase, as well as a chiral-anomaly-induced negative longitudinal and a giant in-plane anisotropic magnetoresistance. All these experimental observations coherently demonstrate that ZrTe5 is a Dirac semimetal.

  14. Characterization of printed planar electromagnetic coils using digital extrusion and roll-to-roll flexographic processes

    Science.gov (United States)

    Rickard, Scott

    Electromagnets are a crucial component in a wide range of more complex electrical devices due to their ability to turn electrical energy into mechanical energy and vice versa. The trend for electronics becoming smaller and lighter has led to increased interest in using flat, planar electromagnetic coils, which have been shown to perform better at scaled down sizes. The two-dimensional geometry of a planar electromagnetic coil yields itself to be produced by a roll-to-roll additive manufacturing process. The emergence of the printed electronics field, which uses traditional printing processes to pattern functional inks, has led to new methods of mass-producing basic electrical components. The ability to print a planar electromagnetic coil using printed electronics could rival the traditional subtractive and semi-subtractive PCB process of manufacturing. The ability to print lightweight planar electromagnetic coils on flexible substrates could lead to their inclusion into intelligent packaging applications and could have specific use in actuating devices, transformers, and electromagnetic induction applications such as energy harvesting or wireless charging. In attempts to better understand the limitations of printing planar electromagnetic coils, the effect that the design parameters of the planar coils have on the achievable magnetic field strength were researched. A comparison between prototyping methods of digital extrusion and manufacturing scale flexographic printing are presented, discussing consistency in the printed coils and their performance in generating magnetic fields. A method to predict the performance of these planar coils is introduced to allow for design within required needs of an application. Results from the research include a demonstration of a printed coil being used in a flat speaker design, working off of actuating principles.

  15. Relation of planar Hall and planar Nernst effects in thin film permalloy

    Science.gov (United States)

    Wesenberg, D.; Hojem, A.; Bennet, R. K.; Zink, B. L.

    2018-06-01

    We present measurements of the planar Nernst effect (PNE) and the planar Hall effect (PHE) of nickel-iron (Ni–Fe) alloy thin films. We suspend the thin-film samples, measurement leads, and lithographically-defined heaters and thermometers on silicon-nitride membranes to greatly simplify control and measurement of thermal gradients essential to quantitative determination of magnetothermoelectric effects. Since these thermal isolation structures allow measurements of longitudinal thermopower, or the Seebeck coefficient, and four-wire electrical resistivity of the same thin film, we can quantitatively demonstrate the link between the longitudinal and transverse effects as a function of applied in-plane field and angle. Finite element thermal analysis of this essentially 2D structure allows more confident determination of the thermal gradient, which is reduced from the simplest assumptions due to the particular geometry of the membranes, which are more than 350 μm wide in order to maximize sensitivity to transverse thermoelectric effects. The resulting maximum values of the PNE and PHE coefficients for the Ni–Fe film with 80% Ni we study here are and , respectively. All signals are exclusively symmetry with applied field, ruling out long-distance spin transport effects. We also consider a Mott-like relation between the PNE and PHE, and use both this and the standard Mott relation to determine the energy-derivative of the resistivity at the Fermi energy to be , which is very similar to values for films we previously measured using similar thermal platforms. Finally, using an estimated value for the lead contribution to the longitudinal thermopower, we show that the anisotropic magnetoresistance (AMR) ratio in this Ni–Fe film is two times larger than the magnetothermopower ratio, which is the first evidence of a deviation from strict adherence to the Mott relation between Seebeck coefficient and resistivity.

  16. Capabilities of silicon Shottki barriers and planar detectors in low-energy proton spectometry

    Energy Technology Data Exchange (ETDEWEB)

    Verbitskaya, E M; Eremin, V K; Malyarenko, A M; Sakharov, V I; Serenkov, I T; Strokan, N B; Sukhanov, V L

    1987-05-12

    Dependence of the resolution of surface barrier and planar diffusion silicon detectors on proton energy is investigated. The experiment was conducted at the device, representing the double mass spectrometer with the maximal energy of single-charged ions up to 200 keV. Two advantages of using planar diffusion detectors for light low-energy ion spectrometry is established: high energy resolution and independence of signal amplitude of bias voltage. Background noise represents the main factor dictaiting resolution, but fluctuations of losses in input window are sufficient as well. It was concluded that planar detector application for spectrometry of protons with energy of less than 200 keV would improve the resolution up to 2.2 keV without detector cooling.

  17. Radiation-sensitive switching circuits

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.H.; Cockshott, C.P.

    1976-03-16

    A radiation-sensitive switching circuit includes a light emitting diode which from time to time illuminates a photo-transistor, the photo-transistor serving when its output reaches a predetermined value to operate a trigger circuit. In order to allow for aging of the components, the current flow through the diode is increased when the output from the transistor falls below a known level. Conveniently, this is achieved by having a transistor in parallel with the diode, and turning the transistor off when the output from the phototransistor becomes too low. The circuit is designed to control the ignition system in an automobile engine.

  18. What's new about generator circuit breakers

    International Nuclear Information System (INIS)

    Kolarik, P.L.

    1979-01-01

    The need for updating ANSI C37 Standards for AC high-voltage circuit breakers has become necessary because of the increased interest in power circuit breakers for generator application. These circuit breakers, which have continuous current ratings and rated short-circuit currents that are much higher than those presently covered by existing C37 Standards, take on added importance because they are being installed in critical AC power supplies at nuclear power stations

  19. Selected applications of planar permanent magnet multipoles in FEL insertion device design

    International Nuclear Information System (INIS)

    Tatchyn, R.

    1993-08-01

    In recent work, a new class of magnetic multipoles based on planar configurations of permanent magnet (PM) material has been developed. These structures, in particular the quadrupole and sextupole, feature fully open horizontal apertures, and are comparable in effectiveness to conventional iron multipole structures. In this paper results of recent measurements of planar PM quadrupoles and sextupoles are reported and selected applications to FEL insertion device design are considered

  20. Fabrication of Circuit QED Quantum Processors, Part 1: Extensible Footprint for a Superconducting Surface Code

    Science.gov (United States)

    Bruno, A.; Michalak, D. J.; Poletto, S.; Clarke, J. S.; Dicarlo, L.

    Large-scale quantum computation hinges on the ability to preserve and process quantum information with higher fidelity by increasing redundancy in a quantum error correction code. We present the realization of a scalable footprint for superconducting surface code based on planar circuit QED. We developed a tileable unit cell for surface code with all I/O routed vertically by means of superconducting through-silicon vias (TSVs). We address some of the challenges encountered during the fabrication and assembly of these chips, such as the quality of etch of the TSV, the uniformity of the ALD TiN coating conformal to the TSV, and the reliability of superconducting indium contact between the chips and PCB. We compare measured performance to a detailed list of specifications required for the realization of quantum fault tolerance. Our demonstration using centimeter-scale chips can accommodate the 50 qubits needed to target the experimental demonstration of small-distance logical qubits. Research funded by Intel Corporation and IARPA.