WorldWideScience

Sample records for planar antenna array

  1. Analysis of electrical performances of planar active phased array antennas with distorted array plane

    Institute of Scientific and Technical Information of China (English)

    Wang Congsi; Bao Hong; Zhang Fushun; Feng Xingang

    2009-01-01

    a planar phased array antenna with different distortions grades prove the validity of the model.Therefore,by the method,the antenna designers may set the reasonable requirement on the structural tolerance in manufacturing antenna.

  2. Delivering both sum and difference beam distributions to a planar monopulse antenna array

    Energy Technology Data Exchange (ETDEWEB)

    Strassner, II, Bernd H.

    2015-12-22

    A planar monopulse radar apparatus includes a planar distribution matrix coupled to a planar antenna array having a linear configuration of antenna elements. The planar distribution matrix is responsive to first and second pluralities of weights applied thereto for providing both sum and difference beam distributions across the antenna array.

  3. A Compact Design of Planar Array Antenna with Fractal Elements for Future Generation Applications

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2016-01-01

    In this paper, a planar phased array fractal antenna for the future fifth generation (5G) applications is presented. The proposed array antenna is designed to operate at 22 GHz. 64 patch antenna elements with coaxial-probe feeds have been used for the proposed design. The antenna elements are based...... on Vicsek fractal geometry where the third iteration patches operate over a wide bandwidth and contribute to improve the efficiency and realized gain performance. The designed planar array has more than 22 dB realized gain and -0.3 dB total efficiency when its beam is tilted to 0 degrees elevation...

  4. 8×8 Planar Phased Array Antenna with High Efficiency and Insensitivity Properties for 5G Mobile Base Stations

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2016-01-01

    An insensitive planar phased array antenna with high efficiency function for 5G applications is introduced in this study. 64-elements of compact slot-loop antenna elements have been used to form the 8×8 planar array. The antenna is designed on a low cost FR4 substrate and has good performance...

  5. Circularly Polarized Planar Helix Phased Antenna Array for 5G Mobile Terminals

    DEFF Research Database (Denmark)

    Syrytsin, Igor A.; Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    In this paper, a planar helix mobile phased antenna array is proposed for 5th generation communication systems with operating frequency of 28GHz. The proposed array displays circular polarization in the endfire direction. Over 65 degrees of axial ratio beamwidth and 7GHz of axial ratio bandwidth...... has been achieved in the proposed design. The coverage performance of the proposed phased antenna array has also been studied by using the coverage efficiency metric. Coverage efficiency of 50 % at 5 dBi gain is achieved by the proposed phased mobile antenna array....

  6. Parallel-fed planar dipole antenna arrays for low-observable platforms

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on determination of scattering of parallel-fed planar dipole arrays in terms of reflection and transmission coefficients at different levels of the array system. In aerospace vehicles, the phased arrays are often in planar configuration. The radar cross section (RCS) of the vehicle is mainly due to its structure and the antennas mounted over it. There can be situation when the signatures due to antennas dominate over the structural RCS of the platform. This necessitates the study towards the reduction and control of antenna/ array RCS. The planar dipole array is considered as a stacked linear dipole array. A systematic, step-by-step approach is used to determine the RCS pattern including the finite dimensions of dipole antenna elements. The mutual impedance between the dipole elements for planar configuration is determined. The scattering till second-level of couplers in parallel feed network is taken into account. The phase shifters are modelled as delay line. All the couplers in the feed n...

  7. Fast low-sidelobe synthesis for large planar array antennas utilizing successive fast fourier transforms of the array factor

    NARCIS (Netherlands)

    Keizer, W.P.M.N.

    2007-01-01

    A new and very fast low-sidelobe pattern synthesis method for planar array antennas with periodic element spacing is described. The basic idea of the method is that since the array factor is related to the element excitations through an inverse Fourier transform, the element excitations can be deriv

  8. Research on novel multi-layer and multi-polarized slot-coupling planar antenna array

    Institute of Scientific and Technical Information of China (English)

    Zhang Hou; Wu Wenzhou; Wang Jian

    2009-01-01

    A novel multi-layer planar antenna array to achieve multi-polarized radiation is developed. U-shaped coupling slots are embedded in the ground plane to extend the bandwidth. The phase relation between adjacent elements in the radiation field is analyzed when adjacent elements are fed in opposite phase. Return loss and radiation pattern are measured for a 16-element antenna array at 12.5 GHz. The radiation pattern shows a good agreement with the calculated one in the shape of the main beam. The return-loss of the proposed antenna array is less than -20 dB in the 12.5 GHz frequency band (12.25-12.75 GHz). Because of two feed ports the antenna can transmit arbitrary elliptic polarized waves if the two feed ports have different amplitude and phase. The main factors such as element spacing, substrate medium and manufacturing imperfection are analyzed and the corresponding conclusions are presented.

  9. Dielectric Covered Planar Antennas

    Science.gov (United States)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  10. UWB planar antenna technology

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent developments of the ultra-wideband(UWB)planar antennas are reviewed,where the progress in UWB plate monopole antennas,UWB printed monopole antennas and the UWB printed slot antennas is introduced and compared.In addition,the UWB printed antennas with the band-notched functions are also presented.

  11. Compact design of a planar filtering antenna array including a frequency selective common-mode rejection module

    NARCIS (Netherlands)

    Cifola, L.; Cavallo, D.; Gerini, G.; Morini, A.

    2012-01-01

    A new compact design of a planar phased-array antenna with inherent frequency selectivity properties is presented. In previous works, starting from an array of connected dipoles, the design of a filtenna structure and a strategy for the suppression of common-mode resonances have been addressed. In t

  12. Low-Cost Planar MM-Wave Phased Array Antenna for Use in Mobile Satellite (MSAT) Platforms

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    In this paper, a compact 8×8 phased array antenna for mobile satellite (MSAT) devices is designed and investigated. 64-elements of 22 GHz patch antennas with coaxial-probe feeds have been used for the proposed planar design. The antenna is designed on a low-cost FR4 substrate with thickness......, dielectric constant, and loss tangent of 0.8 mm, 4.3, and 0.025, respectively. The antenna exhibits good performance in terms of impedance- matching, gain and efficiency characteristics, even though it is designed using high loss substrate with compact dimension (Wsub×Lsub=55×55 mm2). The antenna has more...... than 23 dB realized gain and -0.8 dB radiation efficiency when its beam is tilted to 0o elevation. The center frequency of the designed array can be controlled by adjusting the values of the antenna parameters. Compared with the previous designs, the proposed planar phased array has the advantages...

  13. Demonstration of a micromachined planar distribution network in gap waveguide technology for a linear slot array antenna at 100 GHz

    Science.gov (United States)

    Rahiminejad, S.; Zaman, A. U.; Haasl, S.; Kildal, P.-S.; Enoksson, P.

    2016-07-01

    The need for high frequency antennas is rapidly increasing with the development of new wireless rate communication technology. Planar antennas have an attractive form factor, but they require a distribution network. Microstrip technology is most commonly used at low frequency but suffers from large dielectric and ohmic losses at higher frequencies and particularly above 100 GHz. Substrate-integrated waveguides also suffer from dielectric losses. In addition, standard rectangular waveguide interfaces are inconvenient due to the four flange screws that must be tightly fastened to the antenna to avoid leakage. The current paper presents a planar slot array antenna that does not suffer from any of these problems. The distribution network is realized by micromachining using low-loss gap waveguide technology, and it can be connected to a standard rectangular waveguide flange without using any screws or additional packaging. To realize the antenna at these frequencies, it was fabricated with micromachining, which offers the required high precision, and a low-cost fabrication method. The antenna was micromachined with DRIE in two parts, one silicon-on-insulator plate and one Si plate, which were both covered with Au to achieve conductivity. The input reflection coefficient was measured to be below 10 dB over a 15.5% bandwidth, and the antenna gain was measured to be 10.4 dBi, both of which are in agreement with simulations.

  14. Theoretical study of 2 × 2 element planar array of equilateral triangular patch microstrip antenna in plasma medium

    Indian Academy of Sciences (India)

    K K Verma; K R Soni

    2005-01-01

    The radiation properties of 2 × 2 element planar array of equilateral triangular patch microstrip antenna in plasma medium are studied. The array factor and far-zone EM-mode and P-mode radiation fields of the array geometry are derived using vector wave function techniques and pattern multiplication approaches. The total field patterns and various characteristics of pattern such as half power beam width (HPBW), first null beam width (FNBW) and direction of maximum radiation are computed for two different values of progressive phase excitation difference between the elements. The results of this array geometry are obtained both in plasma medium and in free space and compared with those of single element equilateral triangular patch microstrip antenna.

  15. Integrated filtering in reconfigurable planar phased-array antennas with spurious harmonic suppression

    NARCIS (Netherlands)

    Cifola, L.; Gerini, G.; Monni, S.; Berg, S. van den; Water, F. van de

    2013-01-01

    In the present work, the possibility to integrate filtering functionalities in a phased-array antenna at radiating element level is investigated. The filtenna concept has been applied to an X-band phased array of slot-fed patches. An effective strategy for the suppression of spurious harmonics, base

  16. Planar array antenna with director on indium phosphide substrate for 300GHz wireless link

    Science.gov (United States)

    Kanaya, Haruichi; Oda, Tomoki; Iizasa, Naoto; Kato, Kazutoshi

    2016-02-01

    This paper presents a design and fabrication of 1 x 4 one-sided directional slot array antenna with director metal layer on indium phosphide (InP) substrate for 300 GHz wireless link. The floating metal and polyimide dielectric layer are stacked on InP. Antenna is designed on the top metal layer. By optimizing the length of the bottom floating metal layer, one-sided directional radiation can be realized. The branched coplanar wave guide (CPW) transmission line is connected to each antenna element with the same electrical length. The size of the 1 x 4 array antenna is 2,550 µm x 1,217 µm x 18 µm. In order to enhance the gain of forward direction, director metal layer is placed over 83 µm from top metal layer. Simulated realized gain in peak direction of our antenna is 9.23 dBi. The measured center frequency is almost the same as that of the simulation results.

  17. Pattern Synthesis of Planar Nonuniform Circular Antenna Arrays Using a Chaotic Adaptive Invasive Weed Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Huaning Wu

    2014-01-01

    Full Text Available A novel invasive weed optimization (IWO variant called chaotic adaptive invasive weed optimization (CAIWO is proposed and applied for the optimization of nonuniform circular antenna arrays. A chaotic search method has been combined into the modified IWO with adaptive dispersion, where the seeds produced by a weed are dispersed in the search space with standard deviation specified by the fitness value of the weed. To evaluate the performance of CAIWO, several representative benchmark functions are minimized using various optimization algorithms. Numerical results demonstrate that the proposed approach improves the performance of the algorithm significantly, in terms of both the convergence speed and exploration ability. Moreover, the scheme of CAIWO is employed to find out an optimal set of weights and antenna element separation to obtain a radiation pattern with maximum side-lobe level (SLL reduction with different numbers of antenna element under two cases with different purposes. The design results obtained by CAIWO have comfortably outperformed the published results obtained by other state-of-the-art metaheuristics in a statistically meaningful way.

  18. Theory of a Traveling Wave Feed for a Planar Slot Array Antenna

    Science.gov (United States)

    Rengarajan, Sembiam

    2012-01-01

    Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an

  19. Array Antenna Limitations

    CERN Document Server

    Jonsson, B L G; Hussain, N

    2013-01-01

    This letter defines a physical bound based array figure of merit that provides a tool to compare the performance of both single and multi-band array antennas with respect to return-loss, thickness of the array over the ground-plane, and scan-range. The result is based on a sum-rule result of Rozanov-type for linear polarization. For single-band antennas it extends an existing limit for a given fixed scan-angle to include the whole scan-range of the array, as well as the unit-cell structure in the bound. The letter ends with an investigation of the array figure of merit for some wideband and/or wide-scan antennas with linear polarization. We find arrays with a figure of merit >0.6 that empirically defines high-performance antennas with respect to this measure.

  20. The planar parabolic optical antenna.

    Science.gov (United States)

    Schoen, David T; Coenen, Toon; García de Abajo, F Javier; Brongersma, Mark L; Polman, Albert

    2013-01-09

    One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale. Significant progress has been made in scaling radiowave antennas to the nanoscale for operation in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional surfaces. Here, we demonstrate that plasmon physics can be employed to realize a resonant elliptical cavity functioning as an essentially planar nanometallic structure that serves as a broadband unidirectional parabolic antenna at optical frequencies.

  1. Novel method for planar microstrip antenna matching impedance

    CERN Document Server

    Ali, Mahdi; Samet, Mounir

    2010-01-01

    Because all microstrip antennas have to be matched to the standard generator impedance or load, the input impedance matching method for antenna is particularly important. In this paper a new methodology in achieving matching impedance of a planar microstrip antenna for wireless application is described. The method is based on embedding an Interdigital capacitor. The fine results obtained by using a microstrip Interdigital capacitor for matching antenna impedance led to an efficient method to improve array antenna performance. In fact, a substantial saving on the whole surfaces as well as enhancement of the gain, the directivity and the power radiated was achieved.

  2. Atacama Compact Array Antennas

    CERN Document Server

    Saito, Masao; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru

    2011-01-01

    We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high performance of the ACA antenna has been extensively evaluated at the Site Erection Facility area at an altitude of about 2900 meters. Test results of pointing performance, surface performance, and fast motion capability are demonstrated.

  3. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  4. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  5. Substrate integrated antennas and arrays

    CERN Document Server

    Cheng, Yu Jian

    2015-01-01

    Substrate Integrated Antennas and Arrays provides a single source for cutting-edge information on substrate integrated circuits (SICs), substrate integrated waveguide (SIW) feeding networks, SIW slot array antennas, SIC traveling-wave antennas, SIW feeding antennas, SIW monopulse antennas, and SIW multibeam antennas. Inspired by the author's extensive research, this comprehensive book:Describes a revolutionary SIC-based antenna technique with the potential to replace existing antenna technologiesExamines theoretical and experimental results connected to electrical and mechanical performanceExp

  6. PHASIM, an advanced phased array antenna software simulator

    NARCIS (Netherlands)

    Keizer, W.P.M.N.

    2000-01-01

    A sophisticated phased array simulator software package for the design and analysis of planar phased array antennas is presented. This package can accurately simulate the far-field characteristics of a large variety of planar phased array configurations in both the frequency and time domain. The sim

  7. Planar antenna system for direction finding

    Science.gov (United States)

    Mardale, Iulia-Cezara; Cocias, Gabriela; Dumitrascu, Ana; Tamas, Razvan; Berescu, Serban

    2015-02-01

    Applications of direction finding techniques include detection and localization of pulsed electromagnetic sources. This paper presents the design and analysis of a planar antenna system for direction finding. Our proposed system includes 4 hybrid couplers that generate 900 shifted signals, 2 crossover couplers also known as 0dB couplers, two 450 phase shifters, two 00 phase shifters and 4 patch antennas.

  8. Planar Tri-Band Antenna Design

    Directory of Open Access Journals (Sweden)

    M. Pokorny

    2008-04-01

    Full Text Available The paper briefly uncovers techniques used for a design of compact planar antennas in order to achieve the wideband and the multi-band capability. The main topic is aimed to the multi-objective optimization using genetic algorithms. A quarter-wavelength planar inverted-F antenna (PIFA using a slot and shorted parasitic patches is chosen to cover GSM900, GSM1800 and ISM2400 bands. A global multi-objective optimization uses a binary genetic algorithm with a composite objective function to tune this antenna. The impedance match and the direction of maximum gain are desired parameters to improve.

  9. Piecewise-Planar Parabolic Reflectarray Antenna

    Science.gov (United States)

    Hodges, Richard; Zawadzki, Mark

    2009-01-01

    The figure shows a dual-beam, dualpolarization Ku-band antenna, the reflector of which comprises an assembly of small reflectarrays arranged in a piecewise- planar approximation of a parabolic reflector surface. The specific antenna design is intended to satisfy requirements for a wide-swath spaceborne radar altimeter, but the general principle of piecewise-planar reflectarray approximation of a parabolic reflector also offers advantages for other applications in which there are requirements for wideswath antennas that can be stowed compactly and that perform equally in both horizontal and vertical polarizations. The main advantages of using flat (e.g., reflectarray) antenna surfaces instead of paraboloidal or parabolic surfaces is that the flat ones can be fabricated at lower cost and can be stowed and deployed more easily. Heretofore, reflectarray antennas have typically been designed to reside on single planar surfaces and to emulate the focusing properties of, variously, paraboloidal (dish) or parabolic antennas. In the present case, one approximates the nominal parabolic shape by concatenating several flat pieces, while still exploiting the principles of the planar reflectarray for each piece. Prior to the conception of the present design, the use of a single large reflectarray was considered, but then abandoned when it was found that the directional and gain properties of the antenna would be noticeably different for the horizontal and vertical polarizations.

  10. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions...... a essentially determined by the SRR, while by varying the dipole arm length the input resistance is changed in a wide range, thus matching the antenna to a feed line and compensating for simulation and manufacturing inaccuracies. No additional matching network is required. Theoretically, there is no limit...... on how small this antenna can be. In practice, the lower bound is set by losses in utilized materials and manufacturing inaccuracies. As an example, an antenna of ka=0.09 was designed, fabricated and tested. Although the initially fabricated antenna prototype had the input impedance of 43 ohms...

  11. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  12. Antenna arrays a computational approach

    CERN Document Server

    Haupt, Randy L

    2010-01-01

    This book covers a wide range of antenna array topics that are becoming increasingly important in wireless applications, particularly in design and computer modeling. Signal processing and numerical modeling algorithms are explored, and MATLAB computer codes are provided for many of the design examples. Pictures of antenna arrays and components provided by industry and government sources are presented with explanations of how they work. Antenna Arrays is a valuable reference for practicing engineers and scientists in wireless communications, radar, and remote sensing, and an excellent textbook for advanced antenna courses.

  13. An Electronically Controlled 8-Element Switched Beam Planar Array

    KAUST Repository

    Sharawi, Mohammad S.

    2015-02-24

    An 8-element planar antenna array with electronically controlled switchable-beam pattern is proposed. The planar antenna array consists of patch elements and operates in the 2.45 GHz ISM band. The array is integrated with a digitally controlled feed network that provides the required phases to generate 8 fixed beams covering most of the upper hemisphere of the array. Unlike typical switchable beam antenna arrays, which operate only in one plane, the proposed design is the first to provide full 3D switchable beams with simple control. Only a 3-bit digital word is required for the generation of the 8 different beams. The integrated array is designed on a 3-layer PCB on a Taconic substrate (RF60A). The total dimensions of the fabricated array are 187.1 × 261.3 × 1.3mm3.

  14. A Planar Switchable 3D-Coverage Phased Array Antenna and Its User Effects for 28 GHz Mobile Terminal Applications

    DEFF Research Database (Denmark)

    Zhang, Shuai; Chen, Xiaoming; Syrytsin, Igor A.

    2017-01-01

    effects on the switchable array are also studied in both data mode and talk mode (voice) at 28 GHz. In talk mode, good directivity and beam switching can be realized by placing the switchable array at the top of the chassis (close to the index finger). And the user shadowing can be significantly reduced...

  15. Imaging Properties of Planar Microlens Arrays

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The planar microlens arrays is a two-dimensional array of optical component which is fabricated monolithically available. Imaging properties of planar microlens arrays are described, which provide both image multiplexer and erect, unit magnification images.

  16. A distributed array antenna system

    Science.gov (United States)

    Shaw, R.; Kovitz, J.

    1986-01-01

    The Space Station communication system will use microwave frequency radio links to carry digitized information from sender to receiver. The ability of the antenna system to meet stringent requirements on coverage zones, multiple users, and reliability will play an important part in the overall multiple access communication system. This paper will describe the configuration of a multibeam conformal phased array antenna and the individual microwave integrated components incoporated into this antenna system.

  17. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...

  18. Azimuth DOA Estimation in Y-bend Antenna Array

    Science.gov (United States)

    Sanudin, R.

    2016-11-01

    In smart antenna system, it is extremely crucial to estimate the direction of incoming signals in order to achieve better reception. Reliability of DOA estimation depends on several factors such as the choice of DOA algorithm, size of antenna array as well as array geometry. Therefore, it is particularly desirable to have a configuration of antenna array that could produce an accurate azimuth estimation. In this work, a new planar array is proposed to address the problem of azimuth estimation. This is achieved by having a flexible element position on the x- y plane that improves the steering vector, hence significantly enhances the accuracy of DOA estimation. Besides, a fair distribution of the antenna elements on the x-y plane also helps to eliminates estimation failure in the azimuth range between 240° and 360°. A comparison study between the proposed array and V-shape array is performed in order to gauge the performance of the proposed array in DOA estimation. Simulation results show that the proposed array has acquired better estimation resolution than V-shape array. On top of that, the proposed array has reduced estimation error in V-shape array. It is concluded that the proposed array has shown potential as an excellent choice of antenna array geometry for smart antenna system.

  19. The collinear coaxial array antenna

    Science.gov (United States)

    Brammer, D. J.; Williams, D.

    1981-03-01

    A design of a coaxial vertical antenna proposed in the ARRL antenna handbook is analyzed. A numerical analysis was carried out using the moment method. A variety of antenna configurations in the 160 MHz design frequency are analyzed and current distribution, gain, polar diagrams and impedances are calculated. The analysis is carried out for simple configurations and extended to a case with 16 repeated center sections. The effects of using lossy cable in the construction is also investigated. A defect in the original ARRL design is rectified. An array of an overall length 5.33 wavelengths is shown to have a gain of 10.69 dB.

  20. Terahertz planar antennas for next generation communication

    CERN Document Server

    Jha, Kumud Ranjan

    2014-01-01

    This book describes various methods to enhance the directivity of  planar antennas, enabling the next generation of high frequency, wireless communication.  The authors discuss various applications to the terahertz regime of the electromagnetic spectrum, with an emphasis on gain enhancement mechanisms.  The numerical models of these antennas are presented and the analytical results are supported, using commercial simulators. The multilayer substrate microstrip transmission line at terahertz frequency is also explored and a method to obtain the various parameters of this interconnect at high frequency is described.  This book will be a valuable resource for anyone needing to explore the terahertz band gap for future wireless communication, in an effort to solve the bandwidth (spectrum scarcity) problem. • Enables development of terahertz communication systems in a license-free band of the electromagnetic spectrum; • Describes methods to design a multi-layered substrate transmission line to reduce var...

  1. EM design and analysis of dipole arrays on non-planar dielectric substrate

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a simple and systematic description of EM design of antenna arrays. Printed dipole antennas are known to be simple yet more efficient than wire antennas. The dielectric substrate and the presence of ground plane affect the antenna performance and the resonant frequency is shifted. This book includes the EM design and performance analysis of printed dipole arrays on planar and cylindrical substrates. The antenna element is taken as half-wave centre-fed dipole. The substrate is taken as low-loss dielectric. The effect of substrate material, ground plane, and the curvature effect is discussed. Results are presented for both the linear and planar dipole arrays. The performance of dipole array is analyzed in terms of input impedance, return loss, and radiation pattern for different configurations. The effect of curved platform (substrate and ground plane) on the radiation behaviour of dipole array is analyzed. The book explains fundamentals of EM design and analysis of dipole antenna array throu...

  2. Microstrip Yagi array for MSAT vehicle antenna application

    Science.gov (United States)

    Huang, John; Densmore, Arthur; Pozar, David

    1990-01-01

    A microstrip Yagi array was developed for the MSAT system as a low-cost mechanically steered medium-gain vehicle antenna. Because its parasitic reflector and director patches are not connected to any of the RF power distributing circuit, while still contributing to achieve the MSAT required directional beam, the antenna becomes a very efficient radiating system. With the complete monopulse beamforming circuit etched on a thin stripline board, the planar microstrip Yagi array is capable of achieving a very low profile. A theoretical model using the Method of Moments was developed to facilitate the ease of design and understanding of this antenna.

  3. EHF multifunction phased array antenna

    Science.gov (United States)

    Solbach, Klaus

    1986-07-01

    The design of a low cost demonstration EHF multifunction-phased array antenna is described. Both, the radiating elements and the phase-shifter circuits are realized on microstrip substrate material in order to allow photolithographic batch fabrication. Self-encapsulated beam-lead PIN-diodes are employed as the electronic switch elements to avoid expensive hermetic encapsulation of the semiconductors or complete circuits. A space-feed using a horn-radiator to illuminate the array from the front-side is found to be the simplest and most inexpensive feed. The phased array antenna thus operates as a reflect-array, the antenna elements employed in a dual role for the collection of energy from the feed-horn and for the re-radiation of the phase-shifted waves (in transmit-mode). The antenna is divided into modules containing the radiator/phase-shifter plate plus drive- and BITE-circuitry at the back. Both drive- and BITE-components use gate-array integrated circuits especially designed for the purpose. Several bus-systems are used to supply bias and logical data flows to the modules. The beam-steering unit utilizes several signal processors and high-speed discrete adder circuits to combine the pointing, frequency and beam-shape information from the radar system computer with the stored phase-shift codes for the array elements. Since space, weight and power consumption are prime considerations only the most advanced technology is used in the design of both the microwave and the digital/drive circuitry.

  4. Dielectric Covered Planar Antennas at Submillimeter Wavelengths for Terahertz Imaging

    Science.gov (United States)

    Chattopadhyay, Goutam; Gill, John J.; Skalare, Anders; Lee, Choonsup; Llombart, Nuria; Siegel, Peter H.

    2011-01-01

    Most optical systems require antennas with directive patterns. This means that the physical area of the antenna will be large in terms of the wavelength. When non-cooled systems are used, the losses of microstrip or coplanar waveguide lines impede the use of standard patch or slot antennas for a large number of elements in a phased array format. Traditionally, this problem has been solved by using silicon lenses. However, if an array of such highly directive antennas is to be used for imaging applications, the fabrication of many closely spaced lenses becomes a problem. Moreover, planar antennas are usually fed by microstrip or coplanar waveguides while the mixer or the detector elements (usually Schottky diodes) are coupled in a waveguide environment. The coupling between the antenna and the detector/ mixer can be a fabrication challenge in an imaging array at submillimeter wavelengths. Antennas excited by a waveguide (TE10) mode makes use of dielectric superlayers to increase the directivity. These antennas create a kind of Fabry- Perot cavity between the ground plane and the first layer of dielectric. In reality, the antenna operates as a leaky wave mode where a leaky wave pole propagates along the cavity while it radiates. Thanks to this pole, the directivity of a small antenna is considerably enhanced. The antenna consists of a waveguide feed, which can be coupled to a mixer or detector such as a Schottky diode via a standard probe design. The waveguide is loaded with a double-slot iris to perform an impedance match and to suppress undesired modes that can propagate on the cavity. On top of the slot there is an air cavity and on top, a small portion of a hemispherical lens. The fractional bandwidth of such antennas is around 10 percent, which is good enough for heterodyne imaging applications.The new geometry makes use of a silicon lens instead of dielectric quarter wavelength substrates. This design presents several advantages when used in the submillimeter

  5. Low profile conformal antenna arrays on high impedance substrate

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents electromagnetic (EM) design and analysis of dipole antenna array over high impedance substrate (HIS). HIS is a preferred substrate for low-profile antenna design, owing to its unique boundary conditions. Such substrates permit radiating elements to be printed on them without any disturbance in the radiation characteristics. Moreover HIS provides improved impedance matching, enhanced bandwidth, and increased broadside directivity owing to total reflection from the reactive surface and high input impedance. This book considers different configurations of HIS for array design on planar and non-planar high-impedance surfaces. Results are presented for cylindrical dipole, printed dipole, and folded dipole over single- and double-layered square-patch-based HIS and dogbone-based HIS. The performance of antenna arrays is analyzed in terms of performance parameters such as return loss and radiation pattern. The design presented shows acceptable return loss and mainlobe gain of radiation pattern. Thi...

  6. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  7. Mutual Coupling Between Two Identical Planar Inverted-F Antennas

    DEFF Research Database (Denmark)

    Thaysen, Jesper

    2002-01-01

    The planar inverted-F antenna (PIFA) is widely used for cellular telephones due to its compactness and size. The objective of this paper is to present the results of numerical investigations of the coupling between two equal PIFA antennas. To analyse the antenna, the method of moment computer pro...

  8. Array antennas design in dependence of element-phasing

    Science.gov (United States)

    Zichner, R.; Chandra, M.

    2009-05-01

    Array antennas are used in science as well as for commercial and military purposes. The used element antennas act in accordance to their desired uses, for example radars or stationer GPS satellites. Typical components are for example slotted waveguides, patches, yagi-antennas and helix-antennas. All these elements do stand out with their own characteristics based on their special applications. If these elements are formed into an array configuration, the effectiveness can be improved immensely. There is a relation between the array functions and the physical array properties like the element alignment (linear, planar, circular), distances between the elements and so on. Among the physical properties there are other attributes like phase or amplitude coefficients, which are of great significance. The aim of this study was to provide an insight into the problem of array design, as far as the antenna element phase is concerned. Along with this, array radiation characteristics effects are presented. With the help of the extracted cognitions beam forming behaviour can be shown and the array phase behaviour can be analysed. One of the main applications is to simulate the array characteristics, like the radiation characteristic or the gain, for displacements of the array feeding point. A software solution that simulates the phase shift of a given array pattern is sought to adjust the feeding point.

  9. Array antennas design in dependence of element-phasing

    Directory of Open Access Journals (Sweden)

    R. Zichner

    2009-05-01

    Full Text Available Array antennas are used in science as well as for commercial and military purposes. The used element antennas act in accordance to their desired uses, for example radars or stationer GPS satellites. Typical components are for example slotted waveguides, patches, yagi-antennas and helix-antennas. All these elements do stand out with their own characteristics based on their special applications. If these elements are formed into an array configuration, the effectiveness can be improved immensely. There is a relation between the array functions and the physical array properties like the element alignment (linear, planar, circular, distances between the elements and so on. Among the physical properties there are other attributes like phase or amplitude coefficients, which are of great significance. The aim of this study was to provide an insight into the problem of array design, as far as the antenna element phase is concerned. Along with this, array radiation characteristics effects are presented. With the help of the extracted cognitions beam forming behaviour can be shown and the array phase behaviour can be analysed. One of the main applications is to simulate the array characteristics, like the radiation characteristic or the gain, for displacements of the array feeding point. A software solution that simulates the phase shift of a given array pattern is sought to adjust the feeding point.

  10. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  11. A new planar feed for slot spiral antennas

    Science.gov (United States)

    Nurnberger, M. W.; Volakis, J. L.

    1995-01-01

    This report presents a new planar, wideband feed network for a slot spiral antenna, and the subsequent design and performance of a VHF antenna utilizing this feed design. Both input impedance and radiation pattern measurements are presented to demonstrate the performance and usefulness of this feed. Almost all previous designs have utilized wire spirals, requiring bulky, non-planar feeds with separate baluns, and large absorbing cavities. The presented slot spiral antenna feed integrates the balun into the structure of the slot spiral antenna, making the antenna and feed planar. This greatly simplifies the design and construction of the antenna, in addition to providing repeatable accuracy. It also allows the use of a very shallow reflecting cavity for conformal applications. Finally, this feeding approach now makes many of the known miniaturization techniques viable options.

  12. Planar MIMO Antenna with Slits for WBAN Applications

    Directory of Open Access Journals (Sweden)

    Do-Gu Kang

    2014-01-01

    Full Text Available A planar MIMO antenna with slits for WBAN applications is proposed. The antenna consists of two PIFAs, ground pads, and two slits. By adding ground pads, the antenna size is reduced with improved impedance matching. Through two slits in a ground plane, the isolation characteristic is improved and the resonant frequency can be controlled. To analyze the antenna performance on a human body, the proposed antenna on a human equivalent flat phantom is investigated through simulations. Regardless of the existence of the phantom, the antenna operates in 2.4 GHz ISM band with the isolation higher than 18 dB.

  13. Conformal Antenna Array for Millimeter-Wave Communications: Performance Evaluation

    CERN Document Server

    Semkin, V; Kyro, M; Kolmonen, V-M; Luxey, C; Ferrero, F; Devillers, F; Raisanen, A V

    2015-01-01

    In this paper, we study the influence of the radius of a cylindrical supporting structure on radiation properties of a conformal millimeter-wave antenna array. Bent antenna array structures on cylindrical surfaces may have important applications in future mobile devices. Small radii may be needed if the antenna is printed on the edges of mobile devices and in items which human beings are wearing, such as wrist watches, bracelets and rings. The antenna under study consists of four linear series-fed arrays of four patch elements and is operating at 58.8 GHz with linear polarization. The antenna array is fabricated on polytetrafluoroethylene substrate with thickness of 0.127 mm due to its good plasticity properties and low losses. Results for both planar and conformal antenna arrays show rather good agreement between simulation and measurements. The results show that conformal antenna structures allow achieving large angular coverage and may allow beam-steering implementations if switches are used to select betw...

  14. A Fully Reconfigurable Polarimetric Phased Array Antenna Testbed

    Directory of Open Access Journals (Sweden)

    Sudantha Perera

    2014-01-01

    Full Text Available The configurable phased array demonstrator (CPAD is a low-cost, reconfigurable, small-scale testbed for the dual-polarized array antenna and radar prototype. It is based on the concept that individual transmit and receive (TR modules and radiating elements can be configured in different ways to study the impact of various array manifolds on radiation pattern performance. For example, CPAD is configured as (a a 4 × 4 planar array, (b a planar array with mirror configuration, and (c a circular array to support the multifunctional phased array radar (MPAR system risk reduction studies. System descriptions are given in detail, and measurements are made and results are analyzed.

  15. Design of Frequency Tunable Compact Antenna and Millimeter to Terahertz Array Antennas

    Science.gov (United States)

    Damman, Rafid Noel

    As increased bandwidth demands continue to rise and overly crowded existing bands need be relieved, the study of frequency tunable and higher frequency array antennas is needed. By tuning the resonant frequency of an antenna, the bandwidth increases since the operating frequency has increased from the tuning. Also, higher frequency antenna designs are beginning to take flight to alleviate the lower bands and allow for an increase in bandwidth. Both the methods can bring a solution to the increased bandwidth demand. Thesis work begins with the design of a novel single feed planar antenna with 4G tunable bands and consistent upper LTE bands. This antenna is simulated using full wave analysis tool, fabricated and measured. This antenna shows near omni-directional radiation pattern exhibiting gain levels from -4.25dBi in the lower band to 2.69dBi in the upper band. The impedance matching for the lower band can be tuned from 690 MHz - 970 MHz while the higher band is consistently present between 1.29 GHz - 2.05 GHz, both based on S 11 ≤ - 6dBi. To begin the stepping stone for higher frequency planar array antenna designs, first an 8x8 array antenna is designed in the Ka band. The impedance matching for this design is measured 28.34 GHz - 32.09 GHz having fractional bandwidth of 12.41% based on S11 ? - 10dB. This array antenna was fabricated and experimentally verified for its impedance matching and radiation performances. Next, a 4x4 antenna array is designed for operation in the 5G wireless band and using 0.07mm quartz material. The design has matching band from 53.6 GHz - 54.0 GHz having fractional bandwidth of 0.7435% based on S 11 ≤ -10dB. Finally, a 2x2 array antenna having a center frequency of 300 GHz with fractional bandwidth of 11.2% based on S11 ≤ -10dB is designed. This 2x2 array antenna was also designed using 0.07mm thick quartz substrate material so as to fabricate using the photolithography method due to the limitations of the standard method of

  16. On intermodulation beams of satellite DBF transmitting multibeam array antenna

    Science.gov (United States)

    Zhao, Hongmei; Wang, Huali; Mu, Shanxiang

    2007-11-01

    Digital beamforming (DBF) transmitting multibeam planar array antenna with nonlinear behaviors of solid-state power amplifiers (SSPA) is discussed. This paper investigates the intermodulation beams produced by the nonlinearity characteristics of the SSPA with multiple carrier components. The Shimbo model is simplified to describe the nonlinear behaviors of SSPA. The optimal SSPA input back-off (IBO) point which is given the desired the carrier and the intermodulatin ratio (C/IM) is simulated. And the tradeoffs between linearity and efficiency of the power amplifier which influence this IBO is also discussed, helping to selecting suitable SSPA device and reducing the dc power consumption in satellite array antenna system.

  17. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  18. Element failure correction for a large monopulse phased array antenna with active amplitude weighting

    NARCIS (Netherlands)

    Keizer, W.P.M.N.

    2007-01-01

    Recently a new method is introduced to synthesize low sidelobe patterns for planar array antennas with a periodic element arrangement. The method makes use of the property that for a planar array with periodic spacing of the elements, an inverse Fourier transform relationship exists between the arra

  19. Mode structure of planar optical antennas on dielectric substrates.

    Science.gov (United States)

    Word, Robert C; Könenkamp, Rolf

    2016-08-08

    We report a numerical study, supported by photoemission electron microscopy (PEEM), of sub-micron planar optical antennas on transparent substrate. We find these antennas generate intricate near-field spatial field distributions with odd and even numbers of nodes. We show that the field distributions are primarily superpositions of planar surface plasmon polariton modes confined to the metal/substrate interface. The mode structure provides opportunities for coherent switching and optical control in sub-micron volumes.

  20. Coupling reduction between dipole antenna elements by using a planar meta-surface

    DEFF Research Database (Denmark)

    Saenz, Elena; Ederra, Inigo; Gonzalo, Ramon

    2009-01-01

    The mutual coupling between dipole antenna array elements using a planar meta-surface as superstrate is experimentally investigated. The meta-surface is based on grids of short metal strips and continuous wires. A comparison between the mutual coupling when the dipoles are radiating in free space...

  1. A finite element-boundary integral method for conformal antenna arrays on a circular cylinder

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.

  2. Direct closed-form covariance matrix and finite alphabet constant-envelope waveforms for planar array beampatterns

    KAUST Repository

    Ahmed, Sajid

    2016-11-24

    Various examples of methods and systems are provided for direct closed-form finite alphabet constant-envelope waveforms for planar array beampatterns. In one example, a method includes defining a waveform covariance matrix based at least in part upon a two-dimensional fast Fourier transform (2D-FFT) analysis of a frequency domain matrix Hf associated with a planar array of antennas. Symbols can be encoded based upon the waveform covariance matrix and the encoded symbols can be transmitted via the planar array of antennas. In another embodiment, a system comprises an N x M planar array of antennas and transmission circuitry configured to transmit symbols via a two-dimensional waveform beampattern defined based at least in part upon a 2D-FFT analysis of a frequency domain matrix Hf associated with the planar array of antennas.

  3. Mutual Coupling Between Identical Planar Inverted-F Antennas

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2007-01-01

    Mutual coupling between two identical planar inverted-F antennas (PIFA) located on an infinite ground plane is studied numerically. Several arrangements of side-by-side, collinear, parallel-in-echelon, and orthogonal PIFA antennas with element spacing varying from 0.06λ to 1.20λ are investigated...

  4. Planar Ultrawideband Antenna with Photonically Controlled Notched Bands

    Directory of Open Access Journals (Sweden)

    Drasko Draskovic

    2013-01-01

    Full Text Available A design of a planar microstrip-fed ultrawideband (UWB printed circular monopole antenna with optically controlled notched bands is presented. The proposed antenna is composed of a circular ultrawideband patch, with an etched T-shaped slot controlled by an integrated silicon switch. The slot modifies the frequency response of the antenna suppressing 3.5–5 GHz band when the switch is in open state. The optical switch is controlled by a low-power near-infrared (808 nm laser diode, which causes the change in the frequency response of the antenna generating a frequency notch. This solution could be expanded to include several notches in the antenna frequency response achieving a fully reconfigurable UWB antenna. The antenna could be remotely controlled at large distances using optical fiber. The prototype antenna has been fully characterized to verify these design concepts.

  5. Low Cost Phased Array Antenna System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — JEM Engineering proved the technical feasibility of the FlexScan array?a very low-cost, highly-efficient, wideband phased array antenna?in Phase I, and stands ready...

  6. Planar Thinned Arrays: Optimization and Subarray Based Adaptive Processing

    Directory of Open Access Journals (Sweden)

    P. Lombardo

    2013-01-01

    Full Text Available A new approach is presented for the optimized design of a planar thinned array; the proposed strategy works with single antenna elements or with small sets of different subarray types, properly located on a planar surface. The optimization approach is based on the maximization of an objective function accounting for side lobe level and considering a fixed number of active elements/subarrays. The proposed technique is suitable for different shapes of the desired output array, allowing the achievement of the desired directivity properties on the corresponding antenna pattern. The use of subarrays with a limited number of different shapes is relevant for industrial production, which would benefit from reduced design and manufacturing costs. The resulting modularity allows scalable antenna designs for different applications. Moreover, subarrays can be arranged in a set of subapertures, each connected to an independent receiving channel. Therefore, adaptive processing techniques could be applied to cope with and mitigate clutter echoes and external electromagnetic interferences. The performance of adaptive techniques with subapertures taken from the optimized thinned array is evaluated against assigned clutter and jamming scenarios and compared to the performance achievable considering a subarray based filled array with the same number of active elements.

  7. Broadband Multilayered Array Antenna with EBG Reflector

    Directory of Open Access Journals (Sweden)

    P. Chen

    2013-01-01

    Full Text Available Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure. The impedance bandwidth is broadened, but meanwhile, the sidelobe of the directivity pattern and backlobe level are enlarged. A broadband stacked slot coupling microstrip antenna array with EBG structure reflector is proposed. Test results indicate that the proposed reflector structure can effectively improve the directivity pattern of stacked antenna and aperture coupled antenna, promote the front-to-back ratio, and reduce the thickness of the antenna. Therefore, it is more suitable to be applied as an airborne antenna.

  8. Resonance spectra of diabolo optical antenna arrays

    Science.gov (United States)

    Guo, Hong; Simpkins, Blake; Caldwell, Joshua D.; Guo, Junpeng

    2015-10-01

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  9. Resonance spectra of diabolo optical antenna arrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong; Guo, Junpeng, E-mail: guoj@uah.edu [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Simpkins, Blake; Caldwell, Joshua D. [Naval Research Laboratory, 4555 Overlook Ave., SW Washington, DC 20375 (United States)

    2015-10-15

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  10. Mutual Coupling Between Two Identical Planar Inverted-F Antennas

    OpenAIRE

    Thaysen, Jesper

    2002-01-01

    The planar inverted-F antenna (PIFA) is widely used for cellular telephones due to its compactness and size. The objective of this paper is to present the results of numerical investigations of the coupling between two equal PIFA antennas. To analyse the antenna, the method of moment computer program, IE3D, was used to predict the performance of the antennas in terms of the scattering parameters. The simulated results for the PIFA located above a finite ground plane are compared to the corres...

  11. Antenna-coupled TES bolometer arrays for CMB polarimetry

    CERN Document Server

    Kuo, C L; Bonetti, J A; Brevik, J; Chattopadhyay, G; Day, P K; Golwala, S; Kenyon, M; Lange, A E; LeDuc, H G; Nguyen, H; Ogburn, R W; Orlando, A; Trangsrud, A; Turner, A; Wang, G; Zmuidzinas, J; 10.1117/12.788588

    2009-01-01

    We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize planar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL...

  12. Dual-Polarized Planar Phased Array Analysis for Meteorological Applications

    Directory of Open Access Journals (Sweden)

    Chen Pang

    2015-01-01

    Full Text Available This paper presents a theoretical analysis for the accuracy requirements of the planar polarimetric phased array radar (PPPAR in meteorological applications. Among many factors that contribute to the polarimetric biases, four factors are considered and analyzed in this study, namely, the polarization distortion due to the intrinsic limitation of a dual-polarized antenna element, the antenna pattern measurement error, the entire array patterns, and the imperfect horizontal and vertical channels. Two operation modes, the alternately transmitting and simultaneously receiving (ATSR mode and the simultaneously transmitting and simultaneously receiving (STSR mode, are discussed. For each mode, the polarimetric biases are formulated. As the STSR mode with orthogonal waveforms is similar to the ATSR mode, the analysis is mainly focused on the ATSR mode and the impacts of the bias sources on the measurement of polarimetric variables are investigated through Monte Carlo simulations. Some insights of the accuracy requirements are obtained and summarized.

  13. Low SAR planar antenna for multi standard cellular phones

    Science.gov (United States)

    Ben Ahmed, M.; Bouhorma, M.; Elouaai, F.; Mamouni, A.

    2011-03-01

    In this paper the design of a multiband compact antenna for the integration into the new multi function mobile phones is presented. The antenna is matched to operate at GSM 920 MHz, WI-Fi 2.4 GHz and HiperLan 5.1 GHz standards with low SAR levels. Return loss coefficient and radiation pattern of this antenna are computed in free space as well as in the presence of head. The specific absorption rate (SAR) of the planar antenna is calculated and compared with that of the monopole antenna. To examine the performance of this antenna, a prototype was designed, fabricated and measured; the simulation analysis was performed using the HFSS software, good agreement with the simulation providing validation of the design procedure.

  14. A New Wide Band Planar Antenna and FDTD Simulation

    Institute of Scientific and Technical Information of China (English)

    WANGHonziian; GAOBenqing

    2003-01-01

    A new planar trigonometric curve (PTC)antenna is firstly proposed. The finite difference time domain method (FDTD) is used to analysis the input impedance and pattern of this antenna. The image the-ory is firstly applied to obtain the impedance using FDTD.Using the image theory the computation time and RAMspace needed by the calculation of monopole antenna can be reduced greatly, while the results remain almost the same level as those of the experiments. The FDTD sim-ulation of this PTC antenna exhibit the very wide band results in impedance (14:1) and pattern (5.7:1), which are much better than those of the circular disc monopole an-tenna (CMA) and Trilateral monoDole antenna (TLA).

  15. Synthesis of Phased Cylindrical Arc Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Hussein Rammal

    2009-01-01

    Full Text Available This paper describes a new approach to synthesize cylindrical antenna arrays controlled by the phase excitation, to synthesize directive lobe and multilobe patterns with steered zero. The proposed method is based on iterative minimization of a function that incorporates constraints imposed in each direction. An 8-element cylindrical antenna has been simulated and tested for various types of beam configurations.

  16. Juno Microwave Radiometer Patch Array Antennas

    Science.gov (United States)

    Chamberlain, N.; Chen, J.; Focardi, P.; Hodges, R.; Hughes, R.; Jakoboski, J.; Venkatesan, J.; Zawadzki, M.

    2009-01-01

    Juno is a mission in the NASA New Frontiers Program with the goal of significantly improving our understanding of the formation and structure of Jupiter. This paper discusses the modeling and measurement of the two patch array antennas. An overview of the antenna architecture, design and development at JPL is provided, along with estimates of performance and the results of measurements.

  17. Slot Coupled Patch Array Antenna Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is an antenna array whose beam is controlled digitally. The Phase 1 effort will assess the method needed to achieve the gain, bandwidth, and...

  18. A Review of the Four Dimension Antenna Arrays

    Institute of Scientific and Technical Information of China (English)

    YANG Shi-wen; NIE Zai-ping

    2006-01-01

    The four dimensional (4D) antenna arrays introduce a fourth dimension, time, into conventional antenna arrays to offer greater flexibility in the design of high performance antenna arrays. This paper presents the tutorial on the study of 4D antenna arrays and the review of the recent research findings on 4D antenna arrays. Issues considered include the theory of 4D antenna arrays, different time modulation schemes, numerical simulation results, and some experimental results on their applications to low sidelobe designs. Throughout the discussion, some challenging issues on the study of 4D antenna arrays are highlighted.

  19. OPTIMAL DESIGN OF SMART ANTENNA ARRAY

    Institute of Scientific and Technical Information of China (English)

    Gao Feng; Liu Qizhong; Shan Runhong; Zhang Hou

    2004-01-01

    This letter investigates an efficient design procedure integrating the Genetic Algorithm (GA) with the Finite Difference Time Domain (FDTD) for the fast optimal design of Smart Antenna Arrays (SAA). The FDTD is used to analyze SAA with mutual coupling. Then,on the basis of the Maximal Signal to Noise Ratio (MSNR) criteria, the GA is applied to the optimization of weighting elements and structure of SAA. Finally, the effectiveness of the analysis is evaluated by experimental antenna arrays.

  20. ANTENNAS ARRAY ADJUST WITH ADAPTIVE NEURONAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. Padrón

    2004-12-01

    Full Text Available In this work an array failure correction for Linear Antenna Array (LAA is presented. This is carried out by means ofan Adaptive Artificial Neural Network (AANN that adjusts the amplitude and phase at beamforming. Theappropriated corrections are given, when one, or two, or three elements have a failure in the antenna linear array.The AANN corrects the corresponding parameters in the radiation pattern obtained due to the failure, when weknow the coefficients of the array factor (AF. This yields a reduction of side lobe level and some interferencesdisappear.

  1. A Rectangular Planar Spiral Antenna for GIS Partial Discharge Detection

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2014-01-01

    Full Text Available A rectangular planar spiral antenna sensor was designed for detecting the partial discharge in gas insulation substations (GIS. It can expediently receive electromagnetic waves leaked from basin-type insulators and can effectively suppress low frequency electromagnetic interference from the surrounding environment. Certain effective techniques such as rectangular spiral structure, bow-tie loading, and back cavity structure optimization during the antenna design process can miniaturize antenna size and optimize voltage standing wave ratio (VSWR characteristics. Model calculation and experimental data measured in the laboratory show that the antenna possesses a good radiating performance and a multiband property when working in the ultrahigh frequency (UHF band. A comparative study between characteristics of the designed antenna and the existing quasi-TEM horn antenna was made. Based on the GIS defect simulation equipment in the laboratory, partial discharge signals were detected by the designed antenna, the available quasi-TEM horn antenna, and the microstrip patch antenna, and the measurement results were compared.

  2. Graphene array antenna for 5G applications

    Science.gov (United States)

    Sa'don, Siti Nor Hafizah; Kamarudin, Muhammad Ramlee; Ahmad, Fauzan; Jusoh, Muzammil; Majid, Huda A.

    2017-02-01

    Fifth generation (5G) needs to provide better coverage than the previous generation. However, high frequency and millimeter wave experience penetration loss, propagation loss and even more loss in energy for long distance. Hence, a graphene array antenna is proposed for high gain to cover a long distance communications since array antenna enables in providing more directive beams. The investigation is conducted on three types of substrates with gain achieved is more than 7 dBi. The gain obtained is good since it is comparable with other studies. In addition, these antennas consume small numbers of elements to achieve high gain.

  3. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  4. Enhanced Antenna Performances Using Planar Circularly Symmetric EBG's

    NARCIS (Netherlands)

    Maagt, P. de; Llombart, N.; Neto, A.; Gerini, G.

    2005-01-01

    Planar circularly symmetric (PCS) electromagnetic band-gap (EBG) substrates have recently been proposed to suppress surface waves (Llombart, N. et al., 2004). The application of PCS-EBG to reduce the surface waves excited by an antenna printed on a dielectric slab is discussed. The study starts from

  5. Resonance spectra of diabolo optical antenna arrays

    Directory of Open Access Journals (Sweden)

    Hong Guo

    2015-10-01

    Full Text Available A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  6. Planar Antenna Technology for mm-Wave Automotive Radar, Sensing, and Communications

    OpenAIRE

    2010-01-01

    We have presented a selection of different planar antenna designs with different properties suitable for a multitude of applications in the higher mm-wave range. Beamforming with power dividers or Rotman lenses was discussed in detail. We investigated the focusing properties of the Rotman lens and concluded with a new design concept for the positioning and orientation of the beam ports. Smaller arrays and monopole and dipole elements were demonstrated in the 122 and 140 GHz ranges, which are ...

  7. Phased array antenna element for automotive radar application

    OpenAIRE

    2014-01-01

    In this thesis work, a design of reliable antenna front-end for W band automotive radar is studied and the problems and considerations associated with phased array antenna design at W-band are addressed. Proposed phased array antenna consists of on chip patch antenna which has the advantages of being integrated by the active circuitry. A sample of patch antenna and patch array are designed and fabricated to be tested for their functionality. Printing antenna on Silicon substrate is a compact ...

  8. Stochastic Beamforming via Compact Antenna Arrays

    DEFF Research Database (Denmark)

    Alrabadi, Osama; Pedersen, Gert Frølund

    2012-01-01

    The paper investigates the average beamforming (BF) gain of compact antenna arrays when statistical channel knowledge is available. The optimal excitation (precoding vector) and impedance termination that maximize the average BF gain are a compromise between the ones that maximize the array...

  9. Statistical monitoring of linear antenna arrays

    KAUST Repository

    Harrou, Fouzi

    2016-11-03

    The paper concerns the problem of monitoring linear antenna arrays using the generalized likelihood ratio (GLR) test. When an abnormal event (fault) affects an array of antenna elements, the radiation pattern changes and significant deviation from the desired design performance specifications can resulted. In this paper, the detection of faults is addressed from a statistical point of view as a fault detection problem. Specifically, a statistical method rested on the GLR principle is used to detect potential faults in linear arrays. To assess the strength of the GLR-based monitoring scheme, three case studies involving different types of faults were performed. Simulation results clearly shown the effectiveness of the GLR-based fault-detection method to monitor the performance of linear antenna arrays.

  10. A Twin Spiral Planar Antenna for UWB Medical Radars

    Directory of Open Access Journals (Sweden)

    Giuseppe A. Zito

    2013-01-01

    Full Text Available A planar-spiral antenna to be used in an ultrawideband (UWB radar system for heart activity monitoring is presented. The antenna, named “twin,” is constituted by two spiral dipoles in a compact structure. The reflection coefficient at the feed point of the dipoles is lower than −8 dB over the 3–12 GHz band, while the two-dipoles coupling is about −20 dB. The radiated beam is perpendicular to the plane of the spiral, so the antenna is wearable and it may be an optimal radiator for a medical UWB radar for heart rate detection. The designed antenna has been also used to check some hypotheses about the UWB radar heart activity detection mechanism. The radiation impedance variation, caused by the thorax vibrations associated with heart activity, seems to be the most likely explanation of the UWB radar operation.

  11. Planar C-Band Antenna with Electronically Controllable Switched Beams

    Directory of Open Access Journals (Sweden)

    Mariano Barba

    2009-01-01

    Full Text Available The design, manufacturing, and measurements of a switchable-beam antenna at 3.5 GHz for WLL or Wimax base station antennas in planar technology are presented. This antenna performs a discrete beam scan of a 60∘ sector in azimuth and can be easily upgraded to 5 or more steps. The switching capabilities have been implemented by the inclusion of phase shifters based on PIN diodes in the feed network following a strategy that allows the reduction of the number of switches compared to a classic design. The measurements show that the design objectives have been achieved and encourage the application of the acquired experience in antennas for space applications, such as X-band SAR and Ku-band DBS.

  12. PHASIM, a sophisticated phased array antenna software simulator implemented in MATLAB 5.2

    NARCIS (Netherlands)

    Keizer, W.P.M.N.

    1999-01-01

    A sophisticated phased array simulator software package for the design and analysis of planar phased array antennas is presented. This simulator is coded in MATLAB version 5.2. Using MATLAB, numerical engineering problems can be solved in a fraction of time of time required by programs coded in FORT

  13. PHASIM, a sophisticated phased array antenna software simulator implemented in MATLAB 5.2

    NARCIS (Netherlands)

    Keizer, W.P.M.N.

    1999-01-01

    A sophisticated phased array simulator software package for the design and analysis of planar phased array antennas is presented. This simulator is coded in MATLAB version 5.2. Using MATLAB, numerical engineering problems can be solved in a fraction of time of time required by programs coded in FORT

  14. Magnetic antenna excitation of whistler modes. II. Antenna arrays

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2014-12-15

    The excitation of whistler modes from magnetic loop antennas has been investigated experimentally. The field topology of the excited wave driven by a single loop antenna has been measured for different loop orientations with respect to the uniform background field. The fields from two or more antennas at different locations are then created by superposition of the single-loop data. It is shown that an antenna array can produce nearly plane waves which cannot be achieved with single antennas. By applying a phase shift along the array, oblique wave propagation is obtained. This allows a meaningful comparison with plane wave theory. The Gendrin mode and oblique cyclotron resonance are demonstrated. Wave helicity and polarization in space and time are demonstrated and distinguished from the magnetic helicity of the wave field. The superposition of two oblique plane whistler modes produces in a “whistler waveguide” mode whose polarization and helicity properties are explained. The results show that single point measurements cannot properly establish the wave character of wave packets. The laboratory observations are relevant for excitation and detection of whistler modes in space plasmas.

  15. MULTI SEGMENT CIRCULAR FRACTAL REFLECT ARRAY ANTENNA

    Directory of Open Access Journals (Sweden)

    Bahareh Baghani BAJGIRAN

    2014-01-01

    Full Text Available in this paper with using novel fractal structure which is composed of multi segment circular fractal. A unit cell and then reflectarray antenna have been designed. The unit cell of reflect array has been designed in 4.4 GHz with 24*24*1 mm3 dimension. The reflectarray is consist of 400 (20* 20 elements that even element is placed in the locus has been calculated. Maximum gain of antenna is 12.9 dBi.

  16. Breadboard Signal Processor for Arraying DSN Antennas

    Science.gov (United States)

    Jongeling, Andre; Sigman, Elliott; Chandra, Kumar; Trinh, Joseph; Soriano, Melissa; Navarro, Robert; Rogstad, Stephen; Goodhart, Charles; Proctor, Robert; Jourdan, Michael; hide

    2008-01-01

    A recently developed breadboard version of an advanced signal processor for arraying many antennas in NASA s Deep Space Network (DSN) can accept inputs in a 500-MHz-wide frequency band from six antennas. The next breadboard version is expected to accept inputs from 16 antennas, and a following developed version is expected to be designed according to an architecture that will be scalable to accept inputs from as many as 400 antennas. These and similar signal processors could also be used for combining multiple wide-band signals in non-DSN applications, including very-long-baseline interferometry and telecommunications. This signal processor performs functions of a wide-band FX correlator and a beam-forming signal combiner. [The term "FX" signifies that the digital samples of two given signals are fast Fourier transformed (F), then the fast Fourier transforms of the two signals are multiplied (X) prior to accumulation.] In this processor, the signals from the various antennas are broken up into channels in the frequency domain (see figure). In each frequency channel, the data from each antenna are correlated against the data from each other antenna; this is done for all antenna baselines (that is, for all antenna pairs). The results of the correlations are used to obtain calibration data to align the antenna signals in both phase and delay. Data from the various antenna frequency channels are also combined and calibration corrections are applied. The frequency-domain data thus combined are then synthesized back to the time domain for passing on to a telemetry receiver

  17. Parasitic antenna arrays for wireless MIMO systems

    CERN Document Server

    Kanatas, Athanasios; Papadias, Constantinos

    2014-01-01

    This  book covers a cross-section of two technologies: parasitic antenna arrays driven via analogue circuits; and MIMO technology for multi-antenna arrays.  The combination of these two technologies results in novel functionality. Relevant technical angles, ranging from theoretic to electromagnetic considerations; from analogue circuit to digital baseband control for signal generation; and from channel modeling to communication theoretic aspects are detailed by the contributors. Potential applications are considered in conjunction with current and upcoming wireless standards is provided.

  18. An LTCC 94 GHz Antenna Array

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, J; Pao, H; Lin, H; Garland, P; O' Neill, D; Horton, K

    2007-12-21

    An antenna array is designed in low-temperature cofired ceramic (LTCC) Ferro A6M{trademark} for a mm-wave application. The antenna is designed to operate at 94 GHz with a few percent bandwidth. A key manufacturing technology is the use of 3 mil diameter vias on a 6 mil pitch to construct the laminated waveguides that form the beamforming network and radiating elements. Measurements for loss in the laminated waveguide are presented. The slot-fed cavity-radiating element is designed to account for extremely tight mutual coupling between elements. The array incorporates a slot-fed multi-layer beamforming network.

  19. Synthesis of Antenna Arrays and Parasitic Antenna Arrays with Mutual Couplings

    Directory of Open Access Journals (Sweden)

    M. Thevenot

    2012-01-01

    Full Text Available A synthesis method to design multielement antennas with couplings is presented. The main objective is to perform a rigorous determination of the electromagnetic characteristics involved in the design, especially with arrays of moderate sizes. The aim is to conceive jointly and efficiently the antenna and the circuits to connect (feed distribution network, power amplifiers, reactive loads, etc.. The subsequent objective is to improve the understanding and capabilities of strongly coupled antennas. As a whole, the synthesis procedure is then applied to different antenna architectures in order to show its efficiency and versatility. A focus on some antenna concepts where the management of couplings is a key factor to improve the performances is presented. After describing the synthesis procedure, the first category of coupled multielement antenna studied concerns radiating arrays in linear or circular polarization. A design including couplings effects on an active array is also presented. Then, the method is applied to parasitic antenna arrays and a specific investigation on reflectarray antenna is performed as they can be considered as a particular case of parasitic arrays.

  20. A head and neck hyperthermia applicator: Theoretical antenna array design

    NARCIS (Netherlands)

    Paulides, M.M.; Bakker, J.F.; Zwamborn, A.P.M.; Rhoon, G.C. van

    2007-01-01

    Purpose: Investigation into the feasibility of a circular array of dipole antennas to deposit RF-energy centrally in the neck as a function of: 1) patient positioning, 2) antenna ring radius, 3) number of antenna rings, 4) number of antennas per ring and 5) distance between antenna rings. Materials

  1. A head and neck hyperthermia applicator: Theoretical antenna array design

    NARCIS (Netherlands)

    M.M. Paulides (Margarethus); J.F. Bakker (Jurriaan); A.P.M. Zwamborn; G.C. van Rhoon (Gerard)

    2007-01-01

    textabstractPurpose: Investigation into the feasibility of a circular array of dipole antennas to deposit RF-energy centrally in the neck as a function of: (1) patient positioning, (2) antenna ring radius, (3) number of antenna rings, (4) number of antennas per ring and (5) distance between antenna

  2. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.

  3. Multiband Photonic Phased-Array Antenna

    Science.gov (United States)

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  4. Phased Antenna Array for Global Navigation Satellite System Signals

    Science.gov (United States)

    Turbiner, Dmitry (Inventor)

    2015-01-01

    Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.

  5. Terahertz Array Receivers with Integrated Antennas

    Science.gov (United States)

    Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro; Thomas, Bertrand; Mehdi, Imran

    2011-01-01

    Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  6. Interleaved Array Antennas for FMCW Radar Applications

    NARCIS (Netherlands)

    Lager, I.E.; Trampuz, C.; Simeoni, M.; Ligthart, L.P.

    2009-01-01

    An effective and robust strategy for concurrently designing the transmit and receive antennas of a frequency-modulated, continuos-wave radar is discussed. The aperture architecture is based on the use of non-periodic, interleaved sub-arrays. Deterministic element placement is employed for ensuring d

  7. A Small Planar Antenna for 4G Mobile Phone Application

    Directory of Open Access Journals (Sweden)

    Hu Jian-rong

    2016-01-01

    Full Text Available The analysis and design of a small planar multiband antenna operating in the 4G frequency bands are presented. The numerical and experimental results demonstrated that the proposed antenna satisfies the requirement of 6 dB return loss for the impedance bandwidth of the LTE700/LTE2300/LTE2500 and WiMAX3500 bands. The gains at 750 MHz/2.3 GHz/2.6 GHz/3.5 GHz are 2.1 dBi/4.9 dBi/4.7 dBi/4.3 dBi, respectively. The measured radiation patterns verify the suitability of the antenna to be employed in mobile phones. The dimensions of the radiant patch are 49 × 10 mm2. The proposed antenna can be easily fabricated and customized to various 4G mobile phones as a compact internal antenna.

  8. Sunflower Array Antenna with Adjustable Density Taper

    NARCIS (Netherlands)

    Viganó, M.C.; Toso, G.; Caille, G.; Mangenot, C.; Lager, I.E.

    2009-01-01

    A deterministic procedure to design a nonperiodic planar array radiating a rotationally symmetric pencil beam pattern with an adjustable sidelobe level is proposed. The elements positions are derived by modifying the peculiar locations of the sunflower seeds in such a way that the corresponding spat

  9. Optically addressed ultra-wideband phased antenna array

    Science.gov (United States)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  10. Phased Array Transmit Antenna for a Satellite

    Science.gov (United States)

    Huggins, R. W.; Heisen, P. T.; Miller, G. E.; McMeen, D. J.; Perko, K. L.

    1999-01-01

    Active phased array antennas with electronically scanned beams offer advantages over high gain parabolic dish antennas currently used on spacecraft. Benefits include the elimination of deployable structures, no moving parts, and no torque disturbances that moving antennas impart to the spacecraft. The latter results in the conservation of spacecraft power, and the ability to take precision optical data while transmitting data. Such an antenna has been built under a contract from NASA Goddard Space Flight Center for the New Millennium Program EO- 1 satellite where it will act as the primary highspeed scientific data communication link. The antenna operates at X-band, has an integral controller and power conditioner, communicates with the spacecraft over a 1773 optical data bus, and is space qualified for low earth orbit (705 Km altitude). The nominal mission length is one year, and the operational requirement is for one 10 minute transmission a day over Spitsbergen, Norway. Details of the antenna and its performance will be described in the following paper.

  11. An Efficient Beam Steerable Antenna Array Concept for Airborne Applications

    OpenAIRE

    Aliakbarian, H.; Van der Westhuizen, E.; Wiid, R.; Volskiy, V.; R. Wolhuter; G. A. E. Vandenbosch

    2014-01-01

    Deployment of a satellite borne, steerable antenna array with higher directivity and gain in Low Earth Orbit makes sense to reduce ground station complexity and cost, while still maintaining a reasonable link budget. The implementation comprises a digitally beam steerable phased array antenna integrated with a complete system, comprising the antenna, hosting platform, ground station, and aircraft based satellite emulator to facilitate convenient aircraft based testing of the antenna array and...

  12. High-Directivity Antenna Array Based on Artificial Electromagnetic Metamaterials with Low Refractive Index

    Directory of Open Access Journals (Sweden)

    Zhigang Xiao

    2015-01-01

    Full Text Available Planar metamaterials (MTMs with low refractive index are proposed as a cover in a high-gain patch antenna array configuration. This MTMs array antenna has the following features: the number of array elements significantly decreases compared with the conventional array; the elements spacing is larger than a wave length by far; the feeding network is simpler. MTMs are made of two layers of periodic square metallic grids and placed above the feeding array. With the same aperture size, the directivity of MTMs-cover antenna array is higher than the conventional antenna array. The simulation results show that an array of 2 × 2 patch elements integrated with MTMs yields about 26 dB of directivity which is higher than that of conventional 8 × 8 patch array. Furthermore, on the condition of the same aperture size, an array patch with 4 × 4 elements integrated with the MTMs-cover has an equivalent gain compared with the conventional patch array with 16 × 16 array elements. Obviously, the former has a simpler feeding network and higher aperture efficiency. The experimental work has verified that the 2 × 2 array case and the measured results have good agreement with the simulation.

  13. Terahertz planar antennas for future wireless communication: A technical review

    Science.gov (United States)

    Jha, Kumud Ranjan; Singh, G.

    2013-09-01

    With the monotonic increasing demand of the higher bandwidth for the next generation wireless communication system, the extension of the operating frequency of the communication system to the millimeter/Terahertz wave regime of the electromagnetic spectrum where several low-attenuation windows exist is inevitable. However, before the commercial implementation of the wireless communication in these low-attenuation windows, there are various obstacles which need to be addressed by the scientists and researchers. The atmospheric path loss is the main obstacle to the full-fledged implementation of the terahertz wireless communication. The remedy to this problem is the use of high-power sources, efficient detectors and high gain antenna systems. This paper reviews these technical issues with the special attention to the planar antennas which might contribute to the compact, inexpensive, and low profile future terahertz wireless communication system design.

  14. Maintenance Optimization Model for One kind of Three-Dimensional Radar Antenna Array

    Science.gov (United States)

    Wang, Min; Yang, Jiang-ping; Wang, Yong-pan; Liu, Wei-jian

    2017-07-01

    For three-dimensional radar, maintenance cost is high and maintenance time is difficult to be determined. What’s more, model simulation computing is significantly complex. The subject of this paper is a new generation of meter wave active, phased array 3D radar. We put forth a concept that maintenance should be done after dividing into several regions to the asymmetrical distribution planar array antenna. First, a failure model of array elements is built to analyze the influence from the element to antenna. Second, the maintenance optimization model is established. Finally, computer simulations are conducted to verify the feasibility and effectiveness of the proposed model.

  15. GA BASED SYNTHESIS OF SATELLITE-BORNE MULTI-BEAM PLANAR ARRAY WITH ARBITRARY GEOMETRY

    Institute of Scientific and Technical Information of China (English)

    Jin Jun; Wang Huali; Zhu Wenming; Liu Yunzhi

    2006-01-01

    A planar array antenna with arbitrary geometry synthesis technique based on genetic algorithm is discussed. This approach avoids coding/decoding and directly works with complex numbers to simplify computing program and to speed up computation. This approach uses two crossover operators that can overcome premature convergence and the dependence of convergence on initial population. Simulation results show that this method is capable of synthesizing complex pattern shapes of planar arrays with arbitrary geometry and can realize good sidelobe suppression at the same time.

  16. Approximate Methods in the Analysis of Conformal Array Antennas

    NARCIS (Netherlands)

    Visser, H.J.; Gerini, G.

    2000-01-01

    Conformal array antennas are required whenever an antenna must be located on a vehicle, e.g. the skin of an aircraft, missile or superstructure of a ship. Conforming the array antenna to the existing structure avoids compromising aerodynamic or stealth characteristics, but at the cost of an increase

  17. Sunflower Array Antenna with Adjustable Density Taper

    OpenAIRE

    Maria Carolina Viganó; Giovanni Toso; Gerard Caille; Cyril Mangenot; Lager, Ioan E.

    2009-01-01

    A deterministic procedure to design a nonperiodic planar array radiating a rotationally symmetric pencil beam pattern with an adjustable sidelobe level is proposed. The elements positions are derived by modifying the peculiar locations of the sunflower seeds in such a way that the corresponding spatial density fits a Taylor amplitude tapering law which guarantees the pattern requirements in terms of beamwidth and sidelobe level. Different configurations, based on a Voronoi cell spatial tessel...

  18. Antenna-coupled TES bolometers for the Keck Array, Spider, and Polar-1

    CERN Document Server

    O'Brient, R; Ahmed, Z; Aikin, R W; Amiri, M; Benton, S; Bischoff, C; Bock, J J; Bonetti, J A; Brevik, J A; Burger, B; Davis, G; Day, P; Dowell, C D; Duband, L; Filippini, J P; Fliescher, S; Golwala, S R; Grayson, J; Halpern, M; Hasselfield, M; Hilton, G; Hristov, V V; Hui, H; Irwin, K; Kernasovskiy, S; Kovac, J M; Kuo, C L; Leitch, E; Lueker, M; Megerian, K; Moncelsi, L; Netterfield, C B; Nguyen, H T; Ogburn, R W; Pryke, C L; Reintsema, C; Ruhl, J E; Runyan, M C; Schwarz, R; Sheehy, C D; Staniszewski, Z; Sudiwala, R; Teply, G; Tolan, J E; Turner, A D; Tucker, R S; Vieregg, A; Wiebe, D V; Wilson, P; Wong, C L; Wu, W L K; Yoon, K W

    2012-01-01

    Between the BICEP2 and Keck Array experiments, we have deployed over 1500 dual polarized antenna coupled bolometers to map the Cosmic Microwave Background's polarization. We have been able to rapidly deploy these detectors because they are completely planar with an integrated phased-array antenna. Through our experience in these experiments, we have learned of several challenges with this technology- specifically the beam synthesis in the antenna- and in this paper we report on how we have modified our designs to mitigate these challenges. In particular, we discus differential steering errors between the polarization pairs' beam centroids due to microstrip cross talk and gradients of penetration depth in the niobium thin films of our millimeter wave circuits. We also discuss how we have suppressed side lobe response with a Gaussian taper of our antenna illumination pattern. These improvements will be used in Spider, Polar-1, and this season's retrofit of Keck Array.

  19. Antenna arrays. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-04-01

    A bibliography containing 161 abstracts concerning the use of antenna arrays in the fields of radar, communications, radio astronomy, navigation, electronic countermeasures, and spacecraft is presented. Topics include design, antenna radiation patterns, mathematical models, and performance.

  20. Arrays of recycled power TM polarized nano-antennas.

    Science.gov (United States)

    Hattori, Haroldo T; Li, Ziyuan

    2013-07-15

    In recent years, plasmonic nano-antennas have been used in a wide range of applications in sensing, particle detection, imaging and Surface Enhanced Raman Scattering (SERS) detection. Also, arrays of nano-antennas have been recently developed to produce more directional radiation beams or to operate over a wide range of wavelengths. In this article, it is shown that small arrays of nano-antennas can be created by recycling the power that flows through their antenna gaps.

  1. Frequency Tunable Antennas and Novel Phased Array Feeding Networks for Next Generation Communication Systems

    OpenAIRE

    Avser, Bilgehan

    2015-01-01

    The thesis presents three dual-band frequency tunable antennas for carrier aggregation systems and two new feeding networks for reducing the number of phase shifters in limited-scan arrays. First, single- and dual-feed, dual-frequency, low-profile antennas with independent frequency tuning using varactor diodes are presented. The dual-feed planar inverted F-antenna (PIFA) has two operating frequencies which are independently tuned at 0.7--1.1 GHz and at 1.7--2.3 GHz with better than −10 dB im...

  2. Shared aperture array antennas composed of differently sized

    NARCIS (Netherlands)

    Coman, C.I.

    2006-01-01

    A novel solution for conceiving wide band (multi-band) array antennas is presented. The solution is based on the concept of interleaving sparse, sub-arrays operating at separate frequencies. Sparse array antennas offer two major advantages, namely: they have non-uniformly distributed elements, with

  3. 超宽带平面天线研究进展%Progress in ultra-wideband planar antennas

    Institute of Scientific and Technical Information of China (English)

    钟顺时; 梁仙灵

    2007-01-01

    This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief history of the ultrawideband antennas is first provided. Several types of planar antennas for UWB systems with band-notched designs are reviewed. Special SWB planar antenna designs with the bandwidth ratio greater than 10:1 including metal-plate and printed monopole antennas and tapered slot antennas are presented and compared.

  4. Proposal of a Planar Directional UWB Antenna for Any Desired Operational Bandwidth

    Directory of Open Access Journals (Sweden)

    Marco A. Peyrot-Solís

    2014-01-01

    Full Text Available A novel planar directional UWB antenna is proposed. The antenna design evolves from an oblique elliptic cone antenna by applying the planar-solid correspondence to two axes. Through a simple equation, this antenna can be designed, to operate at a specific lower cutoff frequency with a bandwidth larger than 10 GHz for a reflection coefficient magnitude lower than −10 dB. This characteristic provides the antenna with a good versatility. The directional radiation pattern has an average gain of 6 dBi.

  5. A Design and Analysis of Dolph-Chebyshev Microstrip Planar Array Using Butler Matrix Beamforming Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The design and analysis of special type beamformer, the Butler matrix, to achieve orthogonal beamforming networks is presented in this paper. A 4×4 microstrip planar array antenna is assumed to simulate a 4×4 Butler matrix to demonstrate orthogonal beamforming and beam steering. The dimensions of rectangular patches in the planar array are chosen according to the Dolph-Chebyshev current distribution in order to minimize the side-lobe level ratio for a given value of beamwidth. The simulations are carried out using an antenna design and analysis software PCAAD. It is shown that orthogonal beams can be formed to cover about 163° angle with a constant beam crossover level and high directivity.

  6. An investigation into the Gustafsson limit for small planar antennas using optimisation

    CERN Document Server

    Shahpari, Morteza; Lewis, Andrew

    2013-01-01

    The fundamental limit for small antennas provides a guide to the effectiveness of designs. Gustafsson et al, Yaghjian et al, and Mohammadpour-Aghdam et al independently deduced a variation of the Chu-Harrington limit for planar antennas in different forms. Using a multi-parameter optimisation technique based on the ant colony algorithm, planar, meander dipole antenna designs were selected on the basis of lowest resonant frequency and maximum radiation efficiency. The optimal antenna designs across the spectrum from 570 to 1750 MHz occupying an area of $56mm \\times 25mm$ were compared with these limits calculated using the polarizability tensor. The results were compared with Sievenpiper's comparison of published planar antenna properties. The optimised antennas have greater than 90% polarizability compared to the containing conductive box in the range $0.3antennas is less than 50%, and resu...

  7. Impulse Testing of Corporate-Fed Patch Array Antennas

    Science.gov (United States)

    Chamberlain, Neil F.

    2011-01-01

    This paper discusses a novel method for detecting faults in antenna arrays. The method, termed Impulse Testing, was developed for corporate-fed patch arrays where the element is fed by a probe and is shorted at its center. Impulse Testing was devised to supplement conventional microwave measurements in order to quickly verify antenna integrity. The technique relies on exciting each antenna element in turn with a fast pulse (or impulse) that propagates through the feed network to the output port of the antenna. The resulting impulse response is characteristic of the path through the feed network. Using an oscilloscope, a simple amplitude measurement can be made to detect faults. A circuit model of the antenna elements and feed network was constructed to assess various fault scenarios and determine fault-detection thresholds. The experimental setup and impulse measurements for two patch array antennas are presented. Advantages and limitations of the technique are discussed along with applications to other antenna array topologies

  8. Research in large adaptive antenna arrays

    Science.gov (United States)

    Berkowitz, R. S.; Dzekov, T.

    1976-01-01

    The feasibility of microwave holographic imaging of targets near the earth using a large random conformal array on the earth's surface and illumination by a CW source on a geostationary satellite is investigated. A geometrical formulation for the illuminator-target-array relationship is applied to the calculation of signal levels resulting from L-band illumination supplied by a satellite similar to ATS-6. The relations between direct and reflected signals are analyzed and the composite resultant signal seen at each antenna element is described. Processing techniques for developing directional beam formation as well as SNR enhancement are developed. The angular resolution and focusing characteristics of a large array covering an approximately circular area on the ground are determined. The necessary relations are developed between the achievable SNR and the size and number of elements in the array. Numerical results are presented for possible air traffic surveillance system. Finally, a simple phase correlation experiment is defined that can establish how large an array may be constructed.

  9. The Submillimeter Array Antennas and Receivers

    CERN Document Server

    Blundell, R

    2005-01-01

    The Submillimeter Array (SMA) was conceived at the Smithsonian Astrophysical Observatory in 1984 as a six element interferometer to operate in the major atmospheric windows from about 200 to 900 GHz. In 1996, the Academica Sinica Institute of Astronomy and Astrophysics of Taiwan joined the project and agreed to provide additional hardware to expand the interferometer to eight elements. All eight antennas are now operating at the observatory site on Mauna Kea, and astronomical observations have been made in the 230, 345, and 650 GHz bands. The SMA antennas have a diameter of 6 m, a surface accuracy of better than 25 micron rms, and can be reconfigured to provide spatial resolutions down to about 0.5" at 200 GHz and, eventually, 0.1" at 850 GHz. Coupling to the receiver package within each antenna is achieved via a beam waveguide, in a bent Nasmyth configuration, comprised of a flat tertiary mirror and two ellipsoidal mirrors that form a secondary pupil used for receiver calibration. An additional fixed mirror ...

  10. RCS estimation of linear and planar dipole phased arrays approximate model

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    In this book, the RCS of a parallel-fed linear and planar dipole array is derived using an approximate method. The signal propagation within the phased array system determines the radar cross section (RCS) of phased array. The reflection and transmission coefficients for a signal at different levels of the phased-in scattering array system depend on the impedance mismatch and the design parameters. Moreover the mutual coupling effect in between the antenna elements is an important factor. A phased array system comprises of radiating elements followed by phase shifters, couplers, and terminating load impedance. These components lead to respective impedances towards the incoming signal that travels through them before reaching receive port of the array system. In this book, the RCS is approximated in terms of array factor, neglecting the phase terms. The mutual coupling effect is taken into account. The dependence of the RCS pattern on the design parameters is analyzed. The approximate model is established as a...

  11. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    Science.gov (United States)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies

  12. Inkjet Printed Planar Coil Antenna Analysis for NFC Technology Applications

    Directory of Open Access Journals (Sweden)

    I. Ortego

    2012-01-01

    Full Text Available The aim of this paper is to examine the potential of inkjet printing technology for the fabrication of Near Field Communication (NFC coil antennas. As inkjet printing technology enables deposition of a different number of layers, an accurate adjustment of the printed conductive tracks thickness is possible. As a consequence, input resistance and Q factor can be finely tuned as long as skin depth is not surpassed while keeping the same inductance levels. This allows the removal of the typical damping resistance present in current NFC inductors. A general methodology including design, simulation, fabrication, and measurement is presented for rectangular, planar-spiral inductors working at 13.56 MHz. Analytical formulas, computed numerical models, and measured results for antenna input impedance are compared. Reflection coefficient is designated as a figure of merit to analyze the correlation among them, which is found to be below −10 dB. The obtained results demonstrate the suitability of this technology in the fabrication of low cost, environmentally friendly NFC coils on flexible substrates.

  13. Planar FET oscillators using periodic microstrip patch antennas

    Science.gov (United States)

    Birkeland, Joel; Itoh, Tatsuo

    1989-08-01

    An integrated oscillator/antenna is presented that uses a single microstrip leaky-wave structure as both the resonant and the radiating element. This resonant antenna is connected to a GaAs metal-semiconductor field-effect transistor which acts as the negative resistance element in the oscillator circuit. This type of oscillator is similar in its operating principle to one reported using Gunn diodes and a periodically notched dielectric image guide. This circuit exhibits the high DC-RF conversion efficiency that is typical of field-effect transistor oscillators. The planar circuit is simple and inexpensive to construct, occupies a small volume, and can conform to different surface profiles. Such circuits are suitable for use in millimeter-wave systems as well as at microwave frequencies. A design procedure is given, and the performance of X-band prototype circuits is reported. Prototype circuits showed a 9 dB isotropic conversion gain and 40 MHz tuning range at 9.5 GHz.

  14. An algorithm for signal processing in multibeam antenna arrays

    Science.gov (United States)

    Danilevskii, L. N.; Domanov, Iu. A.; Korobko, O. V.

    1980-09-01

    A signal processing method for multibeam antenna arrays is presented which can be used to effectively reduce discrete-phasing sidelobes. Calculations of an 11-element array are presented as an example.

  15. Design and synthesis of flexible switching 1 × 2 antenna array on Kapton substrate

    Science.gov (United States)

    Georges Rabobason, Yvon; Rigas, Grigorios; Swaisaenyakorn, Srijittar; Mirkhaydarov, Bobur; Ravelo, Blaise; Shkunov, Maxim; Young, Paul; Benjelloun, Nabil

    2016-06-01

    Flexible front- and back-end RF/analogue system antennas were recently emerged. However, little flexible antenna system design is available so far, in planar hybrid technology with surface mounted components. This paper describes the design feasibility of flexible switching 1 × 2 antenna array system. It acts as a switching antenna implemented in hexapole configuration. The system is comprised of a key element RF switch terminated by two identical patch antennas associated to half-wave elementary transmission lines (TLs). A detailed theory illustrating the global S-parameter model determination in function of the given RF-switch return and insertion losses is established. In difference to the conventional microwave circuit theory, the proposed equivalent S-parameter model is originally built with the non-standard optimized antenna load. Thus, the synthesis method of the terminal antenna input impedance and the output access line characteristic impedance is formulated in function of the specified return and optimal transmission losses. The design method and theoretical approach feasibility is verified with the demonstrator of flexible switching 1 × 2 antenna array printed on Kapton substrate. The circuit prototype is implemented in hybrid planar technology integrating patch antenna operating at about 6 GHz and a packaged GaAs RF switch associated to the RF/DC signal decoupling accessory mounted surface components. Simulations of the designed circuit transmission and isolation losses from 5.5 GHz to 7 GHz were carried out by using the commercial RF switch S-parameter touchstone model provided by the manufacturer. The simulated and measured return losses are compared and discussed. Then, the measured radiation patterns confirm the proposed switched antenna concept feasibility.

  16. Biconical Ring Antenna Array for Wide Band Applications

    Directory of Open Access Journals (Sweden)

    C.SUBBA RAO

    2012-02-01

    Full Text Available Circular or ring arrays are conformal to the cylindrical surfaces unlike the linear arrays and can be mounted on moving objects. Biconical antenna is simple in construction and exhibits broad band characteristics. This antenna presents broad band radiation characteristics. In this paper circular or ring array of biconical antenna is proposed and its characteristics are analyzed for frequency band of 0.1 to 1GHz range. Radiation characteristicsof the array with excitation phase change are presented. Simulated results of the radiation characteristics of the circular array are analyzed.

  17. Frequency scanning antenna arrays with pentagonal dipoles of different impedances

    Directory of Open Access Journals (Sweden)

    Bošković Nikola

    2015-01-01

    Full Text Available In this work we present the benefits of using pentagonal dipoles as radiating elements instead of classical printed dipoles in the design of frequency scanning antenna arrays. We investigate how impedance of pentagonal dipoles, which can be changed in a wide range, influences the overall characteristics of the uniform antenna array. Some very important antenna characteristics such as side lobe level, gain and scanning angle are compared for three different antenna arrays consisting of identical pentagonal dipoles with impedances of 500 Ω, 1000 Ω and 1500 Ω. [Projekat Ministarstva nauke Republike Srbije, br. TR-32024 i br. III-45016

  18. Absorbed Power Minimization in Cellular Users with Circular Antenna Arrays

    Science.gov (United States)

    Christofilakis, Vasilis; Votis, Constantinos; Tatsis, Giorgos; Raptis, Vasilis; Kostarakis, Panos

    2010-01-01

    Nowadays electromagnetic pollution of non ionizing radiation generated by cellular phones concerns millions of people. In this paper the use of circular antenna array as a means of minimizing the absorbed power by cellular phone users is introduced. In particular, the different characteristics of radiation patterns produced by a helical conventional antenna used in mobile phones operating at 900 MHz and those produced by a circular antenna array, hypothetically used in the same mobile phones, are in detail examined. Furthermore, the percentage of decrement of the power absorbed in the head as a function of direction of arrival is estimated for the circular antenna array.

  19. Silicon Micromachined Microlens Array for THz Antennas

    Science.gov (United States)

    Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, IImran; Gill, John J.; Jung-Kubiak, Cecile D.; Llombart, Nuria

    2013-01-01

    5 5 silicon microlens array was developed using a silicon micromachining technique for a silicon-based THz antenna array. The feature of the silicon micromachining technique enables one to microfabricate an unlimited number of microlens arrays at one time with good uniformity on a silicon wafer. This technique will resolve one of the key issues in building a THz camera, which is to integrate antennas in a detector array. The conventional approach of building single-pixel receivers and stacking them to form a multi-pixel receiver is not suited at THz because a single-pixel receiver already has difficulty fitting into mass, volume, and power budgets, especially in space applications. In this proposed technique, one has controllability on both diameter and curvature of a silicon microlens. First of all, the diameter of microlens depends on how thick photoresist one could coat and pattern. So far, the diameter of a 6- mm photoresist microlens with 400 m in height has been successfully microfabricated. Based on current researchers experiences, a diameter larger than 1-cm photoresist microlens array would be feasible. In order to control the curvature of the microlens, the following process variables could be used: 1. Amount of photoresist: It determines the curvature of the photoresist microlens. Since the photoresist lens is transferred onto the silicon substrate, it will directly control the curvature of the silicon microlens. 2. Etching selectivity between photoresist and silicon: The photoresist microlens is formed by thermal reflow. In order to transfer the exact photoresist curvature onto silicon, there needs to be etching selectivity of 1:1 between silicon and photoresist. However, by varying the etching selectivity, one could control the curvature of the silicon microlens. The figure shows the microfabricated silicon microlens 5 x5 array. The diameter of the microlens located in the center is about 2.5 mm. The measured 3-D profile of the microlens surface has a

  20. Using Antenna Arrays to Motivate the Study of Sinusoids

    Science.gov (United States)

    Becker, J. P.

    2010-01-01

    Educational activities involving antenna arrays to motivate the study of sinusoids are described. Specifically, using fundamental concepts related to phase and simple geometric arguments, students are asked to predict the location of interference nulls in the radiation pattern of two-element phased array antennas. The location of the radiation…

  1. Using Antenna Arrays to Motivate the Study of Sinusoids

    Science.gov (United States)

    Becker, J. P.

    2010-01-01

    Educational activities involving antenna arrays to motivate the study of sinusoids are described. Specifically, using fundamental concepts related to phase and simple geometric arguments, students are asked to predict the location of interference nulls in the radiation pattern of two-element phased array antennas. The location of the radiation…

  2. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    Science.gov (United States)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  3. Photoacoustic imaging using acoustic reflectors to enhance planar arrays.

    Science.gov (United States)

    Ellwood, Robert; Zhang, Edward; Beard, Paul; Cox, Ben

    2014-12-01

    Planar sensor arrays have advantages when used for photoacoustic imaging: they do not require the imaging target to be enclosed, and they are easier to manufacture than curved arrays. However, planar arrays have a limited view of the acoustic field due to their finite size; therefore, not all of the acoustic waves emitted from a photoacoustic source can be recorded. This loss of data results in artifacts in the reconstructed photoacoustic image. A detection array configuration which combines a planar Fabry–Pérot sensor with perpendicular acoustic reflectors is described and experimentally implemented. This retains the detection advantages of the planar sensor while increasing the effective detection aperture in order to improve the reconstructed photoacoustic image.

  4. Smart adaptive array antennas for wireless communcations

    Science.gov (United States)

    Christodoulou, Christos G.; Georgiopoulos, Michael

    2001-08-01

    This paper discusses an experimental neural network based smart antenna capable of performing direction finding and the necessary beamforming. The Radial Basis Function Neural Network (RBFNN) algorithm is used for both tasks and for multiple signals. The algorithm operates in two stages. The field of view of the antenna array is divided into spatial sectors, then each network is trained in the first stage to detect signals emanating from sources in that sector. According to the outputs of the first stage, one or more networks of the second stage can be activated so as to estimate the exact location of the sources. No a priori knowledge is required about the number of sources, and the networks can be designed to arbitrary angular resolution. Some experimental results are shown and compared with other algorithms, such as, the Fourier Transform and the MUSIC algorithm. The comparisons show the superior performance of the RBFNN and its ability to overcome many limitations of the conventional and other superresolution techniques, specifically by reducing the computational complexity and the ability to deal with a large number of sources.

  5. Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes

    Science.gov (United States)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2011-01-01

    This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.

  6. Optical antenna arrays in the visible range.

    Science.gov (United States)

    Matthews, Daniel R; Summers, Huw D; Njoh, Kerenza; Chappell, Sally; Errington, Rachel; Smith, Paul

    2007-03-19

    We report on experimental observations of highly collimated beams of radiation generated when a periodic sub-wavelength grating interacts with surface bound plasmon-polariton modes of a thin gold film. We find that the radiation process can be fully described in terms of interference of emission from a dipole antenna array and modeling the structure in this way enables the far-field radiation pattern to be predicted. The directionality, multiplicity and divergence of the beams can be completely described within this framework. Essential to the process are the surface plasmon excitations: these are the driving mechanism behind the beam formation, phase-coupling radiation from the periodic surface structure and thus imposing a spatial coherence. Detailed fitting of the experimental and modeled data indicates the presence of scattering events involving the interaction of two surface plasmon polariton modes.

  7. Patterns Antennas Arrays Synthesis Based on Adaptive Particle Swarm Optimization and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Boufeldja Kadri

    2013-01-01

    Full Text Available In recent years, evolutionary optimization (EO techniques have attracted considerable attention in the design of electromagnetic systems of increasing complexity. This paper presents a comparison between two optimization algorithms for the synthesis of uniform linear and planar antennas arrays, the first one is an adaptive particle swarm optimization (APSO where the inertia weight and acceleration coefficient are adjusted dynamically according to feedback taken from particles best memories to overcome the limitations of the standard PSO which are: premature convergence, low searching accuracy and iterative inefficiency. The second method is the genetic algorithms (GA inspired from the processes of the evolution of the species and the natural genetics. The results show that the design of uniform linear and planar antennas arrays using APSO method provides a low side lobe level and achieve faster convergence speed to the optimum solution than those obtained by a GA.

  8. Planar Millimeter-Wave Antennas: A Comparative Study

    Directory of Open Access Journals (Sweden)

    K. Pitra

    2011-04-01

    Full Text Available The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  9. Photonic Links for High-Performance Arraying of Antennas

    Science.gov (United States)

    Huang, Shouhua; Tjoelker, Robert

    2009-01-01

    An architecture for arraying microwave antennas in the next generation of NASA s Deep Space Network (DSN) involves the use of all photonic links between (1) the antennas in a given array and (2) a signal processing center. In this architecture, all affected parts at each antenna pedestal [except a front-end low-noise amplifier for the radio-frequency (RF) signal coming from the antenna and an optical transceiver to handle monitor and control (M/C) signals] would be passive optical parts

  10. Integrated Solar-Panel Antenna Array for CubeSats

    Science.gov (United States)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  11. Study of the characteristics of reconfigurable plasma antenna array

    Energy Technology Data Exchange (ETDEWEB)

    Alias, Nur Salihah; Dagang, Ahmad Nazri [School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu (Malaysia); Ali, Mohd Tarmizi [Microwave Technology Centre, Faculty of Electrical Engineering, Universiti Teknologi Mara Shah Alam 40450 Shah Alam, Selangor (Malaysia)

    2015-04-24

    This paper presents a design and simulation of a reconfigurable array of plasma antenna. The plasma column is used as radiating elements instead of metal to create an antenna. The advantages of the plasma antenna over the conventional antenna are its possible to change the operating parameters, such as the working pressure, input power, radius of the discharge tube, resonant frequency, and length of the plasma column. In addition, plasma antenna can be reconfigurable with respect to shape, frequency and radiation parameters in a very short time. The plasma discharge tube was designed with a length of 200 mm, the radius of the plasma column was 2.5 mm and the coupling sleeve was connected to the SMA as the ground. This simulation was performed by using the simulation software Computer Simulation Technology (CST). The frequency is set in the range of 1 GHz to 10 GHz. The performance of the designed antenna was analyzed in term of return loss, gain and radiation pattern. For reconfigurable plasma antenna array, it shows that the gain is increase when the number of antenna element is increase. The combination of the discharge tube and metal rod as an antenna array has been done, and the result shows that an array with the plasma element can achieve higher gain.

  12. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  13. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  14. Tuning Range Optimization of a Planar Inverted F Antenna for LTE Low Frequency Bands

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej

    2011-01-01

    This paper presents a Planar Inverted F Antenna (PIFA) tuned with a fixed capacitor to the low frequency bands supported by the Long Term Evolution (LTE) technology. The tuning range is investigated and optimized with respect to the bandwidth and the efficiency of the resulting antenna. Simulations...

  15. Tuning Range Optimization of a Planar Inverted F Antenna for LTE Low Frequency Bands

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej

    2011-01-01

    This paper presents a Planar Inverted F Antenna (PIFA) tuned with a fixed capacitor to the low frequency bands supported by the Long Term Evolution (LTE) technology. The tuning range is investigated and optimized with respect to the bandwidth and the efficiency of the resulting antenna. Simulatio...... and mock-ups are presented....

  16. A Transient UWB Antenna Array Used with Complex Impedance Surfaces

    Directory of Open Access Journals (Sweden)

    A. Godard

    2010-01-01

    Full Text Available The conception of a novel Ultra-Wideband (UWB antenna array, designed especially for transient radar applications through the frequency band (300 MHz–3 GHz, is proposed in this paper. For these applications, the elementary antenna must be compact and nondispersive, and the array must be able to steer in two dimensions. The geometry of the elementary antenna and its radiation characteristics are presented. The array beam steering is analyzed and a technique making the increase of the transient front-to-back ratio possible is described.

  17. Beamformer for Cylindrical Conformal Array of Non-isotropic Antennas

    Directory of Open Access Journals (Sweden)

    ZOU, L.

    2011-02-01

    Full Text Available The principal objective of this investigation is to facilitate minimum variance distortionless response (MVDR beamforming technique for a cylindrical conformal array geometry. An array of directional radiating elements is postulated to cover a surface typical of the cylinder of an aircraft or missile. Borrowing the analysis of conformal array antennas, the authors first derive a deterministic expression that describes the beam pattern of arbitrary weighted cylindrical conformal array. Then, making use of the MVDR beamforming, we derive the beamformer for uniform linear array (ULA of directional antennas which are different from the traditional omnidirectional elements. Thus, the pattern of a directional element is synthesized by the antennas on the same ring array, and we design the MVDR beamformer, which uses MVDR beamforming for ULA of the synthesized pattern. To demonstrate the validity of the method, and cylinder arrays are constructed and experimental results agree well with theoretical expectations.

  18. Optical phased arrays with evanescently-coupled antennas

    Science.gov (United States)

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  19. An eigencurrent approach for the analysis of finite antenna arrays

    NARCIS (Netherlands)

    Bekers, D.J.; Eijndhoven, S.J.L. van; Tijhuis, A.G.

    2009-01-01

    An accurate description of typical finite-array behavior such as edge effects and array resonances is essential in the design of various types of antennas. The analysis approach proposed in this paper is essentially based on the concept of eigencurrents and is capable of describing finite-array beha

  20. Linearly tapered slot antenna circular array for mobile communications

    Science.gov (United States)

    Simons, Rainee N.; Kelly, Eron; Lee, Richard Q.; Taub, Susan R.

    1993-01-01

    The design, fabrication and testing of a conformal K-band circular array is presented. The array consists of sixteen linearly tapered slot antennas (LTSA). It is fed by a 1:16 microstrip line power splitter via electromagnetic coupling. The array has an omni-directional pattern in the azimuth plane. In the elevation plane the beam is displaced above the horizon.

  1. Highly Directive Reflect Array Antenna Design for Wireless Power Transfer

    Science.gov (United States)

    2017-04-14

    Duttagupta, “A broadband reflect-array with combination of sub-wavelength phasing elements,” in Asia Pacific Microwave Conference ( IEEE - APMC) New Delhi...1] Bialkowski et al. IEEE Transactions on Antennas and Propagation, November 2008 [2] Rajagopalan et al., IEEE Antennas and Propagation Magazine...October 2012 [3] Yoon et al., IEEE Transactions on Antennas and Propagation, February 2015 [4] Yoon et al., Electronics Letters, April 2014 Funds

  2. Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements.

    Science.gov (United States)

    Ye, Xingwei; Zhang, Fangzheng; Pan, Shilong

    2016-09-01

    A hardware-compressive optical true time delay architecture for 2D beam steering in a planar phased array antenna is proposed using fiber-Bragg-grating-based tunable dispersive elements (TDEs). For an M×N array, the proposed system utilizes N TDEs and M wavelength-fixed optical carriers to control the time delays. Both azimuth and elevation beam steering are realized by programming the settings of the TDEs. An experiment is carried out to demonstrate the delay controlling in a 2×2 array, which is fed by a wideband pulsed signal. Radiation patterns calculated from the experimentally measured waveforms at the four antennas match well with the theoretical results.

  3. Antenna-coupled TES Bolometer Arrays for BICEP2/Keck and SPIDER

    CERN Document Server

    Orlando, A; Amiri, M; Bock, J J; Bonetti, J A; Brevik, J A; Burger, B; Chattopadthyay, G; Day, P K; Filippini, J P; Golwala, S R; Halpern, M; Hasselfield, M; Hilton, G C; Irwin, K D; Kenyon, M; Kovac, J M; Kuo, C L; Lange, A E; LeDuc, H G; Llombart, N; Nguyen, H T; Ogburn, R W; Reintsema, C D; Runyan, M C; Staniszewski, Z; Sudiwala, R; Teply, G; Trangsrud, A R; Turner, A D; Wilson, P

    2010-01-01

    BICEP2/Keck and SPIDER are cosmic microwave background (CMB) polarimeters targeting the B-mode polarization induced by primordial gravitational waves from inflation. They will be using planar arrays of polarization sensitive antenna-coupled TES bolometers, operating at frequencies between 90 GHz and 220 GHz. At 150 GHz each array consists of 64 polarimeters and four of these arrays are assembled together to make a focal plane, for a total of 256 dual-polarization elements (512 TES sensors). The detector arrays are integrated with a time-domain SQUID multiplexer developed at NIST and read out using the multi-channels electronics (MCE) developed at the University of British Columbia. Following our progress in improving detector parameters uniformity across the arrays and fabrication yield, our main effort has focused on improving detector arrays optical and noise performances, in order to produce science grade focal planes achieving target sensitivities. We report on changes in detector design implemented to op...

  4. Evolutionary Design of a Phased Array Antenna Element

    Science.gov (United States)

    Globus, Al; Linden, Derek; Lohn, Jason

    2006-01-01

    We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.

  5. Antenna-Coupled TES Bolometer Arrays for CMB Polarimetry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and test transition edge sensor (TES) bolometer arrays for precision polarimetry of cosmic microwave background (CMB).  Verify that critical antenna...

  6. Phase Noise in Photonic Phased-Array Antenna Systems

    Science.gov (United States)

    Logan, Ronald T., Jr.; Maleki, Lute

    1998-01-01

    The total noise of a phased-array antenna system employing a photonic feed network is analyzed using a model for the individual component noise including both additive and multiplicative equivalent noise generators.

  7. Mathematical Simulating Model of Phased-Array Antenna in Multifunction Array Radar

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A mathematical simulating model of phased-array antenna in multifunction array radar has been approached in this paper, including the mathematical simulating model of plane phased-array pattern, the mathematical simulating model of directionality factor, the mathematical simulating model of array factor, the mathematical simulating model of array element factor and the mathematical simulating model of beam steering.

  8. Experimental investigation of a mm-wave planar antenna

    Science.gov (United States)

    Lambrakakis, Georgios D.

    1990-06-01

    This thesis investigates a new mm-wave Bilateral Slot Line (BSL) antenna and its relation to the Linearly Tapered Slot Antenna (LTSA). The BSL antenna consists of a tapered double-sided slotline and can be viewed as two identical LTSAs sandwiched back to back. Dielectric substrates with permittivities of 2.33 and 6.0 were used to construct these antennas. The theoretical background, the design, and the performance in the frequency range 5 to 9 GHz of the new microwave integrated circuit antenna is presented. The effects of several parameters such as dielectric constant, stripline and slotline characteristic impedance, antenna structure, and transition scheme on the radiation patterns and return loss were experimentally investigated. Some relationships between the width of stripline and slotline, their characteristic impedance and the dielectric constant are reported. Guidelines are laid to design the LTSA and BSL antennas.

  9. Hardware implementation of antenna array system for maximum SLL reduction

    Directory of Open Access Journals (Sweden)

    Amr H. Hussein

    2017-06-01

    Full Text Available Side lobe level (SLL reduction has a great importance in recent communication systems. It is considered as one of the most important applications of digital beamforming since it reduces the effect of interference arriving outside the main lobe. This interference reduction increases the capacity of the communication systems. In this paper, the hardware implementation of an antenna array system for SLL reduction is introduced using microstrip technology. The proposed antenna array system consists of two main parts, the antenna array, and its feeding network. Power dividers play a vital role in various radio frequency and communication applications. A power divider can be utilized as a feeding network of an antenna array. For the synthesis of a radiation pattern, an unequal-split power divider is required. A new design for a four ports unequal circular sector power divider and its application to antenna array SLL reduction is introduced. The amplitude and phase of the signals emerging from each power divider branch are adjusted using stub and inset matching techniques. These matching techniques are used to adjust the branches impedances according to the desired power ratio. The design of the antenna array and the power divider are made using the software package CST MICROWAVE STUDIO. The power divider is realized on Rogers R03010 substrate with dielectric constant εr=10.2, loss tangent of 0.0035, and height h=1.28mm. In addition, a design for ultra-wide band (UWB antenna element and array are introduced. The antenna elements and the array are realized on the FR4 (lossy substrate with dielectric constant εr=4.5, loss tangent of 0.025, and height h=1.5mm. The fabrication is done using thin film technology and photolithographic technique. The experimental measurements are done using the vector network analyzer (VNA HP8719Es. Good agreement is found between the measurements and the simulation results.

  10. Antenna-coupled bolometer arrays using transition-edgesensors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael J.; Ade, Peter; Engargiola, Greg; Holzapfel,William; Lee,Adrian T.; O' Brient, Roger; Richards, Paul L.; Smith, Andy; Spieler, Helmuth; Tran, Huan

    2004-06-08

    We describe the development of an antenna-coupled bolometer array for use in a Cosmic Microwave Background polarization experiment. Prototype single pixels using double-slot dipole antennas and integrated microstrip band defining filters have been built and tested. Preliminary results of optical testing and simulations are presented. A bolometer array design based on this pixel will also be shown and future plans for application of the technology will be discussed.

  11. Compact antenna arrays with wide bandwidth and low sidelobe levels

    Science.gov (United States)

    Strassner, II, Bernd H.

    2014-09-09

    Highly efficient, low cost, easily manufactured SAR antenna arrays with lightweight low profiles, large instantaneous bandwidths and low SLL are disclosed. The array topology provides all necessary circuitry within the available antenna aperture space and between the layers of material that comprise the aperture. Bandwidths of 15.2 GHz to 18.2 GHz, with 30 dB SLLs azimuthally and elevationally, and radiation efficiencies above 40% may be achieved. Operation over much larger bandwidths is possible as well.

  12. Design and study of a compact planar ultra-wideband antenna

    Institute of Scientific and Technical Information of China (English)

    CHENG Yong; LU Wenjun; CHENG Chonghu; CAO Wei

    2007-01-01

    In this paper,a novel,small,and compact planar antenna for ultra-wideband(UWB)applications is proposed.The antenna is an extension of microstrip slot antenna technology.To achieve ultra-wideband characteristics,a tapered microstrip fork-shaped stub has been employed.A symmetric polygon wide slot has been placed on the antenna ground.The design was investigated numerically to obtain proper dimensions for the antenna and a prototype was constructed.The return loss,pattern and gain of the prototype antenna have been measured.The transient pulse signal fidelity has also been investigated by finite-difference time-domain (FDTD)method.Experimental results show that the proposed antenna design has promising characteristics for UWB applications.

  13. Low-index-metamaterial for gain enhancement of planar terahertz antenna

    Directory of Open Access Journals (Sweden)

    Qing-Le Zhang

    2014-03-01

    Full Text Available We theoretically present a high gain planar antenna at terahertz (THz frequencies by combing a conventional log-periodic antenna (LPA with a low-index-metamaterial (LIM, |n| < 1. The LIM is realized by properly designing a fishnet metamaterial using full-wave finite-element simulation. Owing to the impedance matching, the LIM can be placed seamlessly on the substrate of the LPA without noticeable reflection. The effectiveness of using LIM for antenna gain enhancement is confirmed by comparing the antenna performance with and without LIM, where significantly improved half-power beam-width (3-dB beam-width and more than 4 dB gain enhancement are seen within a certain frequency range. The presented LIM-enhanced planar THz antenna is compact, flat, low profile, and high gain, which has extensive applications in THz systems, including communications, radar, and spectroscopy.

  14. Low-index-metamaterial for gain enhancement of planar terahertz antenna

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qing-Le; Si, Li-Ming, E-mail: lms@bit.edu.cn; Lv, Xin [Beijing Key Laboratory of Millimeter Wave and Terahertz Technology, Department of Electronic Engineering, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081 (China); Huang, Yongjun [Key Laboratory of Broadband Optical Fiber Transmission and Communication Networks, School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 (China); Zhu, Weiren, E-mail: weiren.zhu@monash.edu [Advanced Computing and Simulation Laboratory (A chi L), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-03-15

    We theoretically present a high gain planar antenna at terahertz (THz) frequencies by combing a conventional log-periodic antenna (LPA) with a low-index-metamaterial (LIM, |n| < 1). The LIM is realized by properly designing a fishnet metamaterial using full-wave finite-element simulation. Owing to the impedance matching, the LIM can be placed seamlessly on the substrate of the LPA without noticeable reflection. The effectiveness of using LIM for antenna gain enhancement is confirmed by comparing the antenna performance with and without LIM, where significantly improved half-power beam-width (3-dB beam-width) and more than 4 dB gain enhancement are seen within a certain frequency range. The presented LIM-enhanced planar THz antenna is compact, flat, low profile, and high gain, which has extensive applications in THz systems, including communications, radar, and spectroscopy.

  15. A High-Efficiency Compact Planar Antenna for ISM Wireless Systems

    Directory of Open Access Journals (Sweden)

    Tao Zhou

    2017-01-01

    Full Text Available A novel high-efficiency compact planar antenna at 433 MHz with minimized size and low-cost and easy to integrate into the ISM wireless applications is designed, fabricated, and measured. Capacitive strips that are formed by cutting inter-digital slots and the meander lines on both sides are introduced to greatly reduce the antenna size yet maintain the high efficiency. The proposed antenna has a simple planar structure and occupies a small area (i.e., 45 × 30 mm2. This novel electrically small antenna can be operated well without any lumped elements for impedance matching. Details of the antenna design and experimental results are presented and discussed.

  16. Ladder Arrangement Method for Stealth Design of Vivaldi Antenna Array

    Directory of Open Access Journals (Sweden)

    XiaoXiang He

    2013-01-01

    Full Text Available A novel stealth design method for X-band Vivaldi antenna arrays is proposed in this paper by ladder arrangement along radiation direction. Two-element array, eight-element array, and 3 × 7-element array are investigated in this paper. S parameters, RCSs, and radiation patterns are studied, respectively. According to the ladder arrangement of Vivaldi antennas presented, 16.3 dBsm maximal RCS reduction is achieved with satisfied radiation performance. As simulated and measured, results demonstrate that the effectiveness of the presented low RCS design method is validated.

  17. Coupled-oscillator based active-array antennas

    CERN Document Server

    Pogorzelski, Ronald J

    2012-01-01

    Describing an innovative approach to phased-array control in antenna design This book explores in detail phased-array antennas that use coupled-oscillator arrays, an arrangement featuring a remarkably simple beam steering control system and a major reduction in complexity compared with traditional methods of phased-array control. It brings together in one convenient, self-contained volume the many salient research results obtained over the past ten to fifteen years in laboratories around the world, including the California Institute of Technology's Jet Propulsion Laboratory.

  18. A compact planar multi-broad band monopole antenna for mobile devices

    Science.gov (United States)

    Zhong, Xiaoqing; Yao, Bin; Zheng, Qinhong; Yang, Jikong; Cao, Xiangqi

    2015-10-01

    A Multiple-frequency broadband planar monopole antenna is proposed in this Paper. The antenna is stimulated and numerically optimized by HFSS13.0 (High Frequency Structure Simulator). The size of it is 39mm×22mm×1.7mm. The antenna resonates at many frequencies. The parameter S11antenna matches well with its feed-line and covers many useful operation frequency bands, including 2G(DCS1800 and PCS1900), 3G(UMTS), 4G(LTE2300 and LTE2500), ISM, WLAN. It is quiet appropriate for the present ultra-thin smart phones

  19. Experimental verification of a broadband planar focusing antenna based on transformation optics

    Science.gov (United States)

    Lei Mei, Zhong; Bai, Jing; Cui, Tie Jun

    2011-06-01

    It is experimentally verified that a two-dimensional planar focusing antenna based on gradient-index metamaterials has a similar performance as that of its parabolic counterpart. The antenna is designed using quasi-conformal transformation optics, and is realized with non-resonant I-shaped metamaterial unit cells. It is shown that the antenna has a broad bandwidth and very low loss. Near-field distributions of the antenna are measured and far-field radiation patterns are calculated from the measured data, which have good agreement with the full-wave simulations. Using all-dielectric metamaterials, the design can be scaled down to find applications at optical frequencies.

  20. Experimental verification of a broadband planar focusing antenna based on transformation optics

    Energy Technology Data Exchange (ETDEWEB)

    Mei Zhonglei; Bai Jing [School of Information Science and Engineering, Lanzhou University, Lanzhou 730000 (China); Cui Tiejun, E-mail: meizl@lzu.edu.cn, E-mail: tjcui@seu.edu.cn [State Key Laboratory of Millimeter Waves, Department of Radio Engineering, Southeast University, Nanjing 210096 (China)

    2011-06-15

    It is experimentally verified that a two-dimensional planar focusing antenna based on gradient-index metamaterials has a similar performance as that of its parabolic counterpart. The antenna is designed using quasi-conformal transformation optics, and is realized with non-resonant I-shaped metamaterial unit cells. It is shown that the antenna has a broad bandwidth and very low loss. Near-field distributions of the antenna are measured and far-field radiation patterns are calculated from the measured data, which have good agreement with the full-wave simulations. Using all-dielectric metamaterials, the design can be scaled down to find applications at optical frequencies.

  1. A novel and simple coplanar waveguide-fed planar monopole antenna for ultra-wideband applications

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, a novel and simple CPW-fed planar monopole antenna is presented for UWB application. The antenna is fabricated on inexpensive FR4 substrate and fed by 50Ω CPW on the same layer. Measured data show that the antenna provides an impedance bandwidth of about 8GHz for the return loss less than 10dB. It is also observed that the radiation patterns are nearly omni-directional over the entire frequency range. Details of the proposed antenna are presented, and simulated results are presented and discussed.

  2. The conical conformal MEMS quasi-end-fire array antenna

    Science.gov (United States)

    Cong, Lin; Xu, Lixin; Li, Jianhua; Wang, Ting; Han, Qi

    2017-03-01

    The microelectromechanical system (MEMS) quasi-end-fire array antenna based on a liquid crystal polymer (LCP) substrate is designed and fabricated in this paper. The maximum radiation direction of the antenna tends to the cone axis forming an angle less than 90∘, which satisfies the proximity detection system applied at the forward target detection. Furthermore, the proposed antenna is fed at the ended side in order to save internal space. Moreover, the proposed antenna takes small covering area of the proximity detection system. The proposed antenna is fabricated by using the flexible MEMS process, and the measurement results agree well with the simulation results. This is the first time that a conical conformal array antenna is fabricated by the flexible MEMS process to realize the quasi-end-fire radiation. A pair of conformal MEMS array antennas resonates at 14.2 GHz with its mainlobes tending to the cone axis forming a 30∘ angle and a 31∘ angle separately, and the gains achieved are 1.82 dB in two directions, respectively. The proposed antenna meets the performance requirements for the proximity detection system which has vast application prospects.

  3. Elliptical Antenna Array Synthesis Using Backtracking Search Optimisation Algorithm

    Directory of Open Access Journals (Sweden)

    Kerim Guney

    2016-04-01

    Full Text Available The design of the elliptical antenna arrays is relatively new research area in the antenna array community. Backtracking search optimisation algorithm (BSA is employed for the synthesis of elliptical antenna arrays having different number of array elements. For this aim, BSA is used to calculate the optimum angular position and amplitude values of the array elements. BSA is a population-based iterative evolutionary algorithm. The remarkable properties of BSA are that it has a good optimisation performance, simple implementation structure, and few control parameters. The results of BSA are compared with those of self-adaptive differential evolution algorithm, firefly algorithm, biogeography based optimisation algorithm, and genetic algorithm. The results show that BSA can reach better solutions than the compared optimisation algorithms. Iterative performances of BSA are also compared with those of bacterial foraging algorithm and differential search algorithm.

  4. Microstrip Yagi array antenna for mobile satellite vehicle application

    Science.gov (United States)

    Huang, John; Densmore, Arthur C.

    1991-01-01

    A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.

  5. Tunable Reduced Size Planar Folded Slot Antenna Utilizing Varactor Diodes

    Science.gov (United States)

    Scardelletti, Maximilian C.; Ponchak, George E.; Jordan, Jennifer L.; Jastram, Nathan; Mahaffey, Joshua V.

    2010-01-01

    A tunable folded slot antenna that utilizes varactor diodes is presented. The antenna is fabricated on Rogers 6006 Duriod with a dielectric constant and thickness of 6.15 and 635 m, respectively. A copper cladding layer of 17 m defines the antenna on the top side (no ground on backside). The antenna is fed with a CPW 50 (Omega) feed line, has a center frequency of 3 GHz, and incorporates Micrometrics microwave hyper-abrupt 500MHV varactors to tune the resonant frequency. The varactors have a capacitance range of 2.52 pF at 0 V to 0.4 pF at 20 V; they are placed across the radiating slot of the antenna. The tunable 10 dB bandwidth of the 3 GHz antenna is 150 MHz. The varactors also reduce the size of the antenna by 30% by capacitively loading the resonating slot line. At the center frequency, 3 GHz, the antenna has a measured return loss of 44 dB and a gain of 1.6 dBi. Full-wave electromagnetic simulations using HFSS are presented that validate the measured data. Index Terms capacitive loading, Duriod, folded slot antenna, varactor.

  6. An Efficient Beam Steerable Antenna Array Concept for Airborne Applications

    Directory of Open Access Journals (Sweden)

    H. Aliakbarian

    2014-04-01

    Full Text Available Deployment of a satellite borne, steerable antenna array with higher directivity and gain in Low Earth Orbit makes sense to reduce ground station complexity and cost, while still maintaining a reasonable link budget. The implementation comprises a digitally beam steerable phased array antenna integrated with a complete system, comprising the antenna, hosting platform, ground station, and aircraft based satellite emulator to facilitate convenient aircraft based testing of the antenna array and ground-space communication link. This paper describes the design, development and initial successful interim testing of the various subsystems. A two element prototype used in this increases the signal-to-noise ratio (SNR by 3 dB which is corresponding to more than 10 times better bit error rate (BER.

  7. Antenna array geometry optimization for a passive coherent localisation system

    Science.gov (United States)

    Knott, Peter; Kuschel, Heiner; O'Hagan, Daniel

    2012-11-01

    Passive Coherent Localisation (PCL), also known as Passive Radar, making use of RF sources of opportunity such as Radio or TV Broadcasting Stations, Cellular Phone Network Base Stations, etc. is an advancing technology for covert operation because no active radar transmitter is required. It is also an attractive addition to existing active radar stations because it has the potential to discover low-flying and low-observable targets. The CORA (Covert Radar) experimental passive radar system currently developed at Fraunhofer-FHR features a multi-channel digital radar receiver and a circular antenna array with separate elements for the VHF- and the UHF-range and is used to exploit alternatively Digital Audio (DAB) or Video Broadcasting (DVB-T) signals. For an extension of the system, a wideband antenna array is being designed for which a new discone antenna element has been developed covering the full DVB-T frequency range. The present paper describes the outline of the system and the numerical modelling and optimisation methods applied to solve the complex task of antenna array design: Electromagnetic full wave analysis is required for the parametric design of the antenna elements while combinatorial optimization methods are applied to find the best array positions and excitation coefficients for a regular omni-directional antenna performance. The different steps are combined in an iterative loop until the optimum array layout is found. Simulation and experimental results for the current system will be shown.

  8. Large-Aperture Membrane Active Phased-Array Antennas

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  9. A Multibeam Dual-Band Orthogonal Linearly Polarized Antenna Array for Satellite Communication on the Move

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2015-01-01

    Full Text Available The design and simulation of a 10 × 8 multibeam dual-band orthogonal linearly polarized antenna array operating at Ku-band are presented for transmit-receive applications. By using patches with different coupling methods as elements, both perpendicular polarization in 12.25–12.75 GHz band and horizontal polarization in 14.0–14.5 GHz band are realized in a shared antenna aperture. A microstrip Rotman lens is employed as the beamforming network with 7 input ports, which can generate a corresponding number of beams to cover −30°–30° with 5 dB beamwidth along one dimension. This type of multibeam orthogonal linearly polarized planar antenna is a good candidate for satellite communication (SatCom.

  10. A Study on a Miniaturized Planar Spiral Antenna for Partial Discharge Detection in GIS

    Directory of Open Access Journals (Sweden)

    Wang Yongqiang

    2015-01-01

    Full Text Available Ultra-high frequency (UHF detection method can effectively detect the signals of partial discharge (PD in electrical equipment. Hence the authors designed a sensor of miniaturized planar spiral antenna for detecting PD in gas insulated substations (GISs, which is sine-wave meandered based on the traditional Archimedean spiral antenna in order to reduce the antenna’s size. The test results indicate that this antenna has a wide-frequency band of 0.92~3GHz in terms of the voltage standing wave ratio (VSWR which is smaller than 2. The antenna is smaller and its structure is simpler, its diameter is 97mm and its height is 51mm; Besides, this antenna has an ultra-wideband, great directivity and the feature of omnidirectional radiation. Therefore, the proposed antenna is quite promising for PD on-line detection applications.

  11. Design and Optimization of Wideband Multilayer Printed Antenna Arrays

    OpenAIRE

    Riviere, B.; Jeuland, H.; Bolioli, S.

    2013-01-01

    The presentation will give an overview of ONERA recent research work in the field of wideband printed antenna arrays. A special focus will be given to the comprehensive analysis and design optimization of multilayered printed arrays for wide bandwidth and wide scan angle operation.

  12. A Flexible Phased-MIMO Array Antenna with Transmit Beamforming

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    2012-01-01

    Full Text Available Although phased-array antennas have been widely employed in modern radars, the requirements of many emerging applications call for new more advanced array antennas. This paper proposes a flexible phased-array multiple-input multiple-output (MIMO array antenna with transmit beamforming. This approach divides the transmit antenna array into multiple subarrays that are allowed to overlap each subarray coherently transmits a distinct waveform, which is orthogonal to the waveforms transmitted by other subarrays, at a distinct transmit frequency. That is, a small frequency increment is employed in each subarray. Each subarray forms a directional beam and all beams may be steered to different directions. The subarrays jointly offer flexible operating modes such as MIMO array which offers spatial diversity gain, phased-array which offers coherent directional gain and frequency diverse array which provides range-dependent beampattern. The system performance is examined by analyzing the transmit-receive beampatterns. The proposed approach is validated by extensive numerical simulation results.

  13. Maximum super angle optimization method for array antenna pattern synthesis

    DEFF Research Database (Denmark)

    Wu, Ji; Roederer, A. G

    1991-01-01

    Different optimization criteria related to antenna pattern synthesis are discussed. Based on the maximum criteria and vector space representation, a simple and efficient optimization method is presented for array and array fed reflector power pattern synthesis. A sector pattern synthesized by a 20...

  14. Flexible 16 Antenna Array for Microwave Breast Cancer Detection.

    Science.gov (United States)

    Bahramiabarghouei, Hadi; Porter, Emily; Santorelli, Adam; Gosselin, Benoit; Popović, Milica; Rusch, Leslie A

    2015-10-01

    Radar-based microwave imaging has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues has been studied over a wide frequency band for this application. We design single- and dual-polarization antennas for wireless ultrawideband breast cancer detection systems using an inhomogeneous multilayer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50-μm Kapton polyimide are designed, using a high-frequency structure simulator, to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2-4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching when in different positions with different curvature around the breast. Our miniaturized flexible antennas are 20 mm × 20 mm. Furthermore, two flexible conformal 4 × 4 ultrawideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system. By using a reflector for the arrays, the penetration of the propagated electromagnetic waves from the antennas into the breast can be improved by factors of 3.3 and 2.6, respectively.

  15. Scalable 2.45 GHz electrically small antenna design for metaresonator array

    Directory of Open Access Journals (Sweden)

    Yee Loon Sum

    2017-04-01

    Full Text Available In many planar antenna array designs, impedance transformers are required to interconnect the elements to ensure that their impedances are matched. However, impedance transformers take up space and reduce area utilisation. If each element is electrically small and able to function individually as an electrically small antenna (ESA, they can be combined into an array without using impedance transformers. In this study, a stubbed hexagonal shaped folded dipole ESA of one tenth of the wavelength is proposed and developed. This metamaterial inspired design of loading the folded dipole with split ring resonator overcomes the problem of fabricating ESA of one tenth of the wavelength using typical printed circuit board fabrication technologies for the 2.45 GHz band. To show the potential of using this ESA as a unit element for antenna array without using impedance transformers, a seven-element array is designed and fabricated. By optimising the element separation distance, and stub lengths, the ESA array shows good S(11 of less than −25 dB, and gain improvement of up to 12 dB compared with a single unit ESA.

  16. Microfabricated Millimeter-Wave Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for an antenna technology platform that meets the requirements of high-performance materials, exacting dimensional tolerances, and...

  17. Microfabricated G-Band Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for an antenna technology platform that meets the requirements of high-performance materials, exacting dimensional tolerances, and...

  18. Array antenna diagnostics with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Meincke, Peter; Pivnenko, Sergey;

    2012-01-01

    The 3D reconstruction algorithm is applied to a slotted waveguide array measured at the DTU-ESA Spherical Near-Field Antenna Test Facility. One slot of the array is covered by conductive tape and an error is present in the array excitation. Results show the accuracy obtainable by the 3D...... reconstruction algorithm. Considerations on the measurement sampling, the obtainable spatial resolution, and the possibility of taking full advantage of the reconstruction geometry are provided....

  19. An investigation of planar monopole antennas for modern portable applications

    OpenAIRE

    Evans, Jonathan Arthur, (Thesis)

    2007-01-01

    Current trends in portable and mobile communications are towards greater numbers of different systems often with wider bandwidths, operating within a single device. Antenna systems for these devices need to be capable of operating over a wide frequency range or multiple frequency bands, typically between 900MHz and 6GHz (e.g. GSM, IMT-2000, Wi-Fi and WiMax). Portable and mobile applications also require antennas to be optimised with respect to radiation pattern, efficiency and physical size. ...

  20. Sparse Planar Array Synthesis Using Matrix Enhancement and Matrix Pencil

    Directory of Open Access Journals (Sweden)

    Mei-yan Zheng

    2013-01-01

    Full Text Available The matrix enhancement and matrix pencil (MEMP plays important roles in modern signal processing applications. In this paper, MEMP is applied to attack the problem of two-dimensional sparse array synthesis. Firstly, the desired array radiation pattern, as the original pattern for approximating, is sampled to form an enhanced matrix. After performing the singular value decomposition (SVD and discarding the insignificant singular values according to the prior approximate error, the minimum number of elements can be obtained. Secondly, in order to obtain the eigenvalues, the generalized eigen-decomposition is employed on the approximate matrix, which is the optimal low-rank approximation of the enhanced matrix corresponding to sparse planar array, and then the ESPRIT algorithm is utilized to pair the eigenvalues related to each dimension of the planar array. Finally, element positions and excitations of the sparse planar array are calculated according to the correct pairing of eigenvalues. Simulation results are presented to illustrate the effectiveness of the proposed approach.

  1. Wrinkle analysis of a space planar film reflect-array

    Institute of Scientific and Technical Information of China (English)

    Wei-wei XIAO; Wu-jun CHEN; Gong-yi FU

    2011-01-01

    The presence of wrinkles in a membrane is the main factor that induces surface errors on space planar film reflect arrays. Based on the commercial finite element (FE) package ABAQUS, a numerical procedure for membrane wrinkle analysis was set up, and used to analyze a square planar film reflect-array under pure shear force to evaluate its induced wrinkle characteristics. First, the effect of shear force on the wrinkle pattern of the array was studied and validated by experiment. Second, the effect of prestress was studied. When the prestress increases, the quantity of the wrinkles increases, and the amplitude of the wrinkles decreases. Third, the influence of the boundary conditions was investigated. A frame side edge structure has a relatively smooth surface, but also relatively high stress. Finally, the behavior of a joint seam was analyzed. The results indicate that a joint band has a significant influence on the wrinkle pattern of the membrane.

  2. Theoretical and practical limits of superdirective antenna arrays

    Science.gov (United States)

    Haskou, Abdullah; Sharaiha, Ala; Collardey, Sylvain

    2017-02-01

    Some applications as Wireless Power Transfer (WPT) require compact and directive antennas. However, Electrically Small Antennas (ESAs) have low efficiencies and quasi-isotropic radiation patterns. Superdirective ESA arrays can be an interesting solution to cope with both constraints (the compactness and the directivity). In this paper, the theoretical and practical limits of superdirective antennas will be presented. These limits can be summarized by the directivity sensitivity toward the excitation coefficients changes and the radiation efficiency decrement as the inter-element decreases. The need for negative resistances is also a practical limit for transforming these arrays into parasitic ones. The necessary trade-offs between the antenna total dimensions (the number of elements and the inter-element distance) and the attainable directivity and efficiency are also analyzed throughout this paper. xml:lang="fr"

  3. Accurate Insertion Loss Measurements of the Juno Patch Array Antennas

    Science.gov (United States)

    Chamberlain, Neil; Chen, Jacqueline; Hodges, Richard; Demas, John

    2010-01-01

    This paper describes two independent methods for estimating the insertion loss of patch array antennas that were developed for the Juno Microwave Radiometer instrument. One method is based principally on pattern measurements while the other method is based solely on network analyzer measurements. The methods are accurate to within 0.1 dB for the measured antennas and show good agreement (to within 0.1dB) of separate radiometric measurements.

  4. Thin conformal antenna array for microwave power conversions

    Science.gov (United States)

    Dickinson, R. M. (Inventor)

    1978-01-01

    A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.

  5. On the interference rejection capabilities of triangular antenna array for cellular base stations

    KAUST Repository

    Atat, Rachad

    2012-03-01

    In this paper, we present the performance analysis of the triangular antenna arrays in terms of the interference rejection capability. In this context, we derive an expression to calculate the spatial interference suppression coefficient for the triangular antenna array with variable number of antenna elements. The performance of the triangular antenna array has been compared with the circular antenna array with respect to interference suppression performance, steering beam pattern, beamwidth and directivity. Simulation results show that the triangular array with large number of elements produces a sharper beamwidth and better interference suppression performance than the circular antenna array. © 2012 IEEE.

  6. Analysis and design of low profile multiband multifunctional antenna arrays

    Science.gov (United States)

    Hunsicker, Walker F.

    Light-weight phased array antennas for aerospace and mobile applications require utilizing the same antenna aperture to provide multiple functions with dissimilar radiation pattern specifications (e.g., multiband operation for communications and tracking). Multi-functional antennas provide advantages over aggregate antenna clusters by reducing space requirements, and can aid in the optimal placement of all required apertures to provide adequate isolation between channels. Furthermore, the combination of antenna apertures into a common geometry mitigates co-site installation issues by addressing interference within the integrated radiator design itself as opposed to the extensive analysis which is required to configure multiple radiators in close proximity. The combination of multiple radiators into a single aperture can only be achieved with the proper selection of antenna topology and accompanying feed network design. This research proposes a new technique for the design of multiband arrays in which a common aperture is used. Highlighted by this method is the integration of a tri-band array comprised of an X-band (12 GHz) microstrip patch array on a superstrate above printed dual-band (1 and 2 GHz) slot loop antenna arrays in an octave-spaced lattice. The selection of a ground backing reflector is considered for improved gain and system packaging, but restricts the utility of the design principally due to the lambda/4 depth of the ground plane. Therefore, a novel multiband high impedance surfaces (HIS) is proposed to load the slot apertures for reduced height. The novel techniques proposed here will enable the design of a low profile and conformal single aperture supporting multi-band and multi-functional operations.

  7. Electromagnetic field manipulation in planar nanorod antennas metamaterial for slow light application

    Science.gov (United States)

    Wang, Junqiao; Zhang, Jia; Fan, Chunzhen; Mu, Kaijun; Liang, Erjun; Ding, Pei

    2017-01-01

    We numerically investigated the optical properties of planar nanorod antennas metamaterial that exhibits plasmon-induced transparency (PIT) effect. The designed metamaterial is made of a silver nanorod dimer antenna surrounded by two parallel silver nanorods. The interaction between two parallel nanorods and middle nanorod dimer antenna leads to a single PIT band in the transmission spectrum. Moreover, the double PIT windows and slow light can be realized by breaking the structure symmetry. The multi-bands PIT effect offers an excellent potential to manipulate the light speed at multi-frequencies.

  8. Electrical alignment of antenna coordinate system in a planar near-field setup

    DEFF Research Database (Denmark)

    Mynster, Anders P.; Nielsen, Jeppe Majlund; Pivnenko, Sergey

    2011-01-01

    In this paper, a simple and efficient electrical alignment procedure known as flip-test is adapted and applied to check and correct two errors in the mechanical setup of a planar near-field system: the mis-pointing of the z-axis of the antenna coordinate system with respect to the scan plane...... and the displacement of the center point of the scan plane with respect to the z-axis of the antenna coordinate system. Simulations of the errors and their correction algorithms were carried out with different models of antennas composed of Hertzian dipoles and an optimum algorithm was then selected. The proposed...

  9. Microstrip Phased Array Antennas Printed on Inclined Planes

    Directory of Open Access Journals (Sweden)

    A. Papiernik

    1996-06-01

    Full Text Available This paper presents an analysis of the electromagnetic field radiated by micro-strip patch antennas printed on inclined surfaces. The theoretical approach allows to apply spatial rotations to each source. The computer simulation developed permits us to experiment different antenna structures and two original realisations are proposed: a 2-element array printed on two inclined planes and a 4-element array laid out on a pyramidal surface. In addition, it enables the choice of the phase applied to each radiator to produce a beam deflection function. A good accuracy is obtained between theoretical and experimental results. The aim of this study is to optimise the parameters of such antennas to achieve the desired radiation patterns, from printed phased arrays on conformal surfaces. We also present the theoretical behaviour of a octagonal pyramid.

  10. Optimization of Planar Monopole Wideband Antenna for Wireless Communication System.

    Science.gov (United States)

    Shakib, Mohammed Nazmus; Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza

    2016-01-01

    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2-12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz).

  11. Analysis of Cylindrical Dipole Arrays for Smart Antenna Application

    Institute of Scientific and Technical Information of China (English)

    CAOXiangyu; GAOJun; K.M.Luk; LIANGChanghong

    2005-01-01

    A locally Conformal finite difference time domain (CFDTD) algorithm is studied and applied to model the radiation pattern of a linear dipole arrays mounted on a finite solid conducting cylinder. The numerical result shows that is in good agreement with the moment methods. Finally, the algorithm is applied to study smart antenna used in base station antenna. Several linear arrays mounted with uniform distribution on the cylinder are analyzed. The effects of the number of linear arrays on producing reasonably omnidirectional radiation pattern in the horizontal plane are investigated. It is shown that eight column dipole arrays may be a good choice for economical and practical considerations, and the omnidirection radiation characteristic can be better if the distance from the array axis to the cylinder surface is reduced.

  12. SAR Experiments Using a Conformal Antenna Array Radar Demonstrator

    Directory of Open Access Journals (Sweden)

    Peter Knott

    2012-01-01

    Full Text Available Conformal antenna arrays have been studied for several years but only few examples of applications in modern radar or communication systems may be found up to date due to technological difficulties. The objective of the “Electronic Radar with Conformal Array Antenna” (ERAKO demonstrator system which has been developed at the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR is to demonstrate the feasibility of an active electronically scanned antenna for conformal integration into small and medium sized airborne platforms. For practical trials the antenna has been adapted for operation with the Phased Array Multifunctional Imaging Radar (PAMIR system developed at the institute. The antenna in combination with the PAMIR front-end needed to undergo a special calibration procedure for beam forming and imaging post-processing. The present paper describes the design and development of the conformal antenna array of the demonstrator system, its connection to the PAMIR system and results of recently conducted synthetic aperture radar (SAR experiments.

  13. Narrow multibeam satellite ground station antenna employing a linear array with a geosynchronous arc coverage of 60 deg. I - Theory

    Science.gov (United States)

    Amitay, N.; Gans, M. J.

    1982-11-01

    The feasibility of using an appropriately squinted linear scan in narrow multibeam satellite ground station antennas employing phased arrays is demonstrated. This linear scan has the potential of reducing the complexity of a narrow-beam planar array to that of a linear array. Calculations for such antennas placed at cities throughout the U.S. show that the peak beam pointing error in covering the 70 deg W to 130 deg W geosynchronous equatorial arc (GEA) is under 5/1000th of a degree. Communication at a 300 MBd rate in the 12/14 GHz band can be made feasible, for a grating lobe-free scan and 0.5 deg beamwidth antenna, by using a relatively simple time equalization.

  14. Spectral performance of Square Kilometre Array Antennas - II. Calibration performance

    Science.gov (United States)

    Trott, Cathryn M.; de Lera Acedo, Eloy; Wayth, Randall B.; Fagnoni, Nicolas; Sutinjo, Adrian T.; Wakley, Brett; Punzalan, Chris Ivan B.

    2017-09-01

    We test the bandpass smoothness performance of two prototype Square Kilometre Array (SKA) SKA1-Low log-periodic dipole antennas, SKALA2 and SKALA3 ('SKA Log-periodic Antenna'), and the current dipole from the Murchison Widefield Array (MWA) precursor telescope. Throughout this paper, we refer to the output complex-valued voltage response of an antenna when connected to a low-noise amplifier, as the dipole bandpass. In Paper I, the bandpass spectral response of the log-periodic antenna being developed for the SKA1-Low was estimated using numerical electromagnetic simulations and analysed using low-order polynomial fittings, and it was compared with the HERA antenna against the delay spectrum metric. In this work, realistic simulations of the SKA1-Low instrument, including frequency-dependent primary beam shapes and array configuration, are used with a weighted least-squares polynomial estimator to assess the ability of a given prototype antenna to perform the SKA Epoch of Reionisation (EoR) statistical experiments. This work complements the ideal estimator tolerances computed for the proposed EoR science experiments in Trott & Wayth, with the realized performance of an optimal and standard estimation (calibration) procedure. With a sufficient sky calibration model at higher frequencies, all antennas have bandpasses that are sufficiently smooth to meet the tolerances described in Trott & Wayth to perform the EoR statistical experiments, and these are primarily limited by an adequate sky calibration model and the thermal noise level in the calibration data. At frequencies of the Cosmic Dawn, which is of principal interest to SKA as one of the first next-generation telescopes capable of accessing higher redshifts, the MWA dipole and SKALA3 antenna have adequate performance, while the SKALA2 design will impede the ability to explore this era.

  15. Theoretical analysis of ion cyclotron range of frequency antenna array for HT-7U

    Institute of Scientific and Technical Information of China (English)

    Zhang Xin-Jun; Qin Cheng-Ming; Zhao Yan-Ping

    2005-01-01

    This paper considers the coupling analysis of phased antenna array designed to excite fast wave in the ion cyclotron range of frequency. The coupling of the antenna is calculated in slab geometry. The coupling code based on the variational principle gives the self-consistent current flowing in the antenna, this method has been extended so that it can be applied to a phased antenna array. As an example, this paper analyses the coupling prosperities of a 2×2phased antenna array. It gives the optimum geometry of antenna array. The fields excited at plasma surface are found to more or less correspond to the antenna current phasing.

  16. Planar elliptically shaped dipole antenna for UWB Impulse Radio

    NARCIS (Netherlands)

    Vorobyov, A.V.

    2008-01-01

    The goal of this thesis was to develop design concepts of the UWB antenna with improved characteristics for impulse radio applications. To reach this goal a number of theoretical and experimental investigations were carried out. The major result of the thesis is a number of novel concepts for UWB an

  17. Microwave power transmitting phased array antenna research project

    Science.gov (United States)

    Dickinson, R. M.

    1978-01-01

    An initial design study and the development results of an S band RF power transmitting phased array antenna experiment system are presented. The array was to be designed, constructed and instrumented to permit wireless power transmission technology evaluation measurements. The planned measurements were to provide data relative to the achievable performance in the state of the art of flexible surface, retrodirective arrays, as a step in technically evaluating the satellite power system concept for importing to earth, via microwave beams, the nearly continuous solar power available in geosynchronous orbit. Details of the microwave power transmitting phased array design, instrumentation approaches, system block diagrams, and measured component and breadboard characteristics achieved are presented.

  18. Radiation Characteristics of Rectangular Patch Antennas with an Array of Pins

    Institute of Scientific and Technical Information of China (English)

    Myung-ki CHO; Tae-young KIM; Boo-gyoun KIM

    2010-01-01

    The patch antennas with an array of pins (pin array patch antennas) with excellent radiation characteristics are investigated for various substrate thicknesses.The radiation in the horizontal plane of a pin array patch antenna is very small campared to that of a conventional patch antenna.And the increase of forward radiation and the decrease of backward radiation of a pin array patch antenna are tained than these conventional one's.Also the half-power beamwidth of E-plane radiation pattern of a pin array patch antenna is narrower compared to that of the conventional so that the directivity is improved.

  19. Generation of OAM Radio Waves Using Circular Vivaldi Antenna Array

    Directory of Open Access Journals (Sweden)

    Changjiang Deng

    2013-01-01

    Full Text Available This paper gives a feasible and simple solution of generating OAM-carrying radio beams. Eight Vivaldi antenna elements connect sequentially and fold into a hollow cylinder. The circular Vivaldi antenna array is fed with unit amplitude but with a successive phase difference from element to element. By changing the phase difference at the steps of 0, ±45°, ±90°, ±135°, and 180°, the OAM radio beam can be generated with mode numbers 0, ±1, ±2, ±3, and 4. Simulations show that the OAM states of ±2 and ±3 are the same as the traditional states, while the OAM states of 0, ±1, and 4 differ at the boresight. This phenomenon can be explained by the radiation pattern difference between Vivaldi antenna and tripole antenna. A solution of distinguishing OAM states is also proposed. The mode number of OAM can be distinguished with only 2 receivers.

  20. Flexible sixteen monopole antenna array for microwave breast cancer detection.

    Science.gov (United States)

    Bahrami, H; Porter, E; Santorelli, A; Gosselin, B; Popovic, M; Rusch, L A

    2014-01-01

    Radar based microwave imaging (MI) has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues over a wide frequency band has been made possible by ultra-wideband (UWB) techniques. In this paper, a flexible, compact monopole antenna on a 100 μm Kapton polyimide is designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues over the 2-5GHz frequency range. The antenna parameters are optimized to obtain a good impedance match over the required frequency range. The designed antenna size is 18mm × 18mm. Further, a flexible conformal 4×4 ultra-wideband antenna array, in a format similar to that of a bra, was developed for a radar-based breast cancer detection system.

  1. Antennas for Frequency Reconfigurable Phased Arrays

    NARCIS (Netherlands)

    Haider, S.N.

    2015-01-01

    Sensors such as phased array radars play a crucial role in public safety. They are unavoidable for surveillance, threat identification and post-disaster management. However, different scenarios impose immensely diverse requirements for these systems. Phased array systems occupy a large space. In add

  2. Optimization of Micro Strip Array Antennas Using Hybrid Particle Swarm Optimizer with Breeding and Subpopulation for Maximum Side-Lobe Reduction

    Directory of Open Access Journals (Sweden)

    F. T. Bendimerad

    2008-12-01

    Full Text Available In this paper, a technique based on hybrid particle swarm optimiser with breeding and subpopulation is presented for optimal design of reconfigurable dual-beam linear array antennas and planar arrays. In the amplitudephase synthesis, the design of a reconfigurable dual-pattern antenna array is based on finding a common amplitude distribution that can generate either a pencil or sector beam power pattern, when the phase distribution of the array is modified appropriately. The goal of this study is to introduce the hybrid model to the electromagnetic community and demonstrate its great potential in electromagnetic optimizations.

  3. Concentric Circular Antenna Array Synthesis Using Biogeography Based Optimization

    Directory of Open Access Journals (Sweden)

    Urvinder Singh

    2012-03-01

    Full Text Available Biogeography based optimization (BBO is a new stochastic force based on the science of biogeography. Biogeography is the schoolwork of geographical allotment of biological organisms. BBO utilizes migration operator to share information between the problem solutions. The problem solutions are known as habitats and sharing of features is called migration. In this paper, BBO algorithm is developed to optimize the current excitations of concentric circular antenna arrays (CCAA. Concentric Circular Antenna Array (CCAA has numerous attractive features that make it essential in mobile and communication applications. The goal of the optimization is to reduce the side lobe levels and the primary lobe beam width as much as possible. To confirm the capabilities of BBO, three different CCAA antennas of different sizes are taken. The results obtained by BBO are compared with the Real coded Genetic Algorithm (RGA, Craziness based Particle Swarm Optimization (CRPSO and Hybrid Evolutionary Programming (HEP.

  4. Study of LCP based flexible patch antenna array

    KAUST Repository

    Ghaffar, Farhan A.

    2012-07-01

    Wrapping of a two element LCP based patch antenna array is studied in this work. For the first time, the designed array is bent in both E and H planes to observe the effect on the radiation and impedance performance of the antenna. The 38 GHz simulation results reveal better performance for H plane bending as compared to E plane bending. A 100 um thick substrate is used for the design which is best suited for flexible antenna applications. Gain variations of 1.1 dB and 1.4 dB are observed for the two orientations while a significantly increased impedance bandwidth of 3 % is obtained with H plane wrapping. The design is highly suitable for broadband micro-cellular backhaul applications. © 2012 IEEE.

  5. Adaptive Antenna-array Processing: A DSP Implementation

    NARCIS (Netherlands)

    Abayomi, T.

    2007-01-01

    Adaptive beamforming is used to increase the gain of a receiver in the direction of a desired signal using antenna arrays. The gain is also decreased in the direction of interference and noise. This report describes the implementation of a baseband processor that calculates the beamforming paramete

  6. Sunflower array antenna for multi-beam satellite applications

    NARCIS (Netherlands)

    Vigano, M.C.

    2011-01-01

    Saving space on board, reducing costs and improving the antenna performances are tasks of outmost importance in the field of satellite communication. In this work it is shown how a non-uniformly spaced, direct radiating array designed according to the so called ‘sunflower’ law is able to satisfy str

  7. Adaptive Antenna-array Processing: A DSP Implementation

    NARCIS (Netherlands)

    Abayomi, T.

    2007-01-01

    Adaptive beamforming is used to increase the gain of a receiver in the direction of a desired signal using antenna arrays. The gain is also decreased in the direction of interference and noise. This report describes the implementation of a baseband processor that calculates the beamforming

  8. Lithium niobate guided-wave beam former for steering phased-array antennas.

    Science.gov (United States)

    Armenise, M N; Passaro, V M; Noviello, G

    1994-09-10

    We present the theoretical investigation, design, and simulation of a novel guided-wave optical processor for L-band-transmission beam forming in a linear array of phased active antennas. The proposed configuration includes two contradirectional surface acoustic-wave transducers, and it is based on a Y-cut, X-propagating Ti:LiNbO(3) planar waveguide supporting the lowest-order modes of both polarizations (TE(0) and TM(0)) at the free-space wavelength λ = 0.85 µm. A detailed comparison between the processor we propose and other optical and electronic architectures reported in the literature is carried out, exhibiting a number of significant advantages in terms of weight, total chip size, and power consumption, when the number of antenna elements is greater than 50.

  9. X-band microwave antenna with a switchable planar plasma reflector

    Science.gov (United States)

    Bliokh, Yury P.; Felsteiner, Joshua; Slutsker, Yakov Z.

    2016-09-01

    We present a test of a switchable X-band microwave plasma antenna having an aperture diameter of 30 cm. The dense plasma which forms a reflective surface is produced by a ferromagnetic inductively coupled plasma source. A planar-convex dielectric lens placed at the top of the vacuum chamber forms the required phase front of the reflected electromagnetic wave and simultaneously serves as a vacuum cap. The antenna gain is just a bit (about 1 dB) less than that of an ordinary microwave antenna with the same diameter. When the plasma is switched off (off-state), the antenna radar cross section was found to be at least 20 dB smaller as compared to the on-state.

  10. Compact Dual-Band Planar Inverted-e-Shaped Antenna Using Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    Wen Piao Lin

    2014-01-01

    Full Text Available This paper presents a novel dual-band planar inverted-e-shaped antenna (PIEA using defected ground structure (DGS for Bluetooth and wireless local area network (WLAN applications. The PIEA can reduce electromagnetic interferences (EMIs and it is constructed on a compact printed circuit board (PCB size of 10 × 5 × 4 mm3. Experimental results indicate that the antenna with a compact meandered slit can improve the operating impedance matching and bandwidths at 2.4 and 5.5 GHz. The measured power gains at 2.4 and 5.5 GHz band are 1.99 and 3.71 dBi; antenna efficiencies are about 49.33% and 55.23%, respectively. Finally, the good performances of the proposed antenna can highly promote for mobile device applications.

  11. Low Cost Phased Array Antenna System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A program is proposed to research the applicability of a unique phased array technology, dubbed FlexScan, to S-band and Ku-band communications links between...

  12. Effects of Spatial Characteristics on Smart Antenna System with Uniform Linear Antenna Array

    Institute of Scientific and Technical Information of China (English)

    CAO Wei-feng; WANG Wen-bo

    2005-01-01

    The effect of the spatial characteristics of antenna array on smart antenna systems can not be neglected. In the paper, the relation between spatial correlation and inter-antenna distance, impinging angle, angle spread is first investigated. With the same beamforming algorithm, we simulate the performance of smart antenna system with different Angle Spread (AS) values on the conditions of ideal and real Angle of Arrival (AOA) estimation. The results show that with the ideal AOA estimation, the AOA is enough accurate to guarantee that the system only has little performance degradation even in the case of 20 degreee AS value while the real AOA estimation influenced by channel environment degrades the performance very obviously, up to about 7 dB.

  13. Leaky-Wave Slot Array Antenna Fed by a Dual Reflector System

    NARCIS (Netherlands)

    Ettorre, M.; Neto, A.; Gerini, G.; Maci, S.

    2008-01-01

    Planar leaky-wave antennas (LWAs) have received much attention in the recent years [1] for applications in the millimeter-wave ranges. In particular the compatibility with printed circuit board technology (PCB) and the low profile are the strongest features of these antennas. Mono dimensional planar

  14. Gigahertz planar photoconducting antenna activated by picosecond optical pulses.

    Science.gov (United States)

    Liu, D W; Thaxter, J B; Bliss, D F

    1995-07-15

    We have generated 1-20-GHz microwave pulses by illuminating an Fe-compensated InP wafer with 50-ps optical pulses at normal incidence. The process of the generation of microwave radiation was monitored and analyzed directly through a 40-GHz sampling oscilloscope with precision. The saturation properties, the waveform evolution, and the optical coupling efficiency of the gigahertz photoconducting antenna are discussed. The flexibility, compactness, and high-resolution features offered by this technique merit new applications for radar communication as well as for other microwave detecting devices.

  15. Toward a photoconducting semiconductor RF optical fiber antenna array.

    Science.gov (United States)

    Davis, R; Rice, R; Ballato, A; Hawkins, T; Foy, P; Ballato, J

    2010-09-20

    Recently, optical fibers comprising a crystalline semiconductor core in a silica cladding have been successfully drawn by a conventional drawing process. These fibers are expected to exhibit a photoconductive response when illuminated by photons more energetic than the band gap of the core. In the photoconducting state, such a fiber can be expected to support driven RF currents so as to function as an antenna element, much as a plasma antenna. In this paper, we report the first device-related results on a crystalline semiconductor core optical fiber potentially useful in a photoconducting optical fiber antenna array; namely, optically induced changes to the electrical conductivity of a glass-clad germanium-core optical fiber. Since DC photoconduction measurements were masked by a photovoltaic effect, RF measurements at 5 MHz were used to determine the magnitude of the induced photoconductive effect. The observed photoconductivity, though not large in the present experiment, was comparable to that measured for the bulk crystals from which the fibers were drawn. The absorbed pumping light generated photo-carriers, thereby transforming the core from a dielectric material to a conductor. This technology could thus enable a class of transient antenna elements useful in low observable and reconfigurable antenna array applications.

  16. GNSS antenna array-aided CORS ambiguity resolution

    Science.gov (United States)

    Li, Bofeng; Teunissen, Peter J. G.

    2014-04-01

    Array-aided precise point positioning is a measurement concept that uses GNSS data, from multiple antennas in an array of known geometry, to realize improved GNSS parameter estimation proposed by Teunissen (IEEE Trans Signal Process 60:2870-2881, 2012). In this contribution, the benefits of array-aided CORS ambiguity resolution are explored. The mathematical model is formulated to show how the platform-array data can be reduced and how the variance matrix of the between-platform ambiguities can profit from the increased precision of the reduced platform data. The ambiguity resolution performance will be demonstrated for varying scenarios using simulation. We consider single-, dual- and triple-frequency scenarios of geometry-based and geometry-free models for different number of antennas and different standard deviations of the ionosphere-weighted constraints. The performances of both full and partial ambiguity resolution (PAR) are presented for these different scenarios. As the study shows, when full advantage is taken of the array antennas, both full and partial ambiguity resolution can be significantly improved, in some important cases even enabling instantaneous ambiguity resolution. PAR widelaning and its suboptimal character are hereby also illustrated.

  17. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  18. A Broadband Conformal Phased Array Antenna on Spherical Surface

    Directory of Open Access Journals (Sweden)

    Dan Sun

    2014-01-01

    Full Text Available A Ku-band wideband conformal array antenna with 13×19 elements is presented in the paper. The array has a spherical structure, and its element is a proximity-coupled stacked patches antenna with a cavity-backed ground plane. The stacked patches and the cavity produce multiple coupled resonances, which enhance the bandwidth of the element extremely. A simulated model with the reasonable dimensions is framed with the coupling analyses, and the effective simulated results and good computing efficiency are obtained simultaneously. The measured results of the center embedded element in the whole array show a bandwidth exceeding 40% VSWR<2, which is close to the simulated matching performance.

  19. Plasmonic antenna array at optical frequency made by nanoapertures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.J.; Huang, X.; Peng, R. W.; Wang, Z.; Gao, F.; Sun, W. H.; Wang, Q. J.; Wang, Mu

    2008-10-31

    We show here that the plasmonic array based on nanoapertures in ultrathin silver film radiates at optical frequency and behaves as an optical antenna array (OAA). The far-field radiation originates from the coherent superposition of plasmonic emissions on each bank of the aperture. The radiation of OAA presents a strong directivity, which depends on the in-plane rotation of aperture array, and on the polarization and incidence angle of the excitation light as well. We suggest that these features have potential applications in photovoltaics, light-emitting devices, and optical sensors.

  20. Design of Sievenpiper HIS for use in planar broadband antennas by means of effective medium theory

    Science.gov (United States)

    Hampel, S. K.; Schmitz, O.; Klemp, O.; Eul, H.

    2007-06-01

    The claim for multistandard operating handsets of small physical size as well as the ever increasing demand for higher data rates require new broadband operating antennas. Because of the widespread use of especially planar broadband antennas a lot of factors influencing the characteristic antenna parameters have to be regarded. Furthermore, aspects regarding the electromagnetic compatibility inside the handheld as well as the protection of biological systems, e.g. the user of a mobilephone, have to be payed attention to. An electromagnetic structure which allows for protection by means of shielding as well as enhances the antennas efficiency by providing unique electromagnetic properties are the so called Sievenpiper High Impedance Surfaces (HIS) invented by Sievenpiper (1999). This paper will present the theory and the well known design equations for those structures. An investigation by means of simulation tools and measurement setups will be done to approve the accuracy of the theoretical results. Here measurement results of the impedance and radiation properties of a planar log.-per. four-arm antenna equiped in conjunction with a fabricated prototype Sievenpiper HIS will be presented.

  1. PATL: A RFID Tag Localization based on Phased Array Antenna

    Science.gov (United States)

    Qiu, Lanxin; Liang, Xiaoxuan; Huang, Zhangqin

    2017-01-01

    In RFID systems, how to detect the position precisely is an important and challenging research topic. In this paper, we propose a range-free 2D tag localization method based on phased array antenna, called PATL. This method takes advantage of the adjustable radiation angle of the phased array antenna to scan the surveillance region in turns. By using the statistics of the tags’ number in different antenna beam directions, a weighting algorithm is used to calculate the position of the tag. This method can be applied to real-time location of multiple targets without usage of any reference tags or additional readers. Additionally, we present an optimized weighting method based on RSSI to increase the locating accuracy. We use a Commercial Off-the-Shelf (COTS) UHF RFID reader which is integrated with a phased array antenna to evaluate our method. The experiment results from an indoor office environment demonstrate the average distance error of PATL is about 21 cm and the optimized approach achieves an accuracy of 13 cm. This novel 2D localization scheme is a simple, yet promising, solution that is especially applicable to the smart shelf visualized management in storage or retail area. PMID:28295014

  2. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Directory of Open Access Journals (Sweden)

    Alberto Reyna

    2014-01-01

    Full Text Available This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction.

  3. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Science.gov (United States)

    Reyna, Alberto; Panduro, Marco A.; Del Rio Bocio, Carlos

    2014-01-01

    This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction. PMID:24701150

  4. A Planar Reconfigurable Radiation Pattern Dipole Antenna with Reflectors and Directors for Wireless Communication Applications

    Directory of Open Access Journals (Sweden)

    Imen Ben Trad

    2014-01-01

    Full Text Available A planar printed dipole antenna with reflectors and directors, able to steer its radiation pattern in different directions, is proposed for telecommunication applications. Starting from a dual-beam printed dipole antenna achieved by combining two elementary dipoles back to back, and by loading four PIN diodes, three modes of reconfigurable radiation patterns are achieved at the frequency 2.56 GHz thanks to switches states. A prototype of the structure was realized and characterized; an efficiency of 75% is obtained. Simulation and measured results of the results are presented and discussed.

  5. Resolution of Port/Starboard Ambiguity Using a Linear Array of Triplets and a Twin-Line Planar Array

    Science.gov (United States)

    2016-06-01

    Five Octave Research Array) [6] is a mixed towed sonar composed of a linear array of single elements and a linear array of triplets, designed and built...theoretical model and designed specifically to simulate the signals reaching the sensors of a twin-line planar array. The sound -source radiates a...simulations programmed in MATLAB. The simulations make use of a signal generator, designed to assess the performance of the twin-line planar array. The

  6. Estimating Transmitted-Signal Phase Variations for Uplink Array Antennas

    Science.gov (United States)

    Paal, Leslie; Mukai, Ryan; Vilntrotter, Victor; Cornish, Timothy; Lee, Dennis

    2009-01-01

    A method of estimating phase drifts of microwave signals distributed to, and transmitted by, antennas in an array involves the use of the signals themselves as phase references. The method was conceived as part of the solution of the problem of maintaining precise phase calibration required for proper operation of an array of Deep Space Network (DSN) antennas on Earth used for communicating with distant spacecraft at frequencies between 7 and 8 GHz. The method could also be applied to purely terrestrial phased-array radar and other radio antenna array systems. In the DSN application, the electrical lengths (effective signal-propagation path lengths) of the various branches of the system for distributing the transmitted signals to the antennas are not precisely known, and they vary with time. The variations are attributable mostly to thermal expansion and contraction of fiber-optic and electrical signal cables and to a variety of causes associated with aging of signal-handling components. The variations are large enough to introduce large phase drifts at the signal frequency. It is necessary to measure and correct for these phase drifts in order to maintain phase calibration of the antennas. A prior method of measuring phase drifts involves the use of reference-frequency signals separate from the transmitted signals. A major impediment to accurate measurement of phase drifts over time by the prior method is the fact that although DSN reference-frequency sources separate from the transmitting signal sources are stable and accurate enough for most DSN purposes, they are not stable enough for use in maintaining phase calibrations, as required, to within a few degrees over times as long as days or possibly even weeks. By eliminating reliance on the reference-frequency subsystem, the present method overcomes this impediment. In a DSN array to which the present method applies (see figure), the microwave signals to be transmitted are generated by exciters in a signal

  7. Radiation from mixed multi-planar wire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shlyaptseva, V. V.; Shrestha, I.; Keim, S. F.; Stafford, A. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Chuvatin, A. S. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau (France); Coverdale, C. A. [Sandia National Laboratories, Albuquerque, New Mexico (United States); Apruzese, J. P. [Consultant to NRL through Engility Corp., Chantilly, Virginia 20151 (United States); Ouart, N. D.; Giuliani, J. L. [Naval Research Laboratory, Washington DC 20375 (United States)

    2014-03-15

    The study of radiation from different wire materials in wire array Z-pinch plasma is a very challenging topic because it is almost impossible to separate different plasmas at the stagnation. A new approach is suggested based on planar wire array (PWA) loads to assess this problem. Multi-planar wire arrays are implemented that consist of few planes, each with the same number of wires and masses but from different wire materials, arranged in parallel rows. In particular, the experimental results obtained with triple PWAs (TPWAs) on the UNR Zebra generator are analyzed with Wire Ablation Dynamics Model, non-local thermodynamic equilibrium kinetic model, and 2D radiation magneto-hydrodynamic to illustrate this new approach. In TPWAs, two wire planes were from mid-atomic-number wire material and another plane was from alloyed Al, placed either in the middle or at the edge of the TPWA. Spatial and temporal properties of K-shell Al and L-shell Cu radiations were analyzed and compared from these two configurations of TPWAs. Advantages of the new approach are demonstrated and future work is discussed.

  8. Tracking antenna arrays for near-millimeter waves

    Science.gov (United States)

    Tong, P. P.; Neikirk, D. P.; Psaltis, D.; Rutledge, D. B.; Wagner, K.; Young, P. E.

    1983-01-01

    A two-dimensional monolithic array has been developed that gives the elevation and azimuth of point source targets. The array is an arrangement of rows and columns of antennas and bismuth bolometer detectors on a fused quartz substrate. Energy is focused onto the array through a lens placed on the back side of the substrate. At 1.38 mm with a 50 mm diameter objective lens, the array has demonstrated a positioning accuracy of 26 arcmin. In a differential mode this precision improves to 9 arcsec, limited by the mechanics of the rotating stage. This tracking could be automated to a fast two-step procedure where a source is first located to the nearest row and column, and then precisely located by scanning. With signal processing the array should be able to track multiple sources.

  9. Hierarchical Phased Array Antenna Focal Plane for Cosmic Microwave Background Polarization and Sub-mm Observations

    Science.gov (United States)

    Lee, Adrian

    We propose to develop planar-antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization, log-periodic antenna with a 5:1 bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. We propose to develop an hierarchical phased array of our basic pixel type that gives optimal mapping speed (sensitivity) over a much broader range of frequencies. The advantage of this combination of an intrinsically broadband pixel with hierarchical phase arraying include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands compared to focal-plane designs using conventional single-color pixels. These advantages have the potential to greatly reduce cost and/or increase performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization, a wide frequency range of about 30 to 400 GHz is required to subtract galactic foregrounds. As an example, the multichroic architecture we propose could reduce the focal plane mass of the EPIC-IM CMB polarization mission study concept by a factor of 4, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR groundbased CMB polarization experiment which is now operating in Chile. That experiment uses a single-band planar antenna that gives excellent beam properties and optical efficiency. POLARBEAR recently succeeded in detecting gravitational lensing B-modes in the CMB polarization. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Pixels of this type are slated to be deployed on the ground in POLARBEAR and SPT-3G and proposed to be used on a balloon by EBEX

  10. MIMO Communication Using Single Feed Antenna Arrays

    DEFF Research Database (Denmark)

    Alrabadi, Osama

    Multi-input-multi-output (MIMO) communication has emerged as a promis- ing technology for meeting the increasing demand on higher data rates. The technology exploits the spatial resource dimension by sending the datas- treams to different locations in the multi element array (MEA) domain while de...... prototype. The experiments show that the proposed beamspace MIMO approach provides performance compara- ble to a conventional MIMO system, but at a reduced size and hardware complexity....

  11. MIMO Communication Using Single Feed Antenna Arrays

    OpenAIRE

    2011-01-01

    Multi-input-multi-output (MIMO) communication has emerged as a promis-ing technology for meeting the increasing demand on higher data rates. Thetechnology exploits the spatial resource dimension by sending the datas-treams to different locations in the multi element array (MEA) domain whiledecoding the signals at the receive end based on the signalsŠ unique spatialsignatures. To this end, the MEA is conventionally assumed to be attachedto a number of radios for independently modulating and up...

  12. Antenna array characterization via radio interferometry observation of astronomical sources

    CERN Document Server

    Colegate, T M; Hall, P J; Padhi, S K; Wayth, R B; de Vaate, J G Bij; Crosse, B; Emrich, D; Faulkner, A J; Hurley-Walker, N; Acedo, E de Lera; Juswardy, B; Razavi-Ghods, N; Tingay, S J; Williams, A

    2015-01-01

    We present an in-situ antenna characterization method and results for a "low-frequency" radio astronomy engineering prototype array, characterized over the 75-300 MHz frequency range. The presence of multiple cosmic radio sources, particularly the dominant Galactic noise, makes in-situ characterization at these frequencies challenging; however, it will be shown that high quality measurement is possible via radio interferometry techniques. This method is well-known in the radio astronomy community but seems less so in antenna measurement and wireless communications communities, although the measurement challenges involving multiple undesired sources in the antenna field-of-view bear some similarities. We discuss this approach and our results with the expectation that this principle may find greater application in related fields.

  13. Cylindrical Antenna With Partly Adaptive Phased-Array Feed

    Science.gov (United States)

    Hussein, Ziad; Hilland, Jeff

    2003-01-01

    A proposed design for a phased-array fed cylindrical-reflector microwave antenna would enable enhancement of the radiation pattern through partially adaptive amplitude and phase control of its edge radiating feed elements. Antennas based on this design concept would be attractive for use in radar (especially synthetic-aperture radar) and other systems that could exploit electronic directional scanning and in which there are requirements for specially shaped radiation patterns, including ones with low side lobes. One notable advantage of this design concept is that the transmitter/ receiver modules feeding all the elements except the edge ones could be identical and, as a result, the antenna would cost less than in the cases of prior design concepts in which these elements may not be identical.

  14. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    Science.gov (United States)

    Meena, M. L.; Parmar, Girish; Kumar, Mithilesh

    2016-03-01

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done on CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.

  15. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com [Department of Electronics Engineering, Rajasthan Technical University, Kota (India)

    2016-03-09

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done on CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.

  16. 60-GHz array antenna with standard CMOS technology on Schott Borofloat

    Science.gov (United States)

    Jun, Luo; Yan, Wang; Ruifeng, Yue

    2013-11-01

    This design is presented of a 2 × 2 planar array, with a half-wave dipole antenna to be its element, on a new substrate material, Schott Borofloat, with CMOS technology in the 60 GHz band. In the proposed structure, all the designs are based on the CMOS technology and similar performance could be achieved with the same size in contrast to the design on low-temperature co-fired ceramic (LTCC). This could lead to the improving of the compatibility with the CMOS IC process, the design cost and the design precision which is restricted in the LTCC process. The simulated -10 dB bandwidth of the array is from 58 to 64 GHz. A peak gain of 9.4 dBi is achieved. Good agreement on return loss is achieved between simulations and measurements.

  17. Low-Profile Array of Wire Patch Antennas

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2009-01-01

    Full Text Available A low-profile antenna over a ground plane that radiates a directive lobe in the end fire direction is described in this paper. An array of 16 wire patch antenna (WPA fed by an integrated 16 ways power divider has been designed. Owing to its low height, low cost, high robustness, and monopolar radiation pattern, the WPA has been chosen as unit cell of the array that must be placed on the vehicle roof. A gain higher than 18.9 dB was achieved in the end fire direction over a 4.5% bandwidth. However, the antenna has been tilted in order to compensate the beam deviation caused by the edge diffraction. Moreover, a vertical metallic plane has been inserted to eliminate the back fire radiation. Its position and the disposition of the WPAs are explained in this paper. A prototype with four elements has been manufactured in order to validate the antenna principle. A gain difference lower than 0.5 dB is achieved between the measurements and the simulations.

  18. DUAL POLARIZATION ANTENNA ARRAY WITH VERY LOW CROSS POLARIZATION AND LOW SIDE LOBES

    DEFF Research Database (Denmark)

    1997-01-01

    The present invention relates to an antenna array adapted to radiate or receive electromagnetic waves of one or two polarizations with very low cross polarization and low side lobes. An antenna array comprising many antenna elements, e.g. more than ten antenna elements, is provided in which...... formation of grating lobes are inhibited in selected directions of the radiation and cross polarization within the main lobe is suppressed at least 30 dB below the main lobe peak value. According to a preferred embodiment of the invention, the antenna elements of the antenna array comprise probe-fed patches...

  19. Logarithmic periodic dipole antennas for the Auger engineering radio array

    Science.gov (United States)

    Seeger, Oliver; Pierre Auger Collaboration

    2012-01-01

    The Pierre Auger Observatory constitutes the largest detector for measurements of ultra-high-energy cosmic rays (UHECRs) through extended air showers. Radio signals originating from the shower development have been detected with suitable antennas in the 50 MHz regime. The Auger engineering radio array (AERA) is being established to exploit the radio technique at these high energies.The favoured antenna for the first stage of AERA is a logarithmic periodic dipole antenna (LPDA) especially designed to suit the demands of cosmic-ray detection at the Auger site. This antenna is characterized by ultra-broadband sensitivity in the frequency range from 30 to 80 MHz and allows polarization-sensitive measurements of radio signals from all incoming directions. Our characterization of this LPDA includes careful evaluation of the frequency range obtained by combining wire-based dipoles, stability and weather testing, quality assurance in the mass production process, and a benchmark measurement of the sensitivity obtained with the time dependence of the galactic radio background.For the final setup, a fully calibrated radio-detection system including antennas, filters and low-noise amplifiers is required. We present our approach for this calibration in simulations and measurements.

  20. UHF Microstrip Antenna Array for Synthetic- Aperture Radar

    Science.gov (United States)

    Thomas, Robert F.; Huang, John

    2003-01-01

    An ultra-high-frequency microstrippatch antenna has been built for use in airborne synthetic-aperture radar (SAR). The antenna design satisfies requirements specific to the GeoSAR program, which is dedicated to the development of a terrain-mapping SAR system that can provide information on geology, seismicity, vegetation, and other terrain-related topics. One of the requirements is for ultra-wide-band performance: the antenna must be capable of operating with dual linear polarization in the frequency range of 350 plus or minus 80 MHz, with a peak gain of 10 dB at the middle frequency of 350 MHz and a gain of at least 8 dB at the upper and lower ends (270 and 430 MHz) of the band. Another requirement is compactness: the antenna must fit in the wingtip pod of a Gulfstream II airplane. The antenna includes a linear array of microstrip-patch radiating elements supported over square cavities. Each patch is square (except for small corner cuts) and has a small square hole at its center.

  1. A Novel Multiband Miniature Planar Inverted F Antenna Design for Bluetooth and WLAN Applications

    Directory of Open Access Journals (Sweden)

    J. M. Jeevani W. Jayasinghe

    2015-01-01

    Full Text Available A novel compact planar inverted F antenna (PIFA optimized using genetic algorithms for 2.4 GHz (Bluetooth and 5 GHz (UNII-1, UNII-2, UNII-2 extended, and UNII-3 bands is presented. The patch with a shorting pin is on a 20×7×0.762 mm3 substrate, which is suspended in air 5 mm above a 30×7 mm2 ground plane. Genetic algorithm optimization (GAO is used to optimize the patch geometry, feed position, and shorting pin position simultaneously. Simulations are carried out by using HFSS and a prototype antenna is fabricated to compare the measurements with the simulations. The antenna shows fractional impedance bandwidths of 4% and 21% and gains of 2.5 dB and 3.2 dB at lower and upper bands, respectively.

  2. Compact U-shape radiating patch with rectangular ground planar monopole antenna

    Directory of Open Access Journals (Sweden)

    Vijay Kisanrao Sambhe

    2015-02-01

    Full Text Available A compact U-shape radiating patch with rectangular ground planar monopole antenna is proposed. Antenna is fabricated on FR4 substrate with permittivity 4.4 and loss tangent 0.02 with dimension 75(LR × 48(WR × 1.6(h mm^3. Measured return loss is ≤ −10 dB for the entire impedance bandwidth (800–3500 MHz. In addition, different key parameters which affect the impedance bandwidth are analysed and results discussed. Moreover, antennas have acceptable gain flatness with good omnidirectional radiation patterns. Its ease of fabrication, compatibility with other electronic devices, and radiation pattern make it a competent candidate for global system of mobile (890–960 MHz, digital communication system (1700–1900 MHz and Bluetooth (2.45 GHz cellular communication applications.

  3. Dual-Band Compact Planar Antenna for a Low-Cost WLAN USB Dongle

    Directory of Open Access Journals (Sweden)

    Maurício Henrique Costa Dias

    2014-01-01

    Full Text Available Among the present technologies for WLAN devices, USB dongles still play a noticeable role. One major design challenge regards the antenna, which unavoidably has to comply with a very small volume available and sometimes should also allow multiband operation. In this scope, the present work discusses a dual-band WiFi compact planar IFA-based antenna design for a low-cost USB dongle application. Like most of the related published solutions, the methodology for deriving the present proposition was assisted by the use of an antenna analysis software. A prototype was assembled and tested in order to qualify the radiator design. Practical operation conditions were considered in the tests, such as the influence of the dongle case and the effect of the notebook itself. The results complied with the design constraints, presenting an impedance match quite stable regardless of the stick position alongside a laptop base.

  4. Optimizing Satellite Communications With Adaptive and Phased Array Antennas

    Science.gov (United States)

    Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan

    2004-01-01

    A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.

  5. 60 GHz SIW Steerable Antenna Array in LTCC

    Institute of Scientific and Technical Information of China (English)

    Bahram Sanadgol; Sybille Holzwarth; Peter Uhlig; Alberto Milano; Raft Popovich

    2012-01-01

    In this paper, we present a 60 GHz substrate-integrated waveguide fed-steerable low-temperature cofired ceramics array. The antenna is suitable for transmitting and receiving on the 60 GHz wireless personal area network frequency band. The wireless system can be used for HDTV, high-data-rate networking up to 4.5 GBit/s, security and surveillance, and similar applications.

  6. A Broadband and High Gain Tapered Slot Antenna for W-Band Imaging Array Applications

    Directory of Open Access Journals (Sweden)

    Dong Sik Woo

    2014-01-01

    Full Text Available A broadband and high gain tapered slot antenna (TSA by utilizing a broadband microstrip- (MS- to-coplanar stripline (CPS balun has been developed for millimeter-wave imaging systems and sensors. This antenna exhibits ultrawideband performance for frequency ranges from 70 to over 110 GHz with the high antenna gain, low sidelobe levels, and narrow beamwidth. The validity of this antenna as imaging arrays is also demonstrated by analyzing mutual couplings and 4-element linear array. This antenna can be applied to mm-wave phased array, imaging array for plasma diagnostics applications.

  7. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp [Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Ito, N. [Department of Intelligent System Engineering, Ube National College of Technology, Ube, Yamaguchi 755-8555 (Japan); Nagayama, Y. [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yoshinaga, T. [Department of Applied Physics, National Defense Academy, Yokosuka, Kanagawa 239-0811 (Japan); Yamaguchi, S. [Department of Pure and Applied Physics, Kansai University, Suita, Osaka 564-8680 (Japan); Yoshikawa, M.; Kohagura, J. [Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugito, S. [Equipment Development Center, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Kogi, Y. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  8. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics.

    Science.gov (United States)

    Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A

    2014-11-01

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  9. Reduction of Truncation Errors in Planar Near-Field Aperture Antenna Measurements Using the Gerchberg-Papoulis Algorithm

    DEFF Research Database (Denmark)

    Martini, Enrica; Breinbjerg, Olav; Maci, Stefano

    2008-01-01

    A simple and effective procedure for the reduction of truncation errors in planar near-field measurements of aperture antennas is presented. The procedure relies on the consideration that, due to the scan plane truncation, the calculated plane wave spectrum of the field radiated by the antenna is...

  10. Circuital characteristics and radiation properties of an UWB electric-magnetic planar antenna for Ku-band applications

    NARCIS (Netherlands)

    Haider, S.N.; Caratelli, D.; Yarovoy, A.G.

    2013-01-01

    A planar, directive antenna with large fractional bandwidth is introduced in this paper. A detailed discussion on the proposed antenna topology and its architecture is reported. The proposed element is a combination of a patch and a loop radiator. A proper combination of the electric field radiator

  11. Preconditioned MoM Solutions for Complex Planar Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Fasenfest, B J; Jackson, D; Champagne, N; Wilton, D; Capolino, F

    2004-01-23

    The numerical analysis of large arrays is a complex problem. There are several techniques currently under development in this area. One such technique is the FAIM (Faster Adaptive Integral Method). This method uses a modification of the standard AIM approach which takes into account the reusability properties of matrices that arise from identical array elements. If the array consists of planar conducting bodies, the array elements are meshed using standard subdomain basis functions, such as the RWG basis. These bases are then projected onto a regular grid of interpolating polynomials. This grid can then be used in a 2D or 3D FFT to accelerate the matrix-vector product used in an iterative solver. The method has been proven to greatly reduce solve time by speeding the matrix-vector product computation. The FAIM approach also reduces fill time and memory requirements, since only the near element interactions need to be calculated exactly. The present work extends FAIM by modifying it to allow for layered material Green's Functions and dielectrics. In addition, a preconditioner is implemented to greatly reduce the number of iterations required for a solution. The general scheme of the FAIM method is reported in; this contribution is limited to presenting new results.

  12. Flat Array Antennas for Ku-Band Mobile Satellite Terminals

    Directory of Open Access Journals (Sweden)

    Roberto Vincenti Gatti

    2009-01-01

    Full Text Available This work presents the advances in the development of two innovative flat array antennas for Ku-band mobile satellite terminals. The first antenna is specifically conceived for double-deck trains to allow a bi-directional high data rate satellite link. The available circular surface (diameter 80 cm integrates both a transmitting and a receiving section, operating in orthogonal linear polarizations. The TX frequency range is fully covered while the RX bandwidth is around 1 GHz arbitrarily allocated on the DVB range depending on requirements. The beam is steered in elevation through a phased array architecture not employing costly phase shifters, while the steering in azimuth is mechanical. Active BFNs allow excellent performance in terms of EIRP and G/T, maintaining extremely low profile. High antenna efficiency and low fabrication cost are ensured by the employment of innovative SIW (Substrate Integrated Waveguide structures. The second antenna, receiving-only, is designed for radio/video streaming services in mobile environment. Full DVB coverage is achieved thanks to cavity-backed patches operating in double linear polarization. Two independent broadband active BFNs allow simultaneous reception of both polarizations with full tracking capabilities and a squintless beam steering from 20∘ to 60∘ in elevation. A minimum gain of 20 dBi and G/T >−3 dB/∘K are achieved, while maintaining extremely compact size and flat profile. In the design of both antennas fabrication cost is considered as a driving factor, yet providing high performance with a flat profile and thus resulting in a great commercial potentiality.

  13. Pros and Cons of Using Arrays of Small Antennas Versus Large Single Dish Antennas for the Deep Space Network

    Science.gov (United States)

    Bagri, Durgadas S.

    2009-01-01

    This paper briefly describes pros and cons of using arrays of small antennas instead of large single dish antennas for spacecraft telemetry, command, and tracking (TT and C) - communications and navigation (C and N) - and science support that the Deep Space Network (DSN) normally provides. It considers functionality and performance aspects, mainly for TT and C, though it also considers science. It only briefly comments on the cost aspects that seem to favor arrays of small antennas over large single antennas, at least for receiving (downlinks).

  14. A Wideband End-Fire Conformal Vivaldi Antenna Array Mounted on a Dielectric Cone

    Directory of Open Access Journals (Sweden)

    Zengrui Li

    2016-01-01

    Full Text Available The characteristics of a novel antipodal Vivaldi antenna array mounted on a dielectric cone are presented. By employing antipodal Vivaldi antenna element, the antenna array shows ultrawide bandwidth and end-fire radiation characteristics. Our simulations show that the cone curvature has an obvious influence on the performance of the conformal antenna, in terms of both the bandwidth and the radiation patterns. The thickness and permittivity of the dielectric cone have an effect on the bandwidth of the conformal antenna. Measurement results of both single antenna and conformal antenna array show a good agreement with the simulated results. The measured conformal antenna can achieve a −10 dB S11 with bandwidth of 2.2–12 GHz and demonstrate a typical end-fire radiation beam. These findings provide useful guidelines and insights for the design of wideband end-fire antennas mounted on a dielectric cone.

  15. A new planar broadband antenna based on meandered line loops for portable wireless communication devices

    Science.gov (United States)

    Alibakhshi-Kenari, Mohammad; Naser-Moghadasi, Mohammad; Sadeghzadeh, R. A.; Virdee, Bal S.; Limiti, Ernesto

    2016-07-01

    This article presents the design of a novel planar antenna structure comprising two pairs of interconnected meandered line loops that are grounded to a truncated T-shaped ground plane through two via holes. The T-shaped ground plane is used as a reflector to enhance the performance of the antenna. The resulting antenna is compact occupying an area of 38.5 × 36.6 mm2 (0.070λo × 0.067λo), where free-space wavelength is 550 MHz. The antenna radiates omnidirectionally in the E plane across its operational bandwidth (550 MHz to 3.85 GHz) with peak gain and efficiency of 5.5 dBi and 90.1%, respectively, at 2.35 GHz and reflection coefficient better than -10 dB. These characteristics make the antenna suitable for numerous applications, in particular, JCDMA, UHF RFID, GSM 900, GPS, KPCS, DCS, IMT-2000, WiMAX, WiFi, and Bluetooth.

  16. Bandwidth optimization of a Planar Inverted-F Antenna using binary and real coded genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    AMEERUDDEN Mohammad Riyad; RUGHOOPUTH Harry C S

    2009-01-01

    With the exponential development of mobile communications and the miniaturization of radio frequency transceivers, the need for small and low profile antennas at mobile frequencies is constantly growing. Therefore, new antennas should be developed to provide larger bandwidth and at the same time small dimensions. Although the gain in bandwidth performances of an antenna are directly related to its dimensions in relation to the wavelength, the aim is to keep the overall size of the antenna constant and from there, find the geometry and structure that give the best performance. The design and bandwidth optimization of a Planar Inverted-F Antenna (PIFA) were introduced in order to achieve a larger bandwidth in the 2 GHz band, using two optimization techniques based upon genetic algorithms (GA), namely the Binary Coded GA (BCGA) and Real-Coded GA (RCGA). During the optimization process, the different PIFA models were evaluated using the finite-difference time domain (FDTD) method-a technique belonging to the general class of differential time domain numerical modeling methods.

  17. Antenna array connections for efficient performance of distributed microbolometers in the IR

    NARCIS (Netherlands)

    Silva-Lopez, M.; Cuadrado, A.; Llombart Juan, N.; Alda, J.

    2013-01-01

    Optical antennas and resonant structures have been extensively investigated due to its potential for electromagnetic detection and energy harvesting applications. However their integration into large arrays and the role of connection lines between individual antennas has drawn little attention. This

  18. A Multi-Band Photonic Phased Array Antenna for High-Data Rate Communication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-band phased array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. In order to steer...

  19. A Multi-band Photonic Phased Array Antenna for High-Date Rate Communication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-band phased array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. In order to steer...

  20. Aligning a Receiving Antenna Array to Reduce Interference

    Science.gov (United States)

    Jongeling, Andre P.; Rogstad, David H.

    2009-01-01

    A digital signal-processing algorithm has been devised as a means of aligning (as defined below) the outputs of multiple receiving radio antennas in a large array for the purpose of receiving a desired weak signal transmitted by a single distant source in the presence of an interfering signal that (1) originates at another source lying within the antenna beam and (2) occupies a frequency band significantly wider than that of the desired signal. In the original intended application of the algorithm, the desired weak signal is a spacecraft telemetry signal, the antennas are spacecraft-tracking antennas in NASA s Deep Space Network, and the source of the wide-band interfering signal is typically a radio galaxy or a planet that lies along or near the line of sight to the spacecraft. The algorithm could also afford the ability to discriminate between desired narrow-band and nearby undesired wide-band sources in related applications that include satellite and terrestrial radio communications and radio astronomy. The development of the present algorithm involved modification of a prior algorithm called SUMPLE and a predecessor called SIMPLE. SUMPLE was described in Algorithm for Aligning an Array of Receiving Radio Antennas (NPO-40574), NASA Tech Briefs Vol. 30, No. 4 (April 2006), page 54. To recapitulate: As used here, aligning signifies adjusting the delays and phases of the outputs from the various antennas so that their relatively weak replicas of the desired signal can be added coherently to increase the signal-to-noise ratio (SNR) for improved reception, as though one had a single larger antenna. Prior to the development of SUMPLE, it was common practice to effect alignment by means of a process that involves correlation of signals in pairs. SIMPLE is an example of an algorithm that effects such a process. SUMPLE also involves correlations, but the correlations are not performed in pairs. Instead, in a partly iterative process, each signal is appropriately weighted

  1. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna.

    Science.gov (United States)

    Aratani, Naoki; Kim, Dongho; Osuka, Atsuhiro

    2009-12-21

    The importance of photosynthesis has driven researchers to seek ways to mimic its fundamental features in simplified systems. The absorption of a photon by light-harvesting (antenna) complexes made up of a large number of protein-embedded pigments initiates photosynthesis. Subsequently the many pigments within the antenna system shuttle that photon via an efficient excitation energy transfer (EET) until it encounters a reaction center. Since the 1995 discovery of the circularly arranged chromophoric assemblies in the crystal structure of light-harvesting antenna complex LH2 of purple bacteria Rps. Acidophila, many designs of light-harvesting antenna systems have focused on cyclic porphyrin wheels that allow for efficient EET. In this Account, we review recent research in our laboratories in the synthesis of covalently and noncovalently linked discrete cyclic porphyrin arrays as models of the photosynthetic light-harvesting antenna complexes. On the basis of the silver(I)-promoted oxidative coupling strategy, we have prepared a series of extremely long yet discrete meso-meso-linked porphyrin arrays and covalently linked large porphyrin rings. We examined the photophysical properties of these molecules using steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related to the EET processes within the porphyrin rings. Within these structures, the exciton-exciton annihilation time and the polarization anisotropy rise time are well-described in terms of the Forster-type incoherent energy hopping model. In noncoordinating solvents such as CHCl(3), meso-pyridine-appended zinc(II) porphyrins and their meso-meso-linked dimers spontaneously assemble to form tetrameric porphyrin squares and porphyrin boxes, respectively. In the latter case, we have demonstrated

  2. Reconfigurable time-steered array-antenna beam former.

    Science.gov (United States)

    Frankel, M Y; Esman, R D

    1997-12-10

    We present and analyze a hardware-optimized technique that provides true-time-delay steering for broadband two-dimensional array-antenna applications. The technique improves on previous approaches by the reduction of the two-dimensional beam-former architecture complexity, by the provision of flexibility in time-delay unit selection, and by the potential reduction of optical loss. The technique relies on a one-dimensional bank of time-delay units to form the required time-delay gradient for proper off-broadside angle steering. A reconfigurable optical interconnection fabric is used to reassign dynamically the connections between the time-delay units and individual array elements of a two-dimensional array to effect the proper steering angle along the off-broadside cone.

  3. Transformation from a Single Antenna to a Series Array Using Push/Pull Origami

    Directory of Open Access Journals (Sweden)

    Syed Imran Hussain Shah

    2017-08-01

    Full Text Available We propose a push/pull origami antenna, transformable between a single antenna element and a three-element array. In limited space, the proposed origami antenna can work as a single antenna. When the space is not limited and a higher gain is required, the proposed origami antenna can be transformed to a series antenna array by pulling the frame. In order to push the antenna array back to a single antenna, the frame for each antenna element size must be different. The frame and supporting dielectric materials are built using a three-dimensional (3D printer. The conductive patterns are inkjet-printed on paper. Thus, the proposed origami antenna is built using hybrid printing technology. The 10-dB impedance bandwidth is 2.5–2.65 GHz and 2.48–2.62 GHz for the single-antenna and array mode, respectively, and the peak gains in the single-antenna and array mode are 5.8 dBi and 7.6 dBi, respectively. The proposed antenna can be used for wireless remote-sensing applications.

  4. Transformation from a Single Antenna to a Series Array Using Push/Pull Origami.

    Science.gov (United States)

    Shah, Syed Imran Hussain; Lim, Sungjoon

    2017-08-26

    We propose a push/pull origami antenna, transformable between a single antenna element and a three-element array. In limited space, the proposed origami antenna can work as a single antenna. When the space is not limited and a higher gain is required, the proposed origami antenna can be transformed to a series antenna array by pulling the frame. In order to push the antenna array back to a single antenna, the frame for each antenna element size must be different. The frame and supporting dielectric materials are built using a three-dimensional (3D) printer. The conductive patterns are inkjet-printed on paper. Thus, the proposed origami antenna is built using hybrid printing technology. The 10-dB impedance bandwidth is 2.5-2.65 GHz and 2.48-2.62 GHz for the single-antenna and array mode, respectively, and the peak gains in the single-antenna and array mode are 5.8 dBi and 7.6 dBi, respectively. The proposed antenna can be used for wireless remote-sensing applications.

  5. Bandwidth enhancement using Polymeric Grid Array Antenna for millimeter-wave application

    Science.gov (United States)

    Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi

    2017-01-01

    A new grid array antenna designed on a polymeric polydimethylsiloxane (PDMS) substrate is presented. A good relative permittivity of the PDMS substrate increases the antenna bandwidth. The PDMS surface is also hardened to protect the proposed grid array antenna's radiating element. A SMA coaxial connector is used to feed the 36 × 35 mm2 antenna from its bottom. A bandwidth enhancement of 72.1% is obtained compared to conventional antenna. Besides, its efficiency is increased up to 70%. The simulated and measured results agreed well and the proposed antenna is validated to suit millimeter-wave applications.

  6. An Optimal Beamforming Algorithm for Phased-Array Antennas Used in Multi-Beam Spaceborne Radiometers

    DEFF Research Database (Denmark)

    Iupikov, O. A.; Ivashina, M. V.; Pontoppidan, K.;

    2015-01-01

    Strict requirements for future spaceborne ocean missions using multi-beam radiometers call for new antenna technologies, such as digital beamforming phased arrays. In this paper, we present an optimal beamforming algorithm for phased-array antenna systems designed to operate as focal plane arrays...

  7. Low Complexity Beampattern Design in MIMO Radars Using Planar Array

    KAUST Repository

    Bouchoucha, Taha

    2015-01-07

    In multiple-input multiple-output radar systems, it is usually desirable to steer transmitted power in the region-of-interest. To do this, conventional methods optimize the waveform covariance matrix, R, for the desired beampattern, which is then used to generate actual transmitted waveforms. Both steps require constrained optimization, therefore, use iterative and expensive algorithms. In this paper, we provide a closed-form solution to design covariance matrix for the given beampattern using the planar array, which is then used to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope (FACE) waveforms. The proposed algorithm exploits the two-dimensional fast-Fourier-transform. The performance of our proposed algorithm is compared with existing methods that are based on semi-definite quadratic programming with the advantage of a considerably reduced complexity.

  8. Optically controlled phased-array antenna with PSK communications

    Science.gov (United States)

    Cooper, Martin J.; Sample, Peter; Lewis, Meirion F.; Wilson, Rebecca A.

    2004-11-01

    An optically controlled RF/microwave/mm-wave phased array antenna has been developed operating at 10 GHz with 30 kHz reconfiguration rate via the use of a micromachined silicon Spatial Light Modulator. A communications function has been demonstrated with a variety of Phase Shift Keying modulation schemes (BPSK, QPSK, MSK) at data rates up to 200 Mbit/s and low BER (<1×10-9). A single channel has been demonstrated at 35 GHz. The properties of photonic components are taken advantage of in several ways: (i) since the carrier frequency is derived from heterodyning of lasers, it is tuneable from almost DC-100 GHz, (ii) the use of optical fiber allows for EMI immune antenna remoting, and (iii) the wide information bandwidth of optical modulators, which in this configuration is carrier frequency independent. The above is achieved in a lightweight and compact format, with considerable scope for further reductions in size and weight.

  9. Frequency Tunable Antennas and Novel Phased Array Feeding Networks for Next Generation Communication Systems

    Science.gov (United States)

    Avser, Bilgehan

    The thesis presents three dual-band frequency tunable antennas for carrier aggregation systems and two new feeding networks for reducing the number of phase shifters in limited-scan arrays. First, single- and dual-feed, dual-frequency, low-profile antennas with independent frequency tuning using varactor diodes are presented. The dual-feed planar inverted F-antenna (PIFA) has two operating frequencies which are independently tuned at 0.7--1.1 GHz and at 1.7--2.3 GHz with better than 10 dB impedance match. The isolation between the high-band and the low-band ports is > 13 dB; hence, one resonant frequency can be tuned without affecting the other. The single-feed contiguous-dual-band antenna has two resonant frequencies, which are independently tuned at 1.2--1.6 GHz at 1.6--2.3 GHz with better than 10 dB impedance match for most of the tuning range. And the single-feed dual-band antenna has two resonant frequencies, which are independently tuned at 0.7--1.0 GHz at 1.7--2.3 GHz with better than 10 dB impedance match for most of the tuning range. The tuning is done using varactor diodes with a capacitance range from 0.8 to 3.8 pF, which is compatible with RF MEMS devices. The antenna volumes are 63 x 100 x 3.15 mm3 on epsilon r = 3.55 substrates and the measured antenna efficiencies vary between 25% and 50% over the tuning range. The application areas are in carrier aggregation systems for fourth generation (4G) wireless systems. Next, a new phased array feeding network that employs random sequences of non-uniform sub-arrays (and a single phase shifter for each sub-array) is presented. When these sequences are optimized, the resulting phased arrays can scan over a wide region with low sidelobe levels. Equations for analyzing the random arrays and an algorithm for optimizing the array sequences are presented. Multiple random-solutions with different number of phase shifters and different set of sub-array groups are analyzed and design guidelines are presented. The

  10. Reconfigurable Pico-cell Antenna Array for Indoor Coverage in GSM 900 Band

    Directory of Open Access Journals (Sweden)

    B. Ivsic

    2009-12-01

    Full Text Available This paper proposes a simple antenna array based on three stacked shorted patches aimed to be used as GSM (900 MHz indoor base station antenna. Three same linearly polarized stacked patches are set in three orthogonal planes in space forming pyramid-like structure. The antenna array can be used for nearly omnidirectional coverage as well as for covering three 120º sectors. The proposed array also offers the possibility of polarization diversity.

  11. Adaptive array antenna for satellite cellular and direct broadcast communications

    Science.gov (United States)

    Horton, Charles R.; Abend, Kenneth

    1993-01-01

    Adaptive phased-array antennas provide cost-effective implementation of large, light weight apertures with high directivity and precise beamshape control. Adaptive self-calibration allows for relaxation of all mechanical tolerances across the aperture and electrical component tolerances, providing high performance with a low-cost, lightweight array, even in the presence of large physical distortions. Beam-shape is programmable and adaptable to changes in technical and operational requirements. Adaptive digital beam-forming eliminates uplink contention by allowing a single electronically steerable antenna to service a large number of receivers with beams which adaptively focus on one source while eliminating interference from others. A large, adaptively calibrated and fully programmable aperture can also provide precise beam shape control for power-efficient direct broadcast from space. Advanced adaptive digital beamforming technologies are described for: (1) electronic compensation of aperture distortion, (2) multiple receiver adaptive space-time processing, and (3) downlink beam-shape control. Cost considerations for space-based array applications are also discussed.

  12. Optical characterization of Jerusalem cross-shaped nanoaperture antenna arrays

    Science.gov (United States)

    Turkmen, Mustafa; Aslan, Ekin; Aslan, Erdem

    2014-03-01

    Recent advances in nanofabrication and computational electromagnetic design techniques have enabled the realization of metallic nanostructures in different shapes and sizes with adjustable resonance frequencies. To date, many metamaterial designs in various geometries with the used of different materials have been presented for the applications of surface plasmons, cloaking, biosensing, and frequency selective surfaces1-5. Surface plasmons which are collective electron oscillations on metal surfaces ensure that plasmonic nanoantennas can be used in many applications like biosensing at infrared (IR) and visible regions. The nanostructure that we introduce has a unit cell that consists of Jerusalem crossshaped nanoaperture on a gold layer, which is standing on suspended SiNx, Si or glass membranes. The proposed nanoaperture antenna array has a regular and stable spectral response. In this study, we present sensitivity of the resonance characteristics of Jerusalem cross-shaped nanoaperture antenna arrays to the changes in substrate parameters and metal thickness. We demonstrate that resonance frequency values can be adjusted by changing the thicknesses and types of the dielectric substrate and the metallic layer. Numerical calculations on spectral response of the nanoantenna array are performed by using Finite Difference Time Domain (FDTD) method6. The results of the simulations specify that resonance frequencies, the reflectance and transmittance values at resonances, and the band gap vary by the change of substrate parameters and metal thicknesses. These variations is a sign of that the proposed nanoantenna can be employed for sensing applications.

  13. Comparison of Adaptive Antenna Arrays Controlled by Gradient Algorithms

    Directory of Open Access Journals (Sweden)

    Z. Raida

    1994-09-01

    Full Text Available The paper presents the Simple Kalman filter (SKF that has been designed for the control of digital adaptive antenna arrays. The SKF has been applied to the pilot signal system and the steering vector one. The above systems based on the SKF are compared with adaptive antenna arrays controlled by the classical LMS and the Variable Step Size (VSS LMS algorithms and by the pure Kalman filter. It is shown that the pure Kalman filter is the most convenient for the control of the adaptive arrays because it does not require any a priori information about noise statistics and excels in high rate of convergence and low misadjustment. Extremely high computational requirements are drawback of this filter. Hence, if low computational power of signal processors is at the disposal, the SKF is recommended to be used. Computational requirements of the SKF are of the same order as the classical LMS algorithm exhibits. On the other hand, all the important features of the pure Kalman filter are inherited by the SKF. The paper shows that presented Kalman filters can be regarded as special gradient algorithms. That is why they can be compared with the LMS family.

  14. MIMO performance of a planar logarithmically periodic antenna with respect to measured channel matrices

    Directory of Open Access Journals (Sweden)

    H. Rabe

    2008-05-01

    Full Text Available The increasing interest in wireless transmission of highest data rates for multimedia applications (e.g. HDTV demands the use of communication systems as e.g. described in the IEEE 802.11n draft specification for WLAN including spatial multiplexing or transmit diversity to achieve a constant high data rate and a small outage probability. In a wireless communications system the transmission of parallel data stream leads to multiple input/multiple output (MIMO systems, whose key parameters heavily depend on the properties of the mobile channel. Assuming an uncorrelated channel matrix the correlation between the multiplexed data streams is caused by the coupling of the antennas, so that the radiation element becomes an even more important part of the system. Previous work in this research area (Klemp and Eul, 2006 has shown that planar log.-per four arm antennas are promising candidates for MIMO applications providing two nearly decorrelated radiators, which cover a wide frequency range including both WLAN bands at 2.4 GHz and 5.4 GHz. Up to now the MIMO performance of this antenna is mainly analyzed by simulations. In this contribution measured channel matrices in a real office environment are studied in terms of the antenna's MIMO performance such as outage probability. The obtained results recorded by using a commercial platform are compared to the simulated ones.

  15. Ka-band Dielectric Waveguide Antenna Array for Millimeter Wave Active Imaging System

    Science.gov (United States)

    Fang, Weihai; Fei, Peng; Nian, Feng; Yang, Yujie; Feng, Keming

    2014-11-01

    Ka-band compact dielectric waveguide antenna array for active imaging system is given. Antenna array with WR28 metal waveguide direct feeding is specially designed with small size, high gain, good radiation pattern, easy realization, low insertion loss and low mutual coupling. One practical antenna array for 3-D active imaging system is shown with theoretic analysis and experimental results. The mutual coupling of transmitting and receiving units is less than -30dB, the gain from 26.5GHz to 40GHz is (12-16) dB. The results in this paper provide guidelines for the designing of millimeter wave dielectric waveguide antenna array.

  16. Beamforming via large and dense antenna arrays above a clutter

    DEFF Research Database (Denmark)

    Alrabadi, Osama; Tsakalaki, Elpiniki; Huang, Howard

    2013-01-01

    necessitate multi-layering. In the multi-layer BF mode, the RF coverage is divided into a number of directive non-overlapping sector-beams in a deterministic manner within a multi-user multi-input multi-output (MIMO) system. The optimal number of layers that maximizes the user's sum-rate given a constrained...... antenna array is found as a compromise between the multiplexing gain (associated with the number of sector-beams) and the inter-beam interference, represented by the side lobe level (SLL)....

  17. SAR processing with stepped chirps and phased array antennas.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-09-01

    Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.

  18. Cuckoo search optimization for linear antenna arrays synthesis

    Directory of Open Access Journals (Sweden)

    Ahmed Haffane

    2013-01-01

    Full Text Available A recently developed metaheuristic optimization algorithm, the Cuckoo search algorithm, is used in this paper for the synthesis of symmetric uniformly spaced linear microstrip antennas array. Cuckoo search is based on the breeding strategy of Cuckoos augmented by a Levy flight behaviour found in the foraging habits of other species. This metaheuristic is tested on amplitude only pattern synthesis and amplitude and phase pattern synthesis. In both case, the objective, is to determinate the optimal excitations element that produce a synthesized radiation pattern within given bounds specified by a pattern mask.

  19. Electrically Small Resonators for Planar Metamaterial, Microwave Circuit and Antenna Design: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Miguel Durán-Sindreu

    2012-04-01

    Full Text Available Planar metamaterials and many microwave circuits and antennas are designed by means of resonators with dimensions much smaller than the wavelength at their resonance frequency. There are many types of such electrically small resonators, and the main purpose of this paper is to compare them as building blocks for the implementation of microwave components. Aspects such as resonator size, bandwidth, their circuit models when they are coupled to transmission lines (as is usually required, as well as key applications, will be considered.

  20. Air shower measurements with the LOPES radio antenna array

    Energy Technology Data Exchange (ETDEWEB)

    Haungs, A. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)], E-mail: andreas.haungs@ik.fzk.de; Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Asch, T. [Inst. Prozessdatenverarbeitung und Elektronik, Forschungszentrum Karlsruhe (Germany); Auffenberg, J. [Fachbereich Physik, Universitaet Wuppertal (Germany); Badea, F. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Baehren, L. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie, Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF, Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)] (and others)

    2009-06-01

    LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from extensive air showers. Since radio waves suffer very little attenuation, radio measurements allow the detection of very distant or highly inclined showers. These waves can be recorded day and night, and provide a bolometric measure of the leptonic shower component. LOPES is designed as a digital radio interferometer using high bandwidths and fast data processing and profits from the reconstructed air shower observables of KASCADE-Grande. The LOPES antennas are absolutely amplitude calibrated allowing to reconstruct the electric field strength which can be compared with predictions from detailed Monte-Carlo simulations. We report about the analysis of correlations present in the radio signals measured by the LOPES 30 antenna array. Additionally, LOPES operates antennas of a different type (LOPES{sup STAR}) which are optimized for an application at the Pierre Auger Observatory. Status, recent results of the data analysis and further perspectives of LOPES and the possible large scale application of this new detection technique are discussed.

  1. A Novel Receiver Architecture for DBF Antenna Array

    Institute of Scientific and Technical Information of China (English)

    ZHENG Sheng-hua; XU Da-zhuan; JIN Xue-ming

    2007-01-01

    The developments of the high speed analog to digital converters (ADC) and advanced digital signal processors (DSP) make the smart antenna with digital beamforming (DBF)a reality. In conventional M-elements array antenna system, each element has its own receiving channel and ADCs. In this paper, a novel smart antenna receiver with digital beamforming is proposed. The essential idea is to realize the digital beamforming receiver based on bandpass sampling of multiple distinct intermediate frequency (IF) signals. The proposed system reduces receiver hardware from M IF channels and 2M ADCs to one IF channel and one ADC using a heterodyne radio frequency (RF) circuitry and a multiple bandpass sampling digital receiver. In this scheme, the sampling rate of the ADC is much higher than the summation of the M times of the signal bandwidth. The local oscillator produces different local frequency for each RF channel.The receiver architecture is presented in detail, and the simulation of bandpass sampling of multiple signals and digital down conversion to baseband is given. The principle analysis and simulation results indicate the effectiveness of the new proposed receiver.

  2. Three-dimensional study of planar optical antennas made of split-ring architecture outperforming dipole antennas for increased field localization.

    Science.gov (United States)

    Kilic, Veli Tayfun; Erturk, Vakur B; Demir, Hilmi Volkan

    2012-01-15

    Optical antennas are of fundamental importance for the strongly localizing field beyond the diffraction limit. We report that planar optical antennas made of split-ring architecture are numerically found in three-dimensional simulations to outperform dipole antennas for the enhancement of localized field intensity inside their gap regions. The computational results (finite-difference time-domain) indicate that the resulting field localization, which is of the order of many thousandfold, in the case of the split-ring resonators is at least 2 times stronger than the one in the dipole antennas resonant at the same operating wavelength, while the two antenna types feature the same gap size and tip sharpness.

  3. Switchable Phased Antenna Array with Passive Elements for 5G Mobile Terminals

    DEFF Research Database (Denmark)

    Syrytsin, Igor A.; Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    In this paper, a reconfigurable phased antenna array system is constructed for the mobile terminals in the context of 5G communication system. The proposed antenna system operates at the resonance frequency of 28 GHz. The reconfigurability of the antenna element is achieved by using a passive slot...

  4. Switchable Phased Antenna Array with Passive Elements for 5G Mobile Terminals

    DEFF Research Database (Denmark)

    Syrytsin, Igor A.; Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    In this paper, a reconfigurable phased antenna array system is constructed for the mobile terminals in the context of 5G communication system. The proposed antenna system operates at the resonance frequency of 28 GHz. The reconfigurability of the antenna element is achieved by using a passive slo...

  5. Computer simulation of the effects of a distributed array antenna on synthetic aperture radar images

    Science.gov (United States)

    Estes, J. M.

    1985-01-01

    The ARL:UT orbital SAR simulation has been upgraded to use three-dimensional antenna gain patterns. This report describes the modifications and presents quantitative image analyses of a simulation using antenna patterns generated from the modeling of a distributed array antenna.

  6. Quasi-optical antenna-mixer-array design for terahertz frequencies

    Science.gov (United States)

    Guo, Yong; Potter, Kent A.; Rutledge, David B.

    1992-01-01

    A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.

  7. Study of the Interaction User Head-Ultrawideband MIMO Antenna Array for Mobile Terminals

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Franek, Ondrej

    2016-01-01

    aspects of the interaction are considered: 1) the influence of the user head on the antenna operation, and 2) the exposure of the human head tissue to antenna electromagnetic radiation. The first aspect is related to the degradation of the antenna performance in a proximity to the user which is evaluated......This paper presents a numerical study of the interaction between the user head and MIMO antenna array for mobile phones. The antenna array is composed of two identical antennas and covers the frequency ranges 698-990 MHz and 1710-5530 MHz with a good radiation efficiency in free space. The two...... by the reduction of the antenna radiation efficiency. The second aspect refers to the antenna operation effect on the human and the exposure of the user head is studied by Specific Absorption Ratio (SAR)....

  8. Study of the Interaction User Head-Ultrawideband MIMO Antenna Array for Mobile Terminals

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Franek, Ondrej;

    2016-01-01

    This paper presents a numerical study of the interaction between the user head and MIMO antenna array for mobile phones. The antenna array is composed of two identical antennas and covers the frequency ranges 698-990 MHz and 1710-5530 MHz with a good radiation efficiency in free space. The two...... aspects of the interaction are considered: 1) the influence of the user head on the antenna operation, and 2) the exposure of the human head tissue to antenna electromagnetic radiation. The first aspect is related to the degradation of the antenna performance in a proximity to the user which is evaluated...... by the reduction of the antenna radiation efficiency. The second aspect refers to the antenna operation effect on the human and the exposure of the user head is studied by Specific Absorption Ratio (SAR)....

  9. Antenna Array Structures Effect on Water-Filling Capacity of Indoor NLOS MIMO Channel

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-gang; L(U) Ying-hua; DU Juan; LI Yun-zhuang; WANG Xu-ying

    2005-01-01

    A 2-D Shooting and Bouncing Ray-tracing method (SBR) is used to analyze the different antenna array structure effect on the water-filling Capacity Complementary Cumulative Distribution Functions (CCDFS) of indoor Non-Line-of-Sight (NLOS) Multiple-Input Multiple-Output (MIMO) channel. The results have shown that in NLOS indoor environment different antenna array structures affect on the CCDFS differently. The CCDFS of MIMO systems with antenna spacing 5λ change slightly with antenna array structures and all approach the in independent and identically distribution (i.i.d.) rayleigh channel water-filling capacity. When antenna spacing decreased to 0.5λ, the capacities of MIMO systems drop also, and change with antenna array structures greatly. The results on outage water-filling capacity also show that there exist a fixed relationship that i.i.d. rayleigh channel capacity is larger than the capacity equipped with linear antenna array which is larger than the capacity equipped with rectangular antenna array and the capacity equipped with circular antenna array.

  10. The DESDynI Synthetic Aperture Radar Array-Fed Reflector Antenna

    Science.gov (United States)

    Chamberlain, Neil; Ghaemi, Hirad; Giersch, Louis; Harcke, Leif; Hodges, Richard; Hoffman, James; Johnson, William; Jordan, Rolando; Khayatian, Behrouz; Rosen, Paul; Sadowy, Gregory; Shaffer, Scott; Shen, Yuhsyen; Veilleux, Louise; Wu, Patrick

    2010-01-01

    DESDynI is a mission being developed by NASA with radar and lidar instruments for Earth-orbit remote sensing. This paper focuses on the design of a largeaperture antenna for the radar instrument. The antenna comprises a deployable reflector antenna and an active switched array of patch elements fed by transmit/ receive modules. The antenna and radar architecture facilitates a new mode of synthetic aperture radar imaging called 'SweepSAR'. A system-level description of the antenna is provided, along with predictions of antenna performance.

  11. Reduction of Truncation Errors in Planar, Cylindrical, and Partial Spherical Near-Field Antenna Measurements

    Directory of Open Access Journals (Sweden)

    Francisco José Cano-Fácila

    2012-01-01

    Full Text Available A method to reduce truncation errors in near-field antenna measurements is presented. The method is based on the Gerchberg-Papoulis iterative algorithm used to extrapolate band-limited functions and it is able to extend the valid region of the calculated far-field pattern up to the whole forward hemisphere. The extension of the valid region is achieved by the iterative application of a transformation between two different domains. After each transformation, a filtering process that is based on known information at each domain is applied. The first domain is the spectral domain in which the plane wave spectrum (PWS is reliable only within a known region. The second domain is the field distribution over the antenna under test (AUT plane in which the desired field is assumed to be concentrated on the antenna aperture. The method can be applied to any scanning geometry, but in this paper, only the planar, cylindrical, and partial spherical near-field measurements are considered. Several simulation and measurement examples are presented to verify the effectiveness of the method.

  12. Spoof surface plasmon based planar antennas for the realization of Terahertz hotspots.

    Science.gov (United States)

    Zhang, Yusheng; Han, Zhanghua

    2015-12-22

    Novel spoof surface plasmon based terahertz (THz) antennas are realized using a few number of rectangular grooves perforated in ultrathin metal stripes and the properties of them, including both scattering cross sections and field enhancement, are numerically analyzed. The dependence of these properties on the incident angle and groove number is discussed and the results show that sharp resonances in scattering cross section spectra associated with strong local field enhancement can be achieved. These resonances are due to the formation of Fabry-Perot resonances of the spoof surface plasmon mode and it is found that the order of resonance exhibiting strongest field enhancements is found to coincide with the number of grooves at normal incidence, due to hybridization of the antenna resonance with the individual groove resonance. The terahertz hotspots within the grooves at resonances due to the local field enhancement may open up new possibilities for the investigation of terahertz-matter interactions and boost a variety of THz applications including novel sensing and THz detections. The planar stripe antennas with sharper resonances than dipolar-like resonances, together with their ease of fabrication may also promise new design methodology for metamaterials.

  13. Spoof surface plasmon based planar antennas for the realization of Terahertz hotspots

    Science.gov (United States)

    Zhang, Yusheng; Han, Zhanghua

    2015-12-01

    Novel spoof surface plasmon based terahertz (THz) antennas are realized using a few number of rectangular grooves perforated in ultrathin metal stripes and the properties of them, including both scattering cross sections and field enhancement, are numerically analyzed. The dependence of these properties on the incident angle and groove number is discussed and the results show that sharp resonances in scattering cross section spectra associated with strong local field enhancement can be achieved. These resonances are due to the formation of Fabry-Perot resonances of the spoof surface plasmon mode and it is found that the order of resonance exhibiting strongest field enhancements is found to coincide with the number of grooves at normal incidence, due to hybridization of the antenna resonance with the individual groove resonance. The terahertz hotspots within the grooves at resonances due to the local field enhancement may open up new possibilities for the investigation of terahertz-matter interactions and boost a variety of THz applications including novel sensing and THz detections. The planar stripe antennas with sharper resonances than dipolar-like resonances, together with their ease of fabrication may also promise new design methodology for metamaterials.

  14. A Phased Array Antenna Signal Processing Structure, a Method and a Computer Program Product

    NARCIS (Netherlands)

    Vliet, F.E. van; Dijk, R. van

    2011-01-01

    The invention relates to a phased array antenna signal processing structure. The structure comprises a processor that includes a digital beam forming unit for generating partial beam data from digitized samples of a set of phased array antenna elements. The processor further comprises a set of input

  15. Super-Orthogonal space-time trellis codes for virtual antenna arrays

    CSIR Research Space (South Africa)

    Sokoya, OA

    2006-09-01

    Full Text Available This paper investigates the performance of super-orthogonal space time trellis codes when Virtual Antenna Arrays (VAA) is employed. The concept of virtual antenna arrays was developed to emulate Multiple-Input Multiple-Output (MIMO) schemes...

  16. Planar electron beams in a wiggler magnet array

    Indian Academy of Sciences (India)

    Arti Hadap; K C Mittal

    2013-02-01

    Transport of high current (∼kA range with particle energy ∼ 1 MeV) planar electron beams is a topic of increasing interest for applications in high-power (1–10 GW) and high-frequency (10–20 GHz) microwave devices such as backward wave oscillator (BWO), klystrons, gyro-BWOs, etc. In this paper, we give a simulated result for transport of electron beams with velocity $V_{b} = 5.23 × 10^{8}$ cm s-1 , relativistic factor = 1.16, and beam voltage = ∼80 kV in notched wiggler magnet array. The calculation includes self-consistent effects of beam-generated fields. Our results show that the notched wiggler configuration with ∼6.97 kG magnetic field strength can provide vertical and horizontal confinements for a sheet electron beam with 0.3 cm thickness and 2 cm width. The feasibility calculation addresses to a system expected to drive for 13–20 GHz BWO with rippled waveguide parameters as width = 3.0 cm, thickness = 1.0 cm, corrugation depth ℎ = 0.225 cm, and spatial periodicity = 1.67 cm.

  17. Conformal Patch Antenna Arrays Design for Onboard Ship Deployment Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Stelios A. Mitilineos

    2013-01-01

    Full Text Available Conformal antennas and antenna arrays (arrays have become necessary for vehicular communications where a high degree of aerodynamic drag reduction is needed, like in avionics and ships. However, the necessity to conform to a predefined shape (e.g., of an aircraft’s nose directly affects antenna performance since it imposes strict constraints to the antenna array’s shape, element spacing, relative signal phase, and so forth. Thereupon, it is necessary to investigate counterintuitive and arbitrary antenna shapes in order to compensate for these constraints. Since there does not exist any available theoretical frame for designing and developing arbitrary-shape antennas in a straightforward manner, we have developed a platform combining a genetic algorithm-based design, optimization suite, and an electromagnetic simulator for designing patch antennas with a shape that is not a priori known (the genetic algorithm optimizes the shape of the patch antenna. The proposed platform is further enhanced by the ability to design and optimize antenna arrays and is intended to be used for the design of a series of antennas including conformal antennas for shipping applications. The flexibility and performance of the proposed platform are demonstrated herein via the design of a high-performance GPS patch antenna.

  18. Pattern Synthesis of Dual-band Shared Aperture Interleaved Linear Antenna Arrays

    Directory of Open Access Journals (Sweden)

    H. Guo

    2014-09-01

    Full Text Available This paper presents an approach to improve the efficiency of an array aperture by interleaving two different arrays in the same aperture area. Two sub-arrays working at different frequencies are interleaved in the same linear aperture area. The available aperture area is efficiently used. The element positions of antenna array are optimized by using Invasive Weed Optimization (IWO to reduce the peak side lobe level (PSLL of the radiation pattern. To overcome the shortness of traditional methods which can only fulfill the design of shared aperture antenna array working at the same frequency, this method can achieve the design of dual-band antenna array with wide working frequency range. Simulation results show that the proposed method is feasible and efficient in the synthesis of dual-band shared aperture antenna array.

  19. Antenna coupled detectors for 2D staring focal plane arrays

    Science.gov (United States)

    Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard

    2013-06-01

    Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.

  20. Investigation of certain characteristics of thinned antenna arrays with digital signal processing

    Science.gov (United States)

    Danilevskii, L. V.; Domanov, Iu. A.; Korobko, O. V.; Tauroginskii, B. I.

    1983-11-01

    A thinned array with correlation processing of input signals is examined. It is shown that amplitude quantization does not change the signal at the thinned-array input as compared with the complete antenna array. The discreteness of time delay causes the thinned and complete arrays to become nonequivalent. Computer-simulation results are presented.

  1. Characterization of MMIC devices for active array antennas

    Science.gov (United States)

    Smetana, J.; Farr, E.; Mittra, R.

    1985-01-01

    Certain aspects of monlithic microwave integrated circuit (MMIC) interconnectivity were investigated. Considerations that lead to preserving the inherently reproducible characteristics of the MMIC are proposed. It is shown that at radio frequencies (RF) greater than 20 GHz, the transition from the MMIC device to other transmission media must be an accurate RF match. It is proposed that the RF match is sufficiently critical to include the transition as part of the delivered MMIC package. The model to analyze several transitions is presented. This model consists of a succession of abrupt discontinuities in printed circuit transmission lines. The analysis of these discontinuities is achieved by the Spectral Galerkin technique, to establish the modes and mode that special effects should be coordinated by the active array antenna industry toward standardization of MMIC packaging and characterization.

  2. Monolithic microwave integrated circuit devices for active array antennas

    Science.gov (United States)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  3. Direct Closed-Form Design of Finite Alphabet Constant Envelope Waveforms for Planar Array Beampatterns

    KAUST Repository

    Bouchoucha, Taha

    2015-05-01

    Multiple Input Multiple Output (MIMO) radar systems has attracted lately a lot of attention thanks to its advantage over the classical phased array radar systems. We site among these advantages the improvement of parametric identifiability, achievement of higher spatial resolution and design of complex beampatterns. In colocated multiple-input multiple-output radar systems, it is usually desirable to steer transmitted power in the region-of-interest in order to increase the Signal to Noise Ratio (SNR) and reduce any undesired signal and thus improve the detection process. This problem is also known as transmit beampattern design. To achieve this goal, conventional methods optimize the waveform covariance matrix, R, for the desired beampattern, which is then used to generate the actual transmitted waveforms. Both steps require constrained optimization. Most of the existing methods use iterative algorithms to solve these problems, therefore their computational complexity is very high which makes them hard to use in practice especially for real time radar applications. In this paper, we provide a closed-form solution to design the covariance matrix for a given beampattern in the three dimensional space using planar arrays, which is then used to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope waveforms. The proposed algorithm exploits the two-dimensional discrete Fourier transform which is implemented using fast Fourier transform algorithm. Consequently, the computational complexity of the proposed beampattern solution is very low allowing it to be used for large arrays to change the beampattern in real time. We also show that the number of required snapshots in each waveform depends on the beampattern and that it is less than the total number of transmit antennas. In addition, we show that the proposed waveform design method can be used with non symmetric beampatterns. The performance of our proposed algorithm compares

  4. Improvement on a 2 × 2 Elements High-Gain Circularly Polarized Antenna Array

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-01-01

    Full Text Available A novel antipodal Vivaldi antenna with tapering serrated structure at the edges is proposed. Compared with traditional Vivaldi antennas without serrated structure, the gain of the designed antenna is significantly improved in the desired frequency band (4.5–7.5 GHz. In addition, a 2 × 2 Vivaldi antenna array with an orthorhombic structure is designed and fabricated to achieve a circular polarization (CP characteristic. With this configuration, the 3 dB axial ratio bandwidth of the array reaches about 42% with respect to the center frequency of 6 GHz and a high gain is achieved as well. The novel Vivaldi antenna and CP antenna array both have ultrawide band (UWB and high-gain characteristics, which may be applied to the field of commercial communication, remote sensing, and so forth.

  5. Circularly Polarized Antenna Array Fed by Air-Bridge Free CPW-Slotline Network

    Directory of Open Access Journals (Sweden)

    Yilin Liu

    2017-01-01

    Full Text Available A novel design of 1×2 and 2×2 circularly polarized (CP microstrip patch antenna arrays is presented in this paper. The two CP antenna arrays are fed by sequentially rotated coplanar waveguide (CPW to slotline networks and are processed on 1 mm thick single-layer FR4 substrates. Both of the two arrays are low-profile and lightweight. An air-bridge free CPW-slotline power splitter is appropriately designed to form the feeding networks and realize the two CP antenna arrays. The mechanism of circular polarization in this design is explained. The simulated and measured impedance bandwidths as well as the 3 dB axial ratio bandwidths and the radiation patterns of the two proposed antenna arrays are presented. This proposed design can be easily extended to form a larger plane array with good performance owing to its simple structure.

  6. A microfabricated low-profile wideband antenna array for terahertz communications.

    Science.gov (United States)

    Luk, K M; Zhou, S F; Li, Y J; Wu, F; Ng, K B; Chan, C H; Pang, S W

    2017-04-28

    While terahertz communications are considered to be the future solutions for the increasing demands on bandwidth, terahertz equivalents of radio frequency front-end components have not been realized. It remains challenging to achieve wideband, low profile antenna arrays with highly directive beams of radiation. Here, based on the complementary antenna approach, a wideband 2 × 2 cavity-backed slot antenna array with a corrugated surface is proposed. The approach is based on a unidirectional antenna with a cardiac radiation pattern and stable frequency characteristics that is achieved by integrating a series-resonant electric dipole with a parallel-resonant magnetic dipole. In this design, the slots work as magnetic dipoles while the corrugated surface radiates as an array of electric dipoles. The proposed antenna is realized at 1 THz operating frequency by stacking multiple metallized layers using the microfabrication technology. S-parameter measurements of this terahertz low-profile metallic antenna array demonstrate high efficiency at terahertz frequencies. Fractional bandwidth and gain are measured to be 26% and 14 dBi which are consistent with the simulated results. The proposed antenna can be used as the building block for larger antenna arrays with more directive beams, paving the way to develop high gain low-profile antennas for future communication needs.

  7. On the Currents Magnitude of a Tunable Planar-Inverted-F Antenna for Low-Band Frequencies

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej

    2012-01-01

    Tunable antennas are a promising way to overcome bandwidth limitations for the new communication standards. Nevertheless they become very lossy at low frequencies. This paper presents an investigation on the currents running through the source, the short and the capacitor of a tunable Planar Inve...

  8. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    Science.gov (United States)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each

  9. High Gain and High Directive of Antenna Arrays Utilizing Dielectric Layer on Bismuth Titanate Ceramics

    Directory of Open Access Journals (Sweden)

    F. H. Wee

    2012-01-01

    Full Text Available A high gain and high directive microstrip patch array antenna formed from dielectric layer stacked on bismuth titanate (BiT ceramics have been investigated, fabricated, and measured. The antennas are designed and constructed with a combination of two-, four-, and six-BiT elements in an array form application on microwave substrate. For gain and directivity enhancement, a layer of dielectric was stacked on the BiT antenna array. We measured the gain and directivity of BiT array antennas with and without the dielectric layer and found that the gain of BiT array antenna with the dielectric layer was enhanced by about 1.4 dBi of directivity and 1.3 dB of gain over the one without the dielectric layer at 2.3 GHz. The impedance bandwidth of the BiT array antenna both with and without the dielectric layer is about 500 MHz and 350 MHz, respectively, which is suitable for the application of the WiMAX 2.3 GHz system. The utilization of BiT ceramics that covers about 90% of antenna led to high radiation efficiency, and small-size antennas were produced. In order to validate the proposed design, theoretical and measured results are provided and discussed.

  10. Parallel optical Walsh expansion in a pattern recognition preprocessor using planar microlens array

    Science.gov (United States)

    Murashige, Kimio; Akiba, Atsushi; Baba, Toshihiko; Iga, Kenichi

    1992-05-01

    A parallel optical processor developed for a pattern recognition system using a planar microlens array and a Walsh orthogonal expansion spatial filter is developed. The parallel optical Walsh expansion of multiple images made by the planar microlens array with good accuracy, which assures 99-percent recognition of simple numeral characters in the system, is demonstrated. A novel selection method of Walsh expansion coefficients is proposed in order to enlarge the tolerance of the recognition rate against the deformation of input patterns.

  11. Graphene circular polarization analyzer based on spiral metal triangle antennas arrays.

    Science.gov (United States)

    Zhu, Bofeng; Ren, Guobin; Gao, Yixiao; Wu, Beilei; Wan, Chenglong; Jian, Shuisheng

    2015-09-21

    In this paper we propose a circular polarization analyzer based on spiral metal triangle antenna arrays deposited on graphene. Via the dipole antenna resonances, plasmons are excited on graphene surface and the wavefront can be tailed by arranging metal antennas into linetype, circular or spiral arrays. Especially, for spiral antenna arrays, the geometric phase effect can be cancelled by or superposed on the chirality carried within circular polarization incidence, producing spatially separated solid dot or donut shape fields at the center. Such a phenomenon enables the graphene based spiral metal triangle antennas arrays to achieve functionality as a circular polarization analyzer. Extinction ratio over 550 can be achieved and the working wavelength can be tuned by adjusting graphene Fermi level dynamically. The proposed analyzer may find applications in analyzing chiral molecules using different circularly polarized waves.

  12. Microstrip Array Antenna with 16 Patches for UHF Band Television Signal Reception

    Directory of Open Access Journals (Sweden)

    Yulindon Yulindon

    2013-01-01

    Full Text Available There are 2 commonly known equipment for the reception of television broadcasts i.e. using a parabolic antenna connected to satellite receiver and a wire or pipe antenna that directly connected to the television receiver. Receiving the signal by means of a parabolic antenna is more expensive because it requires additional tools , namely satellite receivers, so generally the people like to choose the easier way by direct receiving the signal using wire antenna. The antenna construction which made of aluminum pipes has a weakness easily bent or broken on the assembling phase as well as when there are high winds causing the antenna mast collapsed, confirmed that the antenna is bent, loose or broken elements. The paper relates to a microstrip antenna for reception of television signals using material printed circuit boards or printed circuit board (PCB which is a thin but strong in the form of a number of patches array separated in a certain distance.

  13. Investigation of ultrasonic phased array inspection of a planar crack using finite element method

    OpenAIRE

    Mardani Kharat, Mostafa; Sodagar,Sina; Rashed, G. R.

    2012-01-01

    International audience; The characteristics of the ultrasonic field radiated by a linear phased array transducer and the echo information of the inspected area are the main basis of designing a phased array inspection system. In this paper, a theoretical investigation is accomplished on the ultrasonic wave diffraction using the ultrasonic phased array method for evaluation of the planar cracks. For this purpose, the ultrasonic wave field resulting from a phased array transducer and its intera...

  14. Thinning and Weighting of Planar/Conformal Arrays Considering Mutual Coupling Effects

    Directory of Open Access Journals (Sweden)

    You-Feng Cheng

    2016-01-01

    Full Text Available Based on an improved active element pattern (AEP technique, a novel effective method for sidelobe suppression considering mutual coupling (MC in planar and conformal sparse arrays is proposed in this paper. A thinning and weighting process that includes the thinning module, optimization module, and far-field calculation module is presented, and three key points, namely, the modified AEP modeling, far-field calculation of planar and conformal thinned arrays, and modified thinning strategy, are highlighted. As an effective optimization algorithm, the differential evolution algorithm (DEA is adopted in order to achieve low sidelobe. Several numerical examples are shown to validate the consistency and effectiveness of the proposed synthesis approach. With the first use of the AEP technique for the synthesis of sparse arrays, the planar and conformal microstrip arrays with the desired array filling factor are studied to obtain the expected sidelobe level (SLL.

  15. Enhancing isolation of antenna arrays by simultaneously blocking and guiding magnetic field lines using magnetic metamaterials

    Science.gov (United States)

    Liu, Zhaotang; Wang, Jiafu; Qu, Shaobo; Zhang, Jieqiu; Ma, Hua; Xu, Zhuo; Zhang, Anxue

    2016-10-01

    In this article, we propose to enhance the isolation of antenna arrays by manipulating the near-field magnetic coupling between adjacent antennas using magnetic metamaterials (MMs). Due to the artificially designed negative or large permeability, MMs can concentrate or block the magnetic field lines where they are located, which allows us to tune the near-field magnetic coupling strengths between antennas. MMs can play a two-fold role in enhancing antenna isolation. On one hand, the magnetic fields can be blocked in gaps between adjacent antennas using MMs with negative permeability; on the other hand, the magnetic fields can be pulled towards the borders of the antenna array using MMs with large permeability. As an example, we demonstrated a four-element patch antenna array with split-ring resonators (SRR) integrated in the substrate. The measured results show that the isolation can be enhanced by more than 10 dB with the integration of SRRs, even if the gap between antennas is only about 0.082λ. This work provides an effective alternative to the design of high-isolation antenna arrays.

  16. Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles

    Science.gov (United States)

    Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian

    2012-01-01

    A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly

  17. Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication

    Science.gov (United States)

    Subbaraman, Harish; Hen, Ray T.; Lu, Xuejun; Chen, Maggie Yihong

    2013-01-01

    NASAs future exploration missions focus on the manned exploration of the Moon, Mars, and beyond, which will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit, and back to Earth. Flexible antennas are highly desired in many scenarios. Active phased array antennas (active PAAs) with distributed control and processing electronics at the surface of an antenna aperture offer numerous advantages for radar communications. Large-area active PAAs on flexible substrates are of particular interest in NASA s space radars due to their efficient inflatable package that can be rolled up during transportation and deployed in space. Such an inflatable package significantly reduces stowage volume and mass. Because of these performance and packaging advantages, large-area inflatable active PAAs are highly desired in NASA s surface-to-orbit and surface-to-relay communications. To address the issues of flexible electronics, a room-temperature printing process of active phased-array antennas on a flexible Kapton substrate was developed. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proved feasible for the PAA system. This innovation is a new type of fully inkjet-printable, two-dimensional, high-frequency PAA on a flexible substrate at room temperature. The designed electronic circuit components, such as the FET switches in the phase shifter, metal interconnection lines, microstrip transmission lines, etc., are all printed using a special inkjet printer. Using the developed technology, entire 1x4, 2x2, and 4x4 PAA systems were developed, packaged, and demonstrated at 5.3 GHz. Several key solutions are addressed in this work to solve the fabrication issues. The source/drain contact is developed using droplets of silver ink printed on the source/drain areas prior to applying CNT thin-film. The wet silver ink droplets allow the silver to

  18. Mechanical Development of a Very Non-Standard Patch Array Antenna for Extreme Environments

    Science.gov (United States)

    Hughes, Richard; Chamberlain, Neil; Jakoboski, Julie; Petkov, Mihail

    2012-01-01

    This paper describes the mechanical development of patch antenna arrays for the Juno mission. The patch arrays are part of a six-frequency microwave radiometer instrument that will be used to measure thermal emissions from Jupiter. The very harsh environmental conditions in Jupiter orbit, as well as a demanding launch environment, resulted in a design that departs radically from conventional printed circuit patch antennas. The paper discusses the development and qualification of the Juno patch array antennas, with emphasis on the materials approach that was devised to mitigate the effects of electron charging in Jupiter orbit.

  19. Mutual Coupling Effects Analysis in a Cross-Rhombic Antenna Array

    Directory of Open Access Journals (Sweden)

    Jorge Sosa-Pedroza

    2012-01-01

    Full Text Available We present an analysis of mutual coupling effects on radiation pattern and individual coupling in a conformal array of cross rhombic antennas. Analysis is made using both full-wave simulation and numerical approaches implemented in Matlab. The array consists of a truncated hexagonal pyramid, with a cross rhombic antenna in each pyramidal face, including the one on the top, having a 7-antennas-array. Results of radiation pattern and S11 parameters are presented, showing mutual coupling effects among the elements.

  20. Modified Fruit Fly Optimization Algorithm for Analysis of Large Antenna Array

    Directory of Open Access Journals (Sweden)

    Nattaset Mhudtongon

    2015-01-01

    Full Text Available This research paper deals with the optimization of a large antenna array for maximum directivity using a modified fruit fly optimization algorithm (MFOA with random search of two groups of swarm and adaptive fruit fly swarm population size. The MFOA is utilized to determine three nonlinear mathematical test functions, analysis of the optimal number of elements and optimal element spacing of the large antenna array, and analysis of nonuniform amplitude of antenna array. The numerical results demonstrate that the MFOA is effective in solving all test function and electromagnetic problems. The advantages of the proposed algorithm are ease of implementation, large search range, less processing time, and reduced memory requirement.

  1. Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application

    Directory of Open Access Journals (Sweden)

    H. Ja’afar

    2016-06-01

    Full Text Available This paper presents a new design of reconfigurable plasma antenna array using commercial fluorescent tube. A round shape reconfigurable plasma antenna array is proposed to collimate beam radiated by an omnidirectional antenna (monopole antenna operates at 2.4GHz in particular direction. The antenna design is consisted of monopole antenna located at the center of circular aluminum ground. The monopole antenna is surrounded by a cylindrical shell of conducting plasma. The plasma shield consists of 12 commercial fluorescent tubes aligned in series containing a mixture of Argon gas and mercury vapor which upon electrification forms plasma columns. The plasma behaves as a conductor and acts as a reflector in radiation, in the condition where plasma frequency,ωp is higher than operating frequency. From this concepts, when all plasma elements are activated or switched to ON, the radiation signal from monopole antenna will trapped inside the plasma blanket and meanwhile when one or more plasma elements is deactivated (switched OFF, the radiation from monopole antenna will escape. This antenna has the capability to change its patterns with beam direction at 0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300° and 330° at frequency 2.4 GHz. The proposed antenna has been successfully fabricated and measured with conclusive results.

  2. The Mutual Interaction effects between Array Antenna Parameters and Receiving Signals Bandwidth

    Directory of Open Access Journals (Sweden)

    Shahad D. Sateaa

    2014-03-01

    Full Text Available The presence of a single complex adaptive weight in each element channel of an adaptive array antenna is sufficient for processing of narrowband signals. The ability of an adaptive array antenna to null interference deteriorates rapidly as the interference bandwidth increases. The performance of narrowband adaptive array antenna with LMCV Beamforming algorithm is examined. The interaction effects between received signal angle of arrival and array parameters like the interelement spacing and the number of array element and the received signal bandwidth were studied. The output Signal to Interference plus Noise Ratio (SINR and Interference to Noise Ratio (INR are used as performance parameters for evaluation of these effects. It is found that the amount of degradation in the output SINR is increased significantly with the increase of array interelement spacing, number of array elements and when the angle of arrival of received signals are closet to end fire.

  3. Low Average Sidelobe Slot Array Antennas for Radiometer Applications

    Science.gov (United States)

    Rengarajan, Sembiam; Zawardzki, Mark S.; Hodges, Richard E.

    2012-01-01

    In radiometer applications, it is required to design antennas that meet low average sidelobe levels and low average return loss over a specified frequency bandwidth. It is a challenge to meet such specifications over a frequency range when one uses resonant elements such as waveguide feed slots. In addition to their inherent narrow frequency band performance, the problem is exacerbated due to modeling errors and manufacturing tolerances. There was a need to develop a design methodology to solve the problem. An iterative design procedure was developed by starting with an array architecture, lattice spacing, aperture distribution, waveguide dimensions, etc. The array was designed using Elliott s technique with appropriate values of the total slot conductance in each radiating waveguide, and the total resistance in each feed waveguide. Subsequently, the array performance was analyzed by the full wave method of moments solution to the pertinent integral equations. Monte Carlo simulations were also carried out to account for amplitude and phase errors introduced for the aperture distribution due to modeling errors as well as manufacturing tolerances. If the design margins for the average sidelobe level and the average return loss were not adequate, array architecture, lattice spacing, aperture distribution, and waveguide dimensions were varied in subsequent iterations. Once the design margins were found to be adequate, the iteration was stopped and a good design was achieved. A symmetric array architecture was found to meet the design specification with adequate margin. The specifications were near 40 dB for angular regions beyond 30 degrees from broadside. Separable Taylor distribution with nbar=4 and 35 dB sidelobe specification was chosen for each principal plane. A non-separable distribution obtained by the genetic algorithm was found to have similar characteristics. The element spacing was obtained to provide the required beamwidth and close to a null in the E

  4. Radiation pattern synthesis of planar antennas using the iterative sampling method

    Science.gov (United States)

    Stutzman, W. L.; Coffey, E. L.

    1975-01-01

    A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.

  5. Radiation pattern synthesis of planar antennas using the iterative sampling method

    Science.gov (United States)

    Stutzman, W. L.; Coffey, E. L.

    1975-01-01

    A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.

  6. Yagi-Uda optical antenna array collimated laser based on surface plasmons

    Science.gov (United States)

    Ma, Long; Lin, Jie; Ma, Yuan; Liu, Bin; Tan, Jiubin; Jin, Peng

    2016-06-01

    The divergence and directivity of a laser with a periodic Yagi-Uda optical antenna array modulated surface are investigated by finite element method. The nanoparticle optical antenna arrays are optimized to achieve the high directivity and the small divergence by using of Helmholtz's reciprocity theorem. When the nanoparticle antenna replaced by a Yagi-Uda antenna with same size, the directivity and the signal-to-noise ratio of the modulated laser beam are notably enhanced. The main reason is that the directors of the Yagi-Uda antennas induce more energy to propagate towards the antenna transmitting direction. The results can provide valuable guidelines in designing collimated laser, which can be widely applied in the field of biologic detection, spatial optical communication and optical measurement.

  7. DESIGN OF HYBRID COUPLER CONNECTED SQUARE ARRAY PATCH ANTENNA FOR Wi-Fi APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. Sahaya Anselin Nisha

    2012-01-01

    Full Text Available Microstrip patch antennas being popular because of light weight, low volume, thin profile configuration which can be made conformal. Wireless communication systems applications circular polarization antenna is placing vital role. In this study we introduce a new technique to produce circular polarization. Hybrid coupler is directly connected to microstrip antenna to get circular polarization. Also gain is further increased by introducing antenna array technique. Each square in array having length of 4.6mm patch is having thickness of 0.381mm and the dielectric material used FR4. The designed antenna having high gain of 6.26dB and directivity of 5.11dB at the resonant frequency of 3.7GHz. Simulation results shows that the designed antenna characteristic is suitable for Wi-Fi applications.

  8. Fourpoint antenna

    OpenAIRE

    2003-01-01

    Wideband antennas with omnidirectional coverage have both military and commercial applications. In one embodiment, the Planar Inverted Cone Antenna (PICA) is composed of a single flat element vertically mounted above a ground plane. A geometry of Planar Inverted Cone Antenna (PICA) is based on the conventional circular-disc antenna with trimmed top part having the shape of a planar-inverted cone, in a second embodiment, the Fourpoint antenna also provides balanced impedance over the operating...

  9. Array Antennas Based Joint Beamforming for IEEE 802.11n Wi-Fi

    Directory of Open Access Journals (Sweden)

    Cheng Guo

    2015-09-01

    Full Text Available In order to achieve array gain and spatial diversity or multiplexing gain simultaneously, a novel joint beamforming based on MIMO and array antenna techniques, referred to as J-BF, is proposed for the LTE and Wifi downlink. Array gain is achieved from array antenna based beamforming, referred to as AA-BF. Spatial diversity and multiplexing gains are achieved from MIMO based beamforming, referred to as MIMO-BF. To implement J-BF, i.e., joint AA-BF and MIMO-BF, an access point (AP is equipped with separate array antennas. Before sending any data-frame in the J-BF mode, firstly, based on the estimated omni-directional CSI, the directional beam can be formed by the array antenna, and the array gain is achieved. Secondly, based on the estimated directional CSI, MIMO-BF is implemented to achieve the spatial diversity or multiplexing gain. More importantly, the J-BF algorithm maintains compatibility with 802.11n and there is not any change in terminals. Simulation results show that the proposed scheme can support the joint AA-BF and MIMO-BF effectively and provide much higher array gain or spatial gains than the traditional MIMO or array antenna respectively.

  10. Compressive Sensing for Blockage Detection in Vehicular Millimeter Wave Antenna Arrays

    KAUST Repository

    Eltayeb, Mohammed E.

    2017-02-07

    The radiation pattern of an antenna array depends on the excitation weights and the geometry of the array. Due to mobility, some vehicular antenna elements might be subjected to full or partial blockages from a plethora of particles like dirt, salt, ice, and water droplets. These particles cause absorption and scattering to the signal incident on the array, and as a result, change the array geometry. This distorts the radiation pattern of the array mostly with an increase in the sidelobe level and decrease in gain. In this paper, we propose a blockage detection technique for millimeter wave vehicular antenna arrays that jointly estimates the locations of the blocked antennas and the attenuation and phase-shifts that result from the suspended particles. The proposed technique does not require the antenna array to be physically removed from the vehicle and permits real-time array diagnosis. Numerical results show that the proposed technique provides satisfactory results in terms of block detection with low detection time provided that the number of blockages is small compared to the array size.

  11. Source reconstruction technique for slot array antennas using the Gerchberg-Papoulis algorithm

    OpenAIRE

    Sano, Makoto; Sierra Castañer, Manuel; Salmerón Ruiz, Tamara; Hirokawa, Jiro; Ando, Makoto

    2014-01-01

    A source reconstruction technique for slot array antennas is presented. By exploiting the information about the positions and the polarizations of slots to the Gerchberg-Papoulis iterative algorithm, the field on the slots is accurately reconstructed. The proposed technique is applied to the source reconstruction of a K-band radial line slot antenna (RLSA), and the simulated and measured results are presented

  12. Leaky-Wave Slot Array Antenna Fed by a Dual Reflector System

    NARCIS (Netherlands)

    Maci, S.; Ettorre, M.; Neto, A.; Gerini, G.

    2008-01-01

    A leaky-wave slot array antenna fed by a dual offset Gregorian reflector system is realized by pins in a parallel plate waveguide. The radiating part of the antenna is composed by parallel slots etched on one side of the same parallel plate waveguide. The dual offset Gregorian reflector system is fe

  13. Dual Polarization Stacked Microstrip Patch Antenna Array With Very Low Cross-Polarization

    DEFF Research Database (Denmark)

    Granholm, Johan; Woelders, Kim

    2001-01-01

    This paper describes the development and performance of a wideband dual linear polarization microstrip antenna array used in the Danish high-resolution airborne multifrequency polarimetric synthetic aperture radar, EMISAR. The antenna was designed for an operating frequency of 1.25 GHz±50 MHz and...

  14. A 28 GHz FR-4 Compatible Phased Array Antenna for 5G Mobile Phone Applications

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    The design of a 28 GHz phased array antenna for future fifth generation (5G) mobile-phone applications has been presented in this paper. The proposed antenna can be implemented using low cost FR-4 substrates, while maintaining good performance in terms of gain and efficiency. This is achieved...

  15. Source reconstruction technique for slot array antennas using the Gerchberg-Papoulis algorithm

    OpenAIRE

    Sano, Makoto; Sierra Castañer, Manuel; Salmerón Ruiz, Tamara; Hirokawa, Jiro; Ando, Makoto

    2014-01-01

    A source reconstruction technique for slot array antennas is presented. By exploiting the information about the positions and the polarizations of slots to the Gerchberg-Papoulis iterative algorithm, the field on the slots is accurately reconstructed. The proposed technique is applied to the source reconstruction of a K-band radial line slot antenna (RLSA), and the simulated and measured results are presented

  16. A Switchable 3D-Coverage Phased Array Antenna Package for 5G Mobile Terminals

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Zhang, Shuai;

    2016-01-01

    antennas have been compactly arranged along the edge region of the mobile phone PCB to form the antenna package. By switching the feeding to one of the sub arrays, the desired direction of coverage can be achieved. The proposed design has >10 dB gain in the upper spherical space, good directivity...

  17. Analysis of the crosstalk in an underwater planar array transducer by the equivalent circuit method

    Science.gov (United States)

    Pyo, Seonghun; Roh, Yongrae

    2017-07-01

    A planar array transducer consists of several transducers arranged on an acoustic window, which causes crosstalk. The crosstalk is a phenomenon in which the acoustic pressure generated by a projector is transferred to adjacent hydrophones through the acoustic window and the transferred pressure generates noise signals in the hydrophones. The performance of the planar array transducer is deteriorated due to this acoustic interaction, which should be minimized for maximum array performance. Analysis of the crosstalk has been carried out with sophisticated numerical methods, which motivated the need to develop a simpler and accurate analysis method. In this work, an equivalent circuit has been developed to analyze the crosstalk level of the planar array transducer, and the validity of the developed method has been verified by comparing the result from the equivalent circuit analysis with that from finite element analysis.

  18. Terahertz coded aperture mask using vanadium dioxide bowtie antenna array

    Science.gov (United States)

    Nadri, Souheil; Percy, Rebecca; Kittiwatanakul, Lin; Arsenovic, Alex; Lu, Jiwei; Wolf, Stu; Weikle, Robert M.

    2014-09-01

    Terahertz imaging systems have received substantial attention from the scientific community for their use in astronomy, spectroscopy, plasma diagnostics and security. One approach to designing such systems is to use focal plane arrays. Although the principle of these systems is straightforward, realizing practical architectures has proven deceptively difficult. A different approach to imaging consists of spatially encoding the incoming flux of electromagnetic energy prior to detection using a reconfigurable mask. This technique is referred to as "coded aperture" or "Hadamard" imaging. This paper details the design, fabrication and testing of a prototype coded aperture mask operating at WR-1.5 (500-750 GHz) that uses the switching properties of vanadium dioxide(VO2). The reconfigurable mask consists of bowtie antennas with vanadium dioxide VO2 elements at the feed points. From the symmetry, a unit cell of the array can be represented by an equivalent waveguide whose dimensions limit the maximum operating frequency. In this design, the cutoff frequency of the unit cell is 640 GHz. The VO2 devices are grown using reactive-biased target ion beam deposition. A reflection coefficient (S11) measurement of the mask in the WR-1.5 (500-750 GHz) band is conducted. The results are compared with circuit models and found to be in good agreement. A simulation of the transmission response of the mask is conducted and shows a transmission modulation of up to 28 dB. This project is a first step towards the development of a full coded aperture imaging system operating at WR-1.5 with VO2 as the mask switching element.

  19. Antenna Array Design in MIMO Radar Using NSK Polynomial Factorization Algorithm

    Directory of Open Access Journals (Sweden)

    Shuainan Gu

    2016-01-01

    Full Text Available The work presented here is concerned with the antenna array design in collocated multiple-input multiple-output (MIMO radars. After knowing the system requirements, the antenna array design problem is formulated as a standard polynomial factorization. In addition, an algorithm based on Newton-Schubert-Kronecker (NSK polynomial factorization is proposed. The algorithm contains three steps. First, linear factors are extracted by extended Vieta theorem. Then, undermined high-order factors are confirmed with Newton interpolation and certain high-order factors should be searched for within the undermined ones. Finally, the antenna array configurations are determined according to the result of polynomial factorization. Simulations confirm the wide use of the proposed algorithm in MIMO radar antenna array design.

  20. A Low Cost, Electronically Scanned Array (ESA) Antenna Technology for Aviation Hazard Detection and Avoidance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will investigate the feasibility of utilizing ThinKom's low cost electronically scanned array (ESA) antenna concepts to enable affordable...

  1. Design of a Compact Wideband Antenna Array for Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    J. Puskely

    2013-12-01

    Full Text Available In the paper, wideband antenna arrays aimed at microwave imaging applications and SAR applications operating at Ka band were designed. The antenna array feeding network is realized by a low-loss SIW technology. Moreover, we have replaced the large feed network comprised of various T and Y junctions by a simple broadband network of compact size to more reduce losses in the substrate integrated waveguide and also save space on the PCB. The designed power 8-way divider is complemented by a wideband substrate integrated waveguide to a grounded coplanar waveguide transition and directly connected to the antenna elements. The measured results of antenna array are consistent with our simulation. Obtained results of the developed array demonstrated improvement compared to previously developed binary feed networks with microstrip or SIW splitters.

  2. Highly Integrated, Reconfigurable, Large-Area, Flexible Radar Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Highly-integrated, reconfigurable radar antenna arrays fabricated on flexible substrates offer high functionality in a portable package that can be rolled up and...

  3. Performance Test of Various Types of Antenna Arrays in Real Propagation Environment

    Science.gov (United States)

    Budiyanto, Setiyo; Nugraha, Beny; WidiAstuti, Dian

    2016-01-01

    The research was conducted on various types of antenna arrays namely Uniform Array, Binomial Array, Dolph-Chebyshev Array, and Taylor Array. This research is done in the real propagation environment in order to define precisely the number of antenna elements, the distance between the elements, the angle of the antenna arrays, the side lobe level and the n-bar array distribution. The testing process is done by using Matlab and the Non-Uniform Array Simulation Program. The results obtained for various types of antenna arrays are as follows: On Uniform Array produces Half Power Beam Width (HPBW) of 10.152° and directivity of l0 dB, on Binomial Array generates Half Power Beam Width (HPBW) of 20.245° and directivity of 7.47 dB, on Dolph-Chebyshev Arrayproduces Half Power Beam Width (HPBW) of 20.304° and directivity of 4.0185 dB, and on Taylor Arrayproduces Half Power Beam Width (HPBW) of 12.78° and directivity of 8.9 dB.

  4. Online Calibration for LTE-Based Antenna Array System

    Directory of Open Access Journals (Sweden)

    Kyunghoon Kim

    2016-01-01

    Full Text Available This paper presents a novel calibration method that equalizes the impulse responses of all the Radio Frequency (RF modules of an antenna array system operating in Long-Term Evolution (LTE evolved NodeB (eNB. The proposed technique utilizes the Zadoff-Chu (Z-C sequence of the Primary Synchronization Signal (PSS and Sounding Reference Signal (SRS that are available in every LTE data frame for downlink and uplink, respectively, for estimating and compensating the differences in the impulse responses among the RF modules. The proposed calibration method is suitable for wide bandwidth signal environments of LTE because it equalizes the impulse response of each RF module, which is ultimately equivalent to compensate the phase and amplitude differences among RF modules for the entire frequency band. In addition, the proposed method is applicable while the target eNB is transmitting or receiving a data stream. From various experimental tests obtained from a test-bed implemented with 2 RF modules, it has been verified that the proposed method provides a reliable calibration for Release 10 Time Division Duplex (TDD LTE signals. Phase errors after the calibration in our test-bed have been found to be about 2.418° and 2.983° for downlink and uplink, respectively.

  5. The Digital Motion Control System for the Submillimeter Array Antennas

    CERN Document Server

    Hunter, T R; Kimberk, R; Leiker, P S; Patel, N A; Blundell, R; Christensen, R D; Diven, A R; Maute, J; Plante, R J; Riddle, P; Young, K H

    2013-01-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter diameter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error functi...

  6. A phased array antenna for Doppler reflectometry in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Stefan; Lechte, Carsten; Kasparek, Walter [IGVP, Universitaet Stuttgart, D-70569 Stuttgart (Germany); Hennequin, Pascale [Laboratoire de Physique des Plasmas, CNRS, Ecole Polytech., F-91128 Palaiseau (France); Conway, Garrard; Happel, Tim [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Collaboration: ASDEX Upgrade Team

    2016-07-01

    In a toroidal plasma, Doppler reflectometry (DR) allows investigating electron density fluctuations with finite k {sub perpendicular} {sub to}. The injected microwave beam's frequency determines the radial position of the probed region, its tilt angle selects the wavenumber satisfying the Bragg condition for backscattering. The rotation velocity can be calculated from the Doppler shift of the backscattered signal's frequency. By varying the injected frequency, radial profiles can be reconstructed. Varying the tilt angle resolves the k {sub perpendicular} {sub to} -spectrum of the fluctuations. For DR, a pair of phased array antennas (PAAs) has been designed, built, and installed in the ASDEX Upgrade tokamak. Beam steering is done by slightly changing the injected frequency, thus, the PAAs do not need any movable parts or electronics inside the vacuum vessel. From 75 to 105 GHz, the PAAs feature 13 frequency bands, each with an angular scan range of -20 to +20 {sup circle}. So, for each angle, there are 13 radial positions to be probed. The results from PAA characterisation, commissioning, and first DR measurements are presented.

  7. Reduction of truncation errors in planar near-field aperture antenna measurements using the method of alternating orthogonal projections

    DEFF Research Database (Denmark)

    Martini, Enrica; Breinbjerg, Olav; Maci, Stefano

    2006-01-01

    A simple and effective procedure for the reduction of truncation error in planar near-field to far-field transformations is presented. The starting point is the consideration that the actual scan plane truncation implies a reliability of the reconstructed plane wave spectrum of the field radiated...... by the antenna only within a certain region inside the visible range. Then, the truncation error is reduced by a Maxwellian continuation of the reliable portion of the spectrum: after back propagating the measured field to the antenna plane, a condition of spatial concentration of the primary field is exploited...

  8. Theory, Design, and Measurement of Novel Uniform Circular Antenna Arrays for Direction of Arrival Estimation

    Science.gov (United States)

    2015-01-01

    the response of ideal dipoles in free-space are indicated by the dashed lines). . . . . . . . . . . 35 Figure 22: Dipole array simulated phase...differences relative to Antenna 1 (the response of ideal dipoles in free-space are indicated by the dashed lines...antenna elements themselves were assumed to be isotropic and V- shaped arrays were used). The Cramer- Rao Lower Bound (CRLB) is commonly used to

  9. Omnidirectional 3D nanoplasmonic optical antenna array via soft-matter transformation.

    Science.gov (United States)

    Ross, Benjamin M; Wu, Liz Y; Lee, Luke P

    2011-07-13

    Inspired by the natural processes during morphogenesis, we demonstrate the transformation capability of active soft-matter to define nanoscale metal-on-polymer architectures below the resolution limit of conventional lithography. Specifically, using active polymers, we fabricate and characterize ultradense nanoplasmonic antenna arrays with sub-10 nm tip-to-tip nanogaps. In addition, the macroscale morphology can be independently manipulated into arbitrary three-dimensional geometries, demonstrated with the fabrication of an omnidirectional nanoplasmonic optical antenna array.

  10. Slow and fast light in SOA-EA structures for phased-array antennas

    DEFF Research Database (Denmark)

    Sales, S.; Öhman, Filip; Bermejo, A.;

    We present an SOA-EA structure for controlling the phase and amplitude of optically fed phased-array antennas. Phase shifts of 40 degrees are obtained through slow and fast light effects by changing only the reverse voltage.......We present an SOA-EA structure for controlling the phase and amplitude of optically fed phased-array antennas. Phase shifts of 40 degrees are obtained through slow and fast light effects by changing only the reverse voltage....

  11. Multiband Planar Inverted-F Antenna with Independent Operating Bands Control for Mobile Handset Applications

    Directory of Open Access Journals (Sweden)

    Mustapha El Halaoui

    2017-01-01

    Full Text Available A new compact multiband PIFA (Planar Inverted-F Antenna for mobile handset is proposed in this article. The proposed PIFA has a simple geometry with four slots integrated in the radiating patch and ground plane. The PIFA occupies a small volume of 51 × 14 × 7.2 mm3 and is placed on the top portion of mobile phone. The optimized PIFA is worked in the 790 MHz band (737–831 MHz, the 1870 MHz band (1794–1977 MHz, the 2550 MHz band (2507–2615 MHz, and the 3400 MHz band (3341–3545 MHz, to cover LTE700, LTE800, DCS1800, PCS1900, LTE1800, LTE1900, LTE2500, and WIMAX3400 bands. Each of the four operating bands can be controlled independently by the variation of a single parameter of the proposed design, with a wide control range. An omnidirectional radiation pattern to each resonant frequency is obtained with a maximum gain of 2.15 dBi at 790 MHz, 3.99 dBi at 1870 MHz, 4.57 dBi at 2550 MHz, and 6.43 dBi at 3400 MHz. The proposed PIFA is studied in the free space and in the presence of other mobile phone components such as the battery, LCD (liquid crystal display, camera, microphone, speaker, buttons, and a plastic housing. The distribution of specific absorption rate for both European and American standards for each operating band and at various distances between the antenna and the human head is also studied.

  12. Receiving antenna array element with extended bandwidth toward low frequencies

    Science.gov (United States)

    Balzovsky, E. V.; Buyanov, Yu I.; Koshelev, V. I.; Nekrasov, E. S.

    2017-08-01

    An ultrawideband antenna based on a short dielectric dipole has been developed to sound dielectric layered media and to search objects including those hidden behind a dielectric barrier. In contrast to the previously presented antennas, the new one has an unbalanced output and contains a built-in balanced-to-unbalanced unit. As a result of optimization of the antenna geometry and topology of active elements, the lower frequency boundary was shifted toward low frequencies. The antenna records short nanosecond pulses with the spectrum ranging from 150 MHz to 2 GHz with small waveform distortions.

  13. Method for Fabricating and Packaging an M.Times.N Phased-Array Antenna

    Science.gov (United States)

    Subbaraman, Harish (Inventor); Xu, Xiaochuan (Inventor); Chen, Yihong (Inventor); Chen, Ray T. (Inventor)

    2017-01-01

    A method for fabricating an M.times.N, P-bit phased-array antenna on a flexible substrate is disclosed. The method comprising ink jet printing and hardening alignment marks, antenna elements, transmission lines, switches, an RF coupler, and multilayer interconnections onto the flexible substrate. The substrate of the M.times.N, P-bit phased-array antenna may comprise an integrated control circuit of printed electronic components such as, photovoltaic cells, batteries, resistors, capacitors, etc. Other embodiments are described and claimed.

  14. Complex image method for RF antenna-plasma inductive coupling calculation in planar geometry. Part I: basic concepts

    Science.gov (United States)

    Howling, A. A.; Guittienne, Ph; Jacquier, R.; Furno, I.

    2015-12-01

    The coupling between an inductive source and the plasma determines the power transfer efficiency and the reflected impedance in the primary circuit. Usually, the plasma coupling is analysed by means of a transformer equivalent circuit, where the plasma inductance and resistance are estimated using a global plasma model. This paper shows that, for planar RF antennas, the mutual inductance between the plasma and the primary circuit can be calculated using partial inductances and the complex image method, where the plasma coupling is determined in terms of the plasma skin depth and the distance to the plasma. To introduce the basic concepts, the mutual inductance is calculated here for a linear conductor parallel to the plasma surface. In the accompanying paper part II Guittienne et al (2015 Plasma Sources Sci. Technol. 24 065015), impedance measurements on a RF resonant planar plasma source are modeled using an impedance matrix where the plasma-antenna mutual impedances are calculated using the complex image method presented here.

  15. New method for the time calibration of an interferometric radio antenna array

    CERN Document Server

    Schröder, F G; Bähren, L; Blümer, J; Bozdog, H; Falcke, H; Haungs, A; Horneffer, A; Huege, T; Isar, P G; Krömer, O; Nehls, S; 10.1016/j.nima.2010.01.072

    2010-01-01

    Digital radio antenna arrays, like LOPES (LOFAR PrototypE Station), detect high-energy cosmic rays via the radio emission from atmospheric extensive air showers. LOPES is an array of dipole antennas placed within and triggered by the KASCADE-Grande experiment on site of the Karlsruhe Institute of Technology, Germany. The antennas are digitally combined to build a radio interferometer by forming a beam into the air shower arrival direction which allows measurements even at low signal-to-noise ratios in individual antennas. This technique requires a precise time calibration. A combination of several calibration steps is used to achieve the necessary timing accuracy of about 1 ns. The group delays of the setup are measured, the frequency dependence of these delays (dispersion) is corrected in the subsequent data analysis, and variations of the delays with time are monitored. We use a transmitting reference antenna, a beacon, which continuously emits sine waves at known frequencies. Variations of the relative del...

  16. Miniaturized dual-band antenna array with double-negative (DNG) metamaterial for wireless applications

    Science.gov (United States)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Vandenbosch, Guy A. E.; Narbudowicz, Adam

    2017-01-01

    A miniaturized dual-band antenna array using a negative index metamaterial is presented for WiMAX, LTE, and WLAN applications. This left-handed metamaterial plane is located behind the antenna array, and its unit cell is a combination of split-ring resonator, square electric ring resonator, and rectangular electrical coupled resonator. This enables the achievement of a metamaterial structure exhibiting both negative permittivity and permeability, which results in antenna size miniaturization, efficiency, and gain enhancement. Moreover, the proposed metamaterial antenna has realized dual-band operating frequencies compared to a single frequency for normal antenna. The measured reflection coefficient (S11) shows a 50.25% bandwidth in the lower band (from 2.119 to 3.058 GHz) and 4.27% in the upper band (from 5.058 to 5.276 GHz). Radiation efficiency obtained in the lower and upper band are >95 and 80%, respectively.

  17. A hybrid antenna array design for 3-d direction of arrival estimation.

    Directory of Open Access Journals (Sweden)

    Najam-Us Saqib

    Full Text Available A 3-D beam scanning antenna array design is proposed that gives a whole 3-D spherical coverage and also suitable for various radar and body-worn devices in the Body Area Networks applications. The Array Factor (AF of the proposed antenna is derived and its various parameters like directivity, Half Power Beam Width (HPBW and Side Lobe Level (SLL are calculated by varying the size of the proposed antenna array. Simulations were carried out in MATLAB 2012b. The radiators are considered isotropic and hence mutual coupling effects are ignored. The proposed array shows a considerable improvement against the existing cylindrical and coaxial cylindrical arrays in terms of 3-D scanning, size, directivity, HPBW and SLL.

  18. Sweet Spot Control of 1:2 Array Antenna using A Modified Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Kyo-Hwan HYUN

    2007-10-01

    Full Text Available This paper presents a novel scheme that quickly searches for the sweet spot of 1:2 array antennas, and locks on to it for high-speed millimeter wavelength transmissions, when communications to another antenna array are disconnected. The proposed method utilizes a modified genetic algorithm, which selects a superior initial group through preprocessing in order to solve the local solution in a genetic algorithm. TDD (Time Division Duplex is utilized as the transfer method and data controller for the antenna. Once the initial communication is completed for the specific number of individuals, no longer antenna's data will be transmitted until each station processes GA in order to produce the next generation. After reproduction, individuals of the next generation become the data, and communication between each station is made again. The simulation results of 1:1, 1:2 array antennas, and experiment results of 1:1 array antenna confirmed the efficiency of the proposed method. The bit of gene is each 8bit, 16bit and 16bit split gene. 16bit split has similar performance as 16bit gene, but the gene of antenna is 8bit.

  19. Measuring Phased-Array Antenna Beampatterns with High Dynamic Range for the Murchison Widefield Array using 137 MHz ORBCOMM Satellites

    CERN Document Server

    Neben, A R; Hewitt, J N; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Deshpande, A A; Goeke, R; Greenhill, L J; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Ord, S M; Prabu, T; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Tingay, S J; Wayth, R B; Webster, R L; Williams, A; Williams, C L

    2015-01-01

    Detection of the fluctuations in 21 cm line emission from neutral hydrogen during the Epoch of Reionization in thousand hour integrations poses stringent requirements on calibration and image quality, both of which necessitate accurate primary beam models. The Murchison Widefield Array (MWA) uses phased array antenna elements which maximize collecting area at the cost of complexity. To quantify their performance, we have developed a novel beam measurement system using the 137 MHz ORBCOMM satellite constellation and a reference dipole antenna. Using power ratio measurements, we measure the {\\it in situ} beampattern of the MWA antenna tile relative to that of the reference antenna, canceling the variation of satellite flux or polarization with time. We employ angular averaging to mitigate multipath effects (ground scattering), and assess environmental systematics with a null experiment in which the MWA tile is replaced with a second reference dipole. We achieve beam measurements over 30 dB dynamic range in beam...

  20. Uniplanar Millimeter-Wave Log-Periodic Dipole Array Antenna Fed by Coplanar Waveguide

    Directory of Open Access Journals (Sweden)

    Guohua Zhai

    2013-01-01

    Full Text Available A uniplanar millimeter-wave broadband printed log-periodic dipole array (PLPDA antenna fed by coplanar waveguide (CPW is introduced. This proposed structure consists of several active dipole elements, feeding lines, parallel coupled line, and the CPW, which are etched on a single metallic layer of the substrate. The parallel coupled line can be optimized to act as a transformer between the CPW and the PLPDA antenna. Meanwhile, this transform performs the task of a balun to achieve a wideband, low cost, low loss, simple directional antenna. The uniplanar nature makes the antenna suitable to be integrated into modern printed communication circuits, especially the monolithic millimeter-wave integrated circuits (MMIC. The antenna has been carefully examined and measured to present the return loss, far-field patterns, and antenna gain.

  1. Isolation Improvement of a Microstrip Patch Array Antenna for WCDMA Indoor Repeater Applications

    Directory of Open Access Journals (Sweden)

    Hongmin Lee

    2012-01-01

    Full Text Available This paper presents the isolation improvement techniques of a microstrip patch array antenna for the indoor wideband code division multiple access (WCDMA repeater applications. One approach is to construct the single-feed switchable feed network structure with an MS/NRI coupled-line coupler in order to reduce the mutual coupling level between antennas. Another approach is to insert the soft surface unit cells near the edges of the microstrip patch elements in order to reduce backward radiation waves. In order to further improve the isolation level, the server antenna and donor antenna are installedinorthogonal direction. The fabricated antenna exhibits a gain over 7 dBi and higher isolation level between server and donor antennas below −70 dB at WCDMA band.

  2. Multiple Interference Cancellation Performance for GPS Receivers with Dual-Polarized Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Moeness G. Amin

    2008-11-01

    Full Text Available This paper examines the interference cancellation performance in global positioning system (GPS receivers equipped with dual-polarized antenna arrays. In dense jamming environment, different types of interferers can be mitigated by the dual-polarized antennas, either acting individually or in conjunction with other receiver antennas. We apply minimum variance distorntionless response (MVDR method to a uniform circular dual-polarized antenna array. The MVDR beamformer is constructed for each satellite. Analysis of the eigenstructures of the covariance matrix and the corresponding weight vector polarization characteristics are provided. Depending on the number of jammers and jammer polarizations, the array chooses to expend its degrees of freedom to counter the jammer polarization or/and use phase coherence to form jammer spatial nulls. Results of interference cancellations demonstrate that applying multiple MVDR beamformers, each for one satellite, has a superior cancellation performance compared to using only one MVDR beamformer for all satellites in the field of view.

  3. Design of Wideband Printed Antenna Array in Corner Reflector with Cosecant Square-Shaped Beam Pattern

    Directory of Open Access Journals (Sweden)

    M. Milijić

    2016-11-01

    Full Text Available The paper presents a wideband printed antenna array with a cosecant square-shaped beam pattern. The array is with four symmetrical pentagonal dipoles as radiating elements operating at the second resonance. The apex of the corner reflector is at a distance λ0/2 from antenna array. Orchard Elliott’s methods and genetic algorithm are used for synthesizing the proposed antenna. A symmetrical tapered feed network of impedance transformers enables a required distribution. Simulated and measured results show that proposed antenna model has a 15 dBi gain and side lobe suppression around 20 dB in E-plane at the frequency of 10 GHz.

  4. Reconfigurable Array Antenna Using Microelectromechanical Systems (MEMS) Actuators

    Science.gov (United States)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2001-01-01

    The paper demonstrates a patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal operating frequency at K-Band In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.

  5. Array of planar membrane modules for producing hydrogen

    Science.gov (United States)

    Vencill, Thomas R [Albuquerque, NM; Chellappa, Anand S [Albuquerque, NM; Rathod, Shailendra B [Hillsboro, OR

    2012-05-08

    A shared or common environment membrane reactor containing a plurality of planar membrane modules with top and bottom thin foil membranes supported by both an intermediary porous support plate and a central base which has both solid extended members and hollow regions or a hollow region whereby the two sides of the base are in fluid communication. The membrane reactor operates at elevate temperatures for generating hydrogen from hydrogen rich feed fuels.

  6. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.

    Science.gov (United States)

    Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C

    2013-12-18

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems.

  7. The effect of the user's body on high-Q and low-Q planar inverted F antennas for LTE frequencies

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej;

    2012-01-01

    The influence of the user's body degrades small antenna performances. This paper investigates the detuning and the losses on high-Q planar antennas for small devices due to user proximity. The results at low frequencies for the Long Term Evolution (LTE) standard are compared to the results for a ...

  8. Experimental investigation on the effect of user's hand proximity on a compact ultrawideband MIMO antenna array

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Foroozanfard, Ehsan;

    2016-01-01

    An experimental study of the interaction between user's hand and an ultrawideband multiple-input multiple-output (MIMO) antenna array is presented for mobile terminals. The dual-element array covers the frequency ranges 698-990 MHz and 1710-5530 MHz with a good efficiency in free space. Depending...

  9. Dual-polarization, wideband microstrip antenna array for airborne C-band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes the development of a C-band, dual linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance...

  10. Spatiospectral and picosecond spatiotemporal properties of a broad area operating channeled-substrate-planar laser array

    Science.gov (United States)

    Yu, NU; Defreez, Richard K.; Bossert, David J.; Wilson, Geoffrey A.; Elliott, Richard A.

    1991-01-01

    Spatiospectral and spatiotemporal properties of an eight-element channeled-substrate-planar laser array are investigated in both CW and pulsed operating conditions. The closely spaced CSP array with strong optical coupling between array elements is characterized by a broad area laserlike operation determined by its spatial mode spectra. The spatiotemporal evolution of the near and far field exhibits complex dynamic behavior in the picosecond to nanosecond domain. Operating parameters for the laser device have been experimentally determined. These results provide important information for the evaluation of the dynamic behavior of coherent semiconductor laser arrays.

  11. Analysis of Circularly Polarized Hemispheroidal Dielectric Resonator Antenna Phased Arrays Using the Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    The method of auxiliary sources is employed to model and analyze probe-fed hemispheroidal dielectric resonator antennas and arrays. Circularly polarized antenna elements of different designs are analyzed, and impedance bandwidths of up to 14.7% are achieved. Selected element designs are subsequen...... are subsequently employed in a seven-element phased array. The array performance is analyzed with respect to scan loss and main beam directivity as a function of scan angle and frequency, and the influence of element separation is investigated....

  12. Novel Method for Optimal Synthesis of 5G Millimeter Wave Linear Antenna Array

    Directory of Open Access Journals (Sweden)

    Zarko Rosic

    2017-01-01

    Full Text Available We will propose a useful method for 5G mm wave antenna array synthesis, based on Genetic Algorithm for the synthesis of linear array with nonuniform interelement spacing. Our design method was used to obtain the optimal position of the elements in order to get the minimum side lobe level and nulls in desired directions. The simulation results verify that proposed method outperforms the previously published methods in terms of suppression side lobe level while maintaining nulls in specified directions. The flexibility of proposed algorithm shows good potential for the antenna array synthesis.

  13. An Optimal Beamforming Algorithm for Phased-Array Antennas Used in Multi-Beam Spaceborne Radiometers

    DEFF Research Database (Denmark)

    Iupikov, O. A.; Ivashina, M. V.; Pontoppidan, K.

    2015-01-01

    Strict requirements for future spaceborne ocean missions using multi-beam radiometers call for new antenna technologies, such as digital beamforming phased arrays. In this paper, we present an optimal beamforming algorithm for phased-array antenna systems designed to operate as focal plane arrays...... (FPA) in push-broom radiometers. This algorithm is formulated as an optimization procedure that maximizes the beam efficiency, while minimizing the side-lobe and cross-polarization power in the area of Earth, subject to a constraint on the beamformer dynamic range. The proposed algorithm is applied...

  14. A Novel Three-Dimensional Beamforming Antenna Array for Wireless Power Focusing

    Directory of Open Access Journals (Sweden)

    Mohammad A. Safar

    2016-01-01

    Full Text Available An antenna array capable of focusing the power transmitted to a specified point in space is modeled and simulated. This array will serve best for wireless power transmission applications where one of the goals is to maximize the power transfer efficiency. The array consists of 100 dipole antennas with each antenna transmitting a sum of 50 signals where each signal has a different frequency. This difference in frequency gives an additional degree of freedom that allows the overall beam pattern to be focused to a point in space instead of just a direction. The same array structure is also capable of transmitting power to multiple points in space which is promising when it comes to powering multiple points of interest.

  15. Wideband Circularly Polarized SIW Antenna Array That Uses Sequential Rotation Feeding

    Directory of Open Access Journals (Sweden)

    Fang-Fang Fan

    2014-01-01

    Full Text Available A wideband right-handed circularly polarized (CP substrate integrated waveguide- (SIW- based diamond ring-slot antenna array at the X-band is presented in this study. The array consists of four elements that exhibit wideband impedance matching characteristics and good radiation performance. The array also employs a sequential rotation feeding method to achieve the wideband axial ratio (AR bandwidth. The feeding network is based on the SIW power divider with a delay line related to sequential rotation feeding. To validate our design, an antenna array is fabricated and measured. The measured impedance and AR bandwidths are 19.2% (VSWR<2 and 14.1% (AR<3 dB, respectively. Moreover, the antenna has a stable CP peak gain of more than 12 dBic from 10.1 GHz to 10.7 GHz.

  16. A Fast MoM Solver (GIFFT) for Large Arrays of Microstrip and Cavity-Backed Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Fasenfest, B J; Capolino, F; Wilton, D

    2005-02-02

    A straightforward numerical analysis of large arrays of arbitrary contour (and possibly missing elements) requires large memory storage and long computation times. Several techniques are currently under development to reduce this cost. One such technique is the GIFFT (Green's function interpolation and FFT) method discussed here that belongs to the class of fast solvers for large structures. This method uses a modification of the standard AIM approach [1] that takes into account the reusability properties of matrices that arise from identical array elements. If the array consists of planar conducting bodies, the array elements are meshed using standard subdomain basis functions, such as the RWG basis. The Green's function is then projected onto a sparse regular grid of separable interpolating polynomials. This grid can then be used in a 2D or 3D FFT to accelerate the matrix-vector product used in an iterative solver [2]. The method has been proven to greatly reduce solve time by speeding up the matrix-vector product computation. The GIFFT approach also reduces fill time and memory requirements, since only the near element interactions need to be calculated exactly. The present work extends GIFFT to layered material Green's functions and multiregion interactions via slots in ground planes. In addition, a preconditioner is implemented to greatly reduce the number of iterations required for a solution. The general scheme of the GIFFT method is reported in [2]; this contribution is limited to presenting new results for array antennas made of slot-excited patches and cavity-backed patch antennas.

  17. SCRLH-TL Based Sequential Rotation Feed Network for Broadband Circularly Polarized Antenna Array

    Directory of Open Access Journals (Sweden)

    B. F. Zong

    2016-04-01

    Full Text Available In this paper, a broadband circularly polarized (CP microstrip antenna array using composite right/left-handed transmission line (SCRLH-TL based sequential rotation (SR feed network is presented. The characteristics of a SCRLH-TL are initially investigated. Then, a broadband and low insertion loss 45º phase shifter is designed using the SCRLH-TL and the phase shifter is employed in constructing a SR feed network for CP antenna array. To validate the design method of the SR feed network, a 2×2 antenna array comprising sequentially rotated coupled stacked CP antenna elements is designed, fabricated and measured. Both the simulated and measured results indicate that the performances of the antenna element are further enhanced when the SR network is used. The antenna array exhibits the VSWR less than 1.8 dB from 4 GHz to 7 GHz and the 3 dB axial ratio (AR from 4.4 GHz to 6.8 GHz. Also, high peak gain of 13.7 dBic is obtained. Besides, the normalized radiation patterns at the operating frequencies are symmetrical and the side lobe levels are low at φ=0º and φ=90º.

  18. Dual Polarization Multi-Frequency Antenna Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative approaches for broadband multi-function antennas that conserve vehicle weight and reduce drag are welcome solutions for all airborne platforms including...

  19. Planar wire array performance scaling at multi-MA levels on the Saturn generator.

    Energy Technology Data Exchange (ETDEWEB)

    Chuvatin, Alexander S. (Laboratoire du Centre National de la Recherche Scientifique Ecole Polytechnique, Palaiseau, France); Jones, Michael; Vesey, Roger Alan; Waisman, Eduardo M.; Esaulov, Andrey A. (University of Nevada, Reno, NV); Ampleford, David J.; Kantsyrev, Victor Leonidovich (University of Nevada, Reno, NV); Cuneo, Michael Edward; Rudakov, L. I. (Icarus Research Inc., Bethesda, MD); Coverdale, Christine Anne; Jones, Brent Manley; Safronova, Alla S. (University of Nevada, Reno, NV)

    2007-10-01

    A series of twelve shots were performed on the Saturn generator in order to conduct an initial evaluation of the planar wire array z-pinch concept at multi-MA current levels. Planar wire arrays, in which all wires lie in a single plane, could offer advantages over standard cylindrical wire arrays for driving hohlraums for inertial confinement fusion studies as the surface area of the electrodes in the load region (which serve as hohlraum walls) may be substantially reduced. In these experiments, mass and array width scans were performed using tungsten wires. A maximum total radiated x-ray power of 10 {+-} 2 TW was observed with 20 mm wide arrays imploding in {approx}100 ns at a load current of {approx}3 MA, limited by the high inductance. Decreased power in the 4-6 TW range was observed at the smallest width studied (8 mm). 10 kJ of Al K-shell x-rays were obtained in one Al planar array fielded. This report will discuss the zero-dimensional calculations used to design the loads, the results of the experiments, and potential future research to determine if planar wire arrays will continue to scale favorably at current levels typical of the Z machine. Implosion dynamics will be discussed, including x-ray self-emission imaging used to infer the velocity of the implosion front and the potential role of trailing mass. Resistive heating has been previously cited as the cause for enhanced yields observed in excess of jxB-coupled energy. The analysis presented in this report suggests that jxB-coupled energy may explain as much as the energy in the first x-ray pulse but not the total yield, which is similar to our present understanding of cylindrical wire array behavior.

  20. An Iterative Technique for the Synthesis of Active Antenna Oscillator Arrays

    Directory of Open Access Journals (Sweden)

    Theodoros N. Kaifas

    2009-01-01

    Full Text Available A design procedure for the synthesis of a coupled active antenna oscillator array is presented. Such an array is synthesized by deriving two sets of parameters: the radiators' positions and the oscillators' outputs. The outputs are used to excite the radiators. Minimization of the mean square error between the desired pattern and the resulting one is made. Synthesis starts from an initial array, which is perturbed iteratively by varying simultaneously the element excitations and positions. In the iteration, the first variation of the cost function is set equal to zero. The final array results from the last iteration, where the stopping criteria are met. The procedure designs simultaneously both the antenna and the attached coupled oscillator array providing viable solutions. The second by properly configuring the tuning parameters through the use of closed-form formulas. The resulting arrays are shown to comply with the desired pattern and the nonlinear dynamics thus proving the validity of our method.

  1. Imaging Functions of Quasi-Periodic Nanohole Array as an Ultra-Thin Planar Optical Lens

    Directory of Open Access Journals (Sweden)

    Tsung Sheng Kao

    2015-06-01

    Full Text Available In this paper, the lensing functions and imaging abilities of a quasi-periodic nanohole array in a metal screen have been theoretically investigated and demonstrated. Such an optical binary mask with nanoholes designed in an aperiodic arrangement can function as an ultra-thin planar optical lens, imaging complex structures composed of multiple light sources at tens of wavelengths away from the lens surface. Via resolving two adjacent testing objects at different separations, the effective numerical aperture (N.A. and the effective imaging area of the planar optical lens can be evaluated, mimicking the imaging function of a conventional lens with high N.A. Furthermore, by using the quasi-periodic nanohole array as an ultra-thin planar optical lens, important applications such as X-ray imaging and nano-optical circuits may be found in circumstances where conventional optical lenses cannot readily be applied.

  2. An Iterative Technique for the Synthesis of Active Antenna Oscillator Arrays

    OpenAIRE

    Kaifas, Theodoros N.; Sahalos, John N.

    2009-01-01

    A design procedure for the synthesis of a coupled active antenna oscillator array is presented. Such an array is synthesized by deriving two sets of parameters: the radiators' positions and the oscillators' outputs. The outputs are used to excite the radiators. Minimization of the mean square error between the desired pattern and the resulting one is made. Synthesis starts from an initial array, which is perturbed iteratively by varying simultaneously the element excitations and positions. In...

  3. Silicon-Based Antenna-Coupled Polarization-Sensitive Millimeter-Wave Bolometer Arrays for Cosmic Microwave Background Instruments

    CERN Document Server

    Rostem, Karwan; Appel, John W; Bennett, Charles L; Brown, Ari; Chang, Meng-Ping; Chuss, David T; Colazo, Felipe A; Costen, Nick; Denis, Kevin L; Essinger-Hileman, Tom; Hu, Ron; Marriage, Tobias A; Moseley, Samuel H; Stevenson, Thomas R; U-Yen, Kongpop; Wollack, Edward J; Xu, Zhilei

    2016-01-01

    We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define th...

  4. Amplitude calibration of a digital radio antenna array for measuring cosmic ray air showers

    CERN Document Server

    Nehls, S; Arts, M J; Bluemer, J; Bozdog, H; van Cappellen, W A; Falcke, H; Haungs, A; Horneffer, A; Huege, T; Isar, P G; Krömer, O

    2008-01-01

    Radio pulses are emitted during the development of air showers, where air showers are generated by ultra-high energy cosmic rays entering the Earth's atmosphere. These nanosecond short pulses are presently investigated by various experiments for the purpose of using them as a new detection technique for cosmic particles. For an array of 30 digital radio antennas (LOPES experiment) an absolute amplitude calibration of the radio antennas including the full electronic chain of the data acquisition system is performed, in order to estimate absolute values of the electric field strength for these short radio pulses. This is mandatory, because the measured radio signals in the MHz frequency range have to be compared with theoretical estimates and with predictions from Monte Carlo simulations to reconstruct features of the primary cosmic particle. A commercial reference radio emitter is used to estimate frequency dependent correction factors for each single antenna of the radio antenna array. The expected received p...

  5. Design of a rectenna system for GSM-900 band using novel broadside 2 × 1 array antenna

    Directory of Open Access Journals (Sweden)

    Manish Singh

    2017-05-01

    Full Text Available In this study, a rectenna operating at the GSM-900 frequency band has been fabricated and tested. This rectenna composed of a 2 × 1 T-shaped monopole array antenna and an energy processing circuit. In order to reduce the gap between adjacent antenna elements in the array structure, the proposed array antenna uses a ground stub. Compared with other array antennas, the proposed array antenna with the ground stub reduces the size up to 50% without affecting the gain and bandwidth. An antenna prototype is fabricated and experimentally tested. The measured antenna's gain and bandwidth are 3.2 and 152 MHz, respectively, hence showing its suitability for radio-frequency (RF energy harvesting application. For this to be feasible, the developed array antenna is matched with the rectifier at GSM-900 using a single stub matching network. The measured result demonstrates that the proposed rectifier circuit offers the conversion efficiency of 21.2 and 63.6% for an input power of −20 and 0 dBm, respectively. Finally, the rectifier performance is attested experimentally with the developed array antenna. The rectenna's measured RF-to-dc conversion efficiency was found to be 60% at the far-field distance from the transmitting antenna.

  6. Novel Compact Mushroom-Type EBG Structure for Electromagnetic Coupling Reduction of Microstrip Antenna array

    Science.gov (United States)

    Hu, Lizhong; Wang, Guangming; Liang, Jiangang; Zhang, Chenxin

    2015-03-01

    A novel compact electromagnetic bandgap (EBG) structure consisting of two turns complementary spiral resonator (CSR) and conventional mushroom EBG (CM-EBG) structure is introduced to suppress the mutual coupling in antenna arrays for multiple-input and multiple-output (MIMO) applications. Eigenmode calculation is used to investigate the proposed CSR-loaded mushroom-type EBG (MT-EBG), which proved to exhibit bandgap property and a miniaturization of 48.9% is realized compared with the CM-EBG. By inserting the proposed EBG structure between two E-plane coupled microstrip antennas, a mutual coupling reduction of 8.13 dB has been achieved numerically and experimentally. Moreover, the EBG-loaded antenna has better far-field radiation patterns compared with the reference antenna. Thus, this novel EBG structure with advantages of compactness and high decoupling efficiency opens an avenue to new types of antennas with super performances.

  7. BER Performance Evaluation of two Types of Antenna Array-Based Receivers in a Multipath Channel

    Directory of Open Access Journals (Sweden)

    Rim Haddad

    2010-11-01

    Full Text Available Smart antennasystems have received much attention in the last few years because they can increasesystem capacity by dynamically tuning out interference while focusing on the intended user.In this paper, we focused our research on the performance of two kinds of smart antenna receivers. Ananalytical model is proposed for evaluating the BER performance using a closed-form expression. Also,for the adaptive array, a simple way to account the multi-access interference can be exploited to evaluatethe average probability of error when the users are randomly distributed within an angular sector.The proposed model confirms the benefits of adaptive antennas in reducing the overall interference level(intercell/intracell and to find an accurate approximation of the error probability.In the two kinds of receivers, we assessed the impact of smart antenna systems and we considered thecase of conventional single antenna receiver model as reference (single user/single antenna.

  8. Beamforming Errors in Murchison Widefield Array Phased Array Antennas and their effects on Epoch of Reionization Science

    CERN Document Server

    Neben, A R; Bradley, R F; Dillon, J S; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Corey, B E; Deshpande, A A; Goeke, R; Greenhill, L J; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Ord, S M; Prabu, T; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Tingay, S J; Wayth, R B; Webster, R L; Williams, A; Williams, C L

    2016-01-01

    Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21cm spectral line emission from the Dark Ages and the Epoch of Reionization and unlock the scientific potential of 21cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of order +/- 10-20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100m baseline and find that using an otherwise perfect foreground model, unmodeled beamforming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by ...

  9. Some Recent Developments of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2012-01-01

    Full Text Available Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB, high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.

  10. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    Science.gov (United States)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire

  11. Understanding and optimizing microstrip patch antenna cross polarization radiation on element level for demanding phased array antennas in weather radar applications

    Science.gov (United States)

    Vollbracht, D.

    2015-11-01

    The antenna cross polarization suppression (CPS) is of significant importance for the accurate calculation of polarimetric weather radar moments. State-of-the-art reflector antennas fulfill these requirements, but phased array antennas are changing their CPS during the main beam shift, off-broadside direction. Since the cross polarization (x-pol) of the array pattern is affected by the x-pol element factor, the single antenna element should be designed for maximum CPS, not only at broadside, but also for the complete angular electronic scan (e-scan) range of the phased array antenna main beam positions. Different methods for reducing the x-pol radiation from microstrip patch antenna elements, available from literature sources, are discussed and summarized. The potential x-pol sources from probe fed microstrip patch antennas are investigated. Due to the lack of literature references, circular and square shaped X-Band radiators are compared in their x-pol performance and the microstrip patch antenna size variation was analyzed for improved x-pol pattern. Furthermore, the most promising technique for the reduction of x-pol radiation, namely "differential feeding with two RF signals 180° out of phase", is compared to single fed patch antennas and thoroughly investigated for phased array applications with simulation results from CST MICROWAVE STUDIO (CST MWS). A new explanation for the excellent port isolation of dual linear polarized and differential fed patch antennas is given graphically. The antenna radiation pattern from single fed and differential fed microstrip patch antennas are analyzed and the shapes of the x-pol patterns are discussed with the well-known cavity model. Moreover, two new visual based electromagnetic approaches for the explanation of the x-pol generation will be given: the field line approach and the surface current distribution approach provide new insight in understanding the generation of x-pol component in microstrip patch antenna radiation

  12. The impact of solar cell technology on planar solar array performance

    Science.gov (United States)

    Mills, Michael W.; Kurland, Richard M.

    1989-01-01

    The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.

  13. High Density Planar High Temperature Superconducting Josephson Junctions Arrays

    Science.gov (United States)

    2006-09-01

    TIT,) 3 dependance . At lower temperatures it follows a (1 - T/T,)2 depen- dance ........ ................................... 57 4.7 Shapiro steps in...70 4.23 Dependance of the critical current for a ten junction array on mi- crowave power ..................................... 71 4.24 Resistance vs...GHz microwave radiation. (b) Microwave power dependance of the critical current and 1st-order Shapiro step. 76 5.2 (a) Single junction critical current

  14. Novel Sequential Rotated 2x2 Array Notched Circular Patch Antenna

    Directory of Open Access Journals (Sweden)

    M L S N S Lakshmi

    2015-11-01

    Full Text Available This article presents a novel high gain rotated circular patch antenna operating at S-band. Circular patches are arranged with probe feeding in a particular order to get circular polarization. By employing sequential rotation technique, the proposed antenna is giving an impedance bandwidth of more than 40% (return loss less than -10 dB and 3dB axial ratio bandwidth of 15% in the operating band with peak gain around 13 dB. Array antenna is fabricated on RT-duroid substrate and the measured results are showing good agreement with the simulation results.

  15. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection.

    Science.gov (United States)

    Smythe, Elizabeth J; Dickey, Michael D; Bao, Jiming; Whitesides, George M; Capasso, Federico

    2009-03-01

    This paper reports a bidirectional fiber optic probe for the detection of surface-enhanced Raman scattering (SERS). One facet of the probe features an array of gold optical antennas designed to enhance Raman signals, while the other facet of the fiber is used for the input and collection of light. Simultaneous detection of benzenethiol and 2-[(E)-2-pyridin-4-ylethenyl]pyridine is demonstrated through a 35 cm long fiber. The array of nanoscale optical antennas was first defined by electron-beam lithography on a silicon wafer. The array was subsequently stripped from the wafer and then transferred to the facet of a fiber. Lithographic definition of the antennas provides a method for producing two-dimensional arrays with well-defined geometry, which allows (i) the optical response of the probe to be tuned and (ii) the density of "hot spots" generating the enhanced Raman signal to be controlled. It is difficult to determine the Raman signal enhancement factor (EF) of most fiber optic Raman sensors featuring hot spots because the geometry of the Raman enhancing nanostructures is poorly defined. The ability to control the size and spacing of the antennas enables the EF of the transferred array to be estimated. EF values estimated after focusing a laser directly onto the transferred array ranged from 2.6 x 10(5) to 5.1 x 10(5).

  16. Multibeam Antennas Array Pattern Synthesis Using a Variational Method

    Directory of Open Access Journals (Sweden)

    F. T. Bendimerad

    2007-06-01

    Full Text Available In this paper a new method is described for multibeam antennas synthesis where both the amplitude and phase of each radiating element is a design variable. The developed optimization method made possible to solve the synthesis problem and to answer all the constraints imposed by the radiation pattern. Two approaches for visualizing satellite antenna radiation patterns are presented. Gain-level contours drawn over a geographical map gives clearest qualitative information. A three-dimensional (3D surface plot displays the qualitative shape of the radiation pattern more naturally. The simulations results have shown power, precision and speed of the variational method with respect to the constraints imposed on radiation pattern of the of multibeam antennas network.

  17. Bandwidth enhancement of a multilayered polymeric comb array antenna for millimeter-wave applications

    Science.gov (United States)

    Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi; Narbudowicz, Adam

    2017-01-01

    This paper introduces a new multilayered polymeric comb array antenna fabricated on a polydimethylsiloxane (PDMS) dielectric substrate. PDMS is selected due to its excellent electrical and mechanical properties such as low permittivity, water resistance and robustness. The polymeric comb array antenna consists of a zigzag array aligned at -90° with respect to the radiating patch with full ground plane. The radiating patch is embedded inside the PDMS substrate while the coaxial connector is located at the bottom of the transmission line. The proposed antenna functions from 22.649 to 27.792 GHz. Simulated and measured reflection coefficients and radiation patterns agreed well. A maximum gain of 9.856 dB is recorded at 25 GHz, indicating suitability for implementation in millimeter-wave applications.

  18. Proximity fed gap-coupled half E-shaped microstrip antenna array

    Indian Academy of Sciences (India)

    Amit A Deshmukh; K P Ray

    2015-02-01

    Broadband gap-coupled array configuration of proximity fed rectangular microstrip antenna with half E-shaped microstrip antennas are proposed. The rectangular slot in half E-shaped patch reduces the orthogonal TM01 mode resonance frequency of equivalent rectangular patch and along with TM10 modes of fed and parasitic rectangular patches, yields broader bandwidth of more than 470 MHz (> 45%). An improvement in radiation pattern and gain characteristics over the bandwidth is obtained by gap-coupling half E-shaped patches along all the edges of proximity fed rectangular patch, which yields bandwidth of nearly 510 MHz (∼49%). Further to enhance the gain, a gap-coupled 3 × 3 array configuration of half E-shaped patches with proximity fed rectangular microstrip antenna is proposed. The gap-coupled array configuration yields bandwidth of more than 530 MHz (>50%) with broadside radiation pattern and peak gain of 11 dBi.

  19. State-of-the-art and trends of Ground-Penetrating Radar antenna arrays

    Science.gov (United States)

    Vescovo, Roberto; Pajewski, Lara; Tosti, Fabio

    2016-04-01

    The aim of this contribution is to offer an overview on the antenna arrays for GPR systems, current trends and open issues. Antennas are a critical hardware component of a radar system, dictating its performance in terms of capability to detect targets. Nevertheless, most of the research efforts in the Ground-Penetrating Radar (GPR) area focus on the use of this imaging technique in a plethora of different applications and on the improvement of modelling/inversion/processing techniques, whereas a limited number of studies deal with technological issues related to the design of novel systems, including the synthesis, optimisation and characterisation of advanced antennas. Even fewer are the research activities carried out to develop innovative antenna arrays. GPR antennas operate in a strongly demanding environment and should satisfy a number of requirements, somehow unique and very different than those of conventional radar antennas. The same applies to GPR antenna arrays. The first requirement is an ultra-wide frequency band: the radar has to transmit and receive short-duration time-domain waveforms, in the order of a few nanoseconds, the time-duration of the emitted pulses being a trade-off between the desired radar resolution and penetration depth. Furthermore, GPR antennas should have a linear phase characteristic over the whole operational frequency range, predictable polarisation and gain. Due to the fact that a subsurface imaging system is essentially a short-range radar, the coupling between transmitting and receiving antennas has to be low and short in time. GPR antennas should have quick ring-down characteristics, in order to prevent masking of targets and guarantee a good resolution. The radiation patterns should ensure minimal interference with unwanted objects, usually present in the complex operational environment; to this aim, antennas should provide high directivity and concentrate the electromagnetic energy into a narrow solid angle. As GPR

  20. Distributed genetic algorithm for optimal planar arrays of aperture synthesis telescope

    Institute of Scientific and Technical Information of China (English)

    贺小箭; 唐新怀; 尤晋元; 文建国

    2004-01-01

    Sparse arrays of telescopes have a limited ( u, v)-plane coverage. In this paper, an optimization method for designing planar arrays of an aperture synthesis telescope is proposed that is based on distributed genetic algorithm. This distributed genetic algorithm is implemented on a network of workstations using community communication model. Such an aperture synthesis system performs with imperfection of (u, v) components caused by deviations and(or) some missing baselines. With the maximum ( u, v)-plane coverage of this rotation-optimized array, the image of the source reconstructed by inverse Fourier transform is satisfactory.

  1. Airborne electronically steerable phased array. [steerable antennas - systems analysis

    Science.gov (United States)

    Coats, R.

    1975-01-01

    Results of a study directed to the design of a lightweight high-gain, spaceborne communications array are presented. The array includes simultaneous transmission and receiving, automatic acquisition and tracking of a signal within a 60-degree cone from the array normal, and provides for independent forming of the transmit and receive beams. Application for this array is the space shuttle, space station, or any of the advanced manned (or unmanned) orbital vehicles. Performance specifications are also given.

  2. Engineering Design of Planar Near-field Antenna Multi-tasks Measurement System%平面近场天线多任务测试系统工程设计

    Institute of Scientific and Technical Information of China (English)

    邵余峰; 候飞; 陈升一

    2013-01-01

    A mehod of engineering design for planar near-field multi-tasks measurement system is introduced. This method is to upgrade traditional planar near-field measurement system in order to measure phased array antenna on multi-frequencies. Multi-beam positions, multi channels by 35 antenna patterns measured once at best through adding a multi-function testing antenna controller and a remote microwave switch. New import source of amplitude-phase error and scanning plane truncation error are calculated and analyzed. Results of testing a phased arrary antenna show that it not only improves efficiency of measurement but also makes no ef-fection on precision of measuring antenna in planar near-field.%提出了一种平面近场天线多任务测试系统的工程设计方法,该方法通过增加多功能天线测试控制器和远控微波开关对传统平面近场测试系统进行升级,使其具备对平面相控阵雷达天线多频点、多波位、多通道一次最多可测试35个天线方向图的测试能力.对新引入的幅相误差及扫描面截断误差进行了计算分析.大型相控阵天线的实测结果表明,在提高测试效率的同时,其测试精度亦能满足测试要求.

  3. Energy detection using very large antenna array receivers

    DEFF Research Database (Denmark)

    Oliveras Martínez, Àlex; De Carvalho, Elisabeth; Popovski, Petar;

    2014-01-01

    We propose the use of energy detection for single stream transmission and reception by a very large number of antennas, with primary application to millimeter wave communications. The reason for applying energy detection is low complexity, cost and power efficiency. While both energy detection...... and millimeter wave communications are limited to short ranges due respectively to noise sensitivity and propagation attenuation, processing by a large number of receive antennas overcomes those shortcomings to provide significant reach extension. This processing is solely based on long-term statistics...

  4. Wave front engineering from an array of thin aperture antennas.

    Science.gov (United States)

    Kang, Ming; Feng, Tianhua; Wang, Hui-Tian; Li, Jensen

    2012-07-01

    We propose an ultra-thin metamaterial constructed by an ensemble of the same type of anisotropic aperture antennas with phase discontinuity for wave front manipulation across the metamaterial. A circularly polarized light is completely converted to the cross-polarized light which can either be bent or focused tightly near the diffraction limit. It depends on a precise control of the optical-axis profile of the antennas on a subwavelength scale, in which the rotation angle of the optical axis has a simple linear relationship to the phase discontinuity. Such an approach enables effective wave front engineering within a subwavelength scale.

  5. Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna; Hansen, Jesper S.; Stibius, Karin B.

    2011-01-01

    reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR)=50 more than 105 FomA proteins could be incorporated......Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We...... establish a protein incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein...

  6. Corporate-Feed Multilayer Bow-Tie Antenna Array Design Using a Simple Transmission Line Model

    Directory of Open Access Journals (Sweden)

    S. Didouh

    2012-01-01

    Full Text Available A transmission line model is used to design corporate-fed multilayered bow-tie antennas arrays; the simulated antennas arrays are designed to resonate at the frequencies 2.4 GHz, 5 GHz, and 8 GHz corresponding to RFID, WIFI, and radars applications. The contribution of this paper consists of modeling multilayer bow-tie antenna array fed through an aperture using transmission line model. The transmission line model is simple and precise and allows taking into account the whole geometrical, electrical, and technological characteristics of the antennas arrays. The proposed transmission line model showed its interest in the design of different multilayered bow-tie antennas and predicted the correct resonance frequency for different applications in telecommunications. To validate the proposed transmission line model, the simulation results obtained are compared with those obtained by the method of moments. The results of simulations are presented and discussed. Using this transmission line approach, the resonant frequency, input impedance, and return loss can be determined simultaneously. The paper reports several simulation results that confirm the validity of the developed model. The obtained results are then presented and discussed.

  7. Precise Calibration of a GNSS Antenna Array for Adaptive Beamforming Applications

    Directory of Open Access Journals (Sweden)

    Saeed Daneshmand

    2014-05-01

    Full Text Available The use of global navigation satellite system (GNSS antenna arrays for applications such as interference counter-measure, attitude determination and signal-to-noise ratio (SNR enhancement is attracting significant attention. However, precise antenna array calibration remains a major challenge. This paper proposes a new method for calibrating a GNSS antenna array using live signals and an inertial measurement unit (IMU. Moreover, a second method that employs the calibration results for the estimation of steering vectors is also proposed. These two methods are applied to the receiver in two modes, namely calibration and operation. In the calibration mode, a two-stage optimization for precise calibration is used; in the first stage, constant uncertainties are estimated while in the second stage, the dependency of each antenna element gain and phase patterns to the received signal direction of arrival (DOA is considered for refined calibration. In the operation mode, a low-complexity iterative and fast-converging method is applied to estimate the satellite signal steering vectors using the calibration results. This makes the technique suitable for real-time applications employing a precisely calibrated antenna array. The proposed calibration method is applied to GPS signals to verify its applicability and assess its performance. Furthermore, the data set is used to evaluate the proposed iterative method in the receiver operation mode for two different applications, namely attitude determination and SNR enhancement.

  8. Precise calibration of a GNSS antenna array for adaptive beamforming applications.

    Science.gov (United States)

    Daneshmand, Saeed; Sokhandan, Negin; Zaeri-Amirani, Mohammad; Lachapelle, Gérard

    2014-05-30

    The use of global navigation satellite system (GNSS) antenna arrays for applications such as interference counter-measure, attitude determination and signal-to-noise ratio (SNR) enhancement is attracting significant attention. However, precise antenna array calibration remains a major challenge. This paper proposes a new method for calibrating a GNSS antenna array using live signals and an inertial measurement unit (IMU). Moreover, a second method that employs the calibration results for the estimation of steering vectors is also proposed. These two methods are applied to the receiver in two modes, namely calibration and operation. In the calibration mode, a two-stage optimization for precise calibration is used; in the first stage, constant uncertainties are estimated while in the second stage, the dependency of each antenna element gain and phase patterns to the received signal direction of arrival (DOA) is considered for refined calibration. In the operation mode, a low-complexity iterative and fast-converging method is applied to estimate the satellite signal steering vectors using the calibration results. This makes the technique suitable for real-time applications employing a precisely calibrated antenna array. The proposed calibration method is applied to GPS signals to verify its applicability and assess its performance. Furthermore, the data set is used to evaluate the proposed iterative method in the receiver operation mode for two different applications, namely attitude determination and SNR enhancement.

  9. Nullspace MUSIC and Improved Radio Frequency Emitter Geolocation from a Mobile Antenna Array

    Science.gov (United States)

    Kintz, Andrew L.

    This work advances state-of-the-art Radio Frequency (RF) emitter geolocation from an airborne or spaceborne antenna array. With an antenna array, geolocation is based on Direction of Arrival (DOA) estimation algorithms such as MUSIC. The MUSIC algorithm applies to arbitrary arrays of polarization sensitive antennas and yields high resolution. However, MUSIC fails to obtain its theoretical resolution for simultaneous, closely spaced, co-frequency signals. We propose the novel Nullspace MUSIC algorithm, which outperforms MUSIC and its existing modifications while maintaining MUSIC(apostrophe)s fundamental orthogonality test. Nullspace MUSIC applies a divide-and-conquer approach and estimates a single DOA at a time. Additionally, an antenna array on an aircraft cannot be perfectly calibrated. RF waves are blocked, reflected, and scattered in a time-varying fashion by the platform around the antenna array. Consequently, full-wave electromagnetics simulations or demanding measurements of the entire platform cannot eliminate the mismatch between the true, in-situ antenna patterns and the antenna patterns that are available for DOA estimation (the antenna array manifold). Platform-induced manifold mismatch severely degrades MUSIC(apostrophe)s resolution and accuracy. We show that Nullspace MUSIC improves DOA accuracy for well separated signals that are incident on an airborne antenna array. Conventionally, geolocation from a mobile platform draws Lines of Bearing (LOB) from the antenna array along the DOAs to find the locations where the DOAs intersect with the ground. However, averaging the LOBs in the global coordinate system yields large errors due to geometric dilution of precision. Since averaging positions fails, a single emitter is typically located by finding the position on the ground that yields the Minimum Apparent Angular Error (MAAE) for the DOA estimates over a flight. We extend the MAAE approach to cluster LOBs from multiple emitters. MAAE clustering

  10. Switched-beam array of dielectric rod antenna with RF-MEMS switch for millimeter-wave applications

    Science.gov (United States)

    Rousstia, M. W.; Reniers, A. C. F.; Herben, M. H. A. J.

    2015-03-01

    A conformal dielectric rod antenna array with operating frequency of 11.2 GHz is investigated, designed, and measured. This antenna array is combined with a single pole double throw radio frequency microelectromechanical systems (RF-MEMS) switch to realize switched-beam performance. Moreover, this antenna array exhibits uniform radiation performance for different scan angles with no grating lobes. The characterization and measurement of the antenna system have been performed. The measured radiation pattern of the antenna in the anechoic chamber is in good agreement with the simulated antenna pattern. The measured antenna with the RF-MEMS switch has 13.5 dBi realized gain, -15 dB sidelobe level, 22° half-power beamwidth, and 7.3% (fractional) bandwidth (or 800 MHz) at 11.2 GHz.

  11. Design of coated standing nanowire array solar cell performing beyond the planar efficiency limits

    Science.gov (United States)

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong

    2016-05-01

    The single standing nanowire (SNW) solar cells have been proven to perform beyond the planar efficiency limits in both open-circuit voltage and internal quantum efficiency due to the built-in concentration and the shifting of the absorption front. However, the expandability of these nano-scale units to a macro-scale photovoltaic device remains unsolved. The main difficulty lies in the simultaneous preservation of an effective built-in concentration in each unit cell and a broadband high absorption capability of their array. Here, we have provided a detailed theoretical guideline for realizing a macro-scale solar cell that performs furthest beyond the planar limits. The key lies in a complementary design between the light-trapping of the single SNWs and that of the photonic crystal slab formed by the array. By tuning the hybrid HE modes of the SNWs through the thickness of a coaxial dielectric coating, the optimized coated SNW array can sustain an absorption rate over 97.5% for a period as large as 425 nm, which, together with the inherited carrier extraction advantage, leads to a cell efficiency increment of 30% over the planar limit. This work has demonstrated the viability of a large-size solar cell that performs beyond the planar limits.

  12. Electric arc localization based on antenna arrays and MUSIC direction of arrival estimation

    Science.gov (United States)

    Paun, Mirel; Digulescu, Angela; Tamas, Razvan; Ioana, Cornel

    2015-02-01

    This paper presents an application of antenna arrays and MUSIC algorithm for estimating the location of an electric arc source. The proposed technique can be used to localize arc faults in photovoltaic arrays and their associated transformation stations. The technique was implemented and tested in the laboratory. For this purpose, an experimental setup consisting of 4 antennas, a digital storage oscilloscope with computer connectivity and a PC (Personal Computer) for data processing was built. The results proved that the proposed method is able to estimate the direction of the electric arc source with reasonable accuracy.

  13. Optically Controlled Reconfigurable Antenna Array Based on E-Shaped Elements

    Directory of Open Access Journals (Sweden)

    Arismar Cerqueira Sodré Junior

    2014-01-01

    Full Text Available This work presents the development of optically controlled reconfigurable antenna arrays. They are based on two patch elements with E-shaped slots, a printed probe, and a photoconductive switch made from an intrinsic silicon die. Numerical simulations and experiments have been shown to be in agreement, and both demonstrate that the frequency response of the antenna arrays can be efficiently reconfigured over two different frequency ISM bands, namely, 2.4 and 5 GHz. A measured gain of 12.5 dBi has been obtained through the use of two radiating elements printed in a low-cost substrate and a dihedral corner reflector.

  14. Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    CERN Document Server

    Hum, Sean Victor

    2013-01-01

    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.

  15. Utilizing Symmetry of Planar Ultra-Wideband Antennas for Size Reduction and Enhanced Performance

    CERN Document Server

    Mobashsher, Ahmed Toaha

    2015-01-01

    With the increasingly new ultra wide-band applications, antenna researchers face huge challenges in designing novel operational geometries. Mono-pole and quasi-mono-pole antennas are seen to be the most compact and easily incorporate able solution for portable devices taking the advantages of printed circuit board (PCB) techniques. Most antennas of such type have symmetrical structures. It is possible to attain wider operating bandwidths by meeting symmetry conditions while chopping the antenna into halves for a compact structure. However, there is no generalized way of applying such a technique. The presented paper addresses this issue by proposing a common feeding technique that can be applied to any antenna which is miniaturized using its symmetrical structure. The proposed technique enables feeding the halved structure to achieve wider and better impedance matching than the reported full-size antennas. The theory of characteristic modes is applied to quasi-mono-pole structures to get an insight of the ant...

  16. Polarization and Radiation Pattern Reconfigurability of a Planar Monopole-Fed Loop Antenna for GPS Application

    Directory of Open Access Journals (Sweden)

    M. M. Fakharian

    2016-12-01

    Full Text Available This paper presents a reconfigurable loop antenna with monopole-fed using embedded RF PIN switches based shorted parasitic elements for GPS applications. The antenna can independently reconfiguring multiple polarizations with switchable radiation pattern. Four switched metallic patches are used as parasitic elements to provide a reconfiguration capability to antenna acting as a driven monopole-fed loop. The edge of the parasitic elements is shorted by posts. The parasitic patches are connected/disconnected by using switching, therewith changing the configuration of monopole, to turn changes the current distribution over the loop surface. The antenna is designed to work on the GPS L1 frequency band. The antenna simultaneously changes the radiation beam in E- and H-planes, and switches among three polarizations (LP, LHCP, and RHCP in the various modes. The antenna maximum gain among the different modes is tuned between 1.5 and 4.2 dBi.

  17. Planar textile antennas with artificial magnetic conductor for body-centric communications

    Science.gov (United States)

    Kamardin, Kamilia; Rahim, Mohamad Kamal A.; Hall, Peter S.; Samsuri, Noor Asmawati; Latef, Tarik Abdul; Ullah, Mohammad Habib

    2016-04-01

    Two textile antennas namely diamond dipole and coplanar waveguide (CPW) monopole are designed to test the proposed textile artificial magnetic conductor (AMC). Performance comparison including return loss, radiation pattern, and gain between the two antennas above AMC is observed. Results show gain improvement with reduced backlobes when having AMC. Bending and wetness measurements are also conducted. Bending is found not to cause performance disruption, while wetness influences performance distortion. However, once the antennas and AMC dried out, the original performance is retrieved.

  18. Development of Local Oscillator Integrated Antenna Array for Electron Cyclotron Emission Imaging Diagnostics

    Science.gov (United States)

    Kuwahara, Daisuke; Ito, Naoki; Nagayama, Yoshio; Tsuchiya, Hayato; Yoshikawa, Masayuki; Kohagura, Junko; Yoshinaga, Tomokazu; Yamaguchi, Soichiro; Kogi, Yuichiro; Mase, Atsushi

    2016-10-01

    Microwave imaging systems include difficulties in terms of multi-channelization and cost. Our group solved these problems by developing a Horn-antenna Mixer Array (HMA), a 50 - 110 GHz 1-D heterodyne-type antenna array, which can be easily stacked as a 2-D receiving array. However, the HMA still evidenced problems owing to the requirement for local oscillation (LO) optics and an expensive high-power LO source. To solve this problem, we have developed an upgraded HMA, named the Local Integrated Antenna array (LIA), in which each channel has an internal LO supply using a frequency multiplier integrated circuit. Therefore, the proposed antenna array eliminates the need for both the LO optics and the high-power LO source. However, the LIA still has problems, that the instabilities of the sensitivity and poor channel isolation. This paper describes the principle of the LIA, and solutions of above-mentioned problems. This work is performed with the support and under the auspices of the NIFS Collaborative Research Program (NIFS15KOAP029 and NIFS16KUGM115).

  19. Development of local oscillator integrated antenna array for microwave imaging diagnostics

    Science.gov (United States)

    Kuwahara, D.; Ito, N.; Nagayama, Y.; Tsuchiya, H.; Yoshikawa, M.; Kohagura, J.; Yoshinaga, T.; Yamaguchi, S.; Kogi, Y.; Mase, A.; Shinohara, S.

    2015-12-01

    Microwave imaging diagnostics are powerful tools that are used to obtain details of complex structures and behaviors of such systems as magnetically confined plasmas. For example, microwave imaging reflectometry and microwave imaging interferometers are suitable for observing phenomena that are involved with electron density fluctuations; moreover, electron cyclotron emission imaging diagnostics enable us to accomplish the significant task of observing MHD instabilities in large tokamaks. However, microwave imaging systems include difficulties in terms of multi-channelization and cost. Recently, we solved these problems by developing a Horn-antenna Mixer Array (HMA), a 50 - 110 GHz 1-D heterodyne- type antenna array, which can be easily stacked as a 2-D receiving array, because it uses an end-fire element. However, the HMA still evidenced problems owing to the requirement for local oscillation (LO) optics and an expensive high-power LO source. To solve this problem, we have developed an upgraded HMA, named the Local Integrated Antenna array (LIA), in which each channel has an internal LO supply using a frequency multiplier integrated circuit. Therefore, the proposed antenna array eliminates the need for both the LO optics and the high-power LO source. This paper describes the principle of the LIA, and provides details about an 8 channel prototype LIA.

  20. Performance Analysis of Compact FD-MIMO Antenna Arrays in a Correlated Environment

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2017-03-06

    Full dimension multiple-input-multiple-output (FDMIMO) is one of the key technologies proposed in the 3rd Generation Partnership Project (3GPP) for the fifth generation (5G) communication systems. The reason can be attributed to its ability to yield significant performance gains through the deployment of active antenna elements at the base station in the vertical as well as the conventional horizontal directions, enabling several elevation beamforming strategies. The resulting improvement in spectral efficiency largely depends on the orthogonality of the sub-channels constituting the FD-MIMO system. Accommodating a large number of antenna elements with sufficient spacing poses several constraints for practical implementation, making it imperative to consider compact antenna arrangements that minimize the overall channel correlation. Two such configurations considered in this work are the uniform linear array (ULA) and the uniform circular array (UCA) of antenna ports, where each port is mapped to a group of physical antenna elements arranged in the vertical direction. The generalized analytical expression for the spatial correlation function (SCF) for the UCA is derived, exploiting results on spherical harmonics and Legendre polynomials. The mutual coupling between antenna dipoles is accounted for and the resulting SCF is also presented. The second part of this work compares the spatial correlation and mutual information (MI) performance of the ULA and UCA configurations in the 3GPP 3D urban-macro and urban-micro cell scenarios, utilizing results from Random Matrix Theory (RMT) on the deterministic equivalent of the MI for the Kronecker channel model. Simulation results study the performance patterns of the two arrays as a function of several channel and array parameters and identify applications and environments suitable for the deployment of each array.

  1. Design of Multilevel Sequential Rotation Feeding Networks Used for Circularly Polarized Microstrip Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Aixin Chen

    2012-01-01

    Full Text Available Sequential rotation feeding networks can significantly improve performance of the circularly polarized microstrip antenna array. In this paper, single, double, and multiple series-parallel sequential rotation feeding networks are examined. Compared with conventional parallel feeding structures, these multilevel feeding techniques present reduction of loss, increase of bandwidth, and improvement of radiation pattern and polarization purity. By using corner-truncated square patch as the array element and adopting appropriate level of sequential rotation series-parallel feeding structures as feeding networks, microstrip arrays can generate excellent circular polarization (CP over a relatively wide frequency band. They can find wide applications in phased array radar and satellite communication systems.

  2. New method for the time calibration of an interferometric radio antenna array

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F.G., E-mail: frank.schroeder@kit.ed [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Asch, T. [Karlsruhe Institute of Technology (KIT), Institut fuer Prozessdatenverarbeitung und Elektronik, 76021 Karlsruhe (Germany); Baehren, L. [Radboud University Nijmegen, Department of Astrophysics, 6525 ED Nijmegen (Netherlands); Bluemer, J. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Institut fuer Experimentelle Kernphysik, 76021 Karlsruhe (Germany); Bozdog, H. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Falcke, H. [Radboud University Nijmegen, Department of Astrophysics, 6525 ED Nijmegen (Netherlands); ASTRON, 7990 AA Dwingeloo (Netherlands); Haungs, A. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Horneffer, A. [Radboud University Nijmegen, Department of Astrophysics, 6525 ED Nijmegen (Netherlands); Huege, T.; Isar, P.G. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Kroemer, O. [Karlsruhe Institute of Technology (KIT), Institut fuer Prozessdatenverarbeitung und Elektronik, 76021 Karlsruhe (Germany); Nehls, S. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany)

    2010-04-11

    Digital radio antenna arrays, like LOPES (LOFAR PrototypE Station), detect high-energy cosmic rays via the radio emission from atmospheric extensive air showers. LOPES is an array of dipole antennas placed within and triggered by the KASCADE-Grande experiment on site of the Karlsruhe Institute of Technology, Germany. The antennas are digitally combined to build a radio interferometer by forming a beam into the air shower arrival direction which allows measurements even at low signal-to-noise ratios in individual antennas. This technique requires a precise time calibration. A combination of several calibration steps is used to achieve the necessary timing accuracy of about 1 ns. The group delays of the setup are measured, the frequency dependence of these delays (dispersion) is corrected in the subsequent data analysis, and variations of the delays with time are monitored. We use a transmitting reference antenna, a beacon, which continuously emits sine waves at known frequencies. Variations of the relative delays between the antennas can be detected and corrected for at each recorded event by measuring the phases at the beacon frequencies.

  3. An Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

    CERN Document Server

    D'Addario, Larry R

    2016-01-01

    Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. For $N$ antennas, the cost and power consumption of cross-correlation are proportional to $N^2$ and dominate at sufficiently large $N$. Here we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals ($N$=32 antennas with 2 opposite-polarization signals per antenna). When $N$ is larger, the input data are buffered in an on-chip memory and the CMACs are re-used as many times as needed to compute all correlations. The design has been synthesized and simulat...

  4. Design of a Printed Dipole Antenna Array for a Passive Radar System

    Directory of Open Access Journals (Sweden)

    Peter Knott

    2013-01-01

    Full Text Available Passive radar (or Passive Coherent Localisation is an advancing technology for covert operation. The signal transmitted from sources of opportunity such as radio or TV stations is used as illumination for a certain area of interest. Part of the transmitted signal is reflected by radar targets, for example, moving objects such as vehicles or aircraft. Typical radar parameters are derived from the comparison between the direct line-of-sight from the transmitter and the signal scattered from the target object. Such systems are an attractive addition to existing active radar stations because they have the potential to discover low-flying and low-observable targets and no active radar transmitter is required. Printed dipole antennas are very attractive antenna elements for such systems because of their easy fabrication, low-cost, polarisation purity, and low-profile properties. The present paper describes the design of an antenna array using printed dipole elements with flared arms for a passive radar system operating in the GSM900 frequency range. Isolated antenna elements and a small uniform linear antenna array were designed and optimised using computational electromagnetic methods. Several prototypes have been fabricated on conventional microwave PCB substrate material. Preliminary measurement results for antenna matching and far-field radiation patterns are shown.

  5. Optimisation of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    H. El Hamchary

    1996-04-01

    Full Text Available When choosing the most appropriate microstrip antenna configuration for particular applications, the kind of excitation of the radiating element is an essential factor that requires careful considerations. For controlling the distribution of energy of the linear or planar array of elements and for coupling energy to the individual elements, a wide variety of feed mechanisms are available. In this paper, the coaxial antenna feeding is assumed and the best (optimised feeding is found. Then, antenna characteristics such as radiation pattern, return loss, input impedance, and VSWR are obtained.

  6. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    Energy Technology Data Exchange (ETDEWEB)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Chuvatin, A. S. [Laboratorie de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau (France); Rudakov, L. I. [Icarus Research Inc., Bethesda, Maryland 20824 (United States); Velikovich, A. L. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-03-15

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100 ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  7. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    Science.gov (United States)

    Kantsyrev, V. L.; Chuvatin, A. S.; Safronova, A. S.; Rudakov, L. I.; Esaulov, A. A.; Velikovich, A. L.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.

    2014-03-01

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100 ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  8. Optoelectronic signal processing for phased-array antennas II; Proceedings of the Meeting, Los Angeles, CA, Jan. 16, 17, 1990

    Science.gov (United States)

    Hendrickson, Brian M.; Koepf, Gerhard A.

    Various papers on optoelectronic signal processing for phased-array antennas (PAAs) are presented. Individual topics addressed include: the dynamics of high-frequency lasers, an electrooptic phase modulator for PA applications, a laser mixer for microwave fiber optics, optical control of microwaves with III-V semiconductor optical waveguides, a high-dynamic-range modulator for microwave PAs, the high-modulation-rate potential of surface-emitter laser-diode arrays, an electrooptical switch for antenna beam steering, and adaptive PA radar processing using photorefractive crystals. Also discussed are an optical processor for array antenna beam shaping and steering, an integrated optical Butler matrix for beam forming in PAAs, an acoustooptic/photorefractive processor for adaptive antenna arrays, BER testing of fiber-optic data links for MMIC-based phased-array antennas, and the design of an optically controlled K(a)-band GaAs MMIC PAA.

  9. The application of taylor weighting, digital phase shifters, and digital attenuators to phased-array antennas.

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Billy C.

    2008-03-01

    Application of Taylor weighting (taper) to an antenna aperture can achieve low peak sidelobes, but combining the Taylor weighting with quantized attenuators and phase shifters at each radiating element will impact the performance of a phased-array antenna. An examination of array performance is undertaken from the simple point of view of the characteristics of the array factor. Design rules and guidelines for determining the Taylor-weighting parameters, the number of bits required for the digital phase shifter, and the dynamic range and number of bits required for the digital attenuator are developed. For a radar application, when each element is fed directly from a transmit/receive module, the total power radiated by the array will be reduced as a result of the taper. Consequently, the issue of whether to apply the taper on both transmit and receive configurations, or only on the receive configuration is examined with respect to two-way sidelobe performance.

  10. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    Science.gov (United States)

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-01-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB. PMID:28205615

  11. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    Science.gov (United States)

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-02-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB.

  12. A Novel T-Fed 4-Element Quasi-Lumped Resonator Antenna Array

    Directory of Open Access Journals (Sweden)

    S.S. Olokede

    2014-06-01

    Full Text Available In this paper, electrically small corporately T-fed quasi-lumped element resonator antenna array is investigated. The radiating element, a quasi-lumped element resonator is excited by a novel semi hybrid ring-like T-shaped corporate feed network. The characteristics losses due to Ohmic and discontinuities along the feed line which invariably constitutes complex feed structures are mitigated at the instance of the proposed antenna. Technique to implement the compact array with the intent to enhance the gain is presented. The operation dynamics of the feed along with its theoretical explanation is also reported. Findings indicates that the measured gain is 10.97 dBi for antenna of an estate area of about 0.677λ_0 × 1.257λ_0 sq. mm. Valuable insight to the optimum design in terms of compactness, good gain, and ease of fabrication is documented.

  13. Covariance analysis and phase ambiguity resolution for a linear interferometer antenna array

    Science.gov (United States)

    Johnson, James Andrew

    This thesis explores the application of mathematical techniques for estimating the angle of arrival (AOA) using a receiving platform having a linear interferometer antenna array. It addresses the estimation accuracy of interferometer phase measurements of a signal with superposed Gaussian noise from multiple antenna baselines, and provides a method for resolving the modulo two-pi problem inherent to many phase measurement systems. The study extends prior theoretical work (Hanna, C., 1983) by laying a mathematical foundation to complement his geometrical approach, provides a robust method of performance prediction for such a system. Key elements include estimation accuracy of a signal parameter with additive noise; the design of the linear antenna array element spacings and the relationship to Diophantine equations; and the application of the Cramer-Rao lower bound on variance of parameter estimation. It is hoped that the work presented here will serve as a practical guide for research scientists and engineers.

  14. 随机指向误差对星载共形阵列天线极化参数的影响%Effects of Random Pointing Errors on Polarization Parameters of Spaceborne Conformal Array Antennas

    Institute of Scientific and Technical Information of China (English)

    李海林; 周建江; 汪飞; 夏伟杰

    2012-01-01

    In order to analyze the effects of random pointing errors of antenna elements on array antennas , the polarization parameter errors of planar array antennas and spaceborne conformal array antennas are studied here. The definitions and formulas of polarization parameters in the far field are presented. The probability density of cross-polarization electric field strength with random pointing errors is given. The inferences of different random pointing errors on polariaation parameters are analyzed by comparing the examples of planar array antennas and spaceborne conformal array antennas. The results show that with the increases of random pointing errors, the cross-polarization losses are increased and the co-polarization directivity is decreased for the planar array antennas, and the changes of polarization parameters are less than 0. 1 for the spaceborne conformal array antennas.%为分析天线单元的随机指向误差对阵列天线的影响,该文研究平面阵列天线和星载共形阵列天线中随机指向误差产生的极化参数误差.推导了阵列天线的远场极化参数定义及计算公式.给出随机指向误差条件下交叉极化场强的概率分布.通过平面阵列天线和星载共形阵列天线的算例对比,分析不同随机指向误差对极化参数的影响.结果表明:随着随机指向误差的增大,平面阵列天线的极化方向性系数显著减小,交叉极化损失增大,而星载共形阵列天线阵的极化参数变化都小于0.1.

  15. Water management in a planar air-breathing fuel cell array using operando neutron imaging

    Science.gov (United States)

    Coz, E.; Théry, J.; Boillat, P.; Faucheux, V.; Alincant, D.; Capron, P.; Gébel, G.

    2016-11-01

    Operando Neutron imaging is used for the investigation of a planar air-breathing array comprising multiple cells in series. The fuel cell demonstrates a stable power density level of 150 mW/cm2. Water distribution and quantification is carried out at different operating points. Drying at high current density is observed and correlated to self-heating and natural convection. Working in dead-end mode, water accumulation at lower current density is largely observed on the anode side. However, flooding mechanisms are found to begin with water condensation on the cathode side, leading to back-diffusion and anodic flooding. Specific in-plane and through-plane water distribution is observed and linked to the planar array design.

  16. Powers synthesis of array antennas using the continuation method on far field phase distribution

    NARCIS (Netherlands)

    Castaldi, G.; Gerini, G.

    2002-01-01

    We present a technique, based on the continuation method, to face power synthesis problems for array antennas. By using the least squares method (LSM), the power synthesis problem reduces to the minimization of an objective functional, which represents the square of the distance between the required

  17. Multiobjective Synthesis of Steerable UWB Circular Antenna Array considering Energy Patterns

    Directory of Open Access Journals (Sweden)

    Leopoldo A. Garza

    2015-01-01

    Full Text Available True-time delay antenna arrays have gained a prominent attention in ultrawideband (UWB applications such as directional communications and radar. This paper presents the design of steerable UWB circular array by using a multiobjective time-domain synthesis of energy pattern for circular antenna arrays. By this way we avoid individual beamforming for each frequency in UWB spectrum if the problem was addressed from the frequency domain. In order to obtain an energy pattern with low side lobe level and a desired main beam, the synthesis presented is performed by optimizing the true-time delays and amplitude coefficients for the antenna elements in a circular geometry. The method of Differential Evolution for Multiobjective Optimization (DEMO is used as the optimization algorithm in this work. This design of steerable UWB circular arrays considers the optimization of the true-time exciting delays and the amplitude coefficients across the antenna elements to operate with optimal performance in the whole azimuth plane (360°. A comparative analysis of the performance of the optimized design with the case of conventional progressive delay excitations is achieved. The provided results show a good performance for energy patterns and for their respective power patterns in the UWB spectrum.

  18. Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

    Directory of Open Access Journals (Sweden)

    Li-Ming Si

    2014-01-01

    Full Text Available A slot-microstrip-covered and waveguide-cavity-backed monopulse antenna array is proposed for high-resolution tracking applications at Ka-band. The monopulse antenna array is designed with a microstrip with 2×32 slots, a waveguide cavity, and a waveguide monopulse comparator, to make the structure simple, reduce the feeding network loss, and increase the frequency bandwidth. The 2×32 slot-microstrip elements are formed by a metal clad dielectric substrate and slots etched in the metal using the standard printed circuit board (PCB process with dimensions of 230 mm  ×  10 mm. The proposed monopulse antenna array not only maintains the advantages of the traditional waveguide slot antenna array, but also has the characteristics of wide bandwidth, high consistence, easy of fabrication, and low cost. From the measured results, it exhibits good monopulse characteristics, including the following: the maximum gains of sum pattern are greater than 24 dB, the 3 dB beamwidth of sum pattern is about 2.2 degrees, the sidelobe levels of the sum pattern are less than −18 dB, and the null depths of the difference pattern are less than −25 dB within the operating bandwidth between 33.65 GHz and 34.35 GHz for VSWR ≤ 2.

  19. Phased array antenna integrated with a frequency selective surface: Theory and experiments

    NARCIS (Netherlands)

    Monni, S.; Llombart Juan, N.; Neto, A.; Gerini, G.

    2003-01-01

    A modeling tool is described to characterize the array antennas integrated with frequency selective surfaces by means of a multimode equivalent network approach applied to infinite periodic structures. The theoretical formulation of the problem is presented in this paper together with the numerical

  20. Amplitude pattern synthesis for conformal array antennas using mean-field neural networks

    NARCIS (Netherlands)

    Castaldi, G.; Gerini, G.

    2001-01-01

    In this paper, we deal with the synthesis problem of conformai array antennas using a mean-field neural network. We applied a discrete version of mean-field neural network proposed by Vidyasagar [1], This technique is used to find the global minimum of the objective function, which represents the sq

  1. Design of an optically controlled Ka-band GaAs MMIC phased-array antenna

    Science.gov (United States)

    Kunath, Richard R.; Bhasin, Kul B.; Claspy, Paul C.; Richard, Mark A.

    1990-06-01

    Phased array antennas long were investigated to support the agile, multibeam radiating apertures with rapid reconfigurability needs of radar and communications. With the development of the Monolithic Microwave Integrated Circuit (MMIC), phased array antennas having the stated characteristics are becoming realizable. However, at K-band frequencies (20 to 40 GHz) and higher, the problem of controlling the MMICs using conventional techniques either severely limits the array size or becomes insurmountable due to the close spacing of the radiating elements necessary to achieve the desired antenna performance. Investigations were made that indicate using fiber optics as a transmission line for control information for the MMICs provides a potential solution. By adding an optical interface circuit to pre-existing MMIC designs, it is possible to take advantage of the small size, lightweight, mechanical flexibility and RFI/EMI resistant characteristics of fiber optics to distribute MMIC control signals. The architecture, circuit development, testing and integration of optically controlled K-band MMIC phased array antennas are described.

  2. Design of an optically controlled Ka-band GaAs MMIC phased-array antenna

    Science.gov (United States)

    Kunath, Richard R.; Bhasin, Kul B.; Claspy, Paul C.; Richard, Mark A.

    1990-01-01

    Phased array antennas long were investigated to support the agile, multibeam radiating apertures with rapid reconfigurability needs of radar and communications. With the development of the Monolithic Microwave Integrated Circuit (MMIC), phased array antennas having the stated characteristics are becoming realizable. However, at K-band frequencies (20 to 40 GHz) and higher, the problem of controlling the MMICs using conventional techniques either severely limits the array size or becomes insurmountable due to the close spacing of the radiating elements necessary to achieve the desired antenna performance. Investigations were made that indicate using fiber optics as a transmission line for control information for the MMICs provides a potential solution. By adding an optical interface circuit to pre-existing MMIC designs, it is possible to take advantage of the small size, lightweight, mechanical flexibility and RFI/EMI resistant characteristics of fiber optics to distribute MMIC control signals. The architecture, circuit development, testing and integration of optically controlled K-band MMIC phased array antennas are described.

  3. Using adaptive antenna array in LTE with MIMO for space-time processing

    Directory of Open Access Journals (Sweden)

    Abdourahamane Ahmed Ali

    2015-04-01

    Full Text Available The actual methods of improvement the existent wireless transmission systems are proposed. Mathematical apparatus is considered and proved by models, graph of which are shown, using the adaptive array antenna in LTE with MIMO for space-time processing. The results show that improvements, which are joined with space-time processing, positively reflects on LTE cell size or on throughput

  4. Simulation of a ring resonator-based optical beamformer system for phased array receive antennas

    NARCIS (Netherlands)

    Tijmes, M.R.; Meijerink, Arjan; Roeloffzen, C.G.H.; Bentum, Marinus Jan

    2009-01-01

    A new simulator tool is described that can be used in the field of RF photonics. It has been developed on the basis of a broadband, continuously tunable optical beamformer system for phased array receive antennas. The application that is considered in this paper is airborne satellite reception of di

  5. Design of a ring resonator-based optical beam forming network for phased array receive antennas

    NARCIS (Netherlands)

    Klooster, van 't J.W.; Roeloffzen, C.G.H.; Meijerink, A.; Zhuang, L.; Marpaung, D.A.I.; Etten, van W.C.; Heideman, R.G.; Leinse, A.; Schippers, H.; Verpoorte, J.; Wintels, M.

    2008-01-01

    A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our

  6. Development of an integrated photonic beamformer for electronically-steered Ku-band phased array antenna

    NARCIS (Netherlands)

    Zhuang, L.; Marpaung, D.A.I.; Burla, M.; Boot, R.; Hulzinga, A.; Beeker, W.P.; Beeker, Willem; van Dijk, P.; Roeloffzen, C.G.H.

    2011-01-01

    Currently an integrated photonic beamformer for electronically-steered Ku-band phased array antenna (PAA) system for satellite communications is being developed within a Dutch Point One R&D Innovation Project “Broadband Satellite Communication Services on High-Speed Transport Vehicles‿, targeting

  7. Development of a broadband integrated optical beamformer for Ku-Band Phased Array Antennas

    NARCIS (Netherlands)

    Roeloffzen, C.G.H.; van Dijk, Paul; Marpaung, D.A.I.; Burla, M.; Zhuang, L.

    2012-01-01

    Currently an integrated photonic beamformer for electronically-steered Ku-band phased array antenna (PAA) systems for satellite communications is being developed, targeting continuous reception of the full DVB-S band (10.7- 12.75 GHz), squint-free and seamless beam steering, and polarization

  8. Simulation of a ring-resonator based optical beamformer system for phased array receive antennas

    NARCIS (Netherlands)

    Tijmes, M.R.; Meijerink, A.; Bentum, M.J.; Roeloffzen, C.G.H.

    2009-01-01

    A new simulator tool is described that can be used in the field of RF photonics. It has been developed on the basis of a broadband, continuously tunable optical beamformer system for phased array receive antennas. The application that is considered in this paper is airborne satellite reception of di

  9. Nanogroove array on thin metallic film as planar lens with tunable focusing

    OpenAIRE

    Wellems, L. David; Huang, Danhong; Leskova, T. A; Maradudin, A. A.

    2012-01-01

    Numerical results for the distributions of light transmitted through metallic planar lenses composed of symmetric nanogroove arrays on the surfaces of a gold film are presented and explained. Both the near- and far-field distributions of the intensity of light transmitted are calculated by using a Green's function formalism. Results for an optimal transverse focus based on a quadratic variation of groove width are obtained. Meanwhile, a significant dependence of the focal length on the wavele...

  10. Recent progress on arrayed-waveguide grating multi/demultiplexers based on silica planar lightwave circuits

    Science.gov (United States)

    Kitoh, Tsutomu

    2008-11-01

    This paper reports recent advances on arrayed waveguide grating (AWG) multi/demultiplexers based on silica-based planar lightwave circuits (PLC). After briefly summarizing the fabrication and properties of PLCs, this work describes a Mach-Zehnder interferometer (MZI)-synchronized AWG with reagrd to reduced loss, and athermalization. The paper then reports our recent demonstration of the integration of a PLC-based wavelength selective switch (WSS) and an integrated single-chip VMUX/DEMUX.

  11. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures

    CERN Document Server

    Horie, Yu; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Faraon, Andrei

    2016-01-01

    We propose and experimentally demonstrate a planar array of optical bandpass filters composed of low loss dielectric metasurface layers sandwiched between two distributed Bragg reflectors (DBRs). The two DBRs form a Fabry-P\\'erot resonator whose center wavelength is controlled by the design of the transmissive metasurface layer which functions as a phase shifting element. We demonstrate an array of bandpass filters with spatially varying center wavelengths covering a wide range of operation wavelengths of 250 nm around {\\lambda} = 1550 nm ({\\Delta}{\\lambda}/{\\lambda} = 16%). The center wavelengths of each filter are independently controlled only by changing the in-plane geometry of the sandwiched metasurfaces, and the experimentally measured quality factors are larger than 700. The demonstrated filter array can be directly integrated on top of photodetector arrays to realize on-chip high-resolution spectrometers with free-space coupling.

  12. Influence of parameters on light propagation dynamics in optically induced planar waveguide arrays

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The diffraction and refraction of light beam in optical periodic structures can be determined by the photonic band-gap structures of spatial frequency.In this paper,by employing the equation governing the nonlinear light propagations in photorefractive crystals,we study the photonic band-gap structures, Bloch modes,and light transmission properties of optically induced planar waveguide arrays.The relationship between the photonic band-gap structures and the light diffraction characteristics is discussed in detail.Then the influence of the parameters of planar waveguide arrays on the band-gaps structures,Bloch modes,and linear light transmissions is analyzed.It is revealed that the linear light transmission properties of waveguide arrays are tightly related to the diffraction relationships determined by band-gap structures.And the Bloch modes corresponding to different transmission bands can be excited by different excitation schemes.Both the increases of the intensity and the period of the array writing beam will lead to the broadening of the forbidden gaps and the concentration of the energy of the Bloch modes to the high-index regions.Furthermore,the broadening of the forbidden gaps will lead to separation and transition between the Bloch modes of neighboring bands around the Bragg angle.Additionally,with the increase of the intensity of the array writing beams,the influences from light intensity will tend to be steady due to the saturation of the photorefractive effect.

  13. Influence of parameters on light propagation dynamics in optically induced planar waveguide arrays

    Institute of Scientific and Technical Information of China (English)

    LIU Sheng; ZHANG Peng; XIAO FaJun; YANG DeXing; ZHAO JianLin

    2009-01-01

    The diffraction and refraction of light beam in optical periodic structures can be determined by the photonic band-gap structures of spatial frequency. In this paper, by employing the equation governing the nonlinear light propagations in photorefractive crystals, we study the photonic band-gap structures,Bloch modes, and light transmission properties of optically induced planar waveguide arrays. The relationship between the photonic band-gap structures and the light diffraction characteristics is discussed in detail. Then the influence of the parameters of planar waveguide arrays on the band-gaps structures, Bloch modes, and linear light transmissions is analyzed. It is revealed that the linear light transmission properties of waveguide arrays are tightly related to the diffraction relationships determined by band-gap structures. And the Bloch modes corresponding to different transmission bands can be excited by different excitation schemes. Both the increases of the intensity and the period of the array writing beam will lead to the broadening of the forbidden gaps and the concentration of the energy of the Bloch modes to the high-index regions. Furthermore, the broadening of the forbidden gaps will lead to separation and transition between the Bloch modes of neighboring bands around the Bragg angle. Additionally, with the increase of the intensity of the array writing beams, the influences from light intensity will tend to be steady due to the saturation of the photorefractive effect.

  14. APD arrays and large-area APDs via a new planar process

    CERN Document Server

    Farrell, R; Vanderpuye, K; Grazioso, R; Myers, R; Entine, G

    2000-01-01

    A fabrication process has been developed which allows the beveled-edge-type of avalanche photodiode (APD) to be made without the need for the artful bevel formation steps. This new process, applicable to both APD arrays and to discrete detectors, greatly simplifies manufacture and should lead to significant cost reduction for such photodetectors. This is achieved through a simple innovation that allows isolation around the device or array pixel to be brought into the plane of the surface of the silicon wafer, hence a planar process. A description of the new process is presented along with performance data for a variety of APD device and array configurations. APD array pixel gains in excess of 10 000 have been measured. Array pixel coincidence timing resolution of less than 5 ns has been demonstrated. An energy resolution of 6% for 662 keV gamma-rays using a CsI(T1) scintillator on a planar processed large-area APD has been recorded. Discrete APDs with active areas up to 13 cm sup 2 have been operated.

  15. Two-Dimensional Time-Domain Antenna Arrays for Optimum Steerable Energy Pattern with Low Side Lobes

    Directory of Open Access Journals (Sweden)

    Alberto Reyna

    2014-01-01

    Full Text Available This document presents the synthesis of different two-dimensional time-domain antenna arrays for steerable energy patterns with side lobe levels. The research is focused on the uniform and nonuniform distributions of true-time exciting delays and positions of antenna elements. The uniform square array, random array, uniform concentric ring array, and rotated nonuniform concentric ring array geometries are particularly studied. These geometries are synthesized by using the well-known sequential quadratic programming. The synthesis regards the optimal true-time exciting delays and optimal positions of pulsed antenna elements. The results show the capabilities of the different antenna arrays to steer the beam in their energy pattern in time domain and how their performance is in frequency domain after the synthesis in time domain.

  16. Electronic modulated beam-steerable silicon waveguide array antenna

    Energy Technology Data Exchange (ETDEWEB)

    Horn, R.E.; Jacobs, H.; Freibergs, E.; Klohn, K.L.

    1980-06-01

    The design and experimental findings for a low-cost easily fabricated millimeter-wave line scanner is described. This antenna consists of a 1-mm X 1-mm silicon dielectric rod with a metal grating (periodic structure) on the upper surface and p-i-n diodes mounted on the sidewall. A narrow 8/sup 0/ beam is radiated from the grated (perturbed) surface at an angle dependent on the guide and perturbation spacing. The beam angle is switched over a 10/sup 0/ angle by application of a dc forward current through the p-i-n diode modulators.

  17. BEAM-FORMING ERRORS IN MURCHISON WIDEFIELD ARRAY PHASED ARRAY ANTENNAS AND THEIR EFFECTS ON EPOCH OF REIONIZATION SCIENCE

    Energy Technology Data Exchange (ETDEWEB)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Dillon, Joshua S.; Goeke, R.; Morgan, E. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bradley, Richard F. [Dept. of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904 (United States); Bernardi, G. [Square Kilometre Array South Africa (SKA SA), Cape Town 7405 (South Africa); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Cappallo, R. J.; Corey, B. E.; Lonsdale, C. J.; McWhirter, S. R. [MIT Haystack Observatory, Westford, MA 01886 (United States); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Greenhill, L. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J.; Morales, M. F. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Mitchell, D. A. [CSIRO Astronomy and Space Science (CASS), P.O. Box 76, Epping, NSW 1710 (Australia); and others

    2016-03-20

    Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%–20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the “wedge”). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the “EOR window”), showing that foreground avoidance remains a viable strategy.

  18. Reconfigurable antenna pattern verification

    Science.gov (United States)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  19. Compact multi-band frequency reconfigurable planar monopole antenna for several wireless communication applications

    Directory of Open Access Journals (Sweden)

    M. Abou Al-Alaa

    2014-05-01

    Full Text Available A compact reconfigurable multi-band monopole antenna is presented. To achieve frequency reconfigurability, a PIN diode is used. There are two states of switch. State 1: when the switch is OFF, the antenna operates at four bands: 2.45, 3, 3.69, and 5.5 GHz with impedance bandwidth of 9.95, 5.96, 12.57, and 10.76%, respectively. State 2: when a switch is ON, the antenna operates at 2.64, 3.67, 4.94, and 5.3 GHz with impedance bandwidth of 21.15, 11.76, 5.79, and 4.12%, respectively. Folded and meandered techniques are used for miniaturize antenna size. Antenna size is 15 mm × 37 mm × 0.8 mm and the radiator part is 15 mm × 9 mm × 0.8 mm. The proposed antenna is used in several applications such as Bluetooth (2400–2484 MHz, WLAN [802.11b/g/n (2.4–2.48 GHz, 802.11y (3.657–3.69 GHz, 802.11y (4.9 GHz, 802.11a/h/j/n (5.2 GHz], Wi-MAX (2.5–2.69 GHz, LTE (band 7, band 38, band 41, and band 43 and S-DMB (2605–2655 MHz. The antenna is analyzed using the transient solver of CST Microwave Studio. The proposed antenna was fabricated and tested. Measurements and simulations show good agreement.

  20. Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array.

    Science.gov (United States)

    Chen, Cheng-Kuang; Chang, Ming-Hsuan; Wu, Hsieh-Ting; Lee, Yao-Chang; Yen, Ta-Jen

    2014-10-15

    In this study, we report a multiband plasmonic-antenna array that bridges optical biosensing and intracellular bioimaging without requiring a labeling process or coupler. First, a compact plasmonic-antenna array is designed exhibiting a bandwidth of several octaves for use in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing. Second, a single-element plasmonic antenna can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing the refractive index contrast. Finally, using the fabricated plasmonic-antenna array yielded reliable intracellular observation was demonstrated from the vibrational signatures and intracellular refractive index contrast requiring neither labeling nor a coupler. These unique features enable the plasmonic-antenna array to function in a label-free manner, facilitating bio-sensing and imaging development.

  1. Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    This manuscript proposes a new design of phased array antenna for future fifth generation (5G) cellular communications. The proposed phased array antenna is designed on a low-cost N9000 PTFE substrate with overall size of 60×120×0.8 mm3. It consists of eight 28-GHz Vivaldi antenna elements used...... to form a linear phased array in the edge region (top-side) on a mobile phone PCB. The simulated results show that the antenna has the reflection coefficient (S11) less than -10 dB in the frequency range of 27.4 to 28.6 GHz. The proposed phased array antenna has good gain, efficiency, and 3D beam steering...

  2. Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.

    Science.gov (United States)

    Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.

  3. A Planar UWB Antenna with Switchable Single/Double Band-Rejection Characteristics

    Directory of Open Access Journals (Sweden)

    V. Sharbati

    2016-09-01

    Full Text Available In this Paper, a reconfigurable antenna with capability to operate in the ultrawideband (UWB mode from 2.85 to 14.4 GHz with switchable notch bands of 3.25–4.26 GHz, 5.1–5.9 GHz or 7.1-7.8 GHz, is presented. The proposed antenna has a simple configuration and compact size of 17 × 14 mm2. To make the band-notches, three methods (methods of slot antenna, parasitic patches and backplane structure are used. To achieve the reconfigurability, three PIN diode are placed on the proposed antenna. A PIN diode is inserted over the L-shaped parasitic element and the rectangular patch, another one is placed between the two parasitic elements on the ground plane, and other across the square ring-shaped slot, respectively. Antenna performance can be changed by adjusting the status of the PIN diodes that make the band-notches in applications bands (WLAN, WiMAX/C-band and X-band. Good group delay and monopole-like radiation pattern characteristics are achieved in the frequency band of interest. The antenna performance both by simulation and by experiment indicates that it is suitable and a good candidate for UWB applications.

  4. Physics of Multi-Planar and Compact Cylindrical Wire Arrays Implosions on University-Scale Z-pinch Generators

    Science.gov (United States)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Williamson, K. M.; Shrestha, I.; Ouart, N. D.; Yilmaz, M. F.; Wilcox, P. G.; Osborne, G. C.; Weller, M. E.; Shlyaptseva, V. V.; Chuvatin, A. S.; Rudakov, L. I.; Greenly, J. B.; McBride, R. D.; Knapp, P. F.; Blessener, I. C.; Bell, K. S.; Chalenski, D. A.; Hammer, D. A.; Kusse, B. R.

    2009-01-01

    The presented research focuses on investigation of Z-pinch plasma formation, implosion, and radiation characteristics as a function of the load configuration. The single planar and multi-planar wire arrays as well as compact cylindrical wire arrays were studied on the 1.3 MA UNR Zebra and 1 MA Cornell COBRA generators. The largest yields and powers were found for W and Mo double planar and compact wire arrays. A possibility of radiation pulse shaping was demonstrated. Two types of bright spots were observed in plasmas. A comparison of Mo double planar and compact wire array data indicates the possibility that the same heating mechanism operates during the final implosion and stagnation stages.

  5. Quasi optical antenna using a strip array for lower hybrid current drive

    Energy Technology Data Exchange (ETDEWEB)

    Crenn, J.P.; Bibet, Ph.; Tonon, G. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1994-08-01

    In a future tokamak like ITER, if the antenna is built by using the concept up to now, the total number of waveguides becomes too many. Therefore the concept of Petelin and Suvorov using a quasi-optical antenna seems to be attractive. The main principle consists in the diffraction of plane waves by a rod array. A vacuum layer is used between the array and plasma. Incident plane waves are taken into account by their characteristic impedance. The theoretical model is explained, and the transmission coefficient through the strip array is computed, which leads to the efficiency of absorption per passage for each diffraction order. As the main conclusion, the optimum parameters taken by Petelin and Suvorov are shown. The results of the efficiency and the influence of linear density gradient are reported. It has been suggested to use two arrays distant by normalized length. The reflection coefficient has been plotted depending on the angle of incidence and the distance. In order to build an efficient resonant system, four problems to be solved are discussed, namely, how to excite plane waves, the change in the diffraction of plane waves when the number of strips is finite, the case of the distance between two arrays being one wavelength, and the antenna too long in toroidal direction. (K.I.).

  6. Coherent Sources Direction Finding and Polarization Estimation with Various Compositions of Spatially Spread Polarized Antenna Arrays

    CERN Document Server

    Yuan, Xin

    2014-01-01

    Various compositions of sparsely polarized antenna arrays are proposed in this paper to estimate the direction-of-arrivals (DOAs) and polarizations of multiple coherent sources. These polarized antenna arrays are composed of one of the following five sparsely-spread sub-array geometries: 1) four spatially-spread dipoles with three orthogonal orientations, 2) four spatially-spread loops with three orthogonal orientations, 3) three spatially-spread dipoles and three spatially-spread loops with orthogonal orientations, 4) three collocated dipole-loop pairs with orthogonal orientations, and 5) a collocated dipole-triad and a collocated loop-triad. All the dipoles/loops/pairs/triads in each sub-array can also be sparsely spaced with the inter-antenna spacing far larger than a half-wavelength. Only one dimensional spatial-smoothing is used in the proposed algorithm to derive the two-dimensional DOAs and polarizations of multiple cross-correlated signals. From the simulation results, the sparse array composed of dip...

  7. Optimized Hyper Beamforming of Linear Antenna Arrays Using Collective Animal Behaviour

    Directory of Open Access Journals (Sweden)

    Gopi Ram

    2013-01-01

    Full Text Available A novel optimization technique which is developed on mimicking the collective animal behaviour (CAB is applied for the optimal design of hyper beamforming of linear antenna arrays. Hyper beamforming is based on sum and difference beam patterns of the array, each raised to the power of a hyperbeam exponent parameter. The optimized hyperbeam is achieved by optimization of current excitation weights and uniform interelement spacing. As compared to conventional hyper beamforming of linear antenna array, real coded genetic algorithm (RGA, particle swarm optimization (PSO, and differential evolution (DE applied to the hyper beam of the same array can achieve reduction in sidelobe level (SLL and same or less first null beam width (FNBW, keeping the same value of hyperbeam exponent. Again, further reductions of sidelobe level (SLL and first null beam width (FNBW have been achieved by the proposed collective animal behaviour (CAB algorithm. CAB finds near global optimal solution unlike RGA, PSO, and DE in the present problem. The above comparative optimization is illustrated through 10-, 14-, and 20-element linear antenna arrays to establish the optimization efficacy of CAB.

  8. Optimized hyper beamforming of linear antenna arrays using collective animal behaviour.

    Science.gov (United States)

    Ram, Gopi; Mandal, Durbadal; Kar, Rajib; Ghoshal, Sakti Prasad

    2013-01-01

    A novel optimization technique which is developed on mimicking the collective animal behaviour (CAB) is applied for the optimal design of hyper beamforming of linear antenna arrays. Hyper beamforming is based on sum and difference beam patterns of the array, each raised to the power of a hyperbeam exponent parameter. The optimized hyperbeam is achieved by optimization of current excitation weights and uniform interelement spacing. As compared to conventional hyper beamforming of linear antenna array, real coded genetic algorithm (RGA), particle swarm optimization (PSO), and differential evolution (DE) applied to the hyper beam of the same array can achieve reduction in sidelobe level (SLL) and same or less first null beam width (FNBW), keeping the same value of hyperbeam exponent. Again, further reductions of sidelobe level (SLL) and first null beam width (FNBW) have been achieved by the proposed collective animal behaviour (CAB) algorithm. CAB finds near global optimal solution unlike RGA, PSO, and DE in the present problem. The above comparative optimization is illustrated through 10-, 14-, and 20-element linear antenna arrays to establish the optimization efficacy of CAB.

  9. Synthesis of Circular Array Antenna for Sidelobe Level and Aperture Size Control Using Flower Pollination Algorithm

    Directory of Open Access Journals (Sweden)

    V. S. S. S. Chakravarthy Vedula

    2015-01-01

    Full Text Available Sidelobe level suppression is a major problem in circular array antenna (CAA synthesis. Many conventional numerical techniques are proposed to achieve this which are time consuming and often fail to handle multimodal problems. In this paper, a method of circular array synthesis using nature inspired flower pollination algorithm (FPA is proposed. The synthesis technique considered here adapts one and two degrees of freedom, namely, amplitude only and amplitude spacing. The effectiveness of the FPA is studied by comparing the results with genetic algorithm (GA and uniform circular array antenna (UCAA with uniform spacing. Also the effect of additional degree of freedom on the aperture size and the computational time is analyzed. A relative side lobe level (SLL of −25 dB is achieved using the algorithm under both no beam scanning (0° and beam scanning (15° conditions for 20 and 40 elements of CAA.

  10. Investigations on antenna array calibration algorithms for direction-of-arrival estimation

    Science.gov (United States)

    Eberhardt, Michael; Eschlwech, Philipp; Biebl, Erwin

    2016-09-01

    Direction-of-arrival (DOA) estimation algorithms deliver very precise results based on good and extensive antenna array calibration. The better the array manifold including all disturbances is known, the better the DOA estimation result. A simplification or ideally an omission of the calibration procedure has been a long pursued goal in the history of array signal processing. This paper investigates the practicability of some well known calibration algorithms and gives a deeper insight into existing obstacles. Further analysis on the validity of the common used data model is presented. A new effect in modeling errors is revealed and simulation results substantiate this theory.

  11. Beam Switching Cylindrical Array Antenna System for Communication

    Directory of Open Access Journals (Sweden)

    V. C. Misra

    1998-10-01

    Full Text Available The beam switching cylindrical array, which is a unique system, has been designed and developed to cover 360° in azimuth plane by generating 16 beams with specified elevation coverage.In this design, the concept of fast aperture selection (4 x 4 in microseconds from the total cylindrical array has been realised successfully to meet the requirement of point-to-multipoint communication. The components of the array, viz., radiating elements, powder dividers, switches, etc., are designed in printed circuit type, and hence, objectives of lightweight and ease of reproducibility are achieved. The lightweight of the array makes it accessible for easy mounting at a specified height for achieving longer communication range. Finally, a low-loss radome is incorporated to protect the array from environmental conditions. The various parameters, viz., return loss, gain, and switched-beam radiation patterns were measured over a bandwidth of 300 MHz in L- band and typical measured results are presented in this paper.

  12. Design and characterisation of a phased antenna array for intact breast hyperthermia.

    Science.gov (United States)

    Curto, Sergio; Garcia-Miquel, Aleix; Suh, Minyoung; Vidal, Neus; Lopez-Villegas, Jose M; Prakash, Punit

    2017-06-28

    Currently available hyperthermia technology is not well suited to treating cancer malignancies in the intact breast. This study investigates a microwave applicator incorporating multiple patch antennas, with the goal of facilitating controllable power deposition profiles for treating lesions at diverse locations within the intact breast. A 3D-computational model was implemented to assess power deposition profiles with 915 MHz applicators incorporating a hemispheric groundplane and configurations of 2, 4, 8, 12, 16 and 20 antennas. Hemispheric breast models of 90 mm and 150 mm diameter were considered, where cuboid target volumes of 10 mm edge length (1 cm(3)) and 30 mm edge length (27 cm(3)) were positioned at the centre of the breast, and also located 15 mm from the chest wall. The average power absorption (αPA) ratio expressed as the ratio of the PA in the target volume and in the full breast was evaluated. A 4-antenna proof-of-concept array was fabricated and experimentally evaluated. Computational models identified an optimal inter-antenna spacing of 22.5° along the applicator circumference. Applicators with 8 and 12 antennas excited with constant phase presented the highest αPA at centrally located and deep-seated targets, respectively. Experimental measurements with a 4-antenna proof-of-concept array illustrated the potential for electrically steering power deposition profiles by adjusting the relative phase of the signal at antenna inputs. Computational models and experimental results suggest that the proposed applicator may have potential for delivering conformal thermal therapy in the intact breast.

  13. Taiwanese antennas for the Sub-Millimeter Array: a progress report

    Science.gov (United States)

    Raffin, Phillippe A.; Liu, Ching-Tang; Cervera, Mathieu; Chang, Chi-Ling; Chen, Ming-Tang; Lee, Cheng-Ching; Lee, Typhoon; Lo, Kwok-Yung; Ma, Rwei-Ping; Martin, Robert N.; Martin-Cocher, Pierre; Ong, Ching-Long; Park, Yong-Sun; Tsai, Rong-Den; Wu, Enboa; Yang, Shun-Cheng; Yang, Tien-Szu

    2000-07-01

    The Academia Sinica, Institute for Astronomy and Astrophysics (ASIAA) is building two antennas to be added to the six antennas of the Sub-Millimeter Array (SMA) of the Smithsonian Astrophysical Observatory (SAO). The antennas have been designed at SAO and are currently under construction at Mauna Kea. ASIAA's two antennas are made in Taiwan from parts manufactured locally and imported from Europe and from the USA. This report will focus on the manufacturing and testing of 2 major components: the alidade and the reflector. We will emphasize the work done on the composite parts used in the 6- meter reflectors, namely the carbon fiber tubes for the backup structure, the carbon fiber legs of the quadrupod and the composite central hub. We will discuss the modal testing and pointing tests of the antennas. Finally this report will show how the Taiwanese industry was able to respond to the high manufacturing standards required to build sub-millimeter antennas. The design and manufacturing capabilities of the Aeronautical Research Laboratories and China Shipbuilding Corporation have made possible the construction of the telescopes in Taiwan.

  14. Narrowband direction of arrival estimation for antenna arrays

    CERN Document Server

    Foutz, Jeffrey

    2008-01-01

    This book provides an introduction to narrowband array signal processing, classical and subspace-based direction of arrival (DOA) estimation with an extensive discussion on adaptive direction of arrival algorithms. The book begins with a presentation of the basic theory, equations, and data models of narrowband arrays. It then discusses basic beamforming methods and describes how they relate to DOA estimation. Several of the most common classical and subspace-based direction of arrival methods are discussed. The book concludes with an introduction to subspace tracking and shows how subspace tr

  15. Comparative Analysis of Linear and Nonlinear Pattern Synthesis of Hemispherical Antenna Array Using Adaptive Evolutionary Techniques

    Directory of Open Access Journals (Sweden)

    K. R. Subhashini

    2014-01-01

    synthesis is termed as the variation in the element excitation amplitude and nonlinear synthesis is process of variation in element angular position. Both ADE and AFA are a high-performance stochastic evolutionary algorithm used to solve N-dimensional problems. These methods are used to determine a set of parameters of antenna elements that provide the desired radiation pattern. The effectiveness of the algorithms for the design of conformal antenna array is shown by means of numerical results. Comparison with other methods is made whenever possible. The results reveal that nonlinear synthesis, aided by the discussed techniques, provides considerable enhancements compared to linear synthesis.

  16. Silicon-based antenna-coupled polarization-sensitive millimeter-wave bolometer arrays for cosmic microwave background instruments

    Science.gov (United States)

    Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Brown, Ari; Chang, Meng-Ping; Chuss, David T.; Colazo, Felipe A.; Costen, Nick; Denis, Kevin L.; Essinger-Hileman, Tom; Hu, Ron; Marriage, Tobias A.; Moseley, Samuel H.; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Xu, Zhilei

    2016-07-01

    We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define the backshort for the waveguide probes. This micro-machined structure is also used to mitigate the coupling of out-of-band radiation to the microwave circuit. At 40 GHz, the detectors have a measured efficiency of ˜90%. In this paper, we describe the development of the 90 GHz detector arrays that will be demonstrated using the Cosmology Large Angular Scale Surveyor (CLASS) ground-based telescope.

  17. Design and realization of a planar ultrawideband antenna with notch band at 3.5 GHz.

    Science.gov (United States)

    Azim, Rezaul; Islam, Mohammad Tariqul; Misran, Norbahiah; Yatim, Baharudin; Arshad, Haslina

    2014-01-01

    A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31-3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band.

  18. Design and Analysis of Printed Yagi-Uda Antenna and Two-Element Array for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Cai Run-Nan

    2012-01-01

    Full Text Available A printed director antenna with compact structure is proposed. The antenna is fed by a balanced microstrip-slotline and makes good use of space to reduce feeding network area and the size of antenna. According to the simulation results of CST MICROWAVE STUDIO software, broadband characteristics and directional radiation properties of the antenna are explained. The operating bandwidth is 1.8 GHz–3.5 GHz with reflection coefficient less than −10 dB. Antenna gain in band can achieve 4.5–6.8 dBi, and the overall size of antenna is smaller than 0.34λ0×0.58λ0. Then the antenna is developed to a two-element antenna array, working frequency and relative bandwidth of which are 2.15–2.87 GHz and 28.7%, respectively. Compared with antenna unit, the gain of the antenna array has increased by 2 dB. Thus the proposed antenna has characteristics of compact structure, relatively small size, and wideband, and it can be widely used in PCS/UMTS/WLAN/ WiMAX fields.

  19. SUB-DOMAIN MOM FORMULATION FOR CIRCULAR AND NON-CIRCULAR LOOP ANTENNA ARRAYS

    Directory of Open Access Journals (Sweden)

    TOMÁŠ PÁLENÍK

    2011-05-01

    Full Text Available The method of moments (MoM analysis of thin-wire loop antenna arrays with multiple elements is presented in this paper. The proposed formulation provides simple algorithmic implementation that canbe applied to circular loop arrays as well as more generally shaped arrays using the Pocklington’s integral equation with simplified kernel for arbitrary shaped wires in combination with a superquadriccurve representation. This analysis leads to knowledge of the current distribution, input impedance and other electromagnetic properties of both uniform and non-uniform loop arrays. Numerical results areincluded to exhibit good agreement with various relevant references and simulation software. The data for large square and rectangular loop arrays are presented for the first time in literature.

  20. Assessment of Measurement Distortions in GNSS Antenna Array Space-Time Processing

    Directory of Open Access Journals (Sweden)

    Thyagaraja Marathe

    2016-01-01

    Full Text Available Antenna array processing techniques are studied in GNSS as effective tools to mitigate interference in spatial and spatiotemporal domains. However, without specific considerations, the array processing results in biases and distortions in the cross-ambiguity function (CAF of the ranging codes. In space-time processing (STP the CAF misshaping can happen due to the combined effect of space-time processing and the unintentional signal attenuation by filtering. This paper focuses on characterizing these degradations for different controlled signal scenarios and for live data from an antenna array. The antenna array simulation method introduced in this paper enables one to perform accurate analyses in the field of STP. The effects of relative placement of the interference source with respect to the desired signal direction are shown using overall measurement errors and profile of the signal strength. Analyses of contributions from each source of distortion are conducted individually and collectively. Effects of distortions on GNSS pseudorange errors and position errors are compared for blind, semi-distortionless, and distortionless beamforming methods. The results from characterization can be useful for designing low distortion filters that are especially important for high accuracy GNSS applications in challenging environments.