WorldWideScience

Sample records for plains aquifer texas

  1. Assessing aquifer storage and recovery feasibility in the Gulf Coastal Plains of Texas

    Directory of Open Access Journals (Sweden)

    W. Benjamin Smith

    2017-12-01

    Full Text Available Study region: The Gulf Coast and Carrizo-Wilcox aquifer systems in the Gulf Coastal Plains of Texas. Study focus: Aquifer storage and recovery is a water storage alternative that is underutilized in Texas, a state with both long periods of drought and high intensity storms. Future water storage plans in Texas almost exclusively rely on surface reservoirs, subject to high evaporative losses. This study seeks to identify sites where aquifer storage and recovery (ASR may be successful, especially in recovery of injected waters, by analyzing publicly-available hydrogeologic data. Transmissivity, hydraulic gradient, well density, depth to aquifer, and depth to groundwater are used in a GIS-based index to determine feasibility of implementing an ASR system in the Gulf Coast and Carrizo-Wilcox aquifer systems. New hydrological insights for the region: Large regions of the central and northern Gulf Coast and the central and southern Carrizo-Wilcox aquifer systems are expected to be hydrologically feasible regions for ASR. Corpus Christi, Victoria, San Antonio, Bryan, and College Station are identified as possible cities where ASR would be a useful water storage strategy. Keywords: Aquifer storage and recovery (ASR, GIS, Gulf coast, Carrizo-Wilcox, Managed aquifer recharge (MAR

  2. Trends in Playa Inundation and Water Storage in the Ogallala Aquifer on the Texas High Plains

    Directory of Open Access Journals (Sweden)

    Dennis Gitz

    2016-08-01

    Full Text Available The Ogallala Aquifer is an important source of irrigation water on the Texas High plains; however, significant decreases in saturated thickness threaten its future use for irrigation. A better understanding of the roles of playas, ephemeral surface ponds, in aquifer recharge is needed to establish levels of withdrawals that will meet either established desired future conditions or sustainability. In this study, data regarding playa inundation, depth to groundwater, precipitation and land cover from 2001 to 2011 were collected and analyzed to ascertain associations between these characteristics for four study areas on the Texas High plains. Each area covered 40,000–70,000 ha. Three of the study areas in Hockley, Floyd and Swisher counties were chosen because their center contained a playa instrumented to measure weather and depth of inundation. There were 20 distinct inundation events at the three instrumented playas between 2006 and 2010. For each of these inundations, water loss exceeded rates of potential evapotranspiration (ET by a factor of 1.6–15.7 times, implying that infiltration was occurring. Playa inundation in all four study areas was also assessed by analyzing images from the National Agricultural Imaginary program. Data on depth to groundwater were analyzed from 2000 to 2010 to determine annual changes of stored water. Annual changes in groundwater were weakly associated with surface area of inundated playas in late summer, but was strongly associated with annual rainfall. Rates of infiltration based on playa water loss versus potential ET, and volume of water in playas was more than sufficient to account for annual changes in groundwater. Land use adjoining the playas had less of influence on playa inundation than annual rainfall. These results strengthen the argument that water storage in playas on the Texas High Plains is an important source of water for aquifer recharge.

  3. Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA

    International Nuclear Information System (INIS)

    Scanlon, B.R.; Nicot, J.P.; Reedy, R.C.; Kurtzman, D.; Mukherjee, A.; Nordstrom, D.K.

    2009-01-01

    High groundwater As concentrations in oxidizing systems are generally associated with As adsorption onto hydrous metal (Al, Fe or Mn) oxides and mobilization with increased pH. The objective of this study was to evaluate the distribution, sources and mobilization mechanisms of As in the Southern High Plains (SHP) aquifer, Texas, relative to those in other semiarid, oxidizing systems. Elevated groundwater As levels are widespread in the southern part of the SHP (SHP-S) aquifer, with 47% of wells exceeding the current EPA maximum contaminant level (MCL) of 10 μg/L (range 0.3-164 μg/L), whereas As levels are much lower in the north (SHP-N: 9% ≥ As MCL of 10 μg/L; range 0.2-43 μg/L). The sharp contrast in As levels between the north and south coincides with a change in total dissolved solids (TDS) from 395 mg/L (median north) to 885 mg/L (median south). Arsenic is present as arsenate (As V) in this oxidizing system and is correlated with groundwater TDS (Spearman's ρ = 0.57). The most likely current source of As is sorbed As onto hydrous metal oxides based on correlations between As and other oxyanion-forming elements (V, ρ = 0.88; Se, ρ = 0.54; B, ρ = 0.51 and Mo, ρ = 0.46). This source is similar to that in other oxidizing systems and constitutes a secondary source; the most likely primary source being volcanic ashes in the SHP aquifer or original source rocks in the Rockies, based on co-occurrence of As and F (ρ = 0.56), oxyanion-forming elements and SiO 2 (ρ = 0.41), which are found in volcanic ashes. High groundwater As concentrations in some semiarid oxidizing systems are related to high evaporation. Although correlation of As with TDS in the SHP aquifer may suggest evaporative concentration, unenriched stable isotopes (δ 2 H: -65 to -27; δ 18 O: -9.1 to -4.2) in the SHP aquifer do not support evaporation. High TDS in the SHP aquifer is most likely related to upward movement of saline water from the underlying Triassic Dockum aquifer. Mobilization

  4. Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA

    Science.gov (United States)

    Scanlon, Bridget R.; Nicot, J.-P.; Reedy, R.C.; Kurtzman, D.; Mukherjee, A.; Nordstrom, D. Kirk

    2009-01-01

    High groundwater As concentrations in oxidizing systems are generally associated with As adsorption onto hydrous metal (Al, Fe or Mn) oxides and mobilization with increased pH. The objective of this study was to evaluate the distribution, sources and mobilization mechanisms of As in the Southern High Plains (SHP) aquifer, Texas, relative to those in other semiarid, oxidizing systems. Elevated groundwater As levels are widespread in the southern part of the SHP (SHP-S) aquifer, with 47% of wells exceeding the current EPA maximum contaminant level (MCL) of 10 μg/L (range 0.3–164 μg/L), whereas As levels are much lower in the north (SHP-N: 9% ⩾ As MCL of 10 μg/L; range 0.2–43 μg/L). The sharp contrast in As levels between the north and south coincides with a change in total dissolved solids (TDS) from 395 mg/L (median north) to 885 mg/L (median south). Arsenic is present as arsenate (As V) in this oxidizing system and is correlated with groundwater TDS (Spearman’s ρ = 0.57). The most likely current source of As is sorbed As onto hydrous metal oxides based on correlations between As and other oxyanion-forming elements (V, ρ = 0.88; Se, ρ = 0.54; B, ρ = 0.51 and Mo, ρ = 0.46). This source is similar to that in other oxidizing systems and constitutes a secondary source; the most likely primary source being volcanic ashes in the SHP aquifer or original source rocks in the Rockies, based on co-occurrence of As and F (ρ = 0.56), oxyanion-forming elements and SiO2 (ρ = 0.41), which are found in volcanic ashes. High groundwater As concentrations in some semiarid oxidizing systems are related to high evaporation. Although correlation of As with TDS in the SHP aquifer may suggest evaporative concentration, unenriched stable isotopes (δ2H: −65 to −27; δ18O: −9.1 to −4.2) in the SHP aquifer do not support evaporation. High TDS in the SHP aquifer is most likely related to upward movement of saline water from the underlying

  5. Perched aquifers - their potential impact on contaminant transport in the southern High Plains, Texas

    International Nuclear Information System (INIS)

    Mullican, W.F. III; Fryar, A.E.; Johns, N.D.

    1993-01-01

    Understanding the hydrogeology and hydrochemistry of perched aquifers at potential and known contaminated waste sites has become increasingly important because of the impact these aquifers may have on contaminant transport independent of regional aquifer processes. Investigations of a perched aquifer above the Ogallala aquifer are being conducted in the region of the U.S. Department of Energy's Pantex Plant, a proposed Superfund site, located approximately 20 mi northeast of Amarillo, Texas. Since the early 1950s, a small playa basin located on the Pantex Plant has been used as a waste-water discharge pond with daily discharge rates ranging from 400,000 to 1 million gal. The focus of this investigation is an unconfined, perched aquifer that overlies a thick silty clay sequence within the upper, mostly unsaturated part of the Ogallala Formation (Neogene). In the area of the Pantex Plant, measured depths to the perched aquifer range from 200 to 300 ft below land surface, whereas depth to the regional Ogallala aquifer ranges from 375 to 500 ft. The potentiometric surface of the perched aquifer typically represents groundwater mounds proximal to the playas and thins into trough in the interplaya areas. Hydrologic gradients of the primary mound under investigation are relatively high, ranging from 28 to 45 ft/mi. Calculated transmissivities have a geometric mean of 54 ft 2 /day, with saturated thicknesses ranging from 4 to 1000 ft. Modeling of the perched aquifer was designed to determine how much, if any, discharge to the small playa basin has enhanced recharge to the perched aquifers and increased the vertical and lateral extent of the perched aquifer. Preliminary results indicate that measurements of vertical conductance through the perching silty-clay sequence and recharge rates through playas are critical for calibrating the model. Accurate delineation of rates and flow directions in the perched aquifer is critical to any successful remediation effort

  6. Machine-readable files developed for the High Plains Regional Aquifer-System analysis in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    Science.gov (United States)

    Ferrigno, C.F.

    1986-01-01

    Machine-readable files were developed for the High Plains Regional Aquifer-System Analysis project are stored on two magnetic tapes available from the U.S. Geological Survey. The first tape contains computer programs that were used to prepare, store, retrieve, organize, and preserve the areal interpretive data collected by the project staff. The second tape contains 134 data files that can be divided into five general classes: (1) Aquifer geometry data, (2) aquifer and water characteristics , (3) water levels, (4) climatological data, and (5) land use and water use data. (Author 's abstract)

  7. Well-Integrity Survey (Phase II) of Abandoned Homestead Water Wells in the High Plains Aquifer, Former Pantex Ordnance Plant and Texas Tech Research Farm Near Amarillo, Texas, 1995

    National Research Council Canada - National Science Library

    Rivers, Glenn A

    1995-01-01

    This report describes the methods used and the results obtained during a field search for abandoned homestead sites and water wells at the former Pantex Ordnance Plant and Texas Tech Research Farm (Pantex site...

  8. DNAPL migration in a coastal plain aquifer

    International Nuclear Information System (INIS)

    DiGuiseppi, W.H.; Jung, A.D.

    1995-01-01

    Soil and ground water at the Dover Gas Light Superfund Site, a former manufactured gas plant (1859 to 1948), are contaminated with polynuclear aromatic hydrocarbons and volatile organic compounds. Contaminants of concern include light aromatics, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), and heavy aromatics, including naphthalene, acenaphthylene, phenanthrene, and benzo(a)pyrene. Although ground-water contaminant levels are elevated near the site, only naphthalene and acenaphthylene are present within an order of magnitude of their solubility limits, indicating the possibility of dense non-aqueous phase liquids (DNAPL) in the subsurface. The unconfined Columbia Aquifer, which is characterized by interfingering and discontinuous sand, silt, and clay Coastal Plain deposits, overlies a clay aquitard at a depth of 60 feet. The ground water beneath the intermediate clay horizon exhibited little or no contamination, even immediately downgradient from the site. The relationship between the more permeable granular sand horizons and the less permeable interfingering clay zones controls the migration of both the aqueous-phase contamination and the DNAPL. A detailed horizontal and vertical characterization of the subsurface stratigraphy was critical to the accurate interpretation of the extent and magnitude of contamination and the identification and delineation of DNAPL zones

  9. Groundwater Management Innovations in the High Plains Aquifer, USA: A possible path towards sustainability? (Invited)

    Science.gov (United States)

    Sophocleous, M. A.

    2009-12-01

    The U.S. High Plains aquifer, one of the largest freshwater aquifer systems in the world covering parts of eight US states, continues to decline, threatening the long-term viability of the region’s irrigation-based economy. The theory of the commons has meaningful messages for High-Plains jurisdictions as no private incentive exists to save for tomorrow, and agricultural prosperity depends on mining water from large portions of the aquifer. The eight High Plains states take different approaches to the development and management of the aquifer based on each state’s body of water laws that abide by different legal doctrines, on which Federal laws are superposed, thus creating difficulties in integrated regional water management efforts. Although accumulating hydrologic stresses and competing demands on groundwater resources are making groundwater management increasingly complex, they are also leading to innovative approaches to the management of groundwater supplies, and those are highlighted in this presentation as good examples for emulation in managing groundwater resources. The highlighted innovations include (1) the Texas Groundwater Availability Modeling program, (2) Colorado’s water-augmentation program, (3) Kansas’ Intensive Groundwater Use Control Area policy, (4) the Kansas Groundwater Management Districts’ “safe yield” policies, (5) the water-use reporting program in Kansas, (6) the Aquifer Storage and Recovery program of the City of Wichita, Kansas, and (7) Nebraska’s Natural Resources Districts. It is concluded that the fragmented and piecemeal institutional arrangements for managing the supplies and quality of water are unlikely to be sufficient to meet the water challenges of the future. A number of recommendations for enhancing the sustainability of the aquifer are presented, including the formation of an interstate groundwater commission for the High Plains aquifer along the lines of the Delaware and Susquehanna River Basins

  10. Water supply and needs for West Texas

    Science.gov (United States)

    This presentation focused on the water supplies and needs of West Texas, Texas High Plains. Groundwater is the most commonly used water resources on the Texas High Plains, with withdrawals from the Ogallala Aquifer dominating. The saturation thickness of the Ogallala Aquifer in Texas is such that t...

  11. Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA

    Science.gov (United States)

    Fryar, Alan; Mullican, William; Macko, Stephen

    2001-11-01

    The unconfined High Plains (Ogallala) aquifer is the largest aquifer in the USA and the primary water supply for the semiarid southern High Plains of Texas and New Mexico. Analyses of water and soils northeast of Amarillo, Texas, together with data from other regional studies, indicate that processes during recharge control the composition of unconfined groundwater in the northern half of the southern High Plains. Solute and isotopic data are consistent with a sequence of episodic precipitation, concentration of solutes in upland soils by evapotranspiration, runoff, and infiltration beneath playas and ditches (modified locally by return flow of wastewater and irrigation tailwater). Plausible reactions during recharge include oxidation of organic matter, dissolution and exsolution of CO2, dissolution of CaCO3, silicate weathering, and cation exchange. Si and 14C data suggest leakage from perched aquifers to the High Plains aquifer. Plausible mass-balance models for the High Plains aquifer include scenarios of flow with leakage but not reactions, flow with reactions but not leakage, and flow with neither reactions nor leakage. Mechanisms of recharge and chemical evolution delineated in this study agree with those noted for other aquifers in the south-central and southwestern USA. Résumé. L'aquifère libre des Hautes Plaines (Ogallala) est le plus vaste aquifère des états-Unis et la ressource de base pour l'eau potable de la région semi-aride du sud des Hautes Plaines du Texas et du Nouveau-Mexique. Des analyses de l'eau et des sols prélevés au nord-est d'Amarillo (Texas), associées à des données provenant d'autres études dans cette région, indiquent que des processus intervenant au cours de l'infiltration contrôlent la composition de l'eau de la nappe libre dans la moitié septentrionale du sud des Hautes Plaines. Les données chimiques et isotopiques sont compatibles avec une séquence de précipitation épisodique, avec la reconcentration en solut

  12. A New Boundary for the High Plains - Ogallala Aquifer Complex

    Science.gov (United States)

    Haacker, E. M.; Nozari, S.; Kendall, A. D.

    2017-12-01

    In the semi-arid Great Plains, water is the key ingredient for crop growth: the difference between meager yields for many crops and an agricultural bonanza. The High Plains-Ogallala Aquifer complex (HPA) underlies 452,000 square kilometers of the region, and over 95% of water withdrawn from the aquifer is used for irrigation. Much of the HPA is being pumped unsustainably, and since the region is heavily reliant on this resource for its social and economic health, the High Plains has been a leader in groundwater management planning. However, the geographic boundary of the High Plains region fails to reflect the hydrogeological realities of the aquifer. The current boundary, recognizable from countless textbooks and news articles, is only slightly modified from a version from the 1980's, and largely follows the physiographic borders of the High Plains - defined by surface features such as escarpments and rivers - rather than the edges of water-bearing sediment sufficient for high-volume pumping. This is supported by three lines of evidence: hydrogeological observations from the original aquifer boundary determination; the extent of irrigated land, as estimated by MODIS-MIrAD data; and statistical estimates of saturated thickness, incorporating improved maps of the aquifer base and an additional 35 years of water table measurements. In this project, new maps of saturated thickness are used to create an updated aquifer boundary, which conforms with the standard definition of an aquifer as a package of sediment that yields enough water to be economically pumped. This has major implications for social and physical models, as well as water planning and estimates of sustainability for the HPA. Much of the area of the HPA that has been labeled `sustainable' based upon estimates of recharge relative to pumping estimates falls outside the updated aquifer boundary. In reality, the sustainably-pumped area of this updated aquifer boundary is far smaller—a fact that if more

  13. Characterisation of the Ionian-Lucanian coastal plain aquifer

    OpenAIRE

    Polemio, M.; Limoni, P.P.; Mitolo, D.; Santaloia, F.

    2002-01-01

    This paper deals with a Southern Italy area, 40 km by 10 km wide, located where four river valleys anastomose themselves in the coastal plain. The geological and hydrogeological features of the study area and the chemical-physical groundwater characterisation have been inferred from the data analysis of 1130 boreholes. Some aquifers, connected among them, constituted by soils of different geological origin -marine terraces deposits, river valley alluvial deposits and alluvial and coastal depo...

  14. Planning report for the Gulf Coast Regional Aquifer-System Analysis in the Gulf of Mexico coastal plain, United States

    Science.gov (United States)

    Grubb, Hayes F.

    1984-01-01

    Large quantities of water for municipal, industrial and agriculture use are supplied from the aquifers in Tertiary and younger sediments over an area of about 225,000 square miles in the Coastal Plain of Alabama, Arkansas, Florida, Illinois, Kentucky, Louisiana, Mississippi, Missouri, Tennessee, and Texas. Three regional aquifer systems, the Mississippi Embayment aquifer system, the Coastal Lowlands aquifer system, and the Texas Coastal Uplands aquifer system have been developed to varying degrees throughout the area. A variety of problems has resulted from development such as movement of the saline-freshwater interface into parts of aquifers that were previously fresh, lowering of the potentiometric surface with resulting increases in pumping lift, and land-surface subsidence due to the compaction of clays within the aquifer. Increased demand for ground water is anticipated to meet the needs of urban growth, expanded energy development, and growth of irrigated agriculture. The U. S. Geological Survey initiated an eightyear study in 1981 to define the geohydrologic framework, describe the chemistry of the ground water, and to analyze the regional ground-water flow patterns. The objectives, plan, and organization of the study are described in this report and the major tasks to be undertaken are outlined.

  15. Bibliography of the Edwards Aquifer, Texas, through 1993

    Science.gov (United States)

    Menard, J.A.

    1995-01-01

    The bibliography comprises 1,022 multidisciplinary references to technical and general literature for the three regions of the Edwards aquifer, Texas-San Antonio area; Barton Springs segment, Austin area; and northern segment, Austin area. The references in the bibliography were compiled from computerized data bases and from published bibliographies and reports. Dates of references range from the late 1800's through 1993. Subject and author indexes are included.

  16. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  17. Isotopes to Study the coastal aquifer plain, Cap Bon, Tunisia

    International Nuclear Information System (INIS)

    Ben Hamouda, M. F.; Zouari, Kamel; Tarhouni, J.; Gaye, C.B.; Oueslati, M.N.

    2005-01-01

    The study area is located in the northeastern part of Tunisia about 60 km south of the Tunis city. It is bounded by the Gulf of Haematite in the East, Djebel Sidi Aberahmane in the West, The town of Nabeul in the south and the area of the town Kelibia in the north. The landscape is a coastal plain slightly sloping (3%) towards the sea. The groundwater of the Oriental coast aquifer system occurs mainly at two levels, a shallow aquifer up to depths of about 50 m whose reservoir is consisted by sediments of the Plio quaternary and a deep aquifer between about 150 and 400 m located in the sand stone formations of Miocene of the anticline of Djebel Sidi Abderrahmene. The climate of the region is semi-arid to sub-humid and of Mediterranean type. There are no perennial rivers in this region; but intense storms occasionally cause surface runoff, which is discharged by the oueds. The study is related to a technical cooperation project with the International Atomic Energy Agency, Vienna, Austria, aimed at the use of isotope techniques to study the seawater intrusion into the coastal aquifers of Cap Bon in Tunisia. In this regard, a better understanding of the recharge and flow regime as well as the origin or salinity of the groundwater was required. To reach this goal, isotope and geochemical investigations were carried out. Water samples were taken from wells, boreholes from deep and shallow aquifer of the Oriental coastal aquifer located between Beni Khiar in the south and Kelibia in the north. The samples were analysed for their chemical and isotopic compositions (18O, 2H, 3H, 13C, 14C, 34S). In the following, the results of these analyses are presented and discussed in terms of the recharge and flow regime of the groundwater and the origin and evolution of its salinity. The results of geochemical and isotopic studies have shown that the groundwater is very eterogeneous and suggest the aquifer is replenished by recent water coming from direct infiltration from rain. At

  18. Water-level and recoverable water in storage changes, High Plains aquifer, predevelopment to 2015 and 2013–15

    Science.gov (United States)

    McGuire, Virginia L.

    2017-06-01

    The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). This report presents water-level changes and change in recoverable water in storage in the High Plains aquifer from predevelopment (about 1950) to 2015 and from 2013 to 2015.The methods to calculate area-weighted, average water-level changes; change in recoverable water in storage; and total recoverable water in storage used geospatial data layers organized as rasters with a cell size of 500 meters by 500 meters, which is an area of about 62 acres. Raster datasets of water-level changes are provided for other uses.Water-level changes from predevelopment to 2015, by well, ranged from a rise of 84 feet to a decline of 234 feet. Water-level changes from 2013 to 2015, by well, ranged from a rise of 24 feet to a decline of 33 feet. The area-weighted, average water-level changes in the aquifer were an overall decline of 15.8 feet from predevelopment to 2015 and a decline of 0.6 feet from 2013 to 2015. Total recoverable water in storage in the aquifer in 2015 was about 2.91 billion acre-feet, which was a decline of about 273.2 million acre-feet since predevelopment and a decline of 10.7 million acre-feet from 2013 to 2015.

  19. Classification of irrigated land using satellite imagery, the High Plains aquifer, nominal date 1992

    Science.gov (United States)

    Qi, Sharon L.; Konduris, Alexandria; Litke, David W.; Dupree, Jean

    2002-01-01

    Satellite imagery from the Landsat Thematic Mapper (nominal date 1992) was used to classify and map the location of irrigated land across the High Plains aquifer. The High Plains aquifer underlies 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The U.S. Geological Survey is conducting a waterquality study of the High Plains aquifer as part of the National Water-Quality Assessment Program. To help interpret data and select sites for the study, it is helpful to know the location of irrigated land within the study area. To date, the only information available for the entire area is 20 years old. To update the data on irrigated land, 40 summer and 40 spring images (nominal date 1992) were acquired from the National Land Cover Data set and processed using a band-ratio method (Landsat Thematic Mapper band 4 divided by band 3) to enhance the vegetation signatures. The study area was divided into nine subregions with similar environmental characteristics, and a band-ratio threshold was selected from imagery in each subregion that differentiated the cutoff between irrigated and nonirrigated land. The classified images for each subregion were mosaicked to produce an irrigated land map for the study area. The total amount of irrigated land classified from the 1992 imagery was 13.1 million acres, or about 12 percent of the total land in the High Plains. This estimate is approximately 1.5 percent greater than the amount of irrigated land reported in the 1992 Census of Agriculture (12.8 millions acres). This information was also compared to a similar data set based on 1980 imagery. The 1980 data classified 13.7 million acres as irrigated. Although the change in the amount of irrigated land between the two times was not substantial, the location of the irrigated land did shift from areas where there were large ground-water-level declines to other areas where ground-water levels were static or rising.

  20. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, M., E-mail: mmusgrov@usgs.gov [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Opsahl, S.P. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States); Mahler, B.J. [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Herrington, C. [City of Austin Watershed Protection Department, Austin, TX 78704 (United States); Sample, T.L. [U.S. Geological Survey, 19241 David Memorial Dr., Ste. 180, Conroe, TX 77385 (United States); Banta, J.R. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States)

    2016-10-15

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO{sub 3}{sup −}) loading to surface and groundwater. We investigate variability and sources of NO{sub 3}{sup −} in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO{sub 3}{sup −} stable isotopes (δ{sup 15}N and δ{sup 18}O). These data were augmented by historical data collected from 1937 to 2007. NO{sub 3}{sup −} concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO{sub 3}{sup −} concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO{sub 3}{sup −} concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO{sub 3}{sup −}. These results highlight the vulnerability of karst aquifers to NO{sub 3}{sup −} contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO{sub 3}{sup −} than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates

  1. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    International Nuclear Information System (INIS)

    Musgrove, M.; Opsahl, S.P.; Mahler, B.J.; Herrington, C.; Sample, T.L.; Banta, J.R.

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO 3 − ) loading to surface and groundwater. We investigate variability and sources of NO 3 − in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO 3 − stable isotopes (δ 15 N and δ 18 O). These data were augmented by historical data collected from 1937 to 2007. NO 3 − concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO 3 − concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO 3 − concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO 3 − . These results highlight the vulnerability of karst aquifers to NO 3 − contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO 3 − than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a

  2. Straddle-packer aquifer test analyses of the Snake River Plain aquifer at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Johnson, G.S.; Frederick, D.B.

    1997-01-01

    The State of Idaho INEL Oversight Program, with the University of Idaho, Idaho State University, Boise State University, and the Idaho Geologic Survey, used a straddle-packer system to investigate vertical variations in characteristics of the Snake River Plain aquifer at the Idaho National Engineering Laboratory in southeast Idaho. Sixteen single-well aquifer tests were conducted on.isolated intervals in three observation wells. Each of these wells has approximately 200 feet of open borehole below the water table, penetrating the E through G and I basalt flow groups and interbedded sediments of the Snake River Plain aquifer. The success of the aquifer tests was limited by the inability to induce measurable drawdown in several zones. Time-drawdown data from aquifer tests were matched to type curves for 8 of the 16 zones tested. A single aquifer test at the water table exhibited greater curvature than those at depth. The increased degree of curvature suggests an unconfined response and resulted in an estimate of specific yield of 0.03. Aquifer tests below the water table generally yielded time-drawdown graphs with a rapid initial response followed by constant drawdown throughout the duration of the tests; up to several hours in length. The rapid initial response implies that the aquifer responds as a confined system during brief pumping periods. The nearly constant drawdown suggests a secondary source of water, probably vertical flow from overlying and underlying aquifer layers. Three analytical models were applied for comparison to the conceptual model and to provide estimates of aquifer properties. This, Hantush-Jacob leaky aquifer, and the Moench double-porosity fractured rock models were fit to time-drawdown data. The leaky aquifer type curves of Hantush and Jacob generally provided the best match to observed drawdown. A specific capacity regression equation was also used to estimate hydraulic conductivity

  3. Review: Recharge rates and chemistry beneath playas of the High Plains aquifer, USA

    Science.gov (United States)

    Gurdak, Jason J.; Roe, Cassia D.

    2010-12-01

    Playas are ephemeral, closed-basin wetlands that are hypothesized as an important source of recharge to the High Plains aquifer in central USA. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on groundwater from the High Plains aquifer has prompted many questions regarding the contribution and quality of recharge from playas to the High Plains aquifer. As a result, there has been considerable scientific debate about the potential for water to infiltrate the relatively impermeable playa floors, travel through the unsaturated zone sediments that are tens of meters thick, and subsequently recharge the High Plains aquifer. This critical review examines previously published studies on the processes that control recharge rates and chemistry beneath playas. Reported recharge rates beneath playas range from less than 1.0 to more than 500 mm/yr and are generally 1-2 orders of magnitude higher than recharge rates beneath interplaya settings. Most studies support the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this review provide science-based implications for management of playas and groundwater resources of the High Plains aquifer and directions for future research.

  4. Solute geochemistry of the Snake River Plain regional aquifer system, Idaho and eastern Oregon

    International Nuclear Information System (INIS)

    Wood, W.W.; Low, W.H.

    1987-01-01

    Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Reactions controlling solutes in the western Snake river basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake river Plain contains total dissolved solids similar to those in the overlying Snake River Plain aquifer system but contains higher concentrations of sodium, bicarbonate, silica, fluoride, sulfate, chloride, arsenic, boron, and lithium, and lower concentrations of calcium, magnesium, and hydrogen. 132 refs., 30 figs., 27 tabs

  5. Harvest timing and techniques to optimize fiber quality in the Texas High Plains

    Science.gov (United States)

    Production conditions typical to the Texas High Plains region can produce cotton crops with high short fiber and nep content, both of which have a detrimental impact on ring spinning performance. Since Texas now produces nearly 50% of the US cotton crop annually, it is critical that research focuses...

  6. Aquifer geochemistry at potential aquifer storage and recovery sites in coastal plain aquifers in the New York city area, USA

    Science.gov (United States)

    Brown, C.J.; Misut, P.E.

    2010-01-01

    The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water

  7. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.

    Science.gov (United States)

    Musgrove, MaryLynn; Opsahl, Stephen P.; Mahler, Barbara J.; Herrington, Chris; Sample, Thomas; Banta, John

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3−) loading to surface and groundwater. We investigate variability and sources of NO3− in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3− stable isotopes (δ15N and δ18O). These data were augmented by historical data collected from 1937 to 2007. NO3− concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3− concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3− concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3−. These results highlight the vulnerability of karst aquifers to NO3− contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3−than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously

  8. Extending the economic life of the Ogallala Aquifer with water conservation policies in the Texas panhandle

    Science.gov (United States)

    The continued decline in the availability of water from the Ogallala Aquifer in the Texas Panhandle has led to an increased interest in conservation policies designed to extend the life of the aquifer and sustain rural economies. Four counties were chosen for evaluation. This study evaluates the eff...

  9. Considerations in the extraction of uranium from a fresh-water aquifer - Miocene Oakville Sandstone, south Texas

    International Nuclear Information System (INIS)

    Henry, C.D.; Galloway, W.E.; Smith, G.E.

    1982-01-01

    The Miocene Oakville Sandstone is a major aquifer and uranium host beneath the Texas Coastal Plain. Present and future uranium mining by either surface or in situ methods could affect the availability and quality of Oakville ground water unless the mining is designed properly. Possible effects of mining, potential natural mitigation of these effects, and approaches to minimizing the impact of mining on the aquifer system are discussed. Both solution and surface mining may affect the availability of ground water by altering recharge characteristics and permeability. Because the volume of the aquifer affected by mining is small compared with its total volume, availability of Oakville ground water will probably not be reduced significantly, except in wells immediately adjacent to a mine. Mining may affect the quality of ground water by introducing chemicals that are not indigenous to the aquifer or by inducing chemical reactions that do not occur naturally or that occur at much slower rates. Most mining companies no longer use concentrated, ammonium-based leaches because of known problems in restoring water to its original chemistry. Natural and induced release of trace elements such as molybdenum is known to occur, but the geochemical controls on mobility and potential mitigating reactions in the aquifer are poorly understood. Because the affected aquifer volume is small, any deterioration of water quality will probably be localized. Observations and recommendations are presented on: regional and local baseline studies, determination of aquifer sensitivity, methods and goals of monitoring during and after mining, and need for research on poorly understood aspects of mining impact. Such impacts include chemical reactions and processes that affect the long-term release of trace elements

  10. Groundwater Withdrawals under Drought: Reconciling GRACE and Models in the United States High Plains Aquifer

    Science.gov (United States)

    Nie, W.; Zaitchik, B. F.; Kumar, S.; Rodell, M.

    2017-12-01

    Advanced Land Surface Models (LSM) offer a powerful tool for studying and monitoring hydrological variability. Highly managed systems, however, present a challenge for these models, which typically have simplified or incomplete representations of human water use, if the process is represented at all. GRACE, meanwhile, detects the total change in water storage, including change due to human activities, but does not resolve the source of these changes. Here we examine recent groundwater declines in the US High Plains Aquifer (HPA), a region that is heavily utilized for irrigation and that is also affected by episodic drought. To understand observed decline in groundwater (well observation) and terrestrial water storage (GRACE) during a recent multi-year drought, we modify the Noah-MP LSM to include a groundwater pumping irrigation scheme. To account for seasonal and interannual variability in active irrigated area we apply a monthly time-varying greenness vegetation fraction (GVF) dataset to the model. A set of five experiments were performed to study the impact of irrigation with groundwater withdrawal on the simulated hydrological cycle of the HPA and to assess the importance of time-varying GVF when simulating drought conditions. The results show that including the groundwater pumping irrigation scheme in Noah-MP improves model agreement with GRACE mascon solutions for TWS and well observations of groundwater anomaly in the southern HPA, including Texas and Kansas, and that accounting for time-varying GVF is important for model realism under drought. Results for the HPA in Nebraska are mixed, likely due to misrepresentation of the recharge process. This presentation will highlight the value of the GRACE constraint for model development, present estimates of the relative contribution of climate variability and irrigation to declining TWS in the HPA under drought, and identify opportunities to integrate GRACE-FO with models for water resource monitoring in heavily

  11. The Maryland Coastal Plain Aquifer Information System: A GIS-based tool for assessing groundwater resources

    Science.gov (United States)

    Andreasen, David C.; Nardi, Mark R.; Staley, Andrew W.; Achmad, Grufron; Grace, John W.

    2016-01-01

    Groundwater is the source of drinking water for ∼1.4 million people in the Coastal Plain Province of Maryland (USA). In addition, groundwater is essential for commercial, industrial, and agricultural uses. Approximately 0.757 × 109 L d–1 (200 million gallons/d) were withdrawn in 2010. As a result of decades of withdrawals from the coastal plain confined aquifers, groundwater levels have declined by as much as 70 m (230 ft) from estimated prepumping levels. Other issues posing challenges to long-term groundwater sustainability include degraded water quality from both man-made and natural sources, reduced stream base flow, land subsidence, and changing recharge patterns (drought) caused by climate change. In Maryland, groundwater supply is managed primarily by the Maryland Department of the Environment, which seeks to balance reasonable use of the resource with long-term sustainability. The chief goal of groundwater management in Maryland is to ensure safe and adequate supplies for all current and future users through the implementation of appropriate usage, planning, and conservation policies. To assist in that effort, the geographic information system (GIS)–based Maryland Coastal Plain Aquifer Information System was developed as a tool to help water managers access and visualize groundwater data for use in the evaluation of groundwater allocation and use permits. The system, contained within an ESRI ArcMap desktop environment, includes both interpreted and basic data for 16 aquifers and 14 confining units. Data map layers include aquifer and ­confining unit layer surfaces, aquifer extents, borehole information, hydraulic properties, time-series groundwater-level data, well records, and geophysical and lithologic logs. The aquifer and confining unit layer surfaces were generated specifically for the GIS system. The system also contains select groundwater-quality data and map layers that quantify groundwater and surface-water withdrawals. The aquifer

  12. Geodatabase compilation of hydrogeologic, remote sensing, and water-budget-component data for the High Plains aquifer, 2011

    Science.gov (United States)

    Houston, Natalie A.; Gonzales-Bradford, Sophia L.; Flynn, Amanda T.; Qi, Sharon L.; Peterson, Steven M.; Stanton, Jennifer S.; Ryter, Derek W.; Sohl, Terry L.; Senay, Gabriel B.

    2013-01-01

    The High Plains aquifer underlies almost 112 million acres in the central United States. It is one of the largest aquifers in the Nation in terms of annual groundwater withdrawals and provides drinking water for 2.3 million people. The High Plains aquifer has gained national and international attention as a highly stressed groundwater supply primarily because it has been appreciably depleted in some areas. The U.S. Geological Survey has an active program to monitor the changes in groundwater levels for the High Plains aquifer and has documented substantial water-level changes since predevelopment: the High Plains Groundwater Availability Study is part of a series of regional groundwater availability studies conducted to evaluate the availability and sustainability of major aquifers across the Nation. The goals of the regional groundwater studies are to quantify current groundwater resources in an aquifer system, evaluate how these resources have changed over time, and provide tools to better understand a systems response to future demands and environmental stresses. The purpose of this report is to present selected data developed and synthesized for the High Plains aquifer as part of the High Plains Groundwater Availability Study. The High Plains Groundwater Availability Study includes the development of a water-budget-component analysis for the High Plains completed in 2011 and development of a groundwater-flow model for the northern High Plains aquifer. Both of these tasks require large amounts of data about the High Plains aquifer. Data pertaining to the High Plains aquifer were collected, synthesized, and then organized into digital data containers called geodatabases. There are 8 geodatabases, 1 file geodatabase and 7 personal geodatabases, that have been grouped in three categories: hydrogeologic data, remote sensing data, and water-budget-component data. The hydrogeologic data pertaining to the northern High Plains aquifer is included in three separate

  13. The relationship of uranium isotopes to oxidation/reduction in the Edwards carbonate aquifer of Texas

    International Nuclear Information System (INIS)

    Cowart, J.B.

    1980-01-01

    The concentration of dissolved uranium and 234 U/ 238 U alpha activity ratio ( A.R. ) were determined in water samples from 23 locations in the Edwards carbonate aquifer of south central Texas by isotope dilution methods and alpha spectrometry. (orig./ME)

  14. A summary of the occurrence and development of ground water in the southern High Plains of Texas

    Science.gov (United States)

    Cronin, J.G.; Myers, B.N.

    1964-01-01

    quantities of water in many parts of the Southern High Pl'ains; however, in practically all places the water is rather saline and prPlains consist of several formati'Ons of the Trinity, Fredericksburg, and Washita groups. The rocks underlie 'a large part of the southern part Plains; they consist of sandstone, 'shale, and limestone, the sandstone and limestone being the principal water-bearing units. In a few pl'aces where the Cretaceous rocks appear to be in hydrauli'c coimection with the overlying Ogallala formation, moderate quantitie of water are obtained, particularly from the limestones. Locally the Cretaceous rocks may be important aquifers where other water is not available, but they generally do not constitute a large source of water for irrigation or municipal use. The Ogallala formation of Pliocene age is the principal aquifer in the Southern High Plains of Texas; it supplies practically all the water used for all purposes. The formation is continuous throughout most of the Texas part of the Southern High Plains and extends into New Mexico. The .formation consists chiefly of sediments deposited by streams that had their headwaters in the mountainous regions to the west and northwest. The Ogallala formation rests unconformably upon an erosional surface of the underlying Triassic and Cretaceous rocks. The Ogallala consists of beds and lenses of clay, silt, sand, and gravel; caliche occurs as a secondary deposit ,in many places in the formation. In general the Ogallala is thicker in the northern part of the area; the thickness ranges from 400 to 500 feet in central Parmer, west-central Castro, and southwestern Floyd Counties to a knife edge where the formation wedges out against outcrops of the older rocks. The Ogallala formation probably originally formed a continuous blanket of sedimen

  15. Sensitivity Analysis for Hydraulic Behavior of Shiraz Plain Aquifer Using PMWIN

    Directory of Open Access Journals (Sweden)

    Ahmad Reza karimipour

    2011-07-01

    Full Text Available In this study, hydraulic behavior of Shirazplain aquifer, with an area of ~300 km2, was simulated using PMWIN model. The performance of recently constructed drainage system in the plain was modeled and parameters affecting hydraulic behavior of the aquifer were analyzed. Measured rainfall and evaporation rates in the plain, recharge and discharge rates through the aqueducts, Khoshk and Chenar Rahdar rivers, as well as amount of water discharged from production wells and recharge due to returned wastewater were considered in the model. Plain hydrodynamic coefficients were estimated via calibration and sensitivity analysis of the model was performed for four important parameters. Results showed that the model is most sensitive to recharge rate and hydraulic conductivity, respectively, such that a small variation in these two parameters causes a dramatic change in hydraulic head distribution in the plain. Furthermore, specific yield coefficient influences the seasonal water level fluctuations, but the aqueducts conductance coefficient only affects the aqueduct radius of influence with little effect on the overall hydraulic behavior of the plain.

  16. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110

    Science.gov (United States)

    Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation’s irrigated groundwater, and the Kansas portion supports the congressional district with the highest market val...

  17. Vascular flora of saline lakes in the southern high plains of Texas and eastern New Mexico

    Science.gov (United States)

    Rosen, David J.; Conway, Warren C.; Haukos, David A.; Caskey, Amber D.

    2013-01-01

    Saline lakes and freshwater playas form the principal surface hydrological feature of the High Plains of the Southern Great Plains. Saline lakes number less than 50 and historically functioned as discharge wetlands with relatively consistent water availability due to the presence of one or more springs. Currently, less than ten saline lakes contain functional springs. A survey of vascular plants at six saline lakes in the Southern High Plains of northwest Texas and one in eastern New Mexico during May and September 2009 resulted in a checklist of 49 species representing 16 families and 40 genera. The four families with the most species were Asteraceae (12), Amaranthaceae (8), Cyperaceae (5), and Poaceae (12). Non-native species (Bromus catharticus, Poa compressa, Polypogon monspeliensis, Sonchus oleraceus, Kochia scoparia, and Tamarix ramosissima) accounted for 10% of the total species recorded. Whereas nearly 350 species of vascular plants have been identified in playas in the Southern High Plains, saline lakes contain a fraction of this species richness. The Southern High Plains saline lake flora is regionally unique, containing taxa not found in playas, with species composition that is more similar to temperate desert wetlands of the Intermountain Region and Gulf Coastal Plain of North America.

  18. Colloid Mobilization in Two Atlantic Coastal Plain Aquifers: Field Studies

    Science.gov (United States)

    Ryan, Joseph N.; Gschwend, Philip M.

    1990-02-01

    The geochemical mechanisms leading to the mobilization of colloids in groundwater were investigated in the Pine Barrens of New Jersey and in rural central Delaware by sampling pairs of wells screened in oxic and anoxic groundwaters in the same geologic formations. Samples were carefully taken at very low flow rates (˜100 mL min-1) to avoid suspending immobilized particles. The colloidal matter was characterized by light-scattering photometry, scanning electron microscopy, energy-dispersive X ray analysis, microelectrophoresis, and Fe, Al, Si, and organic carbon analyses. The colloids, composed primarily of clays, were observed at high concentrations (up to 60 mg colloids/L) in the anoxic groundwaters, while the oxic groundwaters exhibited ≤1 mg colloids/L. Colloidal organic carbon was present in all groundwaters; but under anoxic conditions, one-third to one-half of the total organic carbon was associated with the inorganic colloids. The field evidence indicates that anoxic conditions cause the mobilization of soil colloids by dissolving the ferric oxyhydroxide coatings cementing the clay particles to the aquifer solids. The depletion of oxidized iron on the surfaces of immobile particles and the addition of organic carbon coatings on the soil particles and colloids apparently stabilizes the colloidal suspension in the anoxic groundwaters.

  19. Two depositional models for Pliocene coastal plain fluvial systems, Goliad Formation, south Texas Gulf Coastal plain

    International Nuclear Information System (INIS)

    Hoel, H.D.; Galloway, W.E.

    1983-01-01

    The Goliad Formation consists of four depositional systems-the Realitos and Mathis bed-load fluvial systems in the southwest and the Cuero and Eagle Lake mixed-load fluvial systems in the northeast. Five facies are recognized in the Realitos and Mathis bed-load fluvial systems: (1) primary channel-fill facies, (2) chaotic flood channel-fill facies, (3) complex splay facies, (4) flood plain facies, and (5) playa facies. A model for Realitos-Mathis depositional environments shows arid-climate braided stream complexes with extremely coarse sediment load, highly variable discharge, and marked channel instability. Broad, shallow, straight to slightly sinuous primary channels were flanked by wide flood channels. Flood channels passed laterally into broad, low-relief flood plains. Small playas occupied topographic lows near large channel axes. Three facies are recognized in the Cuero and Eagle Lake mixed-load fluvial systems: (1) channel-fill facies, (2) crevasse splay facies, and (3) flood plain facies. A model for Cuero-Eagle Lake depositional environments shows coarse-grained meander belts in a semi-arid climate. Slightly to moderately sinuous meandering streams were flanked by low, poorly developed natural levees. Crevasse splays were common, but tended to be broad and ill-defined. Extensive, low-relief flood plains occupied interaxial areas. The model proposed for the Realitos and Mathis fluvial systems may aid in recognition of analogous ancient depositional systems. In addition, since facies characteristics exercise broad controls on Goliad uranium mineralization, the proposed depositional models aid in defining target zones for Goliad uranium exploration

  20. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    Science.gov (United States)

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper

  1. Geologic history and hydrogeologic setting of the Edwards-Trinity aquifer system, west-central Texas

    Science.gov (United States)

    Barker, R.A.; Bush, P.W.; Baker, E.T.

    1994-01-01

    The Edwards-Trinity aquifer system underlies about 42,000 square miles of west-central Texas. Nearly flat-lying, mostly Comanche (Lower Cretaceous) strata of the aquifer system thin northwestward atop massive pre-Cretaceous rocks that are comparatively impermeable and structurally complex. From predominately terrigenous clastic sediments in the east and fluvialdeltaic (terrestrial) deposits in the west, the rocks of early Trinitian age grade upward into supratidal evaporitic and dolomitic strata, intertidal limestone and dolostone, and shallow-marine, openshelf, and reefal strata of late Trinitian, Fredericksburgian, and Washitan age. A thick, downfaulted remnant of mostly open-marine strata of Eaglefordian through Navarroan age composes a small, southeastern part of the aquifer system.

  2. Hydrology of the shallow aquifer and uppermost semiconfined aquifer near El Paso, Texas

    Science.gov (United States)

    White, D.E.; Baker, E.T.; Sperka, Roger

    1997-01-01

    The availability of fresh ground water in El Paso and adjacent areas that is needed to meet increased demand for water supply concerns local, State, and Federal agencies. The Hueco bolson is the principal aquifer in the El Paso area. Starting in the early 1900s and continuing to the 1950s, most of the municipal and industrial water supply in El Paso was pumped from the Hueco bolson aquifer from wells in and near the Rio Grande Valley and the international border. The Rio Grande is the principal surface-water feature in the El Paso area, and a major source of recharge to the shallow aquifer (Rio Grande alluvium) within the study area is leakage of flow from the Rio Grande.

  3. Groundwater-flow model of the northern High Plains aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming

    Science.gov (United States)

    Peterson, Steven M.; Flynn, Amanda T.; Traylor, Jonathan P.

    2016-12-13

    The High Plains aquifer is a nationally important water resource underlying about 175,000 square miles in parts of eight states: Colorado, Kansas, Oklahoma, Nebraska, New Mexico, South Dakota, Texas, and Wyoming. Droughts across much of the Northern High Plains from 2001 to 2007 have combined with recent (2004) legislative mandates to elevate concerns regarding future availability of groundwater and the need for additional information to support science-based water-resource management. To address these needs, the U.S. Geological Survey began the High Plains Groundwater Availability Study to provide a tool for water-resource managers and other stakeholders to assess the status and availability of groundwater resources.A transient groundwater-flow model was constructed using the U.S. Geological Survey modular three-dimensional finite-difference groundwater-flow model with Newton-Rhapson solver (MODFLOW–NWT). The model uses an orthogonal grid of 565 rows and 795 columns, and each grid cell measures 3,281 feet per side, with one variably thick vertical layer, simulated as unconfined. Groundwater flow was simulated for two distinct periods: (1) the period before substantial groundwater withdrawals, or before about 1940, and (2) the period of increasing groundwater withdrawals from May 1940 through April 2009. A soil-water-balance model was used to estimate recharge from precipitation and groundwater withdrawals for irrigation. The soil-water-balance model uses spatially distributed soil and landscape properties with daily weather data and estimated historical land-cover maps to calculate spatial and temporal variations in potential recharge. Mean annual recharge estimated for 1940–49, early in the history of groundwater development, and 2000–2009, late in the history of groundwater development, was 3.3 and 3.5 inches per year, respectively.Primary model calibration was completed using statistical techniques through parameter estimation using the parameter

  4. Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA

    International Nuclear Information System (INIS)

    Gosselin, David C.; Edwin Harvey, F.; Frost, Carol; Stotler, Randy; Allen Macfarlane, P.

    2004-01-01

    The Dakota aquifer of the central and eastern Great Plains of the United States is an important source of water for municipal supplies, irrigation and industrial use. Although the regional flow system can be characterized generally as east to northeasterly from the Rocky Mountains towards the Missouri River, locally the flow systems are hydrologically complex. This study uses Sr isotopic data from groundwater and leached aquifer samples to document the complex subsystems within the Dakota aquifer in Nebraska and Kansas. The interaction of groundwater with the geologic material through which it flows has created spatial patterns in the isotopic measurements that are related to: long-term water-rock interaction, during which varying degrees of isotopic equilibrium between water and rock has been achieved; and the alteration of NaCl fluids by water-rock interaction. Specifically, Sr isotopic data distinguish brines from Kansas and western Nebraska from those in eastern Nebraska: the former are interpreted to reflect interaction with Permian rocks, whereas the latter record interaction with Pennsylvanian rocks. The Sr isotopic composition of groundwater from other parts of Nebraska and Kansas are a function of the dynamic interaction between groundwater and unlithified sediments (e.g., glacial till and loess), followed by interaction with oxidized and unoxidized sediments within the Dakota Formation. This study illustrates the power of combining Sr chemistry with more conventional geochemical data to obtain a more complete understanding of groundwater flow systems within regional aquifer systems where extensive monitoring networks do not exist

  5. A reconnaissance study of the effect of irrigated agriculture on water quality in the Ogallala Formation, Central High Plains Aquifer

    Science.gov (United States)

    McMahon, Peter B.

    2000-01-01

    In 1998, the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program began a regional study of water quality in the High Plains aquifer. The High Plains aquifer underlies an area of about 174,000 square miles in parts of eight States. Because of its large size, the High Plains aquifer has been divided into three regions: the Southern High Plains, Central High Plains, and Northern High Plains. Although an assessment of water quality in each of the three regions is planned, the initial focus will be the Central High Plains aquifer. Anyone who has flown over the Central High Plains in the summer and has seen the large green circles associated with center pivot sprinklers knows that irrigated agriculture is a widespread land use. Pesticides and fertilizers applied on those irrigated fields will not degrade ground-water quality if they remain in or above the root zone. However, if those chemicals move downward through the unsaturated zone to the water table, they may degrade the quality of the ground water. Water is the principal agent for transporting chemicals from land surface to the water table, and in the semiarid Central High Plains, irrigation often represents the most abundant source of water during the growing season. One objective of NAWQA's High Plains Regional Ground-Water study is to evaluate the effect of irrigated agriculture on the quality of recently recharged water in the Ogallala Formation of the Central High Plains aquifer. The Ogallala Formation is the principal geologic unit in the Central High Plains aquifer, and it consists of poorly sorted clay, silt, sand, and gravel that generally is unconsolidated (Gutentag and others, 1984). Approximately 23 percent of the cropland overlying the Ogallala Formation is irrigated (U.S. Department of Agriculture, 1999). The NAWQA Program generally defines recently recharged ground water to be water recharged in the last 50 years. The water table in the Ogallala Formation is separated from

  6. Spatial analysis of Ardabil plain aquifer potable groundwater using fuzzy logic

    Directory of Open Access Journals (Sweden)

    Mehdi Kord

    2014-04-01

    Full Text Available The purpose of this study is to evaluate the quality of drinking water and qualitative classification of potable water in Ardabil plain aquifer. To determine the chemical properties 58 water samples were collected from wells and analyzed. Distribution of each quality parameter was estimated using data driven techniques of kriging and fuzzy logic modeling. According to the obtained results, the fuzzy model provides better results compared to kriging. Different water quality standards are used for assessment of drinking water. The quantitative limits specified in these standards and also water quality data are associated with uncertainty. To reduce the uncertainty a fuzzy based decision making approach was applied for interpretation of groundwater quality. Final output was presented in the form of a zoning map with three categories as ‘Desirable’, ‘Acceptable’ and ‘Not acceptable’. This map indicates that most parts of the aquifer have acceptable and desirable water quality for drinking; but the groundwater in the Southwest and North of the plain, being in conformity with Miocene formations, is undesirable (Not acceptable. This spatial distribution map can help a lot for groundwater supply and offers a good insight of groundwater qualitative trend in this study area.

  7. Regional hydrodynamics and hydrochemistry of the uranium-bearing Oakville aquifer (Miocene) of south Texas. Report of investigations No. 124

    International Nuclear Information System (INIS)

    Smith, G.E.; Galloway, W.E.; Henry, C.D.

    1982-01-01

    The Oakville Formation consists of sediments deposited by several major fluvial systems that traversed the Texas Coastal Plain during the Miocene Epoch. Facies geometry and composition, together with superimposed structure and topography, are important determinants of ground-water flow, aquifer transmissivity, and regional hydrochemical evolution. Topographically high areas along the Oakville outcrop are ground-water recharge zones. Downdip movement of ground water is deflected along strike into major incised stream valleys and modified by local ground-water pumping, resulting in discharge of Oakville water from relatively shallow sections of the aquifer. Discharge from local and intermediate-scale flow cells, as well as influx along growth faults of high-salinity water from deeper stratigraphic horizons, is readily shown by field phenomena. Introduction of exotic evolved connate waters is demonstrable by the distribution of sulfate, chloride, and reduced sulfur species. Shallow Oakville ground waters exhibit a clearly defined compositional change from predominantly sodium chloride waters in the southwest to calcium bicarbonate waters in the northeast. Redox potential (Eh) of Oakville ground water decreases from +470 mV (oxidizing) to -170 mV (reducing) with increasing depth and coincides with an increase in pH and tempertaure. Dissolved oxygen content exhibits an inverse relationship to Eh and reduced sulfur. Higher recharge in the northeast results in a deeper subsurface penetration of oxygenated ground waters. The regional distribution of trace amounts of uranium, molybdenum, selenium, and arsenic in Oakville ground water demonstrates a good correlation with known sites of uranium mineralization, and defines elevated trace metal contents unrelated to known uranium occurrences. These same elements exhibit an overall increased background level in the southwestern section of the study area. 26 figures, 1 table

  8. Managed aquifer recharge experiences with shallow wells: first analysis of the experimental activities in the high Vicenza plain (Northern Italy)

    OpenAIRE

    Lorenzo Altissimo; Silvia Bertoldo; Francesca Campagnolo; Giancarlo Gusmaroli; Teresa Muraro; Andrea Sottani

    2014-01-01

    In recent decades, groundwater resources of the high Vicenza plain were subjected to an increasing extraction rate and, at the same time, to a lower quantity of groundwater recharge. The result is a decreasing flow from the plain springs and a high reduction in piezometric levels of the middle and lower Venetian aquifers. In order to restore the balance of groundwater resources in the Vicenza area, the Vicenza Province has promoted experimental activities aimed to increase the recharge of the...

  9. GIS BASED AQUIFER VULNERABILITY ASSESSMENT IN HANGZHOU-JIAXINGHUZHOU PLAIN, CHINA

    Directory of Open Access Journals (Sweden)

    Jean de Dieu Bazimenyera

    2014-01-01

    Full Text Available Hangzhou-Jiaxing-Huzhou plain is among the regions which faces the shortage of water due to its increasing population, industrialization, agriculture and domestic use; hence the high dependence on groundwater. In China, the exploitation of aquifers has been historically undertaken without proper concern for environmental impacts or even the concept of sustainable yield. In order to maintain basin aquifer as a source of water for the area, it is necessary to find out whether certain locations in this groundwater basin are susceptible to receive and transmit pollution, this is why the main objective of this research is to find out the groundwater vulnerable zones using Geographical Information System (GIS model in Hangzhou-Jiaxing-Huzhou plain. GIS was used to create groundwater vulnerability map by overlaying hydro-geological data. The input of the model was provided by the following seven data layers: Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone and hydraulic Conductivity. This study showed that Hangzhou-Jiaxing-Huzhou area is grouped into three categories: High vulnerable zone with 27.4% of the total area, moderate vulnerable zone which occupy the great part of that area 60.5% and low vulnerable zone with 12.1%. This research suggests first the prioritization of high vulnerable areas in order to prevent the further pollution to already polluted areas; next the frequent monitoring of vulnerable zones to monitor the changing level of pollutants; and finally suggests that this model can be an effective tool for local authorities who are responsible for managing groundwater resources in that area.

  10. Uranium favorability of late Eocene through Pliocene rocks of the South Texas Coastal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Quick, J.V.; Thomas, N.G.; Brogdon, L.D.; Jones, C.A.; Martin, T.S.

    1977-02-01

    The results of a subsurface uranium favorability study of Tertiary rocks (late Eocene through Pliocene) in the Coastal Plain of South Texas are given. In ascending order, these rock units include the Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand. The Vicksburg Group, Anahuac Formation, and Fleming Formation were not considered because they have unfavorable lithologies. The Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand contain sandstones that may be favorable uranium hosts under certain environmental and structural conditions. All except the Yegua are known to contain ore-grade uranium deposits. Yegua and Jackson sandstones are found in strand plain-barrier bar systems that are aligned parallel to depositional and structural strike. These sands grade into shelf muds on the east, and lagoonal sediments updip toward the west. The lagoonal sediments in the Jackson are interrupted by dip-aligned fluvial systems. In both units, favorable areas are found in the lagoonal sands and in sands on the updip side of the strand-plain system. Favorable areas are also found along the margins of fluvial systems in the Jackson. The Frio and Catahoula consist of extensive alluvial-plain deposits. Favorable areas for uranium deposits are found along the margins of the paleo-channels where favorable structural features and numerous optimum sands are present. The Oakville and Goliad Formations consist of extensive continental deposits of fluvial sandstones. In large areas, these fluvial sandstones are multistoried channel sandstones that form very thick sandstone sequences. Favorable areas are found along the margins of the channel sequences. In the Goliad, favorable areas are also found on the updip margin of strand-plain sandstones where there are several sandstones of optimum thickness.

  11. Uranium favorability of late Eocene through Pliocene rocks of the South Texas Coastal Plain

    International Nuclear Information System (INIS)

    Quick, J.V.; Thomas, N.G.; Brogdon, L.D.; Jones, C.A.; Martin, T.S.

    1977-02-01

    The results of a subsurface uranium favorability study of Tertiary rocks (late Eocene through Pliocene) in the Coastal Plain of South Texas are given. In ascending order, these rock units include the Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand. The Vicksburg Group, Anahuac Formation, and Fleming Formation were not considered because they have unfavorable lithologies. The Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand contain sandstones that may be favorable uranium hosts under certain environmental and structural conditions. All except the Yegua are known to contain ore-grade uranium deposits. Yegua and Jackson sandstones are found in strand plain-barrier bar systems that are aligned parallel to depositional and structural strike. These sands grade into shelf muds on the east, and lagoonal sediments updip toward the west. The lagoonal sediments in the Jackson are interrupted by dip-aligned fluvial systems. In both units, favorable areas are found in the lagoonal sands and in sands on the updip side of the strand-plain system. Favorable areas are also found along the margins of fluvial systems in the Jackson. The Frio and Catahoula consist of extensive alluvial-plain deposits. Favorable areas for uranium deposits are found along the margins of the paleo-channels where favorable structural features and numerous optimum sands are present. The Oakville and Goliad Formations consist of extensive continental deposits of fluvial sandstones. In large areas, these fluvial sandstones are multistoried channel sandstones that form very thick sandstone sequences. Favorable areas are found along the margins of the channel sequences. In the Goliad, favorable areas are also found on the updip margin of strand-plain sandstones where there are several sandstones of optimum thickness

  12. The groundwater balance in alluvial plain aquifer at Dehgolan, Kurdistan, Iran

    Science.gov (United States)

    Amini, Ata; Homayounfar, Vafa

    2017-10-01

    In this research, groundwater balance in Dehgolan plain, Kurdistan, Iran was carried out to assess changes in the level and volume of groundwater and water resources management. For this purpose, water resources supplies and consumption data, amount of charging and discharge and water level data recorded from wells and piezometers from 2010 to 2011 water year were gathered and analyzed. Rainfall and water losses of the study area were determined and required maps, including Iso-maps of the temperature, the evaporation, the groundwater level and the aquifer conductivity, were drawn by GIS software. Using the information and drawn maps and the equality of inputs and outputs data, the aquifer water balance was calculated. The results of balance equations showed that the balance is negative indicated a notably decline of groundwater equal to 15.029 million cubic meter (MCM). Such rate of decline is due to the large number of agricultural wells in the region, without considering the hydrological potential of the aquifer.

  13. Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA

    Science.gov (United States)

    Sophocleous, M.

    2005-01-01

    Sustainable use of groundwater must ensure not only that the future resource is not threatened by overuse, but also that natural environments that depend on the resource, such as stream baseflows, riparian vegetation, aquatic ecosystems, and wetlands are protected. To properly manage groundwater resources, accurate information about the inputs (recharge) and outputs (pumpage and natural discharge) within each groundwater basin is needed so that the long-term behavior of the aquifer and its sustainable yield can be estimated or reassessed. As a first step towards this effort, this work highlights some key groundwater recharge studies in the Kansas High Plains at different scales, such as regional soil-water budget and groundwater modeling studies, county-scale groundwater recharge studies, as well as field-experimental local studies, including some original new findings, with an emphasis on assumptions and limitations as well as on environmental factors affecting recharge processes. The general impact of irrigation and cultivation on recharge is to appreciably increase the amount of recharge, and in many cases to exceed precipitation as the predominant source of recharge. The imbalance between the water input (recharge) to the High Plains aquifer and the output (pumpage and stream baseflows primarily) is shown to be severe, and responses to stabilize the system by reducing water use, increasing irrigation efficiency, adopting water-saving land-use practices, and other measures are outlined. Finally, the basic steps necessary to move towards sustainable use of groundwater in the High Plains are delineated, such as improving the knowledge base, reporting and providing access to information, furthering public education, as well as promoting better understanding of the public's attitudinal motivations; adopting the ecosystem and adaptive management approaches to managing groundwater; further improving water efficiency; exploiting the full potential of dryland and

  14. Vertical gradients in water chemistry and age in the Northern High Plains Aquifer, Nebraska, 2003

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    The northern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Despite the aquifer’s importance to the regional economy, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey’s National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the northern High Plains aquifer were analyzed for major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, dissolved gases, and other parameters to evaluate vertical gradients in water chemistry and age in the aquifer. Chemical data and tritium and radiocarbon ages show that water in the aquifer was chemically and temporally stratified in the study area, with a relatively thin zone of recently recharged water (less than 50 years) near the water table overlying a thicker zone of older water (1,800 to 15,600 radiocarbon years). In areas where irrigated agriculture was an important land use, the recently recharged ground water was characterized by elevated concentrations of major ions and nitrate and the detection of pesticide compounds. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions. The concentration increases were accounted for primarily by dissolved calcium, sodium, bicarbonate, sulfate, and silica. In general, the chemistry of ground water throughout the aquifer was of high quality. None of the approximately 90 chemical constituents analyzed in each sample exceeded primary drinking-water standards.Mass-balance models indicate that changes in groundwater chemistry along flow paths in the aquifer can be accounted for by small amounts of feldspar and calcite dissolution; goethite

  15. Geostatistical analysis of potentiometric data in Wolfcamp aquifer of the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Harper, W.V.; Furr, J.M.

    1986-04-01

    This report details a geostatistical analysis of potentiometric data from the Wolfcamp aquifer in the Palo Duro Basin, Texas. Such an analysis is a part of an overall uncertainty analysis for a high-level waste repository in salt. Both an expected potentiometric surface and the associated standard error surface are produced. The Wolfcamp data are found to be well explained by a linear trend with a superimposed spherical semivariogram. A cross-validation of the analysis confirms this. In addition, the cross-validation provides a point-by-point check to test for possible anomalous data

  16. Water quality in the surficial aquifer near agricultural areas in the Delaware Coastal Plain, 2014

    Science.gov (United States)

    Fleming, Brandon J.; Mensch, Laura L.; Denver, Judith M.; Cruz, Roberto M.; Nardi, Mark R.

    2017-07-27

    The U.S. Geological Survey, in cooperation with the Delaware Department of Agriculture, developed a network of wells to monitor groundwater quality in the surficial aquifer of the Delaware Coastal Plain. Well-drained soils, a flat landscape, and accessible water in the Delaware Coastal Plain make for a productive agricultural setting. As such, agriculture is one of the largest industries in the State of Delaware. This setting enables the transport of chemicals from agriculture and other land uses to shallow groundwater. Efforts to mitigate nutrient transport to groundwater by the implementation of agricultural best management practices (BMPs) have been ongoing for several decades. To measure the effectiveness of BMPs on a regional scale, a network of 48 wells was designed to measure shallow groundwater quality (particularly nitrate) over time near agricultural land in the Delaware Coastal Plain. Water characteristics, major ions, nutrients, and dissolved gases were measured in groundwater samples collected from network wells during fall 2014. Wells were organized into three groups based on their geochemical similarity and these groups were used to describe nitrate and chloride concentrations and factors that affect the variability among the groups. The results from this study are intended to establish waterquality conditions in 2014 to enable comparison of future conditions and evaluate the effectiveness of agricultural BMPs on a regional scale.

  17. Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA

    Science.gov (United States)

    Lauffenburger, Zachary H.; Gurdak, Jason J.; Hobza, Christopher M.; Woodward, Duane; Wolf, Cassandra

    2018-01-01

    Understanding the controls of agriculture and climate change on recharge rates is critically important to develop appropriate sustainable management plans for groundwater resources and coupled irrigated agricultural systems. In this study, several physical (total potential (ψT) time series) and chemical tracer and dating (3H, Cl−, Br−, CFCs, SF6, and 3H/3He) methods were used to quantify diffuse recharge rates beneath two rangeland sites and irrigation recharge rates beneath two irrigated corn sites along an east-west (wet-dry) transect of the northern High Plains aquifer, Platte River Basin, central Nebraska. The field-based recharge estimates and historical climate were used to calibrate site-specific Hydrus-1D models, and irrigation requirements were estimated using the Crops Simulation Model (CROPSIM). Future model simulations were driven by an ensemble of 16 global climate models and two global warming scenarios to project a 2050 climate relative to the historical baseline 1990 climate, and simulate changes in precipitation, irrigation, evapotranspiration, and diffuse and irrigation recharge rates. Although results indicate statistical differences between the historical variables at the eastern and western sites and rangeland and irrigated sites, the low warming scenario (+1.0 °C) simulations indicate no statistical differences between 2050 and 1990. However, the high warming scenarios (+2.4 °C) indicate a 25% and 15% increase in median annual evapotranspiration and irrigation demand, and decreases in future diffuse recharge by 53% and 98% and irrigation recharge by 47% and 29% at the eastern and western sites, respectively. These results indicate an important threshold between the low and high warming scenarios that if exceeded could trigger a significant bidirectional shift in 2050 hydroclimatology and recharge gradients. The bidirectional shift is that future northern High Plains temperatures will resemble present central High Plains

  18. Hydrologic, Water-Quality, and Biological Data for Three Water Bodies, Texas Gulf Coast Plain, 2000-2002

    National Research Council Canada - National Science Library

    East, Jeffery W; Hogan, Jennifer L

    2003-01-01

    During July 2000 September 2002, the U.S. Geological Survey collected and analyzed site-specific hydrologic, water-quality, and biological data in Dickinson Bayou, Armand Bayou, and the San Bernard River in the Gulf Coastal Plain of Texas...

  19. Assessment of undiscovered resources in calcrete uranium deposits, Southern High Plains region of Texas, New Mexico, and Oklahoma, 2017

    Science.gov (United States)

    Hall, Susan M.; Mihalasky, Mark J.; Van Gosen, Bradley S.

    2017-11-14

    The U.S. Geological Survey estimates a mean of 40 million pounds of in-place uranium oxide (U3O8) remaining as potential undiscovered resources in the Southern High Plains region of Texas, New Mexico, and Oklahoma. This estimate used a geology-based assessment method specific to calcrete uranium deposits.

  20. Geochemistry of shallow ground water in coastal plain environments in the southeastern United States: implications for aquifer susceptibility

    International Nuclear Information System (INIS)

    Tesoriero, Anthony J.; Spruill, Timothy B.; Eimers, Jo L.

    2004-01-01

    Ground-water chemistry data from coastal plain environments have been examined to determine the geochemical conditions and processes that occur in these areas and assess their implications for aquifer susceptibility. Two distinct geochemical environments were studied to represent a range of conditions: an inner coastal plain setting having more well-drained soils and lower organic carbon (C) content and an outer coastal plain environment that has more poorly drained soils and high organic C content. Higher concentrations of most major ions and dissolved inorganic and organic C in the outer coastal plain setting indicate a greater degree of mineral dissolution and organic matter oxidation. Accordingly, outer coastal plain waters are more reducing than inner coastal plain waters. Low dissolved oxygen (O 2 ) and nitrate (NO 3 - ) concentrations and high iron (Fe) concentrations indicate that ferric iron (Fe (III)) is an important electron acceptor in this setting, while dissolved O 2 is the most common terminal electron acceptor in the inner coastal plain setting. The presence of a wide range of redox conditions in the shallow aquifer system examined here underscores the importance of providing a detailed geochemical characterization of ground water when assessing the intrinsic susceptibility of coastal plain settings. The greater prevalence of aerobic conditions in the inner coastal plain setting makes this region more susceptible to contamination by constituents that are more stable under these conditions and is consistent with the significantly (p 3 - found in this setting. Herbicides and their transformation products were frequently detected (36% of wells sampled), however concentrations were typically low (<0.1 μg/L). Shallow water table depths often found in coastal plain settings may result in an increased risk of the detection of pesticides (e.g., alachlor) that degrade rapidly in the unsaturated zone

  1. Simulation of groundwater flow in the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Clark, Brian R.; Bumgarner, Johnathan R.; Houston, Natalie A.; Foster, Adam L.

    2014-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and public supply uses in the Pecos County region of western Texas. The U.S. Geological Survey completed a comprehensive, integrated analysis of available hydrogeologic data to develop a numerical groundwater-flow model of the Edwards-Trinity and related aquifers in the study area in parts of Brewster, Jeff Davis, Pecos, and Reeves Counties. The active model area covers about 3,400 square miles of the Pecos County region of Texas west of the Pecos River, and its boundaries were defined to include the saturated areas of the Edwards-Trinity aquifer. The model is a five-layer representation of the Pecos Valley, Edwards-Trinity, Dockum, and Rustler aquifers. The Pecos Valley aquifer is referred to as the alluvial layer, and the Edwards-Trinity aquifer is divided into layers representing the Edwards part of the Edwards-Trinity aquifer and the Trinity part of the Edwards-Trinity aquifer, respectively. The calibration period of the simulation extends from 1940 to 2010. Simulated hydraulic heads generally were in good agreement with observed values; 1,684 out of 2,860 (59 percent) of the simulated values were within 25 feet of the observed value. The average root mean square error value of hydraulic head for the Edwards-Trinity aquifer was 34.2 feet, which was approximately 4 percent of the average total observed change in groundwater-level altitude (groundwater level). Simulated spring flow representing Comanche Springs exhibits a pattern similar to observed spring flow. Independent geochemical modeling corroborates results of simulated groundwater flow that indicates groundwater in the Edwards-Trinity aquifer in the Leon-Belding and Fort Stockton areas is a mixture of recharge from the Barilla and Davis Mountains and groundwater that has upwelled from the Rustler aquifer.

  2. Dynamic data analysis of climate and recharge conditions over time in the Edwards Aquifer, Texas

    Science.gov (United States)

    Pierce, S. A.; Collins, J.; Banner, J.

    2017-12-01

    Understanding the temporal patterns in datasets related to climate, recharge, and water resource conditions is important for informing water management and policy decisions. Data analysis and pipelines for evaluating these disparate sources of information are challenging to set up and rely on emerging informatics tools to complete. This project gathers data from both historical and recent sources for the Edwards Aquifer of central Texas. The Edwards faces a unique array of challenges, as it is composed of karst limestone, is susceptible to contaminants and climate change, and is expected to supply water for a rapidly growing population. Given these challenges, new approaches to integrating data will be particularly important. Case study data from the Edwards is used to evaluate aquifer and hydrologic system conditions over time as well as to discover patterns and possible relationships across the information sources. Prior research that evaluated trends in discharge and recharge of the aquifer is revisited by considering new data from 1992-2015, and the sustainability of the Edwards as a water resource within the more recent time period is addressed. Reusable and shareable analytical data pipelines are constructed using Jupyter Notebooks and Python libraries, and an interactive visualization is implemented with the information. In addition to the data sources that are utilized for the water balance analyses, the Global Surface Water Monitoring System from the University of Minnesota, a tool that integrates a wide number of satellite datasets with known surface water dynamics and machine learning, is used to evaluate water body persistence and change over time at regional scales. Preliminary results indicate that surface water body over the Edwards with differing aerial extents are declining, excepting some dam-controlled lakes in the region. Other existing tools and machine learning applications are also considered. Results are useful to the Texas Water Research

  3. Quaternary Aquifer of the North China Plain-assessing and achieving groundwater resource sustainability

    Science.gov (United States)

    Foster, Stephen; Garduno, Hector; Evans, Richard; Olson, Doug; Tian, Yuan; Zhang, Weizhen; Han, Zaisheng

    The Quaternary Aquifer of the North China Plain is one of the world's largest aquifer systems and supports an enormous exploitation of groundwater, which has reaped large socio-economic benefits in terms of grain production, farming employment and rural poverty alleviation, together with urban and industrial water-supply provision. Both population and economic activity have grown markedly in the past 25 years. Much of this has been heavily dependent upon groundwater resource development, which has encountered increasing difficulties in recent years primarily as a result of aquifer depletion and related phenomena. This paper focuses upon the hydrogeologic and socio-economic diagnosis of these groundwater resource issues, and identifies strategies to improve groundwater resource sustainability. L'aquifère Quaternaire de la Plaine du Nord de la Chine est l'un des plus grands systèmes aquifères du monde; il permet une exploitation énorme d'eau souterraine, qui a permis des très importants bénéfices socio-économiques en terme de production de céréales, d'emplois ruraux et de réduction de la pauvreté rurale, en même temps que l'approvisionnement en eau potable et pour l'industrie. La population comme l'activité économique ont remarquablement augmenté au cours de ces 25 dernières années. Elles ont été sous la forte dépendance du développement de la ressource en eau souterraine, qui a rencontré des difficultés croissantes ces dernières années, du fait du rabattement de l'aquifère et des phénomènes associés. Cet article est consacré aux diagnostiques hydrogéologique et socio-économique des retombées de cette ressource en eau souterraine; il identifie les stratégies pour améliorer la pérennité des ressources en eau souterraine. El acuífero cuaternario de la Llanura Septentrional de China es uno de los mayores sistemas acuíferos del mundo y soporta una enorme explotación de su agua subterránea, las cuales han originado grandes

  4. GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA

    Science.gov (United States)

    Longuevergne, Laurent; Scanlon, Bridget R.; Wilson, Clark R.

    2010-11-01

    The Gravity Recovery and Climate Experiment (GRACE) satellites provide observations of water storage variation at regional scales. However, when focusing on a region of interest, limited spatial resolution and noise contamination can cause estimation bias and spatial leakage, problems that are exacerbated as the region of interest approaches the GRACE resolution limit of a few hundred km. Reliable estimates of water storage variations in small basins require compromises between competing needs for noise suppression and spatial resolution. The objective of this study was to quantitatively investigate processing methods and their impacts on bias, leakage, GRACE noise reduction, and estimated total error, allowing solution of the trade-offs. Among the methods tested is a recently developed concentration algorithm called spatiospectral localization, which optimizes the basin shape description, taking into account limited spatial resolution. This method is particularly suited to retrieval of basin-scale water storage variations and is effective for small basins. To increase confidence in derived methods, water storage variations were calculated for both CSR (Center for Space Research) and GRGS (Groupe de Recherche de Géodésie Spatiale) GRACE products, which employ different processing strategies. The processing techniques were tested on the intensively monitored High Plains Aquifer (450,000 km2 area), where application of the appropriate optimal processing method allowed retrieval of water storage variations over a portion of the aquifer as small as ˜200,000 km2.

  5. Trends and transformation of nutrients and pesticides in a Coastal Plain aquifer system, United States

    Science.gov (United States)

    Denver, J.M.; Tesoriero, A.J.; Barbaro, J.R.

    2010-01-01

    Four local-scale sites in areas with similar corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] agriculture were studied to determine the effects of different hydrogeologic settings of the Northern Atlantic Coastal Plain (NACP) on the transport of nutrients and pesticides in groundwater. Settings ranged from predominantly well-drained soils overlying thick, sandy surficial aquifers to predominantly poorly drained soils with complex aquifer stratigraphy and high organic matter content. Apparent age of groundwater, dissolved gases, N isotopes, major ions, selected pesticides and degradates, and geochemical environments in groundwater were studied. Agricultural chemicals were the source of most dissolved ions in groundwater. Specific conductance was strongly correlated with reconstructed nitrate (the sum of N in nitrate and N gas) (R2 = 0.81, p < 0.0001), and is indicative of the relative degree of agricultural effects on groundwater. Trends in nitrate were primarily related to changes in manure and fertilizer use at the well-drained sites where aquifer conditions were consistently oxic. Nitrate was present in young groundwater but completely removed over time through denitrification at the poorly drained sites where there were variations in chemical input and in geochemical environment. Median concentrations of atrazine (6-chloro-N-ethyl-N'-(1- methylethyl)-1,3,5-triazine-2,4-diamine), metolachlor (2-chloro-N-(2-ethyl-6- methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide), and some of their common degradates were higher at well-drained sites than at poorly drained sites, with concentrations of degradates generally higher than those of the parent compounds at all sites. An increase in the percentage of deethylatrazine to total atrazine over time at one well-drained site may be related to changes in manure application. Copyright ?? 2010 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  6. Contribution to the hydrogeological, geochemical and isotopic study of Ain El Beidha and Merguellil (Kairouan plain) aquifers: Implication for the dam-aquifer relationship

    International Nuclear Information System (INIS)

    Ben Ammar, Safouan

    2007-01-01

    In the semiarid central part of Tunisia the water resources are becoming increasingly rare because of the scarcity and irregularity of the precipitation and a steadily growing need for fresh water. This study addresses the use of geochemical and isotopic data to analyze the relationship between the El Haouareb dam and the Ain El Beidha and the Kairouan alluvial plain aquifers systems for durable groundwater management. In the Ain El Beidha basin the hydrogeological and geochemical investigations showed that: - The general direction of the groundwater flow is mainly from the SW to the NE, i.e. towards the hydraulic sill of El Haouareb which allows the connection between the Ain El Beidha basin and the Kairouan plain, - The salinity distribution displays a zonation in apparent relationship with the lithological variation of the aquifer formation, - Mineral exchange between groundwater and the aquifer matrix is the dominant process in determining groundwater salinity. The isotopic data confirm the flow directions of groundwater and shows that the recharge of Ain El Beidha aquifers takes place from the floods of the Khechem and Ben Zitoun wadies and also by preferential infiltration of runoff at the front of hill slopes area. Close to preferential recharge areas, groundwater 3H contents reflect a recent input of surface water, whereas the radiocarbon data indicate a longer residence time downstream. The isotopic characteristics of Ain El Beidha groundwater (small space and temporal changes) authorize the use of averaged values for the dam-aquifer water exchange. Under natural conditions, groundwater recharge of the alluvial aquifer of Kairouan plain occurs by infiltration of the Merguellil floods and from the Ain el Beidha groundwater flow close the karstic hydraulic sills. Since the construction of the El Haouareb dam, these natural mechanisms have been strongly modified: the dam waters infiltrate into the karst, mix with the Ain el Beidha groundwater, and feed the

  7. Aquifer recharge from infiltration basins in a highly urbanized area: the river Po Plain (Italy)

    Science.gov (United States)

    Masetti, M.; Nghiem, S. V.; Sorichetta, A.; Stevenazzi, S.; Santi, E. S.; Pettinato, S.; Bonfanti, M.; Pedretti, D.

    2015-12-01

    Due to the extensive urbanization in the Po Plain in northern Italy, rivers need to be managed to alleviate flooding problems while maintaining an appropriate aquifer recharge under an increasing percentage of impermeable surfaces. During the PO PLain Experiment field campaign in July 2015 (POPLEX 2015), both active and under-construction infiltration basins have been surveyed and analyzed to identify appropriate satellite observations that can be integrated to ground based monitoring techniques. A key strategy is to have continuous data time series on water presence and level within the basin, for which ground based monitoring can be costly and difficult to be obtained consistently.One of the major and old infiltration basin in the central Po Plain has been considered as pilot area. The basin is active from 2003 with ground based monitoring available since 2009 and supporting the development of a calibrated unsaturated-saturated two-dimensional numerical model simulating the infiltration dynamics through the basin.A procedure to use satellite data to detect surface water change is under development based on satellite radar backscatter data with an appropriate incidence angle and polarization combination. An advantage of satellite radar is that it can observe surface water regardless of cloud cover, which can be persistent during rainy seasons. Then, the surface water change is correlated to the reservoir water stage to determine water storage in the basin together with integrated ground data and to give quantitative estimates of variations in the local water cycle.We evaluated the evolution of the infiltration rate, to obtain useful insights about the general recharge behavior of basins that can be used for informed design and maintenance. Results clearly show when the basin becomes progressively clogged by biofilms that can reduce the infiltration capacity of the basin by as much as 50 times compared to when it properly works under clean conditions.

  8. Assessing the Efficacy of the SWAT Auto-Irrigation Function to Simulate Irrigation, Evapotranspiration, and Crop Response to Management Strategies of the Texas High Plains

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-07-01

    Full Text Available In the semi-arid Texas High Plains, the underlying Ogallala Aquifer is experiencing continuing decline due to long-term pumping for irrigation with limited recharge. Accurate simulation of irrigation and other associated water balance components are critical for meaningful evaluation of the effects of irrigation management strategies. Modelers often employ auto-irrigation functions within models such as the Soil and Water Assessment Tool (SWAT. However, some studies have raised concerns as to whether the function is able to adequately simulate representative irrigation practices. In this study, observations of climate, irrigation, evapotranspiration (ET, leaf area index (LAI, and crop yield derived from an irrigated lysimeter field at the USDA-ARS Conservation and Production Research Laboratory at Bushland, Texas were used to evaluate the efficacy of the SWAT auto-irrigation functions. Results indicated good agreement between simulated and observed daily ET during both model calibration (2001–2005 and validation (2006–2010 periods for the baseline scenario (Nash-Sutcliffe efficiency; NSE ≥ 0.80. The auto-irrigation scenarios resulted in reasonable ET simulations under all the thresholds of soil water deficit (SWD triggers as indicated by NSE values > 0.5. However, the auto-irrigation function did not adequately represent field practices, due to the continuation of irrigation after crop maturity and excessive irrigation when SWD triggers were less than the static irrigation amount.

  9. Chlorine-36 in the Snake River Plain aquifer at the Idaho National Engineering Laboratory: Origin and implications

    International Nuclear Information System (INIS)

    Beasley, T.M.; Cecil, L.D.; Mann, L.J.; Sharma, P.; Fehn, U.; Gove, H.E.; Kubik, P.W.

    1993-01-01

    Between 1952 and 1984, low-level radioactive waste was introduced directly into the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These wastes were generated, principally, at the nuclear fuel reprocessing facility on the site. The measurements of 36 Cl in monitoring and production well waters, downgradient from disposal wells and seepage ponds, found easily detectable, nonhazardous concentrations of this radionuclide from the point of injection to the INEL southern site boundary. Comparisons are made between 3 H and 36 Cl concentrations in aquifer water and the advantages of 36 Cl as a tracer of subsurface-water dynamics at the site are discussed

  10. Chlorine-36 in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory; origin and implications

    Science.gov (United States)

    Beasley, T.M.; Cecil, L.D.; Sharma, P.; Kubik, P.W.; Fehn, U.; Mann, L.J.; Gove, H.E.

    1993-01-01

    Between 1952 and 1984, low-level radioactive waste was introduced directly into the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These wastes were generated, principally, at the nuclear fuel reprocessing facility on the site. Our measurements of 36C1 in monitoring and production well waters, downgradient from disposal wells and seepage ponds, found easily detectable, nonhazardous concentrations of this radionuclide from the point of injection to the INEL southern site boundary. Comparisons are made between 3H and 36Cl concentrations in aquifer water and the advantages of 36C1 as a tracer of subsurface-water dynamics at the site are discussed.

  11. Geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Texas

    Science.gov (United States)

    Clark, Allan K.; Golab, James A.; Morris, Robert R.

    2016-11-28

    During 2014–16, the U.S. Geological Survey, in cooperation with the Edwards Aquifer Authority, documented the geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Texas. The Edwards and Trinity aquifers are major sources of water for agriculture, industry, and urban and rural communities in south-central Texas. Both the Edwards and Trinity are classified as major aquifers by the State of Texas.The purpose of this report is to present the geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Tex. The report includes a detailed 1:24,000-scale hydrostratigraphic map, names, and descriptions of the geology and hydrostratigraphic units (HSUs) in the study area.The scope of the report is focused on geologic framework and hydrostratigraphy of the outcrops and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Tex. In addition, parts of the adjacent upper confining unit to the Edwards aquifer are included.The study area, approximately 866 square miles, is within the outcrops of the Edwards and Trinity aquifers and overlying confining units (Washita, Eagle Ford, Austin, and Taylor Groups) in northern Bexar and Comal Counties, Tex. The rocks within the study area are sedimentary and range in age from Early to Late Cretaceous. The Miocene-age Balcones fault zone is the primary structural feature within the study area. The fault zone is an extensional system of faults that generally trends southwest to northeast in south-central Texas. The faults have normal throw, are en echelon, and are mostly downthrown to the southeast.The Early Cretaceous Edwards Group rocks were deposited in an open marine to supratidal flats environment during two marine transgressions. The Edwards Group is composed of the Kainer and Person Formations. Following tectonic uplift, subaerial exposure, and erosion near the end of

  12. Property Grids for the Kansas High Plains Aquifer from Water Well Drillers' Logs

    Science.gov (United States)

    Bohling, G.; Adkins-Heljeson, D.; Wilson, B. B.

    2017-12-01

    Like a number of state and provincial geological agencies, the Kansas Geological Survey hosts a database of water well drillers' logs, containing the records of sediments and lithologies characterized during drilling. At the moment, the KGS database contains records associated with over 90,000 wells statewide. Over 60,000 of these wells are within the High Plains aquifer (HPA) in Kansas, with the corresponding logs containing descriptions of over 500,000 individual depth intervals. We will present grids of hydrogeological properties for the Kansas HPA developed from this extensive, but highly qualitative, data resource. The process of converting the logs into quantitative form consists of first translating the vast number of unique (and often idiosyncratic) sediment descriptions into a fairly comprehensive set of standardized lithology codes and then mapping the standardized lithologies into a smaller number of property categories. A grid is superimposed on the region and the proportion of each property category is computed within each grid cell, with category proportions in empty grid cells computed by interpolation. Grids of properties such as hydraulic conductivity and specific yield are then computed based on the category proportion grids and category-specific property values. A two-dimensional grid is employed for this large-scale, regional application, with category proportions averaged between two surfaces, such as bedrock and the water table at a particular time (to estimate transmissivity at that time) or water tables at two different times (to estimate specific yield over the intervening time period). We have employed a sequence of water tables for different years, based on annual measurements from an extensive network of wells, providing an assessment of temporal variations in the vertically averaged aquifer properties resulting from water level variations (primarily declines) over time.

  13. Hydrogeology and hydrologic conditions of the Northern Atlantic Coastal Plain aquifer System from Long Island, New York, to North Carolina

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.; Monti, Jack; Nardi, Mark R.; Finkelstein, Jason S.; McCoy, Kurt J.

    2013-11-14

    The seaward-dipping sedimentary wedge that underlies the Northern Atlantic Coastal Plain forms a complex groundwater system. This major source of water provides for public and domestic supply and serves as a vital source of freshwater for industrial and agricultural uses throughout the region. Population increases and land-use and climate changes, however, have led to competing demands for water. The regional response of the aquifer system to these stresses poses regional challenges for water-resources management at the State level because hydrologic effects often extend beyond State boundaries. In response to these challenges, the U.S. Geological Survey Groundwater Resources Program began a regional assessment of the groundwater availability of the Northern Atlantic Coastal Plain aquifer system in 2010.

  14. Salinization of porewater in a multiple aquitard-aquifer system in Jiangsu coastal plain, China

    Science.gov (United States)

    Li, Jing; Liang, Xing; Zhang, Yanian; Liu, Yan; Chen, Naijia; Abubakari, Alhassan; Jin, Menggui

    2017-12-01

    Chemical and isotopic compositions were analyzed in porewater squeezed from a clayey aquitard in Jiangsu coastal plain, eastern China, to interpret the salinity origin, chemical evolution and water-mass mixing process. A strong geochemical fingerprint was obtained with an aligned Cl/Br ratio of 154 in the salinized aquitard porewater over a wide Cl- concentration range (396-9,720 mg/L), indicating that porewater salinity is likely derived from a mixing with old brine with a proportion of less than 20%. Very small contributions of brine exerted limited effects on water stable isotopes. The relationships between porewater δ18O and δD indicate that shallow and intermediate porewaters could be original seawater and were subsequently diluted with modern meteoric water, whereas deep porewaters with depleted stable isotopic values were probably recharged during a cooler period and modified by evaporation and seawater infiltration. The cation-Cl relationship and mineralogy of associated strata indicate that porewater has been chemically modified by silicate weathering and ion-exchange reactions. 87Sr/86Sr ratios of 0.7094-0.7112 further confirm the input source of silicate minerals. Numerical simulations were used to evaluate the long-term salinity evolution of the deep porewater. The alternations of boundary conditions (i.e., the third aquifer mixed with brine at approximately 70 ka BP, followed by recharge of glacial meltwater at 20-25 ka BP, and then mixing with Holocene seawater at 7-10 ka BP) are responsible for the shift in porewater salinity. These timeframes correspond with the results of previous studies on ancient marine transgression-regression in Jiangsu coastal plain.

  15. Managed aquifer recharge experiences with shallow wells: first analysis of the experimental activities in the high Vicenza plain (Northern Italy

    Directory of Open Access Journals (Sweden)

    Lorenzo Altissimo

    2014-09-01

    Full Text Available In recent decades, groundwater resources of the high Vicenza plain were subjected to an increasing extraction rate and, at the same time, to a lower quantity of groundwater recharge. The result is a decreasing flow from the plain springs and a high reduction in piezometric levels of the middle and lower Venetian aquifers. In order to restore the balance of groundwater resources in the Vicenza area, the Vicenza Province has promoted experimental activities aimed to increase the recharge of the aquifer in the high Vicenza plain and in the River Agno valley, using infiltration wells, forested infiltration areas, infiltration trenches, subsurface fields and infiltration canals. All recharge plants are fed by irrigation water, managed by agricultural consortia only during periods of water surplus. Construction works were preceded by specific geological and hydrogeological investigations to verify the suitability for recharge, with the purpose of optimizing the available economic resources. For the protection of the aquifer system, a chemical background of infiltration water was assessed with periodical chemical-physical and microbiological surveys. After the activation date, a monthly monitoring program started to verify the quality of both surface and groundwater, collecting samples in monitoring wells downstream the infiltration structures. The input flow rate entering the various systems, monitored by automatic instruments either in the superficial structure and in groundwater, have provided interesting information about the volumes and the quality of water. These scientific experiences appear to be very helpful in case of future applications for other sites, especially during critical hydrologic period.

  16. Geochemical and sedimentologic problems of uranium deposits of Texas Gulf Coastal Plain: discussion

    International Nuclear Information System (INIS)

    Craig, R.M.

    1980-01-01

    Huang (1978) stated that the mobility and accumulation of uranium in host rocks are controlled by several factors, including the hydrologic factor. Some of his statements are misleading as indicated by study of ancient stream channels in Wyoming which has led to increased discoveries of uranium deposits. Because it is believed that the transportation mechanism for uranium in paleoaquifer host rocks is groundwater, the flow of the uranium-bearing solution is a function of the infiltration or recharge into the aquifer, not necessarily of the rainfall. Huang stated that the time of accumulation depends upon the dip of the host rock. The flow of a groundwater system is largely independent of the dip of the beds as stated by Daray's (1856) law: Q = KA delta h/delta l h. Dividing this equation by the area, A, will result in the flux or average velocity of a particle. Data was included for the Wind River Formation in the Gas Hills Uranium district of Wyoming. some data differs from Huang. According the Lohman equation, groundwater velocity would be three times greater in the Texas example than in the northern Wyoming area, presuming the same porosity, groundwater gradient, and flow-path length

  17. Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho

    International Nuclear Information System (INIS)

    Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

    1997-05-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal

  18. Geospatial compilation of historical water-level changes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13, Gulf Coast aquifer system, Houston-Galveston region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Linard, Joshua I.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced an annual series of reports that depict water-level changes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas, from 1977 to 2013. Changes are determined from water-level measurements between December and March of each year from groundwater wells screened in one of the three aquifers. Existing published maps and unpublished geographic information system (GIS) datasets were compiled into a comprehensive geodatabase of all water-level-change maps produced as part of this multiagency effort. Annual water-level-change maps were georeferenced and digitized where existing GIS data were unavailable (1979–99). Existing GIS data available for 2000–13 were included in the geodatabase. The compilation contains 121 datasets showing water-level changes for each primary aquifer of the Gulf Coast aquifer system: 56 for the Chicot aquifer (1977; 1979–2013 and 1990; 1993–2013), 56 for the Evangeline aquifer (1977; 1979–2013 and 1990; 1993–2013), and 9 for the Jasper aquifer (2000; 2005–13).

  19. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    Science.gov (United States)

    Moorhead, Jerry; Gowda, Prasanna H.; Hobbins, Michael; Senay, Gabriel; Paul, George; Marek, Thomas; Porter, Dana

    2015-01-01

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which is essential for regional scale water resources management. Data used in the development of NOAA daily ETref maps are derived from observations over surfaces that are different from short (grass — ETos) or tall (alfalfa — ETrs) reference crops, often in nonagricultural settings, which carries an unknown discrepancy between assumed and actual conditions. In this study, NOAA daily ETos and ETrs maps were evaluated for accuracy, using observed data from the Texas High Plains Evapotranspiration (TXHPET) network. Daily ETos, ETrs and the climatic data (air temperature, wind speed, and solar radiation) used for calculating ETref were extracted from the NOAA maps for TXHPET locations and compared against ground measurements on reference grass surfaces. NOAA ETrefmaps generally overestimated the TXHPET observations (1.4 and 2.2 mm/day ETos and ETrs, respectively), which may be attributed to errors in the NLDAS modeled air temperature and wind speed, to which reference ETref is most sensitive. Therefore, a bias correction to NLDAS modeled air temperature and wind speed data, or adjustment to the resulting NOAA ETref, may be needed to improve the accuracy of NOAA ETref maps.

  20. Raptor community composition in the Texas Southern High Plains lesser prairie-chicken range

    Science.gov (United States)

    Behney, A.C.; Boal, Clint W.; Whitlaw, Heather A.; Lucia, D.R.

    2012-01-01

    Predation can be a factor in preventing prey population growth and sustainability when prey populations are small and fragmented, and when predator density is unrelated to the density of the single prey species. We conducted monthly raptor surveys from February 2007 to May 2009 in adjacent areas of the Texas Southern High Plains (USA) that do and do not support lesser prairie-chickens (Tympanuchus pallidicinctus), a candidate for protection under the Endangered Species Act. During the summer period corresponding to prairie-chicken nesting and brood-rearing, Swainson's hawks (Buteo swainsoni) were the most abundant raptor. During the lekking and overwintering period, the raptor community was diverse, with northern harriers (Circus cyaneus) being the most abundant species. Raptor abundance peaked during the early autumn and was lowest during the spring. Utility poles were a significant predictor of raptor density at survey points and Swainson's hawks and all raptors, pooled, were found in greater densities in non-prairie-chicken habitat dominated by mesquite (Prosopis glandulosa). Avian predation risk on prairie-chickens, based on presence and abundance of raptors, appears to be greatest during winter when there is a more abundant and diverse raptor community, and in areas with utility poles.

  1. Interactions of raptors and Lesser Prairie-Chickens at leks in the Texas Southern High Plains

    Science.gov (United States)

    Behney, Adam C.; Boal, Clint W.; Whitlaw, Heather A.; Lucia, Duane R.

    2011-01-01

    We examined behavioral interactions of raptors, Chihuahuan Ravens (Corvus cryptoleucus), and Lesser Prairie-Chickens (Tympanuchus pallidicinctus) at leks in the Texas Southern High Plains. Northern Harriers (Circus cyaneus) and Swainson's Hawks (Buteo swainsoni) were the most common raptors observed at leks. Only 15 of 61 (25%) raptor encounters at leks (0.09/hr) resulted in a capture attempt (0.02/hr). Mean (± SD) time for Lesser Prairie-Chickens to return to lekking behavior following a raptor encounter was 4.2 ± 5.5 min suggesting the disturbance had little influence on lekking behaviors. Lesser Prairie-Chickens engaged in different escape behaviors depending on raptor species and, generally, did not respond to ravens suggesting they are able to assess different predation risks. The raptors in our study area posed little predation risk to lekking prairie-chickens. Behavioral disturbance at leks appears minimal due to the lack of successful predation events, low raptor encounter rates, and short time to return to lekking behavior.

  2. Geochemical and sedimentologic problems of uranium deposits of Texas Gulf Coastal Plain

    International Nuclear Information System (INIS)

    Huang, W.H.

    1978-01-01

    Exploration targets for sedimentary uranium ore bodies in the Texas Gulf Coastal Plain include: (1) favorable source rocks for uranium, (2) favorable conditions for uranium leached and transported out of the source rocks, and (3) favorable geologic characteristics of the host rocks for the accumulation of uranium of economic importance. However, data available from known deposits point out more questions of research than answers. Mobility and accumulation of uranium of economic importance in host rocks are controlled by at least three factors - physical, chemical-mineralogic, and hydrologic - that interact dynamically. Physical factors include the nature (viscosity) of the transporting fluid, the permeability of host rock with respect to transporting solution in terms of medium rate, potential differentials, and temperature of the uranium-bearing solution in the macroenvironment. Chemical-mineralogic factors include the ionic strength of solution, chemical activities of species in the solution, chemical activities of pore water in host rocks, surface activity and surface energy of mineral constituents in host rocks, solubilities of ore and gangue minerals, pH, and Eh in the microenvironment. Hydrologic factors include fluctuation of the depth of the oxidation-reduction interfaces in the paleoaquifer host rocks, and their subsequent modification by present hydrologic factors. Geochemical mechanisms that are likely to have been in operation for uranium accumulation are precipitation, adsorption, and/or complexing. 4 figures

  3. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1992 through 1995

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Tucker, B.J.; Ackerman, D.J.; Liszewski, M.J.

    1997-04-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The US Geological Survey, in cooperation with the US Department of Energy, maintains a monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1992--95

  4. Distribution of sulphur isotopes of sulphates in groundwaters from the principal artesian aquifer of Florida and the Edwards aquifer of Texas, United States of America

    International Nuclear Information System (INIS)

    Rightmire, C.T.; Pearson, F.J. Jr.; Back, W.; Rye, R.O.; Hanshaw, B.B.

    1974-01-01

    New information on the sources of sulphate dissolved in groundwater is obtainable from the measurement of the sulphur isotope composition of sulphates. Field studies in the Floridan aquifer, Florida, and the Edwards aquifer, Texas, show that the use of sulphur isotope data in conjunction with hydrologic and geochemical techniques permits refinements of interpretation. In the Floridan the interpretation of the chemical data, particularly the SO 4 2- concentration and the SO 4 2- /Cl - ratio, leads to the conclusion that recharging maritime rainfall, solution of intraformational gypsum, and mixing with ocean-like saline waters are the sources of sulphate in the groundwater. Sulphur isotope data substantiate this interpretation. The Edwards in the area studied can be separated into two hydrologie units on the basis of water chemistry and aquifer characteristics. The sulphide-free waters in the part of the aquifer upgradient from a distinct sulphide boundary are low in sulphate (less than 100 mg/1) and contain no sulphide. The waters downgradient from that boundary contain greater than 150 mg/1 sulphate and all contain measurable quantities of sulphide. Interpretation of the SO 4 2- concentration and SO 4 2- /Cl ratio on the basis of the Florida study leads to the erroneous conclusion that the solution of intraformational gypsum is again a major source of sulphate in the sulphide-free part of the aquifer. Isotope analyses, however, show that the gypsum is likely to be Permian in age and introduced into the aquifer by the recharge water. The absence of evidence for enrichment in 34 S in the sulphate in the sulphide-bearing portion of the aquifer leads to the possibility of H 2 S migration upgradient from downdip oil fields. (author)

  5. Assessment of groundwater availability in the Northern Atlantic Coastal Plain aquifer system From Long Island, New York, to North Carolina

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    Executive SummaryThe U.S. Geological Survey began a multiyear regional assessment of groundwater availability in the Northern Atlantic Coastal Plain (NACP) aquifer system in 2010 as part of its ongoing regional assessments of groundwater availability of the principal aquifers of the Nation. The goals of this national assessment are to document effects of human activities on water levels and groundwater storage, explore climate variability effects on the regional water budget, and provide consistent and integrated information that is useful to those who use and manage the groundwater resource. As part of this nationwide assessment, the USGS evaluated available groundwater resources within the NACP aquifer system from Long Island, New York, to northeastern North Carolina.The northern Atlantic Coastal Plain physiographic province depends heavily on groundwater to meet agricultural, industrial, and municipal needs. The groundwater assessment of the NACP aquifer system included an evaluation of how water use has changed over time; this evaluation primarily used groundwater budgets and development of a numerical modeling tool to assess system responses to stresses from future human uses and climate trends.This assessment focused on multiple spatial and temporal scales to examine changes in groundwater pumping, storage, and water levels. The regional scale provides a broad view of the sources and demands on the system with time. The sub-regional scale provides an evaluation of the differing response of the aquifer system across geographic areas allowing for closer examination of the interaction between different aquifers and confining units and the changes in these interactions under pumping and recharge conditions in 2013 and hydrologic stresses as much as 45 years in the future. By focusing on multiple scales, water-resource managers may utilize this study to understand system response to changes as they affect the system as a whole.The NACP aquifer system extends from

  6. Surface faults in the gulf coastal plain between Victoria and Beaumont, Texas

    Science.gov (United States)

    Verbeek, Earl R.

    1979-01-01

    Displacement of the land surface by faulting is widespread in the Houston-Galveston region, an area which has undergone moderate to severe land subsidence associated with fluid withdrawal (principally water, and to a lesser extent, oil and gas). A causative link between subsidence and fluid extraction has been convincingly reported in the published literature. However, the degree to which fluid withdrawal affects fault movement in the Texas Gulf Coast, and the mechanism(s) by which this occurs are as yet unclear. Faults that offset the ground surface are not confined to the large (>6000-km2) subsidence “bowl” centered on Houston, but rather are common and characteristic features of Gulf Coast geology. Current observations and conclusions concerning surface faults mapped in a 35,000-km2 area between Victoria and Beaumont, Texas (which area includes the Houston subsidence bowl) may be summarized as follows: (1) Hundreds of faults cutting the Pleistocene and Holocene sediments exposed in the coastal plain have been mapped. Many faults lie well outside the Houston-Galveston region; of these, more than 10% are active, as shown by such features as displaced, fractured, and patched road surfaces, structural failure of buildings astride faults, and deformed railroad tracks. (2) Complex patterns of surface faults are common above salt domes. Both radial patterns (for example, in High Island, Blue Ridge, Clam Lake, and Clinton domes) and crestal grabens (for example, in the South Houston and Friendswood-Webster domes) have been recognized. Elongate grabens connecting several known and suspected salt domes, such as the fault zone connecting Mykawa, Friendswood-Webster, and Clear Lake domes, suggest fault development above rising salt ridges. (3) Surface faults associated with salt domes tend to be short (10 km), occur singly or in simple grabens, have gently sinuous traces, and tend to lie roughly parallel to the ENE-NE “coastwise” trend common to regional growth

  7. Map Showing Geology and Hydrostratigraphy of the Edwards Aquifer Catchment Area, Northern Bexar County, South-Central Texas

    Science.gov (United States)

    Clark, Amy R.; Blome, Charles D.; Faith, Jason R.

    2009-01-01

    Rock units forming the Edwards and Trinity aquifers in northern Bexar County, Texas, are exposed within all or parts of seven 7.5-minute quadrangles: Bulverde, Camp Bullis, Castle Hills, Helotes, Jack Mountain, San Geronimo, and Van Raub. The Edwards aquifer is the most prolific ground-water source in Bexar County, whereas the Trinity aquifer supplies water for residential, commercial, and industrial uses for areas north of the San Antonio. The geologic map of northern Bexar County shows the distribution of informal hydrostratigraphic members of the Edwards Group and the underlying upper member of the Glen Rose Limestone. Exposures of the Glen Rose Limestone, which forms the Trinity aquifer alone, cover approximately 467 km2 in the county. This study also describes and names five informal hydrostratigraphic members that constitute the upper member of the Glen Rose Limestone; these include, in descending order, the Caverness, Camp Bullis, Upper evaporite, Fossiliferous, and Lower evaporite members. This study improves our understanding of the hydrogeologic connection between the two aquifers as it describes the geology that controls the infiltration of surface water and subsurface flow of ground water from the catchment area (outcropping Trinity aquifer rocks) to the Edwards water-bearing exposures.

  8. Geospatial compilation of historical water-level altitudes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13 in the Gulf Coast aquifer system, Houston-Galveston Region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Ellis, Robert H.H.

    2013-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced a series of annual reports depicting groundwater-level altitudes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas. To produce these annual reports, contours of equal water-level altitudes are created from water levels measured between December and March of each year from groundwater wells screened completely within one of these three aquifers. Information obtained from maps published in the annual series of USGS reports and geospatial datasets of water-level altitude contours used to create the annual series of USGS reports were compiled into a comprehensive geodatabase. The geospatial compilation contains 88 datasets from previously published contour maps showing water-level altitudes for each primary aquifer of the Gulf Coast aquifer system, 37 for the Chicot (1977–2013), 37 for the Evangeline aquifer (1977–2013), and 14 for the Jasper aquifer (2000–13).

  9. Ground-water quality in agricultural areas, Anoka Sand Plain Aquifer, east-central Minnesota, 1984-90

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.

    1995-01-01

    Ground-water quality in the Anoka Sand Plain aquifer was studied as part of the multiscale Management Systems Evaluation Area (MSEA) study by collecting water samples from shallow wells during August through November 1990. The sampling was conducted to: (1) aid in selection of the MSEA research area; (2) facilitate comparison of results at the MSEA research area to the regional scale; and (3) evaluate changes in ground-water quality in the Anoka Sand Plain aquifer since a previous study during 1984 through 1987. Samples were collected from 34 wells screened in the upper 6 meters of the surficial aquifer and located in cultivated agricultural areas. Water temperature, pH, specific conductance, and presence or absence of triazine herbicides were determined at all sites and samples from selected wells were analyzed for concentrations of dissolved oxygen, alkalinity, major cations and anions, nutrients, and selected herbicides and herbicide metabolites. The results of the study indicate that the water-quality of some shallow ground water in areas of predominantly agricultural land use has been affected by applications of nitrogen fertilizers and the herbicide atrazine.

  10. Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Nieto Camargo, Jorge E., E-mail: jorge.nietocamargo@aramco.com; Jensen, Jerry L., E-mail: jjensen@ucalgary.ca [University of Calgary, Department of Chemical and Petroleum Engineering (Canada)

    2012-09-15

    Reservoir compartments, typical targets for infill well locations, are commonly created by faults that may reduce permeability. A narrow fault may consist of a complex assemblage of deformation elements that result in spatially variable and anisotropic permeabilities. We report on the permeability structure of a km-scale fault sampled through drilling a faulted siliciclastic aquifer in central Texas. Probe and whole-core permeabilities, serial CAT scans, and textural and structural data from the selected core samples are used to understand permeability structure of fault zones and develop predictive models of fault zone permeability. Using numerical flow simulation, it is possible to predict permeability anisotropy associated with faults and evaluate the effect of individual deformation elements in the overall permeability tensor. We found relationships between the permeability of the host rock and those of the highly deformed (HD) fault-elements according to the fault throw. The lateral continuity and predictable permeability of the HD fault elements enhance capability for estimating the effects of subseismic faulting on fluid flow in low-shale reservoirs.

  11. Reliable Predictors of Arsenic Occurrence in the Southern Gulf Coast Aquifer of Texas

    Directory of Open Access Journals (Sweden)

    Kartik Venkataraman

    2018-04-01

    Full Text Available Arsenic contamination of groundwater in the Southern Gulf Coast Aquifer of Texas is a critical public health concern as much of the area is rural in nature with decentralized water supplies. Previous studies have pointed to volcanic deposits as the regional source of arsenic but no definitive or reliable predictors of arsenic maximum contaminant level (MCL exceedance have been identified. In this study, we have studied the effect of various hydrogeochemical parameters as well as soil and land-use variables on arsenic MCL exceedance using logistic regression (LR techniques. The LR models display good accuracy of 75% or higher but suffer from a high rate of false negatives, highlighting the challenges in capturing the spatial irregularities of arsenic in this region. Despite not displaying high statistical significance, pH appears to be an important variable in the LR models—its effect on arsenic exceedance is not clear and warrants further investigation. The results of the study also show that groundwater vanadium and fluoride are consistently the only significant variables in the models developed; the positive coefficients for both these elements indicates a common geogenic source for arsenic, fluoride and vanadium, corroborating the findings of earlier studies.

  12. Iodine-129 in the Snake River Plain Aquifer at and Near the Idaho National Laboratory, Idaho, 2003 and 2007

    Science.gov (United States)

    Bartholomay, Roy C.

    2009-01-01

    From 1953 to 1988, wastewater containing approximately 0.94 curies of iodine-129 (129I) was generated at the Idaho National Laboratory (INL) in southeastern Idaho. Almost all of this wastewater was discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC) on the INL site. Most of the wastewater was discharged directly into the eastern Snake River Plain aquifer through a deep disposal well until 1984; however, some wastewater also was discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. In 2003, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, collected samples for 129I from 36 wells used to monitor the Snake River Plain aquifer, and from one well used to monitor a perched zone at the INTEC. Concentrations of 129I in the aquifer ranged from 0.0000066 +- 0.0000002 to 0.72 +- 0.051 picocuries per liter (pCi/L). Many wells within a 3-mile radius of the INTEC showed decreases of as much as one order of magnitude in concentration from samples collected during 1990-91, and all of the samples had concentrations less than the Environmental Protection Agency's Maximum Contaminant Level (MCL) of 1 pCi/L. The average concentration of 129I in 19 wells sampled during both collection periods decreased from 0.975 pCi/L in 1990-91 to 0.249 pCi/L in 2003. These decreases are attributed to the discontinuation of disposal of 129I in wastewater after 1988 and to dilution and dispersion in the aquifer. Although water from wells sampled in 2003 near the INTEC showed decreases in concentrations of 129I compared with data collected in 1990-91, some wells south and east of the Central Facilities Area, near the site boundary, and south of the INL showed slight increases. These slight increases may be related to variable discharge rates of wastewater that eventually moved to these well locations as a mass of water from a particular disposal period. In 2007, the USGS collected samples for

  13. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    Science.gov (United States)

    Chakraborty, Jayeeta; Varonka, Matthew S.; Orem, William H.; Finkelman, Robert B.; Manton, William

    2017-01-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  14. The quality of our Nation's waters: water quality in the Mississippi embayment-Texas coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994-2008

    Science.gov (United States)

    Kingsbury, James A.; Barlow, Jeannie R.; Katz, Brian G.; Welch, Heather L.; Tollett, Roland W.; Fahlquist, Lynne S.

    2015-01-01

    About 8 million people rely on groundwater from the Mississippi embayment—Texas coastal uplands aquifer system for drinking water. The Mississippi River Valley alluvial aquifer also provides drinking water for domestic use in rural areas but is of primary importance to the region as a source of water for irrigation. Irrigation withdrawals from this aquifer are among the largest in the Nation and play a key role in the economy of the area, where annual crop sales total more than $7 billion. The reliance of the region on both aquifers for drinking water and irrigation highlights the importance of long-term management to sustain the availability and quality of these resources.

  15. A hotspot analysis of the water footprint and groundwater depletion in the High Plains Aquifer

    Science.gov (United States)

    Multsch, Sebastian; Pahlow, Markus; Ellensohn, Judith; Michalik, Thomas; Frede, Hans-Georg; Breuer, Lutz

    2015-04-01

    The water footprint (WF) of irrigation agriculture sums up to 45.72 km3 yr-1(46% blue, 54% green) across the High Plains Aquifer (HPA) in the USA. Green WFs are dominating the north-east. Blue WFs are related to regions with intensive depletion of groundwater in the center and southern HPA, a situation further exacerbated by an increase of the blue water fraction of crop WF over the past (by 50% for 1990-1999; by 57% for 2000-2012). By means of a cluster analysis with the three parameter groundwater decline, blue and green WF, hotspots have been delineated spatially. Two sub-regions in the southern and central covering merely 20% of the HPA area have a share of one-third (7.92 km3 yr-1) of the total WF. This clearly shows that local strategies for sustainable allocation and use of freshwater resources are required. A likely impact of the sowing date (earliest vs. latest) on the WF has been studied, showing that blue WF increases by about 4% on average for all crops for the late sowing date, whereby the green and blue WF of cotton decreases totally about 0.9 km3 yr-1. Further evaluation criteria apart from water conservation considered are economic water productivity and nutritional value per volume of water consumed in agricultural production. Corn leads to the highest economic water productivity of 0.34 USD m-3, which in addition provides the highest nutritional value of 4362 kcal m-3. Favoring sorghum over corn was found advantageous in years with water shortage, because irrigation requirements and crop evapotranspiration of sorghum are lower by 20% and 25%, respectively, yet accompanied with nutritional losses of 28% compared to corn production. Such a trade-off is to be evaluated by farmers and policy makers, whereby the green and blue WFs, the impact of the sowing date as well as the economic and nutritional productivity presented here supports decision making.

  16. Characterization of recharge processes in shallow and deeper aquifers using isotopic signatures and geochemical behavior of groundwater in an arsenic-enriched part of the Ganga Plain

    International Nuclear Information System (INIS)

    Saha, Dipankar; Sinha, U.K.; Dwivedi, S.N.

    2011-01-01

    Research highlights: → Sub-regional scale aquifers delineated in arsenic-enriched belt in the Ganga Plain. Isotopic fingerprint of the groundwater, from arsenic-enriched and arsenic-safe aquifers established for the first time in the Ganga Plain. → Recharge processes and the water provenances of vertically separated Quaternary aquifers have been established. → Mean residence time of groundwater in the deeper aquifers has been worked out using C-14 isotope. → Water from the deeper aquifer has been correlated with the paleoclimatic model of the Middle Ganga Plain (Mid-Ganga Basin) for 6-2 ka. - Abstract: Arsenic concentrations in groundwater extracted from shallow aquifers in some areas of the Ganga Plain in the states of Bihar and Uttar Pradesh, exceed 50 μg L -1 and locally reach levels in the 400 μg L -1 range. The study covered 535 km 2 of active flood plain of the River Ganga, in Bihar where a two-tier aquifer system has been delineated in a multi-cyclic sequence of Quaternary sand, clay, sandy clay and silty clay all ≤∼250 m below ground surface. The research used isotopic signatures (δ 18 O, δ 2 Η, 3 H, 14 C) and major chemical constituents (HCO 3 - ,SO 4 2- ,NO 3 - ,Cl - ,Ca 2+ ,Mg 2+ ,Na + ,K + ,As total ) of groundwater to understand the recharge processes and groundwater circulation in the aquifers. Values of δ 18 O and δ 2 Η combined with 3 H data indicate that the recharge to the As-enriched top 40 m of the deposits is modern ( -1 ) is hydrologically isolated from the upper aquifer and is characterized by lower 14 C concentration and lower (more negative) δ 18 O values. Groundwater in the lower aquifer is ∼3 ka old, occurs under semi-confined to confined conditions, with hydrostatic head at 1.10 m above the head of the upper aquifer during the pre-monsoon. The recharge areas of the lower aquifer lies in Pleistocene deposits in basin margin areas with the exposed Vindhyan System, at about 55 km south of the area.

  17. Determination of hydrogeological conditions in large unconfined aquifer: A case study in central Drava plain (NE Slovenia)

    Science.gov (United States)

    Keršmanc, Teja; Brenčič, Mihael

    2016-04-01

    In several countries, many unregulated landfills exits which releasing harmful contaminations to the underlying aquifer. The Kidričevo industrial complex is located in southeastern part of Drava plain in NW Slovenia. In the past during the production of alumina and aluminum approximately 11.2 million tons of wastes were deposit directly on the ground on two landfills covering an area of 61 hectares. Hydrogeological studies were intended to better characterized conditions bellow the landfill. Geological and hydrogeological conditions of Quaternary unconfined aquifer were analyzed with lithological characterization of well logs and cutting debris and XRF diffraction of silty sediments on 9 boreholes. Hydrogeological conditions: hydraulic permeability aquifer was determined with hydraulic tests and laboratory grain size analyses where empirical USBR and Hazen methods were applied. Dynamics of groundwater was determined by groundwater contour maps and groundwater level fluctuations. The impact of landfill was among chemical analyses of groundwater characterised by electrical conductivity measurements and XRF spectrometry of sand sediments. The heterogeneous Quaternary aquifer composed mainly of gravel and sand, is between 38 m and 47.5 m thick. Average hydraulic permeability of aquifer is within the decade 10-3 m/s. Average hydraulic permeability estimated on grain size curves is 6.29*10-3 m/s, and for the pumping tests is 4.0*10-3 m/s. General direction of groundwater flow is from west to east. During high water status the groundwater flow slightly changes flow direction to the southwest and when pumping station in Kidričevo (NW of landfill) is active groundwater flows to northeast. Landfills have significant impact on groundwater quality.

  18. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Orr, B.R.; Liszewski, M.J.; Jensen, R.G.

    1995-08-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1989-91. Water in the eastern Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from irrigation water, infiltration of streamflow, and ground-water inflow from adjoining mountain drainage basins. Water levels in wells throughout the INEL generally declined during 1989-91 due to drought. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEL decreased or remained constant during 1989-91. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption processes, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEL were variable during 1989-91. Sodium and chloride concentrations in the southern part of the INEL increased slightly during 1989-91 because of increased waste-disposal rates and a lack of recharge from the Big Lost River. Plumes of 1,1,1-trichloroethane have developed near the Idaho Chemical Processing Plant and the Radioactive Waste Management Complex as a result of waste disposal practices

  19. Using Uncertainty Quantification to Guide Development and Improvements of a Regional-Scale Model of the Coastal Lowlands Aquifer System Spanning Texas, Louisiana, Mississippi, Alabama and Florida

    Science.gov (United States)

    Foster, L. K.; Clark, B. R.; Duncan, L. L.; Tebo, D. T.; White, J.

    2017-12-01

    Several historical groundwater models exist within the Coastal Lowlands Aquifer System (CLAS), which spans the Gulf Coastal Plain in Texas, Louisiana, Mississippi, Alabama, and Florida. The largest of these models, called the Gulf Coast Regional Aquifer System Analysis (RASA) model, has been brought into a new framework using the Newton formulation for MODFLOW-2005 (MODFLOW-NWT) and serves as the starting point of a new investigation underway by the U.S. Geological Survey to improve understanding of the CLAS and provide predictions of future groundwater availability within an uncertainty quantification (UQ) framework. The use of an UQ framework will not only provide estimates of water-level observation worth, hydraulic parameter uncertainty, boundary-condition uncertainty, and uncertainty of future potential predictions, but it will also guide the model development process. Traditionally, model development proceeds from dataset construction to the process of deterministic history matching, followed by deterministic predictions using the model. This investigation will combine the use of UQ with existing historical models of the study area to assess in a quantitative framework the effect model package and property improvements have on the ability to represent past-system states, as well as the effect on the model's ability to make certain predictions of water levels, water budgets, and base-flow estimates. Estimates of hydraulic property information and boundary conditions from the existing models and literature, forming the prior, will be used to make initial estimates of model forecasts and their corresponding uncertainty, along with an uncalibrated groundwater model run within an unconstrained Monte Carlo analysis. First-Order Second-Moment (FOSM) analysis will also be used to investigate parameter and predictive uncertainty, and guide next steps in model development prior to rigorous history matching by using PEST++ parameter estimation code.

  20. Groundwater quality of the Gulf Coast aquifer system, Houston, Texas, 2007-08

    Science.gov (United States)

    Oden, Jeannette H.; Oden, Timothy D.; Szabo, Zoltan

    2010-01-01

    In the summers of 2007 and 2008, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, Texas, completed an initial reconnaissance-level survey of naturally occurring contaminants (arsenic, other selected trace elements, and radionuclides) in water from municipal supply wells in the Houston area. The purpose of this reconnaissance-level survey was to characterize source-water quality prior to drinking water treatment. Water-quality samples were collected from 28 municipal supply wells in the Houston area completed in the Evangeline aquifer, Chicot aquifer, or both. This initial survey is part of ongoing research to determine concentrations, spatial extent, and associated geochemical conditions that might be conducive for mobility and transport of these constituents in the Gulf Coast aquifer system in the Houston area. Samples were analyzed for major ions (calcium, magnesium, potassium, sodium, bromide, chloride, fluoride, silica, and sulfate), selected chemically related properties (residue on evaporation [dissolved solids] and chemical oxygen demand), dissolved organic carbon, arsenic species (arsenate [As(V)], arsenite [As(III)], dimethylarsinate [DMA], and monomethylarsonate [MMA]), other trace elements (aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, molybdenum, nickel, selenium, silver, strontium, thallium, vanadium, and zinc), and selected radionuclides (gross alpha- and beta-particle activity [at 72 hours and 30 days], carbon-14, radium isotopes [radium-226 and radium-228], radon-222, tritium, and uranium). Field measurements were made of selected physicochemical (relating to both physical and chemical) properties (oxidation-reduction potential, turbidity, dissolved oxygen concentration, pH, specific conductance, water temperature, and alkalinity) and unfiltered sulfides. Dissolved organic carbon and chemical oxygen demand are presented but not discussed in the

  1. Physiological time model for predicting adult emergence of western corn rootworm (Coleoptera: Chrysomelidae) in the Texas High Plains.

    Science.gov (United States)

    Stevenson, Douglass E; Michels, Gerald J; Bible, John B; Jackman, John A; Harris, Marvin K

    2008-10-01

    Field observations at three locations in the Texas High Plains were used to develop and validate a degree-day phenology model to predict the onset and proportional emergence of adult Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) adults. Climatic data from the Texas High Plains Potential Evapotranspiration network were used with records of cumulative proportional adult emergence to determine the functional lower developmental temperature, optimum starting date, and the sum of degree-days for phenological events from onset to 99% adult emergence. The model base temperature, 10 degrees C (50 degrees F), corresponds closely to known physiological lower limits for development. The model uses a modified Gompertz equation, y = 96.5 x exp (-(exp(6.0 - 0.00404 x (x - 4.0), where x is cumulative heat (degree-days), to predict y, cumulative proportional emergence expressed as a percentage. The model starts degree-day accumulation on the date of corn, Zea mays L., emergence, and predictions correspond closely to corn phenological stages from tasseling to black layer development. Validation shows the model predicts cumulative proportional adult emergence within a satisfactory interval of 4.5 d. The model is flexible enough to accommodate early planting, late emergence, and the effects of drought and heat stress. The model provides corn producers ample lead time to anticipate and implement adult control practices.

  2. Controlling geological and hydrogeological processes in an arsenic contaminated aquifer on the Red River flood plain, Vietnam

    International Nuclear Information System (INIS)

    Larsen, Flemming; Nhan Quy Pham; Nhan Duc Dang; Postma, Dieke; Jessen, Soren; Viet Hung Pham; Nguyen, Thao Bach; Trieu, Huy Duc; Luu Thi Tran; Hoan Nguyen; Chambon, Julie; Hoan Van Nguyen; Dang Hoang Ha; Nguyen Thi Hue; Mai Thanh Duc; Refsgaard, Jens Christian

    2008-01-01

    Geological and hydrogeological processes controlling recharge and the mobilization of As were investigated in a shallow Holocene aquifer on the Red River flood plain near Hanoi, Vietnam. The geology was investigated using surface resistivity methods, geophysical borehole logging, drilling of boreholes and installation of more than 200 piezometers. Recharge processes and surface-groundwater interaction were studied using (i) time-series of hydraulic head distribution in surface water and aquifers, (ii) the stable isotope composition of waters and (iii) numerical groundwater modeling. The Red River and two of its distributaries run through the field site and control the groundwater flow pattern. For most of the year, there is a regional groundwater flow towards the Red River. During the monsoon the Red River water stage rises up to 6 m and stalls the regional groundwater flow. The two distributaries recharge the aquifer from perched water tables in the dry season, whilst in the flooding period surface water enters the aquifer through highly permeable bank sediments. The result is a dynamic groundwater flow pattern with rapid fluctuations in the groundwater table. A transient numerical model of the groundwater flow yields an average recharge rate of 60-100 mm/a through the confining clay, and a total recharge of approximately 200 mm/a was estimated from 3 H/ 3 He dating of the shallow groundwater. Thus in the model area, recharge of surface water from the river distributaries and recharge through a confining clay is of the same magnitude, being on average around 100 mm/a. The thickness of the confining clay varies between 2 and 10 m, and affects the recharge rate and the transport of electron acceptors (O 2 , NO 3 - and SO 4 2- ) into the aquifer. Where the clay layer is thin, an up to 2 m thick oxic zone develops in the shallow aquifer. In the oxic zone the As concentration is less than 1 μg/L but increases in the reduced zone below to 550 μg/L. In the Holocene

  3. The origin and isotopic composition of dissolved sulfide in groundwater from carbonate aquifers in Florida and Texas

    International Nuclear Information System (INIS)

    Rye, R.O.; Back, W.; Hanshaw, B.B.; Rightmire, C.T.; Pearson, F.J. Jr.

    1981-01-01

    The delta 34 S values of dissolved sulfide and the sulfur isotope fractionations between dissolved sulfide and sulfate species in Floridan ground water generally correlate with dissolved sulfate concentrations which are related to flow patterns and residence time within the aquifer. The dissolved sulfide derives from the slow in situ biogenic reduction of sulfate dissolved from sedimentary gypsum in the aquifer. In areas where the water is oldest, the dissolved sulfide has apparently attained isotopic equilibrium with the dissolved sulfate at the temperature of the system. This approach to equilibrium reflects an extremely slow reduction rate of the dissolved sulfate by bacteria; this slow rate probably results from very low concentrations of organic matter in the aquifer. In the reducing part of the Edwards aquifer, Texas, there is a general down-gradient increase in both dissolved sulfide and sulfate concentrations, but neither the delta 34 S values of sulfide nor the sulfide-sulfate isotope fractionation correlates with the ground-water flow pattern. The dissolved sulfide species appear to be derived primarily from biogenic reduction of sulfate ions whose source is gypsum dissolution although upgradient diffusion of H 2 S gas from deeper oil field brines may be important in places. (author)

  4. Inference of Stream Network Fragmentation Patterns from Ground Water - Surface Water Interactions on the High Plains Aquifer

    Science.gov (United States)

    Chandler, D. G.; Yang, X.; Steward, D. R.; Gido, K.

    2007-12-01

    Stream networks in the Great Plains integrate fluxes from precipitation as surface runoff in discrete events and groundwater as base flow. Changes in land cover and agronomic practices and development of ground water resources to support irrigated agriculture have resulted in profound changes in the occurrence and magnitude of stream flows, especially near the Ogallala aquifer, where precipitation is low. These changes have demonstrably altered the aquatic habitat of western Kansas, with documented changes in fish populations, riparian communities and groundwater quality due to stream transmission losses. Forecasting future changes in aquatic and riparian ecology and groundwater quality requires a large scale spatially explicit model of groundwater- surface water interaction. In this study, we combine historical data on land use, stream flow, production well development and groundwater level observations with groundwater elevation modeling to support a geospatial framework for assessing changes in refugia for aquatic species in four rivers in western Kansas between 1965 and 2005. Decreased frequency and duration of streamflow occurred in all rivers, but the extent of change depended on the geomorphology of the river basin and the extent of groundwater development. In the absence of streamflow, refugia for aquatic species were defined as the stream reaches below the phreatic surface of the regional aquifer. Changes in extent, location and degree of fragmentation of gaining reaches was found to be a strong predictor of surface water occurrence during drought and a robust hydrological template for the analysis of changes in recharge to alluvial and regional aquifers and riparian and aquatic habitat.

  5. Permian salt dissolution, alkaline lake basins, and nuclear-waste storage, Southern High Plains, Texas and New Mexico

    International Nuclear Information System (INIS)

    Reeves, C.C. Jr.; Temple, J.M.

    1986-01-01

    Areas of Permian salt dissolution associated with 15 large alkaline lake basins on and adjacent to the Southern High Plains of west Texas and eastern New Mexico suggest formation of the basins by collapse of strata over the dissolution cavities. However, data from 6 other alkaline basins reveal no evidence of underlying salt dissolution. Thus, whether the basins were initiated by subsidence over the salt dissolution areas or whether the salt dissolution was caused by infiltration of overlying lake water is conjectural. However, the fact that the lacustrine fill in Mound Lake greatly exceeds the amount of salt dissolution and subsidence of overlying beds indicates that at least Mound Lake basin was antecedent to the salt dissolution. The association of topography, structure, and dissolution in areas well removed from zones of shallow burial emphasizes the susceptibility of Permian salt-bed dissolution throughout the west Texas-eastern New Mexico area. Such evidence, combined with previous studies documenting salt-bed dissolution in areas surrounding a proposed high-level nuclear-waste repository site in Deaf Smith County, Texas, leads to serious questions about the rationale of using salt beds for nuclear-waste storage

  6. Estimation of hydraulic properties and development of a layered conceptual model for the Snake River plain aquifer at the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Frederick, D.B.; Johnson, G.S.

    1996-02-01

    The Idaho INEL Oversight Program, in association with the University of Idaho, Idaho Geological Survey, Boise State University, and Idaho State University, developed a research program to determine the hydraulic properties of the Snake River Plain aquifer and characterize the vertical distribution of contaminants. A straddle-packer was deployed in four observation wells near the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Pressure transducers mounted in the straddle-packer assembly were used to monitor the response of the Snake River Plain aquifer to pumping at the ICPP production wells, located 2600 to 4200 feet from the observation wells. The time-drawdown data from these tests were used to evaluate various conceptual models of the aquifer. Aquifer properties were estimated by matching time-drawdown data to type curves for partially penetrating wells in an unconfined aquifer. This approach assumes a homogeneous and isotropic aquifer. The hydraulic properties of the aquifer obtained from the type curve analyses were: (1) Storativity = 3 x 10 -5 , (2) Specific Yield = 0.01, (3) Transmissivity = 740 ft 2 /min, (4) Anisotropy (Kv:Kh)= 1:360

  7. The limited role of aquifer heterogeneity on metal reduction in an Atlantic coastal plain determined by push-pull tests

    International Nuclear Information System (INIS)

    Mailloux, Brian J.; Devlin, Stephanie; Fuller, Mark E.; Onstott, T.C.; De Flaun, Mary F.; Choi, K.-H.; Green-Blum, Maria; Swift, Donald J.P.; McCarthy, John; Dong Hailiang

    2007-01-01

    Sixty push-pull experiments were conducted to determine the factors controlling Fe(III) and Mn(IV) reduction in a well-characterized, shallow, coastal plain aquifer near Oyster, VA, USA. The five multi-level samplers each equipped with 12 ports sampled a heterogeneous portion of the aquifer from 4.4 to 8m-bgs. Each multi-level sampler (MLS) was injected with groundwater that contained NO 3 - and Br - along with: (1) just groundwater (control treatment), (2) humics, (3) lactate (conducted twice) and (4) lactate plus humics. Microbially mediated Fe(III) reduction caused the aqueous Fe Tot concentrations to increase at every depth in the lactate treatment with significant increases within 1 day even while NO 3 - was present. Little change in the Fe Tot concentrations were observed in the control and humics treatment. Humics may have acted as an electron shuttle to increase Fe(III) reduction in the lactate plus humics treatment. The amount of Mn(IV) reduction was significantly lower than that of Fe(III) reduction. Geochemical modeling indicated that gas formation, sorption on reactive surfaces, and mineral precipitation were important processes and that Fe(III) and SO 4 2- reduction were co-occurring. Conditions were favorable for the precipitation of Fe-carbonates, Fe-sulfides and Fe-silicates. In the lactate treatment protist concentrations increased then decreased and planktonic cell concentrations steadily increased, whereas no change was observed in the control treatment. Correlations of Fe(III) reduction with physical and chemical heterogeneity were weak, probably as a result of the abundance of Fe(III) bearing minerals relative to electron donor abundance and that the push-pull test sampled a representative elemental volume that encompassed the microbial diversity within the aquifer. This work indicates that stimulating metal reduction in aquifer systems is a feasible method for remediating heterogeneous subsurface sites contaminated with metals and

  8. Simulation of flow in the Edwards Aquifer, San Antonio region, Texas, and refinement of storage and flow concepts

    Science.gov (United States)

    Maclay, Robert W.; Land, Larry F.

    1988-01-01

    The Edwards aquifer is a complexly faulted, carbonate aquifer lying within the Balcones fault zone of south-central Texas. The aquifer consists of thin- to massive-bedded limestone and dolomite, most of which is in the form of mudstones and wackestones. Well-developed secondary porosity has formed in association with former erosional surfaces within the carbonate rocks, within dolomitized-burrowed tidal and evaporitic deposits, and along inclined fractures to produce an aquifer with transmissivities greater than 100 ft2/s. The aquifer is recharged mainly by streamflow losses in the outcrop area of the Edwards aquifer and is discharged by major springs located at considerable distances, as much as 150 mi, from the areas of recharge and by wells. Ground-water flow within the Edwards aquifer of the San Antonio region was simulated to investigate concepts relating to the storage and flow characteristics. The concepts of major interest were the effects of barrier faults on flow direction, water levels, springflow, and storage within the aquifer. A general-purpose, finite-difference model, modified to provide the capability of representing barrier faults, was used to simulate ground-water flow and storage in the aquifer. The approach in model development was to conduct a series of simulations beginning with a simple representation of the aquifer framework and then proceeding to subsequent representations of increasing complexity. The simulations investigated the effects of complex geologic structures and of significant changes in transmissivity, anisotropy, and storage coefficient. Initial values of transmissivity, anisotropy, and storage coefficient were estimated based on concepts developed in previous studies. Results of the simulations confirmed the original estimates of transmissivity values (greater than 100 square feet/s) in the confined zone of the aquifer between San Antonio and Comal Springs. A storage coefficient of 0.05 in the unconfined zone of the aquifer

  9. Comparing the cost-effectiveness of water conservation policies in a depleting aquifer:A dynamic analysis of the Kansas High Plains

    Science.gov (United States)

    This research analyzes two groundwater conservation policies in the Kansas High Plains located within the Ogallala aquifer: 1) cost-share assistance to increase irrigation efficiency; and 2) incentive payments to convert irrigated crop production to dryland crop production. To compare the cost-effec...

  10. Bedrock geology and hydrostratigraphy of the Edwards and Trinity aquifers within the Driftwood and Wimberley 7.5-minute quadrangles, Hays and Comal Counties, Texas

    Science.gov (United States)

    Clark, Allan K.; Morris, Robert R.

    2017-11-16

    The Edwards and Trinity aquifers are major sources of water in south-central Texas and are both classified as major aquifers by the State of Texas. The population in Hays and Comal Counties is rapidly growing, increasing demands on the area’s water resources. To help effectively manage the water resources in the area, refined maps and descriptions of the geologic structures and hydrostratigraphic units of the aquifers are needed. This report presents the detailed 1:24,000-scale bedrock hydrostratigraphic map as well as names and descriptions of the geologic and hydrostratigraphic units of the Driftwood and Wimberley 7.5-minute quadrangles in Hays and Comal Counties, Tex.Hydrostratigraphically, the rocks exposed in the study area represent a section of the upper confining unit to the Edwards aquifer, the Edwards aquifer, the upper zone of the Trinity aquifer, and the middle zone of the Trinity aquifer. In the study area, the Edwards aquifer is composed of the Georgetown Formation and the rocks forming the Edwards Group. The Trinity aquifer is composed of the rocks forming the Trinity Group. The Edwards and Trinity aquifers are karstic with high secondary porosity along bedding and fractures. The Del Rio Clay is a confining unit above the Edwards aquifer and does not supply appreciable amounts of water to wells in the study area.The hydrologic connection between the Edwards and Trinity aquifers and the various hydrostratigraphic units is complex because the aquifer system is a combination of the original Cretaceous depositional environment, bioturbation, primary and secondary porosity, diagenesis, and fracturing of the area from Miocene faulting. All of these factors have resulted in development of modified porosity, permeability, and transmissivity within and between the aquifers. Faulting produced highly fractured areas which allowed for rapid infiltration of water and subsequently formed solutionally enhanced fractures, bedding planes, channels, and caves that

  11. Net ecosystem exchange of CO2 and H2O fluxes from irrigated grain sorghum and maize in the Texas High Plains

    Science.gov (United States)

    Net ecosystem exchange (NEE) of carbon dioxide (CO2) and water vapor (H2O) fluxes from irrigated grain sorghum (Sorghum bicolor L. Moench) and maize (Zea mays L.) fields in the Texas High Plains were quantified using the eddy covariance (EC) technique during 2014-2016 growing seasons and examined in...

  12. Assessment of Climate Change Impacts and Evaluation of Adaptation Strategies for Grain Sorghum and Cotton Production in the Texas High Plains

    Science.gov (United States)

    Kothari, K.; Ale, S.; Bordovsky, J.; Hoogenboom, G.; Munster, C. L.

    2017-12-01

    The semi-arid Texas High Plains (THP) is one of the most productive agricultural regions in the United States. However, agriculture in the THP is faced with the challenges of rapid groundwater depletion in the underlying Ogallala Aquifer, restrictions on pumping groundwater, recurring droughts, and projected warmer and drier future climatic conditions. Therefore, it is imperative to adopt strategies that enhance climate change resilience of THP agriculture to maintain a sustainable agricultural economy in this region. The overall goal of this study is to assess the impacts of climate change and potential reduction in groundwater availability on production of two major crops in the region, cotton and grain sorghum, and suggest adaptation strategies using the Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model. The DSSAT model was calibrated and evaluated using data from the long-term cotton-sorghum rotation experiments conducted at Helms Farm near Halfway in the THP. After achieving a satisfactory calibration for crop yield (RMSE MACA) projected future climate datasets from nine CMIP5 global climate models (GCMs) and two representative concentration pathways (RCP 4.5 and 8.5) were used in this study. Preliminary results indicated a reduction in irrigated grain sorghum yield per hectare by 6% and 8%, and a reduction in dryland sorghum yield per hectare by 9% and 17% under RCP 4.5 and RCP 8.5 scenarios, respectively. Grain sorghum future water use declined by about 2% and 5% under RCP 4.5 and RCP 8.5, respectively. Climate change impacts on cotton production and evaluation of several adaptation strategies such as incorporating heat and drought tolerances in cultivars, early planting, shifting to short season varieties, and deficit irrigation are currently being studied.

  13. Effects of projected climate (2011–50) on karst hydrology and species vulnerability—Edwards aquifer, south-central Texas, and Madison aquifer, western South Dakota

    Science.gov (United States)

    Mahler, Barbara J.; Stamm, John F.; Poteet, Mary F.; Symstad, Amy J.; Musgrove, MaryLynn; Long, Andrew J.; Norton, Parker A.

    2015-12-22

    Karst aquifers—formed by the dissolution of soluble rocks such as limestone—are critical groundwater resources in North America, and karst springs, caves, and streams provide habitat for unique flora and fauna. Springflow and groundwater levels in karst terrane can change greatly over short time scales, and therefore are likely to respond rapidly to climate change. How might the biological communities and ecosystems associated with karst respond to climate change and accompanying changes in groundwater levels and springflow? Sites in two central U.S. regions—the Balcones Escarpment of south-central Texas and the Black Hills of western South Dakota (fig. 1)—were selected to study climate change and its potential effects on the local karst hydrology and ecosystem. The ecosystems associated with the Edwards aquifer (Balcones Escarpment region) and Madison aquifer (Black Hills region) support federally listed endangered and threatened species and numerous State-listed species of concern, including amphibians, birds, insects, and plants. Full results are provided in Stamm and others (2014), and are summarized in this fact sheet.

  14. Contaminant transport in the Snake River Plain Aquifer: Phase 1, Part 1: Simple analytical model of individual plumes

    International Nuclear Information System (INIS)

    Rood, A.S.; Arnett, R.C.; Barraclough, J.T.

    1989-05-01

    A preliminary, semi-quantitative assessment of the migration of INEL effluents in the Snake River Plain Aquifer (SRPA) was performed. This study focused on past tritium, 129 I, and 90 Sr effluents from the Idaho Chemical Processing Plant (ICPP) and Test Reactor Area (TRA) and carbon tetrachloride from the Radioactive Waste Management Complex (RWMC). The disposal ponds at TRA and the ICPP injection well were the primary means of liquid radioactive waste discharge from the ICPP and TRA. Drums containing solidified chlorinated solvents disposed of at the RWMC were the primary source of carbon tetrachloride. Water samples taken from wells located in the SRPA show detectable quantities of the four contaminants. The predicted radionuclide concentrations exceed drinking water limits in limited areas within the INEL boundaries. Without planned remedial action, carbon tetrachloride is predicted to exceed drinking water limits beyond the site boundaries near the middle of the next century. 16 refs., 23 figs., 3 tabs

  15. Groundwater-quality data from the eastern Snake River Plain Aquifer, Jerome and Gooding Counties, south-central Idaho, 2017

    Science.gov (United States)

    Skinner, Kenneth D.

    2018-05-11

    Groundwater-quality samples and water-level data were collected from 36 wells in the Jerome/Gooding County area of the eastern Snake River Plain aquifer during June 2017. The wells included 30 wells sampled for the U.S. Geological Survey’s National Water-Quality Assessment project, plus an additional 6 wells were selected to increase spatial distribution. The data provide water managers with the ability for an improved understanding of groundwater quality and flow directions in the area. Groundwater-quality samples were analyzed for nutrients, major ions, trace elements, and stable isotopes of water. Quality-assurance and quality-control measures consisted of multiple blank samples and a sequential replicate sample. All data are available online at the USGS National Water Information System.

  16. Multi-approach assessment of the spatial distribution of the specific yield: application to the Crau plain aquifer, France

    Science.gov (United States)

    Seraphin, Pierre; Gonçalvès, Julio; Vallet-Coulomb, Christine; Champollion, Cédric

    2018-03-01

    Spatially distributed values of the specific yield, a fundamental parameter for transient groundwater mass balance calculations, were obtained by means of three independent methods for the Crau plain, France. In contrast to its traditional use to assess recharge based on a given specific yield, the water-table fluctuation (WTF) method, applied using major recharging events, gave a first set of reference values. Then, large infiltration processes recorded by monitored boreholes and caused by major precipitation events were interpreted in terms of specific yield by means of a one-dimensional vertical numerical model solving Richards' equations within the unsaturated zone. Finally, two gravity field campaigns, at low and high piezometric levels, were carried out to assess the groundwater mass variation and thus alternative specific yield values. The range obtained by the WTF method for this aquifer made of alluvial detrital material was 2.9- 26%, in line with the scarce data available so far. The average spatial value of specific yield by the WTF method (9.1%) is consistent with the aquifer scale value from the hydro-gravimetric approach. In this investigation, an estimate of the hitherto unknown spatial distribution of the specific yield over the Crau plain was obtained using the most reliable method (the WTF method). A groundwater mass balance calculation over the domain using this distribution yielded similar results to an independent quantification based on a stable isotope-mixing model. This agreement reinforces the relevance of such estimates, which can be used to build a more accurate transient hydrogeological model.

  17. Assessing the vulnerability of public-supply wells to contamination—Edwards aquifer near San Antonio, Texas

    Science.gov (United States)

    Jagucki, Martha L.; Musgrove, MaryLynn; Lindgren, Richard J.; Fahlquist, Lynne; Eberts, Sandra M.

    2011-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well field in San Antonio, Texas. The well field consists of six production wells that tap the Edwards aquifer. Typically, one or two wells are pumped at a time, yielding an average total of 20-21 million gallons per day. Water samples were collected from public-supply wells in the well field and from monitoring wells installed along general directions of flow to the well field. Samples from the well field contained some constituents of concern for drinking-water quality, including nitrate; the pesticide compounds atrazine, deethylatrazine, and simazine; and the volatile organic compounds tetrachloroethene (also called perchloroethene, or PCE), chloroform, bromoform, and dibromochloromethane. These constituents were detected in untreated water at concentrations much less than established drinking-water standards, where such standards exist. Overall, the study findings point to four primary factors that affect the movement and fate of contaminants and the vulnerability of the public-supply well field in San Antonio, Texas: (1) groundwater age (how long ago water entered, or recharged, the aquifer), (2) fast pathways for flow of groundwater through features formed or enlarged by dissolution of bedrock, (3) recharge characteristics of the aquifer, and (4) natural geochemical processes within the aquifer. A computer-model simulation of groundwater flow and transport was used to estimate the traveltime (or age) of water particles entering public-supply well W4 in the well field. Modeled findings show that almost half of the water reaching the public-supply well is less than 2 years old. Such a large percentage of very young water indicates that (1) contaminants entering the aquifer may be transported rapidly to the well, (2) there is limited time for chemical reactions to occur in the aquifer that may attenuate contaminants, and (3) should recharge water become contaminated with

  18. Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110

    Science.gov (United States)

    Peak groundwater depletion from overtapping aquifers beyond recharge rates occurs as the depletion rate increases until a peak occurs followed by a decreasing trend as pumping equilibrates towards available recharge. The logistic equation of Hubbert’s study of peak oil is used to project measurement...

  19. A conceptual framework and monitoring strategy for movement of saltwater in the coastal plain aquifer system of Virginia

    Science.gov (United States)

    Mcfarland, E. Randolph

    2015-09-04

    A conceptual framework synthesizes previous studies to provide an understanding of conditions, processes, and relations of saltwater to groundwater withdrawal in the Virginia Coastal Plain aquifer system. A strategy for monitoring saltwater movement is based on spatial relations between the saltwater-transition zone and 612 groundwater-production wells that were regulated during 2013 by the Virginia Department of Environmental Quality. The vertical position and lateral distance and direction of the bottom of each production well’s screened interval was calculated relative to previously published groundwater chloride iso-concentration surfaces. Spatial analysis identified 81 production wells completed in the Yorktown-Eastover and Potomac aquifers that are positioned in closest proximity to the 250-milligrams-per-liter chloride surface, and from which chloride concentrations are most likely to increase above the U.S. Environmental Protection Agency’s 250-milligrams-per-liter secondary maximum-contaminant level. Observation wells are specified to distinguish vertical upconing from lateral intrusion among individual production wells. To monitor upconing, an observation well is to be collocated with each production well and completed at about the altitude of the 250-milligrams-per-liter chloride iso-concentration surface. To monitor lateral intrusion, a potential location of an observation well is projected from the bottom of each production well’s screened interval, in the lateral direction to the underlying chloride surface to a distance of 1 mile.

  20. Geophysical logging studies in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory: Wells 44, 45, and 46

    International Nuclear Information System (INIS)

    Morin, R.H.; Paillet, F.L.; Taylor, T.A.; Barrash, W.

    1993-01-01

    A geophysical logging program was undertaken to vertically profile changes in the hydrology and hydrochemistry of the Snake River Plain aquifer underlies the Idaho National Engineering Laboratory (INEL). Field investigations were concentrated within an area west of the Idaho Chemical Processing Plant (ICPP) in three wells that penetrated the upper 190 feet of the aquifer. The logs obtained in these wells consisted of temperature, caliper, nuclear (neutron porosity and gamma-gama density), natural gamma, borehole televiewer, gamma spectral, and thermal flowmeter (with and without pumping). The nuclear, caliper, and televiewer logs are used to delineate individual basalt flows or flow units and to recognize breaks between flows or flow units at interflow contact zones and sedimentary interbeds. The temperature logs and flowmeter measurements obtained under ambient hydraulic head conditions identified upward fluid-circulation patterns in the three wells. Gamma-spectral analyses performed at several depths in each well showed that the predominant source of gamma radiation in the formation at this site originates mainly from potassium ( 40 K). However, 137 Cesium was detected at 32 feet below land surface in well 45. An empirical investigation of the effect of source-receiver spacing on the response of the neutron-porosity logging tool was attempted in an effort to understand the conditions under which this tool might be applied to large-diameter boreholes in-unsaturated formations

  1. Evidence for thermal convection in the deep carbonate aquifer of the eastern sector of the Po Plain, Italy

    Science.gov (United States)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2013-05-01

    Temperatures recorded in wells as deep as 6 km drilled for hydrocarbon prospecting were used together with geological information to depict the thermal regime of the sedimentary sequence of the eastern sector of the Po Plain. After correction for drilling disturbance, temperature data were analyzed through an inversion technique based on a laterally constant thermal gradient model. The obtained thermal gradient is quite low within the deep carbonate unit (14 mK m- 1), while it is larger (53 mK m- 1) in the overlying impermeable formations. In the uppermost sedimentary layers, the thermal gradient is close to the regional average (21 mK m- 1). We argue that such a vertical change cannot be ascribed to thermal conductivity variation within the sedimentary sequence, but to deep groundwater flow. Since the hydrogeological characteristics (including litho-stratigraphic sequence and structural setting) hardly permit forced convection, we suggest that thermal convection might occur within the deep carbonate aquifer. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. It turned out that permeability required for convection to occur must be larger than 3 10- 15 m2. The average over-heat ratio is 0.45. The lateral variation of hydrothermal regime was tested by using temperature data representing the aquifer thermal conditions. We found that thermal convection might be more developed and variable at the Ferrara High and its surroundings, where widespread fracturing may have increased permeability.

  2. Groundwater conservation and monitoring activities in the middle Brenta River plain (Veneto Region, Northern Italy: preliminary results about aquifer recharge

    Directory of Open Access Journals (Sweden)

    Andrea Sottani

    2014-09-01

    Full Text Available In the middle Brenta River plain there is a unconfined aquifer that represents an important groundwater resource in Veneto region. In this area the main groundwater recharge factor is related to the stream seepage: the water dispersion from the Brenta river is active with variable intensity from the foothill to the alignment Nove di Bassano - Cartigliano (Province of Vicenza. In order to mitigate the expected groundwater effects, due to future important waterworks withdrawals provided by the regional water resources management plans, an experimental project of Managed Aquifer Recharge has started, by means of the realization of some river transversal ramps. The construction of pilot works, partially completed, were preceded by a specific hydrogeological monitoring program, aimed to the evaluation of the effectiveness of the MAR actions in terms of comparison between pre-and post-operam conditions. Thanks to the development of a site-specific methodology, aimed to the quantification of the artificial infiltration rate, and after some years of monitoring controls of the hydrological and hydrogeological regimes, it is now possible to evaluate the extent and the rate of the recharge effects in groundwater due to ramps realization. The monitoring plan will be continued in the medium-long term. Some innovative approaches, based for example on the use of groundwater temperature measurements as recharge tracer, will help to validate the preliminary results.

  3. Evaluation of Stakeholder-Driven Groundwater Management through Integrated Modeling and Remote Sensing in the US High Plains Aquifer

    Science.gov (United States)

    Deines, J. M.; Kendall, A. D.; Butler, J. J., Jr.; Hyndman, D. W.

    2017-12-01

    Irrigation greatly enhances agricultural yields and stabilizes farmer incomes, but overexploitation of water resources has depleted groundwater aquifers around the globe. In much of the High Plains Aquifer (HPA) in the United States, water-level declines threaten the continued viability of agricultural operations reliant on irrigation. Policy and management institutions to address this sustainability challenge differ widely across the HPA and the world. In Kansas, grassroots-driven legislation in 2012 allowed local stakeholder groups to establish Local Enhanced Management Areas (LEMAs) and work with state officials to generate enforceable and monitored water use reduction programs. The pioneering LEMA was formed in 2013, following a popular vote by farmers within a 256 km2 region in northwestern Kansas. The group sought to reduce groundwater pumping by 20% through 2017 in order to stabilize water levels while minimally reducing crop productivity. Initial statistical estimates indicate the LEMA has been successful; planning is underway to extend it for five years (2018-2022) and to implement additional LEMAs in the wider groundwater management district. Here, we assess the efficacy of this first LEMA with coupled crop-hydrology models to quantify water budget impacts and any associated trade-offs in crop productivity. We drive these models with a novel data fusion of water use data and our recent remotely sensed Annual Irrigation Maps (AIM) dataset, allowing detailed tracking of irrigation water in space and time. Results from these process-based models provide detailed insights into changes in the physical system resulting from the LEMA program that can inform future stakeholder-driven management in Kansas and in stressed aquifers around the world.

  4. Aquifers

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons....

  5. The discovery and character of Pleistocene calcrete uranium deposits in the Southern High Plains of west Texas, United States

    Science.gov (United States)

    Van Gosen, Bradley S.; Hall, Susan M.

    2017-12-18

    This report describes the discovery and geology of two near-surface uranium deposits within calcareous lacustrine strata of Pleistocene age in west Texas, United States. Calcrete uranium deposits have not been previously reported in the United States. The west Texas uranium deposits share characteristics with some calcrete uranium deposits in Western Australia—uranium-vanadium minerals hosted by nonpedogenic calcretes deposited in saline lacustrine environments.In the mid-1970s, Kerr-McGee Corporation conducted a regional uranium exploration program in the Southern High Plains province of the United States, which led to the discovery of two shallow uranium deposits (that were not publicly reported). With extensive drilling, Kerr-McGee delineated one deposit of about 2.1 million metric tons of ore with an average grade of 0.037 percent U3O8 and another deposit of about 0.93 million metric tons of ore averaging 0.047 percent U3O8.The west-Texas calcrete uranium-vanadium deposits occur in calcareous, fine-grained sediments interpreted to be deposited in saline lakes formed during dry interglacial periods of the Pleistocene. The lakes were associated with drainages upstream of a large Pleistocene lake. Age determinations of tephra in strata adjacent to one deposit indicate the host strata is middle Pleistocene in age.Examination of the uranium-vanadium mineralization by scanning-electron microscopy indicated at least two generations of uranium-vanadium deposition in the lacustrine strata identified as carnotite and a strontium-uranium-vanadium mineral. Preliminary uranium-series results indicate a two-component system in the host calcrete, with early lacustrine carbonate that was deposited (or recrystallized) about 190 kilo-annum, followed much later by carnotite-rich crusts and strontium-uranium-vanadium mineralization in the Holocene (about 5 kilo-annum). Differences in initial 234U/238U activity ratios indicate two separate, distinct fluid sources.

  6. Stream and Aquifer Biology of South-Central Texas - A Literature Review, 1973-97

    National Research Council Canada - National Science Library

    Ourso, Robert T; Hornig, C. E

    2000-01-01

    This report summarizes in table format 32 aquatic vertebrate (primarily fish), 54 aquatic invertebrate, and 13 aquatic plant studies available for the area of the South-Central Texas study unit of the U.S...

  7. Pollutant sources in an arsenic-affected multilayer aquifer in the Po Plain of Italy: Implications for drinking-water supply.

    Science.gov (United States)

    Rotiroti, Marco; McArthur, John; Fumagalli, Letizia; Stefania, Gennaro A; Sacchi, Elisa; Bonomi, Tullia

    2017-02-01

    In aquifers 160 to 260m deep that used for public water-supply in an area ~150km 2 around the town of Cremona, in the Po Plain of Northern Italy, concentrations of arsenic (As) are increasing with time in some wells. The increase is due to drawdown of As-polluted groundwater (As ≤144μg/L) from overlying aquifers at depths 65 to 150m deep in response to large-scale abstraction for public supply. The increase in As threatens drinking-water quality locally, and by inference does so across the entire Po Plain, where natural As-pollution of groundwater (As >10μg/L) is a basin-wide problem. Using new and legacy data for Cl/Br, δ 18 O/δ 2 H and other hydrochemical parameters with groundwater from 32 wells, 9 surface waters, a sewage outfall and rainwater, we show that the deep aquifer (160-260m below ground level), which is tapped widely for public water-supply, is partly recharged by seepage from overlying aquifers (65-150m below ground level). Groundwater quality in deep aquifers appears free of anthropogenic influences and typically water in some, not all, areas are affected by anthropogenic contamination and natural As-pollution (As >10μg/L). Outfalls from sewage-treatment plants and black water from septic tanks firstly affect surface waters, which then locally infiltrate shallow aquifers under high channel-stages. Wastewater permeating shallow aquifers carries with it NO 3 and SO 4 which suppress reduction of iron oxyhydroxides in the aquifer sediments and so suppress the natural release of As to groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Water-level altitudes 2009 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973-2008 in the Chicot and Evangeline Aquifers, Houston-Galveston Region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Houston, Natalie A.; Ramage, Jason K.

    2009-01-01

    This report, done in cooperation with the Harris-Galveston Subsidence District, the City of Houston, the Fort Bend Subsidence District, and the Lone Star Groundwater Conservation District, is one in an annual series of reports that depicts water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers, and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region, Texas. The report (excluding appendixes) contains 16 sheets and 15 tables: 3 sheets are maps showing current-year (2009) water-level altitudes for each aquifer, respectively; 3 sheets are maps showing 1-year (2008-09) water-level changes for each aquifer, respectively; 3 sheets are maps showing 5-year (2004-09) water-level changes for each aquifer, respectively; 4 sheets are maps showing long-term (1990-2009 and 1977-2009) water-level changes for the Chicot and Evangeline aquifers, respectively; 1 sheet is a map showing long-term (2000-2009) water-level change for the Jasper aquifer; 1 sheet is a map showing site locations of borehole extensometers; and 1 sheet comprises graphs showing measured compaction of subsurface material at the sites from 1973 or later through 2008, respectively. Tables listing the data used to construct the aquifer-data maps and the compaction graphs are included.

  9. Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: A multi-isotope approach and geochemical modeling

    International Nuclear Information System (INIS)

    Carucci, Valentina; Petitta, Marco; Aravena, Ramon

    2012-01-01

    In the Tivoli Plain (Rome, Central Italy) the interaction between shallow and deep groundwater flow systems enhanced by groundwater extraction has been investigated using isotopic and chemical tracers. A conceptual model of the groundwater flowpaths has been developed and verified by geochemical modeling. A combined hydrogeochemical and isotopic investigation using ion relationships such as DIC/Cl − , Ca/(Ca + Mg)/SO 4 /(SO 4 + HCO 3 ), and environmental isotopes (δ 18 O, δ 2 H, 87 Sr/ 86 Sr, δ 34 S and δ 13 C) was carried out in order to determine the sources of recharge of the aquifer, the origin of solutes and the mixing processes in groundwater of Tivoli Plain. Multivariate statistical methods such as principal component analysis and Cluster analyses have confirmed the existence of different geochemical facies and the role of mixing in the chemical composition of the groundwater. Results indicate that the hydrochemistry of groundwater is characterized by mixing between end-members coming directly from carbonate recharge areas and to groundwater circulating in a deeply buried Meso-Cenozoic carbonate sequence. The travertine aquifer is fed by both flow systems, but a local contribution by direct input in the Plain has also been recognized. The stable isotope data ( 18 O, 2 H, 13 C and 34 S) supports the flow system conceptual model inferred from the geochemical data and represents key data to quantify the geochemical mixing in the different groundwaters of the Plain. The results of numerical modeling (PHREEQC) are consistent with the flowpaths derived from the hydrogeochemical conceptual model. The inverse models performed generated the main geochemical processes occurring in the groundwater flow system, which also included mixing. Geochemical and isotope modeling demonstrate an increasing influence of groundwater from the deeply buried aquifer in the travertine aquifer, enhanced by lowering of the travertine aquifer water table due to quarry pumping.

  10. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran.

    Science.gov (United States)

    Baghapour, Mohammad Ali; Fadaei Nobandegani, Amir; Talebbeydokhti, Nasser; Bagherzadeh, Somayeh; Nadiri, Ata Allah; Gharekhani, Maryam; Chitsazan, Nima

    2016-01-01

    Extensive human activities and unplanned land uses have put groundwater resources of Shiraz plain at a high risk of nitrate pollution, causing several environmental and human health issues. To address these issues, water resources managers utilize groundwater vulnerability assessment and determination of protection. This study aimed to prepare the vulnerability maps of Shiraz aquifer by using Composite DRASTIC index, Nitrate Vulnerability index, and artificial neural network and also to compare their efficiency. The parameters of the indexes that were employed in this study are: depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone, hydraulic conductivity, and land use. These parameters were rated, weighted, and integrated using GIS, and then, used to develop the risk maps of Shiraz aquifer. The results indicated that the southeastern part of the aquifer was at the highest potential risk. Given the distribution of groundwater nitrate concentrations from the wells in the underlying aquifer, the artificial neural network model offered greater accuracy compared to the other two indexes. The study concluded that the artificial neural network model is an effective model to improve the DRASTIC index and provides a confident estimate of the pollution risk. As intensive agricultural activities are the dominant land use and water table is shallow in the vulnerable zones, optimized irrigation techniques and a lower rate of fertilizers are suggested. The findings of our study could be used as a scientific basis in future for sustainable groundwater management in Shiraz plain.

  11. Iodine-129 in the eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho, 2010-12

    Science.gov (United States)

    Bartholomay, Roy C.

    2013-01-01

    From 1953 to 1988, approximately 0.941 curies of iodine-129 (129I) were contained in wastewater generated at the Idaho National Laboratory (INL) with almost all of this wastewater discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC). Most of the wastewater containing 129I was discharged directly into the eastern Snake River Plain (ESRP) aquifer through a deep disposal well until 1984; lesser quantities also were discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. During 2010–12, the U.S. Geological Survey in cooperation with the U.S. Department of Energy collected groundwater samples for 129I from 62 wells in the ESRP aquifer to track concentration trends and changes for the carcinogenic radionuclide that has a 15.7 million-year half-life. Concentrations of 129I in the aquifer ranged from 0.0000013±0.0000005 to 1.02±0.04 picocuries per liter (pCi/L), and generally decreased in wells near the INTEC, relative to previous sampling events. The average concentration of 129I in groundwater from 15 wells sampled during four different sample periods decreased from 1.15 pCi/L in 1990–91 to 0.173 pCi/L in 2011–12. All but two wells within a 3-mile radius of the INTEC showed decreases in concentration, and all but one sample had concentrations less than the U.S. Environmental Protection Agency maximum contaminant level of 1 pCi/L. These decreases are attributed to the discontinuation of disposal of 129I in wastewater and to dilution and dispersion in the aquifer. The decreases in 129I concentrations, in areas around INTEC where concentrations increased between 2003 and 2007, were attributed to less recharge near INTEC either from less flow in the Big Lost River or from less local snowmelt and anthropogenic sources. Although wells near INTEC sampled in 2011–12 showed decreases in 129I concentrations compared with previously collected data, some wells south and east of the Central Facilities Area

  12. Geodatabase and characteristics of springs within and surrounding the Trinity aquifer outcrops in northern Bexar County, Texas, 2010--11

    Science.gov (United States)

    Clark, Allan K.; Pedraza, Diana E.; Morris, Robert R.; Garcia, Travis J.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Trinity Glen Rose Groundwater Conservation District, the Edwards Aquifer Authority, and the San Antonio River Authority, developed a geodatabase of springs within and surrounding the Trinity aquifer outcrops in a 331-square-mile study area in northern Bexar County, Texas. The data used to develop the geodatabase were compiled from existing reports and databases, along with spring data collected between October 2010 and September 2011. Characteristics including the location, discharge, and water-quality properties were collected for known springs and documented in the geodatabase. A total of 141 springs were located within the study area, and 46 springs were field verified. The discharge at springs with flow ranged from 0.003 to 1.46 cubic feet per second. The specific conductance of the water discharging from the springs ranged from 167 to 1,130 microsiemens per centimeter at 25 degrees Celsius with a majority of values in the range of 500 microsiemens per centimeter at 25 degrees Celsius.

  13. Quality of groundwater at and near an aquifer storage and recovery site, Bexar, Atascosa, and Wilson Counties, Texas, June 2004-August 2008

    Science.gov (United States)

    Otero, Cassi L.; Petri, Brian L.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, did a study during 2004-08 to characterize the quality of native groundwater from the Edwards aquifer and pre- and post-injection water from the Carrizo aquifer at and near an aquifer storage and recovery (ASR) site in Bexar, Atascosa, and Wilson Counties, Texas. Groundwater samples were collected and analyzed for selected physical properties and constituents to characterize the quality of native groundwater from the Edwards aquifer and pre- and post-injection water from the Carrizo aquifer at and near the ASR site. Geochemical and isotope data indicated no substantial changes in major-ion, trace-element, and isotope chemistry occurred as the water from the Edwards aquifer was transferred through a 38-mile pipeline to the aquifer storage and recovery site. The samples collected from the four ASR recovery wells were similar in major-ion and stable isotope chemistry compared to the samples collected from the Edwards aquifer source wells and the ASR injection well. The similarity could indicate that as Edwards aquifer water was injected, it displaced native Carrizo aquifer water, or, alternatively, if mixing of Edwards and Carrizo aquifer waters was occurring, the major-ion and stable isotope signatures for the Carrizo aquifer water might have been obscured by the signatures of the injected Edwards aquifer water. Differences in the dissolved iron and dissolved manganese concentrations indicate that either minor amounts of mixing occurred between the waters from the two aquifers, or as Edwards aquifer water displaced Carrizo aquifer water it dissolved the iron and manganese directly from the Carrizo Sand. Concentrations of radium-226 in the samples collected at the ASR recovery wells were smaller than the concentrations in samples collected from the Edwards aquifer source wells and from the ASR injection well. The smaller radium-226 concentrations in the samples collected from the ASR

  14. Land Use Management by Assessing Aquifer Vulnerability in Khovayes Plain Using the DRASTIC and SINTACS Models

    Directory of Open Access Journals (Sweden)

    Fatemeh Mousavi

    2016-07-01

    Full Text Available Land use change is a gradual process that entails dire consequences for groundwater quality and quantity. Quantitative changes in groundwater can be usually monitored by controlling the annual groundwater balance. Monitoring qualitative changes in groundwater, however, is both time-consuming and expensive. DRASTIC and SINTACS models exploit aquifer properties to predict its vulnerability. In this study, aquifer vulnerability assessment was performed by the DRASTIC & SINTACS models for future land use management in Khovayes, southwest Iran. The DRASTIC Model is based on hydrological and hydrogeological parameters involved in contaminant transport. SINTACS parameters are the same as those of the DRASTIC model, except that weighting and ranking the parameters are more flexible. Once vulnerability maps of the study region had been prepared, they were verified against the nitrate map. A correlation coefficient of 0.4 was obtained between the DRASTIC map and the nitrate one while the correlation between the SINTACS and the nitrate maps was found to be 0.8. Map removal and single-parameter sensitivity analyses were carried out, which showed the southwestern stretches of the study area as the region with the highest risk of vulnerability.

  15. D.C. resistivity investigation to identify pathways for infiltration through playa lake in the High Plains of Texas

    Science.gov (United States)

    Abila, H.; Gurrola, H.; Fernandez, A.; Taylor, T. L.; Gonzalez, I.; Duron, Z. W.; Garza, J.; Ortega, J.

    2017-12-01

    Playa lakes an important resource for the recharge of the Ogallala aquifer but we do not fully understand how water passes through these features. This is in part because playas can be very different in their ability to retain water. To help develop a better understanding of these playa lakes the geophysics class at Texas Tech University conducted a geophysical investigation (including seismic and conductivity measurements as well as soil sampling) of a playa lake that is a short distance north of Lubbock, Texas. This playa lake is compartmentalized and appears to be two small playas in close proximity. The wester of the two playa retains water better than does the eastern playa. The primary goal is to find geophysical anomalies beneath playas to identify "the wet spots" that may shed light as to the pathways for infiltration. This abstract reports on the results of the dipole-dipole D.C.-resistivity component of the investigation. Resistivity was collected using several 9 volt batteries connected in series with a switch box and hand held multimeters to collect current and voltage data. Pseudosections produced before the rainy season began showed a conductive body the match the distribution of the clay rich floor of the Playa. We believe this clay rich player was about 1 to 1.5 meters thick based on sharp increase in the conductivity at that depth interval that was flat across the entire playa. Pseudosections produced from data collected after rain storms showed that this conductive layer increased in depth by up to 1 meter and there appears to be vertical conductive anomalies through the playa floor that may indicate infiltration pathways through the clay floor of the playa.

  16. Groundwater overexploitation: why is the red flag waved? Case study on the Kairouan plain aquifer (central Tunisia)

    Science.gov (United States)

    Massuel, Sylvain; Riaux, Jeanne

    2017-09-01

    In many parts of the world, groundwater users regularly face serious resource-depletion threat. At the same time, "groundwater overexploitation" is massively cited when discussing groundwater management problems. A kind of standard definition tends to relegate groundwater overexploitation only as a matter of inputs and outputs. However, a thorough state-of-the-art analysis shows that groundwater overexploitation is not only a matter of hydrogeology but also a qualification of exploitation based on political, social, technical, economic or environmental criteria. Thus, an aquifer with no threat to groundwater storage can rightly be considered as overexploited because of many other prejudicial aspects. So, why is groundwater overexploitation so frequently only associated with resource-depletion threat and so rarely related to other prejudicial aspects? In that case, what really lies behind the use of the overexploitation concept? The case of the Kairouan plain aquifer in central Tunisia was used to analyze the way that the overexploitation message emerges in a given context, how groundwater-use stakeholders (farmers, management agencies and scientists) each qualify the problem in their own way, and how they see themselves with regard to the concept of overexploitation. The analysis shows that focusing messages on overexploitation conceals the problems encountered by the various stakeholders: difficulties accessing water, problems for the authorities in controlling the territory and individual practices, and complications for scientists when qualifying hydrological situations. The solutions put forward to manage overexploitation are at odds with the problems that arise locally, triggering tensions and leading to misunderstandings between the parties involved.

  17. Hydrochemistry and isotope geochemistry as management tools for groundwater resources in multilayer aquifers: A study case from the Po plain (Lomellina, South-Western Lombardy, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Pilla, G; Sacchi, E; Ciancetti, G; Braga, G [Dipartimento di Scienze della Terra, Universita di Pavia, Pavia (Italy); Zuppi, G M [Dipartimento di Scienze Ambientali, Universita Ca' Foscari di Venezia, Venice (Italy)

    2003-07-01

    Full text: The Po plain, located in Northern Italy, hosts a multi-layer alluvial aquifer of Quaternary age constituted by sands interbedded with clays. The plain supports most of the agricultural and industrial activities of Northern Italy, which are associated with groundwater pollution in the shallower portions of the aquifer. The increasing demand of water for industrial and domestic use has led to the exploitation of deeper layers of the aquifer, without a rational management of the resource. Only in the last decade, the government agencies have started a global evaluation of the quality standards of pumped groundwater, urged by the increasing need for clean water for domestic use. The task is particularly difficult because of missing or approximate well logs and the presence of multi-filter wells tapping in different aquifers. In this case the chemical and isotopic characterisation of groundwaters is the only reliable tool to reconstruct the geometry, the interconnections and the characteristics of the aquifers. This study, promoted by the local agency for groundwater management and protection (Amministrazione Provinciale di Pavia, settore tutela e valorizzazione ambientale - U.O.C. Acqua) focused on a limited portion of the Po plain, the Lomellina region, of approximately 900 km{sup 2}. The region is bound to the South by the Po river, to the East and West by the Sesia and the Ticino rivers respectively, and to the North by the administrative boundary. The study aimed at the hydrogeological, hydrochemical and isotopic characterisation of the aquifers, allowing to serve as basis for the correct management of the groundwater resource. A preliminary reconstruction of the hydrogeological asset of the Lomellina plain was performed through the analysis of the stratigraphic data from 102 municipal wells. On this basis, a shallow phreatic aquifer, reaching depths of about 50-60 m from the surface, and two groups of aquifers containing confined groundwater, were

  18. Water-level altitudes 2014 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2013 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2014-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained clay and silt layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate 2014 water-level altitudes (represented by measurements made during December 2013–March 2014) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2013–14) water-level changes for each aquifer; maps depicting contoured 5-year (2009–14) water-level changes for each aquifer; maps depicting contoured long-term (1990–2014 and 1977–2014) water-level changes for the Chicot and Evangeline aquifers; a map depicting contoured long-term (2000–14) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2013. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  19. Water-level altitudes 2015 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2014 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.; Houston, Natalie A.; Johnson, Michaela R.; Schmidt, Tiffany S.

    2015-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2015 water-level altitudes (represented by measurements made during December 2014–March 2015) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2014–15) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2010–15) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2015 and 1977–2015) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–15) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2014. Three tables listing the water-level data used to construct each water-level map for each aquifer and a table listing the measured cumulative compaction data for each extensometer site and graphs are included.

  20. Water-level altitudes 2013 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973--2012 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2013-01-01

    Most of the subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction mostly in the clay and silt layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate water-level altitudes for 2013 (represented by measurements made during December 2012-February 2013) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2012-13) water-level changes for each aquifer; maps depicting 5-year (2008--13) water-level changes for each aquifer; maps depicting long-term (1990-2013 and 1977-2013) water-level changes for the Chicot and Evangeline aquifers; a map depicting long-term (2000-13) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured compaction of subsurface sediments at the extensometers during 1973-2012. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  1. Water-level altitudes 2012 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2011 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2012-01-01

    Most of the subsidence in the Houston–Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers and caused compaction of the clay layers of the aquifer sediments. This report—prepared by the U.S. Geological Survey in cooperation with the Harris– Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District—is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing approximate water-level altitudes for 2012 (calculated from measurements of water levels in wells made during December 2011–February 2012) for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2011–12) water-level-altitude changes for each aquifer; maps showing 5-year (2007–12) water-levelaltitude changes for each aquifer; maps showing long-term (1990–2012 and 1977–2012) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–12) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface sediments at the extensometers from 1973 (or later) through 2011. Tables listing the data that were used to construct each water-level map for each aquifer and the cumulative compaction graphs are included.

  2. Investigation of aquifer-system compaction in the Hueco basin, El Paso, Texas, USA

    Science.gov (United States)

    Heywood, Charles

    1995-01-01

    The Pleistocene geologic history of the Rio Grande valley in the Hueco basin included a cycle of sediment erosion and re-aggradation, resulting in unconformable stratification of sediment of contrasting compressibility and stress history. Since the 1950s large groundwater withdrawals have resulted in significant water-level declines and associated land subsidence. Knowledge of the magnitude and variation of specific storage is needed for developing predictive models of subsidence and groundwater flow simulations. Analyses of piezometric and extensometric data in the form of stress-strain diagrams from a 16 month period yield in situ measurements of aquifer-system compressibility across two discrete aquifer intervals. The linear elastic behaviour of the deeper interval indicates over-consolidation of basin deposits, probably resulting from deeper burial depth before the middle Pleistocene. By contrast, the shallow aquifer system displays an inelastic component, suggesting pre-consolidation stress not significantly greater than current effective stress levels for a sequence of late Pleistocene clay. Harmonic analyses of the piezometric response to earth tides in two water-level piezometers provide an independent estimate of specific storage of aquifer sands.

  3. Nesting ecology and nest survival of lesser prairie-chickens on the Southern High Plains of Texas

    Science.gov (United States)

    Grisham, Blake A.; Borsdorf, Philip K.; Boal, Clint W.; Boydston, Kathy K.

    2014-01-01

    The decline in population and range of lesser prairie-chickens (Tympanuchus pallidicinctus) throughout the central and southern Great Plains has raised concerns considering their candidate status under the United States Endangered Species Act. Baseline ecological data for lesser prairie-chickens are limited, especially for the shinnery oak-grassland communities of Texas. This information is imperative because lesser prairie-chickens in shinnery oak grasslands occur at the extreme southwestern edge of their distribution. This geographic region is characterized by hot, arid climates, less fragmentation, and less anthropogenic development than within the remaining core distribution of the species. Thus, large expanses of open rangeland with less anthropogenic development and a climate that is classified as extreme for ground nesting birds may subsequently influence nest ecology, nest survival, and nest site selection differently compared to the rest of the distribution of the species. We investigated the nesting ecology of 50 radio-tagged lesser prairie-chicken hens from 2008 to 2011 in the shinnery oak-grassland communities in west Texas and found a substantial amount of inter-annual variation in incubation start date and percent of females incubating nests. Prairie-chickens were less likely to nest near unimproved roads and utility poles and in areas with more bare ground and litter. In contrast, hens selected areas dominated by grasses and shrubs and close to stock tanks to nest. Candidate models including visual obstruction best explained daily nest survival; a 5% increase in visual obstruction improved nest survival probability by 10%. The model-averaged probability of a nest surviving the incubation period was 0.43 (SE = 0.006; 95% CI: 0.23, 0.56). Our findings indicate that lesser prairie-chicken reproduction during our study period was dynamic and was correlated with seasonal weather patterns that ultimately promoted greater grass growth earlier in the

  4. Glacial vs. Interglacial Period Contrasts in Midlatitude Fluvial Systems, with Examples from Western Europe and the Texas Coastal Plain

    Science.gov (United States)

    Blum, M.

    2001-12-01

    Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but

  5. Hydrogeology and geochemistry of aquifers underlying the San Lorenzo and San Leandro areas of the East Bay Plain, Alameda County, California

    Science.gov (United States)

    Izbicki, John A.; Borchers, James W.; Leighton, David A.; Kulongoski, Justin T.; Fields, Latoya; Galloway, Devin L.; Michel, Robert L.

    2003-01-01

    The East Bay Plain, on the densely populated eastern shore of San Francisco Bay, contains an upper aquifer system to depths of 250 feet below land surface and an underlying lower aquifer system to depths of more than 650 feet. Injection and recovery of imported water has been proposed for deep aquifers at two sites within the lower aquifer system. Successful operation requires that the injected water be isolated from surface sources of poor-quality water during storage and recovery. Hydraulic, geochemical, and isotopic data were used to evaluate the isolation of deeper aquifers. Ground-water responses to tidal changes in the Bay suggest that thick clay layers present within these deposits effectively isolate the deeper aquifers in the northern part of the study area from overlying surficial deposits. These data also suggest that the areal extent of the shallow and deep aquifers beneath the Bay may be limited in the northern part of the study area. Despite its apparent hydraulic isolation, the lower aquifer system may be connected to the overlying upper aquifer system through the corroded and failed casings of abandoned wells. Water-level measurements in observation wells and downward flow measured in selected wells during nonpumped conditions suggest that water may flow through wells from the upper aquifer system into the lower aquifer system during nonpumped conditions. The chemistry of water from wells in the East Bay Plain ranges from fresh to saline; salinity is greater than seawater in shallow estuarine deposits near the Bay. Water from wells completed in the lower aquifer system has higher pH, higher sodium, chloride, and manganese concentrations, and lower calcium concentrations and alkalinity than does water from wells completed in the overlying upper aquifer system. Ground-water recharge temperatures derived from noble-gas data indicate that highly focused recharge processes from infiltration of winter streamflow and more diffuse recharge processes from

  6. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2011-13

    Science.gov (United States)

    Twining, Brian V.; Fisher, Jason C.

    2015-01-01

    From 2011 to 2013, the U.S. Geological Survey’s Idaho National Laboratory (INL) Project Office, in cooperation with the U.S. Department of Energy, collected depth-discrete measurements of fluid pressure and temperature in 11 boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system (MLMS) consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers.

  7. Geochemistry of groundwater in the eastern Snake River Plain aquifer, Idaho National Laboratory and vicinity, eastern Idaho

    Science.gov (United States)

    Rattray, Gordon W.

    2018-05-30

    Nuclear research activities at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) in eastern Idaho produced radiochemical and chemical wastes that were discharged to the subsurface, resulting in detectable concentrations of some waste constituents in the eastern Snake River Plain (ESRP) aquifer. These waste constituents may pose risks to the water quality of the aquifer. In order to understand these risks to water quality the U.S. Geological Survey, in cooperation with the DOE, conducted a study of groundwater geochemistry to improve the understanding of hydrologic and chemical processes in the ESRP aquifer at and near the INL and to understand how these processes affect waste constituents in the aquifer.Geochemistry data were used to identify sources of recharge, mixing of water, and directions of groundwater flow in the ESRP aquifer at the INL. The geochemistry data were analyzed from 167 sample sites at and near the INL. The sites included 150 groundwater, 13 surface-water, and 4 geothermal-water sites. The data were collected between 1952 and 2012, although most data collected at the INL were collected from 1989 to 1996. Water samples were analyzed for all or most of the following: field parameters, dissolved gases, major ions, dissolved metals, isotope ratios, and environmental tracers.Sources of recharge identified at the INL were regional groundwater, groundwater from the Little Lost River (LLR) and Birch Creek (BC) valleys, groundwater from the Lost River Range, geothermal water, and surface water from the Big Lost River (BLR), LLR, and BC. Recharge from the BLR that may have occurred during the last glacial epoch, or paleorecharge, may be present at several wells in the southwestern part of the INL. Mixing of water at the INL primarily included mixing of surface water with groundwater from the tributary valleys and mixing of geothermal water with regional groundwater. Additionally, a zone of mixing between tributary valley water and

  8. Helicopter Electromagnetic and Magnetic Surveys of the Upper and Middle Zones of the Trinity Aquifer, Uvalde and Bexar Counties, Texas

    Science.gov (United States)

    Smith, D. V.; Blome, C. D.; Smith, B. D.; Clark, A. C.

    2009-12-01

    Detailed helicopter electromagnetic and magnetic surveys (HEM) were conducted in northern Uvalde and Bexar Counties, Texas, as part of a geologic mapping and hydrologic study being conducted by the U.S. Geological Survey (USGS). The aquifers of the Lower Cretaceous Trinity Group (collectively termed the Trinity aquifer) are an important regional water source in the Hill Country of south-central Texas. Rock units comprising the middle aquifer segment are represented by the lower member of the Glen Rose Formation and the Cow Creek Limestone and Hensel Sandstone members of the Pearsall Formation. The lower Trinity hydrologic segment is composed of the Hosston and Sligo Limestones and is confined by the overlying Hammet Shale. Karst features commonly occur in the Trinity Group because of the dissolution of gypsum- and anhydrite-rich beds. Faults and fractures have not been sufficiently analyzed to evaluate the effects these structures have on inter- and intra-formational groundwater flow. The survey in the north Seco Creek area covers the recharge zone of the Edwards aquifer and part of the catchment zone composed of the upper Trinity segment. These data augment the scant geologic mapping in the area by delineating faults, collapse features, and hydrostratigraphic units. The HEM survey in northern Bexar County covered the Camp Stanley Storage Activity, the Camp Bullis Training Site, parts of the recharge zone of the Edwards aquifer south of the military bases, and part of Cibolo Creek to the north. Basic line spacing was 200 meters using six frequencies. In-fill lines were flown with a spacing of 100 meters in the central part of the study area to better resolve geologic structures and karst features. The data processing took into account high EM interference and cultural noise. Apparent resistivity (ρa) maps are used in interpretation of geologic structures, trends, and in the identification of electrical properties of lithologic units. The ρa maps show the

  9. Linking Groundwater Use and Stress to Specific Crops Using the Groundwater Footprint in the Central Valley and High Plains Aquifer Systems, U.S.

    Science.gov (United States)

    Wada, Y.; Esnault, L.; Gleeson, T.; Heinke, J.; Gerten, D.; Flanary, E.; Bierkens, M. F.; Van Beek, L. P.

    2014-12-01

    A number of aquifers worldwide are being depleted, mainly by agricultural activities, yet groundwater stress has not been explicitly linked to specific agricultural crops. Using the newly-developed concept of the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services), we develop a methodology to derive crop-specific groundwater footprints. We illustrate this method by calculating high resolution groundwater footprint estimates of crops in two heavily used aquifer systems: the Central Valley and High Plains, U.S. In both aquifer systems, hay and haylage, corn and cotton have the largest groundwater footprints, which highlights that most of the groundwater stress is induced by crops meant for cattle feed. Our results are coherent with other studies in the High Plains but suggest lower groundwater stress in the Central Valley, likely due to artificial recharge from surface water diversions which were not taken into account in previous estimates. Uncertainties of recharge and irrigation application efficiency contribute the most to the total relative uncertainty of the groundwater footprint to aquifer area ratios. Our results and methodology will be useful for hydrologists, water resource managers, and policy makers concerned with which crops are causing the well-documented groundwater stress in semiarid to arid agricultural regions around the world.

  10. A comparative evaluation of conceptual models for the Snake River Plain aquifer at the Idaho Chemical Processing Plant, INEL

    International Nuclear Information System (INIS)

    Prahl, C.J.

    1992-01-01

    Geologic and hydrologic data collected by the United States Geological Survey (USGS) are used to evaluate the existing ground water monitoring well network completed in the upper portion of the Snake River Plain aquifer (SRPA) beneath the Idaho Chemical Processing Plant (ICPP). The USGS data analyzed and compared in this study include: (a) lithologic, geophysical, and stratigraphic information, including the conceptual geologic models intrawell, ground water flow measurement (Tracejector tests) and (c) dedicated, submersible, sampling group elevations. Qualitative evaluation of these data indicate that the upper portion of the SRPA is both heterogeneous and anisotropic at the scale of the ICPP monitoring well network. Tracejector test results indicate that the hydraulic interconnection and spatial configuration of water-producing zones is extremely complex within the upper portion of the SRPA. The majority of ICPP monitoring wells currently are equipped to sample ground water only the upper lithostratigraphic intervals of the SRPA, primarily basalt flow groups E, EF, and F. Depth-specific hydrogeochemical sampling and analysis are necessary to determine if ground water quality varies significantly between the various lithostratigraphic units adjacent to individual sampling pumps

  11. Groundwater quality of the Gulf Coast aquifer system, Houston, Texas, 2010

    Science.gov (United States)

    Oden, Jeannette H.; Brown, Dexter W.; Oden, Timothy D.

    2011-01-01

    During March–December 2010, the U.S. Geological Survey, in cooperation with the city of Houston, collected source-water samples from 60 municipal supply wells in the Houston area. These data were collected as part of an ongoing study to determine concentrations, spatial extent, and associated geochemical conditions that might be conducive for mobility and transport of selected naturally occurring contaminants (selected trace elements and radionuclides) in the Gulf Coast aquifer system in the Houston area. In the summers of 2007 and 2008, a reconnaissance-level survey of these constituents in untreated water from 28 municipal supply wells was completed in the Houston area. Included in this report are the complete analytical results for 47 of the 60 samples collected in 2010—those results which were received from the laboratories and reviewed by the authors as of December 31, 2010. All of the wells sampled were screened in the Gulf Coast aquifer system; 22 were screened entirely in the Evangeline aquifer, and the remaining 25 wells contained screened intervals that intersected both Evangeline and Chicot aquifers. The data documented in this report were collected as part of an ongoing study to characterize source-water-quality conditions in untreated groundwater prior to drinking-water treatment. An evaluation of contaminant occurrence in source water provides background information regarding the presence of a contaminant in the environment. Because source-water samples were collected prior to any treatment or blending that potentially could alter contaminant concentrations, the water-quality results documented by this report represent the quality of the source water, not the quality of finished drinking water provided to the public.

  12. Vegetation Fraction Mapping with High Resolution Multispectral Data in the Texas High Plains

    Science.gov (United States)

    Oshaughnessy, S. A.; Gowda, P. H.; Basu, S.; Colaizzi, P. D.; Howell, T. A.; Schulthess, U.

    2010-12-01

    Land surface models use vegetation fraction to more accurately partition latent, sensible and soil heat fluxes from a partially vegetated surface as it affects energy and moisture exchanges between the earth’s surface and atmosphere. In recent years, there is interest to integrate vegetation fraction data into intelligent irrigation scheduling systems to avoid false positive signals to irrigate. Remote sensing can facilitate the collection of vegetation fraction information on individual fields over large areas in a timely and cost-effective manner. In this study, we developed and evaluated a set of vegetation fraction models using least square regression and artificial neural network (ANN) techniques using RapidEye satellite data (6.5 m spatial resolution and on-demand temporal resolution). Four images were acquired during the 2010 summer growing season, covering bare soil to full crop cover conditions, over the USDA-ARS-Conservation and Production Research Laboratory in Bushland, Texas [350 11' N, 1020 06' W; 1,170 m elevation MSL]. Spectral signatures were extracted from 25 ground truth locations with geographic coordinates. Vegetation fraction information was derived from digital photos taken at the time of image acquisition using a supervised classification technique. Comparison of performance statistics indicate that ANN performed slightly better than least square regression models.

  13. Effects of redox conditions on the control of arsenic mobility in shallow alluvial aquifers on the Venetian Plain (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Carraro, A. [Institute of Geosciences and Earth Resources, National Research Council (CNR) of Italy, Padova, Italy c/o Department of Geosciences, University of Padova, 35131 Padova (Italy); Fabbri, P. [Institute of Geosciences and Earth Resources, National Research Council (CNR) of Italy, Padova, Italy c/o Department of Geosciences, University of Padova, 35131 Padova (Italy); Department of Geosciences, University of Padova, 35131 Padova (Italy); Giaretta, A.; Peruzzo, L.; Tateo, F.; Tellini, F. [Institute of Geosciences and Earth Resources, National Research Council (CNR) of Italy, Padova, Italy c/o Department of Geosciences, University of Padova, 35131 Padova (Italy)

    2015-11-01

    The Venetian Plain is known for the occurrence of areas with high concentrations of arsenic in groundwater (greater than 400 μg/L). The study area represents the typical residential, industrial and agricultural features of most Western countries and is devoid of hydrothermal, volcanic or anthropogenic sources of arsenic. The aim of the study is to model the arsenic mobilization and the water–rock interaction by a complete hydrogeochemical investigation (analyses of filtered and unfiltered groundwater sediment mineralogy and geochemistry). The groundwater arsenic contamination and redox conditions are highly variable. Groundwaters with oxidizing and strongly reducing potentials have much lower arsenic concentrations than do mildly reducing waters. The grain size of the aquifer sediments includes gravels, sands and silty-clays. A continuous range of organic material concentrations is observed (from zero to 40%). The amount of sedimentary organic matter is highly correlated with the arsenic content of the sediments (up to 300 mg/kg), whereas no relationships are detectable between arsenic and other chemical parameters. The occurrence of arsenic minerals was observed as a peculiar feature under the scanning electron microscope. Arsenic and sulfur are the sole constituents of small tufts or thin crystals concentrated in small masses. These arsenic minerals were clearly observed in the peat sediments, in agreement with the geochemical modeling that requires very reducing conditions for their precipitation from the groundwater. The modeling suggests that, under oxidizing conditions, arsenic is adsorbed; moreover, a continuous decrease in the redox potential causes increasing desorption of arsenic. If the reducing conditions become more intense, the formation of As-S minerals would explain the lower concentration of arsenic measured in the strongly reducing groundwater. Even if As-sulfides are rare under low-temperature conditions, the anomalous abundance of reductants

  14. Effects of redox conditions on the control of arsenic mobility in shallow alluvial aquifers on the Venetian Plain (Italy)

    International Nuclear Information System (INIS)

    Carraro, A.; Fabbri, P.; Giaretta, A.; Peruzzo, L.; Tateo, F.; Tellini, F.

    2015-01-01

    The Venetian Plain is known for the occurrence of areas with high concentrations of arsenic in groundwater (greater than 400 μg/L). The study area represents the typical residential, industrial and agricultural features of most Western countries and is devoid of hydrothermal, volcanic or anthropogenic sources of arsenic. The aim of the study is to model the arsenic mobilization and the water–rock interaction by a complete hydrogeochemical investigation (analyses of filtered and unfiltered groundwater sediment mineralogy and geochemistry). The groundwater arsenic contamination and redox conditions are highly variable. Groundwaters with oxidizing and strongly reducing potentials have much lower arsenic concentrations than do mildly reducing waters. The grain size of the aquifer sediments includes gravels, sands and silty-clays. A continuous range of organic material concentrations is observed (from zero to 40%). The amount of sedimentary organic matter is highly correlated with the arsenic content of the sediments (up to 300 mg/kg), whereas no relationships are detectable between arsenic and other chemical parameters. The occurrence of arsenic minerals was observed as a peculiar feature under the scanning electron microscope. Arsenic and sulfur are the sole constituents of small tufts or thin crystals concentrated in small masses. These arsenic minerals were clearly observed in the peat sediments, in agreement with the geochemical modeling that requires very reducing conditions for their precipitation from the groundwater. The modeling suggests that, under oxidizing conditions, arsenic is adsorbed; moreover, a continuous decrease in the redox potential causes increasing desorption of arsenic. If the reducing conditions become more intense, the formation of As-S minerals would explain the lower concentration of arsenic measured in the strongly reducing groundwater. Even if As-sulfides are rare under low-temperature conditions, the anomalous abundance of reductants

  15. Assessment of the chemical status of the alluvial aquifer in the Aosta Plain: an example of the implementation of the Water Framework Directive in Italy

    Science.gov (United States)

    Rotiroti, Marco; Fumagalli, Letizia; Stefania, Gennaro A.; Frigerio, Maria C.; Simonetto, Fulvio; Capodaglio, Pietro; Bonomi, Tullia

    2015-04-01

    The Italian Legislative Decree 30/09 (D.Lgs. 30/09) implements the EU Water Framework Directive (WFD) providing some technical guidelines to assess the chemical status of groundwater bodies. This work presents the estimation of the chemical status of the shallow aquifer in the Aosta Plain (Aosta Valley Region, NW Alpine sector, Italy) on the basis of the D.Lgs. 30/09. The study area covers ~40 km2 along the Dora Baltea River basin. The Aosta Plain hosts an alluvial aquifer formed of lacustrine, glacial, fluvio-glacial and fan deposits of Pleistocene and Holocene ages. The unconfined aquifer features a depth of ~80 m in the western part of the plain and ~20 in the eastern part due to the intercalation of a silty lacustrine layer. The aquifer is mainly recharged by precipitation, surface water and ice and snow melt. Previous studies revealed that SO4, Fe, Mn, Ni, Cr(VI) and PCE represent potential threats for groundwater quality in the Aosta Plain. The chemical status was calculated using the data collected during the 2012 by the Regional Environmental Protection Agency of the Aosta Valley Region from its groundwater quality monitoring network that includes 38 points. Each point was sampled up to four times. Since the D.Lgs. 30/09 excludes Fe and Mn from the assessment of the groundwater chemical status, the present work deals with SO4, Ni, Cr(VI) and PCE. Threshold values (TVs) were estimated on the basis of natural background levels (NBLs) for SO4, Ni and Cr(VI) whereas, for PCE, the reference value (REF) reported by the D.Lgs. 30/09 (i.e., 1.1 µg/L) was used as TV. The NBLs were calculated using the two approaches suggested by the EU research project BRIDGE, that are the pre-selection and the component separation. The TVs were evaluated using the following criteria: (a) if NBL pollution in the Aosta Plain in order to achieve the good chemical status as required by the WFD.

  16. Potentiometric surfaces, summer 2013 and winter 2015, and select hydrographs for the Southern High Plains aquifer, Cannon Air Force Base, Curry County, New Mexico

    Science.gov (United States)

    Collison, Jake

    2016-04-07

    Cannon Air Force Base (Cannon AFB) is located in the High Plains physiographic region of east-central New Mexico, about 5 miles west of Clovis, New Mexico. The area surrounding Cannon AFB is primarily used for agriculture, including irrigated cropland and dairies. The Southern High Plains aquifer is the principal source of water for Cannon AFB, for the nearby town of Clovis, and for local agriculture and dairies. The Southern High Plains aquifer in the vicinity of Cannon AFB consists of three subsurface geological formations: the Chinle Formation of Triassic age, the Ogallala Formation of Tertiary age, and the Blackwater Draw Formation of Quaternary age. The Ogallala Formation is the main water-yielding formation of the Southern High Plains aquifer. Groundwater-supplied, center-pivot irrigation dominates pumping from the Southern High Plains aquifer in the area surrounding Cannon AFB, where the irrigation season typically extends from early March through October. The U.S. Geological Survey has been monitoring groundwater levels in the vicinity of Cannon AFB since 1954 and has developed general potentiometric-surface maps that show groundwater flow from northwest to southeast in the study area. While previous potentiometric-surface maps show the general direction of groundwater flow, a denser well network is needed to show details of groundwater flow at a local scale. Groundwater levels were measured in 93 wells during summer 2013 and 100 wells during winter 2015.The summer and winter potentiometric-surface maps display the presence of what is interpreted to be a groundwater trough trending from the northwest to the southeast through the study area. This groundwater trough may be the hydraulic expression of a Tertiary-age paleochannel. Groundwater north of the trough flows in a southerly direction into the trough, and groundwater south of the trough flows in an easterly direction into the trough.During the 18-month period between summer 2013 and winter 2015, changes

  17. Effects of storm-water runoff on water quality of the Edwards Aquifer near Austin, Texas

    Science.gov (United States)

    Andrews, Freeman L.; Schertz, Terry L.; Slade, Raymond M.; Rawson, Jack

    1984-01-01

    Analyses of samples collected from Barton Springs at approximately weekly Intervals and from Barton Creek and five wells in the Austin area during selected storm-runoff periods generally show that recharge during storm runoff resulted in significant temporal and area! variations in the quality of ground water in the recharge zone of the Edwards aquifer. Recharge during storm runoff resulted in significant increases of bacterial densities in the ground water. Densities of fecal coliform bacteria in samples collected from Barton Springs, the major point of ground-water discharge, ranged from less than 1 colony per 100 milliliters during dry weather in November 1981 and January and August 1982 to 6,100 colonies per 100 milliliters during a storm in May 1982. Densities of fecal streptococcal bacteria ranged from 1 colony per 100 miniliters during dry weather in December 1981 to 11,000 colonies per 100 miniliters during a storm in May 1982.

  18. A conceptual hydrogeologic model for the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2013-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and municipal uses in the Trans-Pecos region of west Texas. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system in the 4,700 square-mile study area was developed by the U.S. Geological Survey (USGS) in cooperation with the Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1. The model was developed to gain a better understanding of the groundwater system and to establish a scientific foundation for resource-management decisions. Data and information were collected or obtained from various sources to develop the model. Lithologic information obtained from well reports and geophysical data were used to describe the hydrostratigraphy and structural features of the groundwater system, and aquifer-test data were used to estimate aquifer hydraulic properties. Groundwater-quality data were used to evaluate groundwater-flow paths, water and rock interaction, aquifer interaction, and the mixing of water from different sources. Groundwater-level data also were used to evaluate aquifer interaction as well as to develop a potentiometric-surface map, delineate regional groundwater divides, and describe regional groundwater-flow paths.

  19. Simulated effects of projected pumping on the availability of freshwater in the Evangeline Aquifer in an area southwest of Corpus Christi, Texas

    Science.gov (United States)

    Groschen, George E.

    1985-01-01

    This study is an investigation of the continued availability of freshwater in the Evangeline aquifer along the Texas Gulf Coast and the potential for degradation of the water quality by salinewater intrusion. Recharge to the aquifer occurs by the infiltration of precipitation in the outcrop area and by cross-formational flow from deeper aquifers. The predevelopment recharge rate is about 6 to 8 cubic feet per second. The predevelopment flow is toward the coast. The flow is semiconfined in the outcrop area and confined underneath the Chicot aquifer in the eastern two-thirds of the study area. Discharge, under natural conditions, is upward into the Chicot aquifer and to the Nueces River or Gulf of Mexico. Intensive pumping by irrigators, industries, and municipalities over the last 80 years has created a cone of depression as deep as 219 feet below sea level under the city of Kingsville in Kleberg County. The total rate of pumpage in 1982 was 29.6 cubic feet per second.

  20. Expanding the Annual Irrigation Maps (AIM) Product to the entire High Plains Aquifer (HPA): Addressing the Challenges of Cotton and Deficit-Irrigated Fields

    Science.gov (United States)

    Rapp, J. R.; Deines, J. M.; Kendall, A. D.; Hyndman, D. W.

    2017-12-01

    The High Plains Aquifer (HPA) is the most extensively irrigated aquifer in the continental United States and is the largest major aquifer in North America with an area of 500,000 km2. Increased demand for agricultural products has led to expanded irrigation extent, but brought with it declining groundwater levels that have made irrigation unsustainable in some locations. Understanding these irrigation dynamics and mapping irrigated areas through time are essential for future sustainable agricultural practices and hydrological modeling. Map products using remote sensing have only recently been able to track annual dynamics at relatively high spatial resolution (30 m) for a large portion of the northern HPA. However follow-on efforts to expand these maps to the entire HPA have met with difficulty due to the challenge of distinguishing irrigation in crop types that are commonly deficit- or partially-irrigated. Expanding these maps to the full HPA requires addressing unique features of partially irrigated fields and irrigated cotton, a major water user in the southern HPA. Working in Google Earth Engine, we used all available Landsat imagery to generate annual time series of vegetation indices. We combined this information with climate covariables, planting dates, and crop specific training data to algorithmically separate fully irrigated, partially irrigated, and non-irrigated field locations. The classification scheme was then applied to produce annual maps of irrigation across the entire HPA. The extensive use of ancillary data and the "greenness" time series for the algorithmic classification generally increased accuracy relative to previous efforts. High-accuracy, representative map products of irrigation extent capable of detecting crop type and irrigation intensity within aquifers will be an essential tool to monitor the sustainability of global aquifers and to provide a scientific bases for political and economic decisions affecting those aquifers.

  1. Hydrologic influences on water-level changes in the Eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho, 1949-2014

    Science.gov (United States)

    Bartholomay, Roy C.; Twining, Brian V.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, has maintained a water-level monitoring program at the Idaho National Laboratory (INL) since 1949 to systematically measure water levels to provide long-term information on groundwater recharge, discharge, movement, and storage in the eastern Snake River Plain (ESRP) aquifer. During 2014, water levels in the ESRP aquifer reached all-time lows for the period of record, prompting this study to assess the effect that future water-level declines may have on pumps and wells. Water-level data were compared with pump-setting depth to determine the hydraulic head above the current pump setting. Additionally, geophysical logs were examined to address changes in well productivity with water-level declines. Furthermore, hydrologic factors that affect water levels in different areas of the INL were evaluated to help understand why water-level changes occur.

  2. Testing and sampling of deep brine aquifers in the Palo Duro Basin, West Texas

    International Nuclear Information System (INIS)

    Deyling, M.A.

    1984-01-01

    The US Department of Energy is investigating the Palo Duro Basin of West Texas along with locations in Nevada, Washington, Utah, Mississippi and Louisiana as potential sites for storage of high-level nuclear waste. Ten wells have been drilled to depths between 3000 and 8300 feet. Testing and sampling of deep test zones requires advance planning and analysis of what must be obtained from the well. Various alternatives are available depending on data needs. In this particular instance, both hydrologic and geochemical data were required. The methods chosen were field proven methods used in the oil field industry for many years. Short term testing has included conventional oil-field-type drill stem tests and drill stem equipment with surface pressure readout. Long term testing has consisted of a series of production and recovery tests. Fluid sampling was performed in two stages. The first was at the well head under an imposed pressure of several hundred psi. The second fluid samples were collected downhole at the production zone under pressures close to ambient pressure. The geochemical data and hydrologic data can be used as independent checks on each other in many cases. Test results from the well along with examination of recovered core provided maximum data for each well. 5 references, 8 figures

  3. Nitrogen-isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in Texas

    International Nuclear Information System (INIS)

    Kreitler, C.W.

    1979-01-01

    Kreitler has previously identified two ranges of nitrogen-isotope values (delta 15 N) for soil nitrate under different land uses in west Texas: nitrate originating from nonfertilized, cultivated fields (delta 14 N range, 2 to +8per thousand with an average of +4.9per thousand), and nitrate from animal wastes (delta 15 N range, +10 to +22per thousand with an average of +14.4per thousand). The delta 15 N of groundwater nitrate from irrigation wells on the Lockhart and Taylor and alluvial fans range from +3.3 to +10.8per thousand with an average of +7.3per thousand. Ground water from domestic wells on the two fans has higher nitrate concentrations and a more positive delta 15 N range (+6.7 to 18.2per thousand with an average of +11.1per thousand) than wells located in the cultivated fields. Nitrate contamination of wells located in cultivated fields results primarily from cultivation with ammonium-type fertilizers, whereas animal wastes are contaminating domestic well waters. (Auth.)

  4. 234U and 238U in the Carrizo Sandstone aquifer of South Texas

    International Nuclear Information System (INIS)

    Cowart, J.B.; Osmond, J.K.

    1974-01-01

    The waters of the Carrizo Sand formation of South Texas, United States of America, exhibit a pattern of uranium isotopic disequilibrium, described in terms of 234 U/ 238 U activity ratio ('A.R.') and uranium concentration, which may be a function of geochemical factors and the hydrologic history of the area. In terms of uranium, two regimes seem to exist. The first, including outcrop and near outcrop sample locations, has waters with relatively high concentration and low A.R. Somewhat downdip, the uranium concentration decreases sharply at the downdip limit of the oxidation environment, a zone of uranium precipitation. Recoil of daughter products from the precipitated uranium causes an increase of A.R. of the water. Water of low uranium concentration and high A.R. is found throughout the downdip regime. If a constant input of 234 U through time is assumed, the downdip decrease in A.R. after the initial introduction of 234 U into the water may be ascribed to radioactive decay of 234 U. However, this assumption leads to the calculation of a water flow rate one twentieth that determined by other means. Alternatively, this pattern may be an artifact of a change of climate from 20,000 years to 10,000 years ago. In this case, the decrease in A.R. downdip is a function of a varying input of 234 U as well as decay. (author)

  5. Water-level altitudes 2016 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973–2015 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.; Johnson, Michaela R.

    2016-10-07

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2016 water-level altitudes (represented by measurements made during December 2015–March 2016) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2015–16) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2011–16) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2016 and 1977–2016) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–16) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2015. Tables listing the water-level data used to construct each water-level map for each aquifer and the measured long-term cumulative compaction data for each extensometer site are included. Graphs depicting water-level measurement data also are included; these graphs can be used to approximate

  6. Quality of Shallow Groundwater and Drinking Water in the Mississippi Embayment-Texas Coastal Uplands Aquifer System and the Mississippi River Valley Alluvial Aquifer, South-Central United States, 1994-2004

    Science.gov (United States)

    Welch, Heather L.; Kingsbury, James A.; Tollett, Roland W.; Seanor, Ronald C.

    2009-01-01

    The Mississippi embayment-Texas coastal uplands aquifer system is an important source of drinking water, providing about 724 million gallons per day to about 8.9 million people in Texas, Louisiana, Mississippi, Arkansas, Missouri, Tennessee, Kentucky, Illinois, and Alabama. The Mississippi River Valley alluvial aquifer ranks third in the Nation for total withdrawals of which more than 98 percent is used for irrigation. From 1994 through 2004, water-quality samples were collected from 169 domestic, monitoring, irrigation, and public-supply wells in the Mississippi embayment-Texas coastal uplands aquifer system and the Mississippi River Valley alluvial aquifer in various land-use settings and of varying well capacities as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Groundwater samples were analyzed for physical properties and about 200 water-quality constituents, including total dissolved solids, major inorganic ions, trace elements, radon, nutrients, dissolved organic carbon, pesticides, pesticide degradates, and volatile organic compounds. The occurrence of nutrients and pesticides differed among four groups of the 114 shallow wells (less than or equal to 200 feet deep) in the study area. Tritium concentrations in samples from the Holocene alluvium, Pleistocene valley trains, and shallow Tertiary wells indicated a smaller component of recent groundwater than samples from the Pleistocene terrace deposits. Although the amount of agricultural land overlying the Mississippi River Valley alluvial aquifer was considerably greater than areas overlying parts of the shallow Tertiary and Pleistocene terrace deposits wells, nitrate was rarely detected and the number of pesticides detected was lower than other shallow wells. Nearly all samples from the Holocene alluvium and Pleistocene valley trains were anoxic, and the reducing conditions in these aquifers likely result in denitrification of nitrate. In contrast, most samples from the

  7. Dissolved oxygen fluctuations in karst spring flow and implications for endemic species: Barton Springs, Edwards aquifer, Texas, USA

    Science.gov (United States)

    Mahler, Barbara J.; Bourgeais, Renan

    2013-01-01

    Karst aquifers and springs provide the dissolved oxygen critical for survival of endemic stygophiles worldwide, but little is known about fluctuations of dissolved oxygen concentrations (DO) and factors that control those concentrations. We investigated temporal variation in DO at Barton Springs, Austin, Texas, USA. During 2006–2012, DO fluctuated by as much as a factor of 2, and at some periods decreased to concentrations that adversely affect the Barton Springs salamander (Eurycea sorosum) (≤4.4 mg/L), a federally listed endangered species endemic to Barton Springs. DO was lowest (≤4.4 mg/L) when discharge was low (≤1 m3/s) and spring water temperature was >21 °C, although not at a maximum; the minimum DO recorded was 4.0 mg/L. Relatively low DO (3/s) and maximum T (22.2 °C). A four-segment linear regression model with daily data for discharge and spring water temperature as explanatory variables provided an excellent fit for mean daily DO (Nash–Sutcliffe coefficient for the validation period of 0.90). DO also fluctuated at short-term timescales in response to storms, and DO measured at 15-min intervals could be simulated with a combination of discharge, spring temperature, and specific conductance as explanatory variables. On the basis of the daily-data regression model, we hypothesize that more frequent low DO corresponding to salamander mortality could result from (i) lower discharge from Barton Springs resulting from increased groundwater withdrawals or decreased recharge as a result of climate change, and (or) (ii) higher groundwater temperature as a result of climate change.

  8. High Plains Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — These digital maps contain information on the altitude of the base, the extent, and the 1991 potentiometric surface (i.e. altitude of the water table) of the High...

  9. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    International Nuclear Information System (INIS)

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents

  10. The fault pattern in the northern Negev and southern Coastal Plain of Israel and its hydrogeological implications for groundwater flow in the Judea Group aquifer

    Science.gov (United States)

    Weinberger, G.; Rosenthal, E.

    1994-03-01

    On the basis of a broadly expanding data base, the hydrogeological properties of the Judea Group sequence in the northern Negev and southern Coastal Plain of Israel have been reassessed. The updated subsurface model is based on data derived from water- and oil-wells and on recent large-scale geophysical investigations. A new regional pattern of the reassessed geological through the subsurface of the study area has been revealed. In view of the reassessed geological and hydrological subsurface setting, it appears that the Judea Group aquifer should not be regarded as one continuous and undisturbed hydrological unit; owing to the occurrence of regional faults, its subaquifers are locally interconnected. These subaquifers, which contain mainly high-quality water, are juxtaposed, as a result of faulting, against Kurnub Group sandstones containing brackish paleowater. The latter Group is faulted against late Jurassic formations containing highly saline groundwater. In the Beer Sheva area, the Judea Group aquifer is vertically displaced against the Senonian and Eocene Mt. Scopus and Avdat Groups, which also contain brackish and saline water. In the southern Coastal Plain, major faults locally dissect also the Pleistocene Kurkar Group, facilitating inflow of Mg-rich groundwater deriving from Judea Group dolomites. The new geological evidence and its hydrogeological implications provide new solutions for previously unexplained salinization phenomena.

  11. Development of a regional groundwater flow model for the area of the Idaho National Engineering Laboratory, Eastern Snake River Plain Aquifer

    International Nuclear Information System (INIS)

    McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M.

    1995-03-01

    This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model was developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study

  12. Arsenic and radionuclide occurrence and relation to geochemistry in groundwater of the Gulf Coast Aquifer System in Houston, Texas, 2007–11

    Science.gov (United States)

    Oden, Jeannette H.; Szabo, Zoltan

    2016-03-21

    The U.S. Geological Survey (USGS), in cooperation with the City of Houston, began a study in 2007 to determine concentrations, spatial extent, and associated geochemical conditions that might be conducive for mobility and transport of selected naturally occurring trace elements and radionuclides in the Gulf Coast aquifer system in Houston, Texas. Water samples were collected from 91 municipal supply wells completed in the Evangeline and Chicot aquifers of the Gulf Coast aquifer system in northeastern, northwestern, and southwestern Houston; hereinafter referred to as northeast, northwest and southwest Houston areas. Wells were sampled in three phases: (1) 28 municipal supply wells were sampled during 2007–8, (2) 60 municipal supply wells during 2010, and (3) 3 municipal supply wells during December 2011. During each phase of sampling, samples were analyzed for major ions, selected trace elements, and radionuclides. At a subset of wells, concentrations of arsenic species and other radionuclides (carbon-14, radium-226, radium-228, radon-222, and tritium) also were analyzed. Selected physicochemical properties were measured in the field at the time each sample was collected, and oxidation-reduction potential and unfiltered sulfides also were measured at selected wells. The source-water (the raw, ambient water withdrawn from municipal supply wells prior to water treatment) samples were collected for assessment of aquifer conditions in order to provide community water-system operators information that could be important when they make decisions about which treatment processes to apply before distributing finished drinking water.

  13. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  14. Water-level altitudes 2017 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973–2016 in the Chicot and Evangeline Aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.

    2017-08-16

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. This report contains regional-scale maps depicting approximate 2017 water-level altitudes (represented by measurements made during December 2016 through March 2017) and long-term water-level changes for the Chicot, Evangeline, and Jasper aquifers; a map depicting locations of borehole-extensometer (hereinafter referred to as “extensometer”) sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2016.In 2017, water-level-altitude contours for the Chicot aquifer ranged from 200 feet (ft) below the North American Vertical Datum of 1988 (hereinafter referred to as “datum”) in two localized areas in southwestern and northwestern Harris County to 200 ft above datum in west-central Montgomery County. The largest water-level-altitude decline (120 ft) depicted by the 1977–2017 water-level-change contours for the Chicot aquifer was in northwestern Harris County. A broad area where water-level altitudes declined in the Chicot aquifer extends from northwestern, north-central, and southwestern Harris County

  15. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Bumgarner, Johnathan R.; Stanton, Gregory P.; Teeple, Andrew; Thomas, Jonathan V.; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2012-01-01

    A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers, which include the Pecos Valley, Igneous, Dockum, Rustler, and Capitan Reef aquifers, was developed as the second phase of a groundwater availability study in the Pecos County region in west Texas. The first phase of the study was to collect and compile groundwater, surface-water, water-quality, geophysical, and geologic data in the area. The third phase of the study involves a numerical groundwater-flow model of the Edwards-Trinity aquifer in order to simulate groundwater conditions based on various groundwater-withdrawal scenarios. Resource managers plan to use the results of the study to establish management strategies for the groundwater system. The hydrogeologic framework is composed of the hydrostratigraphy, structural features, and hydraulic properties of the groundwater system. Well and geophysical logs were interpreted to define the top and base surfaces of the Edwards-Trinity aquifer units. Elevations of the top and base of the Edwards-Trinity aquifer generally decrease from the southwestern part of the study area to the northeast. The thicknesses of the Edwards-Trinity aquifer units were calculated using the interpolated top and base surfaces of the hydrostratigraphic units. Some of the thinnest sections of the aquifer were in the eastern part of the study area and some of the thickest sections were in the Pecos, Monument Draw, and Belding-Coyanosa trough areas. Normal-fault zones, which formed as growth and collapse features as sediments were deposited along the margins of more resistant rocks and as overlying sediments collapsed into the voids created by the dissolution of Permian-age evaporite deposits, were delineated based on the interpretation of hydrostratigraphic cross sections. The lowest aquifer transmissivity values were measured in the eastern part of the study area; the highest transmissivity values were

  16. Old groundwater in parts of the upper Patapsco aquifer, Atlantic Coastal Plain, Maryland, USA: Evidence from radiocarbon, chlorine-36 and helium-4

    Science.gov (United States)

    Plummer, Niel; Eggleston, John R.; Raffensperger, Jeff P.; Hunt, Andrew G.; Casile, Gerolamo C.; Andreasen, D.C.

    2012-01-01

    Apparent groundwater ages along two flow paths in the upper Patapsco aquifer of the Maryland Atlantic Coastal Plain, USA, were estimated using 14C, 36Cl and 4He data. Most of the ages range from modern to about 500 ka, with one sample at 117 km downgradient from the recharge area dated by radiogenic 4He accumulation at more than one Ma. Last glacial maximum (LGM) water was located about 20 km downgradient on the northern flow path, where the radiocarbon age was 21.5 ka, paleorecharge temperatures were 0.5–1.5  °C (a maximum cooling of about 12 °C relative to the modern mean annual temperature of 13 °C), and Cl–, Cl/Br, and stable isotopes of water were minimum. Low recharge temperatures (typically 5–7 °C) indicate that recharge occurred predominantly during glacial periods when coastal heads were lowest due to low sea-level stand. Flow velocities averaged about 1.0 m a–1 in upgradient parts of the upper Patapsco aquifer and decreased from 0.13 to 0.04 m a–1 at 40 and 80 km further downgradient, respectively. This study demonstrates that most water in the upper Patapsco aquifer is non-renewable on human timescales under natural gradients, thus highlighting the importance of effective water-supply management to prolong the resource.

  17. Geohydrologic units and water-level conditions in the Terrace alluvial aquifer and Paluxy Aquifer, May 1993 and February 1994, near Air Force Plant 4, Fort Worth area, Texas

    Science.gov (United States)

    Rivers, Glen A.; Baker, Ernest T.; Coplin, L.S.

    1996-01-01

    The terrace alluvial aquifer underlying Air Force Plant 4 and the adjacent Naval Air Station (formerly Carswell Air Force Base) in the Fort Worth area, Texas, is contaminated locally with organic and metal compounds. Residents south and west of Air Force Plant 4 and the Naval Air Station are concerned that contaminants might enter the underlying Paluxy aquifer, which provides water to the city of White Settlement, south of Air Force Plant 4, and to residents west of Air Force Plant 4. The U.S. Environmental Protection Agency has qualified Air Force Plant 4 for Superfund cleanup. The pertinent geologic units include -A~rom oldest to youngest the Glen Rose, Paluxy, and Walnut Formations, Goodland Limestone, and terrace alluvial deposits. Except for the Glen Rose Formation, all units crop out at or near Air Force Plant 4 and the Naval Air Station. The terrace alluvial deposits, which nearly everywhere form the land surface, range from 0 to about 60 feet thick. These deposits comprise a mostly unconsolidated mixture of gravel, sand, silt, and clay. Mudstone and sandstone of the Paluxy Formation crop out north, west, and southwest of Lake Worth and total between about 130 and about 175 feet thick. The terrace alluvial deposits and the Paluxy Formation comprise the terrace alluvial aquifer and the Paluxy aquifer, respectively. These aquifers are separated by the Goodland-Walnut confining unit, composed of the Goodland Limestone and (or) Walnut Formation. Below the Paluxy aquifer, the Glen Rose Formation forms the Glen Rose confining unit. Water-level measurements during May 1993 and February 1994 from wells in the terrace alluvial aquifer indicate that, regionally, ground water flows toward the east-southeast beneath Air Force Plant 4 and the Naval Air Station. Locally, water appears to flow outward from ground-water mounds maintained by the localized infiltration of precipitation and reportedly by leaking water pipes and sanitary and (or) storm sewer lines beneath the

  18. Infection levels of the eyeworm Oxyspirura petrowi and caecal worm Aulonocephalus pennula in the northern bobwhite and scaled quail from the Rolling Plains of Texas.

    Science.gov (United States)

    Dunham, N R; Peper, S T; Downing, C; Brake, E; Rollins, D; Kendall, R J

    2017-09-01

    Northern bobwhite (Colinus virginianus) and scaled quail (Callipepla squamata) have experienced chronic declines within the Rolling Plains ecoregion of Texas. Parasitic infection, which has long been dismissed as a problem in quail, has not been studied thoroughly until recently. A total of 219 northern bobwhite and 101 scaled quail from Mitchell County, Texas were captured and donated from 2014 to 2015, and examined for eyeworm (Oxyspirura petrowi) and caecal worm (Aulonocephalus pennula) infections. In 2014, bobwhites averaged 19.6 ± 1.8 eyeworms and 98.6 ± 8.2 caecal worms, and 23.5 ± 2.1 eyeworms and 129.9 ± 10.7 caecal worms in 2015. Scaled quail averaged 4.8 ± 1.0 eyeworms and 50 ± 6.8 caecal worms in 2014, and 5.7 ± 1.3 eyeworms and 38.1 ± 7.1 caecal worms in 2015. This study expands the knowledge of parasitic infection in quail inhabiting the Rolling Plains of Texas. A significant difference was documented in O. petrowi infection between species but there was no significant difference in A. pennula between quail species. No significant difference was detected in parasite infection between the sexes of both northern bobwhite and scaled quail. This study also documented the highest reported O. petrowi infection in both species of quail. Additional research is needed on the life history and infection dynamics of O. petrowi and A. pennula infections to determine if there are individual- and/or population-level implications due to parasitic infection.

  19. An Integrated Hydrogeologic and Geophysical Investigation to Characterize the Hydrostratigraphy of the Edwards Aquifer in an Area of Northeastern Bexar County, Texas

    Science.gov (United States)

    Shah, Sachin D.; Smith, Bruce D.; Clark, Allan K.; Payne, Jason

    2008-01-01

    In August 2007, the U.S. Geological Survey, in cooperation with the San Antonio Water System, did a hydrogeologic and geophysical investigation to characterize the hydrostratigraphy (hydrostratigraphic zones) and also the hydrogeologic features (karst features such as sinkholes and caves) of the Edwards aquifer in a 16-square-kilometer area of northeastern Bexar County, Texas, undergoing urban development. Existing hydrostratigraphic information, enhanced by local-scale geologic mapping in the area, and surface geophysics were used to associate ranges of electrical resistivities obtained from capacitively coupled (CC) resistivity surveys, frequency-domain electromagnetic (FDEM) surveys, time-domain electromagnetic (TDEM) soundings, and two-dimensional direct-current (2D-DC) resistivity surveys with each of seven hydrostratigraphic zones (equivalent to members of the Kainer and Person Formations) of the Edwards aquifer. The principal finding of this investigation is the relation between electrical resistivity and the contacts between the hydrostratigraphic zones of the Edwards aquifer and the underlying Trinity aquifer in the area. In general, the TDEM data indicate a two-layer model in which an electrical conductor underlies an electrical resistor, which is consistent with the Trinity aquifer (conductor) underlying the Edwards aquifer (resistor). TDEM data also show the plane of Bat Cave fault, a well-known fault in the area, to be associated with a local, nearly vertical zone of low resistivity that provides evidence, although not definitive, for Bat Cave fault functioning as a flow barrier, at least locally. In general, the CC resistivity, FDEM survey, and 2D-DC resistivity survey data show a sharp electrical contrast from north to south, changing from high resistivity to low resistivity across Bat Cave fault as well as possible karst features in the study area. Interpreted karst features that show relatively low resistivity within a relatively high

  20. Estimated rates of groundwater recharge to the Chicot, Evangeline and Jasper aquifers by using environmental tracers in Montgomery and adjacent counties, Texas, 2008 and 2011

    Science.gov (United States)

    Oden, Timothy D.; Truini, Margot

    2013-01-01

    Montgomery County is in the northern part of the Houston, Texas, metropolitan area, the fourth most populous metropolitan area in the United States. As populations have increased since the 1980s, groundwater has become an important resource for public-water supply and industry in the rapidly growing area of Montgomery County. Groundwater availability from the Gulf Coast aquifer system is a primary concern for water managers and community planners in Montgomery County and requires a better understanding of the rate of recharge to the system. The Gulf Coast aquifer system in Montgomery County consists of the Chicot, Evangeline, and Jasper aquifers, the Burkeville confining unit, and underlying Catahoula confining system. The individual sand and clay sequences of the aquifers composing the Gulf Coast aquifer system are not laterally or vertically continuous on a regional scale; however, on a local scale, individual sand and clay lenses can extend over several miles. The U.S. Geological Survey, in cooperation with the Lone Star Groundwater Conservation District, collected groundwater-quality samples from selected wells within or near Montgomery County in 2008 and analyzed these samples for concentrations of chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), tritium (3H), helium-3/tritium (3He/3H), helium-4 (4He), and dissolved gases (DG) that include argon, carbon dioxide, methane, nitrogen and oxygen. Groundwater ages, or apparent age, representing residence times since time of recharge, were determined by using the assumption of a piston-flow transport model. Most of the environmental tracer data indicated the groundwater was recharged prior to the 1950s, limiting the usefulness of CFCs, SF6, and 3H concentrations as tracers. In many cases, no tracer was usable at a well for the purpose of estimating an apparent age. Wells not usable for estimating an apparent age were resampled in 2011 and analyzed for concentrations of major ions and carbon-14 (14C). At six of

  1. Documentation of a groundwater flow model developed to assess groundwater availability in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    The U.S. Geological Survey developed a groundwater flow model for the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina as part of a detailed assessment of the groundwater availability of the area and included an evaluation of how these resources have changed over time from stresses related to human uses and climate trends. The assessment was necessary because of the substantial dependency on groundwater for agricultural, industrial, and municipal needs in this area.The three-dimensional, groundwater flow model developed for this investigation used the numerical code MODFLOW–NWT to represent changes in groundwater pumping and aquifer recharge from predevelopment (before 1900) to future conditions, from 1900 to 2058. The model was constructed using existing hydrogeologic and geospatial information to represent the aquifer system geometry, boundaries, and hydraulic properties of the 19 separate regional aquifers and confining units within the Northern Atlantic Coastal Plain aquifer system and was calibrated using an inverse modeling parameter-estimation (PEST) technique.The parameter estimation process was achieved through history matching, using observations of heads and flows for both steady-state and transient conditions. A total of 8,868 annual water-level observations from 644 wells from 1986 to 2008 were combined into 29 water-level observation groups that were chosen to focus the history matching on specific hydrogeologic units in geographic areas in which distinct geologic and hydrologic conditions were observed. In addition to absolute water-level elevations, the water-level differences between individual measurements were also included in the parameter estimation process to remove the systematic bias caused by missing hydrologic stresses prior to 1986. The total average residual of –1.7 feet was normally distributed for all head groups, indicating minimal bias. The average absolute residual value

  2. Epigenetic zonation and fluid flow history of uranium-bearing fluvial aquifer systems, south Texas uranium province. Report of Investigations No. 119

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1982-01-01

    The Oligocene-Miocene fluvial uranium host aquifers of the South Texas uranium province were deposited principally as syndepositionally oxidized sands and muds. Early intrusion of reactive sulfide-enriched waters produced large intrastratal islands of epigenetic sulfidic alteration, which contain isotopically heavy pyrite exhibiting unique replacement textures. The only known reservoir containing such sulfidic waters is the deeply buried Mesozoic carbonate section beneath the thick, geopressured Tertiary basin fill. Thermobaric waters were expulsed upward along major fault zones into shallow aquifers in response to a pressure head generated by compaction and dehydration in the abyssal ground-water regime. Vertical migration of gaseous hydrogen sulfide was less important. Repeated flushing of the shallow aquifers by oxidizing meteoric waters containing anomalous amounts of uranium, selenium, and molybdenum alternating with sulfidic thermobaric waters caused cyclic precipitation and oxidation of iron disulfide. Uranium deposits formed along hydrologically active oxidation interfaces separating epigenetic sulfidic and epigenetic oxidation zones. Multiple epigenetic events are recorded in imperfectly superimposed, multiple mineralization fronts, in regional and local geometric relations between different alteration zones, and in the bulk matrix geochemistry and mineralogy of alteration zones. The dynamic mineralization model described in this report may reflect processes active in many large, depositionally active basins

  3. Hydrostratigraphy of the Snake River Plain aquifer beneath the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory: A preliminary report

    International Nuclear Information System (INIS)

    Hegmann, M.J.; Wood, S.H.

    1994-01-01

    Geophysical logs for 6 wells which penetrate the Snake River Plain aquifer at the Radioactive Waste Management Complex (RWMC) were analyzed for preliminary information on the hydrostratigraphy. Using stratigraphic correlation of flow groups worked out by Anderson and Lewis (1989), and by Anderson, as well as gamma signatures of flows within these flow groups, correlation of individual flows is attempted. Within these flows, probable permeable zones, suggested by density and caliper logs, are identified, and zones of hydraulic connection are tentatively correlated. In order to understand the response of density and neutron logs in basalt, the geological characteristics are quantified for the 150-ft section of the well C1A core, from depth 550 to 710 ft. 9 refs., 4 figs

  4. Water-level altitudes 2011 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2010 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Ramage, Jason K.; Kasmarek, Mark C.

    2011-01-01

    decline to an 80-foot rise (2006–11), from a 140-foot decline to a 100-foot rise (1990–2011), and from a 120-foot decline to a 200-foot rise (1977–2011). In 2011, water-level-altitude contours for the Evangeline aquifer ranged from 300 feet below datum in north-central Harris County to 200 feet above datum at the boundary of Waller, Montgomery, and Grimes Counties. Water-level-altitude changes in the Evangeline aquifer ranged from a 43-foot decline to a 73-foot rise (2010–11), from a 40-foot decline to a 160-foot rise (2006–11), from a 200-foot decline to a 240-foot rise (1990–2011), and from a 340-foot decline to a 260-foot rise (1977–2011). In 2011, water-level-altitude contours for the Jasper aquifer ranged from 200 feet below datum in south-central Montgomery County to 250 feet above datum in east-central Grimes County. Water-level-altitude changes in the Jasper aquifer ranged from a 45-foot decline to a 29-foot rise (2010–11), from a 90-foot decline to a 10-foot rise (2006–11), and from a 190-foot decline to no change (2000–11). Compaction of subsurface materials (mostly in the clay layers) composing the Chicot and Evangeline aquifers was recorded continuously at 13 borehole extensometers at 11 sites. For the period of record beginning in 1973, or later, and ending in December 2010, cumulative clay compaction data measured by 12 extensometers ranged from 0.100 foot at the Texas City–Moses Lake site to 3.544 foot at the Addicks site. The rate of compaction varies from site to site because of differences in groundwater withdrawals near each site and differences among sites in the clay-to-sand ratio in the subsurface materials. Therefore, it is not possible to extrapolate or infer a rate of clay compaction for an area based on the rate of compaction measured at a nearby extensometer.

  5. Water-level altitudes 2010 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2009 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2010-01-01

    -foot rise (2009-10), from a 25-foot decline to a 35-foot rise (2005-10), from a 40-foot decline to an 80-foot rise (1990-2010), and from a 140-foot decline to a 200-foot rise (1977-2010). In 2010, water-level-altitude contours for the Evangeline aquifer ranged from 300 feet below datum in north-central Harris County to 200 feet above datum at the boundary of Waller, Montgomery, and Grimes Counties. Water-level-altitude changes in the Evangeline aquifer ranged from a 58-foot decline to a 69-foot rise (2009-10), from an 80-foot decline to an 80-foot rise (2005-10), from a 200-foot decline to a 220-foot rise (1990-2010), and from a 320-foot decline to a 220-foot rise (1977-2010). In 2010, water-level-altitude contours for the Jasper aquifer ranged from 200 feet below datum in south-central Montgomery County to 250 feet above datum in eastern-central Grimes County. Water-level-altitude changes in the Jasper aquifer ranged from a 39-foot decline to a 39-foot rise (2009-10), from a 110-foot decline to no change (2005-10), and from a 180-foot decline to no change (2000-10). Compaction of subsurface materials (mostly in the clay layers) composing the Chicot and Evangeline aquifers was recorded continuously at 13 borehole extensometers at 11 sites. For the period of record beginning in 1973, or later, and ending in December 2009, cumulative clay compaction data measured by 12 extensometers ranged from 0.088 foot at the Texas City-Moses Lake site to 3.559 foot at the Addicks site. The rate of compaction varies from site to site because of differences in groundwater withdrawals near each site and differences among sites in the clay-to-sand ratio in the subsurface materials. Therefore, it is not possible to extrapolate or infer a rate of clay compaction for an area based on the rate of compaction measured at a nearby extensometer.

  6. Geophysical characterization of saltwater intrusion in a coastal aquifer: The case of Martil-Alila plain (North Morocco)

    Science.gov (United States)

    Himi, Mahjoub; Tapias, Josefiina; Benabdelouahab, Sara; Salhi, Adil; Rivero, Luis; Elgettafi, Mohamed; El Mandour, Abdenabi; Stitou, Jamal; Casas, Albert

    2017-02-01

    Several factors can affect the quantity and the quality of groundwater resources, but in coastal aquifers seawater intrusion is often the most significant issue regarding freshwater supply. Further, saltwater intrusion is a worldwide issue because about seventy percent of the world's population lives in coastal regions. Generally, fresh groundwater not affected by saltwater intrusion is characterized by low salinity and therefore low electrical conductivity (EC) values. Consequently, high values of EC in groundwater along the coastline are usually associated to seawater intrusion. This effect is amplified if the coastal aquifer is overexploited with a subsequent gradual displacement of the freshwater-saltwater interface towards the continent. Delineation of marine intrusion in coastal aquifers has traditionally relied upon observation wells and collection of water samples. This approach may miss important hydrologic features related to saltwater intrusion in areas where access is difficult and where wells are widely spaced. Consequently, the scarcity of sampling points and sometimes their total absence makes the number of data available limited and most of the time not representative for mapping the spatial and temporal variability of groundwater salinity. In this study, we use a series of geophysical methods for characterizing the aquifer geometry and the extension of saltwater intrusion in the Martil-Alila coastal region (Morocco) as a complement to geological and hydrogeochemical data. For this reason, we carried out three geophysical surveys: Gravity, Electrical Resistivity and Frequency Domain Electromagnetic. The geometry of the basin has been determined from the interpretation of a detailed gravity survey. Electrical resistivity models derived from vertical electrical soundings allowed to characterize the vertical and the lateral extensions of aquifer formations. Finally, frequency domain electromagnetic methods allowed delineating the extension of the

  7. Integrating urban recharge uncertainty into standard groundwater modeling practice: A case study on water main break predictions for the Barton Springs segment of the Edwards Aquifer, Austin, Texas

    Science.gov (United States)

    Sinner, K.; Teasley, R. L.

    2016-12-01

    Groundwater models serve as integral tools for understanding flow processes and informing stakeholders and policy makers in management decisions. Historically, these models tended towards a deterministic nature, relying on historical data to predict and inform future decisions based on model outputs. This research works towards developing a stochastic method of modeling recharge inputs from pipe main break predictions in an existing groundwater model, which subsequently generates desired outputs incorporating future uncertainty rather than deterministic data. The case study for this research is the Barton Springs segment of the Edwards Aquifer near Austin, Texas. Researchers and water resource professionals have modeled the Edwards Aquifer for decades due to its high water quality, fragile ecosystem, and stakeholder interest. The original case study and model that this research is built upon was developed as a co-design problem with regional stakeholders and the model outcomes are generated specifically for communication with policy makers and managers. Recently, research in the Barton Springs segment demonstrated a significant contribution of urban, or anthropogenic, recharge to the aquifer, particularly during dry period, using deterministic data sets. Due to social and ecological importance of urban water loss to recharge, this study develops an evaluation method to help predicted pipe breaks and their related recharge contribution within the Barton Springs segment of the Edwards Aquifer. To benefit groundwater management decision processes, the performance measures captured in the model results, such as springflow, head levels, storage, and others, were determined by previous work in elicitation of problem framing to determine stakeholder interests and concerns. The results of the previous deterministic model and the stochastic model are compared to determine gains to stakeholder knowledge through the additional modeling

  8. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2006-08

    Science.gov (United States)

    Davis, Linda C.

    2010-01-01

    Since 1952, radiochemical and chemical wastewater discharged to infiltration ponds (also called percolation ponds), evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched groundwater wells in the USGS groundwater monitoring networks during 2006-08. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2005 to March-May 2008, water levels in wells generally remained constant or rose slightly in the southwestern corner of the INL. Water levels declined in the central and northern parts of the INL. The declines ranged from about 1 to 3 feet in the central part of the INL, to as much as 9 feet in the northern part of the INL. Water levels in perched groundwater wells around the Advanced Test Reactor Complex (ATRC) also declined. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2006-08. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In April

  9. Vertical variation in groundwater chemistry inferred from fluid specific-conductance well logging of the Snake River Plain Basalt aquifer, Idaho National Engineering Laboratory, southeastern Idaho

    International Nuclear Information System (INIS)

    Wood, S.H.; Bennecke, W.

    1994-01-01

    Well logging of electrical fluid specific conductance (C s ) shows that permeable zones yielding ground water to intrawell flows and the water columns in some wells at INEL have highly different chemistry, with as much as a two-fold variation in C s . This suggests that dedicated-pump sampling of ground water in the aquifer may not be representative of the chemistry of the waste plumes migrating southwest of the nuclear facilities. Natural background C s in basalt-aquifer ground water of this part of the Snake River Plain aquifer is less than 325μS/cm (microSiemans/cm), and total dissolved solids in mg/L units, (TDS) ∼ 0.6C s . This relationship underestimates TDS for waters with chemical waste, when C s is above 800 μS/cm. At well 59 near the ICPP water of 1115 μS/cm (∼6570+ mg/L TDS) enters the well from a permeable zone between 521 and 537 ft depth; the zone being 60 ft below the water level and water of 550 μS/cm. At the time of logging (9/14/93) the 1115/μS/cm water was flowing down the well, mixing with less concentrated waters and exciting at 600 or 624-ft depth. Waste water disposed of down the injection well at ICPP until 1984 was estimated to have a C 5 of 1140 μS/cm, identical to the water detected in logging. 29 refs., 8 figs., 1 tab

  10. Determination of Background Uranium Concentration in the Snake River Plain Aquifer under the Idaho National Engineering and Environmental Laboratory's Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Molly K. Leecaster; L. Don Koeppen; Gail L. Olson

    2003-01-01

    Uranium occurs naturally in the environment and is also a contaminant that is disposed of at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory. To determine whether uranium concentrations in the Snake River Plain Aquifer, which underlies the laboratory, are elevated as a result of migration of anthropogenic uranium from the Subsurface Disposal Area in the RWMC, uranium background concentrations are necessary. Guideline values are calculated for total uranium, 234U, 235U, and 238U from analytical results from up to five datasets. Three of the datasets include results of samples analyzed using isotope dilution thermal ionization mass spectrometry (ID-TIMS) and two of the datasets include results obtained using alpha spectrometry. All samples included in the statistical testing were collected from aquifer monitoring wells located within 10 miles of the RWMC. Results from ID-TIMS and alpha spectrometry are combined when the data are not statistically different. Guideline values for total uranium were calculated using four of the datasets, while guideline values for 234U were calculated using only the alpha spectrometry results (2 datasets). Data from all five datasets were used to calculate 238U guideline values. No limit is calculated for 235U because the ID-TIMS results are not useful for comparison with routine monitoring data, and the alpha spectrometry results are too close to the detection limit to be deemed accurate or reliable for calculating a 235U guideline value. All guideline values presented represent the upper 95% coverage 95% confidence tolerance limits for background concentration. If a future monitoring result is above this guideline, then the exceedance will be noted in the quarterly monitoring report and assessed with respect to other aquifer information. The guidelines (tolerance limits) for total U, 234U, and 238U are 2.75 pCi/L, 1.92 pCi/L, and 0.90 pCi/L, respectively

  11. In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility

    International Nuclear Information System (INIS)

    Cecil, L. D.; Knobel, L. L.; Green, J. R.; Frape, S. K.

    2000-01-01

    The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories in ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water

  12. Megaporosity and permeability of Thalassinoides-dominated ichnofabrics in the Cretaceous karst-carbonate Edwards-Trinity aquifer system, Texas

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael C.

    2012-01-01

    Current research has demonstrated that trace fossils and their related ichnofabrics can have a critical impact on the fluid-flow properties of hydrocarbon reservoirs and groundwater aquifers. Most petroleum-associated research has used ichnofabrics to support the definition of depositional environments and reservoir quality, and has concentrated on siliciclastic reservoir characterization and, to a lesser degree, carbonate reservoir characterization (for example, Gerard and Bromley, 2008; Knaust, 2009). The use of ichnology in aquifer characterization has almost entirely been overlooked by the hydrologic community because the dynamic reservoir-characterization approach has not caught on with hydrologists and so hydrology is lagging behind reservoir engineering in this area (de Marsily and others, 2005). The objective of this research is to show that (1) ichnofabric analysis can offer a productive methodology for purposes of carbonate aquifer characterization, and (2) a clear relation can exist between ichnofabrics and groundwater flow in carbonate aquifers.

  13. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2012-15

    Science.gov (United States)

    Bartholomay, Roy C.; Maimer, Neil V.; Rattray, Gordon W.; Fisher, Jason C.

    2017-04-10

    Since 1952, wastewater discharged to in ltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater-monitoring networks at the INL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from the ESRP aquifer, multilevel monitoring system (MLMS) wells in the ESRP aquifer, and perched groundwater wells in the USGS groundwater monitoring networks during 2012-15.

  14. Seawater intrusion in the gravelly confined aquifer of the coastal Pisan Plain (Tuscany): hydrogeological and geochemical investigation to assess causes and consequences

    Science.gov (United States)

    Doveri, M.; Giannecchini, R.; Butteri, M.

    2012-12-01

    The gravelly horizon of the Pisa plain multilayered system is a confined aquifer tapped by a large number of wells. It hosts a very important water resource for drinking, industrial and irrigable uses, but may be affected by seawater intrusion coming from the coastal area; most wells is distributed inland, anyway a significant exploitation along the coastal area is also present to supply farms and tourist services. Previous hydrogeological and geochemical investigations carried out in coastal area stated maximum percentage of seawater in gravelly aquifer of about 7-9% and suggested the presence of two different mechanisms (Doveri et alii, 2010): i) a direct seawater intrusion from the zone where the gravelly aquifer is in contact with the sea floor; ii) a mixing process between freshwater and seawater, the latter deriving from the Arno river-shallow sandy aquifer system. Basing on these results, since January 2012 a new two-year project was financed by the MSRM Regional Park. Major aims are a better definition of such phenomena and their distribution on the territory, and an assessing of the seawater intrusion trend in relation to groundwater exploitation. Eleven piezometers were realised during first semester of 2012, thus improving the measurement network, which is now made up by 40 wells/piezometers distributed on about 60 km^2. Comparing new and previous borehole data a general confinement of the gravelly aquifer is confirmed, excepting in the northern part where the aquifer is in contact with the superficial sandy one. Preliminary field measurement was performed in June 2012, during which water level (WL) and electrical conductivity (EC) data were collected. WLs below the sea-level were observed on most of the studied area, with a minimum value of about -5 m a.s.l. in the inner part of the northern zone, where major exploitation is present. Moreover, a relative minimum of WL (about -2 m a.s.l.) is present near the shoreline in the southern zone. In the latter

  15. Environmental isotope study related to groundwater age, flow system and saline water origin in Quaternary aquifers of North China Plain

    International Nuclear Information System (INIS)

    Zhang Zhigan; Payne, B.R.

    1988-01-01

    An isotopic hydrology section across the North China Plain has been studied to investigate problems of groundwater age, flow system and saline water origin in a semi-arid pre-mountain artesian basin. Two local and one regional flow system along the section have been recognized. Turnover time of water for alluvial fan, shallow and regional systems are estimated to be the order of 10 2 , 10 3 , and 10 4 years respectively. Specific flow rates for the three systems have been calculated. Only less than 5 percent of flow from alluvial fan is drained by the regional flow system and the rest, in natural conditions, discharges at surface in the front edge of an alluvial fan and forms a groundwater discharge belt at a good distance away from the mountain foot. Developed in the alluvial plain and coastal plain areas the shallow flow system embraces a series of small local systems. Groundwater in these systems appears to be the salt carrier during continental salinization. It washes salt out of the recharge area and deep-occurred strata by circulating and carries it up to the surface in lowland areas. Consequently, in parallel with salinization at surface a desalinization process occurs at depth, which provides an additional explanation for the existing thick deep fresh water zone in most arid and semi-arid regions, where continental salting process is in progress. (author). 6 refs, 8 figs, 4 tabs

  16. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer, Idaho National Laboratory, Idaho, Emphasis 1999-2001

    Science.gov (United States)

    Davis, Linda C.

    2006-01-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from wells in the USGS ground-water monitoring networks during 1999-2001. Water in the Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. Water levels in wells rose in the northern and west-central parts of the INL by 1 to 3 feet, and declined in the southwestern parts of the INL by up to 4 feet during 1999-2001. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 1999-2001. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge. Tritium concentrations in water samples decreased as much as 8.3 picocuries per milliliter (pCi/mL) during 1999-2001, ranging from 0.43?0.14 to 13.6?0.6 pCi/mL in October 2001. Tritium concentrations in five wells near the Idaho Nuclear Technology and Engineering Center (INTEC) increased a few picocuries per milliliter from October 2000 to October 2001. Strontium-90 concentrations decreased or remained

  17. Geologic framework and hydrogeologic characteristics of the outcrops of the Edwards and Trinity aquifers, Medina Lake area, Texas

    Science.gov (United States)

    Small, Ted A.; Lambert, Rebecca B.

    1998-01-01

    The hydrogeologic subdivisions of the Edwards aquifer outcrop in the Medina Lake area in Medina and Bandera Counties generally are porous and permeable. The most porous and permeable appear to be hydrogeologic subdivision VI, the Kirschberg evaporite member of the Kainer Formation; and hydrogeologic subdivision III, the leached and collapsed members, undivided, of the Person Formation. The porosity of the rocks in the Edwards aquifer outcrop is related to depositional or diagenetic elements along specific stratigraphic horizons (fabric selective) and to dissolution and structural elements that can occur in any lithostratigraphic horizon (not fabric selective). Permeability depends on the physical properties of the rock such as size, shape, and distribution of pores.

  18. Relation of water chemistry of the Edwards aquifer to hydrogeology and land use, San Antonio Region, Texas

    Science.gov (United States)

    Buszka, Paul M.

    1987-01-01

    Water-chemistry data from the Edwards aquifer for 1976-85, consisting of nearly 1,500 chemical analyses from 280 wells and 3 springs, were used to statistically evaluate relations among ground-water chemistry, hydrogeology, and land use. Five land uses associated with sampled wells were classified on the basis of published information and field surveys. Four major subareas of the aquifer were defined to reflect the relative susceptibility of ground water to contamination originating from human activities using hydrogeologic and tritium data.

  19. Ground-Water Age and Quality in the High Plains Aquifer near Seward, Nebraska, 2003-04

    Science.gov (United States)

    Stanton, Jennifer S.; Landon, Matthew K.; Turco, Michael J.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the City of Seward, Nebraska, conducted a study of ground-water age and quality to improve understanding of: (1) traveltimes from recharge areas to public-supply wells, (2) the effects of geochemical reactions in the aquifer on water quality, and (3) how water quality has changed historically in response to land-use practices. Samples were collected from four supply wells in the Seward west well field and from nine monitoring wells along two approximate ground-water flow paths leading to the well field. Concentrations of three different chlorofluorocarbons (CFC-12, CFC-11, and CFC-113), sulfur hexafluoride (SF6), and ratios of tritium (3H) to helium-3 (3He) isotope derived from radioactive decay of 3H were used to determine the apparent recharge age of ground-water samples. Age interpretations were based primarily on 3H/3He and CFC-12 data. Estimates of apparent ground-water age from tracer data were complicated by mixing of water of different ages in 10 of the 13 ground-water samples collected. Apparent recharge dates of unmixed ground-water samples or mean recharge dates of young fractions of mixed water in samples collected from monitoring wells ranged from 1985 to 2002. For monitoring-well samples containing mixed water, the fraction of the sample composed of young water ranged from 26 to 77 percent of the sample. Apparent mean recharge dates of young fractions in samples collected from four supply wells in the Seward west well field ranged from about 1980 to 1990. Estimated fractions of the samples composed of young water ranged from 39 to 54 percent. It is implicit in the mixing calculations that the remainder of the sample that is not young water is composed of water that is more than 60 years old and contains no detectable quantities of modern atmospheric tracers. Estimated fractions of the mixed samples composed of 'old' water ranged from 23 to 74 percent. Although alternative mixing models can be used to

  20. Tracers Detect Aquifer Contamination

    National Research Council Canada - National Science Library

    Enfield, Carl

    1995-01-01

    The EPA's National Laboratory (NRMRL) at Ada, OK, along with the University of Florida and the University of Texas, have developed a tracer procedure to detect the amount of contamination in aquifer formations...

  1. Straddle-packer determination of the vertical distribution of hydraulic properties in the Snake River Plain Aquifer at well USGS-44, Idaho Chemical Processing Plant, INEL

    International Nuclear Information System (INIS)

    Monks, J.I.

    1994-01-01

    Many of the monitor wells that penetrate the upper portion of the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL) are open over large intervals that include multiple water-bearing zones. Most of these wells are equipped with dedicated submersible pumps. Water of varying quality from different water-bearing zones is mixed within the wells. The hydrologic properties of individual water bearing zones are difficult to determine. Water quality and water-level data on organic, heavy metal, and radioactive contaminants have been collected, reported, and interpreted from these monitor wells for more than forty years. The problems associated with well completions over large intervals through multiple water-bearing zones raise significant questions about the data. A straddle-packer system was developed and applied at the INEL site to investigate the monitor well network. The straddle-packer system, hydraulic testing methods, data analysis procedures, and testing results are described in this report. The straddle-packer system and the straddle-packer testing and data evaluation procedures can be improved for future testing at the INEL site. Recommended improvements to the straddle-packer system are: (1) improved transducer pressure sensing systems, (2) faster opening riser valve, and (3) an in-line flowmeter in the riser pipe. Testing and data evaluation recommended improvements are: (1) simultaneous valve opening during slug tests, (2) analysis of the ratio of the times for head change and recovery to occur, (3) constant-drawdown tests of high transmissivity intervals, (4) multiple-well aquifer tests, and (5) long term head monitoring

  2. Numerical modelling of groundwater flow to understand the impacts of pumping on arsenic migration in the aquifer of North Bengal Plain

    Science.gov (United States)

    Sikdar, P. K.; Chakraborty, Surajit

    2017-03-01

    In this paper, numerical simulations of regional-scale groundwater flow of North Bengal Plain have been carried out with special emphasis on the arsenic (As)-rich alluvium filled gap between the Rajmahal hills on the west and the Garo hills on the east. The proposed concern of this modelling arose from development that has led to large water table declines in the urban area of English Bazar block, Malda district, West Bengal and possible transport of As in the near future from the adjacent As-polluted aquifer. Groundwater occurs under unconfined condition in a thick zone of saturation within the Quaternary alluvial sediments. Modelling indicates that current pumping has significantly changed the groundwater flowpaths from pre-development condition. At the present pumping rate, the pumping wells of the urban area may remain uncontaminated till the next 25 yrs, considering only pure advection of water but some water from the As-polluted zone may enter wells by 50 yrs. But geochemical and other processes such as adsorption, precipitation, redox reaction and microbial activity may significantly retard the predicted rate by advective transport. In the rural areas, majority of the water pumped from the aquifer is for irrigation, which is continuously re-applied on the surface. The near-vertical nature of the flowpaths indicates that, where As is present or released at shallow depths, it will continue to occur in pumping wells. Modelling also indicates that placing all the pumping wells at depths below 100 m may not provide As-free water permanently.

  3. Garrison Institute on Aging – Lubbock Retired and Senior Volunteer Program (RSVP Provides Services to South Plains, Texas

    Directory of Open Access Journals (Sweden)

    Joan eBlackmon

    2015-12-01

    Full Text Available The Texas Tech University Health Sciences (TTUHSC Garrison Institute on Aging (GIA was established to promote healthy aging through cutting edge research on Alzheimer ’s disease (AD and other diseases of aging, through innovative educational and community outreach opportunities for students, clinicians, researchers, health care providers, and the public. The GIA sponsors the Lubbock Retired and Senior Volunteer Program (RSVP. According to RSVP Operates Handbook, RSVP is one of the largest volunteer efforts in the nation. Through this program, volunteer skills and talents can be matched to assist with community needs. It is a federally funded program under the guidance of the Corporation for National and Community Service (CNCS and Senior Corps (SC. Volunteers that participate in RSVP provide service in the following areas: food security, environmental awareness building and education, community need-based volunteer programs, and veteran services.

  4. Linking groundwater dissolved organic matter to sedimentary organic matter from a fluvio-lacustrine aquifer at Jianghan Plain, China by EEM-PARAFAC and hydrochemical analyses.

    Science.gov (United States)

    Huang, Shuang-bing; Wang, Yan-xin; Ma, Teng; Tong, Lei; Wang, Yan-yan; Liu, Chang-rong; Zhao, Long

    2015-10-01

    The sources of dissolved organic matter (DOM) in groundwater are important to groundwater chemistry and quality. This study examined similarities in the nature of DOM and investigated the link between groundwater DOM (GDOM) and sedimentary organic matter (SOM) from a lacustrine-alluvial aquifer at Jianghan Plain. Sediment, groundwater and surface water samples were employed for SOM extraction, optical and/or chemical characterization, and subsequent fluorescence excitation-emission matrix (EEM) and parallel factor analyses (PARAFAC). Spectroscopic properties of bulk DOM pools showed that indices indicative of GDOM (e.g., biological source properties, humification level, aromaticity and molecule mobility) varied within the ranges of those of two extracted end-members of SOM: humic-like materials and microbe-associated materials. The coexistence of PARAFAC compositions and the sustaining internal relationship between GDOM and extracted SOM indicate a similar source. The results from principal component analyses with selected spectroscopic indices showed that GDOM exhibited a transition trend regarding its nature: from refractory high-humification DOM to intermediate humification DOM and then to microbe-associated DOM, with decreasing molecular weight. Correlations of spectroscopic indices with physicochemical parameters of the groundwater suggested that GDOM was released from SOM and was modified by microbial diagenetic processes. The current study demonstrated the associations of GDOM with SOM from a spectroscopic viewpoint and provided new evidence supporting SOM as the source of GDOM. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Springwater geochemistry at Honey Creek State Natural Area, central Texas: Implications for surface water and groundwater interaction in a karst aquifer

    Science.gov (United States)

    Musgrove, M.; Stern, L. A.; Banner, J. L.

    2010-06-01

    SummaryA two and a half year study of two adjacent watersheds at the Honey Creek State Natural Area (HCSNA) in central Texas was undertaken to evaluate spatial and temporal variations in springwater geochemistry, geochemical evolution processes, and potential effects of brush control on karst watershed hydrology. The watersheds are geologically and geomorphologically similar, and each has springs discharging into Honey Creek, a tributary to the Guadalupe River. Springwater geochemistry is considered in a regional context of aquifer components including soil water, cave dripwater, springwater, and phreatic groundwater. Isotopic and trace element variability allows us to identify both vadose and phreatic groundwater contributions to surface water in Honey Creek. Spatial and temporal geochemical data for six springs reveal systematic differences between the two watersheds. Springwater Sr isotope values lie between values for the limestone bedrock and soils at HCSNA, reflecting a balance between these two primary sources of Sr. Sr isotope values for springs within each watershed are consistent with differences between soil compositions. At some of the springs, consistent temporal variability in springwater geochemistry (Sr isotopes, Mg/Ca, and Sr/Ca values) appears to reflect changes in climatic and hydrologic parameters (rainfall/recharge) that affect watershed processes. Springwater geochemistry was unaffected by brush removal at the scale of the HCSNA study. Results of this study build on previous regional studies to provide insight into watershed hydrology and regional hydrologic processes, including connections between surface water, vadose groundwater, and phreatic groundwater.

  6. Site study plan for Upper Aquifer Hydrology Clusters, Deaf Smith County Site, Texas: Surface-based geotechnical field program: Preliminary draft

    International Nuclear Information System (INIS)

    1988-01-01

    As part of site characterization studies, at the Deaf Smith County site, Texas, 15 wells at 5 locations will be completed in the Ogallala Formation and Dockum Group. The purposes of the wells, which are called Upper Aquifer (2) establish background hydrologic and water quality conditions, (3) provide analysis, (4) monitor responses of the shallow hydrologic system to site activities and nearby pumpage for irrigation, (5) collect water samples from both saturated and unsaturated materials to help define recharge rates and ground-water flow patterns, (6) monitor variations on water quality, and (7) define ground-water resources near the site. The test wells will be installed during a 14-month period starting about 1-1/2 years after site characterization activities begin. The Technical Field Services Contractor is responsible for conducting the field program of drilling and testing. Samples and data will be handled and reported in accordance with established Salt Repository Project procedures. A quality assurance program will assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 44 refs., 19 figs., 5 tabs

  7. Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab plain aquifer, Iran

    Science.gov (United States)

    Fijani, Elham; Nadiri, Ata Allah; Asghari Moghaddam, Asghar; Tsai, Frank T.-C.; Dixon, Barnali

    2013-10-01

    Contamination of wells with nitrate-N (NO3-N) poses various threats to human health. Contamination of groundwater is a complex process and full of uncertainty in regional scale. Development of an integrative vulnerability assessment methodology can be useful to effectively manage (including prioritization of limited resource allocation to monitor high risk areas) and protect this valuable freshwater source. This study introduces a supervised committee machine with artificial intelligence (SCMAI) model to improve the DRASTIC method for groundwater vulnerability assessment for the Maragheh-Bonab plain aquifer in Iran. Four different AI models are considered in the SCMAI model, whose input is the DRASTIC parameters. The SCMAI model improves the committee machine artificial intelligence (CMAI) model by replacing the linear combination in the CMAI with a nonlinear supervised ANN framework. To calibrate the AI models, NO3-N concentration data are divided in two datasets for the training and validation purposes. The target value of the AI models in the training step is the corrected vulnerability indices that relate to the first NO3-N concentration dataset. After model training, the AI models are verified by the second NO3-N concentration dataset. The results show that the four AI models are able to improve the DRASTIC method. Since the best AI model performance is not dominant, the SCMAI model is considered to combine the advantages of individual AI models to achieve the optimal performance. The SCMAI method re-predicts the groundwater vulnerability based on the different AI model prediction values. The results show that the SCMAI outperforms individual AI models and committee machine with artificial intelligence (CMAI) model. The SCMAI model ensures that no water well with high NO3-N levels would be classified as low risk and vice versa. The study concludes that the SCMAI model is an effective model to improve the DRASTIC model and provides a confident estimate of the

  8. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China.

    Science.gov (United States)

    Yao, Linlin; Wang, Yanxin; Tong, Lei; Deng, Yamin; Li, Yonggang; Gan, Yiqun; Guo, Wei; Dong, Chuangju; Duan, Yanhua; Zhao, Ke

    2017-01-01

    The occurrence of 14 antibiotics (fluoroquinolones, tetracyclines, macrolides and sulfonamides) in groundwater and surface water at Jianghan Plain was investigated during three seasons. The total concentrations of target compounds in the water samples were higher in spring than those in summer and winter. Erythromycin was the predominant antibiotic in surface water samples with an average value of 1.60μg/L, 0.772μg/L and 0.546μg/L respectively in spring, summer and winter. In groundwater samples, fluoroquinolones and tetracyclines accounted for the dominant proportion of total antibiotic residues. The vertical distributions of total antibiotics in groundwater samples from three different depths boreholes (10m, 25m, and 50m) exhibited irregular fluctuations. Consistently decreasing of antibiotic residues with increasing of depth was observed in four (G01, G02, G03 and G05) groundwater sampling sites over three seasons. However, at the sampling sites G07 and G08, the pronounced high concentrations of total antibiotic residues were detected in water samples from 50m deep boreholes instead of those at upper aquifer in winter sampling campaign, with the total concentrations of 0.201μg/L and 0.100μg/L respectively. The environmental risks posed by the 14 antibiotics were assessed by using the methods of risk quotient and mixture risk quotient for algae, daphnids and fish in surface water and groundwater. The results suggested that algae might be the aquatic organism most sensitive to the antibiotics, with the highest risk levels posed by erythromycin in surface water and by ciprofloxacin in groundwater among the 14 antibiotics. In addition, the comparison between detected antibiotics in groundwater samples and the reported effective concentrations of antibiotics on denitrification by denitrifying bacteria, indicating this biogeochemical process driven by microorganisms won't be inhibitory influenced by the antibiotic residues in groundwater. Copyright © 2016

  9. Age dating ground water by use of chlorofluorocarbons (CCl3F and CCl2F2), and distribution of chlorofluorocarbons in the unsaturated zone, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Busenberg, E.; Weeks, E.P.; Plummer, L.N.; Bartholomay, R.C.

    1993-04-01

    Detectable concentrations of chlorofluorocarbons (CFC's) were observed in ground water and unsaturated-zone air at the Idaho National Engineering Laboratory (INEL) and vicinity. The recharge ages of waters were determined to be from 4 to more than 50 years on the basis of CFC concentrations and other environmental data; most ground waters have ages of 14 to 30 years. These results indicate that young ground water was added at various locations to the older regional ground water (greater than 50 years) within and outside the INEL boundaries. The wells drilled into the Snake River Plain aquifer at INEL sampled mainly this local recharge. The Big Lost River, Birch Creek, the Little Lost River, and the Mud Lake-Terreton area appear to be major sources of recharge of the Snake River Plain aquifer at INEL. An average recharge temperature of 9.7±1.3 degrees C (degrees Celsius) was calculated from dissolved nitrogen and argon concentrations in the ground waters, a temperature that is similar to the mean annual soil temperature of 9 degrees C measured at INEL. This similarity indicates that the aquifer was recharged at INEL and not at higher elevations that would have cooler soil temperatures than INEL. Soil-gas concentrations at Test Area North (TAN) are explained by diffusion theory

  10. Surface complexation modeling of groundwater arsenic mobility: Results of a forced gradient experiment in a Red River flood plain aquifer, Vietnam

    DEFF Research Database (Denmark)

    Jessen, Søren; Postma, Dieke; Larsen, Flemming

    2012-01-01

    , suggesting a comparable As(III) affinity of Holocene and Pleistocene aquifer sediments. A forced gradient field experiment was conducted in a bank aquifer adjacent to a tributary channel to the Red River, and the passage in the aquifer of mixed groundwater containing up to 74% channel water was observed......Three surface complexation models (SCMs) developed for, respectively, ferrihydrite, goethite and sorption data for a Pleistocene oxidized aquifer sediment from Bangladesh were used to explore the effect of multicomponent adsorption processes on As mobility in a reduced Holocene floodplain aquifer......(III) while PO43− and Fe(II) form the predominant surface species. The SCM for Pleistocene aquifer sediment resembles most the goethite SCM but shows more Si sorption. Compiled As(III) adsorption data for Holocene sediment was also well described by the SCM determined for Pleistocene aquifer sediment...

  11. Application of Surface Geophysical Methods, With Emphasis on Magnetic Resonance Soundings, to Characterize the Hydrostratigraphy of the Brazos River Alluvium Aquifer, College Station, Texas, July 2006 - A Pilot Study

    Science.gov (United States)

    Shah, Sachin D.; Kress, Wade H.; Legchenko, Anatoly

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, used surface geophysical methods at the Texas A&M University Brazos River Hydrologic Field Research Site near College Station, Texas, in a pilot study, to characterize the hydrostratigraphic properties of the Brazos River alluvium aquifer and determine the effectiveness of the methods to aid in generating an improved ground-water availability model. Three non-invasive surface geophysical methods were used to characterize the electrical stratigraphy and hydraulic properties and to interpret the hydrostratigraphy of the Brazos River alluvium aquifer. Two methods, time-domain electromagnetic (TDEM) soundings and two-dimensional direct-current (2D-DC) resistivity imaging, were used to define the lateral and vertical extent of the Ships clay, the alluvium of the Brazos River alluvium aquifer, and the underlying Yegua Formation. Magnetic resonance sounding (MRS), a recently developed geophysical method, was used to derive estimates of the hydrologic properties including percentage water content and hydraulic conductivity. Results from the geophysics study demonstrated the usefulness of combined TDEM, 2D-DC resistivity, and MRS methods to reduce the need for additional boreholes in areas with data gaps and to provide more accurate information for ground-water availability models. Stratigraphically, the principal finding of this study is the relation between electrical resistivity and the depth and thickness of the subsurface hydrostratigraphic units at the site. TDEM data defined a three-layer electrical stratigraphy corresponding to a conductor-resistor-conductor that represents the hydrostratigraphic units - the Ships clay, the alluvium of the Brazos River alluvium aquifer, and the Yegua Formation. Sharp electrical boundaries occur at about 4 to 6 and 20 to 22 meters below land surface based on the TDEM data and define the geometry of the more resistive Brazos River alluvium aquifer

  12. Woodville Karst Plain, North Florida

    OpenAIRE

    2006-01-01

    Map showing the largest mapped underwater cave systems and conduit flow paths confirmed by tracer testing relative to surface streams, sinkholes and potentiometric surface of the Florida aquifer in the Woodville Karst Plain, Florida

  13. Estimating nitrate concentrations in groundwater at selected wells and springs in the surficial aquifer system and Upper Floridan aquifer, Dougherty Plain and Marianna Lowlands, Georgia, Florida, and Alabama, 2002-50

    Science.gov (United States)

    Crandall, Christy A.; Katz, Brian G.; Berndt, Marian P.

    2013-01-01

    Groundwater from the surficial aquifer system and Upper Floridan aquifer in the Dougherty Plain and Marianna Lowlands in southwestern Georgia, northwestern Florida, and southeastern Alabama is affected by elevated nitrate concentrations as a result of the vulnerability of the aquifer, irrigation water-supply development, and intensive agricultural land use. The region relies primarily on groundwater from the Upper Floridan aquifer for drinking-water and irrigation supply. Elevated nitrate concentrations in drinking water are a concern because infants under 6 months of age who drink water containing nitrate concentrations above the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter as nitrogen can become seriously ill with blue baby syndrome. In response to concerns about water quality in domestic wells and in springs in the lower Apalachicola–Chattahoochee–Flint River Basin, the Florida Department of Environmental Protection funded a study in cooperation with the U.S. Geological Survey to examine water quality in groundwater and springs that provide base flow to the Chipola River. A three-dimensional, steady-state, regional-scale groundwater-flow model and two local-scale models were used in conjunction with particle tracking to identify travel times and areas contributing recharge to six groundwater sites—three long-term monitor wells (CP-18A, CP-21A, and RF-41) and three springs (Jackson Blue Spring, Baltzell Springs Group, and Sandbag Spring) in the lower Apalachicola–Chattahoochee–Flint River Basin. Estimated nitrate input to groundwater at land surface, based on previous studies of nitrogen fertilizer sales and atmospheric nitrate deposition data, were used in the advective transport models for the period 2002 to 2050. Nitrate concentrations in groundwater samples collected from the six sites during 1993 to 2007 and groundwater age tracer data were used to calibrate the transport aspect of the simulations

  14. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2009–10

    Science.gov (United States)

    Twining, Brian V.; Fisher, Jason C.

    2012-01-01

    During 2009 and 2010, the U.S. Geological Survey’s Idaho National Laboratory Project Office, in cooperation with the U.S. Department of Energy, collected quarterly, depth-discrete measurements of fluid pressure and temperature in nine boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Multilevel monitoring at the Idaho National Laboratory has been ongoing since 2006. This report summarizes data collected from three multilevel monitoring wells installed during 2009 and 2010 and presents updates to six multilevel monitoring wells. Hydraulic heads (heads) and groundwater temperatures were monitored from 9 multilevel monitoring wells, including 120 hydraulically isolated depth intervals from 448.0 to 1,377.6 feet below land surface. Quarterly head and temperature profiles reveal unique patterns for vertical examination of the aquifer’s complex basalt and sediment stratigraphy, proximity to aquifer recharge and discharge, and groundwater flow. These features contribute to some of the localized variability even though the general profile shape remained consistent over the period of record. Major inflections in the head profiles almost always coincided with low-permeability sediment layers and occasionally thick sequences of dense basalt. However, the presence of a sediment layer or dense basalt layer was insufficient for identifying the location of a major head change within a borehole without knowing the true areal extent and relative transmissivity of the lithologic unit. Temperature profiles for boreholes completed within the Big Lost Trough indicate linear conductive trends; whereas, temperature profiles for boreholes completed within the axial volcanic high indicate mostly convective heat transfer resulting from the vertical movement of groundwater. Additionally, temperature profiles

  15. Depth and temporal variations in water quality of the Snake River Plain aquifer in well USGS-59 near the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Frederick, D.B.; Johnson, G.S.

    1997-03-01

    In-situ measurements of the specific conductance and temperature of ground water in the Snake River Plain aquifer were collected in observation well USGS-59 near the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. These parameters were monitored at various depths in the aquifer from October 1994 to August 1995. The specific conductance of ground water in well USGS-59, as measured in the borehole, ranged from about 450 to 900 microS/cm at standard temperature (25 C). The pumping cycle of the production wells at the Idaho Chemical Processing Plant causes changes in borehole circulation patterns, and as a result the specific conductance of ground water at some depths in the well varies by up to 50% over a period of about 14 hours. However, these variations were not observed at all depths, or during each pumping cycle. The temperature of ground water in the well was typically between 12.8 and 13.8 C. The results of this study indicate that temporal variations in specific conductance of the ground water at this location are caused by an external stress on the aquifer--pumping of a production well approximately 4,000 feet away. These variations are believed to result from vertical stratification of water quality in the aquifer and a subsequent change in intrawell flow related to pumping. When sampling techniques that do not induce a stress on the aquifer (i.e., thief sampling) are used, knowledge of external stresses on the system at the time of sampling may aid in the interpretation of geochemical data

  16. Groundwater quality in the Columbia Plateau, Snake River Plain, and Oahu basaltic-rock and basin-fill aquifers in the Northwestern United States and Hawaii, 1992-2010

    Science.gov (United States)

    Frans, Lonna M.; Rupert, Michael G.; Hunt, Charles D.; Skinner, Kenneth D.

    2012-01-01

    This assessment of groundwater-quality conditions of the Columbia Plateau, Snake River Plain, and Oahu for the period 1992–2010 is part of the U.S. Geological Survey’s National Water Quality Assessment (NAWQA) program. It shows where, when, why, and how specific water-quality conditions occur in groundwater of the three study areas and yields science-based implications for assessing and managing the quality of these water resources. The primary aquifers in the Columbia Plateau, Snake River Plain, and Oahu are mostly composed of fractured basalt, which makes their hydrology and geochemistry similar. In spite of the hydrogeologic similarities, there are climatic differences that affect the agricultural practices overlying the aquifers, which in turn affect the groundwater quality. Understanding groundwater-quality conditions and the natural and human factors that control groundwater quality is important because of the implications to human health, the sustainability of rural agricultural economies, and the substantial costs associated with land and water management, conservation, and regulation.

  17. Conductivity Investigation of Infiltration Through a Playa Lake Near Lubbock, Texas

    Science.gov (United States)

    Taylor, T. L.

    2017-12-01

    The playas of the High Plains of the United States are known to contribute to the recharge of the underlying Ogallala aquifer. The investigation of the High Plains playa-aquifer system began in 1895. Since then there has been many conceptual models about recharge beneath playa floors and how they recharge theOgallala aquifer. We are using a compartmentalized playa located in the High Plains of Texas which has the greatest concentration of playas in the US. It is estimated that there is anywhere between 22,000 and 60,000 playas present. Investigation the pathways forinfiltration thorugh playa is necessary to understand therecharge to the Ogallala aquifer.The purpose of this electromagnetic investigation is to study the fluid flow path within a playa structure bymeasurements of conductivity in the subsurface. The measurements have been processed to show a 2-D profile of the Playa. Conductivity measurements were collected with an EM31 and so are confined to the top few meters of the soil. Regions with high conductivity are assumed to contain more water than the areas with low conductivity. Repeated profiles collected before and after rain events to identify regions that accommodate more infiltration than other. The results indicate that there is greater infiltration at the annulus of the playa than in the center.

  18. Ogallala Aquifer Mapping Program

    International Nuclear Information System (INIS)

    1984-10-01

    A computerized data file has been established which can be used efficiently by the contour-plotting program SURFACE II to produce maps of the Ogallala aquifer in 17 counties of the Texas Panhandle. The data collected have been evaluated and compiled into three sets, from which SURFACE II can generate maps of well control, aquifer thickness, saturated thickness, water level, and the difference between virgin (pre-1942) and recent (1979 to 1981) water levels. 29 figures, 1 table

  19. Assessing Uncertainty and Repeatability in Time-Lapse VSP Monitoring of CO2 Injection in a Brine Aquifer, Frio Formation, Texas (A Case Study)

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Siamak [Univ. of California, Berkeley, CA (United States). Dept. of Civil and Environmental Engineering; Daley, Thomas M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2013-02-07

    This study was done to assess the repeatability and uncertainty of time-lapse VSP response to CO2 injection in the Frio formation near Houston Texas. A work flow was built to assess the effect of time-lapse injected CO2 into two Frio brine reservoir intervals, the ‘C’ sand (Frio1) and the ‘Blue sand’ (Frio2). The time-lapse seismic amplitude variations with sensor depth for both reservoirs Frio1 and Frio2 were computed by subtracting the seismic response of the base survey from each of the two monitor seismic surveys. Source site 1 has been considered as one of the best sites for evaluating the time-lapse response after injection. For site 1, the computed timelapse NRMS levels after processing had been compared to the estimated time-lapse NRMS level before processing for different control reflectors, and for brine aquifers Frio1, and Frio2 to quantify detectability of amplitude difference. As the main interest is to analyze the time-lapse amplitude variations, different scenarios have been considered. Three different survey scenarios were considered: the base survey which was performed before injection, monitor1 performed after the first injection operation, and monitor2 which was after the second injection. The first scenario was base-monitor1, the second was basemonitor2, and the third was monitor1-monitor2. We considered three ‘control’ reflections above the Frio to assist removal of overburden changes, and concluded that third control reflector (CR3) is the most favorable for the first scenario in terms of NRMS response, and first control reflector (CR1) is the most favorable for the second and third scenarios in terms of NRMS response. The NRMS parameter is shown to be a useful measure to assess the effect of processing on time-lapse data. The overall NRMS for the Frio VSP data set was found to be in the range of 30% to 80% following basic processing. This could be considered as an estimated baseline in assessing the utility

  20. Chemical and physical hydrogeology of coal, mixed coal-sandstone and sandstone aquifers from coal-bearing formations in the Alberta Plains region, Alberta

    International Nuclear Information System (INIS)

    Lemay, T.G.

    2003-09-01

    With the decline of conventional oil and gas reserves, natural gas from coal (NGC) is an unconventional gas resource that is receiving much attention from petroleum exploration and development companies in Alberta. Although the volume of the NGC resource is large, there are many challenges facing NGC development in Alberta, including technical and economic issues, land access, water disposal, water diversion and access to information. Exploration and development of NGC in Alberta is relatively new, therefore there is little baseline data on which to base regulatory strategies. Some important information gaps have been filled through water well sampling in coal, mixed coal-sandstone and sandstone aquifers throughout Alberta. Analyses focused on the chemical and physical characteristics aquifers in use for domestic or agricultural purposes. Aquifer depths were generally less than 100 metres. Samples collected from Paskapoo-Scollard Formation, Horseshoe Canyon Formation and Belly River Group aquifers exceed Canadian water quality guideline values with respect to pH, sodium, manganese, chloride, chromium, sulphate, phenols and total dissolved solids. Pump tests conducted within the aquifers indicate that the groundwater flow is complicated. Water quality will have to be carefully managed to ensure responsible disposal practices are followed. Future studies will focus on understanding the chemical and biological process that occur within the aquifers and the possible link between these processes and gas generation. Mitigation and disposal strategies for produced water will also be developed along with exploration strategies using information obtained from hydrogeologic studies. 254 refs., 182 tabs., 100 figs., 3 appendices

  1. Surface complexation modeling of groundwater arsenic mobility: Results of a forced gradient experiment in a Red River flood plain aquifer, Vietnam

    Science.gov (United States)

    Jessen, Søren; Postma, Dieke; Larsen, Flemming; Nhan, Pham Quy; Hoa, Le Quynh; Trang, Pham Thi Kim; Long, Tran Vu; Viet, Pham Hung; Jakobsen, Rasmus

    2012-12-01

    Three surface complexation models (SCMs) developed for, respectively, ferrihydrite, goethite and sorption data for a Pleistocene oxidized aquifer sediment from Bangladesh were used to explore the effect of multicomponent adsorption processes on As mobility in a reduced Holocene floodplain aquifer along the Red River, Vietnam. The SCMs for ferrihydrite and goethite yielded very different results. The ferrihydrite SCM favors As(III) over As(V) and has carbonate and silica species as the main competitors for surface sites. In contrast, the goethite SCM has a greater affinity for As(V) over As(III) while PO43- and Fe(II) form the predominant surface species. The SCM for Pleistocene aquifer sediment resembles most the goethite SCM but shows more Si sorption. Compiled As(III) adsorption data for Holocene sediment was also well described by the SCM determined for Pleistocene aquifer sediment, suggesting a comparable As(III) affinity of Holocene and Pleistocene aquifer sediments. A forced gradient field experiment was conducted in a bank aquifer adjacent to a tributary channel to the Red River, and the passage in the aquifer of mixed groundwater containing up to 74% channel water was observed. The concentrations of As (SCM correctly predicts desorption for As(III) but for Si and PO43- it predicts an increased adsorption instead of desorption. The goethite SCM correctly predicts desorption of both As(III) and PO43- but failed in the prediction of Si desorption. These results indicate that the prediction of As mobility, by using SCMs for synthetic Fe-oxides, will be strongly dependent on the model chosen. The SCM based on the Pleistocene aquifer sediment predicts the desorption of As(III), PO43- and Si quite superiorly, as compared to the SCMs for ferrihydrite and goethite, even though Si desorption is still somewhat under-predicted. The observation that a SCM calibrated on a different sediment can predict our field results so well suggests that sediment based SCMs may be a

  2. Determination of recharge modes of aquifers by use of chemical and isotopic tracers. Case study of the contact zone between Western High-Atlas Chain and Souss Plain (SW Morocco

    Directory of Open Access Journals (Sweden)

    Tagma, T.

    2008-06-01

    Full Text Available Determination of the origin of recharge of the unconfined aquifer in the right side of the Souss wadi between Agadir and Taroudant (South-western of Morocco was based on the use of hydrochemical and isotopic analysis of groundwater, surface water and springs of the contact zone between the High-Atlas Chain and the Souss plain.The correspondence in the space evolution of the various chemical elements of evaporitic origin (SO42-, Cl-, Sr2+ in groundwater, piedmont springs, and surface water reveals the existence of recharge water from the adjacent High-Atlas Chain.The various recharge modes of the different aquifers (High Atlas and Souss plain determined by isotopic analysis, shows that the source of groundwater for the unconfined Souss aquifer seems to be composite between a direct infiltration on the High-Atlas tributaries and a remote recharge from the bordering High Atlas aquifers.La determinación del origen de los aportes de agua de la capa freática de la ribera derecha del rio Souss entre Agadir y Taroudant (Suroeste de Marruecos se ha basado en la hidroquímica y el análisis isotópico de las aguas subterráneas, aguas superficiales y manantiales de la zona de contacto entre el Alto Atlas y la llanura de Souss.La correspondencia en la evolución espacial de los diferentes elementos químicos de origen evaporítico (SO42-, Cl-, Sr2+ en las aguas subterráneas, manantiales de pie de monte y aguas superficiales, revela la existencia de una recarga de agua procedente de la cadena del Alto Atlas. El análisis de los modos de recarga de los diferentes acuíferos (Alto Atlas y llanura de Souss determinado por análisis isotópico, demuestra que la alimentación de la capa freática de Souss a partir del Alto Atlas parece ser mixta, compuesta por una infiltración directa de los afluentes del Alto Atlas y una alimentación lejana desde los acuiferos que limitan con el borde del Alto Atlas.

  3. Life beneath the surface of the central Texan Balcones Escarpment: genus Anillinus Casey, 1918 (Coleoptera, Carabidae, Bembidiini: new species, a key to the Texas species, and notes about their way of life and evolution

    Directory of Open Access Journals (Sweden)

    Igor Sokolov

    2014-06-01

    Full Text Available The Texas fauna of the genus Anillinus Casey, 1918 includes three previously described species (A. affabilis (Brues, 1902, A. depressus (Jeannel, 1963 and A. sinuatus (Jeannel, 1963 and four new species here described: A. acutipennis Sokolov & Reddell sp. n. (type locality: Fort Hood area, Bell County, Texas; A. comalensis Sokolov & Kavanaugh sp. n. (type locality: 7 miles W of New Braunfels, Comal County, Texas; A. forthoodensis Sokolov & Reddell sp. n. (type locality: Fort Hood area, Bell County, Texas; A. wisemanensis Sokolov & Kavanaugh sp. n. (type locality: Wiseman Sink, Hays County, Texas. A key for identification of adults of these species is provided. The fauna includes both soil- and cave-inhabiting species restricted to the Balcones Fault Zone and Lampasas Cut Plain and adjacent areas underlain by the Edwards-Trinity Aquifer. Based on morphological and distributional data, we hypothesize that four lineages of endogean Anillinus species extended their geographical ranges from a source area in the Ouachita-Ozark Mountains to the Balconian region in central Texas. There the cavernous Edwards-Trinity aquifer system provided an excellent refugium as the regional climate in the late Tertiary and early Quaternary became increasingly drier, rendering life at the surface nearly impossible for small, litter-inhabiting arthropods. Isolated within the Edwards-Trinity aquifer system, these anilline lineages subsequently differentiated, accounting for the currently known diversity. The paucity of specimens and difficulty in collecting them suggest that additional undiscovered species remain to be found in the region.

  4. Life beneath the surface of the central Texan Balcones Escarpment: genus Anillinus Casey, 1918 (Coleoptera, Carabidae, Bembidiini): new species, a key to the Texas species, and notes about their way of life and evolution.

    Science.gov (United States)

    Sokolov, Igor M; Reddell, James R; Kavanaugh, David H

    2014-01-01

    The Texas fauna of the genus Anillinus Casey, 1918 includes three previously described species (A. affabilis (Brues), 1902, A. depressus (Jeannel), 1963 and A. sinuatus (Jeannel), 1963) and four new species here described: A. acutipennis Sokolov & Reddell, sp. n. (type locality: Fort Hood area, Bell County, Texas); A. comalensis Sokolov & Kavanaugh, sp. n. (type locality: 7 miles W of New Braunfels, Comal County, Texas); A. forthoodensis Sokolov & Reddell, sp. n. (type locality: Fort Hood area, Bell County, Texas); A. wisemanensis Sokolov & Kavanaugh, sp. n. (type locality: Wiseman Sink, Hays County, Texas). A key for identification of adults of these species is provided. The fauna includes both soil- and cave-inhabiting species restricted to the Balcones Fault Zone and Lampasas Cut Plain and adjacent areas underlain by the Edwards-Trinity Aquifer. Based on morphological and distributional data, we hypothesize that four lineages of endogean Anillinus species extended their geographical ranges from a source area in the Ouachita-Ozark Mountains to the Balconian region in central Texas. There the cavernous Edwards-Trinity aquifer system provided an excellent refugium as the regional climate in the late Tertiary and early Quaternary became increasingly drier, rendering life at the surface nearly impossible for small, litter-inhabiting arthropods. Isolated within the Edwards-Trinity aquifer system, these anilline lineages subsequently differentiated, accounting for the currently known diversity. The paucity of specimens and difficulty in collecting them suggest that additional undiscovered species remain to be found in the region.

  5. Multiple Tracer ({sup 4}He, {sup 14}C, {sup 39}Ar, {sup 3}H/{sup 3}He, {sup 85}Kr) Depth Profile in an Extensively Exploited Multilevel Aquifer System in the Venetian Plain, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, A.; Claude, C [Centre Europeen de Recherche et d' Enseignement des Geosciences de l' Environnement, Aix-en-Provence (France); Purtschert, R. [Climate and Environmental Physics, University of Bern (Switzerland); Sueltenfuss, J. [Institute of Environmental Physics, University of Bremen (Germany); Travi, Y. [UMR-EMMAH, Universite d' Avignon et des Pays de Vaucluse, Avignon (France)

    2013-07-15

    Individual dating tracers have their specific inherent properties, advantages and limitations. Apparent {sup 4}He accumulation ages are biased as a function of a prior unknown external helium influx; {sup 14}C (T{sub 1/2}: 5730 a) dating in groundwater requires suitable geochemical correction schemes and {sup 39}Ar (T{sub 1/2}: 269 a) may be affected by underground production. In a multiple tracer study in the Venetian Plain, Italy, using {sup 4}He, {sup 14}C. {sup 39}Ar {sup 3}H/{sup 3}He and {sup 85}Kr data, the groundwater residence times in a depth profile consisting of different separated aquifers between 50-350 m depth are estimated. Moreover, limitations and uncertainties of the applied tracer methods are identified, assessed and quantified. (author)

  6. Water-quality observations of the San Antonio segment of the Edwards aquifer, Texas, with an emphasis on processes influencing nutrient and pesticide geochemistry and factors affecting aquifer vulnerability, 2010–16

    Science.gov (United States)

    Opsahl, Stephen P.; Musgrove, MaryLynn; Mahler, Barbara J.; Lambert, Rebecca B.

    2018-06-07

    As questions regarding the influence of increasing urbanization on water quality in the Edwards aquifer are raised, a better understanding of the sources, fate, and transport of compounds of concern in the aquifer—in particular, nutrients and pesticides—is needed to improve water management decision-making capabilities. The U.S. Geological Survey, in cooperation with the San Antonio Water System, performed a study from 2010 to 2016 to better understand how water quality changes under a range of hydrologic conditions and in contrasting land-cover settings (rural and urban) in the Edwards aquifer. The study design included continuous hydrologic monitoring, continuous water-quality monitoring, and discrete sample collection for a detailed characterization of water quality at a network of sites throughout the aquifer system. The sites were selected to encompass a “source-to-sink” (that is, from aquifer recharge to aquifer discharge) approach. Network sites were selected to characterize rainfall, recharging surface water, and groundwater; groundwater sites included wells in the unconfined part of the aquifer (unconfined wells) and in the confined part of the aquifer (confined wells) and a major discharging spring. Storm-related samples—including rainfall samples, stormwater-runoff (surface-water) samples, and groundwater samples—were collected to characterize the aquifer response to recharge.Elevated nitrate concentrations relative to national background values and the widespread detection of pesticides indicate that the Edwards aquifer is vulnerable to contamination and that vulnerability is affected by factors such as land cover, aquifer hydrogeology, and changes in hydrologic conditions. Greater vulnerability of groundwater in urban areas relative to rural areas was evident from results for urban groundwater sites, which generally had higher nitrate concentrations, elevated δ15N-nitrate values, a greater diversity of pesticides, and higher pesticide

  7. An Update of Hydrologic Conditions and Distribution of Selected Constituents in Water, Snake River Plain Aquifer and Perched-Water Zones, Idaho National Laboratory, Idaho, Emphasis 2002-05

    Science.gov (United States)

    Davis, Linda C.

    2008-01-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer and perched-water zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched-water zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched-water wells in the USGS ground-water monitoring networks during 2002-05. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged primarily from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2001 to March-May 2005, water levels in wells declined throughout the INL area. The declines ranged from about 3 to 8 feet in the southwestern part of the INL, about 10 to 15 feet in the west central part of the INL, and about 6 to 11 feet in the northern part of the INL. Water levels in perched water wells declined also, with the water level dropping below the bottom of the pump in many wells during 2002-05. For radionuclides, concentrations that equal 3s, wheres s is the sample standard deviation, represent a measurement at the minimum detectable concentration, or 'reporting level'. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2002-05. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal

  8. Time series analysis for the estimation of tidal fluctuation effect on different aquifers in a small coastal area of Saijo plain, Ehime prefecture, Japan.

    Science.gov (United States)

    Kumar, Pankaj; Tsujimura, Maki; Nakano, Takanori; Minoru, Tokumasu

    2013-04-01

    Considering the current poor understanding of the seawater-freshwater (SW-FW) interaction pattern at dynamic hydro-geological boundary of coastal aquifers, this work strives to study tidal effect on groundwater quality using chemical tracers combined with environmental isotopes. In situ measurement data of electrical conductivity and groundwater level along with laboratory measurement data of hydro-chemical species were compared with tidal level data measured by Hydrographic and Oceanographic Department, Saijo City, Japan for time series analysis. Result shows that diurnal tides have significant effect on groundwater level as well as its chemical characteristics; however, the magnitude of effect is different in case of different aquifers. Various scatter diagrams were plotted in order to infer mechanisms responsible for water quality change with tidal phase, and results show that cations exchange, selective movement and local SW-FW mixing were likely to be the main processes responsible for water quality changes. It was also found that geological structure of the aquifers is the most important factor affecting the intensity of tidal effect on water quality.

  9. Impeller flow-meter logging of vertical cross flow between basalt aquifers through wells at the Idaho National Engineering Laboratory, Eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Bennecke, W.M.; Wood, S.H.

    1992-01-01

    An impeller flowmeter was used with a COLOG digital acquisition system to determine existing borehole flows, to compare with previous logging results, and to acquire flow measurements of vertical cross-flow of water in the wells between permeable zones in the open-hole intervals. The direction of flow found was predominantly downward with velocities ranging from 0-30 ft/min. Some flow reversals were noted and attributed to nearby pumping wells. USGS wells 44 and 46 were studied in September, 1991 near the Idaho Chemical Processing Plant (ICPP). The results showed a usual overall flow direction downward with flow entering the wells at around 510 to 600 ft. below the land surface. Water exited these wells at lower levels around 550 to 580 ft. Flow velocities ranged up to 24 ft/min. Using published aquifer parameters, the rate of propagation of a pressure change in an aquifer was calculated for the well CPP-2 turning on and off, at 3100 gpm

  10. Analysis of data from test-well sites along the downdip limit of freshwater in the Edwards Aquifer, San Antonio, Texas, 1985-87

    Science.gov (United States)

    Groschen, G.E.

    1994-01-01

    Many researchers have studied the downdip limit of freshwater in the Edwards aquifer or various aspects of the saline-water zone and its relation to the freshwater zone. These studies were summarized and used to synthesize a consistent hydrologic and geochemical framework from which to interpret data from field studies. The concept derived from the previous work on the downdip limit of the freshwater zone is that fresh recharge water entered the aquifer and developed a vast flow system controlled by barrier faults. Some recharge water flows into the saline-water zone rather than toward major freshwater discharge points. The water that enters the salinewater zone continues to dissolve gypsum and dolomite, and calcite precipitates out of the water. This process of dedolomitization has helped to develop the large secondary porosity of the freshwater zone as the downdip limit of the freshwater zone progressively moved downdip in recent geologic time.

  11. Location of irrigated land classified from satellite imagery - High Plains Area, nominal date 1992

    Science.gov (United States)

    Qi, Sharon L.; Konduris, Alexandria; Litke, David W.; Dupree, Jean

    2002-01-01

    Satellite imagery from the Landsat Thematic Mapper (nominal date 1992) was used to classify and map the location of irrigated land overlying the High Plains aquifer. The High Plains aquifer underlies 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The U.S. Geological Survey is conducting a water-quality study of the High Plains aquifer as part of the National Water-Quality Assessment Program. To help interpret data and select sites for the study, it is helpful to know the location of irrigated land within the study area. To date, the only information available for the entire area is 20 years old. To update the data on irrigated land, 40 summer and 40 spring images (nominal date 1992) were acquired from the National Land Cover Data set and processed using a band-ratio method (Landsat Thematic Mapper band 4 divided by band 3) to enhance the vegetation signatures. The study area was divided into nine subregions with similar environmental characteristics, and a band-ratio threshold was selected from imagery in each subregion that differentiated the cutoff between irrigated and nonirrigated land. The classified images for each subregion were mosaicked to produce an irrigated-land map for the study area. The total amount of irrigated land classified from the 1992 imagery was 13.1 million acres, or about 12 percent of the total land in the High Plains. This estimate is approximately 1.5 percent greater than the amount of irrigated land reported in the 1992 Census of Agriculture (12.8 millions acres).

  12. Assessing the impacts of sea-level rise and precipitation change on the surficial aquifer in the low-lying coastal alluvial plains and barrier islands, east-central Florida (USA)

    Science.gov (United States)

    Xiao, Han; Wang, Dingbao; Hagen, Scott C.; Medeiros, Stephen C.; Hall, Carlton R.

    2016-11-01

    A three-dimensional variable-density groundwater flow and salinity transport model is implemented using the SEAWAT code to quantify the spatial variation of water-table depth and salinity of the surficial aquifer in Merritt Island and Cape Canaveral Island in east-central Florida (USA) under steady-state 2010 hydrologic and hydrogeologic conditions. The developed model is referred to as the `reference' model and calibrated against field-measured groundwater levels and a map of land use and land cover. Then, five prediction/projection models are developed based on modification of the boundary conditions of the calibrated `reference' model to quantify climate change impacts under various scenarios of sea-level rise and precipitation change projected to 2050. Model results indicate that west Merritt Island will encounter lowland inundation and saltwater intrusion due to its low elevation and flat topography, while climate change impacts on Cape Canaveral Island and east Merritt Island are not significant. The SEAWAT models developed for this study are useful and effective tools for water resources management, land use planning, and climate-change adaptation decision-making in these and other low-lying coastal alluvial plains and barrier island systems.

  13. State Aquifer Recharge Atlas Plates, Geographic NAD83, LDEQ (1999) [aquifer_recharge_potential_LDEQ_1988

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a polygon dataset depicting the boundaries of aquifer systems in the state of Louisiana and adjacent areas of Texas, Arkansas and a portion of Mississippi....

  14. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2009–11

    Science.gov (United States)

    Davis, Linda C.; Bartholomay, Roy C.; Rattray, Gordon W.

    2013-01-01

    Since 1952, wastewater discharged to infiltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer, multilevel monitoring system (MLMS), and perched groundwater wells in the USGS groundwater monitoring networks during 2009–11. Water in the ESRP aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March–May 2009 to March–May 2011, water levels in wells generally declined in the northern part of the INL. Water levels generally rose in the central and eastern parts of the INL. Detectable concentrations of radiochemical constituents in water samples from aquifer wells or MLMS equipped wells in the ESRP aquifer at the INL generally decreased or remained constant during 2009–11. Decreases in concentrations were attributed to radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In 2011, concentrations of tritium in groundwater from 50 of 127 aquifer wells were greater than or equal to the reporting level and ranged from 200±60 to 7,000±260 picocuries per liter. Tritium concentrations from one or more discrete zones from four wells equipped with MLMS were greater than or

  15. Analyses and estimates of hydraulic conductivity from slug tests in alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    Science.gov (United States)

    Houston, Natalie A.; Braun, Christopher L.

    2004-01-01

    This report describes the collection, analyses, and distribution of hydraulic-conductivity data obtained from slug tests completed in the alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas, during October 2002 and August 2003 and summarizes previously available hydraulic-conductivity data. The U.S. Geological Survey, in cooperation with the U.S. Air Force, completed 30 slug tests in October 2002 and August 2003 to obtain estimates of horizontal hydraulic conductivity to use as initial values in a ground-water-flow model for the site. The tests were done by placing a polyvinyl-chloride slug of known volume beneath the water level in selected wells, removing the slug, and measuring the resulting water-level recovery over time. The water levels were measured with a pressure transducer and recorded with a data logger. Hydraulic-conductivity values were estimated from an analytical relation between the instantaneous displacement of water in a well bore and the resulting rate of head change. Although nearly two-thirds of the tested wells recovered 90 percent of their slug-induced head change in less than 2 minutes, 90-percent recovery times ranged from 3 seconds to 35 minutes. The estimates of hydraulic conductivity range from 0.2 to 200 feet per day. Eighty-three percent of the estimates are between 1 and 100 feet per day.

  16. An integrated hydrogeochemical and isotopic approach to study groundwater Salinization in the overexploited aquifers of Indo-Gangetic Plain, a part of NCR Delhi

    Science.gov (United States)

    Kumari, R.

    2017-12-01

    roundwater resources in arid and semi-arid areas are highly vulnerable to salinity problems. Inadequate availability of surface water supply, vagaries of mansoonal rainfall and overexploitation due to population pressure and rapid landuse change induced decline in groundwater levels and salinization has been observed in many Asian cities. After green revolution, large part of Indo-Gangetic plain groundwater salinization has been reported. One such region is National Capital Region, Delhi- India's largest and the world's second largest agglomeration of people and economic hub of Northern India. The present study includes National capital territory, Delhi, Gurgaon and Faridabad. In the present study, different graphical plots, Piper plot, saturation index values (using PHREEQC), stable isotopes (δ18O and δD) and GIS is used to create the database for analysis of spatial variation in respective water quality parameters as well as to decipher the hydrogeochemical process occurring in the area. Major ions are analysed to describe the composition and distribution of salinization and dissolution/precipitation dynamics. It was observed that groundwater weathering is governed by carbonate and silicate weathering and reverse ion-exchange, however due to semi-arid climate evaporation is also playing a major role in groundwater chemistry and salinity of the area. δ18O and δD regression line of groundwater samples of the study area is below the LMWL also suggest from non-equilibrium fractionation during evaporation. Large lateral variation in chloride concentration indicates impact of evapotranspiration rate during recharge. Most of water facies are of Na-Cl. Stable isotope (δ18O and δD) analysis helps to identify evaporation and to better understand recharge processes and mixing dynamics in the study region. Limited availability of surface water supply, no pricing exists for groundwater extraction has resulted in a widespread decline in the water table and intermixing of

  17. Compaction of Aquifer at Different Depths: Observations from a Vertical GPS Array in the Coastal Center of the University of Houston, Texas

    Science.gov (United States)

    Lee, D.; Kearns, T.; Yang, L.; Wang, G.

    2014-12-01

    Houston and the surrounding Harris County have experienced the detrimental effects of subsidence even prior to World War II, to the extent that the land along Galveston Bay had sunk as much as 20 feet since 1906. One dramatic example is the Brownwood subdivision, a coastal community in Baytown where continuous flooding due to subsidence forced the area to be deemed unlivable and consequently abandoned. Thus, Houston's changes in groundwater and compaction of its aquifers are of relatively high concern to those in the public (infrastructure), private (oil & gas), and international (Port of Houston Authority) sectors. One of the key questions related to the subsidence issue in Houston area is what are the contributions of sediments at different depths, and what particularly is the contribution from shallow sediments? To address these questions, University of Houston has installed a vertical GPS array in the UH Coastal Center in March 2014. The GPS array includes four permanent GPS stations with the antenna pole foundations anchored at different depths below ground surface (-10 m, -7m, -4m, 0 m). A special, double-pipe GPS antenna monument was designed for GPS stations with the array. This project was funded by an NSF grant and a UH internal grant. Five groundwater wells with the depths ranging from 2 m to 100 m below the ground surface were also installed at the UH Coastal Center site. This study will investigate continuous GPS and groundwater level measurements (March-November, 2014) at the UHCC site. It is expected that the GPS array will provide total information on subsidence as well as compaction of aquifers within different depth ranges (0 to -4m, -4 to -7 m, -7 to -10m, and below -10 m). Correlation of land subsidence and groundwater fluctuation will also be investigated.

  18. Application of Near-Surface Remote Sensing and computer algorithms in evaluating impacts of agroecosystem management on Zea mays (corn) phenological development in the Platte River - High Plains Aquifer Long Term Agroecosystem Research Network field sites.

    Science.gov (United States)

    Okalebo, J. A.; Das Choudhury, S.; Awada, T.; Suyker, A.; LeBauer, D.; Newcomb, M.; Ward, R.

    2017-12-01

    The Long-term Agroecosystem Research (LTAR) network is a USDA-ARS effort that focuses on conducting research that addresses current and emerging issues in agriculture related to sustainability and profitability of agroecosystems in the face of climate change and population growth. There are 18 sites across the USA covering key agricultural production regions. In Nebraska, a partnership between the University of Nebraska - Lincoln and ARD/USDA resulted in the establishment of the Platte River - High Plains Aquifer LTAR site in 2014. The site conducts research to sustain multiple ecosystem services focusing specifically on Nebraska's main agronomic production agroecosystems that comprise of abundant corn, soybeans, managed grasslands and beef production. As part of the national LTAR network, PR-HPA participates and contributes near-surface remotely sensed imagery of corn, soybean and grassland canopy phenology to the PhenoCam Network through high-resolution digital cameras. This poster highlights the application, advantages and usefulness of near-surface remotely sensed imagery in agroecosystem studies and management. It demonstrates how both Infrared and Red-Green-Blue imagery may be applied to monitor phenological events as well as crop abiotic stresses. Computer-based algorithms and analytic techniques proved very instrumental in revealing crop phenological changes such as green-up and tasseling in corn. This poster also reports the suitability and applicability of corn-derived computer based algorithms for evaluating phenological development of sorghum since both crops have similarities in their phenology; with sorghum panicles being similar to corn tassels. This later assessment was carried out using a sorghum dataset obtained from the Transportation Energy Resources from Renewable Agriculture Phenotyping Reference Platform project, Maricopa Agricultural Center, Arizona.

  19. Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA

    Science.gov (United States)

    Kharaka, Yousif K.; Thordsen, James J.; Hovorka, Susan D.; Nance, H. Seay; Cole, David R.; Phelps, Tommy J.; Knauss, Kevin G.

    2009-01-01

    Sedimentary basins in general, and deep saline aquifers in particular, are being investigated as possible repositories for large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes. To investigate the potential for the long-term storage of CO2 in such aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick "C" sandstone unit of the Frio Formation, a regional aquifer in the US Gulf Coast. Fluid samples obtained before CO2 injection from the injection well and an observation well 30 m updip showed a Na–Ca–Cl type brine with ∼93,000 mg/L TDS at saturation with CH4 at reservoir conditions; gas analyses showed that CH4 comprised ∼95% of dissolved gas, but CO2 was low at 0.3%. Following CO2 breakthrough, 51 h after injection, samples showed sharp drops in pH (6.5–5.7), pronounced increases in alkalinity (100–3000 mg/L as HCO3) and in Fe (30–1100 mg/L), a slug of very high DOC values, and significant shifts in the isotopic compositions of H2O, DIC, and CH4. These data, coupled with geochemical modeling, indicate corrosion of pipe and well casing as well as rapid dissolution of minerals, especially calcite and iron oxyhydroxides, both caused by lowered pH (initially ∼3.0 at subsurface conditions) of the brine in contact with supercritical CO2.These geochemical parameters, together with perfluorocarbon tracer gases (PFTs), were used to monitor migration of the injected CO2 into the overlying Frio “B”, composed of a 4-m-thick sandstone and separated from the “C” by ∼15 m of shale and siltstone beds. Results obtained from the Frio “B” 6 months after injection gave chemical and isotopic markers that show significant CO2 (2.9% compared with 0.3% CO2 in dissolved gas) migration into the “B” sandstone. Results of samples collected 15 months after injection, however, are ambiguous, and can be interpreted to show no additional injected CO2 in the “B” sandstone

  20. Regional assessment of aquifers for thermal-energy storage. Volume 2: Regions 7 through 12

    Science.gov (United States)

    1981-06-01

    The geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the unglaciated central region, glaciated Appalachians, unglaciated Appalachians, coastal plain, Hawaii, and Alaska are discussed.

  1. Tietkens Plain karst - Maralinga

    International Nuclear Information System (INIS)

    James, J.M.

    1988-09-01

    The Tietkens Plain karst is located to the north of Maralinga village which is on the crest of the Ooldea Range on the north and east margin of the Nullarbor Plain in western South Australia. The geology of the carbonate rocks in the Maralinga area is summarised. On Tietkens Plain from 1955 to 1963 nuclear weapons tests dispersed radioactive materials over the Maralinga area. Six nuclear devices were detonated in the air and one was exploded a few metres below the surface. The effect such explosions have on the karst and the possible rate of recovery of its surface are discussed. This report is the record of a visit to the Maralinga area from the 15th -21st November 1986 which involved an inspection of the karst surface together with collection of water, soil and rock samples. Results of the measurements made in order to assess water quality and water contamination by radioactive nuclides are presented. The implications arising from the presence of radioactive materials on the surface and the possibility of their entering and contaminating the groundwater in the area are discussed in the context of the chemistry of uranium and plutonium. The potential for transmission of contaminants through groundwater conduits and aquifers in the dolomite is discussed. Evidence is produced to show that the caves of the Nullabor Plain are not contaminated at present and are unlikely to be so in the future. 21 refs., 2 figs. 3 tabs., ills

  2. Updated numerical model with uncertainty assessment of 1950-56 drought conditions on brackish-water movement within the Edwards aquifer, San Antonio, Texas

    Science.gov (United States)

    Brakefield, Linzy K.; White, Jeremy T.; Houston, Natalie A.; Thomas, Jonathan V.

    2015-01-01

    In 2010, the U.S. Geological Survey, in cooperation with the San Antonio Water System, began a study to assess the brackish-water movement within the Edwards aquifer (more specifically the potential for brackish-water encroachment into wells near the interface between the freshwater and brackish-water transition zones, referred to in this report as the transition-zone interface) and effects on spring discharge at Comal and San Marcos Springs under drought conditions using a numerical model. The quantitative targets of this study are to predict the effects of higher-than-average groundwater withdrawals from wells and drought-of-record rainfall conditions of 1950–56 on (1) dissolved-solids concentration changes at production wells near the transition-zone interface, (2) total spring discharge at Comal and San Marcos Springs, and (3) the groundwater head (head) at Bexar County index well J-17. The predictions of interest, and the parameters implemented into the model, were evaluated to quantify their uncertainty so the results of the predictions could be presented in terms of a 95-percent credible interval.

  3. Alluvial Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  4. Time-Domain Electromagnetic Data Collected in the U.S. Part of the Mesilla Basin/Conejos-Médanos Aquifer System in Doña Ana County, New Mexico, and El Paso County, Texas, November 2012

    Data.gov (United States)

    Department of the Interior — The transboundary Mesilla Basin/Conejos-Médanos aquifer system was identified as one of the priority transboundary aquifer systems for additional study by the United...

  5. Analysis of High Plains Resource Risk and Economic Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Shannon M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dealy, Bern Caudill [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shaneyfelt, Calvin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Braeton James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moreland, Barbara Denise [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-04-01

    The importance of the High Plains Aquifer is broadly recognized as is its vulnerability to continued overuse. T his study e xplore s how continued depletions of the High Plains Aquifer might impact both critical infrastructure and the economy at the local, r egional , and national scale. This analysis is conducted at the county level over a broad geographic region within the states of Kansas and Nebraska. In total , 140 counties that overlie the High Plains Aquifer in these two states are analyzed. The analysis utilizes future climate projections to estimate crop production. Current water use and management practices are projected into the future to explore their related impact on the High Plains Aquifer , barring any changes in water management practices, regulat ion, or policy. Finally, the impact of declining water levels and even exhaustion of groundwater resources are projected for specific sectors of the economy as well as particular elements of the region's critical infrastructure.

  6. Factors Affecting Public-Supply Well Vulnerability in Two Karst Aquifers

    OpenAIRE

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearb...

  7. Hydrogeochemical analysis for Tasuj plain aquifer, Iran

    Indian Academy of Sciences (India)

    This study investigated the hydrogeochemical processes of groundwater in the .... sis was also applied for investigating groundwater ... (Tasuj climatological station, 2000–2009) (Research .... location of the sample sites is shown in figure 1.

  8. Catahoula Formation as uranium source rock in East Texas

    International Nuclear Information System (INIS)

    Ledger, E.B.; Tieh, T.T.; Rowe, N.W.

    1984-01-01

    The Oligocene-Miocene Catahoula Formation of the Texas Gulf coastal plain is a fluvial and lacustrine volcaniclastic unit composed of normal fluvial material mixed with distal rhyolitic air-fall ash. In the lower Texas Gulf coastal plain, it consists of stream-transported detritus from the volcanic source area in Trans-Pecos Texas and adjacent Mexico. This volcaniclastic component has altered to release uranium to mineralization processes in the lower Gulf Coast, but there has not been uranium production in the middle and upper Gulf Coast. To evaluate the potential of the upper Texas Gulf coastal plain for uranium ore deposits, a geochemical study was undertaken. The Catahoula Formation was analyzed for U, Th, K, Rb, Sr, Zr, and Ti to estimate the nature of volcanic glass and its abundance and alteration. Concentrations from three key outcrops were compared. They were also compared to samples from a volcanic area in Trans-Pecos Texas, which is chemically appropriate as a source for the volcanic material in the Catahoula Formation. In the lower Texas Gulf coastal plain, where uranium is produced, the glassy volcanic material has been pervasively altered, but in the upper coastal plain much glass remains. Because glass alteration is necessary for uranium release and concentration, the potential is low for large, shallow uranium ore bodies in the upper Texas Gulf coastal plain

  9. The depositional and hydrogeologic environment of tertiary uranium deposits, South Texas uranium province

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1985-01-01

    Uranium ore bodies of the South Texas Uranium Province occur within the most transmissive sand facies of coastal-plain fluvial and shore-zone depositional systems. Host strata range in age from Eocene through Miocene. Ore bodies formed at the fringes of epigenetic oxidation tongues near intrinsic organic debris or iron-disulfide mineral reductants. Mineralized Eocene units, which include the Carrizo and Whitsett Sandstones, subcropped beneath tuffaceous Oligocene through early Miocene coastal plain sediments. Roll-front mineralization occurred because of this direct hydrologic continuity between an aquifer and a uranium source. Most ore occurs within coarse, sand-rich, arid-region, bed-load fluvial systems of the Oligocene through Miocene Catahoula, Oakville, and Goliad Formations. Host sediments were syndepositionally oxidized and leached. Reductant consists predominantly of epigenetic pyrite precipitated from deep, sulfide-rich thermobaric waters introduced into the shallow aquifers along fault zones. Mineralization fronts are commonly entombed within reduced ground. Modern ground waters are locally oxidizing and redistributing some ore but appear incapable of forming new mineralization fronts. (author)

  10. Diagnosis of the Ghiss Nekor aquifer in order to elaborate the aquifer contract

    Science.gov (United States)

    Baite, Wissal; Boukdir, A.; Zitouni, A.; Dahbi, S. D.; Mesmoudi, H.; Elissami, A.; Sabri, E.; Ikhmerdi, H.

    2018-05-01

    The Ghiss-Nekor aquifer, located in the north-east of the action area of the ABHL, plays a strategic role in the drinkable water supply of the city of Al Hoceima and of the neighboring urban areas. It also participates in the irrigation of PMH. However, this aquifer has problems such as over-exploitation and pollution. In the face of these problems, the only Solution is the establishment of a new mode of governance, which privileges the participation, the involvement and the responsibility of the actors concerned in a negotiated contractual framework, namely the aquifer contract. The purpose of this study is to diagnose the current state of the Ghiss Nekor aquifer, the hydrogeological characterization of the aquifer, the use of the waters of the aquifer, the Problem identification and the introduction of the aquifer contract, which aims at the participatory and sustainable management of underground water resources in the Ghiss- Nekor plain, to ensure sustainable development.

  11. Climate variability and Great Plains agriculture

    International Nuclear Information System (INIS)

    Rosenberg, N.J.; Katz, L.A.

    1991-01-01

    The ways in which inhabitants of the Great Plains, including Indians, early settlers, and 20th century farmers, have adapted to climate changes on the Great Plains are explored. The climate of the Great Plains, because of its variability and extremes, can be very stressful to plants, animals and people. It is suggested that agriculture and society on the Great Plains have, during the last century, become less vulnerable to the stresses imposed by climate. Opinions as to the sustainability of agriculture on the Great Plains vary substantially. Lockeretz (1981) suggests that large scale, high cost technologies have stressed farmers by creating surpluses and by requiring large investments. Opie (1989) sees irrigation as a climate substitute, however he stresses that the Ogallala aquifer must inevitably become depleted. Deborah and Frank Popper (1987) believe that farming on the Plains is unsustainable, and destruction of shelterbelts, out-migration of the rural population and environmental problems will lead to total collapse. With global warming, water in the Great Plains is expected to become scarcer, and although improvements in irrigation efficiency may slow depletion of the Ogallala aquifer, ultimately the acreage under irrigation must decrease to levels that can be sustained by natural recharge and reliable surface flows. 23 refs., 2 figs

  12. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and

  13. Hydrogeologic framework, hydrology, and refined conceptual model of groundwater flow for Coastal Plain aquifers at the Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2005-12

    Science.gov (United States)

    Brayton, Michael J.; Cruz, Roberto M.; Myers, Luke; Degnan, James R.; Raffensperger, Jeff P.

    2015-01-01

    From 1966 to 2002, activities at the Standard Chlorine of Delaware chemical facility in New Castle County, Delaware resulted in the contamination of groundwater, soils, and wetland sediment. In 2005, the U.S. Geological Survey (USGS), in partnership with the U.S. Environmental Protection Agency, Region 3, and the Delaware Department of Natural Resources and Environmental Control began a multi-year investigation of the hydrogeologic framework and hydrology of the confined aquifer system. The goals of the ongoing study at the site (the Potomac Aquifer Study) are to determine the hydraulic connection between the Columbia and Potomac aquifers, determine the direction of groundwater flow in the Potomac aquifer, and identify factors affecting the fate of contaminated groundwater. This report describes progress made towards these goals based on available data collected through September 2012.

  14. Ozark Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — These digital maps contain information on the altitude of the base and top, the extent, and the potentiometric surface of the Ozark aquifer in Kansas. The Ozark...

  15. Utopia Plain

    Science.gov (United States)

    2006-01-01

    5 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dark-toned, cratered plain in southwest Utopia Planitia. Large, light-toned, windblown ripples reside on the floors of many of the depressions in the scene, including a long, linear, trough. Location near: 30.3oN, 255.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  16. Texas Yehaa !!!

    DEFF Research Database (Denmark)

    Kjellberg, Kurt

    2001-01-01

    Indtryk fra et besøg på SLA, Special Libraries Associations årlige konference, San Antonio, Texas, USA, 9.-13. juni 2001. "An Information Odyssey: Seizing the Competitive Advantage"......Indtryk fra et besøg på SLA, Special Libraries Associations årlige konference, San Antonio, Texas, USA, 9.-13. juni 2001. "An Information Odyssey: Seizing the Competitive Advantage"...

  17. Texas situation

    International Nuclear Information System (INIS)

    Avant, R.V. Jr.; Bowmer, W.J.

    1986-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority was formed in 1981 to address the Texas low-level radioactive waste problem consistent with the direction of P.L. 96-573. The Authority has completed technical tasks, including source term evaluations, preliminary conceptual designs, economic assessments, and long-range planning, and has work in progress on facility design, site selection, operating procedures, and licensing. Site selection has been the major technical activity and will be completed in 1987 after on-site evaluations of potential sites. The Authority expects to have its site licensed and operating in 1992. Texas has been the leader in site selection. Political concerns and the uncertainty of the national agenda led Texas policy makers to slow down the state's progress. The lessons learned through the Texas situation should be instructive to other states and compacts and may well be a prediction of events for these other groups. This paper discusses the background and status of Texas development activities, future plans, and lessons learned

  18. Shallow ground-water conditions, Tom Green County, Texas

    Science.gov (United States)

    Lee, J.N.

    1986-01-01

    Most of the water needs of Tom Green County, Texas, are supplied by ground water; however, the city of San Angelo is supplied by surface water. Groundwater withdrawals during 1980 (latest year for which data are available) in Tom Green County totaled about 15,300 acre-feet, all derived from shallow aquifers. Shallow aquifers in this report refer to the ground-water system generally less than 400 feet deep that contains water with less than a 10,000 milligrams per liter concentration of dissolved solids; aquifers comprising this system include: The Leona, Comanche Peak, Trinity, Blaine, San Angelo, Choza, Bullwagon, Vale, Standpipe, and Arroyo aquifers.

  19. Guarani aquifer

    International Nuclear Information System (INIS)

    2007-01-01

    The environmental protection and sustain ability develop project of Guarani Aquifer System is a join work from Argentina, Brazil, Paraguay and Uruguay with a purpose to increase the knowledge resource and propose technical legal and organizational framework for sustainable management between countries.The Universities funds were created as regional universities support in promotion, training and academic research activities related to environmental al social aspects of the Guarani Aquifer System.The aim of the project is the management and protection of the underground waters resources taking advantage and assesment for nowadays and future generations

  20. Sources and flow of north Canterbury Plains groundwater, New Zealand

    International Nuclear Information System (INIS)

    Taylor, C.B.; Brown, L.J.; Stewart, M.K.; Brailsford, G.W.; Wilson, D.D.; Burden, R.J.

    1989-01-01

    Geological, hydrological, isotope (tritium and 18 O) and chemical evidence is interpreted to give a mutually consistent picture of the recharge sources and flow patterns of the important groundwater resource in the deep Quaternary deposits of the Canterbury Plains between Selwyn R. and Ashley R. The study period for tritium measurements extends over 27 years, encompassing the peak and decline of thermonuclear tritium fallout in this region. Major rivers emerging from mountain catchments to the west of the Plains are depleted in 18 O relative to average low-level precipitation. Most of the groundwater is river-recharged, but some areas with significant local precipitation recharge are clearly identified by 18 O and chemical concentrations. Artesian groundwater underlying Christchurch ascends from deeper aquifers into the shallowest aquifer via gaps in the confining layers; much of this flow is induced by withdrawal. The Christchurch aquifers are recharged by infiltration from Waimakariri R. in its central Plains reaches, and the resulting flow regime is E- and SE-directed; satisfactory water quality of the deeper Christchurch aquifer appears to be guaranteed for the future provided the river can be maintained in its present condition. Shallow groundwater, and water recharged to depth by other rivers, irrigation and local precipitation on the unconfined western areas of the Plains, are more susceptible to agricultural and other pollutants; none of this water is encountered in the deeper aquifers under Christchurch. (author). 15 refs., 12 figs

  1. Variation of uranium isotopes in some carbonate aquifers

    International Nuclear Information System (INIS)

    Cowart, J.B.

    1980-01-01

    The 234 U/ 238 U alpha activity ratio (AR) and uranium concentrations are reported for 83 springs that issue from carbonate aquifers in Florida, Texas, Nevada-California, and Israel. Data for each aquifer fall within more or less mutually exclusive fields. In general, the spring in a humid climate have AR's approaching secular equilibrium, whereas those in more arid climates have AR's differing greatly from equilibrium

  2. Environmental isotopes in New Zealand hydrology ; 4. Oxygen isotope variations in subsurface waters of the Waimea Plains, Nelson

    International Nuclear Information System (INIS)

    Stewart, M.K.; Dicker, M.J.I.; Johnston, M.R.

    1981-01-01

    Oxygen isotope measurements of ground and surface waters of the Waimea Plains, Nelson, have been used to identify sources of water in aquifers beneath the plains. Major rivers flowing onto the plains are from higher-altitude catchments (maximum altitude 2000 m) and have delta O 18 approximately equal to -7.2%, whereas rainfall on the plains and adjacent low-altitude catchment streams have delta O 18 approximately equal to -6.2%. The delta O 18 measurements indicate that the 3 major aquifer units, the ''Lower Confined Aquifers'' and the ''Upper Confined Aquifers'' in the Hope Gravel (Late Pleistocene) and the ''Unconfined Aquifers'' in the Appleby Gravel (Holocene) are recharged from different sources. The ''Lower Confined Aquifers'' probably receive slow recharge in the south near Brightwater. The ''Upper Confined Aquifers'' are recharged, in the south, from the Wairoa River and locally in the north are connected with the unconfined aquifers. The ''Unconfined Aquifers'' are recharged from the Waimea River and, away from the river, from rainfall. Intermixing of water, via multiple screened wells, between the various aquifers is also indicated. (author). 5 refs., 5 figs., 1 tab

  3. Aquifer recharging in South Carolina: radiocarbon in environmental hydrogeology

    International Nuclear Information System (INIS)

    Stone, P.A.; Knox, R.L.; Mathews, T.D.

    1985-01-01

    Radiocarbon activities of dissolved inorganic carbon (and tritium activities where infiltration rates are rapid and aquifers shallow) provide relatively unambiguous and inexpensive evidence for identification of significant recharge areas. Such evidence is for the actual occurrence of modern recharge in the aquifer and thus is less inferential than stratigraphic or potentiometric evidence. These underutilized isotopic techniques are neither arcane nor complex and have been more-or-less standardized by earlier researchers. In South Carolina, isotopic evidence has been used from both calcareous and siliceous sedimentary aquifers and fractured crystalline rock aquifers. The Tertiary limestone aquifer is shown not to be principally recharged in its subcrop area, unlike conditions assumed for many other sedimentary aquifers in southeastern United States, and instead receives considerable lateral recharge from interfingering updip Tertiary sand aquifers in the middle coastal plain. Induced recharging at Hilton Head Island is mixing ancient relict water and modern recharge water. Recharging to deeper portions of the Cretaceous Middendorf basal sand aquifer occurs at least as far coastward as the middle coastal plain, near sampling sites that stratigraphically appear to be confined. Pronounced mineralization of water in fractured rocks cannot be considered as evidence of ancient or relict ground water that is isolated from modern contaminants, some of these waters contain considerable radiocarbon and hydrogen-bomb tritium

  4. Landscape-scale patterns of fire and drought on the high plains, USA

    Science.gov (United States)

    Paulette Ford; Charles Jackson; Matthew Reeves; Benjamin Bird; Dave Turner

    2015-01-01

    We examine 31 years (1982-2012) of temperature, precipitation and natural wildfire occurrence data for Federal and Tribal lands to determine landscape-scale patterns of drought and fire on the southern and central High Plains of the western United States. The High Plains states of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas and...

  5. Geothermal Alteration of Basaltic Core from the Snake River Plain, Idaho

    OpenAIRE

    Sant, Christopher Joseph

    2012-01-01

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquife...

  6. Wind Shear Characteristics at Central Plains Tall Towers (presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.; Elliott, D.

    2006-06-05

    The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

  7. Case studies of groundwater- surface water interactions and scale relationships in small alluvial aquifers

    NARCIS (Netherlands)

    Love, Dave; de Hamer, Wouter; Owen, Richard J.S.; Booij, Martijn J.; Uhlenbrook, Stefan; Hoekstra, Arjen Ysbert; van der Zaag, Pieter

    2007-01-01

    An alluvial aquifer can be described as a groundwater system, generally unconfined, that is hosted in laterally discontinuous layers of gravel, sand, silt and clay, deposited by a river in a river channel, banks or flood plain. In semi-arid regions, streams that are associated with alluvial aquifers

  8. Regional assessment of aquifers for thermal energy storage. Volume 1: Regions 1 through 6

    Science.gov (United States)

    1981-06-01

    The geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the western mountains, alluvial basins, Columbia LAVA plateau, Colorado plateau, high plains, and glaciated central region are discussed.

  9. Factors affecting public-supply well vulnerability in two karst aquifers.

    Science.gov (United States)

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-09-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management. © 2014 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  10. Precipitation-centered Conceptual Model for Sub-humid Uplands in Lampasas Cut Plains, TX

    Science.gov (United States)

    Potter, S. R.; Tu, M.; Wilcox, B. P.

    2011-12-01

    Conceptual understandings of dominant hydrological processes, system interactions and feedbacks, and external forcings operating within catchments often defy simple definition and explanation, especially catchments encompassing transition zones, degraded landscapes, rapid development, and where climate forcings exhibit large variations across time and space. However, it is precisely those areas for which understanding and knowledge are most needed to innovate sustainable management strategies and counter past management blunders and failed restoration efforts. The cut plain of central Texas is one such area. Complex geographic and climatic factors lead to spatially and temporally variable precipitation having frequent dry periods interrupted by intense high-volume precipitation. Fort Hood, an army post located in the southeast cut plain contains landscapes ranging from highly degraded to nearly pristine with a topography mainly comprised of flat-topped mesas separated by broad u-shaped valleys. To understand the hydrology of the area and responses to wet-dry cycles we analyzed 4-years of streamflow and rainfall from 8 catchments, sized between 1819 and 16,000 ha. Since aquifer recharge/discharge and surface stream-groundwater interactions are unimportant, we hypothesized a simple conceptual model driven by precipitation and radiative forcings and having stormflow, baseflow, ET, and two hypothetical storage components. The key storage component was conceptualized as a buffer that was highly integrated with the ET component and exerted controls on baseflow. Radiative energy controlled flux from the buffer to ET. We used the conceptual model in making a bimonthly hydrologic budget, which included buffer volumes and a deficit-surplus indicator. Through the analysis, we were led to speculate that buffer capacity plays key roles in these landscapes and even relatively minor changes in capacity, due to soil compaction for example, might lead to ecological shifts. The

  11. The contribution of environmental isotopes to studies of large aquifers in Morocco

    International Nuclear Information System (INIS)

    Kabbaj, A.; Zeryouhi, I.; Carlier, Ph.

    1979-01-01

    The geochemistry of environmental isotopes has been used for the study of various aquifers in Morocco, some of which are large, such as the Charf el Akab in the Tangiers area, the Oum er Rbia basin and the Turonian aquifer of the Tadla, the free groundwater of the Quaternary lacustrine limestones of the Sais Plain and the Lias limestone aquifer. These isotope studies take hydrogeochemical data into account and have made it possible to determine the conditions of recharge of the aquifers, to distinguish waters of different origin from the Atlas Mountains or from the Phosphate Plateau in the Tadla Basin and the Sais plain, to estimate the recharge of one aquifer by another - for example groundwater of the Lias limestones passing via the folds of the Sais Plain into the lacustrine limestone aquifer - and to test the homogeneity or heterogeneity of these aquifers and their tightness (e.g. the Turonian aquifer of the Tadla and the special case of the Charf el Akab in relation to the marine environment). Altogether, these results made it possible to test the value of the techniques used and to specify the general conditions in which they can profitably be used. (author)

  12. Texas floods of 1940

    Science.gov (United States)

    Breeding, Seth D.

    1948-01-01

    Floods occurred in Texas during, June, July, and November 1940 that exceeded known stages on many small streams and at a few places on the larger streams. Stages at several stream-gaging stations exceeded the maximum known at those places since the collection of daily records began. A storm, haying its axis generally on a north-south line from Cameron to Victoria and extending across the Brazos, Colorado, Lavaca, and Guadalupe River Basins, caused heavy rainfall over a large part of south-central Texas. The maximum recorded rain of 22.7 inches for the 2-day period June 29-30 occurred at Engle. Of this amount, 17.5 inches fell in the 12-hour period between 8 p.m. June 29, and 8 a.m. June 30. Light rains fell at a number of places on June 28, and additional light rains fell at many places within the area from July 1 to 4. During the period June 28 to July 4 more than 20 inches of rain fell over an area of 300 square miles, more than 15 inches over 1,920 square miles, and more than 10 inches over 5,100 square miles. The average annual rainfall for the area experiencing the heaviest rainfall during this storm is about 35 inches. Farming is largely confined to the fertile flood plains in much of the area subjected to the record-breaking floods in June and July. Therefore these floods, coming at the height of the growing season, caused severe losses to crops. Much damage was done also to highways and railways. The city of Hallettsville suffered the greatest damage of any urban area. The Lavaca River at that place reached a stage 8 feet higher than ever known before, drowned several people, destroyed many homes, and submerged almost the entire business district. The maximum discharge there was 93,100 second-feet from a drainage area of 101 square miles. Dry Creek near Smithville produced a maximum discharge of 1,879 second-feet from an area of 1.48 square miles and a runoff of 11.3 inches in a 2-day period from a rainfall of 19.5 inches. The area in the Colorado River

  13. Typhus in Texas

    Centers for Disease Control (CDC) Podcasts

    Dr. Kristy Murray, an associate professor in pediatrics and assistant dean of the National School of Tropical Medicine at Baylor College of Medicine and Texas Children's Hospital, discusses increased cases of typhus in southern Texas.

  14. SUPERCOLLIDER: Texas meeting

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    With preparations pushing forward for the Superconducting Supercollider (SSC) to be built in Ellis County, Texas, there was a full agenda at the third SSC fall conference, held in Corpus Christi, Texas, from 14-17 October

  15. Treasured Texas Theaters

    Science.gov (United States)

    Horton, Anita

    2012-01-01

    Dallas artist Jon Flaming's deep love of Texas is evident in his paintings and sculpture. Although he has created one sculptural Texas theater, his work primarily showcases old Texas barbershops, vacant homes, and gas stations. In this article, the author describes how her students, inspired by Flaming's works, created three-dimensional historical…

  16. Current knowledge and future research directions to link soil health and water conservation in the Ogallala Aquifer region.

    Science.gov (United States)

    The Ogallala Aquifer is one of the largest freshwater aquifers in the world. It acts as a valuable resource in agriculture, animal production, and public water supplies across eight Great Plains states. However, with high irrigation demand, low recharge rates across most of the region, and extreme c...

  17. Effect of Short-Circuit Pathways on Water Quality in Selected Confined Aquifers (Invited)

    Science.gov (United States)

    McMahon, P. B.

    2010-12-01

    Confined aquifers in the United States generally contain fewer anthropogenic contaminants than unconfined aquifers because confined aquifers often contain water recharged prior to substantial human development and redox conditions are more reducing, which favors degradation of common contaminants like nitrate and chlorinated solvents. Groundwater in a confined part of the High Plains aquifer near York, Nebraska had an adjusted radiocarbon age of about 2,000 years, and groundwater in a confined part of the Floridan aquifer near Tampa, Florida had apparent ages greater than 60 years on the basis of tritium measurements. Yet compounds introduced more recently into the environment (anthropogenic nitrate and volatile organic compounds) were detected in selected public-supply wells completed in both aquifers. Depth-dependent measurements of flow and chemistry in the pumping supply wells, groundwater age dating, numerical modeling of groundwater flow, and other monitoring data indicated that the confined aquifers sampled by the supply wells were connected to contaminated unconfined aquifers by short-circuit pathways. In the High Plains aquifer, the primary pathways appeared to be inactive irrigation wells screened in both the unconfined and confined aquifers. In the Floridan aquifer, the primary pathways were karst sinkholes and conduits. Heavy pumping in both confined systems exacerbated the problem by reducing the potentiometric surface and increasing groundwater velocities, thus enhancing downward gradients and reducing reaction times for processes like denitrification. From a broader perspective, several confined aquifers in the U.S. have experienced large declines in their potentiometric surfaces because of groundwater pumping and this could increase the potential for contamination in those aquifers, particularly where short-circuit pathways connect them to shallower, contaminated sources of water, such as was observed in York and Tampa.

  18. SRP baseline hydrogeologic investigation: Aquifer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  19. Potential impact of neonicotinoid use on Northern bobwhite (Colinus virginianus) in Texas: A historical analysis.

    Science.gov (United States)

    Ertl, Hannah M H; Mora, Miguel A; Brightsmith, Donald J; Navarro-Alberto, Jorge A

    2018-01-01

    The widespread use of neonicotinoid insecticides in recent years has led to increasing environmental concern, including impacts to avian populations. In Texas and across their range, Northern bobwhite (Colinus virginianus) habitat frequently overlaps cultivated cropland protected by neonicotinoids. To address the effects of neonicotinoid use on bobwhites in Texas, we conducted a historical analysis from 1978-2012 in Texas' ecological regions using quail count data collected from North American Breeding Bird Survey and Texas Parks and Wildlife Department, and neonicotinoid use data from the U.S. Geological Survey. We considered bobwhite abundance, neonicotinoid use, climate, and land-use variables in our analysis. Neonicotinoid use was significantly (pTexas Plains ecological regions in the time periods following neonicotinoid introduction (1994-2003) or after their widespread use (2004-2012). Our analyses suggest that the use of neonicotinoid insecticides may negatively affect bobwhite populations in crop-producing regions of Texas.

  20. Furthering Medical Education in Texas.

    Science.gov (United States)

    Varma, Surendra K; Jennings, John

    2016-02-01

    Medical education in Texas is moving in the right direction. The Texas Medical Association has been a major partner in advancing medical education initiatives. This special symposium issue on medical education examines residency training costs, the Next Accreditation System, graduate medical education in rural Texas, Texas' physician workforce needs, the current state of education reform, and efforts to retain medical graduates in Texas.

  1. An updated understanding of Texas bumble bee (Hymenoptera: Apidae species presence and potential distributions in Texas, USA

    Directory of Open Access Journals (Sweden)

    Jessica L. Beckham

    2017-08-01

    Full Text Available Texas is the second largest state in the United States of America, and the largest state in the contiguous USA at nearly 700,000 sq. km. Several Texas bumble bee species have shown evidence of declines in portions of their continental ranges, and conservation initiatives targeting these species will be most effective if species distributions are well established. To date, statewide bumble bee distributions for Texas have been inferred primarily from specimen records housed in natural history collections. To improve upon these maps, and help inform conservation decisions, this research aimed to (1 update existing Texas bumble bee presence databases to include recent (2007–2016 data from citizen science repositories and targeted field studies, (2 model statewide species distributions of the most common bumble bee species in Texas using MaxEnt, and (3 identify conservation target areas for the state that are most likely to contain habitat suitable for multiple declining species. The resulting Texas bumble bee database is comprised of 3,580 records, to include previously compiled museum records dating from 1897, recent field survey data, and vetted records from citizen science repositories. These data yielded an updated state species list that includes 11 species, as well as species distribution models (SDMs for the most common Texas bumble bee species, including two that have shown evidence of range-wide declines: B. fraternus (Smith, 1854 and B. pensylvanicus (DeGeer, 1773. Based on analyses of these models, we have identified conservation priority areas within the Texas Cross Timbers, Texas Blackland Prairies, and East Central Texas Plains ecoregions where suitable habitat for both B. fraternus and B. pensylvanicus are highly likely to co-occur.

  2. Crop residue inventory estimates for Texas High Plains cotton

    Science.gov (United States)

    Interest in the use of cotton crop by-products for the production of bio-fuels and value-added products is increasing. Research documenting the availability of cotton crop by-products after machine harvest is needed. The objectives of this work were to document the total biomass production for moder...

  3. Picker versus stripper harvesters on the High Plains of Texas

    Science.gov (United States)

    A break even analysis based on NPV was conducted to compare picker-based and stripper-based harvest systems with and without field cleaners. Under no conditions analyzed was the NPV of a stripper system without a field cleaner greater than a stripper system with a field cleaner. Break even curves re...

  4. Maternal Mortality in Texas.

    Science.gov (United States)

    Baeva, Sonia; Archer, Natalie P; Ruggiero, Karen; Hall, Manda; Stagg, Julie; Interis, Evelyn Coronado; Vega, Rachelle; Delgado, Evelyn; Hellerstedt, John; Hankins, Gary; Hollier, Lisa M

    2017-05-01

    A commentary on maternal mortality in Texas is provided in response to a 2016 article in Obstetrics & Gynecology by MacDorman et al. While the Texas Department of State Health Services and the Texas Maternal Mortality and Morbidity Task Force agree that maternal mortality increased sharply from 2010 to 2011, the percentage change or the magnitude of the increase in the maternal mortality rate in Texas differs depending on the statistical methods used to compute and display it. Methodologic challenges in identifying maternal death are also discussed, as well as risk factors and causes of maternal death in Texas. Finally, several state efforts currently underway to address maternal mortality in Texas are described. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Alluvial aquifers in the Mzingwane catchment: Their distribution, properties, current usage and potential expansion

    Science.gov (United States)

    Moyce, William; Mangeya, Pride; Owen, Richard; Love, David

    The Mzingwane River is a sand filled channel, with extensive alluvial aquifers distributed along its banks and bed in the lower catchment. LandSat TM imagery was used to identify alluvial deposits for potential groundwater resources for irrigation development. On the false colour composite band 3, band 4 and band 5 (FCC 345) the alluvial deposits stand out as white and dense actively growing vegetation stands out as green making it possible to mark out the lateral extent of the saturated alluvial plain deposits using the riverine fringe and vegetation . The alluvial aquifers form ribbon shaped aquifers extending along the channel and reaching over 20 km in length in some localities and are enhanced at lithological boundaries. These alluvial aquifers extend laterally outside the active channel, and individual alluvial aquifers have been measured with area ranging from 45 ha to 723 ha in the channels and 75 ha to 2196 ha on the plains. The alluvial aquifers are more pronounced in the Lower Mzingwane, where the slopes are gentler and allow for more sediment accumulation. Estimated water resources potential ranges between 175,000 m 3 and 5,430,000 m 3 in the channels and between 80,000 m 3 and 6,920,000 m 3 in the plains. Such a water resource potential can support irrigation ranging from 18 ha to 543 ha for channels alluvial aquifers and 8 ha to 692 ha for plain alluvial aquifers. Currently, some of these aquifers are being used to provide water for domestic use, livestock watering and dip tanks, commercial irrigation and market gardening. The water quality of the aquifers in general is fairly good due to regular recharge and flushing out of the aquifers by annual river flows and floodwater. Water salinity was found to increase significantly in the end of the dry season, and this effect was more pronounced in water abstracted from wells on the alluvial plains. During drought years, recharge is expected to be less and if the drought is extended water levels in the

  6. Aquifer restoration techniques for in-situ leach uranium mines

    International Nuclear Information System (INIS)

    Deutsch, W.J.; Bell, N.E.; Mercer, B.W.; Serne, R.J.; Shade, J.W.; Tweeton, D.R.

    1984-02-01

    In-situ leach uranium mines and pilot-scale test facilities are currently operating in the states of Wyoming, Texas, New Mexico and Colorado. This report summarizes the technical considerations involved in restoring a leached ore zone and its aquifer to the required level. Background information is provided on the geology and geochemistry of mineralized roll-front deposits and on the leaching techniques used to extract the uranium. 13 references, 13 figures, 4 tables

  7. Texas Heart Institute

    Science.gov (United States)

    ... of seminars and conferences. Resources Texas Heart Institute Journal Scientific Publications Library & Learning Resources Resources for Physicians Fellowships & Residencies School of Perfusion Technology THI Spotlight Check out the ...

  8. The Plains of Venus

    Science.gov (United States)

    Sharpton, V. L.

    2013-12-01

    Volcanic plains units of various types comprise at least 80% of the surface of Venus. Though devoid of topographic splendor and, therefore often overlooked, these plains units house a spectacular array of volcanic, tectonic, and impact features. Here I propose that the plains hold the keys to understanding the resurfacing history of Venus and resolving the global stratigraphy debate. The quasi-random distribution of impact craters and the small number that have been conspicuously modified from the outside by plains-forming volcanism have led some to propose that Venus was catastrophically resurfaced around 725×375 Ma with little volcanism since. Challenges, however, hinge on interpretations of certain morphological characteristics of impact craters: For instance, Venusian impact craters exhibit either radar dark (smooth) floor deposits or bright, blocky floors. Bright floor craters (BFC) are typically 100-400 m deeper than dark floor craters (DFC). Furthermore, all 58 impact craters with ephemeral bright ejecta rays and/or distal parabolic ejecta patterns have bright floor deposits. This suggests that BFCs are younger, on average, than DFCs. These observations suggest that DFCs could be partially filled with lava during plains emplacement and, therefore, are not strictly younger than the plains units as widely held. Because the DFC group comprises ~80% of the total crater population on Venus the recalculated emplacement age of the plains would be ~145 Ma if DFCs are indeed volcanically modified during plains formation. Improved image and topographic data are required to measure stratigraphic and morphometric relationships and resolve this issue. Plains units are also home to an abundant and diverse set of volcanic features including steep-sided domes, shield fields, isolated volcanoes, collapse features and lava channels, some of which extend for 1000s of kilometers. The inferred viscosity range of plains-forming lavas, therefore, is immense, ranging from the

  9. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    Science.gov (United States)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique

    2017-09-01

    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in

  10. WRF model sensitivity to land surface model and cumulus parameterization under short-term climate extremes over the southern Great Plains of the United States

    Science.gov (United States)

    Lisi Pei; Nathan Moore; Shiyuan Zhong; Lifeng Luo; David W. Hyndman; Warren E. Heilman; Zhiqiu. Gao

    2014-01-01

    Extreme weather and climate events, especially short-term excessive drought and wet periods over agricultural areas, have received increased attention. The Southern Great Plains (SGP) is one of the largest agricultural regions in North America and features the underlying Ogallala-High Plains Aquifer system worth great economic value in large part due to production...

  11. Assessing groundwater availability and the response of the groundwater system to intensive exploitation in the North China Plain by analysis of long-term isotopic tracer data

    Science.gov (United States)

    Su, Chen; Cheng, Zhongshuang; Wei, Wen; Chen, Zongyu

    2018-03-01

    The use of isotope tracers as a tool for assessing aquifer responses to intensive exploitation is demonstrated and used to attain a better understanding of the sustainability of intensively exploited aquifers in the North China Plain. Eleven well sites were selected that have long-term (years 1985-2014) analysis data of isotopic tracers. The stable isotopes δ18O and δ2H and hydrochemistry were used to understand the hydrodynamic responses of the aquifer system, including unconfined and confined aquifers, to groundwater abstraction. The time series data of 14C activity were also used to assess groundwater age, thereby contributing to an understanding of groundwater sustainability and aquifer depletion. Enrichment of the heavy oxygen isotope (18O) and elevated concentrations of chloride, sulfate, and nitrate were found in groundwater abstracted from the unconfined aquifer, which suggests that intensive exploitation might induce the potential for aquifer contamination. The time series data of 14C activity showed an increase of groundwater age with exploitation of the confined parts of the aquifer system, which indicates that a larger fraction of old water has been exploited over time, and that the groundwater from the deep aquifer has been mined. The current water demand exceeds the sustainable production capabilities of the aquifer system in the North China Plain. Some measures must be taken to ensure major cuts in groundwater withdrawals from the aquifers after a long period of depletion.

  12. Paleocene coal deposits of the Wilcox group, central Texas

    Science.gov (United States)

    Hook, Robert W.; Warwick, Peter D.; SanFilipo, John R.; Schultz, Adam C.; Nichols, Douglas J.; Swanson, Sharon M.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    Coal deposits in the Wilcox Group of central Texas have been regarded as the richest coal resources in the Gulf Coastal Plain. Although minable coal beds appear to be less numerous and generally higher in sulfur content (1 percent average, as-received basis; table 1) than Wilcox coal deposits in the Northeast Texas and Louisiana Sabine assessment areas (0.5 and 0.6 percent sulfur, respectively; table 1), net coal thickness in coal zones in central Texas is up to 32 ft thick and more persistent along strike (up to 15 mi) at or near the surface than coals of any other Gulf Coast assessment area. The rank of the coal beds in central Texas is generally lignite (table 1), but some coal ranks as great as subbituminous C have been reported (Mukhopadhyay, 1989). The outcrop of the Wilcox Group in central Texas strikes northeast, extends for approximately 140 mi between the Trinity and Colorado Rivers, and covers parts of Bastrop, Falls, Freestone, Lee, Leon, Limestone, Milam, Navarro, Robertson, and Williamson Counties (Figure 1). Three formations, in ascending order, the Hooper, Simsboro, and Calvert Bluff, are recognized in central Texas (Figure 2). The Wilcox Group is underlain conformably by the Midway Group, a mudstone-dominated marine sequence, and is overlain and scoured locally by the Carrizo Sand, a fluvial unit at the base of the Claiborne Group.

  13. Texas motorcycle crash countermeasure workshop.

    Science.gov (United States)

    2013-06-01

    The Texas Department of Transportation (TxDOT) contracted with the Texas A&M : Transportation Institute (TTI) to develop a 5-year strategic plan for improving motorcycle safety : in the State of Texas. The Texas Strategic Action Plan for Motorcycl...

  14. Bulletin of the Texas Archeological Society, Volume 71 (2000, Austin, Paper.

    Directory of Open Access Journals (Sweden)

    Larry D. Banks

    2000-11-01

    Full Text Available This annual bulletin of the Texas Archeological Society is a unique contribution specifically focused upon the history of Texas archaeology in a format that no others have done previously. The volume contains 150 pages, the majority of which consists of interviews (146 pages conducted by the first State Archaeologist of Texas, Curtis Tunnell. In 1968 Tunnell conceived of the idea of obtaining personal interviews from individuals whom he considered his heroes for their pioneering efforts in Texas archeology. This volume entails the first publication of such information, but more will certainly follow. The remaining four pages comprise two different reviews of other publications important in their own right to those interested in Southern Plains archeology of Texas. These two reviews by Timothy K Pertulla and David T. Hughes, respectively, are of The Coronado Expedition to Tierra Nueva: The 1540·1542 Route Across the Southwest by Richard Flint and Shirley Cushing flint, and GaffCreek: Artifact Collection Strategy and Occupation Prehistory on the Southern High Plains, Texas County. Oklahoma. The section by Tunnell titled "In Their Own Words: Stories from Some Pioneer Texas Archeologists" contains numerous previously unpublished photographs of people, sites and artifacts referred to the texts.

  15. Formation mechanism of land subsidence in the North China Plain

    Science.gov (United States)

    Guo, Haipeng; Cheng, Guoming

    2014-05-01

    Land subsidence is a progressive and gradual geological disaster, whose development is irreversible. Due to rapid development of industrialization and urbanization, land subsidence occurs commonly in the North China Plain, and has become the main environmental factor impacting sustainable economic and social development. This study presents a brief review on the current situation of land subsidence in the North China Plain. Then the hydrologic, hydrogeologic and anthropogenic conditions favorable for the formation of land subsidence are analyzed, indicating that the formation of land subsidence is mainly determined by local geological condition and enabling conditions, e.g. long-term excessive exploitation of groundwater and engineering construction. A correlation analysis was conducted in both the North China Plain and Cangzhou region, a typical area where severe land subsidence occurs, of the quantitative relationship between deep groundwater yield and the land subsidence. The analysis results indicate that the land subsidence volume accounts for 40% to 44% of deep water yield in the North China Plain, indirectly showing the proportion of released water from compressibility of the aquifer and the aquitard in deep groundwater yield. In Cangzhou region, this proportion was calculated as 58%, far greater than that of the North China Plain. This is induced by the local lithologic structure and recharge condition of deep groundwater in Cangzhou region. The analysis of soil samples in Cangzhou region shows that strong relations exist among different physical parameters, and good change laws of compression with depth and pressure are found for soil samples. The hydraulic conductivities of clay are six orders of magnitude greater than those of the aquifer, implying the strong hypothesis of land subsidence. This analysis provides data and scientific basis for further study on formation mechanism of land subsidence in Cangzhou region and objective evaluation of its

  16. Mountain-Plains Curriculum.

    Science.gov (United States)

    Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.

    The document lists the Mountain-Plains curriculum by job title (where applicable), including support courses. The curriculum areas covered are mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution, welding support, automotive, small engines, career guidance, World of Work, health…

  17. EPA Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Information on sole source aquifers (SSAs) is widely used in assessments under the National Environmental Policy Act and at the state and local level. A national...

  18. Hydraulic properties of the Midville Aquifer at the Savannah River Site, South Carolina

    International Nuclear Information System (INIS)

    Hodges, R.A.; Snipes, D.S.; Benson, S.M.; Daggett, J.S.; Temples, T.; Harrelson, L.

    1994-01-01

    Aquifer performance tests of the Midville Aquifer System were conducted at the Savannah River Site (SRS) in South Carolina. The stratigraphic section of interest consists of Late Cretaceous Coastal Plain sediments. Within the study area, the Midville Aquifer System is composed of sand aquifers separated by discontinuous clay lenses. The Midville is underlain by the Appleton Confining Unit which is separated from underlying Triassic sediments and Paleozoic crystallines by a regional unconformity. This unconformable surface has a dip of 10 m/km to the southeast. The Midville is overlain by the Allendale Confining Unit which separates the Midville from the Dublin Aquifer System. The tests were performed at B and P Areas within the SRS using production wells screened in the Midville Aquifer and monitor well clusters screened in the Midville, Dublin, and Gordon (Eocene) Aquifers. The B Area is located 13 km updip from P Area. The Midville is about 50 meters thick at B Area and 80 meters thick at P Area. The transmissivity of the Midville is 0.0095 m 2 /s at B Area and 0.017 m 2 /s at P Area. The storativity at both areas is about 10 -4 . Vertical leakance of the Midville is greater updip as the stratigraphic section thins. During the B Area test, pumping induced water level changes were detected in aquifers above the Midville. At P Area, no pumping induced water level changes were detected above the Midville Aquifer System

  19. The groundwater budget: A tool for preliminary estimation of the hydraulic connection between neighboring aquifers

    Science.gov (United States)

    Viaroli, Stefano; Mastrorillo, Lucia; Lotti, Francesca; Paolucci, Vittorio; Mazza, Roberto

    2018-01-01

    Groundwater management authorities usually use groundwater budget calculations to evaluate the sustainability of withdrawals for different purposes. The groundwater budget calculation does not always provide reliable information, and it must often be supported by further aquifer monitoring in the case of hydraulic connections between neighboring aquifers. The Riardo Plain aquifer is a strategic drinking resource for more than 100,000 people, water storage for 60 km2 of irrigated land, and the source of a mineral water bottling plant. Over a long period, the comparison between the direct recharge and the estimated natural outflow and withdrawals highlights a severe water deficit of approximately 40% of the total groundwater outflow. A groundwater budget deficit should be a clue to the aquifer depletion, but the results of long-term water level monitoring allowed the observation of the good condition of this aquifer. In fact, in the Riardo Plain, the calculated deficit is not comparable to the aquifer monitoring data acquired in the same period (1992-2014). The small oscillations of the groundwater level and the almost stable streambed spring discharge allows the presumption of an additional aquifer recharge source. The confined carbonate aquifer locally mixes with the above volcanic aquifer, providing an externally stable recharge that reduces the effects of the local rainfall variability. The combined approach of the groundwater budget results and long-term aquifer monitoring (spring discharge and/or hydraulic head oscillation) provides information about significant external groundwater exchanges, even if unidentified by field measurements, and supports the stakeholders in groundwater resource management.

  20. Science to support the understanding of south Texas surface-water and groundwater resources in a changing landscape

    Science.gov (United States)

    Ockerman, Darwin J.; Garcia, Travis J.; Opsahl, Stephen P.

    2012-01-01

    Against a backdrop of constant cycles of extreme hydrologic conditions ranging from oppressive droughts to life-threatening floods, the water-resource landscape of south Texas is undergoing constant change. Demands on water resources are increasing because of changes related to population growth, energy demands, agricultural practices, and other human-related activities. In south Texas, the Nueces, San Antonio, and Guadalupe River Basins cover approximately 50,000 square miles and include all or part of 45 counties. These stream systems transect the faulted and fractured carbonate rocks of the Edwards aquifer recharge zone and provide the largest sources of recharge to the aquifer. As the streams make their way to the Gulf of Mexico, they provide water for communities and ecosystems in south Texas and deliver water, sediment, and nutrients to the south Texas bays and estuaries.

  1. Texas freight 2055 roundtable.

    Science.gov (United States)

    2016-03-01

    Participants were welcomed to the Roundtable discussion and to the Dallas/Fort Worth region by : Mr. Michael Morris (Director of Transportation, North Central Texas Council of Governments : (NCTCOG)). Mr. Morris began his remarks by noting the import...

  2. Texas' forests, 2008

    Science.gov (United States)

    James W. Bentley; Consuelo Brandeis; Jason A. Cooper; Christopher M. Oswalt; Sonja N. Oswalt; KaDonna Randolph

    2014-01-01

    This bulletin describes forest resources of the State of Texas at the time of the 2008 forest inventory. This bulletin addresses forest area, volume, growth, removals, mortality, forest health, timber product output, and the economy of the forest sector.

  3. Sylvatic trichinellosis in Texas

    Directory of Open Access Journals (Sweden)

    Pence D.B.

    2001-06-01

    Full Text Available There are no published reports of domestic or sylvatic trichinellosis in Texas. The aim of the present survey was to determine the presence of Trichinella species in selected representative species of potential wildlife reservoirs in southern Texas. In 1998-99, tongues of 211 wild mammals were collected in southern Texas: 154 coyotes (Canis latrans, three bobcats (Lynx rufus, 32 racoons (Procyon lotor, 1 3 opossum (Didelphis marsupialis, four ocelots (Leopardus pardalis and five wild boars (Sus scrofa. Presence of Trichinella sp. larvae was investigated by artificial digestion and larvae of positive samples were identified at the species level by a multiple-polymerase chain reaction analysis. Nine (5.8 % coyotes had trichinellosis ; in the muscles of seven of these coyotes, the larvae were identified as Trichinella murrelli. This is the first report of sylvatic trichinellosis in Texas.

  4. Typhus in Texas

    Centers for Disease Control (CDC) Podcasts

    2017-07-06

    Dr. Kristy Murray, an associate professor in pediatrics and assistant dean of the National School of Tropical Medicine at Baylor College of Medicine and Texas Children’s Hospital, discusses increased cases of typhus in southern Texas.  Created: 7/6/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 7/6/2017.

  5. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer.

    Science.gov (United States)

    Gray, Cassie J; Engel, Annette S

    2013-02-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface.

  6. Functioning of the Primary Aquifer Relating to the Maider Basin, Morocco: Case of the Ordovician aquifer.

    Science.gov (United States)

    Ben-said, E.; Boukdir, A.; Mahboub, A.; Younsi, A.; Zitouni, A.; Alili, L.; Ikhmerdi, H.

    2018-05-01

    The basin of Maider is limited northly by the vast ensemble Oriental Saghro-Ougnate, from the east by the Tafilalet plain, from the west by the oriental Jbel Bani, finally from the south and south-east by the Cretaceous Hamada of Kern-Kem. During last decades, groundwater in the basin of Maider, is confronting degradation in both cases: Quantitative and qualitative, as a result of the drought, the overexploitation and the salinization. The aim of this action research is to understand the current state of water resources in the area of stady. At the end of this work, we can get the following conclusions: the general flow of the ordovician aquifer is always directed from the north to the south-east of the basin by following the principal axes of the wadis:Taghbalt, Hssiya and Fezzou. The recharge of the aquifer is primarily done, either by the underground flow, or by the surface runoff of torrential waters from the upstream of Jbel Saghro. The piezometric anomaly noticed at the level of Ait Saàdane, explained by overexploitation linked to the needs of irrigation water. The physicochemical approach for the Maider basin identifies two essential factors of the salinisation of groundwater: the dissolution of the aquifer which is rich in minerals with high temperature on the one hand, and the decrease of the piezometric surface due to the overexploitation and drought on the other hand.

  7. High-resolution hydro- and geo-stratigraphy at Atlantic Coastal Plain drillhole CR-622 (Strat 8)

    Science.gov (United States)

    Wrege, B.M.; Isely, J.J.

    2009-01-01

    We interpret borehole geophysical logs in conjunction with lithology developed from continuous core to produce high-resolution hydro- and geo-stratigraphic profiles for the drillhole CR-622 (Strat 8) in the Atlantic Coastal Plain of North Carolina. The resulting hydrologic and stratigraphic columns show a generalized relation between hydrologic and geologic units. Fresh-water aquifers encountered are the surficial, Yorktown, Pungo River and Castle Hayne. Geologic units present are of the middle and upper Tertiary and Quaternary periods, these are the Castle Hayne (Eocene), Pungo River (Miocene), Yorktown (Pliocene), James City and Flanner Beach (Pleistocene), and the topsoil (Holocene). The River Bend Formation (Oligocene) is missing as a distinct unit between the Pungo River Formation and the Castle Hayne Formation. The confining unit underlying the Yorktown Aquifer corresponds to the Yorktown Geologic Unit. The remaining hydrologic units and geologic units are hydrologically transitional and non-coincident. The lower Pungo River Formation serves as the confining unit for the Castle Hayne Aquifer, rather than the River Bend Aquifer, and separates the Pungo River Aquifer from the upper Castle Hayne Aquifer. All geologic formations were bound by unconformities. All aquifers were confined by the anticipated hydrologic units. We conclude that CR-622 (Strat 8) represents a normal sequence in the Atlantic Coastal Plain.

  8. Long-term Agroecosystem Research in the Northern Great Plains.

    Science.gov (United States)

    Schmer, M.; Sanderson, M.; Liebig, M. A.; Wienhold, B.; Awada, T.; Papiernik, S.; Osborne, S.; Kemp, W.; Okalebo, J. A.; Riedall, W.

    2015-12-01

    The Northern Great Plains is the bread basket of the United States, accounting for a substantial portion of U.S. agricultural production. This region faces critical challenges regarding balancing food needs, resource conservation (e.g Ogallala aquifer), environmental concerns, and rural economy development. Developing transformative, multifunctional systems will require equally imaginative and efficient tools to help farmers manage complex agroecosystems in a rapidly changing climate. The Northern Plains long-term agroecosystem research (LTAR) site at Mandan, ND and the Platte River High Plains LTAR (ARS/University of Nebraska-Lincoln) at Lincoln, NE in collaboration with USDA-ARS research units in Brookings, SD and Fargo, ND are collaborating to address the grand challenge of providing and sustaining multiple service provisions from Northern Great Plains agroecosystems. We propose to attain these goals through sustainable intensification based on the adoption of conservation agriculture principles including reduced soil disturbance, livestock integration, and greater complexity and diversity in the cropping system. Here, we summarize new concepts these locations have pioneered in dynamic cropping systems, resource use efficiency, and agricultural management technologies. As part of the LTAR network, we will conduct long-term cross-site research to design and assess new agricultural practices and systems aimed at improving our understanding of decision making processes and outcomes across an array of agricultural systems.

  9. Geophysics- and geochemistry-based assessment of the geochemical characteristics and groundwater-flow system of the U.S. part of the Mesilla Basin/Conejos-Médanos aquifer system in Doña Ana County, New Mexico, and El Paso County, Texas, 2010–12

    Science.gov (United States)

    Teeple, Andrew P.

    2017-06-16

    One of the largest rechargeable groundwater systems by total available volume in the Rio Grande/Río Bravo Basin (hereinafter referred to as the “Rio Grande”) region of the United States and Mexico, the Mesilla Basin/Conejos-Médanos aquifer system, supplies water for irrigation as well as for cities of El Paso, Texas; Las Cruces, New Mexico; and Ciudad Juárez, Chihuahua, Mexico. The U.S. Geological Survey in cooperation with the Bureau of Reclamation assessed the groundwater resources in the Mesilla Basin and surrounding areas in Doña Ana County, N. Mex., and El Paso County, Tex., by using a combination of geophysical and geochemical methods. The study area consists of approximately 1,400 square miles in Doña Ana County, N. Mex., and 100 square miles in El Paso County, Tex. The Mesilla Basin composes most of the study area and can be divided into three parts: the Mesilla Valley, the West Mesa, and the East Bench. The Mesilla Valley is the part of the Mesilla Basin that was incised by the Rio Grande between Selden Canyon to the north and by a narrow valley (about 4 miles wide) to the southeast near El Paso, Tex., named the Paso del Norte, which is sometimes referred to in the literature as the “El Paso Narrows.”Previously published geophysical data for the study area were compiled and these data were augmented by collecting additional geophysical and geochemical data. Geophysical resistivity measurements from previously published helicopter frequency domain electromagnetic data, previously published direct-current resistivity soundings, and newly collected (2012) time-domain electromagnetic soundings were used in the study to detect spatial changes in the electrical properties of the subsurface, which reflect changes that occur within the hydrogeology. The geochemistry of the groundwater system was evaluated by analyzing groundwater samples collected in November 2010 for physicochemical properties, major ions, trace elements, nutrients, pesticides

  10. Analysis of vertical flow during ambient and pumped conditions in four monitoring wells at the Pantex Plant, Carson County, Texas, July-September 2008

    Science.gov (United States)

    Stanton, Gregory P.; Thomas, Jonathan V.; Stoval, Jeffery

    2009-01-01

    The Pantex Plant is a U.S. Department of Energy/National Nuclear Security Administration (USDOE/NNSA)-owned, contractor-operated facility managed by Babcock & Wilcox Technical Services Pantex, LLC (B&W Pantex) in Carson County, Texas, approximately 17 miles northeast of Amarillo. The U.S. Geological Survey, in cooperation with B&W Pantex through the USDOE/NNSA, made a series of flowmeter measurements and collected other borehole geophysical logs during July–September 2008 to analyze vertical flow in screened intervals of four selected monitoring wells (PTX01–1012, PTX06–1044, PTX06–1056, and PTX06–1068) at the Pantex Plant. Hydraulic properties (transmissivity values) of the section of High Plains (Ogallala) aquifer penetrated by the wells also were computed. Geophysical data were collected under ambient and pumped flow conditions in the four monitoring wells. Unusually large drawdowns occurred at two monitoring wells (PTX06–1044 and PTX06–1056) while the wells were pumped at relatively low rates. A decision was made to redevelop those wells, and logs were run again after redevelopment in the two monitoring wells.

  11. Groundwater availability in the Atlantic Coastal Plain of North and South Carolina

    Science.gov (United States)

    Campbell, Bruce G.; Coes, Alissa L.

    2010-01-01

    The Atlantic Coastal Plain aquifers and confining units of North and South Carolina are composed of crystalline carbonate rocks, sand, clay, silt, and gravel and contain large volumes of high-quality groundwater. The aquifers have a long history of use dating back to the earliest days of European settlement in the late 1600s. Although extensive areas of some of the aquifers have or currently (2009) are areas of groundwater level declines from large-scale, concentrated pumping centers, large areas of the Atlantic Coastal Plain contain substantial quantities of high-quality groundwater that currently (2009) are unused. Groundwater use from the Atlantic Coastal Plain aquifers in North Carolina and South Carolina has increased during the past 60 years as the population has increased along with demands for municipal, industrial, and agricultural water needs. While North Carolina and South Carolina work to increase development of water supplies in response to the rapid growth in these coastal populations, both States recognize that they are facing a number of unanswered questions regarding availability of groundwater supplies and the best methods to manage these important supplies. An in-depth assessment of groundwater availability of the Atlantic Coastal Plain aquifers of North and South Carolina has been completed by the U.S. Geological Survey Groundwater Resources Program. This assessment includes (1) a determination of the present status of the Atlantic Coastal Plain groundwater resources; (2) an explanation for how these resources have changed over time; and (3) development of tools to assess the system's response to stresses from potential future climate variability. Results from numerous previous investigations of the Atlantic Coastal Plain by Federal and State agencies have been incorporated into this effort. The primary products of this effort are (1) comprehensive hydrologic datasets such as groundwater levels, groundwater use, and aquifer properties; (2) a

  12. Lithostratigraphic, borehole-geophysical, hydrogeologic, and hydrochemical data from the East Bay Plain, Alameda County, California

    Science.gov (United States)

    Sneed, Michelle; Orlando, Patricia v.P.; Borchers, James W.; Everett, Rhett; Solt, Michael; McGann, Mary; Lowers, Heather; Mahan, Shannon

    2015-01-01

    The U.S. Geological Survey, in cooperation with the East Bay Municipal Utility District, carried out an investigation of aquifer-system deformation associated with groundwater-level changes at the Bayside Groundwater Project near the modern San Francisco Bay shore in San Lorenzo, California. As a part of the Bayside Groundwater Project, East Bay Municipal Utility District proposed an aquifer storage and recovery program for 1 million gallons of water per day. The potential for aquifer-system compaction and expansion, and related subsidence, uplift, or both, resulting from aquifer storage and recovery activities were investigated and monitored in the Bayside Groundwater Project. In addition, baseline analysis of groundwater and substrata properties were performed to assess the potential effect of such activities. Chemical and physical data, obtained from the subsurface at four sites on the east side of San Francisco Bay in the San Lorenzo and San Leandro areas of the East Bay Plain, Alameda County, California, were collected during the study. The results of the study were provided to the East Bay Municipal Utility District and other agencies to evaluate the chemical and mechanical responses of aquifers underlying the East Bay Plain to the future injection and recovery of imported water from the Sierra Nevada of California.

  13. Transforming Developmental Education in Texas

    Science.gov (United States)

    Journal of Developmental Education, 2014

    2014-01-01

    In recent years, with support from the Texas Legislature, the Texas Higher Education Coordinating Board has funded various developmental education initiatives, including research and evaluation efforts, to help Texas public institutions of higher education provide more effective programs and services to underprepared students. Based on evaluation…

  14. Forests of east Texas, 2016

    Science.gov (United States)

    Kerry Dooley

    2018-01-01

    This resource update provides an overview of forest resources in east Texas based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station (SRS) in cooperation with Texas A&M Forest Service. The 254 counties of Texas are consolidated into seven FIA survey units—Southeast (unit 1),...

  15. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley

    Science.gov (United States)

    Scanlon, Bridget R.; Faunt, Claudia C.; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.

    2012-01-01

    Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ∼50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ∼7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley. PMID:22645352

  16. Evaluating the Potential of Groundwater Pollution in Kherran and Zoweircherry Plains through GIS-based DRASTIC Model

    Directory of Open Access Journals (Sweden)

    Manouchehr Chitsazan

    2006-09-01

    Full Text Available Zoweircherry and Kherran plains are located in the northeast ofAhwazin Khuzestan province. The water supply of these plains is a crucial issue and the quality of groundwater is also under the threat as a result of an increase in the use of agrochemicals. For this reason, assessing the vulnerability is an important factor in any policy-making decision for these plains. Focusing on this issue, this paper attempts to produce a groundwater vulnerability map for Zoweircherry and Kherran plains. The map is designed to show areas of highest potential for groundwater pollution on the basis of hydro-geological conditions and human impacts. Seven major hydro-geological factors (depth to water table, net recharge, aquifer media, soil media, topography, impact of vadose zone and hydraulic conductivity were incorporated into DRASTIC model and Geographical Information System (GIS was used to create a groundwater vulnerability map by overlaying the available hydro-geological data. The results of model exhibit that the west and southwest of the aquifer are dominated by medium vulnerability while small areas on northwest and east of the study area have no risk of pollution. Other parts of aquifer have low vulnerability. The nitrate analysis of groundwater samples shows that the existing nitrate on the west and southwest parts of aquifer is more than the existing nitrate on its other parts which, therefore, confirms the results of the vulnerability assessment.

  17. Fertilizers mobilization in alluvial aquifer: laboratory experiments

    Science.gov (United States)

    Mastrocicco, M.; Colombani, N.; Palpacelli, S.

    2009-02-01

    In alluvial plains, intensive farming with conspicuous use of agrochemicals, can cause land pollution and groundwater contamination. In central Po River plain, paleo-channels are important links between arable lands and the underlaying aquifer, since the latter is often confined by clay sediments that act as a barrier against contaminants migration. Therefore, paleo-channels are recharge zones of particular interest that have to be protected from pollution as they are commonly used for water supply. This paper focuses on fertilizer mobilization next to a sand pit excavated in a paleo-channel near Ferrara (Italy). The problem is approached via batch test leaking and columns elution of alluvial sediments. Results from batch experiments showed fast increase in all major cations and anions, suggesting equilibrium control of dissolution reactions, limited availability of solid phases and geochemical homogeneity of samples. In column experiments, early elution and tailing of all ions breakthrough was recorded due to preferential flow paths. For sediments investigated in this study, dispersion, dilution and chemical reactions can reduce fertilizers at concentration below drinking standards in a reasonable time frame, provided fertilizer loading is halted or, at least, reduced. Thus, the definition of a corridor along paleo-channels is recommended to preserve groundwater quality.

  18. Potential yields of wells in unconsolidated aquifers in upstate New York--Hudson-Mohawk sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.; Casey, George D.

    1988-01-01

    This map shows the location and potential well yields of unconsolidated aquifers in the Hudson-Mohawk region at a scale of 1:250,000. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply ' aquifers, and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciations of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, greater than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units that have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  19. Potential yields of wells in unconsolidated aquifers in upstate New York-- Niagara sheet

    Science.gov (United States)

    Miller, Todd S.

    1988-01-01

    This map depicts the locations and potential well yields of unconsolidated aquifers in western New York at a scale of 1:250 ,000. It also delineates segments of aquifers that are used for public water supplies and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply Aquifers. ' The map also lists published reports that give detailed information on each area. Most aquifers were deposited in low areas, such as valleys and plains, during deglaciation of the region. Thick, permeable, well-sorted sand and gravel units yield large quantities of water - more than 100 gal/min - to properly constructed wells. Thin sand units and sand and gravel units and thicker gravel units that have a large content of silt and fine sand yield moderate amounts of water, 10 to 100 gal/min. Dug wells that tap till or lacustrine deposits yield less than 5 gal/min. Well yields from bedrock are not indicated. (USGS)

  20. Potential yields of wells in unconsolidated aquifers in upstate New York--lower Hudson sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.

    1988-01-01

    This map shows the location and potential well yields from unconsolidated aquifers in the lower-Hudson region at a 1:250 ,000 scale. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary water supply ' aquifers and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciation of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, more than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units that have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  1. Potential yields of wells in unconsolidated aquifers in upstate New York-- Adirondack sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.; Casey, George D.

    1988-01-01

    This map shows the location and potential well yield from unconsolidated aquifers in the Adirondack region at a 1:250,000 scale. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply ' aquifers and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciation of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, greater than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  2. A new approach for assessing the future of aquifers supporting irrigated agriculture

    Science.gov (United States)

    Butler, James J.; Whittemore, Donald O.; Wilson, Blake B.; Bohling, Geoffrey C.

    2016-03-01

    Aquifers supporting irrigated agriculture are under stress worldwide as a result of large pumping-induced water deficits. To aid in the formulation of more sustainable management plans for such systems, we have developed a water balance approach for assessing the impact of proposed management actions and the prospects for aquifer sustainability. Application to the High Plains aquifer (HPA) in the state of Kansas in the United States reveals that practically achievable reductions in annual pumping (determining the net inflow (capture) component of the water balance. The HPA is similar to many aquifers supporting critically needed agricultural production, so the presented approach should prove of value far beyond the area of this initial application.

  3. Tornado from Texas.

    Science.gov (United States)

    Vail, Kathleen

    1996-01-01

    Santa Fe School Superintendent Yvonne Gonzales, the "Texas Tornado," was hired to fix a 40% student-dropout rate and a white/Hispanic gap in achievement test scores. Gonzales is an avid integrationist; relies on humor, appeasement, and persuasion tactics; and has alienated some school employees by increasing central office…

  4. Sustainable yield of the Colle Quartara carbonate aquifer in the Southern Lepini Mountains (Central Italy

    Directory of Open Access Journals (Sweden)

    Giovanni Conte

    2016-10-01

    Full Text Available The present research is aimed to contribute to the groundwater resource sustainable management of a carbonate aquifer in a test area of the Lepini Mountains (Central Italy. This aquifer constitutes a major exploited groundwater body of central Apennines. At regional scale, the hydrogeological features of the Lepini hydrostructure are well known. The present study focuses on a portion of the Lepini Mountains where important tapping-works for drinking water supply are in activity (about 1.2 m3/s. New investigations were carried out including: meteo-climatic analysis, spring discharge and hydrometric time series processing, pumping test result interpretation. In addition, a detailed lithostratigraphical and structural survey of a portion of the Lepini hydrostructure at 1:10,000 scale was performed also examining the dense network of discontinuities affecting the carbonate aquifer. Extensional Plio-Pleistocene tectonic activity displaced the carbonate rock sequence under the Pontina Plain, where the carbonate aquifer is confined. The investigation results have allowed the reconstruction of the hydrogeological conceptual model of the studied portion of carbonate massif. Given the scale of the study and the results of the investigation, the carbonate aquifer can be treated as an equivalent porous medium, and the simplified numerical model of the aquifer was constructed with the code MODFLOW-2005. The numerical model, still now under continuous implementation, produced first results on the current withdrawal sustainability, allowing evaluation of possible alternative exploitation scenarios of the carbonate aquifer also considering the probably not significant flow exchanges with the Pontina Plain aquifer.

  5. Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.

    Science.gov (United States)

    Balaji Bhaskar, M. S.

    2017-12-01

    Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.Urban flooding is a hazard that causes major destruction and loss of life. High intense precipitation events have increased significantly in Houston, Texas in recent years resulting in frequent river and bayou flooding. Many of the historical storm events such as Allison, Rita and Ike have caused several billion dollars in losses for the Houston-Galveston Region. A category 4 Hurricane Harvey made landfall on South Texas resulting in heavy precipitation from Aug 25 to 29 of 2017. About 1 trillion gallons of water fell across Harris County over a 4-day period. This amount of water covers Harris County's 1,800 square miles with an average of 33 inches of water. The long rain event resulted in an average 40inch rainfall across the area in several rain gauges and the maximum rainfall of 49.6 inches was recorded near Clear Creek. The objectives of our study are to 1) Process the Geographic Information System (GIS) and satellite data from the pre and post Hurricane Harvey event in Houston, Texas and 2) Analyze the satellite imagery to map the nature and pattern of the flooding in Houston-Galveston Region. The GIS data of the study area was downloaded and processed from the various publicly available resources such as Houston Galveston Area Council (HGAC), Texas Commission of Environmental Quality (TCEQ) and Texas Natural Resource Information Systems (TNRIS). The satellite data collected soon after the Harvey flooding event were downloaded and processed using the ERDAS image processing software. The flood plain areas surrounding the Brazos River, Buffalo Bayou and the Addicks Barker reservoirs showed severe inundation. The different watershed areas affected by the catastrophic flooding in the wake of Hurricane Harvey were mapped and compared with the pre flooding event.

  6. Summary of northern Atlantic coastal plain hydrology and its relation to disposal of high-level radioactive waste in buried crystalline rock; a preliminary appraisal

    Science.gov (United States)

    Lloyd, O.B.; Larson, J.D.; Davis, R.W.

    1985-01-01

    Interpretation of available hydrologic data suggests that some areas beneath the Coastal Plain in the States of Delaware, Maryland, New Jersey, North Carolina, and Virginia might have some potential for the disposal of nuclear waste in crystalline rock that is buried beneath the Coastal Plain sediments. The areas of major interest occur where the top of the basement rock lies between 1,000 and 4,000 feet below sea level, the aquifer(s) immediately above the basement rock are saturated with saline water, confining material overlies the saline water bearing aquifer(s), and groundwater flow in the saline water aquifer(s) can be established. Preliminary data on (1) the distribution and thickness of the lowermost aquifers and confining beds, (2) the distribution of hydraulic conductivity in the lowermost aquifers, (3) estimated hydraulic heads and inferred direction of lateral groundwater flow for 1980, and (4) the distribution of saline water and brine, indicate eastern parts of the study area relatively best meet most of the criteria proposed for sediments that would overlie any potential buried crystalline-rock disposal site.

  7. Characteristics of Southern California coastal aquifer systems

    Science.gov (United States)

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    Most groundwater produced within coastal Southern California occurs within three main types of siliciclastic basins: (1) deep (>600 m), elongate basins of the Transverse Ranges Physiographic Province, where basin axes and related fluvial systems strike parallel to tectonic structure, (2) deep (>6000 m), broad basins of the Los Angeles and Orange County coastal plains in the northern part of the Peninsular Ranges Physiographic Province, where fluvial systems cut across tectonic structure at high angles, and (3) shallow (75-350 m), relatively narrow fluvial valleys of the generally mountainous southern part of the Peninsular Ranges Physiographic Province in San Diego County. Groundwater pumped for agricultural, industrial, municipal, and private use from coastal aquifers within these basins increased with population growth since the mid-1850s. Despite a significant influx of imported water into the region in recent times, groundwater, although reduced as a component of total consumption, still constitutes a significant component of water supply. Historically, overdraft from the aquifers has caused land surface subsidence, flow between water basins with related migration of groundwater contaminants, as well as seawater intrusion into many shallow coastal aquifers. Although these effects have impacted water quality, most basins, particularly those with deeper aquifer systems, meet or exceed state and national primary and secondary drinking water standards. Municipalities, academicians, and local water and governmental agencies have studied the stratigraphy of these basins intensely since the early 1900s with the goals of understanding and better managing the important groundwater resource. Lack of a coordinated effort, due in part to jurisdictional issues, combined with the application of lithostratigraphic correlation techniques (based primarily on well cuttings coupled with limited borehole geophysics) have produced an often confusing, and occasionally conflicting

  8. Karst connections between unconfined aquifers and the Upper Floridan aquifer in south Georgia: geophysical evidence and hydrogeological models

    Science.gov (United States)

    Thieme, D. M.; Denizman, C.

    2011-12-01

    Buried karst features in sedimentary rocks of the south Georgia Coastal Plain present a challenge for hydrogeological models of recharge and confined flow within the underlying Upper Floridan aquifer. The Withlacoochee River, the trunk stream for the area, frequently disappears into subsurface caverns as it makes its way south to join the Suwannee River in northern Florida. The Withlacoochee also receives inputs from small ponds and bays which in turn receive spring and seep groundwater inputs. We have mapped karst topography at the "top of rock" using ground-penetrating radar (GPR). Up to seven meters of relief is indicated for the paleotopography on Miocene to Pliocene rocks, contrasting with the more subdued relief of the modern landscape. Current stratigraphic and hydrogeological reconstructions do not incorporate this amount of relief or lateral variation in the confining beds. One "pipe" which is approximately four meters in diameter is being mapped in detail. We have field evidence at this location for rapid movement of surficial pond and river water with a meteoric signature through several separate strata of sedimentary rock into an aquifer in the Hawthorn formation. We use our geophysical and hydrological field evidence to constrain quantitative hydrogeological models for the flow rates into and out of both this upper aquifer and the underlying Upper Floridan aquifer, which is generally considered to be confined by the clays of the Hawthorn.

  9. Geology and ground-water resources of Winkler County, Texas

    Science.gov (United States)

    Garza, Sergio; Wesselman, John B.

    1963-01-01

    Winkler County, in west Texas, is adjacent to the southeast corner of New Mexico. Most of the county lies in the Pecos Valley; the remainder, in the northeastern part of the county, is part of the Llano Estacado, or the High Plains. Its principal industries are those related to the production and refining of oil, but ranching also is an important occupation. The county has an arid to semiarid climate, an area of about 887 square miles, and a population of about 12,000 in 1957.

  10. Gulf Atlantic Coastal Plain Long Term Agroecosystem Research site, Tifton, GA

    Science.gov (United States)

    Timothy Strickland; David D. Bosch; Dinku M. Endale; Thomas L. Potter

    2016-01-01

    The Gulf-Atlantic Coastal Plain (GACP) physiographic region is an important agricultural production area within the southeastern U.S. that extends from Delaware in the Northeast to the Gulf Coast of Texas. The region consists mainly of low-elevation flat to rolling terrain with numerous streams, abundant rainfall, a complex coastline, and many wetlands. The GACP Long ...

  11. Texas turns on lignite

    International Nuclear Information System (INIS)

    Faulkner, T.

    1992-01-01

    The paper describes the author's involvement with the Texas Mining and Reclamation Association (TMRA) and some of its activities. The mission of TMRA is to solidify the needs and opinions of the various mining sectors into one voice which can be heard on the vital matters of balance between mineral production, environmental protection, economic strength and public welfare. To make this voice effective, TMRA will present the mining industry - and its value to the Texas economy and lifestyle - to the public, educators and students, regulatory officials, legislators and to the media to enhance their understanding. TMRA will promote the active participation of its members in association affairs and strive for integrity, clarity and vision throughout all its operations and activities

  12. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    resistance (ρ); dielectric constant (ε); magnetic permeability (η); electrochemical activity ..... comprises grey sands of different particle size distribution ..... groundwater: testing pollution mechanisms for sedimentary aquifers in. Bangladesh.

  13. Groundwater declines are linked to changes in Great Plains stream fish assemblages.

    Science.gov (United States)

    Perkin, Joshuah S; Gido, Keith B; Falke, Jeffrey A; Fausch, Kurt D; Crockett, Harry; Johnson, Eric R; Sanderson, John

    2017-07-11

    Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950-2010) and prospective (2011-2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur.

  14. Geothermal alteration of basaltic core from the Snake River Plain, Idaho

    Science.gov (United States)

    Sant, Christopher J.

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.

  15. EPA Region 1 Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of...

  16. Biostratigraphic implications of the first Eocene land-mammal fauna from the North American coastal plain

    Science.gov (United States)

    Westgate, James W.

    1988-11-01

    A newly discovered vertebrate fossil assemblage, the Casa Blanca local fauna, comes from the Laredo Formation, Claiborne Group, of Webb County, Texas, and is the first reported Eocene land-mammal fauna from the coastal plain of North America. The mammalian fauna is correlated with the Serendipity and Candelaria local faunas of west Texas, the Uinta C faunas of the Rocky Mountains, the Santiago Formation local fauna of southern California, and the Swift Current Creek local fauna of Saskatchewan. The vertebrate-bearing deposit lies about 32 m above a horizon containing the marine gastropod Turritella cortezi, which ranges from east Texas to northeast Mexico in the lower half of the Cook Mountain and Laredo Formations and is a guide fossil to the Hurricane Lentil in the Cook Mountain Formation. Nannoplankton found in these middle Eocene formations belong to the upper half of Nannoplankton Zone I6 and allow correlation with European beds of late Lutetian to early Bartonian age.

  17. Evaluating the rate of migration of an uranium deposition front within the Uitenhage Aquifer

    CSIR Research Space (South Africa)

    Vogel

    1999-07-01

    Full Text Available of Geochemical Exploration 66 (1999) 269?276 www.elsevier.com/locate/jgeoexp Evaluating the rate of migration of an uranium deposition front within the Uitenhage Aquifer J.C. Vogel a,A.S.Talmaa, T.H.E. Heaton b, J. Kronfeld c,* a Quaternary Dating Research Unit... stream_source_info vogel_1999.pdf.txt stream_content_type text/plain stream_size 18078 Content-Encoding ISO-8859-1 stream_name vogel_1999.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ELSEVIER Journal...

  18. Ecological Baseline, Fort Hood, Texas

    Science.gov (United States)

    1980-08-01

    cedar eTm (Uiimus crassifolia), Texas ash (Fraxinus texansis), and Texas persimmon ( Diospyros texana). Conversely, the two predominant tree species...Ilex decidua), Mex- ican buckeye (Ungnadia spjeciosa), and Texas persimmon ( Diospyros texana). Vines included greenbrier (Smilax bona-nox) and white...Hedgehey Cactus (Echinocereus sp.) has been observed on Fort Hood. Due to the brief period of flowering for this genus , the individual species were not

  19. Determination of groundwater characteristics and water budget in the Edremit Plain by means of isotopes

    International Nuclear Information System (INIS)

    Onhon, E.

    1983-08-01

    Detailed field investigations with environmental isotopes (O-18, D, T, C-14 and C-13) have been conducted to study the replenishment process and flow dynamics of groundwater system in Edremit plain, which is an area of 200 m 2 size located in the eastern part of Turkey. Along with conventional hydrogeological and hydrochemical data collected from the study area, results of environmental isotopic analyses performed on water samples systematically collected from the area, enabled to delineate the source and origin of recharge to the shallow groundwater aquifers and as well provided information on various dynamic parameters of groundwater flow. In addition to basic flow dynamic characteristics of the shallow aquifer in the study area, environmental isotopes were used to investigate the hydraulic interconnections between deeper thermal groundwater system and the upper shallow aquifers. Results of all the environmental isotopic analyses and their interpretation are given

  20. Cenomanian-Turonian aquifer of central Israel, its development and possible use as a storage reservoir

    Science.gov (United States)

    Schneider, Robert

    1964-01-01

    The Cenomanian-Turonian formations constitute a highly permeable dolomite and limestone aquifer in central Israel. The aquifer is on the west limb of an anticlinorium that trends north-northeast. In places it may be as much as 800 meters thick, but in the report area, largely the foothills of the Judean-Ephraim Mountains where the water development is most intensive, its thickness is generally considerably less. In some places the aquifer occurs at or near the land surface, or it is covered by sandy and gravelly coastal-plain deposits. However, in a large part of the area, it is overlain by as much as 400 meters of relatively impermeable strata, and it is probably underlain by less permeable Lower Cretaceous strata. In general the aquifer water is under artesian pressure. The porosity of the aquifer is characterized mainly by solution channels and cavities produced by jointing and faulting. In addition to the generally high permeability of the aquifer, some regions, which probably coincide with ancient drainage patterns and (or) fault zones, have exceptionally high permeabilities. The source of most of the water in the aquifer is believed to be rain that falls on the foothills area. The westward movement of ground water from the mountainous outcrop areas appears to be impeded by a zone of low permeability which is related to structural and stratigraphic conditions along the western side of the mountains. Gradients of the piezometric surface are small, and the net direction of water movement is westward and northwestward under natural conditions. Locally, however, the flow pattern may be in other directions owing to spatial variations in permeability in the aquifer, the location of natural discharge outlets, and the relation of the aquifer to adjacent geologic formations. There probably is also a large vertical component of flow. Pumping has modified the flow pattern by producing several irregularly shaped shallow depressions in the piezometric surface although, to

  1. Texas LPG fuel cell development and demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2004-07-26

    The State Energy Conservation Office has executed its first Fuel Cell Project which was awarded under a Department of Energy competitive grant process. The Texas LPG Fuel Processor Development and Fuel Cell Demonstration Program is a broad-based public/private partnership led by the Texas State Energy Conservation Office (SECO). Partners include the Alternative Fuels Research and Education Division (AFRED) of the Railroad Commission of Texas; Plug Power, Inc., Latham, NY, UOP/HyRadix, Des Plaines, IL; Southwest Research Institute (SwRI), San Antonio, TX; the Texas Natural Resource Conservation Commission (TNRCC), and the Texas Department of Transportation (TxDOT). The team proposes to mount a development and demonstration program to field-test and evaluate markets for HyRadix's LPG fuel processor system integrated into Plug Power's residential-scale GenSys(TM) 5C (5 kW) PEM fuel cell system in a variety of building types and conditions of service. The program's primary goal is to develop, test, and install a prototype propane-fueled residential fuel cell power system supplied by Plug Power and HyRadix in Texas. The propane industry is currently funding development of an optimized propane fuel processor by project partner UOP/HyRadix through its national checkoff program, the Propane Education and Research Council (PERC). Following integration and independent verification of performance by Southwest Research Institute, Plug Power and HyRadix will produce a production-ready prototype unit for use in a field demonstration. The demonstration unit produced during this task will be delivered and installed at the Texas Department of Transportation's TransGuide headquarters in San Antonio, Texas. Simultaneously, the team will undertake a market study aimed at identifying and quantifying early-entry customers, technical and regulatory requirements, and other challenges and opportunities that need to be addressed in planning commercialization of the units

  2. Plain formation on Mercury: tectonic implications

    International Nuclear Information System (INIS)

    Thomas, P.

    1980-01-01

    Four major plain units, plus intermediates, are distinguished on Mercury. The chronologic relationships between these plains indicate that plains formation was a permanent process on Mercury. Their location and morphology seem to indicate a possible volcanic origin for these plains. The relationships between tectonism and volcanism seems to indicate the global contraction is not the only tectonic process on Mercury. (Auth.)

  3. Determination of groundwater characteristics in the Nigde-Misli Plain by means of isotopes

    International Nuclear Information System (INIS)

    Bursali, S.; Ertan, I.; Yalcin, H.; Gunay, G.; Onhon, E.

    1975-06-01

    Nigde-Misli Plain, situated in the Central Anatolia, is 30 km north to Nigde City. The most important part of the plain is Golcuk with a superficial area of 290 sq. kilometers. Ovacik part has a superficial area of 22 sq. kilometers and separately Edikli part with 35 sq. kilometers. The total of the superficial area of the plain is 347 sq. km and its average altitude is 1340 m. The main purpose of this study is to check the sufficiency of the Nigde-Misli aquifer from which all of the wells are fed. Hydrogeological studies of the Nigde-Misli Plain have been completed in order to determine some of the groundwater characteristics. However, it was thought that it would be useful to check and support the hydrogeological conclusions by isotopic methods and to clarify some important points in the groundwater movement for which hydrogeological methods seem to be insufficient. For this purpose, surface water and ground water, precipitation and soil samples have been collected and analysed to determine their stable isotopes and tritium contents. Results have been interpreted in order to answer, as far as it is possible, to the question of the sufficiency of the Nigde-Misli aquifer

  4. A decade of investigations on groundwater arsenic contamination in Middle Ganga Plain, India.

    Science.gov (United States)

    Saha, Dipankar; Sahu, Sudarsan

    2016-04-01

    Groundwater arsenic (As) load in excess of drinking limit (50 µg L(-1)) in the Gangetic Plains was first detected in 2002. Though the menace was known since about two decades from the downstream part of the plains in the Bengal Basin, comprising of Lower Ganga Plain and deltaic plains of Ganga-Brahmaputra-Meghna River system, little thought was given to its possible threat in the upstream parts in the Gangetic Plains beyond Garo-Rajmahal Hills. The contamination in Bengal Basin has become one of the extensively studied issues in the world and regarded as the severest case of health hazard in the history of mankind. The researches and investigations in the Gangetic Plains during the last decade (2003-2013) revealed that the eastern half of the plains, also referred as Middle Ganga Plain (MGP), is particularly affected by contamination, jeopardising the shallow aquifer-based drinking water supply. The present paper reviews researches and investigations carried out so far in MGP by various research institutes and government departments on wide array of issues of groundwater As such as its spatio-temporal variation, mobilisation paths, water level behaviour and flow regime, configuration of contaminated and safe aquifers and their recharge mechanism. Elevated conc. of groundwater As has been observed in grey and dark grey sediments of Holocene age (Newer Alluvium) deposited in a fluvio-lacustrine environment in the floodplain of the Ganga and most of its northern tributaries from Himalayas. Older Alluvium, comprising Pleistocene brownish yellow sediment, extending as deeper aquifers in Newer Alluvium areas, is low in groundwater As. Similarities and differences on issues between the MGP and the Bengal Basin have been discussed. The researches point towards the mobilisation process as reductive dissolution of iron hydroxide coating, rich in adsorbed As, mediated by microbial processes. The area is marked with shallow water level (<8.0 m below ground) with ample

  5. A New Approach for Assessing Aquifer Sustainability and the Impact of Proposed Management Actions

    Science.gov (United States)

    Butler, J. J., Jr.; Whittemore, D. O.; Wilson, B. B.

    2015-12-01

    Aquifers are under stress worldwide as a result of large imbalances between inflows and outflows. These imbalances are particularly severe in aquifers in semi-arid regions that are heavily pumped for irrigation, such as the High Plains aquifer (HPA) in the United States. The water resources community has responded by placing an increasing emphasis on more sustainable management plans. To aid in the formulation of such plans, we have developed a simple, water-balance-based approach for rapid assessment of the impact of proposed management actions and the prospects for aquifer sustainability. This theoretically sound approach is particularly well suited for assessing the short- to medium-term (years to a few decades) response to management actions in seasonably pumped aquifers. The net inflow (capture) term of the aquifer water balance can also be directly calculated from water-level and water-use data with this approach. Application to the data-rich portion of the HPA in the state of Kansas reveals that practically achievable reductions in annual pumping would have a large impact. For example, a 22% reduction in average annual water use would have stabilized areally averaged water levels across northwest Kansas from 1996 to 2013 because of larger-than-expected and near-constant net inflows. Whether this is a short-term phenomenon or a path to long-term sustainability, however, has yet to be determined. Water resources managers are often in a quandary about the most effective use of scarce funds for data collection in support of aquifer assessment and management activities. This work demonstrates that a strong emphasis should be placed on collection of reliable water-use data; greater resources devoted to direct measurement of pumping will yield deeper insights into an aquifer's future. The Kansas HPA is similar to many other regional aquifers supporting critically needed agricultural production, so this approach should prove of value far beyond the borders of Kansas.

  6. Can Texas' Physicians Be as Diverse as Texas?

    Science.gov (United States)

    Price, Sean

    2017-07-01

    The United States and Texas have a chronic shortage of doctors, but the shortage of minority physicians is even more acute. To address this, and the health disparities that come with it, Texas medical schools are working to increase minority enrollment, but challenges remain.

  7. AQUIFER IN AJAOKUTA, SOUTHWESTERN NIGERIA

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... To establish the feasibility of water supply in a basement complex area ofAjaokuta, Southwestern Nigeria, pumping test results were used to investigate the storage properties and groundwater potential of the aquifer. The aquifer system consists of weathered and weathered/fractured zone of decomposed ...

  8. Research on the neutron flux, secular equilibrium of chlorine-36 and groundwater age of the deep quaternary sediments, Hebei plain

    International Nuclear Information System (INIS)

    Dong Yuean; He Ming; Jiang Songsheng; Wu Shaoyong; Jiang Shan

    2001-01-01

    For the study of the neutron flux, secular equilibrium of chlorine-36 in the deep quaternary sediments of Hebei plain, the main chemical composition of water sand and confining bed was determined by neutron activation analysis. The mean neutron flux is 2.79 x 10 -5 cm -2 s -1 which was calculated by the chemical composition of the strata. The mean 36 Cl/Cl ratio in secular equilibrium is 1.27 x 10 -14 in the deep quaternary sediments, Hebei Plain. For the study of the groundwater age of the deep Quaternary sediments of Hebei Plain, the 36 Cl/Cl ratio of groundwater samples were determined by tandem accelerator mass spectrometry. The mixed groundwater 36 Cl/Cl ratio of the second and the third aquifer of Quaternary sediments in Baoding district is 247 x 10 -15 , that of the fourth aquifer in Baoding city is 224 x 10 -15 and the third aquifer in Cangzhou district is 40.5 x 10 -15 . The groundwater age of Baoding district was young and that of the third aquifer in Cangzhou was 229.2 ka

  9. The integrated impacts of natural processes and human activities on the origin and processes of groundwater salinization in the coastal aquifers of Beihai, Southern China

    Science.gov (United States)

    Li, Q.; Zhan, Y., , Dr; Chen, W. Ms; Yu, S., , Dr

    2017-12-01

    Salinization in coastal aquifers usually is the results of contamination related to both seawater intrusion and water-rock interaction. The chemical and isotopic methods were combined to identify the origin and processes of groundwater salinization in Daguansha area of Beihai. The concentrations of the major ions that dominate in sea water (Cl-, Na+, Ca2+, Mg2+ and SO2- 4), as well as the isotopic ratios (2H, 18O, 87Sr/86Sr and 13C) suggest that the salinization occurring in the aquifer water of the coastal plain is related to seawater and the prevailing hydrochemical processes are evaporation, mixing, dissolution and ion exchange. For the unconfined aquifer, groundwater salinization occurred in parts of the area, which is significantly influenced by the land-based sea farming. The integrated impacts of seawater intrusion from the Beibuwan Gulf and infiltration of seawater from the culture ponds is identified in the confined aquifer I at site BBW2. In consequence, the leakage from this polluted aquifer causes the salinization of groundwater in the confined aquifer II. At site BBW3, the confined aquifer I and lower confined aquifer II are remarkably contaminated by seawater intrusion. The weak connectivity with upper aquifers and seaward movement of freshwater prevents saltwater from encroaching the confined aquifer III. Above all, understanding of the origin and processes of groundwater salinization will provide essential information for sustainable planning and management of groundwater resources in this region.

  10. Hydrology of aquifer systems in the Memphis area, Tennessee

    Science.gov (United States)

    Criner, James H.; Sun, P-C. P.; Nyman, Dale J.

    1964-01-01

    The Memphis area as described in .this report comprises about 1,300 square miles of the Mississippi embayment part of the Gulf Coastal Plain. The area is underlain by as much as 3,000 feet of sediments ranging in age from Cretaceous through Quaternary. In 1960, 150 mgd (million gallons per day) of water was pumped from the principal aquifers. Municipal pumpage accounted for almost half of this amount, and industrial pumpage a little more than half. About 90 percent of the water used in the area is derived from the '500-foot' sand, and most of the remainder is from the ?400-foot' sand; both sands are of Eocene age. A small amount of water for domestic use is pumped from the terrace deposits of Pliocene and Pleistocene age. Both the '500-foot' and the '1,400-foot' sands are artesian aquifers except in the southeastern part of the area; there the water level in wells in the '500-foot' sand is now below the overlying confining clay. Water levels in both aquifers have declined almost continuously since pumping began, but the rate of decline has increased rapidly since 1940. Water-level decline in the '1,400-foot' sand has been less pronounced since 1956. The cones of depression in both aquifers have expanded and deepened as a result of the annual increases in pumping, and an increase in hydraulic gradients has induced a greater flow of water into the area. Approximately 135 mgd entered the Memphis area through the '500-foot' sand aquifer in 1960, and, of this amount, 60 mgd originated as inflow from the east and about 75 mgd was derived from leakage from the terrace deposits, from the north, south, and west and from other sources. Of the water entering the '1,400-foot' sand, about 5 mgd was inflow from the east, and about half that amount was from each of the north, south, and west directions. The average rate of movement of water outside the area of heavy withdrawals is about 70 feet per year in the '500-foot' sand and about 40 feet per year in the '1,400-foot' sand

  11. Delineation of the extent of milling-related contamination in a naturally contaminated aquifer system

    International Nuclear Information System (INIS)

    Downs, William F.; Storms, Erik F.

    1992-01-01

    Uranium mill tailings from the Susquehanna-Western mill near Falls City, Texas, were pumped to tailings ponds located in abandoned open pit uranium mines. The ores from these mines were oxidized. Uranium and the associated hazardous constituents were present in these ores as relatively soluble secondary minerals. Because the tailings piles are located on the outcrops of the units designated as the uppermost aquifer, there is no upgradient aquifer from which to establish 'background' water quality. The widespread mineralization in the area naturally imposes a large variability in water quality in these units. It was necessary to demonstrate to State and Federal regulators that selected downgradient wells were beyond the influence of milling operations, and to develop a series of 'indicator parameters' that could be used to differentiate milling contaminated groundwater from that native to the aquifer. (author)

  12. Relationship of regional water quality to aquifer thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.

    1983-11-01

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  13. Geology and ground-water resources of Duval County, Texas

    Science.gov (United States)

    Sayre, Albert Nelson

    1937-01-01

    Duval County is situated in southern Texas, 100 to 150 miles south of San Antonio and about midway between Corpus Christi, on the Gulf of Mexico, and Laredo, on the Rio Grande. The county lies on the Coastal Plain, which for the most part is low and relatively featureless. Between the Nueces River and the Rio Grande in this part of Texas the plain is interrupted by an erosion remnant, the Reynosa Plateau, which reaches a maximum altitude of nearly 1,000 feet above sea level and stands well above the areas to the east and west. The Reynosa Plateau includes most of Duval County and parts of Webb, Zapata, Starr, Jim Hogg, Jim Wells, McMullen, and Live Oak Counties. In Duval County the plateau is bounded on the west by the westward-facing Bordas escarpment, 75 to 150 feet high, which crosses the county with a southwesterly trend from about the middle of the north boundary to about the middle of the west boundary. On the east the plateau is bounded by a low seaward-facing escarpment, which passes through San Diego, trending a little west of south.

  14. Forests of East Texas, 2014

    Science.gov (United States)

    Thomas J. Brandeis

    2015-01-01

    This resource update provides an overview of forest resources in east Texas derived from an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) Program at the Southern Research Station in cooperation with the Texas A&M Forest Service. These estimates are based on field data collected using the FIA annualized sample design and are...

  15. Forests of east Texas, 2013

    Science.gov (United States)

    K.J.W. Dooley; T.J. Brandeis

    2014-01-01

    This resource update provides an overview of forest resources in east Texas based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the Texas A&M Forest Service. Forest resource estimates are based on field data collected using the FIA annualized sample design and...

  16. CBTE: The Ayes of Texas

    Science.gov (United States)

    Houston, W. Robert; Howsam, Robert B.

    1974-01-01

    A heated controversy occurred when the Texas State Board of Education mandated competency based teacher education (CBTE) for all of the State's 66 teacher preparatory institutions. This is an account of developments in Texas by two major proponents of CBTE. (Author/JF)

  17. Salt water and its relation to fresh ground water in Harris County, Texas

    Science.gov (United States)

    Winslow, Allen G.; Doyel, William Watson; Wood, L.A.

    1957-01-01

    Harris County, in the West Gulf Coastal Plain in southeastern Texas, has one of the heaviest concentrations of ground-water withdrawal in the United States. Large quantities of water are pumped to meet the requirements of the rapidly growing population, for industry, and for rice irrigation. The water is pumped from artesian wells which tap a thick series of sands ranging in age from Miocene (?) to Pleistocene.

  18. Big Data Processing for a Central Texas Groundwater Case Study

    Science.gov (United States)

    Cantu, A.; Rivera, O.; Martínez, A.; Lewis, D. H.; Gentle, J. N., Jr.; Fuentes, G.; Pierce, S. A.

    2016-12-01

    As computational methods improve, scientists are able to expand the level and scale of experimental simulation and testing that is completed for case studies. This study presents a comparative analysis of multiple models for the Barton Springs segment of the Edwards aquifer. Several numerical simulations using state-mandated MODFLOW models ran on Stampede, a High Performance Computing system housed at the Texas Advanced Computing Center, were performed for multiple scenario testing. One goal of this multidisciplinary project aims to visualize and compare the output data of the groundwater model using the statistical programming language R to find revealing data patterns produced by different pumping scenarios. Presenting data in a friendly post-processing format is covered in this paper. Visualization of the data and creating workflows applicable to the management of the data are tasks performed after data extraction. Resulting analyses provide an example of how supercomputing can be used to accelerate evaluation of scientific uncertainty and geological knowledge in relation to policy and management decisions. Understanding the aquifer behavior helps policy makers avoid negative impact on the endangered species, environmental services and aids in maximizing the aquifer yield.

  19. The Marlborough Deep Wairau Aquifer sustainability review 2008 : isotopic indicators

    International Nuclear Information System (INIS)

    Morgenstern, U.; van der Raaij, R.W.; Trompetter, V.; McBeth, K.

    2008-01-01

    The Deep Wairau Aquifer (DWA) consists of several relatively thin water bearing layers at depths generally greater than 150 m separated by thick confining layers and was therefore thought to be relatively isolated from surface hydrological processes, with little pumping induced effects on spring flows and shallow aquifers. However, because the DWA partially underlies fully allocated shallower Southern Valleys Aquifers it is critical to understand the dynamics (recharge, flow) of the DWA. Recent aquifer testing revealed that the DWA is hydraulically linked to the Southern Valley Benmorven Aquifer and that most wells penetrating the DWA are hydraulically linked. The aquifers of the Wairau Plain are formed by a series of glacial and alluvial outwash deposits laid down by the Wairau River. Bore logs indicate that the aquifer contains thin water-bearing layers within the mixed strata. These layers come under artesian pressure towards the east. The Wairau Gravels are overlain by a sequence of glacial outwash and fluvial gravels interspersed with marine deposits. Immediately above the Wairau Gravels lies the Speargrass Formation consisting of poorly sorted glacial outwash gravels, sand and clay deposits. This formation has greater permeability than the Wairau Gravels. Above the Speargrass Formation lie highly permeable postglacial fluvial gravels, sand and silt deposits from the Wairau and tributary rivers known as the Rapaura Formation. Towards the coast, the alluvial gravels are overlain by marine and estuarine deposits of sand, silt and clay known as the Dillons Point Formation. Chemistry and isotope samples were analysed over time from various DWA wells to obtain information on changes in source and age of water with continued abstraction. All DWA water samples are tritium-free indicating that there is no young water influx yet intercepted by any of the sampled wells. Radiocarbon repeat measurements indicate that the water source is changing towards older water with

  20. Origin of water salinity in the coastal Sarafand aquifer (South-Lebanon)

    International Nuclear Information System (INIS)

    Hashash, Adnan; Aranyossy, J.F.

    1996-01-01

    Author.The geochemical and isotopic study, based on the analysis of twenty water samples from well in the coastal plain of Sarafand (South-Lebanon), permit to eliminate the hypothesis of marine intrusion in this aquifer. The increase of salinity observed in certain wells is due to the contamination of cretaceous aquifer water by the quaternary formations. The two poles of mixing are respectively characterized: by weak tritium contents (between 2 and 3 UT) and a value of stable isotopes (-5,9<0,18<-5,5) corresponding to the appearance of cretaceous formation area; by the high tritium contents and enrichment relative to heavy isotope in the mineralized water of superficial formations. On the other hand, the isotope contents permit the set a rapid renewal of the cretaceous aquifer water due to quick circulation in the Karstic system

  1. Geology, Surficial, Little Contentnea Creek Watershed Geomorphology - DRG �Äö?Ñ?¨ Watershed-scale project in Middle Coastal Plain characterize geomorphology, surficial geology, shallow aquifers and confining units; shape file with geomorphic map units interpreted from, Published in 2006, 1:24000 (1in=2000ft) scale, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Surficial dataset current as of 2006. Little Contentnea Creek Watershed Geomorphology - DRG �Äö?Ñ?¨ Watershed-scale project in Middle Coastal Plain...

  2. Geology, Surficial, Neuse River Basin Mapping Project Core Locations �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to characterize geomorphology, surficial geology, and shallow aquifers and confining units; Excel spread sheet with core names, coordinates, and data co, Published in 2006, 1:24000 (1in=2000ft) scale, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Surficial dataset current as of 2006. Neuse River Basin Mapping Project Core Locations �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to characterize...

  3. Modeling Spatial and Temporal Changes in Groundwater Quality in Arid Zones Using Geostatistical Methods(Case Study: Koohpaye– Segzi Plain in Esfahan

    Directory of Open Access Journals (Sweden)

    SH Abbasi Jondani

    2015-05-01

    Conclusion: The resultsshow thatwaterquality inKoohpaye– SegziPlainhavedramaticallyreduced in 1389than in1374.Most ofthechangeshave been occurrednearzayanderood river, as critical points have been appeared in Southern area of this plain. This show the effective role of zayanderood river in groundwater aquifer.

  4. Regional implications of heat flow of the Snake River Plain, Northwestern United States

    Science.gov (United States)

    Blackwell, D. D.

    1989-08-01

    The Snake River Plain is a major topographic feature of the Northwestern United States. It marks the track of an upper mantle and crustal melting event that propagated across the area from southwest to northeast at a velocity of about 3.5 cm/yr. The melting event has the same energetics as a large oceanic hotspot or plume and so the area is the continental analog of an oceanic hotspot track such as the Hawaiian Island-Emperor Seamount chain. Thus, the unique features of the area reflect the response of a continental lithosphere to a very energetic hotspot. The crust is extensively modified by basalt magma emplacement into the crust and by the resulting massive rhyolite volcanism from melted crustal material, presently occurring at Yellowstone National Park. The volcanism is associated with little crustal extension. Heat flow values are high along the margins of the Eastern and Western Snake River Plains and there is abundant evidence for low-grade geothermal resources associated with regional groundwater systems. The regional heat flow pattern in the Western Snake River Plains reflects the influence of crustal-scale thermal refraction associated with the large sedimentary basin that has formed there. Heat flow values in shallow holes in the Eastern Snake River Plains are low due to the Snake River Plains aquifer, an extensive basalt aquifer where water flow rates approach 1 km/yr. Below the aquifer, conductive heat flow values are about 100 mW m -2. Deep holes in the region suggest a systematic eastward increase in heat flow in the Snake River Plains from about 75-90 mW m -2 to 90-110 mW m -2. Temperatures in the upper crust do not behave similarly because the thermal conductivity of the Plio-Pleistocene sedimentary rocks in the west is lower than that in the volcanic rocks characteristic of the Eastern Snake River Plains. Extremely high heat loss values (averaging 2500 mW m -2) and upper crustal temperatures are characteristic of the Yellowstone caldera.

  5. TEXAS MIGRANT LABOR, THE 1964 MIGRATION.

    Science.gov (United States)

    Good Neighbor Commission of Texas, Austin.

    THE MAJORITY OF TEXAS MIGRANTS LIVE IN SOUTH TEXAS AND APPROXIMATELY 95 PERCENT OF THEM ARE OF MEXICAN EXTRACTION. MOST OF THE OTHER FIVE PERCENT ARE EAST TEXAS NEGROES. THE MECHANIZATION OF COTTON HARVESTING AND THE EXPIRATION OF THE "BRACERO PROGRAM" IN 1964 HAVE CAUSED MORE TEXAS MIGRANTS TO SEEK EMPLOYMENT OUTSIDE OF THE STATE. DURING 1964,…

  6. Texas Affordable Baccalaureate Program: A Collaboration between the Texas Higher Education Coordinating Board, South Texas College, and Texas A&M University-Commerce. CBE Case Study

    Science.gov (United States)

    Klein-Collins, Rebecca; Glancey, Kathleen

    2015-01-01

    This case study is part of a series on newer competency-based degree programs that have been emerging in recent years. In January 2014, the Texas Higher Education Coordinating Board (THECB), South Texas College (STC), and Texas A&M University-Commerce (A&M Commerce) launched the Texas Affordable Baccalaureate Program, the state's first…

  7. Principal aquifers can contribute radium to sources of drinking water under certain geochemical conditions

    Science.gov (United States)

    Szabo, Zoltan; Fischer, Jeffrey M.; Hancock, Tracy Connell

    2012-01-01

    What are the most important factors affecting dissolved radium concentrations in principal aquifers used for drinking water in the United States? Study results reveal where radium was detected and how rock type and chemical processes control radium occurrence. Knowledge of the geochemical conditions may help water-resource managers anticipate where radium may be elevated in groundwater and minimize exposure to radium, which contributes to cancer risk. Summary of Major Findings: * Concentrations of radium in principal aquifers used for drinking water throughout the United States generally were below 5 picocuries per liter (pCi/L), the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) for combined radium - radium-226 (Ra-226) plus radium-228 (Ra-228) - in public water supplies. About 3 percent of sampled wells had combined radium concentrations greater than the MCL. * Elevated concentrations of combined radium were more common in groundwater in the eastern and central United States than in other regions of the Nation. About 98 percent of the wells that contained combined radium at concentrations greater than the MCL were east of the High Plains. * The highest concentrations of combined radium were in the Mid-Continent and Ozark Plateau Cambro-Ordovician aquifer system and the Northern Atlantic Coastal Plain aquifer system. More than 20 percent of sampled wells in these aquifers had combined radium concentrations that were greater than or equal to the MCL. * Concentrations of Ra-226 correlated with those of Ra-228. Radium-226 and Ra-228 occur most frequently together in unconsolidated sand aquifers, and their presence is strongly linked to groundwater chemistry. * Three common geochemical factors are associated with the highest radium concentrations in groundwater: (1) oxygen-poor water, (2) acidic conditions (low pH), and (3) high concentrations of dissolved solids.

  8. Groundwater Flow and Transport Model in Cecina Plain (Tuscany, Italy using GIS processing

    Directory of Open Access Journals (Sweden)

    Riccardo Armellini

    2015-03-01

    Full Text Available This work provides a groundwater flow and transport model of trichlorethylene and tetrachlorethylene contamination in the Cecina’s coastal aquifer. The contamination analysis, with source located in the Poggio Gagliardo area (Montescudaio, Pisa, was necessary to optimize the groundwater monitoring and remediation design. The work was carried out in two phases: • design of a conceptual model of the aquifer using GIS analysis of many stratigraphic, chemical and hydrogeological data, collected from 2004 to 2012 in six aqueduct wells; • implementation of a groundwater flow and transport numerical model using the MODFLOW 88/96 and MT3D code and the graphical user interface GroundWaterVistas 5. The conceptual model hypothesizes a multilayer aquifer in the coastal plain extended to the sandy-clay hills, recharged by rainfall and by the Cecina River. The aquifer shows important hydrodynamic features affecting both the contamination spreading, due to the presence of a perched and heavily polluted layer separate from the underlying productive aquifer, and the hydrological balance, due to a thick separation layer that limits exchanges between the river and the second groundwater aquifer. The numerical model, built using increasingly complex versions of the initial conceptual model, has been calibrated using monitoring surveys conducted by the Environmental Protection Agency of Regione Toscana (ARPAT, in order to obtain possible forecast scenarios based on the minimum and maximum flow periods, and it is currently used as a tool for decision support regarding the reclamation and/or protection of the aquifer. Future developments will regard the implementation of the multilayer transport model, based on a new survey, and the final coupling with the regional hydrological model named MOBIDIC.

  9. Distribution of uranium and radium isotopes in an aquifer of a semi-arid region (Manouba-Essijoumi, Northern Tunisia)

    International Nuclear Information System (INIS)

    Added, A.; Ben Mammou, A.; Fernex, F.; Rezzoug, S.; Bernat, M.

    2005-01-01

    Groundwaters from the Sebkhet Essijoumi drainage basin, situated in northern Tunisia, West of the city of Tunis, were sampled and analyzed for uranium and radium isotopes. Low 234 U/ 238 U activity ratios coupled with relatively high 228 Ra and 238 U concentrations were found in the Manouba plain phreatic aquifer, at the northern part of the basin, where remote sensing has indicated that this plain corresponds to the main humid zone of the area. Low 234 U/ 238 U ratios probably reflected short residence time for waters in the Manouba plain, and high ratios longer residence time in the south, where water reaching the phreatic aquifer seems to have previously circulated in rocks constituting the southern hills. Assuming that, in the Manouba plain aquifer, the groundwater flows downstream from the Oued Lill pass area to the South-West of the Sebkha, the difference in the 228 Ra/ 226 Ra activity ratio suggests that the residence time of water has been 2.8 years longer near the Sebkha than upstream

  10. Distribution of uranium and radium isotopes in an aquifer of a semi-arid region (Manouba-Essijoumi, Northern Tunisia).

    Science.gov (United States)

    Added, A; Ben Mammou, A; Fernex, F; Rezzoug, S; Bernat, M

    2005-01-01

    Groundwaters from the Sebkhet Essijoumi drainage basin, situated in northern Tunisia, West of the city of Tunis, were sampled and analyzed for uranium and radium isotopes. Low (234)U/(238)U activity ratios coupled with relatively high (228)Ra and (238)U concentrations were found in the Manouba plain phreatic aquifer, at the northern part of the basin, where remote sensing has indicated that this plain corresponds to the main humid zone of the area. Low (234)U/(238)U ratios probably reflected short residence time for waters in the Manouba plain, and high ratios longer residence time in the south, where water reaching the phreatic aquifer seems to have previously circulated in rocks constituting the southern hills. Assuming that, in the Manouba plain aquifer, the groundwater flows downstream from the Oued Lill pass area to the South-West of the Sebkha, the difference in the (228)Ra/(226)Ra activity ratio suggests that the residence time of water has been 2.8 years longer near the Sebkha than upstream.

  11. Is the Texas Pecan Checkoff Program Working?

    OpenAIRE

    Moore, Eli D.; Williams, Gary W.

    2008-01-01

    The Texas Pecan Board was established in 1998 to administer the Texas Pecan Checkoff Program and is financed through a one-half cent per pound assessment on grower pecan sales. The Board spends the assessment collections on a variety of advertising campaigns in an attempt to expand demand for Texas pecans, both improved and native varieties, and increase the welfare of Texas pecan growers. This study presents an evaluation of the economic effectiveness of the Texas Pecan Checkoff Program in e...

  12. Geochemical detection of carbon dioxide in dilute aquifers

    Directory of Open Access Journals (Sweden)

    Aines Roger

    2009-03-01

    Full Text Available Abstract Background Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 103 to 2 × 106 t/yr (0.63 to 1250 t/m2/yr to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. Results For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux ≥ 104 t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase

  13. Geochemical detection of carbon dioxide in dilute aquifers.

    Science.gov (United States)

    Carroll, Susan; Hao, Yue; Aines, Roger

    2009-03-26

    Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 10(3) to 2 x 10(6) t/yr (0.63 to 1250 t/m2/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux >or= 10(4) t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase in the lower most permeable unit and does

  14. Texas' performance assessment work

    International Nuclear Information System (INIS)

    Charbeneau, R.J.; Hertel, N.E.; Pollard, C.G.

    1990-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority is completing two years of detailed on-site suitability studies of a potential low-level radioactive waste disposal site in Hudspeth County, Texas. The data from these studies have been used to estimate site specific parameters needed to do a performance assessment of the site. The radiological impacts of the site have been analyzed as required for a license application. The approach adopted for the performance assessment was to use simplified and yet conservative assumptions with regard to releases, radionuclide transport, and dose calculations. The methodologies employed in the performance assessment are reviewed in the paper. Rather than rely on a single computer code, a modular approach to the performance assessment was selected. The HELP code was used to calculate the infiltration rate through the trench covers and the amount of leachate released from this arid site. Individual pathway analyses used spreadsheet calculations. These calculations were compared with those from other computer models including CRRIS, INGDOS, PATHRAE, and MICROSHIELD copyright, and found to yield conservative estimates of the effective whole body dose. The greatest difficulty in performing the radiological assessment of the site was the selection of reasonable source terms for release into the environment. A surface water pathway is unreasonable for the site. Though also unlikely, the groundwater pathway with exposure through a site boundary well was found to yield the largest calculated dose. The more likely pathway including transport of leachate from the facility through the unsaturated zone and returning to the ground surface yields small doses. All calculated doses associated with normal releases of radioactivity are below the regulatory limits

  15. aquifer in ajaokuta, southwestern nigeria

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... (1969) straight line method (observation well) of draw-down analysis in an unconfined aquifer (B=1) yield ... April) and a short wet season (May-September). .... DECOMPOSED. GRANITIC ROCK WITH. QUARTZ VEINS. 13.

  16. National Uranium Resource Evaluation: Marfa Quadrangle, Texas

    International Nuclear Information System (INIS)

    Henry, C.D.; Duex, T.W.; Wilbert, W.P.

    1982-09-01

    The uranium favorability of the Marfa 1 0 by 2 0 Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones. Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits. The Tertiary Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable

  17. The integrated impacts of natural processes and human activities on groundwater salinization in the coastal aquifers of Beihai, southern China

    Science.gov (United States)

    Li, Qinghua; Zhang, Yanpeng; Chen, Wen; Yu, Shaowen

    2018-03-01

    Salinization in coastal aquifers is usually related to both seawater intrusion and water-rock interaction. The results of chemical and isotopic methods were combined to identify the origin and processes of groundwater salinization in Daguansha area of Beihai, southern China. The concentrations of the major ions that dominate in seawater (Cl-, Na+, Ca2+, Mg2+ and SO4 2- ), as well as the isotopic content and ratios (2H, 18O, 87Sr/86Sr and 13C), suggest that the salinization occurring in the aquifer of the coastal plain is related to seawater and that the prevailing hydrochemical processes are evaporation, mixing, dissolution and ion exchange. For the unconfined aquifer, groundwater salinization has occurred in an area that is significantly influenced by land-based sea farming. The integrated impacts of seawater intrusion from the Beibuwan Gulf and infiltration of seawater from the culture ponds are identified in the shallowest confined aquifer (I) in the middle of the area (site BBW2). Leakage from this polluted confined aquifer causes the salinization of groundwater in the underlying confined aquifer (II). At the coastal monitoring site (BBW3), confined aquifer I and lower confined aquifer II are heavily contaminated by seawater intrusion. The weak connectivity between the upper aquifers, and the seaward movement of freshwater, prevents saltwater from encroaching the deepest confined aquifer (III). A conceptual model is presented. Above all, understanding of the origin and processes of groundwater salinization will provide essential information for the planning and sustainable management of groundwater resources in this region.

  18. Evaluation of the Catahoula Formation as a source rock for uranium mineralization, with emphasis on East Texas

    International Nuclear Information System (INIS)

    Ledger, E.B. Jr.

    1981-01-01

    The Oligocene/Miocene Catahoula Formation of the Texas coastal plain is a fluvial and lacustrine volcaniclastic unit composed of normal fluvial material mixed with distal rhyolitic air-fall ash and, in the lower coastal plain, also stream-transported erosion detritus from the volcanic source area in Trans-Pecos Texas and adjacent northern Mexico, the nearest source of appropriate age and chemical affinity. Pedogenic and shallow-burial alteration of the labile volcanic glass component of the sediment resulted in ubiquitous secondary montmorillonite and solubilization of elements which are mobile in a HCO 3 -rich, near-surface environment. Primary uranium present in the glass at 5 to 6 ppMU was similarly mobilized and, under favorable conditions, accumulated by precipitation of tetravalent uranium phases at sites of lower Eh. Known economic deposits are restricted to the lower coastal plain where there has been uranium production for more than twenty years. Although there are differences between the productive lower coastal plain and the middle and upper as to stratigraphy, mineralogical composition, and weathering history, labile volcaniclastic material and its alteration products are abundant throughout the Catahoula outcrop and shallow subsurface in Texas. To provide a geochemical basis of comparison, samples from the upper, middle, and lower Texas coastal plain and the Trans-Pecos source area were analyzed for uranium, thorium, potassium, rubidium, strontium, zirconium, and titanium. These include both labile and immobile elements. Typical levels of these elements in the source material and relatively unaltered Catahoula volcanic glass allows estimation of uranium loss from highly altered sections based on their immobile element content

  19. Revised hydrogeologic framework of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    Science.gov (United States)

    Williams, Lester J.; Kuniansky, Eve L.

    2015-04-08

    the aquifers have been incorporated into the framework to allow finer delineation of permeability variations within the aquifer system. These additional zones can be used to progressively divide the system for assessing groundwater and surface-water interaction, saltwater intrusion, and offshore movement of groundwater at greater detail if necessary. The lateral extent of the updip boundary of the Floridan aquifer system is modified from previous work based on newer data and inclusion of parts of the updip clastic facies. The carbonate and clastic facies form a gradational sequence, generally characterized by limestone of successively younger units that extend progressively farther updip. Because of the gradational nature of the carbonate-clastic sequence, some of the updip clastic aquifers have been included in the Floridan aquifer system, the Southeastern Coastal Plain aquifer system, or both. Thus, the revised updip limit includes some of these clastic facies. Additionally, the updip limit of the most productive part of the Floridan aquifer system was revised and indicates the approximate updip limit of the carbonate facies. The extent and altitude of the freshwater-saltwater interface in the aquifer system has been mapped to define the freshwater part of the flow system.

  20. Technical Training seminar: Texas Instruments

    CERN Multimedia

    2006-01-01

    Monday 6 November TECHNICAL TRAINING SEMINAR 14:00 to 17:30 - Training Centre Auditorium (bldg. 593) Texas Instruments Technical Seminar Michael Scholtholt, Field Application Engineer / TEXAS INSTRUMENTS (US, D, CH) POWER - A short approach to Texas Instruments power products Voltage mode vs. current mode control Differentiating DC/DC converters by analyzing control and compensation schemes: line / load regulation, transient response, BOM, board space, ease-of-use Introduction to the SWIFT software FPGA + CPLD power solutions WIRELESS / CHIPCON Decision criteria when choosing a RF platform Introduction to Texas Instruments wireless products: standardized platforms proprietary platforms ( 2.4 GHz / sub 1 GHz) development tools Antenna design: example for 2.4 GHz questions, discussion Industrial partners: Robert Medioni, François Caloz / Spoerle Electronic, CH-1440 Montagny (VD), Switzerland Phone: +41 24 447 0137, email: RMedioni@spoerle.com, http://www.spoerle.com Language: English. Free s...

  1. Geothermal and heavy-oil resources in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Seni, S.J.; Walter, T.G.

    1994-01-01

    In a five-county area of South Texas, geopressured-geothermal reservoirs in the Paleocene-Eocene Wilcox Group lie below medium- to heavy-oil reservoirs in the Eocene Jackson Group. This fortuitous association suggests the use of geothermal fluids for thermally enhanced oil recovery (TEOR). Geothermal fairways are formed where thick deltaic sandstones are compartmentalized by growth faults. Wilcox geothermal reservoirs in South Texas are present at depths of 11,000 to 15,000 ft (3,350 to 4,570 m) in laterally continuous sandstones 100 to 200 ft (30 to 60 m) thick. Permeability is generally low (typically 1 md), porosity ranges from 12 to 24 percent, and temperature exceeds 250{degrees}F (121{degrees}C). Reservoirs containing medium (20{degrees} to 25{degrees} API gravity) to heavy (10{degrees} to 20{degrees} API gravity) oil are concentrated along the Texas Coastal Plain in the Jackson-Yegua Barrier/Strandplain (Mirando Trend), Cap Rock, and Piercement Salt Dome plays and in the East Texas Basin in Woodbine Fluvial/Deltaic Strandplain and Paluxy Fault Line plays. Injection of hot, moderately fresh to saline brines will improve oil recovery by lowering viscosity and decreasing residual oil saturation. Smectite clay matrix could swell and clog pore throats if injected waters have low salinity. The high temperature of injected fluids will collapse some of the interlayer clays, thus increasing porosity and permeability. Reservoir heterogeneity resulting from facies variation and diagenesis must be considered when siting production and injection wells within the heavy-oil reservoir. The ability of abandoned gas wells to produce sufficient volumes of hot water over the long term will also affect the economics of TEOR.

  2. EPA Region 1 Sole Source Aquifers

    Science.gov (United States)

    This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.

  3. 49 CFR 229.64 - Plain bearings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to the...

  4. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coastal Plain Region (Version 2.0)

    Science.gov (United States)

    2010-11-01

    35 Figure 4. At the toe of a hill slope, the gradient is only slightly inclined or nearly level. ..................... 35...marshes, beach/ dune systems, and wet flats are typical of the outer coastal plain on recent or Holocene sediments, while mixed evergreen/hardwood...mangrove shrublands are also found along the Texas and Louisiana coasts (NatureServe 2006). Beach/ dune systems are typically associated with barrier

  5. Artesian water in the Malabar coastal plain of southern Kerala, India

    Science.gov (United States)

    Taylor, George C.; Ghosh, P.K.

    1964-01-01

    The present report is based on a geological and hydrological reconnaissance during 1954 of the Malabar Coastal Plain and adjacent island area of southern Kerala to evaluate the availability of ground water for coastal villages and municipalities and associated industries and the potentialities for future development. The work was done in cooperation with the Geological Survey of India and under the auspices of the U.S. Technical Cooperation Mission to India. The State of Kerala, which lies near the southern tip of India and along the eastern shore of the Caspian Sea, contains a total area of 14,937 square miles. The eastern part of the state is s rugged mountainous highland which attains altitudes of more than 6,000 feet. This highland descends westward through piedmont upland to s narrow coastal plain, which reaches a maximum width of about 16 miles in the latitude of Shertalli. A tropical monsoon rain-forest climate prevails in most of Kerala, and annual rainfall ranges from 65 to 130 inches in the southern part of the coastal plain to as much a 200 inches in the highland. The highland and piedmont upland tracts of Kerala are underlain by Precambrian meamorphic and igneous rocks belonging in large parabola-the so-called Charnockite Series. Beneath ahe coastal plain are semiconsolidated asunconsolidated sedimentary deposits whose age ranges from Miocene to Recent. These deposits include sofa sandstone and clay shale containing some marl or limestone and sand, and clay and pea containing some gravel. The sofa sandstone, sand, and gravel beds constitute important aquifers a depths ranging from a few tens of feet to 400 feet or more below the land surface. The shallow ground war is under water-able or unconfined conditions, but the deeper aquifers contain water under artesian pressure. Near the coast, drilled wells tapping the deeper aquifers commonly flow with artesian heads as much as 10 to 12 feet above the land surface. The draft from existing wells in the

  6. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge.

    Science.gov (United States)

    Zlotnik, Vitaly A; Kacimov, Anvar; Al-Maktoumi, Ali

    2017-11-01

    Design of managed aquifer recharge (MAR) for augmentation of groundwater resources often lacks detailed data, and simple diagnostic tools for evaluation of the water table in a broad range of parameters are needed. In many large-scale MAR projects, the effect of a regional aquifer base dip cannot be ignored due to the scale of recharge sources (e.g., wadis, streams, reservoirs). However, Hantush's (1967) solution for a horizontal aquifer base is commonly used. To address sloping aquifers, a new closed-form analytical solution for water table mound accounts for the geometry and orientation of recharge sources at the land surface with respect to the aquifer base dip. The solution, based on the Dupiuit-Forchheimer approximation, Green's function method, and coordinate transformations is convenient for computing. This solution reveals important MAR traits in variance with Hantush's solution: mounding is limited in time and space; elevation of the mound is strongly affected by the dip angle; and the peak of the mound moves over time. These findings have important practical implications for assessment of various MAR scenarios, including waterlogging potential and determining proper rates of recharge. Computations are illustrated for several characteristic MAR settings. © 2017, National Ground Water Association.

  7. Characterising aquifer treatment for pathogens in managed aquifer recharge.

    Science.gov (United States)

    Page, D; Dillon, P; Toze, S; Sidhu, J P S

    2010-01-01

    In this study the value of subsurface treatment of urban stormwater during Aquifer Storage Transfer Recovery (ASTR) is characterised using quantitative microbial risk assessment (QMRA) methodology. The ASTR project utilizes a multi-barrier treatment train to treat urban stormwater but to date the role of the aquifer has not been quantified. In this study it was estimated that the aquifer barrier provided 1.4, 2.6, >6.0 log(10) removals for rotavirus, Cryptosporidium and Campylobacter respectively based on pathogen diffusion chamber results. The aquifer treatment barrier was found to vary in importance vis-à-vis the pre-treatment via a constructed wetland and potential post-treatment options of UV-disinfection and chlorination for the reference pathogens. The risk assessment demonstrated that the human health risk associated with potable reuse of stormwater can be mitigated (disability adjusted life years, DALYs aquifer is integrated with suitable post treatment options into a treatment train to attenuate pathogens and protect human health.

  8. Simulated effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system and Piney Point aquifer, Maurice and Cohansey River Basins, Cumberland County and vicinity, New Jersey

    Science.gov (United States)

    Gordon, Alison D.; Buxton, Debra E.

    2018-05-10

    aquifers in the New Jersey Coastal Plain. Various groundwater-withdrawal rates were input to the steady-state New Jersey Regional Aquifer-System Analysis model to assess changes in water levels in the Piney Point aquifer.The three steady-state scenarios for the New Jersey Regional Aquifer-System Analysis model included the annual average 2004‒08 withdrawals for each well in the groundwater-flow model. The results of scenario 6 were used for comparison to the results of scenarios 7 and 8. The groundwater withdrawals in scenario 7 are the same as in scenario 6, except withdrawals from 50 municipal public-supply wells in the Kirkwood-Cohansey aquifer system that are within the boundary of the Cumberland County study area were increased to estimated 2050 withdrawals. In addition, a municipal public-supply well from nine municipalities in the study area pumping from the Kirkwood-Cohansey aquifer system was assigned the estimated 2050 demand for the Piney Point aquifer instead. The groundwater withdrawals in scenario 8 are the same as in scenario 6, except withdrawals from the municipal public-supply wells in the municipalities of Vineland City, Millville City, and Monroe Township were assigned the full-allocation withdrawals. In addition, the full-allocation withdrawals pumped from one existing municipal public-supply well in each of the three municipalities pumping from the Kirkwood-Cohansey aquifer system were assigned to pump from the Piney Point aquifer instead. The results of the scenarios indicate that the Piney Point aquifer could provide a limited option for public supply in the southeastern part of Cumberland County with constraints on withdrawal rates and the number and proximity of wells additional to those already pumping from the Piney Point aquifer in Bridgeton City and Buena Borough. The transmissivity of the Piney Point aquifer in the Cumberland County study area is about an order of magnitude lower than the average transmissivity of the Kirkwood

  9. Characterizing the subsurface geology in and around the U.S. Army Camp Stanley Storage Activity, south-central Texas

    Science.gov (United States)

    Blome, Charles D.; Clark, Allan K.

    2018-02-15

    Several U.S. Geological Survey projects, supported by the National Cooperative Geologic Mapping Program, have used multi-disciplinary approaches over a 14-year period to reveal the surface and subsurface geologic frameworks of the Edwards and Trinity aquifers of central Texas and the Arbuckle-Simpson aquifer of south-central Oklahoma. Some of the project achievements include advancements in hydrostratigraphic mapping, three-dimensional subsurface framework modeling, and airborne geophysical surveys as well as new methodologies that link geologic and groundwater flow models. One area where some of these milestones were achieved was in and around the U.S. Army Camp Stanley Storage Activity, located in north­western Bexar County, Texas, about 19 miles north­west of downtown San Antonio.

  10. The hydrogeochemical and isotopic investigations of the two-layered Shiraz aquifer in the northwest of Maharlou saline lake, south of Iran

    Science.gov (United States)

    Tajabadi, Mehdi; Zare, Mohammad; Chitsazan, Manouchehr

    2018-03-01

    Maharlou saline lake is the outlet of Shiraz closed basin in southern Iran, surrounded by several disconnected alluvial fresh water aquifers. These aquifers in the west and northwest of the lake are recharged by karstic anticlines such as Kaftarak in the north and Barmshour in the south. Here groundwater salinity varies along the depth so that better quality water is located below brackish or saline waters. The aim of this study is to investigate the reason for the salinity anomaly and the origin of the fresher groundwater in lower depth. Hence, the change in groundwater salinity along depth has been investigated by means of a set of geoelectrical, hydrogeological, hydrogeochemical, and environmental isotopes data. The interpretation of geoelectrical profiles and hydrogeological data indicates that the aquifer in the southeast of Shiraz plain is a two-layer aquifer separated by a fine-grained (silt and clay) layer with an approximate thickness of 40 m at the depth of about 100-120 m. Hydrgeochemistry showed that the shallow aquifer is recharged by Kaftarak karstic anticline and is affected by the saline lake water. The lake water fraction varies in different parts from zero for shallow aquifer close to the karstic anticlines to ∼70 percent in the margin of the lake. The deep aquifer is protected from the intrusion of saline lake water due to the presence of the above-mentioned confining layer with lake water fraction of zero. The stable isotopes signatures also indicate that the 'fresh' groundwater belonging to the deep aquifer is not subject to severe evaporation or mixing which is typical of the karstic water of the area. It is concluded that the characteristics of the deep aquifer are similar to those of the karstic carbonate aquifer. This karstic aquifer is most probably the Barmshour carbonated anticline buried under the shallow aquifer in the southern part. It may also be the extension of the Kaftarak anticline in the northern part.

  11. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP

    Science.gov (United States)

    Gallegos, Josue Jacob; Hu, Bill X.; Davis, Hal

    2013-12-01

    Groundwater flow in a well-developed karst aquifer dominantly occurs through bedding planes, fractures, conduits, and caves created by and/or enlarged by dissolution. Conventional groundwater modeling methods assume that groundwater flow is described by Darcian principles where primary porosity (i.e. matrix porosity) and laminar flow are dominant. However, in well-developed karst aquifers, the assumption of Darcian flow can be questionable. While Darcian flow generally occurs in the matrix portion of the karst aquifer, flow through conduits can be non-laminar where the relation between specific discharge and hydraulic gradient is non-linear. MODFLOW-CFP is a relatively new modeling program that accounts for non-laminar and laminar flow in pipes, like karst caves, within an aquifer. In this study, results from MODFLOW-CFP are compared to those from MODFLOW-2000/2005, a numerical code based on Darcy's law, to evaluate the accuracy that CFP can achieve when modeling flows in karst aquifers at laboratory and sub-regional (Woodville Karst Plain, Florida, USA) scales. In comparison with laboratory experiments, simulation results by MODFLOW-CFP are more accurate than MODFLOW 2005. At the sub-regional scale, MODFLOW-CFP was more accurate than MODFLOW-2000 for simulating field measurements of peak flow at one spring and total discharges at two springs for an observed storm event.

  12. Assessment of transboundary aquifers of the world—vulnerability arising from human water use

    International Nuclear Information System (INIS)

    Wada, Yoshihide; Heinrich, Lena

    2013-01-01

    Internationally shared, or transboundary, aquifers (TBAs) have long played an important role in sustaining drinking water supply and food production, supporting livelihoods of millions of people worldwide. Rapidly growing populations and their food demands cast significant doubt on the sustainability of TBAs. Here, this study provides a first quantitative assessment of TBAs worldwide with an aquifer stress indicator over the period 1960–2010 using groundwater abstraction, groundwater recharge, and groundwater contribution to environment flow. The results reveal that 8% of TBAs worldwide are currently stressed due to human overexploitation. Over these TBAs the rate of groundwater pumping increased substantially during the past fifty years, which worsened the aquifer stress condition. In addition, many TBAs over Europe, Asia and Africa are not currently stressed, but their aquifer stress has been increasing at an alarming rate (>100%) for the past fifty years, due to the increasing reliance on groundwater abstraction for food production. Groundwater depletion is substantial over several TBAs including the India River Plain (India, Pakistan), the Paleogene and Cretaceous aquifers (the Arabian Peninsula), and a few TBAs over the USA–Mexico border. Improving irrigation efficiency can reduce the amount of groundwater depletion over some TBAs, but it likely aggravates groundwater depletion over TBAs where conjunctive use of surface water and groundwater is prevalent. (letter)

  13. Chagas disease risk in Texas.

    Science.gov (United States)

    Sarkar, Sahotra; Strutz, Stavana E; Frank, David M; Rivaldi, Chissa-Louise; Sissel, Blake; Sánchez-Cordero, Victor

    2010-10-05

    Chagas disease, caused by Trypanosoma cruzi, remains a serious public health concern in many areas of Latin America, including México. It is also endemic in Texas with an autochthonous canine cycle, abundant vectors (Triatoma species) in many counties, and established domestic and peridomestic cycles which make competent reservoirs available throughout the state. Yet, Chagas disease is not reportable in Texas, blood donor screening is not mandatory, and the serological profiles of human and canine populations remain unknown. The purpose of this analysis was to provide a formal risk assessment, including risk maps, which recommends the removal of these lacunae. The spatial relative risk of the establishment of autochthonous Chagas disease cycles in Texas was assessed using a five-stage analysis. 1. Ecological risk for Chagas disease was established at a fine spatial resolution using a maximum entropy algorithm that takes as input occurrence points of vectors and environmental layers. The analysis was restricted to triatomine vector species for which new data were generated through field collection and through collation of post-1960 museum records in both México and the United States with sufficiently low georeferenced error to be admissible given the spatial resolution of the analysis (1 arc-minute). The new data extended the distribution of vector species to 10 new Texas counties. The models predicted that Triatoma gerstaeckeri has a large region of contiguous suitable habitat in the southern United States and México, T. lecticularia has a diffuse suitable habitat distribution along both coasts of the same region, and T. sanguisuga has a disjoint suitable habitat distribution along the coasts of the United States. The ecological risk is highest in south Texas. 2. Incidence-based relative risk was computed at the county level using the Bayesian Besag-York-Mollié model and post-1960 T. cruzi incidence data. This risk is concentrated in south Texas. 3. The

  14. Chagas disease risk in Texas.

    Directory of Open Access Journals (Sweden)

    Sahotra Sarkar

    Full Text Available BACKGROUND: Chagas disease, caused by Trypanosoma cruzi, remains a serious public health concern in many areas of Latin America, including México. It is also endemic in Texas with an autochthonous canine cycle, abundant vectors (Triatoma species in many counties, and established domestic and peridomestic cycles which make competent reservoirs available throughout the state. Yet, Chagas disease is not reportable in Texas, blood donor screening is not mandatory, and the serological profiles of human and canine populations remain unknown. The purpose of this analysis was to provide a formal risk assessment, including risk maps, which recommends the removal of these lacunae. METHODS AND FINDINGS: The spatial relative risk of the establishment of autochthonous Chagas disease cycles in Texas was assessed using a five-stage analysis. 1. Ecological risk for Chagas disease was established at a fine spatial resolution using a maximum entropy algorithm that takes as input occurrence points of vectors and environmental layers. The analysis was restricted to triatomine vector species for which new data were generated through field collection and through collation of post-1960 museum records in both México and the United States with sufficiently low georeferenced error to be admissible given the spatial resolution of the analysis (1 arc-minute. The new data extended the distribution of vector species to 10 new Texas counties. The models predicted that Triatoma gerstaeckeri has a large region of contiguous suitable habitat in the southern United States and México, T. lecticularia has a diffuse suitable habitat distribution along both coasts of the same region, and T. sanguisuga has a disjoint suitable habitat distribution along the coasts of the United States. The ecological risk is highest in south Texas. 2. Incidence-based relative risk was computed at the county level using the Bayesian Besag-York-Mollié model and post-1960 T. cruzi incidence data. This

  15. Texas pavement preservation center four-year summary report.

    Science.gov (United States)

    2009-07-04

    The Texas Pavement Preservation Center (TPPC), in joint collaboration with the Center for Transportation Research (CTR) of the University of Texas at Austin and the Texas Transportation Institute (TTI) of Texas A&M University, promotes the use of pav...

  16. Changes in plain bearing technology

    CERN Document Server

    Koring, Rolf

    2012-01-01

    A unique fusion of theoretical and practical knowledge, Changes in Plain Bearing Technology, by Rolf Koring, covers a meaningful range of expertise in this field.Drawing from years of experience in design development, materials selection, and their correlation to real-life part failure, this title, co-published by SAE International and expert Verlag (Germany), concentrates on hydrodynamic bearings lined with white metals, also known as Babbits.Written under the assumption that even the most mature body of knowledge can be revisited and improved, Changes in Plain Bearing Technology is a courageous and focused approach to questioning accepted test results and looking at alternative material compounds, and their application suitability.The process, which leads to innovative answers on how the technology is transforming itself to respond to new market requirements, shows how interdisciplinary thinking can recognize new potential in long-established industrial modus operandi.Tackling the highly complex issue of co...

  17. Variable exchange between a stream and an aquifer in the Rio Grande Project Area

    Science.gov (United States)

    Sheng, Z.; Abudu, S.; Michelsen, A.; King, P.

    2016-12-01

    Both surface water and groundwater in the Rio Grande Project area in southern New Mexico and Far West Texas have been stressed by natural conditions such as droughts and human activities, including urban development and agricultural irrigation. In some area pumping stress in the aquifer becomes so great that it depletes the river flow especially during the irrigation season, typically from March through October. Therefore understanding such relationship between surface water and groundwater becomes more important in regional water resources planning and management. In this area, stream flows are highly regulated by the upstream reservoirs during the irrigation season and greatly influenced by return flows during non-irrigation season. During a drought additional groundwater pumping to supplement surface water shortage further complicates the surface water and groundwater interaction. In this paper the authors will use observation data and results of numerical models (MODFLOW) to characterize and quantify hydrological exchange fluxes between groundwater in the aquifers and surface water as well as impacts of groundwater pumping. The interaction shows a very interesting seasonal variation (irrigation vs. non-irrigation) as well as impact of a drought. Groundwater has been pumped for both municipal supplies and agricultural irrigation, which has imposed stresses toward both stream flows and aquifer storage. The results clearly show that historic groundwater pumping has caused some reaches of the river change from gaining stream to losing stream. Beyond the exchange between surface water and groundwater in the shallow aquifer, groundwater pumping in a deep aquifer could also enhance the exchanges between different aquifers through leaky confining layers. In the earlier history of pumping, pumping from the shallow aquifer is compensated by simple depletion of surface water, while deep aquifer tends to use the aquifer storage. With continued pumping, the cumulative

  18. Southern Great Plains Safety Orientation

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, John

    2014-05-01

    Welcome to the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARM) Southern Great Plains (SGP) site. This U.S. Department of Energy (DOE) site is managed by Argonne National Laboratory (ANL). It is very important that all visitors comply with all DOE and ANL safety requirements, as well as those of the Occupational Safety and Health Administration (OSHA), the National Fire Protection Association, and the U.S. Environmental Protection Agency, and with other requirements as applicable.

  19. Aquifers Characterization and Productivity in Ellala Catchment ...

    African Journals Online (AJOL)

    user

    Aquifers Characterization and Productivity in Ellala Catchment, Tigray, ... using geological and hydrogeological methods in Ellala catchment (296.5km. 2. ) ... Current estimates put the available groundwater ... Aquifer characterization takes into.

  20. Changes between early development (1930–60) and recent (2005–15) groundwater-level altitudes and dissolved-solids and nitrate concentrations In and near Gaines, Terry, and Yoakum Counties, Texas

    Science.gov (United States)

    Thomas, Jonathan V.; Teeple, Andrew; Payne, Jason; Ikard, Scott

    2016-06-21

    Llano Estacado Underground Water Conservation District, Sandy Land Underground Water Conservation District, and South Plains Underground Water Conservation District manage groundwater resources in a part of west Texas near the Texas-New Mexico State line. Declining groundwater levels have raised concerns about the amount of available groundwater in the study area and the potential for water-quality changes resulting from dewatering and increased vertical groundwater movement between adjacent water-bearing units.

  1. Preliminary study of uranium favorability of the Wilcox and Claiborne Groups (Eocene) in Texas

    International Nuclear Information System (INIS)

    Wilbert, W.P.; Templain, C.J.

    1978-01-01

    Rocks of the Wilcox and Claiborne Groups crop out in the Texas Gulf Coastal Plain and are represented by a series of sands and shales which reflect oscillation of the strandline. The Wilcox Group (lower Eocene), usually undifferentiated in Texas, consists of very fine sands and clays and abundant lignite. The Claiborne Group (middle Eocene) comprises, in ascending order, Carrizo Sand, Reklaw Formation (clay), Queen City Sand, Weches Formation (clay), Sparta Sand, Cook Mountain Formation (clay), and Yegua Formation (sand). Fluvial systems of the Wilcox and Claiborne Groups exist in east Texas and trend perpendicular to the present coastline. In central Texas, sand bodies are parallel to the present coastline and are strand-plain, barrier-bar systems. Since the time of deposition of the Queen City Sand, a significant fluvial sand buildup occurred in the area of the present Rio Grande embayment where the marine clays pinch out. Known occurrences of mineral matter in the Wilcox and Claiborne (up to the Yegua) are limited to lignite (particularly in the Wilcox), cannel coal in the upper Claiborne, and hydrocarbons throughout. No uranium mineralization is known, and no uranium is likely to be discovered in the Claiborne and Wilcox. Approximately 50 surface samples and many gamma-ray logs showed no significant anomalies. The sands are very good potential host rocks, but no uranium source was discovered. During deposition of the Wilcox and Claiborne Groups, there was no volcanism to serve as a source of uranium (as with the prolific occurrences in the younger rocks of south Texas); also, Precambrian crystalline rocks in the Llano uplift were not exposed

  2. Modeling of drainage and hay production over the Crau aquifer for analyzing the impact of global change on aquifer recharge

    Science.gov (United States)

    Olioso, Albert; Lecerf, Rémi; Baillieux, Antoine; Chanzy, André; Ruget, Françoise; Banton, Olivier; Lecharpentier, Patrice; Alkassem Alosman, Mohamed; Ruy, Stéphane; Gallego Elvira, Belen

    2013-04-01

    The recharge of the aquifer in the Crau plain (550 km2, Southern Rhone Valley, France) depends on the irrigation of 15000 ha of meadow using water withdrawn from the River Durance through a dense network of channels. Traditional irrigation practice, since the XVIth century, has consisted in flooding the grassland fields with a large amount of water, the excess being infiltrated toward the water table. Today, the Crau aquifer holds the main resource in water in the area (300 000 inhabitants) but changes in the agricultural practices and progressive replacement of the irrigated meadows by urbanized area threaten the sustainability of groundwater. The distributed modeling of irrigated meadows together with the modeling of groundwater has been undertaken for quantifying the contribution of the irrigation to the recharge of the aquifer and to investigate possible evolution of hay production, water drainage, evapotranspiration and water table under scenarios of climate and land-use changes. The model combines a crop model (STICS) that simulates hay production, evapotranspiration and water drainage, a multisimulation tool (MultiSimLib) that allows to run STICS over each agricultural field in the aquifer perimeter, a groundwater model MODFLOW to simulate the water table from recharge data (simulated drainage). Specific models were developed for simulating the spatial distribution of climate, including scenario of changes for the 2025 - 2035 time period, soil properties (influenced by irrigation), and agricultural practices (calendar and amount), in particular irrigation and hay cutting. This step was crucial for correctly simulating hay production level and amount of water used for irrigation. Model results were evaluated thanks to plot experiments and information from farmers (biomass production, downward water flow, quantity of irrigated water, cutting calendar...), a network of piezometers and remote sensing maps of evapotranspiration. Main results included: - the

  3. Identification of marine intrusion in the plain of Collo, northeastern Algeria

    Directory of Open Access Journals (Sweden)

    Saaidia Bachir

    2017-12-01

    Full Text Available The population increase, urbanization and intensification of agriculture and demands for water supply in the coastal plain of Collo led to excessive pumping of the unconfined aquifer with limited dimensions. This study aimed to characterize the effect of the overexploitation of the groundwater from the only unconfined aquifer in the region, what resulted in the inversion of the groundwater flow and the rise the possible seawater pollution that is shown in the water table map. The causes and effects of the saltwater intrusion were discussed. The interpretation of the electrical conductivity measurements, chloride and sodium maps have shown clearly the areas where values were the highest with tighter curves towards the sea, the wadis Guebli and Cherka. These values distribution indicated a marine source of salinity in wells and boreholes close to the sea and wadis.

  4. Shallow Aquifer Methane Gas Source Assessment

    Science.gov (United States)

    Coffin, R. B.; Murgulet, D.; Rose, P. S.; Hay, R.

    2014-12-01

    Shale gas can contribute significantly to the world's energy demand. Hydraulic fracturing (fracking) on horizontal drill lines developed over the last 15 years makes formerly inaccessible hydrocarbons economically available. From 2000 to 2035 shale gas is predicted to rise from 1% to 46% of the total natural gas for the US. A vast energy resource is available in the United States. While there is a strong financial advantage to the application of fracking there is emerging concern about environmental impacts to groundwater and air quality from improper shale fracking operations. Elevated methane (CH4) concentrations have been observed in drinking water throughout the United States where there is active horizontal drilling. Horizontal drilling and hydraulic-fracturing can increase CH4 transport to aquifers, soil and the vadose zone. Seepage can also result from casing failure in older wells. However, there is strong evidence that elevated CH4 concentrations can be associated with topographic and hydrogeologic features, rather than shale-gas extraction processes. Carbon isotope geochemistry can be applied to study CH4source(s) in shallow vadose zone and groundwater systems. A preliminary TAMU-CC isotope data set from samples taken at different locations in southern Texas shows a wide range of CH4 signatures suggesting multiple sources of methane and carbon dioxide. These data are interpreted to distinguish regions with methane contributions from deep-sourced horizontal drilling versus shallow system microbial production. Development of a thorough environmental assessment using light isotope analysis can provide understanding of shallow anthropogenic versus natural CH4sources and assist in identifying regions that require remedial actions.

  5. Geochemical approach of the salinization mechanisms of coastal aquifers - 14C - 226Ra chronologies

    International Nuclear Information System (INIS)

    Barbecot, F.

    1999-11-01

    identified in the three study sites have a marine origin, and were modified either by interaction with organic-rich layers, by cationic exchange, or by deep carbon input. The salinization process has been associated to marine overflow in a plain, and to an upward leakage of carbo-gaseous water. The marine intrusion registered in the Channel and Atlantic aquifers is associated to the Flandrian transgression (8 ka B.P. and 4.8-10.8 ka B.P.) respectively). For the Astian aquifer, only the time lag between the deep water-CO 2 mixing and the sampling was estimated at 0.5 to 3 ka. (authors)

  6. Synfuels from low-rank coals at the Great Plains Gasification Plant

    International Nuclear Information System (INIS)

    Pollock, D.

    1992-01-01

    This presentation focuses on the use of low rank coals to form synfuels. A worldwide abundance of low rank coals exists. Large deposits in the United States are located in Texas and North Dakota. Low rank coal deposits are also found in Europe, India and Australia. Because of the high moisture content of lignite ranging from 30% to 60% or higher, it is usually utilized in mine mouth applications. Lignite is generally very reactive and contains varying amounts of ash and sulfur. Typical uses for lignite are listed. A commercial application using lignite as feedstock to a synfuels plant, Dakota Gasification Company's Great Plains Gasification Plant, is discussed

  7. Chemical and Isotopic Study of the Groundwater of Jeffara Plain of Medenine and Tataouine (Southern Tunisia)

    International Nuclear Information System (INIS)

    Trabelsi, R.; Kalled, M; Zouari, K.; Abidi, B.; Yahyaoui, H.

    2007-01-01

    The study area constitutes the major part of the plain of Jeffara, located at the south-east of Tunisia. This plain is characterized by an arid climate with rare and irregular pluviometry. The hydrochemical approach is used to define the chemical characteristics of the water in these aquifer systems. Indeed, the water salinity varies between 0.6g/? and 9g/?, and increases from the Daher mountains in the west to the Mediterranean Sea. The groundwaters are homogeneous and characterized by a Cl-(SO 4 ) and Na-(Ca-Mg) water type. The isotopic approach shows that the carbone-14 activities, measured in groundwater, evolve in the same direction of groundwater flow. These activities suggest a recent recharge area in eastern piedmont of the Dahar mountains, as well as the zone of the Sahel Abebsa and Zeuss-Koutine. The isotopic values confirm, also, the communication between the various major levels through the existing faults and discontinuities in this area

  8. Characterizing groundwater/surface-water interactions in the interior of Jianghan Plain, central China

    Science.gov (United States)

    Du, Yao; Ma, Teng; Deng, Yamin; Shen, Shuai; Lu, Zongjie

    2018-01-01

    Quantifying groundwater/surface-water interactions is essential for managing water resources and revealing contaminant fate. There has been little concern on the exchange between streams and aquifers through an extensive aquitard thus far. In this study, hydrogeologic calculation and tritium modeling were jointly applied to characterize such interactions through an extensive aquitard in the interior of Jianghan Plain, an alluvial plain of Yangtze River, China. One groundwater simulation suggested that the lateral distance of influence from the river was about 1,000 m; vertical flow in the aquitard followed by lateral flow in the aquifer contributed significantly more ( 90%) to the aquifer head change near the river than lateral bank storage in the aquitard followed by infiltration. The hydrogeologic calculation produced vertical fluxes of the order 0.01 m/day both near and farther from the river, suggesting that similar shorter-lived (half-monthly) vertical fluxes occur between the river and aquitard near the river, and between the surface end members and aquitard farther from the river. Tritium simulation based on the OTIS model produced an average groundwater residence time of about 15 years near the river and a resulting vertical flux of the order 0.001 m/day. Another tritium simulation based on a dispersion model produced a vertical flux of the order 0.0001 m/day away from the river, coupled with an average residence time of around 90 years. These results suggest an order of magnitude difference for the longer-lived (decadal) vertical fluxes between surface waters and the aquifer near and away from the river.

  9. Sediment distribution and hydrologic conditions of the Potomac aquifer in Virginia and parts of Maryland and North Carolina

    Science.gov (United States)

    McFarland, Randolph E.

    2013-01-01

    Sediments of the heavily used Potomac aquifer broadly contrast across major structural features of the Atlantic Coastal Plain Physiographic Province in eastern Virginia and adjacent parts of Maryland and North Carolina. Thicknesses and relative dominance of the highly interbedded fluvial sediments vary regionally. Vertical intervals in boreholes of coarse-grained sediment commonly targeted for completion of water-supply wells are thickest and most widespread across the central and southern parts of the Virginia Coastal Plain. Designated as the Norfolk arch depositional subarea, the entire sediment thickness here functions hydraulically as a single interconnected aquifer. By contrast, coarse-grained sediment intervals are thinner and less widespread across the northern part of the Virginia Coastal Plain and into southern Maryland, designated as the Salisbury embayment depositional subarea. Fine-grained intervals that are generally avoided for completion of water-supply wells are increasingly thick and widespread northward. Fine-grained intervals collectively as thick as several hundred feet comprise two continuous confining units that hydraulically separate three vertically spaced subaquifers. The subaquifers are continuous northward but merge southward into the single undivided Potomac aquifer. Lastly, far southeastern Virginia and northeastern North Carolina are designated as the Albemarle embayment depositional subarea, where both coarse- and fine-grained intervals are of only moderate thickness. The entire sediment thickness functions hydraulically as a single interconnected aquifer. A substantial hydrologic separation from overlying aquifers is imposed by the upper Cenomanian confining unit. Potomac aquifer sediments were deposited by a fluvial depositional complex spanning the Virginia Coastal Plain approximately 100 to 145 million years ago. Westward, persistently uplifted granite and gneiss source rocks sustained a supply of coarse-grained sand and gravel

  10. 21 CFR 808.93 - Texas.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Texas. 808.93 Section 808.93 Food and Drugs FOOD... and Local Exemptions § 808.93 Texas. (a) The following Texas medical device requirement is enforceable... that, in enforcing this requirement, Texas apply the definition of “used hearing aid” in § 801.420(a)(6...

  11. A new species of dusky salamander (Amphibia: Plethodontidae: Desmognathus) from the Eastern Gulf Coastal Plain of the United States and a redescription of D. auriculatus

    Science.gov (United States)

    Means, D Bruce; Lamb, Jennifer Y; Bernardo, Joseph

    2017-05-10

    The Coastal Plain of the southeastern U. S. is one of the planet's top biodiversity hotspots and yet many taxa have not been adequately studied. The plethodontid salamander, Desmognathus auriculatus, was originally thought to occur from east Texas to Virginia, a range spanning dozens of interfluves and large river systems. Beamer and Lamb (2008) found five independent mitochondrial lineages of what has been called D. auriculatus in the Atlantic Coastal Plain, but did not examine the extensive distribution of D. auriculatus in the Gulf Coastal Plain. We present morphological and molecular genetic data distinguishing two evolutionarily independent and distantly related lineages that are currently subsumed under the taxon D. auriculatus in the eastern Gulf Coastal Plain. We describe one of these as a new species, Desmognathus valentinei sp. nov., and assign the second one to D. auriculatus which we formally redescribe.

  12. The Demographics of Corporal Punishment in Texas

    Science.gov (United States)

    Phillips, Stephanie

    2012-01-01

    This dissertation examined the student discipline policies of 1,025 Texas school districts, as well as data from the Texas Education Agency's Academic Excellence Indicator System in order to identify demographic patterns regarding corporal punishment policies in Texas schools. The study also studied the relationship between a district's corporal…

  13. Texas Real Estate Curriculum Workshop Summary Report.

    Science.gov (United States)

    Lyon, Robert

    The Texas Real Estate Research Center-Texas Education Agency (TRERC-TEA) curriculum workshop was attended by over 40 participants representing 26 Texas community colleges. These participants divided into eight small groups by real estate specialty area and developed curriculum outlines and learning objectives for the following real estate courses:…

  14. 77 FR 18738 - Texas Regulatory Program

    Science.gov (United States)

    2012-03-28

    ... improve operational efficiency. This document gives the times and locations that the Texas program and... location: Surface Mining and Reclamation Division, Railroad Commission of Texas, 1701 North Congress Avenue... available for you to read at the locations listed above under ADDRESSES. Texas proposes to revise its...

  15. 76 FR 50708 - Texas Regulatory Program

    Science.gov (United States)

    2011-08-16

    ..., renewals, and significant revisions. Texas intends to revise its program to improve operational efficiency. This document provides the times and locations that the Texas program and proposed amendments to that... business hours at the following location: Railroad Commission of Texas, 1701 North Congress Ave., Austin...

  16. 75 FR 21534 - Texas Regulatory Program

    Science.gov (United States)

    2010-04-26

    ... improve operational efficiency. This document gives the times and locations that the Texas program and... during regular business hours at the following location: Surface Mining and Reclamation Division... locations listed above under ADDRESSES. Texas proposes to revise its regulation at 16 Texas Administrative...

  17. Texas, 2008 forest inventory and analysis factsheet

    Science.gov (United States)

    James Bentley

    2011-01-01

    This science update summarizes the findings of the first statewide annual inventory conducted by the Southern Forest Inventory and Analysis (FIA) Program in cooperation with the Texas Forest Service of the forest resource attributes in Texas. The 254 counties of Texas are consolidated into seven FIA survey units—southeast (unit 1), the northeast (unit 2), the north...

  18. Ready Texas: Stakeholder Convening. Proceedings Report

    Science.gov (United States)

    Intercultural Development Research Association, 2016

    2016-01-01

    With the adoption of substantial changes to Texas high school curricula in 2013 (HB5), a central question for Texas policymakers, education and business leaders, families, and students is whether and how HB5 implementation impacts the state of college readiness and success in Texas. Comprehensive research is needed to understand the implications…

  19. Texas, 2010 forest inventory and analysis factsheet

    Science.gov (United States)

    James W. Bentley

    2012-01-01

    This science update summarizes the findings of the statewide annual inventory conducted by the Southern Forest Inventory and Analysis (FIA) Program in cooperation with the Texas Forest Service of the forest resource attributes in Texas. The 254 counties of Texas are consolidated into seven FIA survey units – southeast (unit 1), northeast (unit 2), north central (unit 3...

  20. 78 FR 11579 - Texas Regulatory Program

    Science.gov (United States)

    2013-02-19

    ... Interest and Compliance Information (Underground Mining). Texas proposed to delete old language in Sec. 12.... Therefore, we approve Texas' deletion. Texas proposed to delete old language in Sec. 12.156 regarding the... proposed to add new language regarding certifying and updating existing permit information, permit...

  1. Hydrologic interpretation of geophysical data from the southeastern Hueco Bolson, El Paso, and Hudspeth Counties, Texas

    Science.gov (United States)

    Gates, Joseph Spencer; Stanley, W.D.

    1976-01-01

    Airborne-electromagnetic and earth-resistivity surveys were used to explore for fresh ground water in the Hueco Bolson southeast of El Paso, Texas. Aerial surveys were made along about 500 miles (800 km) of flight line, and 67 resistivity soundings were made along 110 miles (180 km) of profile. The surveys did not indicate the presence of any large bodies of fresh ground water, but several areas may be underlain by small to moderate amounts of fresh to slightly saline water.The material underlying the flood plain of the Rio Grande is predominantly clay or sand of low resistivity. Along a band on the mesa next to and parallel to the flood plain, more resistive material composed partly of deposits of an ancient river channel extends to depths of about 400 to 1,700 feet (120 to 520 m). Locally, the lower part of this more resistive material is saturated with fresh to slightly saline water. The largest body of fresh to slightly saline ground water detected in this study is between Fabens and Tornillo, Texas, mostly in the sandhill area between the flood plain and the mesa. Under assumed conditions, the total amount of water in storage may be as much as 400,000 to 800,000 acre-feet (500 million to 1 billion m ).The resistivity data indicate that the deep artesian zone southwest of Fabens extends from a depth of about 1,200 feet (365 m) to about 2,800 feet (855 m).

  2. The Geometry of the Aquifer's System of the Terraguelt Graben by the Gravimetry and the Electric Prospecting

    International Nuclear Information System (INIS)

    Brahmia, A.; Hani, A.; Lamouroux, C.

    2009-01-01

    The goal of the present survey is the determination of the shape of Terraguelt graben aquifer system. The gravimetric survey brings a satisfactory answer in this sense that the residual anomaly map made appear a negative anomaly of - 20 m Gals and that the gradient delimits the Graben enough well. The electric survey on the basis of the geologic information and the few mechanical boring achieved in the plain permits to retail the facies of the replenishment better. Indeed some either the length of the current electrode AB line, the center of the plain makes appear of weak values of apparent resistivity, the shalky limestone substratum of age superior Maestrichien is not reached in spite of a length of AB line = 3000 m. Whereas the borders appear with resistivities more important, in the center of the plain these last become more and more weak with the increase of the AB length. The shape of the Graben is illustrated well in the electric cross sections and is confirmed by the interrelationship of the lithostratigraphique columns of the mechanical boring. The interpretation of mechanical boring data shows two principals aquifers : the first one is included in the karstified limestone of upper Maestrichien and the second one is in the replenishment constituted by sand, and gravel, pebble. This replenishment is estimated at 1200 m thickness. The piezo metric maps shows that the aquifers are feeded from the the East and South mountains borders

  3. Comparison of Water and Nutrient Cycles in the North China Plain and U.S. High Plains related to Climate Forcing

    Science.gov (United States)

    Scanlon, B. R.; Pei, H.; Shen, Y.

    2014-12-01

    The North China Plain (NCP) and U.S. High Plains play critical roles in food production, which relies heavily on groundwater resources for irrigation and nutrients. Here we evaluate food production in terms of resource availability (water and nutrients) and impacts on resources (groundwater quantity and quality) within the context of climate forcing. Double cropping of corn and wheat in the NCP under intensive irrigation (80 - 90% of cropland) and massive N fertilization (384 kg/ha) resulted in total corn plus wheat yields of 13.4 kg/ha (2002 - 2011). In contrast, single cropping of corn on the USHP under less intensive irrigation (40% of cropland) and N fertilization (90 kg/ha) resulted in only 15% lower yield in the USHP (11.7 kg/ha) than in the NCP. However, irrigation essentially decouples crop production from climate extremes. Average corn and wheat yield in the NCP over the past three decades is not correlated with precipitation. Irrigated corn yield in the north and central USHP was actually higher during the recent 2012 drought by up to ~ 30% relative to the 30 year long-term mean yield whereas rainfed corn yield decreased by ~50% during the drought. The main impact of climate extremes on the aquifers is indirect through increased irrigation pumpage for crop production rather than direct through changes in recharge. Effects of crop production on groundwater quality should be much greater in the NCP because of ~4 times higher fertilizer application relative to that in the USHP. Field research experiments in the NCP indicate that much of this fertilizer application (> 200 kg N/ha) does not impact yield and could potentially leach into underlying aquifers. Projected groundwater depletion in these aquifers should result in a shift from intensive irrigation to more rainfed crop production, increasing vulnerability of crop production to climate extremes.

  4. National Uranium Resource Evaluation: Lawton Quadrangle, Oklahoma and Texas

    International Nuclear Information System (INIS)

    Al-Shaieb, Z.; Thomas, R.G.; Stewart, G.F.

    1982-04-01

    Uranium resources of the Lawton Quadrangle, Oklahoma and Texas, were evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Five areas of uranium favorability were delineated. Diagenetically altered, quartzose and sublithic, eolian and marginal-marine sandstones of the Permian Rush Springs Formation overlying the Cement Anticline are favorable for joint-controlled deposits in sandstone, non-channel-controlled peneconcordant deposits, and Texas roll-front deposits. Three areas contain lithologies favorable for channel-controlled peneconcordant deposits: arkosic sandstones and granule conglomerates of the Permian Post Oak Conglomerate south of the Wichita Mountains; subarkosic and sublithic Lower Permian fluvio-deltaic and coastal-plain sandstones of the eastern Red River Valley; and subsurface arkosic, subarkosic, and sublithic alluvial-fan and fan-delta sandstones of the Upper Pennsylvanian-Lower Permian sequence in the eastern Hollis Basin. The coarse-grained facies of the Cambrian Quanah Granite and genetically related aplite and pegmatite dikes in the Wichita Mountains are favorable for orthomagmatic and autometasomatic deposits, respectively

  5. Aquifer thermal energy stores in Germany

    International Nuclear Information System (INIS)

    Kabus, F.; Seibt, P.; Poppei, J.

    2000-01-01

    This paper describes the state of essential demonstration projects of heat and cold storage in aquifers in Germany. Into the energy supply system of the buildings of the German Parliament in Berlin, there are integrated both a deep brine-bearing aquifer for the seasonal storage of waste heat from power and heat cogeneration and a shallow-freshwater bearing aquifer for cold storage. In Neubrandenburg, a geothermal heating plant which uses a 1.200 m deep aquifer is being retrofitted into an aquifer heat storage system which can be charged with the waste heat from a gas and steam cogeneration plant. The first centralised solar heating plant including an aquifer thermal energy store in Germany was constructed in Rostock. Solar collectors with a total area of 1000m 2 serve for the heating of a complex of buildings with 108 flats. A shallow freshwater-bearing aquifer is used for thermal energy storage. (Authors)

  6. National Uranium Resource Evaluation: Crystal City Quadrangle, Texas

    International Nuclear Information System (INIS)

    Greimel, T.C.

    1982-08-01

    The uranium resources of the Crystal City Quadrangle, Texas, were evaluated to a depth of 1500 m using surface and subsurface geologic information. Uranium occurrences reported in the literature, in reports of the US Atomic Energy Commission and the US Geological Survey Computerized Resources Information Bank, were located, described, and sampled. Geochemical anomalies interpreted from hydrogeochemical and stream-sediment reconnaissance were also investigated and sampled in detail. Areas of uranium favorability in the subsurface were located through interpretation of lithofacies patterns and structure derived from electric-log data. Gamma-ray well logs and results of geochemical sample analyses were used as supportive data in locating these areas. Fifteen surface and subsurface favorable areas were delineated in the quadrangle. Eight are in fluvial and genetically associated facies of the Pliocene Goliad Sandstone, Miocene Oakville Sandstone, Miocene Catahoula Tuff, and Oligocene Frio Clay. One area encompasses strand plain-barrier bar, fluvial-deltaic, and lagoonal-margin facies of the Eocene Jackson Group. Two areas are in strand plain-barrier bar and probable fluvial facies of the Eocene Yegua Formation. Four areas are in fluvial-deltaic, barrier-bar, and lagoonal-margin facies of the Eocene Queen City Formation and stratigraphically equivalent units. Seventeen geologic units are considered unfavorable, and seven are unevaluated due to lack of data

  7. Advanced Texas Studies: Curriculum Guide.

    Science.gov (United States)

    Harlandale Independent School District, San Antonio, TX. Career Education Center.

    The guide is arranged in vertical columns relating curriculum concepts in Texas studies to curriculum performance objectives, career concepts and career performance objectives, suggested teaching methods, and audio-visual and resource materials. Career information is included on 24 related occupations. Space is provided for teachers' notes which…

  8. "Fisher v. Texas": Strictly Disappointing

    Science.gov (United States)

    Nieli, Russell K.

    2013-01-01

    Russell K. Nieli writes in this opinion paper that as far as the ability of state colleges and universities to use race as a criteria for admission goes, "Fisher v. Texas" was a big disappointment, and failed in the most basic way. Nieli states that although some affirmative action opponents have tried to put a more positive spin on the…

  9. Residential Energy Efficiency Potential: Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Texas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. South Texas Maquiladora Suppliers Project.

    Science.gov (United States)

    Patrick, J. Michael

    This project was undertaken to assist South Texas industries in improving export to nearby Mexican maquiladoras (factories). The maquiladora program is based on co-production by two plants under a single management, one on each side of the border. Activities addressed four objectives: (1) to determine the dollar value, quantity, and source of the…

  11. Lessons from past experiences: Texas

    International Nuclear Information System (INIS)

    Blackburn, T.W. III

    1986-01-01

    A site selection study was conducted in which technical criteria were developed and potential sites numerically ranked. Three candidate sites were chosen, two in south Texas and one in west Texas. Adamant public opposition to the two sites forced a reevaluation and redirection of the siting process. Three sites on state owned lands in west Texas have been identified under the second site selection study. The following are recommended guidelines to incorporate in any public participation program: use multiple approaches at both the regional and local level; identify the public and their true concerns; approach the public at their level and their style; use a slow, deliberate process, siting cannot be forced; be honest and available; give the public an active part in the decision making process; keep elected officials informed and active and encourage information exchange; and be prepared for surprises. Two ranking exercises were also undertaken and are briefly described. The first ranked eleven major issues in order of perceived importance. The second ranked waste disposal technologies. Detailed information on both ranking exercises can be obtained from the Texas Low-Level Radioactive Waste Disposal Authority

  12. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas.

  13. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2

    International Nuclear Information System (INIS)

    1996-11-01

    The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas

  14. Three-dimensional chemical structure of the INEL aquifer system near the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    McCurry, M.; Estes, M.; Fromm, J.; Welhan, J.; Barrash, W.

    1994-01-01

    Sampling and analysis from the Snake River Plain aquifer using a stainless-steel and teflon constructed straddle-packer system has established detailed vertical profiles of aquifer chemistry from three wells near a major source of low-level waste injection at the Idaho Chemical Processing Plant. Multiple intervals, varying from 4.6 to 6.1 m in length, were sampled between the water table (140.5 mbls - meters below land surface), and approximately 200 mbls to obtain a wide spectrum of metals, anions, radiological and organic components analyses. Measurements were also made at the well sites of important transient parameters (T, Eh, Fe 3+ , Fe 2+ , DO and SC). The principal purpose of this ongoing work is to improve our understanding of the third (i.e. vertical) dimension of aquifer chemistry at the INEL as a basis for critically evaluating site-wide monitoring procedures, and, ultimately, for improving fate and transport models for aquifer contaminants within basalt-hosted aquifers. Chemical and radiological data indicates that substantial systematic vertical and lateral variations occur in the aquifer hydrochemistry - in particular for conservative radiological nuclide concentrations. Radiological data define a three-layered zonation. Ground water within upper and lower zones contain up to 10 times higher concentrations of H-3 and I-129 than in the middle zone. Sr-90 activity is decoupled from H-3 and I-129-relatively high activity was detected within the upper zone nearest the ICPP, but activities elsewhere are very low. 27 refs., 4 figs., 1 tab

  15. Have We Overestimated Saline Aquifer CO2 Storage Capacities?

    International Nuclear Information System (INIS)

    Thibeau, S.; Mucha, V.

    2011-01-01

    During future, large scale CO 2 geological storage in saline aquifers, fluid pressure is expected to rise as a consequence of CO 2 injection, but the pressure build up will have to stay below specified values to ensure a safe and long term containment of the CO 2 in the storage site. The pressure build up is the result of two different effects. The first effect is a local overpressure around the injectors, which is due to the high CO 2 velocities around the injectors, and which can be mitigated by adding CO 2 injectors. The second effect is a regional scale pressure build up that will take place if the storage aquifer is closed or if the formation water that flows away from the pressurised area is not large enough to compensate volumetrically the CO 2 injection. This second effect cannot be mitigated by adding additional injectors. In the first section of this paper, we review some major global and regional assessments of CO 2 storage capacities in deep saline aquifers, in term of mass and storage efficiency. These storage capacities are primarily based on a volumetric approach: storage capacity is the volumetric sum of the CO 2 that can be stored through various trapping mechanisms. We then discuss in Section 2 storage efficiencies derived from a pressure build up approach, as stated in the CO2STORE final report (Chadwick A. et al. (eds) (2008) Best Practice for the Storage of CO 2 in Saline Aquifers, Observations and Guidelines from the SACS and CO2STORE Projects, Keyworth, Nottingham, BGS Occasional Publication No. 14) and detailed by Van der Meer and Egberts (van der Meer L.G.H., Egberts P.J.P. (2008) A General Method for Calculating Subsurface CO 2 Storage Capacity, OTC Paper 19309, presented at the OTC Conference held in Houston, Texas, USA, 5-8 May). A quantitative range of such storage efficiency is presented, based on a review of orders of magnitudes of pore and water compressibilities and allowable pressure increase. To illustrate the relevance of this

  16. Study of the leakage between two aquifers in Hermosillo, Mexico, using environmental isotopes

    International Nuclear Information System (INIS)

    Payne, B.R.; Quijano, L.; Latorre, D.C.

    1980-01-01

    The Coast of Hermosillo is located in the Gulf of California, Mexico. It is a Quaternary alluvial plain of continental origin. Underlying these deposits is a layer of blue clay about 100m thick which imposes confinement to a deep aquifer in basaltic and pyroclastic rocks. Oxygen-18 and deuterium data support the occurrence of an upwardsleakage. The amount of the leakage was evaluated, on the basis of 14 C data, to a maximum of 20% of the water pumped by the irrigation wells in the upper aquifer. The stable isotope data also support the occurrence of sea-water intrusion by preferential channels in the south and in the area of Kino Bay. (author)

  17. Quantitative groundwater modelling for a sustainable water resource exploitation in a Mediterranean alluvial aquifer

    Science.gov (United States)

    Laïssaoui, Mounir; Mesbah, Mohamed; Madani, Khodir; Kiniouar, Hocine

    2018-05-01

    To analyze the water budget under human influences in the Isser wadi alluvial aquifer in the northeast of Algeria, we built a mathematical model which can be used for better managing groundwater exploitation. A modular three-dimensional finite-difference groundwater flow model (MODFLOW) was used. The modelling system is largely based on physical laws and employs a numerical method of the finite difference to simulate water movement and fluxes in a horizontally discretized field. After calibration in steady-state, the model could reproduce the initial heads with a rather good precision. It enabled us to quantify the aquifer water balance terms and to obtain a conductivity zones distribution. The model also highlighted the relevant role of the Isser wadi which constitutes a drain of great importance for the aquifer, ensuring alone almost all outflows. The scenarios suggested in transient simulations showed that an increase in the pumping would only increase the lowering of the groundwater levels and disrupting natural balance of aquifer. However, it is clear that this situation depends primarily on the position of pumping wells in the plain as well as on the extracted volumes of water. As proven by the promising results of model, this physically based and distributed-parameter model is a valuable contribution to the ever-advancing technology of hydrological modelling and water resources assessment.

  18. Site study plan for Playa investigations, Deaf Smith County, Texas: Salt Repository Project

    International Nuclear Information System (INIS)

    1987-01-01

    This plan defines the purpose and objectives of the Playa Investigation Study, presents a plan of work to provide the information necessary to resolve issues, and discusses the rationale for test method selection. The required information will be obtained from existing well drilling records, describing and testing of soil and rock samples recovered from project test holes, geophysical well logs, seismic surveys, and shallow test pits excavated at ground surface. There have been numerous, often conflicting, theories presented to explain the origin(s) of the playas of the Texas High Plains. The primary purpose of this study is to establish if existing playas and playa alignments are related to deeper subsurface structure, such as faulting or salt dissolution, the potential for future playa development, and the significance of existing and/or future playas on siting a repository in Deaf Smith County, Texas. 11 refs

  19. Seroprevalence of Borrelia burgdorferi antibodies in white-tailed deer from Texas

    Directory of Open Access Journals (Sweden)

    Shakirat A. Adetunji

    2016-08-01

    Full Text Available Lyme Disease is caused by the bacterial pathogen Borrelia burgdorferi, and is transmitted by the tick-vector Ixodes scapularis. It is the most prevalent arthropod-borne disease in the United States. To determine the seroprevalence of B. burgdorferi antibodies in white-tailed deer (Odocoileus virginianus from Texas, we analyzed serum samples (n = 1493 collected during the 2001–2015 hunting seasons, using indirect ELISA. Samples with higher sero-reactivity (0.803 and above than the negative control group (0.662 were further tested using a more specific standardized western immunoblot assay to rule out false positives. Using ELISA, 4.7% of the samples were sero-reactive against B. burgdorferi, and these originated in two eco-regions in Texas (Edwards Plateau and South Texas Plains. However, only 0.5% of the total samples were sero-reactive by standardized western immunoblot assay. Additionally, both ELISA and standardized western immunoblot assay results correlated with an increased incidence in human Lyme Disease cases reported in Texas. This is the first longitudinal study to demonstrate fluctuation in sero-reactivity of white-tailed deer to B. burgdorferi sensu stricto antigens in southern United States. Future ecological and geographical studies are needed to assess the environmental factors governing the prevalence of Lyme Disease in non-endemic areas of the southern United States.

  20. Groundwater vulnerability and recharge or palaeorecharge in the Southeastern Chad Basin, Chari Baguirmi aquifer

    International Nuclear Information System (INIS)

    Djoret, D.; Travi, Y.

    2001-01-01

    Stable isotopes and major chemical elements have been used to investigate present or ancient groundwater renewal in the multilayered aquifer of the Chari-Baguirmi plain, South of Lake Chad. On the Western side, recharge mainly occurs from the Chari River during the flood period. Within the Ndjamena area, the rise of the piezometric level in the contaminated subsurface zone provokes an increase in nitrate concentrations. Rainfall recharge is mainly located close to the outcropping basement, i.e. on the Eastern side of the area and does not occurs in the central part of the plain where groundwater also presents a stronger evaporative signature. This supports the hypothesis attributing a major role to evaporation processes in the formation of piezometric depressions in the Sahel zone. There is no evidence of present day or ancient water recharge from Lake Chad. (author)

  1. Groundwaters of Florence (Italy): Trace element distribution and vulnerability of the aquifers

    Science.gov (United States)

    Bencini, A.; Ercolanelli, R.; Sbaragli, A.; Verrucchi, C.

    1993-11-01

    Geochemical and hydrogeological research has been carried out on 109 wells in the alluvial plain of Florence, in order to evaluate conductivity and main chemistry of ground waters, the pattern of some possible pollutant chemical species (Fe, Mn, Cr, Cu, Pb, Zn, NO2, NO3), and the vulnerability of the aquifers. The plain is made up of Plio-Quaternary alluvial and lacustrine sediments for a maximum thickness of 600 m. Silts and clays, sometimes with lenses of sandy gravels, are dominant, while considerable deposits of sands, pebbles, and gravels occur along the course of the Arno river and its tributary streams, and represent the most important aquifer of the plain. The groundwaters analyzed belong to this aquifer or to the smaller ones, hosted in the gravel lenses. Most waters show conductivity values around 1000 1200 μS, and almost all of them have an alkaline-earth-bicarbonate chemical character; these features are consistent with the mainly calcareous lithology of the aquifers. In the western areas a higher salt content of the groundwaters is evident, probably related to the presence of industrial activities which use water desalinators. Heavy metal and NO2, NO3 analyses point out that no important pollution phenomena affect the groundwaters; all the mean values of the chemical considered species are below the maximum admissible concentration (MAC) fixed by the European Community for drinkable waters. Nevertheless, some anomalies of NO2, NO3, Fe, Mn, and Zn are present in the plain. Apart from Mn, which seems to be released by certain calcareous gravels, the other anomalies have a local influence, since they disappear even in the nearest wells. The most plausible causes can be recognized in losses of the sewage system (NO2=3 4 mg/t); use of nitrate compounds in agriculture (NO3=60 70 mg/l); oxidation of well pipes (Fe ≈ 20 mg/l; Zn ≈ 6 mg/l). As regards Cr, Cu, and Pb, all the observations are below the MAC; therefore, the median values of bacteria oxidation

  2. SRP baseline hydrogeologic investigation: Aquifer characterization. Groundwater geochemistry of the Savannah River Site and vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  3. Measured sections and analyses of uranium host rocks of the Dockum Group, New Mexico and Texas

    International Nuclear Information System (INIS)

    Dickson, R.E.; Drake, D.P.; Reese, T.J.

    1977-02-01

    This report presents 27 measured sections from the Dockum Group of Late Triassic age, in the southern High Plains of eastern New Mexico and northwestern Texas. Many of the measured sections are only partial; the intent in those cases was to measure the parts of sections that had prominent sandstone/conglomerate beds or that had uranium deposits. No attempt was made to relate rock color to a rock color chart; rock colors are therefore approximate. Modal analyses (by thin-section examination) of sandstone and conglomerate samples and gamma-ray spectrometric analyses of the samples are presented in appendices

  4. Migration and habitat preferences of Swainson's Hawks at an autumn stopover site in northwestern Texas

    Science.gov (United States)

    Littlefield, Carroll D.; Johnson, Douglas H.

    2013-01-01

    Unlike most raptors, the Swainson's Hawk (Buteo swainsoni) migrates long distances between breeding and wintering ranges, which elevates the importance of stopover sites for foraging. We conducted three years of fall surveys in the Southern High Plains of Texas. Migrant Swainson's Hawks moved through the area mostly between July and mid-October, peaking in September. Subadults tended to migrate earlier than adults, and light morphs before dark morphs. Favored foraging habitats included silage corn, green beans, and alfalfa, but the hawks foraged primarily where ongoing agricultural activities disturbed prey and made them more available.

  5. Arsenic, microbes and contaminated aquifers

    Science.gov (United States)

    Oremland, Ronald S.; Stolz, John F.

    2005-01-01

    The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.

  6. 76 FR 7833 - Texas Eastern Transmission, LP; Notice of Application

    Science.gov (United States)

    2011-02-11

    ...] Texas Eastern Transmission, LP; Notice of Application Take notice that on January 25, 2011, Texas Eastern Transmission, LP (Texas Eastern), 5400 Westheimer Court, Houston, Texas 77056, filed in the above... TEAM 2012 Project. Specifically, Texas Eastern requests: (i) Authorization under NGA sections 7(b) and...

  7. Aquifer thermal-energy-storage modeling

    Science.gov (United States)

    Schaetzle, W. J.; Lecroy, J. E.

    1982-09-01

    A model aquifer was constructed to simulate the operation of a full size aquifer. Instrumentation to evaluate the water flow and thermal energy storage was installed in the system. Numerous runs injecting warm water into a preconditioned uniform aquifer were made. Energy recoveries were evaluated and agree with comparisons of other limited available data. The model aquifer is simulated in a swimming pool, 18 ft by 4 ft, which was filled with sand. Temperature probes were installed in the system. A 2 ft thick aquifer is confined by two layers of polyethylene. Both the aquifer and overburden are sand. Four well configurations are available. The system description and original tests, including energy recovery, are described.

  8. Hydrochemistry of New Zealand's aquifers

    International Nuclear Information System (INIS)

    Rosen, M.R.

    2001-01-01

    Groundwater chemistry on a national scale has never been studied in New Zealand apart from a few studies on nitrate concentrations and pesticides. These studies are covered in Chapter 8 of this book. However general studies of groundwater chemistry, groundwater-rock interaction and regional characteristics of water quality have not been previously addressed in much detail. This is partly because New Zealand aquifers are relatively small on a world scale and are geologically and tectonically diverse (see Chapter 3). But New Zealand has also recently lacked a centralised agency responsible for groundwater quality, and therefore, no national assessments have been undertaken. In recent years, the Institute of Geological and Nuclear Sciences has managed a programme of collecting and analysing the groundwater chemistry of key New Zealand aquifers. This programme is called the National Groundwater Monitoring Programme (NGMP) and is funded by the New Zealand Public Good Science Fund. The programme started in 1990 using only 22 wells, with four regional authorities of the country participating. The NGMP now includes all 15 regional and unitary authorities that use groundwater and over 100 monitoring sites. The NGMP is considered a nationally significant database by the New Zealand Foundation for Research Science and Technology. The NGMP allows a national comparison of aquifer chemistries because the samples are all analysed at one laboratory in a consistent manner and undergo stringent quality control checks. Poor quality analyses are thus minimised. In addition, samples are collected quarterly so that long-term seasonal trends in water quality can be analysed, and the effects of changes in land use and the vulnerability of aquifers to contaminant leaching can be assessed. This chapter summarises the water quality data collected for the NGMP over the past 10 years. Some records are much shorter than others, but most are greater than three years. Additional information is

  9. Sustainability of groundwater supplies in the Northern Atlantic Coastal Plain aquifer system

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.

    2016-08-31

    Groundwater is the Nation’s principal reserve of freshwater. It provides about half our drinking water, is essential to food production, and facilitates business and industry in developing economic well-being. Groundwater is also an important source of water for sustaining the ecosystem health of rivers, wetlands, and estuaries throughout the country. The decreases in groundwater levels and other effects of pumping that result from large-scale development of groundwater resources have led to concerns about the future availability of groundwater to meet all our Nation’s needs. Assessments of groundwater availability provide the science and information needed by the public and decision makers to manage water resources and use them responsibly.

  10. Annual INTEC Groundwater Monitoring Report for Group 5 - Snake River Plain Aquifer (2001)

    International Nuclear Information System (INIS)

    Roddy, M.S.

    2002-01-01

    This report describes the monitoring activities conducted and presents the results of groundwater sampling and water-level measurements from October 2000 to September 2001. Groundwater samples were initially collected from 41 wells from the Idaho Nuclear Technology and Engineering Center and the Central Facilities Area and analyzed for iodine- 129, strontium-90, tritium, gross alpha, gross beta, technetium-99, uranium isotopes, plutonium isotopes, neptunium-237, gamma spectrometry, and mercury. Samples from 41 wells were collected in April and May 2001. Additional sampling was conducted in August 2001 and included in two CFA production wells, the CFA point of compliance for the production wells, one well was previously sampled and five additional monitoring wells. Water-level measurements were taken from in the Idaho Nuclear Technology and Engineering Center, Central Facilities Area, and the area south of Central Facilities Area to evaluate groundwater flow directions. Water-level measurements indicated groundwater flow to the south-southwest from the Idaho Nuclear Technology and Engineering Center

  11. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    International Nuclear Information System (INIS)

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides

  12. Aquifer Characterization and Groundwater Potential Assessment

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Keywords: Aquifer Characterization, Groundwater Potential, Electrical Resistivity, Lithologic Logs ... State Water Corporation currently cannot meet the daily water ... METHOD OF STUDY ... sections which were constrained with the available.

  13. Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability

    Science.gov (United States)

    Debernardi, Laura; de Luca, Domenico Antonio; Lasagna, Manuela

    2008-08-01

    This paper is the result of a study which was carried out in order to verify if the traditional methods to evaluate the intrinsic vulnerability or vulnerability related parameters, are able to clarify the problem of nitrate pollution in groundwater. In particular, the aim was to evaluate limitations and problems connected to aquifer vulnerability methods applied to nitrate contamination prevision in groundwater. The investigation was carried out by comparing NO3 - concentrations, measured in March and November 2004 in the shallow aquifer, and the vulnerability classes, obtained by using GOD and TOT methods. Moreover, it deals with a comparison between NO3 - concentrations and single parameters (depth to water table, land use and nitrogen input). The study area is the plain sector of Piemonte (Northern Italy), where an unconfined aquifer nitrate contamination exists. In this area the anthropogenic presence is remarkable and the input of N-fertilizers and zootechnical effluents to the soil cause a growing amount of nitrates in groundwater. This approach, used in a large area (about 10,000 km2) and in several monitoring wells (about 500), allowed to compare the efficiency of different vulnerability methods and to verify the importance of every parameter on the nitrate concentrations in the aquifer. Furthermore it allowed to obtain interesting correlations in different hydrogeological situations. Correlations between depth to water table, land use and nitrogen input to the soil with nitrate concentrations in groundwater show unclear situations: in fact these comparisons describe the phenomenon trend and highlight the maximum nitrate concentrations for each circumstance but often show wide ranges of possible nitrate concentrations. The same situation could be observed by comparing vulnerability indexes and nitrate concentrations in groundwater. These results suggest that neither single parameters nor vulnerability methods (GOD and TOT) are able to describe individually

  14. Geophysical borehole logging in selected areas in the Greater Accra plains and the Densu river basin

    International Nuclear Information System (INIS)

    Amartey, E. A.

    2009-06-01

    Geophysical borehole logging was complemented by Vertical Electrical Sounding (VES) method to study fractured bedrock aquifer systems on the compounds of Ghana Atomic Energy Commission (GAEC), Water Research Institute (WRI) in the Accra Plains and the Hydrometric Station of the Department of Geology, University of Ghana at Buokrom in the Densu River Basin. Single-point resistance, resistivity and natural gamma logging in a total of nine boreholes were conducted to identify and characterize the various aquifers in the study areas. Results obtained from the single-point resistance and resistivity logs showed clearly the characteristics of water-bearing fracture zones in the various rock formations. The gamma logs obtained for each area were correlated to form hydrostratigraphic units to establish potential zones of high water-bearing fractures. VES modeled curves shows hydrogeological units of the geological formation which compares well with features obtained on the logs. The investigation identified fractured zone thicknesses of <1 m to 2 m at GAEC area, <1 m to 9 m at WRI area and <1 m to 10 m thicknesses at the Buokrom area. The fractured bedrock aquifers identified have been characterized based on their thicknesses as follows. Five minor (thickness < 5 m), two medium (thickness 5 m to 14 m) and three major (thickness ⩾15 m) fractures were identified at the GAEC area. At the WRI area three minor and five medium fractures were identified. Also four minor and five medium fractures were identified for the Buokrom area boreholes. (au)

  15. Assessing Contamination Potential of Nitrate-N in Groundwater of Lanyang Plain

    Science.gov (United States)

    Liang, Ching-Ping; Tu, Yu-Lin; Lin, Chien-Wen; Jang, Cheng-Shin

    2013-04-01

    Nitrate-N pollution is often relevant to agricultural activities such as the fertilization of crops. Significant increases in the nitrate-N pollution of groundwater are found in natural recharging zones of Taiwan. The increasing nitrate-N contamination seriously threatens public drinking water supply and human health. Constructing a correct map of aquifer contamination potential is an effective and feasible way to protect groundwater for quality assessment and management. Therefore, in this study, we use DRASTIC model with the help of geographic information system (GIS) to assess and predict the contamination potential of nitrate-N in the aquifer of Lanyang Plain, Taiwan. Seven factors of hydrogeology and hydrology, which includes seven parameters - Depth to groundwater, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone, and hydraulic Conductivity, are considered to carry out this assessment. The validity of the presented model is established by comparing the results with the measured nitrate concentration in wells within the study area. Adjusting factor weightings via the discriminant analysis is performed to improve the assessment and prediction. The analyzed results can provide residents with suggestive strategies against nitrate-N pollution in agricultural regions and government administrators with explicit information of Nitrate-N pollution extents when plans of water resources are considered.

  16. Sedimentological techniques applied to the hydrology of the Atlantic coastal plain in South Carolina and Georgia near the Savannah River Site

    International Nuclear Information System (INIS)

    Falls, F.W.; Baum, J.S.; Edwards, L.E.

    1994-01-01

    Potential for migration of contaminants in ground water under the Savannah River from South Carolina into Georgia near the US Department of Energy (DOE) Savannah River Site (SRS). The SRS is located in the inner Atlantic Coastal Plain of South Carolina and is underlain by 200 to more than 300 meters of permeable, unconsolidated to poorly consolidated sediments of Cretaceous and Tertiary age. The US Geological Survey, in cooperation with the US Department of Energy and the Georgia Department of Natural Resources, is evaluating ground-water flow through the Coastal Plain sediments in the area. Preliminary hydrologic studies conducted to provide the data needed for digital modeling of the ground-water flow system identified the need for more extensive investigation into the influence of the geologic complexities on that flow system. The Coastal Plain physiographic province in South Carolina and Georgia is comprised of a complex wedge of fluvial, deltaic, and marine sedimentary deposits locally modified by faulting. Several techniques commonly used in petroleum basin analysis (sequence stratigraphy, biostratigraphy, detailed core description, and geophysical well log analysis), were used together with water-level measurements, aquifer-test data, and geochemical data to identify six regional aquifers. Hydraulic conductivity distribution maps within each of these aquifers were constructed using textural analysis of core materials, aquifer test data, and depositional system reconstruction. Sedimentological techniques were used to improve understanding of the depositional system and the ground-water flow system dynamics, and to help focus research in areas where additional hydrologic, geologic, and aquifer-test data are needed

  17. Catahoula formation of the Texas coastal plain: origin, geochemical evolution, and characteristics of uranium deposits

    International Nuclear Information System (INIS)

    Galloway, W.E.; Kaiser, W.R.

    1979-01-01

    Uranium was released from volcanic glass deposited within the Catahoula through early pedogenic and diagenetic processes. Pedogenesis was the most efficient process for mobilizing uranium. Original uranium content in fresh Catahoula glass is estimated to have averaged at least 10 ppM; about 5 ppM was mobilized after deposition and made available for migration. Uranium was transported predominantly as uranyl dicarbonate ion. Chlorinity mapping reveals modern ground-water flow patterns. Six utranium deposits representative of the ores were studied. Uranium-bearing meteoric waters were reduced by pre-ore stage pyrite formed by extrinsically introduced fault-leaked sulfide or intrinsically by organic matter. Uranium was concentrated in part by adsorption on Ca-montmorillonite cutans, amorphous TiO 2 , and/or organic matter followed by uranyl reduction to U 4+ in amorphous uranous silicates. Clinoptilolite is not correlative with mineralization. Calcite is pervasive throughout host sands but shows no relationship to uranium mineralization. Presence of marcasite and uranium together at the alteration front strongly supports an acid pH during Catahoula mineralization. Maximum adsorption and minimum solubility of uranium occur at pH 6 in carbonate-rich waters. Log activity ratios of individual waters supersaturated with respect to montmorillonite, taken from montmorillonite-clinoptilolite activity diagrams, show positive correlation with uranium mineralization. High Ca 2+ , Mg 2+ , Al(OH) 4 - , and H + activities promote the formation of montmorillonite relative to clinoptilolite. High saturation ratios for montmorillonite show fair correlation with mineralization. The mineral-solution equilibria approach is a potential method of geochemical exploration. 56 figures, 8 tables

  18. Land-Cover Change in the East Central Texas Plains, 1973-2000

    Science.gov (United States)

    Karstensen, Krista A.

    2009-01-01

    Project Background: The Geographic Analysis and Monitoring (GAM) Program of the U.S. Geological Survey (USGS) Land Cover Trends project is focused on understanding the rates, trends, causes, and consequences of contemporary U.S. land-use and land-cover change. The objectives of the study are to: (1) develop a comprehensive methodology for using sampling and change analysis techniques and Landsat Multispectral Scanner (MSS) and Thematic Mapper (TM) data for measuring regional land-cover change across the United States, (2) characterize the types, rates and temporal variability of change for a 30-year period, (3) document regional driving forces and consequences of change, and (4) prepare a national synthesis of land-cover change (Loveland and others, 1999). Using the 1999 Environmental Protection Agency (EPA) Level III ecoregions derived from Omernik (1987) as the geographic framework, geospatial data collected between 1973 and 2000 were processed and analyzed to characterize ecosystem responses to land-use changes. The 27-year study period was divided into five temporal periods: 1973-1980, 1980-1986, 1986-1992, 1992-2000, and 1973-2000. General land-cover classes such as water, developed, grassland/shrubland, and agriculture for these periods were interpreted from Landsat MSS, TM, and Enhanced Thematic Mapper Plus imagery to categorize land-cover change and evaluate using a modified Anderson Land-Use Land-Cover Classification System for image interpretation. The interpretation of these land-cover classes complement the program objective of looking at land-use change with cover serving as a surrogate for land use. The land-cover change rates are estimated using a stratified, random sampling of 10-kilometer (km) by 10-km blocks allocated within each ecoregion. For each sample block, satellite images are used to interpret land-cover change for the five time periods previously mentioned. Additionally, historical aerial photographs from similar timeframes and other ancillary data such as census statistics and published literature are used. The sample block data are then incorporated into statistical analyses to generate an overall change matrix for the ecoregion. For example, the scalar statistics can show the spatial extent of change per cover type with time, as well as the land-cover transformations from one land-cover type to another type occurring with time. Field data of the sample blocks include direct measurements of land cover, particularly ground-survey data collected for training and validation of image classifications (Loveland and others, 2002). The field experience allows for additional observations of the character and condition of the landscape, assistance in sample block interpretation, ground truthing of Landsat imagery, and helps determine the driving forces of change identified in an ecoregion. Management and maintenance of field data, beyond initial use for training and validation of image classifications, is important as improved methods for image classification are developed, and as present-day data become part of the historical legacy for which studies of land-cover change in the future will depend (Loveland and others, 2002). The results illustrate that there is no single profile of land-cover change; instead, there is significant geographic variability that results from land uses within ecoregions continuously adapting to the resource potential created by various environmental, technological, and socioeconomic factors.

  19. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    Science.gov (United States)

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which i...

  20. Accuracy assessment of NOAA's daily reference evapotranspiration maps for the Texas High Plains

    Science.gov (United States)

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference ET for the continental U.S. using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large scale spatial representation for reference ET, which is essential for regional scal...

  1. Exceedance probability of the standardized precipitation-evapotranspiration index in the Texas High Plains

    Science.gov (United States)

    Drought is a common occurrence in many arid and semi-arid regions that can have large negative impacts on water resources and agricultural production. Since agricultural drought is affected by both water supply and demand (precipitation and evapotranspiration), it is beneficial to include both in a...

  2. 75 FR 68398 - Texas, Oklahoma & Eastern Railroad, LLC-Acquisition and Operation Exemption-Texas, Oklahoma...

    Science.gov (United States)

    2010-11-05

    ... & Eastern Railroad, LLC--Acquisition and Operation Exemption--Texas, Oklahoma & Eastern Railroad Company Texas, Oklahoma & Eastern Railroad, LLC (TOE), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to acquire from Texas, Oklahoma & Eastern Railroad Company and to operate...

  3. 77 FR 58025 - Texas Regulatory Program

    Science.gov (United States)

    2012-09-19

    ... appropriation. When calculating anticipated costs to the Commission for regulating coal mining activity, Texas... (c) Does not have significant adverse effects on competition, employment, investment, productivity...

  4. 78 FR 12010 - Radio Broadcasting Services; Pearsall, Texas

    Science.gov (United States)

    2013-02-21

    ... Broadcasting Services; Pearsall, Texas AGENCY: Federal Communications Commission. ACTION: Proposed rule... (``Petitioner''), licensee of FM Station KSAG, Channel 277A, Pearsall, Texas. Petitioner proposes to amend the... be allotted at Pearsall, Texas, in compliance with the Commission's minimum distance separation...

  5. Oceanographic measurements from the Texas Automated Buoy System (TABS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Texas Automated Buoy System contains daily oceanographic measurements from seven buoys off the Texas coast from Brownsville to Sabine. The Texas General Land...

  6. Clone of EPA Approved Regulations in the Texas SIP

    Science.gov (United States)

    changed name to EPA Approved Regulations in the Texas SIP, Add links to:Texas Read Me; Texas SIP History;Current/Previous SIP-Approved Regulations; Delete regulations--now in /node/191099, removed tables

  7. Groundwater Discharge along a Channelized Coastal Plain Stream

    Energy Technology Data Exchange (ETDEWEB)

    LaSage, Danita M [Ky Dept for natural resources, Div of Mine Permits; Sexton, Joshua L [JL Sexton and Son; Mukherjee, Abhijit [Univ of Tx, Jackson School of Geosciences, Bur of Econ. Geology; Fryar, Alan E [Univ of KY, Dept of Earth and Geoligical Sciences; Greb, Stephen F [Univ of KY, KY Geological Survey

    2015-10-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.

  8. Identification of palaeo-seawater intrusion in groundwater using minor ions in a semi-confined aquifer of the Río de la Plata littoral (Argentina)

    International Nuclear Information System (INIS)

    Santucci, L.; Carol, E.; Kruse, E.

    2016-01-01

    The hydrochemistry of minor elements and traces such as bromide, lithium, strontium, uranium and selenium, together with the chemical analysis of major ions, has been used in the study of salinization process. This process occurs in a semi-confined aquifer that corresponds to a Pliocene–Pleistocene fluvial environment. The semi-confined aquifer is located in the littoral of the cities of Ensenada and Berisso, in the region of the middle Río de la Plata estuary, Argentina. Groundwater salinization was detected in the semi-confined aquifer in the coastal plain area, with salt contents that increase from the loess plain towards the river. The content of major ions that predominate in sea water (Cl"−, Na"+ and Mg"2"+), as well as the Cl"−/Br"− and U vs. Cl"− ratios, demonstrates that such salinization is related to sea water, which shows no correspondence with estuary water. In the salinized area, Li, Sr and Se enrichments occur, and are used as tracers of the average time that a substance remains in solution in sea water in the aquifer. The study of such minor ions together with the geological evolution of the area made it possible to recognize that the salt water in the semi-confined aquifer corresponds to a palaeo-intrusion of sea water associated with the Pleistocene–Holocene ingressions caused by the climate changes occurring during the Quaternary. - Highlights: • The semi-confined aquifer in a sector of the Río de la Plata estuary is salinized. • Saline content is higher in the aquifer than in the estuary. • Minor elements indicate the occurrence of palaeo-seawater intrusion. • Palaeo-seawater intrusion may be associated with interglacial fluctuations.

  9. Identification of palaeo-seawater intrusion in groundwater using minor ions in a semi-confined aquifer of the Río de la Plata littoral (Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, L., E-mail: eleocarol@fcnym.unlp.edu.ar [Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata - UNLP, Calle 64 y Diag. 113, 1900 La Plata, Buenos Aires (Argentina); Carol, E. [Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata - UNLP, Calle 64 y Diag. 113, 1900 La Plata, Buenos Aires (Argentina); Kruse, E. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cátedra de Hidrología General de la Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), Calle 64 #3, 1900 La Plata, Buenos Aires (Argentina)

    2016-10-01

    The hydrochemistry of minor elements and traces such as bromide, lithium, strontium, uranium and selenium, together with the chemical analysis of major ions, has been used in the study of salinization process. This process occurs in a semi-confined aquifer that corresponds to a Pliocene–Pleistocene fluvial environment. The semi-confined aquifer is located in the littoral of the cities of Ensenada and Berisso, in the region of the middle Río de la Plata estuary, Argentina. Groundwater salinization was detected in the semi-confined aquifer in the coastal plain area, with salt contents that increase from the loess plain towards the river. The content of major ions that predominate in sea water (Cl{sup −}, Na{sup +} and Mg{sup 2+}), as well as the Cl{sup −}/Br{sup −} and U vs. Cl{sup −} ratios, demonstrates that such salinization is related to sea water, which shows no correspondence with estuary water. In the salinized area, Li, Sr and Se enrichments occur, and are used as tracers of the average time that a substance remains in solution in sea water in the aquifer. The study of such minor ions together with the geological evolution of the area made it possible to recognize that the salt water in the semi-confined aquifer corresponds to a palaeo-intrusion of sea water associated with the Pleistocene–Holocene ingressions caused by the climate changes occurring during the Quaternary. - Highlights: • The semi-confined aquifer in a sector of the Río de la Plata estuary is salinized. • Saline content is higher in the aquifer than in the estuary. • Minor elements indicate the occurrence of palaeo-seawater intrusion. • Palaeo-seawater intrusion may be associated with interglacial fluctuations.

  10. Managed Aquifer Recharge in Italy: present and prospects.

    Science.gov (United States)

    Rossetto, Rudy

    2015-04-01

    On October the 3rd 2014, a one-day Workshop on Managed Aquifer Recharge (MAR) experiences in Italy took place at the GEOFLUID fair in Piacenza. It was organized within the framework of the EIP AG 128 - MAR Solutions - Managed Aquifer Recharge Strategies and Actions and the EU FPVII MARSOL. The event aimed at showcasing present experiences on MAR in Italy while at the same time starting a network among all the Institutions involved. In this contribution, we discuss the state of MAR application in Italy and summarize the outcomes of that event. In Italy aquifer recharge is traditionally applied unintentionally, by increasing riverbank filtration or because of excess irrigation. A certain interest for artificial recharge of aquifers arose at the end of the '70s and the beginning of the '80s and tests have been carried out in Tuscany, Veneto and Friuli Venezia Giulia. During the last years some projects on aquifer recharge were co-financed by the European Commission mainly through the LIFE program. Nearly all of them use the terminology of artificial recharge instead of MAR. They are: - TRUST (Tool for regional - scale assessment of groundwater storage improvement in adaptation to climate change, LIFE07 ENV/IT/000475; Marsala 2014); - AQUOR (Implementation of a water saving and artificial recharging participated strategy for the quantitative groundwater layer rebalance of the upper Vicenza's plain - LIFE 2010 ENV/IT/380; Mezzalira et al. 2014); - WARBO (Water re-born - artificial recharge: innovative technologies for the sustainable management of water resources, LIFE10 ENV/IT/000394; 2014). While the TRUST project dealt in general with aquifer recharge, AQUOR and WARBO focused essentially on small scale demonstration plants. Within the EU FPVII-ENV-2013 MARSOL project (Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; 2014), a dedicated monitoring and decision support system is under development to manage recharge at a large scale

  11. Literature review and preliminary analysis of inorganic ammonia pertinent to south Texas uranium in-situ leach

    International Nuclear Information System (INIS)

    Braswell, J.; Breland, M.; Chang, M.; Farley, J.; Hill, D.; Johnson, D.

    1978-01-01

    The purpose of this report is to review existing literature to aid in the determination of the potential impact of ammonia-containing lixiviants on uranium solution mining aquifers, perform studies based on the available literature, to identify potential ways to protect the groundwaters from ammonia contamination, and to propose further work where data are lacking or needed. The review of the literature includes an analysis and interpretation of the literature as it relates to the solution mining activities. Results focus on the range of geologic and hydrologic conditions representative of South Texas solution minig areas. Other pertinent data sources such as soils and agricultural literature are also reviewed and conclusions extrapolated to the solution mining situation. Specific tasks were: evaluate the potential of natural occurrence and influx of ammonia and/or nitrate species in confined aquifers typical of uranium solution mining sites; find available data on the sorption characteristics of ammonia and nitrates on pure and mixed minerals representative of South Texas geology in solution mining areas; determine applicable selectivity coefficients and kinetic data on sorption and desorption of ammonia on clay minerals; evaluate the potential for natural inorganic ammonia conversion by chemical or other mechanisms in typical solution mining aquifers; review available monitoring data from solution mining operations as it pertains to ammonia adsorption or migration; analyze and provide calculational bases for determining the predicted fate of ammonia under solution mining conditions; recommend continuation programs that focus on areas of uncertainty; provide comprehensive bibliography and abstracts of all pertinent articles

  12. Using nitrate to quantify quick flow in a karst aquifer

    Science.gov (United States)

    Mahler, B.J.; Garner, B.D.

    2009-01-01

    In karst aquifers, contaminated recharge can degrade spring water quality, but quantifying the rapid recharge (quick flow) component of spring flow is challenging because of its temporal variability. Here, we investigate the use of nitrate in a two-endmember mixing model to quantify quick flow in Barton Springs, Austin, Texas. Historical nitrate data from recharging creeks and Barton Springs were evaluated to determine a representative nitrate concentration for the aquifer water endmember (1.5 mg/L) and the quick flow endmember (0.17 mg/L for nonstormflow conditions and 0.25 mg/L for stormflow conditions). Under nonstormflow conditions for 1990 to 2005, model results indicated that quick flow contributed from 0% to 55% of spring flow. The nitrate-based two-endmember model was applied to the response of Barton Springs to a storm and results compared to those produced using the same model with ??18O and specific conductance (SC) as tracers. Additionally, the mixing model was modified to allow endmember quick flow values to vary over time. Of the three tracers, nitrate appears to be the most advantageous because it is conservative and because the difference between the concentrations in the two endmembers is large relative to their variance. The ??18O- based model was very sensitive to variability within the quick flow endmember, and SC was not conservative over the timescale of the storm response. We conclude that a nitrate-based two-endmember mixing model might provide a useful approach for quantifying the temporally variable quick flow component of spring flow in some karst systems. ?? 2008 National Ground Water Association.

  13. Seismic echo character northern Hatteras Abyssal Plain

    International Nuclear Information System (INIS)

    McCreery, C.J.; Laine, E.P.

    1985-01-01

    Latest efforts in echo-character mapping of the northern Hatteras Abyssal Plain have discerned variations in thickness in a near-surface sedimentary sequence which has been designated seismic unit A. This unit probably represents the last episode of progradation of the Hatteras Deep Sea Fan in the southern part of the study area, and has infilled probable paleochannels from the Wilmington Canyon and Sohm Gap in the north. Unit A thins to a minimum in the central part of the plain, where older sediments come within 1 meter of the surface. Variations in the character of the surface reflector probably represent differing degrees of microtopography developed on a Late Pleistocene surface overlain by Holocene sediments. With the exception of one area identified as a relict surface outcropping in the western plain, this microtopography seems related to present-day thalweg locations on the abyssal plain. 11 references, 13 figures

  14. Southern Great Plains Atmospheric Radiation Measurement Site

    Data.gov (United States)

    Federal Laboratory Consortium — The Southern Great Plains Atmospheric Radiation Measurement Site (SGP-ARM) is the oldest and largest of DOE's Arm sites. It was established in 1992. It consists of...

  15. flexural improvement of plain concrete beams strengthened

    African Journals Online (AJOL)

    Muhammad Nura Isa

    Results show significant improvement in both stiffness and load bearing capacity of plain concrete ... Various methods have been developed to increase their strength capacity by using .... obtained by carrying out uniaxial direct tensile strength.

  16. Geohydrology of the Cerro Prieto geothermal aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez R, J.; de la Pena L, A.

    1981-01-01

    The most recent information on the Cerro Prieto geothermal aquifer is summarized, with special emphasis on the initial production zone where the wells completed in the Alpha aquifer are located. These wells produce steam for power plant units 1 and 2. Brief comments also are made on the Beta aquifer, which underlies the Alpha aquifer in the Cerro Prieto I area and which extends to the east to what is known as the Cerro Prieto II and Cerro Prieto III areas. The location of the area studied is shown. The Alpha and Beta aquifers differ in their mineralogy and cementing mineral composition, temperatures, and piezometric levels. The difference in piezometric levels indicates that there is no local communication between the two aquifers. This situation has been verified by a well interference test, using well E-1 as a producer in the Beta aquifer and well M-46 as the observation well in the Alpha aquifer. No interference between them was observed. Information on the geology, geohydrology, and geochemistry of Cerro Prieto is presented.

  17. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    Science.gov (United States)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.