WorldWideScience

Sample records for pkc inhibition ameliorates

  1. Breviscapine ameliorates hypertrophy of cardiomyocytes induced by high glucose in diabetic rats via the PKC signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Min WANG; Wen-bin ZHANG; Jun-hui ZHU; Guo-sheng FU; Bin-quan ZHOU

    2009-01-01

    Aim: To investigate the influence of breviscapine on high glucose-induced hypertrophy of cardiomyocytes and the relevant mechanism in vitro and in vivo.Methods: Cultured neonatal cardiomyocytes were divided into ⅰ) control; ⅱ) high glucose concentrations; ⅲ) high glucose+PKC inhibi-tor Ro-31-8220; ⅳ) high glucose+breviscapine; or ⅴ) high glucose+NF-κB inhibitor BAY11-7082. Cellular contraction frequency and volumes were measured; the expression of protein kinase C (PKC), NF-κB, TNF-α, and c-los were assessed by Western blot or reverse transcription-polymerase chain reaction (RT-PCR). Diabetic rats were induced by a single intraperitoneal injection of streptozotocin,and randomly divided into ⅰ) control rats; ⅱ) diabetic rats; or ⅲ) diabetic rats administered with breviscapine (10 or 25 mg·kg-1·d-1). After treatment with breviscapine for six weeks, the echocardiographic parameters were measured. All rats were then sacrificed and heart tissue was obtained for microscopy. The expression patterns of PKC, NF-κB, TNF-α, and c-los were measured by Western blot or RT-PCR.Results: Cardiomyocytes cultured in a high concentration of glucose showed an increased pulsatile frequency and cellular volume, as well as a higher expression of PKC, NF-κB, TNF-α, and c-fos compared with the control group. Breviscapine could partly prevent these changes. Diabetic rats showed relative cardiac hypertrophy and a higher expression of PKC, NF-κB, TNF-α, and c-los; treatment with breviscapine could ameliorate these changes in diabetic cardiomyopathy.Conclusion: Breviscapine prevented cardiac hypertrophy in diabetic rats by inhibiting the expression of PKC, which may have a protec-tive effect in the pathogenesis of diabetic cardiomyopathy via the PKC/NF-κB/C-fos signal transduction pathway.

  2. Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Hiroshi [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502 (Japan); Department of Pharmacy, Nara Hospital, Kinki University School of Medicine, 1248-1 Ikoma, Nara 630-0293 (Japan); Tsubaki, Masanobu [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502 (Japan); Yamazoe, Yuzuru [Department of Pharmacy, Kinki University Hospital, Osakasayama, Osaka 589-8511 (Japan); Ogaki, Mitsuhiko [Department of Pharmacy, Higahiosaka City General Hospital, Higashi-osaka, Osaka 578-8588 (Japan); Satou, Takao; Itoh, Tatsuki [Department of Pathology, Kinki University School of Medicine, Osakasayama, Osaka 589-8511 (Japan); Kusunoki, Takashi [Department of Otolaryngology, Juntendo University School of Medicine, Tokyo (Japan); Nishida, Shozo, E-mail: nishida@phar.kindai.ac.jp [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502 (Japan)

    2009-07-15

    In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKC{alpha} and PKC{delta} phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.

  3. Induction of mitotic catastrophe by PKC inhibition in Nf1-deficient cells.

    Science.gov (United States)

    Zhou, Xiaodong; Kim, Sung-Hoon; Shen, Ling; Lee, Hyo-Jung; Chen, Changyan

    2014-01-01

    Mutations of tumor suppressor Nf1 gene deregulate Ras-mediated signaling, which confers the predisposition for developing benign or malignant tumors. Inhibition of protein kinase C (PKC) was shown to be in synergy with aberrant Ras for the induction of apoptosis in various types of cancer cells. However, it has not been investigated whether loss of PKC is lethal for Nf1-deficient cells. In this study, using HMG (3-hydroxy-3-methylgutaryl, a PKC inhibitor), we demonstrate that the inhibition of PKC by HMG treatment triggered a persistently mitotic arrest, resulting in the occurrence of mitotic catastrophe in Nf1-deficient ST8814 cells. However, the introduction of the Nf1 effective domain gene into ST8814 cells abolished this mitotic crisis. In addition, HMG injection significantly attenuated the growth of the xenografted ST8814 tumors. Moreover, Chk1 was phosphorylated, accompanied with the persistent increase of cyclin B1 expression in HMG-treated ST8814 cells. The knockdown of Chk1 by the siRNA prevented the Nf1-deficient cells from undergoing HMG-mediated mitotic arrest as well as mitotic catastrophe. Thus, our data suggested that the suppression of PKC activates the Chk1-mediated mitotic exit checkpoint in Nf1-deficient cells, leading to the induction of apoptosis via mitotic catastrophe. Collectively, the study indicates that targeting PKC may be a potential option for developing new strategies to treat Nf1-deficiency-related diseases.

  4. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela; Raveh-Amit, Hadas; Frost, Sigal A.; Livneh, Etta, E-mail: etta@bgu.ac.il

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.

  5. PKC{eta} confers protection against apoptosis by inhibiting the pro-apoptotic JNK activity in MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Rotem-Dai, Noa; Oberkovitz, Galia; Abu-Ghanem, Sara [The Schraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and the Cancer Research Center, Ben - Gurion University, Beer Sheva 84105 (Israel); Livneh, Etta, E-mail: etta@bgumail.bgu.ac.il [The Schraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and the Cancer Research Center, Ben - Gurion University, Beer Sheva 84105 (Israel)

    2009-09-10

    Apoptosis is frequently regulated by different protein kinases including protein kinase C family enzymes. Both inhibitory and stimulatory effects were demonstrated for several of the different PKC isoforms. Here we show that the novel PKC isoform, PKC{eta}, confers protection against apoptosis induced by the DNA damaging agents, UVC irradiation and the anti-cancer drug - Camptothecin, of the breast epithelial adenocarcinoma MCF-7 cells. The induced expression of PKC{eta} in MCF-7 cells, under the control of the tetracycline-responsive promoter, resulted in increased cell survival and inhibition of cleavage of the apoptotic marker PARP-1. Activation of caspase-7 and 9 and the release of cytochrome c were also inhibited by the inducible expression of PKC{eta}. Furthermore, JNK activity, required for apoptosis in MCF-7, as indicated by the inhibition of both caspase-7 cleavage and cytochrome c release from the mitochondria in the presence of the JNK inhibitor SP600125, was also suppressed by PKC{eta} expression. Hence, in contrast to most PKC isoforms enhancing JNK activation, our studies show that PKC{eta} is an anti-apoptotic protein, acting as a negative regulator of JNK activity. Thus, PKC{eta} could represent a target for intervention aimed to reduce resistance to anti-cancer treatments.

  6. PKC-ι promotes glioblastoma cell survival by phosphorylating and inhibiting BAD through a phosphatidylinositol 3-kinase pathway.

    Science.gov (United States)

    Desai, S; Pillai, P; Win-Piazza, H; Acevedo-Duncan, M

    2011-06-01

    The focus of this research was to investigate the role of protein kinase C-iota (PKC-ι) in regulation of Bad, a pro-apoptotic BH3-only molecule of the Bcl-2 family in glioblastoma. Robust expression of PKC-ι is a hallmark of human glioma and benign and malignant meningiomas. The results were obtained from the two human glial tumor derived cell lines, T98G and U87MG. In these cells, PKC-ι co-localized and directly associated with Bad, as shown by immunofluorescence, immunoprecipitation, and Western blotting. Furthermore, in-vitro kinase activity assay showed that PKC-ι directly phosphorylated Bad at phospho specific residues, Ser-112, Ser-136 and Ser-155 which in turn induced inactivation of Bad and disruption of Bad/Bcl-XL dimer. Knockdown of PKC-ι by siRNA exhibited a corresponding reduction in Bad phosphorylation suggesting that PKC-ι may be a Bad kinase. PKC-ι knockdown also induced apoptosis in both the cell lines. Since, PKC-ι is an essential downstream mediator of the PI (3)-kinase, we hypothesize that glioma cell survival is mediated via a PI (3)-kinase/PDK1/PKC-ι/Bad pathway. Treatment with PI (3)-kinase inhibitors Wortmannin and LY294002, as well as PDK1 siRNA, inhibited PKC-ι activity and subsequent phosphorylation of Bad suggesting that PKC-ι regulates the activity of Bad in a PI (3)-kinase dependent manner. Thus, our data suggest that glioma cell survival occurs through a novel PI (3)-kinase/PDK1/PKC-ι/BAD mediated pathway.

  7. Inflammation induces multinucleation of Microglia via PKC inhibition of cytokinesis, generating highly phagocytic multinucleated giant cells.

    Science.gov (United States)

    Hornik, Tamara C; Neniskyte, Urte; Brown, Guy C

    2014-03-01

    Microglia are brain macrophages, which can undergo multinucleation to give rise to multinucleated giant cells that accumulate with ageing and some brain pathologies. However, the origin, regulation and function of multinucleate microglia remain unclear. We found that inflammatory stimuli, including lipopolysaccharide, amyloid β, α-synuclein, tumour necrosis factor-α and interferon γ, but not interleukin-4, induced multinucleation of cultured microglia: primary rat cortical microglia and the murine microglial cell line BV-2. Inflammation-induced multinucleation was prevented by a protein kinase C (PKC) inhibitor Gö6976 (100 nM) and replicated by a PKC activator phorbol myristate acetate (160 nM). Multinucleation was reversible and not because of cell fusion or phagocytosis, but rather failure of cytokinesis. Time-lapse imaging revealed that some dividing cells failed to abscise, even after formation of long cytoplasmic bridges, followed by retraction of bridge and reversal of cleavage furrow to form multinucleate cells. Multinucleate microglia were larger and 2-4 fold more likely to phagocytose large beads and both dead and live PC12 cells. We conclude that multinucleate microglia are reversibly generated by inflammation via PKC inhibition of cytokinesis, and may have specialized functions/dysfunctions including the phagocytosis of other cells. Inflammation resulted in the accumulation of multiple nuclei per cell in cultured microglia. This multinucleation was reversible and due to a PKC-dependent block of the last step of cell division. Multinucleate microglia were larger and had a greater capacity to phagocytose other cells, suggesting they might remove neurons in the brain. © 2013 International Society for Neurochemistry.

  8. A novel and selective inhibitor of PKC ζ potently inhibits human breast cancer metastasis in vitro and in mice.

    Science.gov (United States)

    Wu, Jing; Liu, Shuye; Fan, Zhijuan; Zhang, Lei; Tian, Yaqiong; Yang, Rui

    2016-06-01

    Cell motility and chemotaxis play pivotal roles in the process of tumor development and metastasis. Protein kinase C ζ (PKC ζ) mediates epidermal growth factor (EGF)-stimulated chemotactic signaling pathway through regulating cytoskeleton rearrangement and cell adhesion. The purpose of this study was to develop anti-PKC ζ therapeutics for breast cancer metastasis. In this study, a novel and high-efficient PKC ζ inhibitor named PKCZI195.17 was screened out through a substrate-specific strategy. MTT assay was used to determine the cell viability of human breast cancer MDA-MB-231, MDA-MB-435, and MCF-7 cells while under PKCZI195.17 treatment. Wound-healing, chemotaxis, and Matrigel invasion assays were performed to detect the effects of PKCZI195.17 on breast cancer cells migration and invasion. Adhesion, actin polymerization, and Western blotting were performed to detect the effects of PKCZI195.17 on cells adhesion and actin polymerization, and explore the downsteam signaling mechanisms involved in PKC ζ inhibition. MDA-MB-231 xenograft was used to measure the in vivo anti-metastasis efficacy of PKCZI195.17. The compound PKCZI195.17 selectively inhibited PKC ζ kinase activity since it failed to inhibit PKC α, PKC β, PKC δ, PKC η, AKT2, as well as FGFR2 activity. PKCZI195.17 significantly impaired spontaneous migration, chemotaxis, and invasion of human breast cancer MDA-MB-231, MDA-MB-435, and MCF-7 cells, while PKCZI195.17 did not obviously inhibited cells viability. PKCZI195.17 also inhibited cells adhesion and actin polymerization through attenuating the phosphorylations of integrin β1, LIMK, and cofilin, which might be the downstream effectors of PKC ζ-mediated chemotaxis in MDA-MB-231 cells. Furthermore, PKCZI195.17 suppressed the breast cancer metastasis and increased the survival time of breast tumor-bearing mice. In summary, PKCZI195.17 was a PKC ζ-specific inhibitor which dampened cancer cell migration and metastasis and may serve as a novel

  9. Inhibition of PKC-Induced COX-2 and IL-8 Expression in Human Breast Cancer Cells by Glucosamine.

    Science.gov (United States)

    Chou, Wan-Yu; Chuang, Kun-Han; Sun, David; Lee, Yu-Hsiu; Kao, Pu-Hong; Lin, Yen-Yu; Wang, Hsei-Wei; Wu, Yuh-Lin

    2015-09-01

    Breast cancer is a common cancer leading to many deaths among females. Cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) are two highly expressed inflammatory mediators to be induced by the protein kinase C (PKC) signaling via various inflammatory stimuli and both contribute significantly to cancer metastasis/progression. Glucosamine has been shown to act as an anti-inflammation molecule. The aim of this study was to clarify the role and acting mechanism of glucosamine during the PKC-regulation of COX-2/IL-8 expression and the associated impact on breast cancer. In MCF-7 breast cancer cells, glucosamine effectively suppresses the PKC induction of COX-2 and IL-8 promoter activity, mRNA and protein levels, as well as the production of prostaglandin E(2) (PGE(2)) and IL-8. Glucosamine is able to promote COX-2 protein degradation in a calpain-dependent manner and IL-8 protein degradation in calpain-dependent and proteasome-dependent manners. The MAPK and NF-κB pathways are involved in PKC-induced COX-2 expression, but only the NF-κB pathway is involved in PKC-induced IL-8 expression. Glucosamine attenuates PKC-mediated IκBα phosphorylation, nuclear NF-κB translocation, and NF-κB reporter activation. Both PGE(2) and IL-8 promote cell proliferation and IL-8 induces cell migration; thus, glucosamine appears to suppress PKC-induced cell proliferation and migration. Furthermore, glucosamine significantly inhibits the growth of breast cancer xenografts and this is accompanied by a reduction in COX-2 and IL-8 expression. In conclusion, glucosamine seems to attenuate the inflammatory response in vitro and in vivo and this occurs, at least in part by targeting to the NF-κB signaling pathway, resulting in an inhibition of breast cancer cell growth.

  10. Taurine Inhibits Myocardial Fibrosis via PKC-ERK1/2 Signaling Pathways

    Institute of Scientific and Technical Information of China (English)

    WANG Li-ying; LI Hong; YANG Shi-jie

    2012-01-01

    Previous studies have demonstrated the important role of taurine in inhibiting proliferation of myofibroblasts(myoFb) and myocardial fibrosis.However,the underlying mechanisms are unclear.The present study was designed to shed light on this issue through exploring the signal pathways via in vitro experiments.Angiotension Ⅱ (AngⅡ) treatment significantly increased myoFb proliferation and the levels of collagens Ⅰ and Ⅲ(P<0.05),whereas taurine,PKCαt(PKC:protein kinase C) specific inhibitor L-threo-dihydro-sphingosine(D4681),ERK1/2 inhibitor (PD98095) abrogated myoFb proliferation and collagen levels(P<0.05,P<0.01,respectively),and increased the G0/G1 phase rate and decreased S phase rate.Immunocytochemistry,confocal fluorescence staining and image analysis showed that taurine could inhibit the translocation and expression of p-PKCαtin membrane,and then inhibit nuclear translocation and expression of p-ERK1/2.These results have statistically significant differences compared with those of AngⅡ group(P<0.0l).Western blot results also show that taurine could inhibit the protein expression of p-PKCαt and p-ERK1/2.We used p-PKCα specific inhibitor D4681 in order to elucidate the relationship between p-PKCα and p-ERK1/2 in signal transduction pathways.Finally,the results show that the protein expression of p-ERK1/2 and nuclear translocation were suppressed in D4681 group.

  11. Acetylcholinesterase inhibition ameliorates deficits in motivational drive

    Directory of Open Access Journals (Sweden)

    Martinowich Keri

    2012-03-01

    Full Text Available Abstract Background Apathy is frequently observed in numerous neurological disorders, including Alzheimer's and Parkinson's, as well as neuropsychiatric disorders including schizophrenia. Apathy is defined as a lack of motivation characterized by diminished goal-oriented behavior and self-initiated activity. This study evaluated a chronic restraint stress (CRS protocol in modeling apathetic behavior, and determined whether administration of an anticholinesterase had utility in attenuating CRS-induced phenotypes. Methods We assessed behavior as well as regional neuronal activity patterns using FosB immunohistochemistry after exposure to CRS for 6 h/d for a minimum of 21 d. Based on our FosB findings and recent clinical trials, we administered an anticholinesterase to evaluate attenuation of CRS-induced phenotypes. Results CRS resulted in behaviors that reflect motivational loss and diminished emotional responsiveness. CRS-exposed mice showed differences in FosB accumulation, including changes in the cholinergic basal forebrain system. Facilitating cholinergic signaling ameliorated CRS-induced deficits in initiation and motivational drive and rescued immediate early gene activation in the medial septum and nucleus accumbens. Conclusions Some CRS protocols may be useful for studying deficits in motivation and apathetic behavior. Amelioration of CRS-induced behaviors with an anticholinesterase supports a role for the cholinergic system in remediation of deficits in motivational drive.

  12. Go-6976 Reverses Hyperglycemia-Induced Insulin Resistance Independently of cPKC Inhibition in Adipocytes

    Science.gov (United States)

    Robinson, Katherine A.; Hegyi, Krisztina; Hannun, Yusuf A.; Buse, Maria G.; Sethi, Jaswinder K.

    2014-01-01

    Chronic hyperglycemia induces insulin resistance by mechanisms that are incompletely understood. One model of hyperglycemia-induced insulin resistance involves chronic preincubation of adipocytes in the presence of high glucose and low insulin concentrations. We have previously shown that the mTOR complex 1 (mTORC1) plays a partial role in the development of insulin resistance in this model. Here, we demonstrate that treatment with Go-6976, a widely used “specific” inhibitor of cPKCs, alleviates hyperglycemia-induced insulin resistance. However, the effects of mTOR inhibitor, rapamycin and Go-6976 were not additive and only rapamycin restored impaired insulin-stimulated AKT activation. Although, PKCα, (but not –β) was abundantly expressed in these adipocytes, our studies indicate cPKCs do not play a major role in causing insulin-resistance in this model. There was no evidence of changes in the expression or phosphorylation of PKCα, and PKCα knock-down did not prevent the reduction of insulin-stimulated glucose transport. This was also consistent with lack of IRS-1 phosphorylation on Ser-24 in hyperglycemia-induced insulin-resistant adipocytes. Treatment with Go-6976 did inhibit a component of the mTORC1 pathway, as evidenced by decreased phosphorylation of S6 ribosomal protein. Raptor knock-down enhanced the effect of insulin on glucose transport in insulin resistant adipocytes. Go-6976 had the same effect in control cells, but was ineffective in cells with Raptor knock-down. Taken together these findings suggest that Go-6976 exerts its effect in alleviating hyperglycemia-induced insulin-resistance independently of cPKC inhibition and may target components of the mTORC1 signaling pathway. PMID:25330241

  13. Go-6976 reverses hyperglycemia-induced insulin resistance independently of cPKC inhibition in adipocytes.

    Directory of Open Access Journals (Sweden)

    Katherine A Robinson

    Full Text Available Chronic hyperglycemia induces insulin resistance by mechanisms that are incompletely understood. One model of hyperglycemia-induced insulin resistance involves chronic preincubation of adipocytes in the presence of high glucose and low insulin concentrations. We have previously shown that the mTOR complex 1 (mTORC1 plays a partial role in the development of insulin resistance in this model. Here, we demonstrate that treatment with Go-6976, a widely used "specific" inhibitor of cPKCs, alleviates hyperglycemia-induced insulin resistance. However, the effects of mTOR inhibitor, rapamycin and Go-6976 were not additive and only rapamycin restored impaired insulin-stimulated AKT activation. Although, PKCα, (but not -β was abundantly expressed in these adipocytes, our studies indicate cPKCs do not play a major role in causing insulin-resistance in this model. There was no evidence of changes in the expression or phosphorylation of PKCα, and PKCα knock-down did not prevent the reduction of insulin-stimulated glucose transport. This was also consistent with lack of IRS-1 phosphorylation on Ser-24 in hyperglycemia-induced insulin-resistant adipocytes. Treatment with Go-6976 did inhibit a component of the mTORC1 pathway, as evidenced by decreased phosphorylation of S6 ribosomal protein. Raptor knock-down enhanced the effect of insulin on glucose transport in insulin resistant adipocytes. Go-6976 had the same effect in control cells, but was ineffective in cells with Raptor knock-down. Taken together these findings suggest that Go-6976 exerts its effect in alleviating hyperglycemia-induced insulin-resistance independently of cPKC inhibition and may target components of the mTORC1 signaling pathway.

  14. Janus kinase inhibition suppresses PKC-induced cytokine release without affecting HIV-1 latency reversal ex vivo.

    Science.gov (United States)

    Spivak, Adam M; Larragoite, Erin T; Coletti, McKenna L; Macedo, Amanda B; Martins, Laura J; Bosque, Alberto; Planelles, Vicente

    2016-12-20

    Despite the durable viral suppression afforded by antiretroviral therapy, HIV-1 eradication will require strategies to target latently infected cells that persist in infected individuals. Protein kinase C (PKC) activation is a promising strategy to reactivate latent proviruses and allow for subsequent recognition and clearance of infected cells by the immune system. Ingenol derivatives are PKC agonists that induce latency reversal but also lead to T cell activation and the release of pro-inflammatory cytokines, which would be undesirable in vivo. In this work, we sought to identify compounds that would suppress pro-inflammatory cytokine production in the context of PKC activation. We performed an in vitro screen to identify compounds that could dampen pro-inflammatory cytokine release associated with T cell activation, using IL-6 as a model cytokine. We then tested the ability of the most promising screening hit, the FDA-approved Janus Kinase (JAK) inhibitor ruxolitinib, to diminish release of multiple cytokines and its effect on latency reversal using cells from HIV-1-positive, aviremic participants. We demonstrate that co-administration of ruxolitinib with ingenol-3,20-dibenzoate significantly reduces pro-inflammatory cytokine release without impairing latency reversal ex vivo. The combination of ingenol compounds and JAK inhibition represents a novel strategy for HIV-1 eradication.

  15. D-Saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Semantee [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Manna, Prasenjit [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India); Gachhui, Ratan [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India)

    2013-02-15

    Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renal injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways. - Highlights: ► Sustained hyperglycemia and oxidative stress lead to diabetic renal injury. ► D-saccharic acid 1,4-lactone prevents renal damage in alloxan-induced diabetes. ► It restores intra-cellular antioxidant machineries and kidney apoptosis. ► DSL reduces hyperglycemia-mediated oxidative stress

  16. Activated PKC{delta} and PKC{epsilon} inhibit epithelial chloride secretion response to cAMP via inducing internalization of the Na+-K+-2Cl- cotransporter NKCC1.

    Science.gov (United States)

    Tang, Jun; Bouyer, Patrice; Mykoniatis, Andreas; Buschmann, Mary; Matlin, Karl S; Matthews, Jeffrey B

    2010-10-29

    The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) is a key determinant of transepithelial chloride secretion and dysregulation of chloride secretion is a common feature of many diseases including secretory diarrhea. We have previously shown that activation of protein kinase C (PKC) markedly reduces transepithelial chloride secretion in human colonic T84 cells, which correlates with both functional inhibition and loss of the NKCC1 surface expression. In the present study, we defined the specific roles of PKC isoforms in regulating epithelial NKCC1 and chloride secretion utilizing adenoviral vectors that express shRNAs targeting human PKC isoforms (α, δ, ε) (shPKCs) or LacZ (shLacZ, non-targeting control). After 72 h of adenoviral transduction, protein levels of the PKC isoforms in shPKCs-T84 cells were decreased by ∼90% compared with the shLacZ-control. Activation of PKCs by phorbol 12-myristate 13-acetate (PMA) caused a redistribution of NKCC1 immunostaining from the basolateral membrane to intracellular vesicles in both shLacZ- and shPKCα-T84 cells, whereas the effect of PMA was not observed in shPKCδ- and shPKCε- cells. These results were further confirmed by basolateral surface biotinylation. Furthermore, activation of PKCs by PMA inhibited cAMP-stimulated chloride secretion in the uninfected, shLacZ- and shPKCα-T84 monolayers, but the inhibitory effect was significantly attenuated in shPKCδ- and shPKCε-T84 monolayers. In conclusion, the activated novel isoforms PKCδ or PKCε, but not the conventional isoform PKCα, inhibits transepithelial chloride secretion through inducing internalization of the basolateral surface NKCC1. Our study reveals that the novel PKC isoform-regulated NKCC1 surface expression plays an important role in the regulation of chloride secretion.

  17. mGluR5 positive modulators both potentiate activation and restore inhibition in NMDA receptors by PKC dependent pathway

    Directory of Open Access Journals (Sweden)

    Liao Pei-Fei

    2011-02-01

    Full Text Available Abstract Background In order to understand the interaction between the metabotropic glutamate subtype 5 (mGluR5 and N-methyl-D-aspartate (NMDA receptors, the influence of mGluR5 positive modulators in the inhibition of NMDA receptors by the noncompetitive antagonist ketamine, the competitive antagonist D-APV and the selective NR2B inhibitor ifenprodil was investigated. Methods This study used the multi-electrode dish (MED system to observe field potentials in hippocampal slices of mice. Results Data showed that the mGluR5 agonist (RS-2-chloro-5-hydroxyphenylglycine (CHPG, as well as the positive allosteric modulators 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl benzamide (CDPPB and 3,3'-difluorobenzaldazine (DFB alone did not alter the basal field potentials, but enhanced the amplitude of field potentials induced by NMDA. The inhibitory action of ketamine on NMDA-induced response was reversed by CHPG, DFB, and CDPPB, whereas the blockade of NMDA receptor by D-APV was restored by CHPG and CDPPB, but not by DFB. Alternatively, activation of NMDA receptors prior to the application of mGluR5 modulators, CHPG was able to enhance NMDA-induced field potentials and reverse the suppressive effect of ketamine and D-APV, but not ifenprodil. In addition, chelerythrine chloride (CTC, a protein kinase C (PKC inhibitor, blocked the regulation of mGluR5 positive modulators in enhancing NMDA receptor activation and recovering NMDA receptor inhibition. The PKC activator (PMA mimicked the effects of mGluR5 positive modulators on enhancing NMDA receptor activation and reversing NMDA antagonist-evoked NMDA receptor suppression. Conclusion Our results demonstrate that the PKC-dependent pathway may be involved in the positive modulation of mGluR5 resulting in potentiating NMDA receptor activation and reversing NMDA receptor suppression induced by NMDA antagonists.

  18. Stress Signals, Mediated by Membranous Glucocorticoid Receptor, Activate PLC/PKC/GSK-3β/β-catenin Pathway to Inhibit Wound Closure.

    Science.gov (United States)

    Jozic, Ivan; Vukelic, Sasa; Stojadinovic, Olivera; Liang, Liang; Ramirez, Horacio A; Pastar, Irena; Tomic Canic, Marjana

    2017-05-01

    Glucocorticoids (GCs), key mediators of stress signals, are also potent wound healing inhibitors. To understand how stress signals inhibit wound healing, we investigated the role of membranous glucocorticoid receptor (mbGR) by using cell-impermeable BSA-conjugated dexamethasone. We found that mbGR inhibits keratinocyte migration and wound closure by activating a Wnt-like phospholipase (PLC)/ protein kinase C (PKC) signaling cascade. Rapid activation of mbGR/PLC/PKC further leads to activation of known biomarkers of nonhealing found in patients, β-catenin and c-myc. Conversely, a selective inhibitor of PKC, calphostin C, blocks mbGR/PKC pathway, and rescues GC-mediated inhibition of keratinocyte migration in vitro and accelerates wound epithelialization of human wounds ex vivo. This novel signaling mechanism may have a major impact on understanding how stress response via GC signaling regulates homeostasis and its role in development and treatments of skin diseases, including wound healing. To test tissue specificity of this nongenomic signaling mechanism, we tested retinal and bronchial human epithelial cells and fibroblasts. We found that mbGR/PLC/PKC signaling cascade exists in all cell types tested, suggesting a more general role. The discovery of this nongenomic signaling pathway, in which glucocorticoids activate Wnt pathway via mbGR, provides new insights into how stress-mediated signals may activate growth signals in various epithelial and mesenchymal tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Inhibition of Chikungunya Virus-Induced Cell Death by Salicylate-Derived Bryostatin Analogues Provides Additional Evidence for a PKC-Independent Pathway.

    Science.gov (United States)

    Staveness, Daryl; Abdelnabi, Rana; Near, Katherine E; Nakagawa, Yu; Neyts, Johan; Delang, Leen; Leyssen, Pieter; Wender, Paul A

    2016-04-22

    Chikungunya virus (CHIKV) has been spreading rapidly, with over one million confirmed or suspected cases in the Americas since late 2013. Infection with CHIKV causes devastating arthritic and arthralgic symptoms. Currently, there is no therapy to treat this disease, and the only medications focus on relief of symptoms. Recently, protein kinase C (PKC) modulators have been reported to inhibit CHIKV-induced cell death in cell assays. The salicylate-derived bryostatin analogues described here are structurally simplified PKC modulators that are more synthetically accessible than the natural product bryostatin 1, a PKC modulator and clinical lead for the treatment of cancer, Alzheimer's disease, and HIV eradication. Evaluation of the anti-CHIKV activity of these salicylate-derived bryostatin analogues in cell culture indicates that they are among the most potent cell-protective agents reported to date. Given that they are more accessible and significantly more active than the parent natural product, they represent new therapeutic leads for controlling CHIKV infection. Significantly, these analogues also provide evidence for the involvement of a PKC-independent pathway. This adds a fundamentally distinct aspect to the importance or involvement of PKC modulation in inhibition of chikungunya virus replication, a topic of recent and growing interest.

  20. ARC (NSC 188491 has identical activity to Sangivamycin (NSC 65346 including inhibition of both P-TEFb and PKC

    Directory of Open Access Journals (Sweden)

    Hollingshead Melinda G

    2009-02-01

    Full Text Available Abstract Background The nucleoside analog, ARC (NSC 188491 is a recently characterized transcriptional inhibitor that selectively kills cancer cells and has the ability to perturb angiogenesis in vitro. In this study, the mechanism of action of ARC was further investigated by comparing in vitro and in vivo activity with other anti-neoplastic purines. Methods Structure-based homology searches were used to identify those compounds with similarity to ARC. Comparator compounds were then evaluated alongside ARC in the context of viability, cell cycle and apoptosis assays to establish any similarities. Following this, biological overlap was explored in detail using gene-expression analysis and kinase inhibition assays. Results Results demonstrated that sangivamycin, an extensively characterized pro-apoptotic nucleoside isolated from Streptomyces, had identical activity to ARC in terms of 1 cytotoxicity assays, 2 ability to induce a G2/M block, 3 inhibitory effects on RNA/DNA/protein synthesis, 4 transcriptomic response to treatment, 5 inhibition of protein kinase C, 6 inhibition of positive transcription elongation factor b (P-TEFb, 7 inhibition of VEGF secretion, and 8 activity within hollow fiber assays. Extending ARC activity to PKC inhibition provides a molecular basis for ARC cancer selectivity and anti-angiogenic effects. Furthermore, functional overlap between ARC and sangivamycin suggests that development of ARC may benefit from a retrospective of previous sangivamycin clinical trials. However, ARC was found to be inactive in several xenograft models, likely a consequence of rapid serum clearance. Conclusion Overall, these data expand on the biological properties of ARC but suggest additional studies are required before it can be considered a clinical trials candidate.

  1. Breviscapine alleviates hepatic injury and inhibits PKC-mRNA and its protein expression in brain-dead BA-Ma mini pigs

    Institute of Scientific and Technical Information of China (English)

    Shui-Jun Zhang; Yan Song; Wen-Long Zhai; Ji-Hua Shi; Liu-Shun Feng; Yong-Fu Zhao; Shi Chen

    2007-01-01

    BACKGROUND:Brain-dead donors are the main sources for organ transplantation, but many studies show that brain-death affects the organ's function after transplantation. This study was undertaken to investigate liver injury after brain-death in BA-Ma mini pigs and the protective effects of breviscapine on hepatic function and on PKC-α mRNA and its protein expression. METHODS:Fifteen BA-Ma mini pigs were equally divided into 3 groups at random: brain-dead (group B), breviscapine pretreated (group P), and control (group C). The brain-dead model was established by increasing intracranial pressure in a modiifed, slow and intermittent way. At 3, 6, 12, 18 and 24 hours after the initial brain-death, the levels of serum AST, ALT, TNF-α, IL-1β, and IL-6 were determined. The changes in hepatic tissues were assessed, and the expression of PKC-α and PKC-αmRNA was detected by immunohistochemistry and RT-PCR, respectively. RESULTS:The levels of AST and ALT in groups B and P began to increase 12 hours after brain-death, while the values in group P were lower than those in group B (P<0.05). The levels of IL-1β, IL-6, and TNF-α in groups B and P at 3, 6, 12 and 18 hours were lower than those in group B (P<0.05). At 6, 12 and 24 hours, the expressions of PKC-α mRNA and PKC-α protein in group P were lower than those in group B (P<0.05). The degree of injury to hepatic cells in group P was milder than that in group B.CONCLUSIONS:Breviscapine inhibits the degree of PKC-αmRNA transcription and its protein translation, decreases the release of inlfammatory factors, and thus alleviates hepatic injury during brain-death.

  2. Nuclear Akt associates with PKC-phosphorylated Ebp1, preventing DNA fragmentation by inhibition of caspase-activated DNase

    Science.gov (United States)

    Ahn, Jee-Yin; Liu, Xia; Liu, Zhixue; Pereira, Lorena; Cheng, Dongmei; Peng, Junmin; Wade, Paul A; Hamburger, Anne W; Ye, Keqiang

    2006-01-01

    Akt promotes cell survival through phosphorylation. The physiological functions of cytoplasmic Akt have been well defined, but little is known about the nuclear counterpart. Employing a cell-free apoptotic assay and NGF-treated PC12 nuclear extracts, we purified Ebp1 as a factor, which contributes to inhibition of DNA fragmentation by CAD. Depletion of Ebp1 from nuclear extracts or knockdown of Ebp1 in PC12 cells abolishes the protective effects of nerve growth factor, whereas overexpression of Ebp1 prevents apoptosis. Ebp1 (S360A), which cannot be phosphorylated by PKC, barely binds Akt or inhibits DNA fragmentation, whereas Ebp1 S360D, which mimics phosphorylation, strongly binds Akt and suppresses apoptosis. Further, phosphorylated nuclear but not cytoplasmic Akt interacts with Ebp1 and enhances its antiapoptotic action independent of Akt kinase activity. Moreover, knocking down of Akt diminishes the antiapoptotic effect of Ebp1 in the nucleus. Thus, nuclear Akt might contribute to suppressing apoptosis through interaction with Ebp1. PMID:16642037

  3. Post-conditioning protects cardiomyocytes from apoptosis via PKC(epsilon)-interacting with calcium-sensing receptors to inhibit endo(sarco)plasmic reticulum-mitochondria crosstalk.

    Science.gov (United States)

    Dong, Shiyun; Teng, Zongyan; Lu, Fang-Hao; Zhao, Ya-Jun; Li, Hulun; Ren, Huan; Chen, He; Pan, Zhen-Wei; Lv, Yan-Jie; Yang, Bao-Feng; Tian, Ye; Xu, Chang-Qing; Zhang, Wei-Hua

    2010-08-01

    The intracellular Ca(2+) concentration ([Ca(2+)](i)) is increased during cardiac ischemia/reperfusion injury (IRI), leading to endo(sarco)plasmic reticulum (ER) stress. Persistent ER stress, such as with the accumulation of [Ca(2+)](i), results in apoptosis. Ischemic post-conditioning (PC) can protect cardiomyocytes from IRI by reducing the [Ca(2+)](i) via protein kinase C (PKC). The calcium-sensing receptor (CaR), a G protein-coupled receptor, causes the production of inositol phosphate (IP(3)) to increase the release of intracellular Ca(2+) from the ER. This process can be negatively regulated by PKC through the phosphorylation of Thr-888 of the CaR. This study tested the hypothesis that PC prevents cardiomyocyte apoptosis by reducing the [Ca(2+)](i) through an interaction of PKC with CaR to alleviate [Ca(2+)](ER) depletion and [Ca(2+)](m) elevation by the ER-mitochondrial associated membrane (MAM). Cardiomyocytes were post-conditioned after 3 h of ischemia by three cycles of 5 min of reperfusion and 5 min of re-ischemia before 6 h of reperfusion. During PC, PKC(epsilon) translocated to the cell membrane and interacted with CaR. While PC led to a significant decrease in [Ca(2+)](i), the [Ca(2+)](ER) was not reduced and [Ca(2+)](m) was not increased in the PC and GdCl(3)-PC groups. Furthermore, there was no evident psi(m) collapse during PC compared with ischemia/reperfusion (I/R) or PKC inhibitor groups, as evaluated by laser confocal scanning microscopy. The apoptotic rates detected by TUNEL and Hoechst33342 were lower in PC and GdCl(3)-PC groups than those in I/R and PKC inhibitor groups. Apoptotic proteins, including m-calpain, BAP31, and caspase-12, were significantly increased in the I/R and PKC inhibitor groups. These results suggested that PKC(epsilon) interacting with CaR protected post-conditioned cardiomyocytes from programmed cell death by inhibiting disruption of the mitochondria by the ER as well as preventing calcium-induced signaling of the

  4. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner.

    Directory of Open Access Journals (Sweden)

    Rajeev Mehla

    Full Text Available HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC -alpha and -delta, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC involving stress induced AMP Kinase (AMPK inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs.

  5. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner.

    Science.gov (United States)

    Mehla, Rajeev; Bivalkar-Mehla, Shalmali; Zhang, Ruonan; Handy, Indhira; Albrecht, Helmut; Giri, Shailendra; Nagarkatti, Prakash; Nagarkatti, Mitzi; Chauhan, Ashok

    2010-06-16

    HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC) -alpha and -delta, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC) involving stress induced AMP Kinase (AMPK) inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs.

  6. Discovery of a novel class of targeted kinase inhibitors that blocks protein kinase C signaling and ameliorates retinal vascular leakage in a diabetic rat model.

    Science.gov (United States)

    Grant, Stephan; Tran, Phong; Zhang, Qin; Zou, Aihua; Dinh, Dac; Jensen, Jordan; Zhou, Sue; Kang, Xiaolin; Zachwieja, Joseph; Lippincott, John; Liu, Kevin; Johnson, Sarah Ludlum; Scales, Stephanie; Yin, Chunfeng; Nukui, Seiji; Stoner, Chad; Prasanna, Ganesh; Lafontaine, Jennifer; Wells, Peter; Li, Hui

    2010-02-10

    Protein kinase C (PKC) family members such as PKCbetaII may become activated in the hyperglycemic state associated with diabetes. Preclinical and clinical data implicate aberrant PKC activity in the development of diabetic microvasculature abnormalities. Based on this potential etiological role for PKC in diabetic complications, several therapeutic PKC inhibitors have been investigated in clinical trials for the treatment of diabetic patients. In this report, we present the discovery and preclinical evaluation of a novel class of 3-amino-pyrrolo[3,4-c]pyrazole derivatives as inhibitors of PKC that are structurally distinct from the prototypical indolocarbazole and bisindolylmaleimide PKC inhibitors. From this pyrrolo-pyrazole series, several compounds were identified from biochemical assays as potent, ATP-competitive inhibitors of PKC activity with high specificity for PKC over other protein kinases. These compounds were also found to block PKC signaling activity in multiple cellular functional assays. PF-04577806, a representative from this series, inhibited PKC activity in retinal lysates from diabetic rats stimulated with phorbol myristate acetate. When orally administered, PF-04577806 showed good exposure in the retina of diabetic Long-Evans rats and ameliorated retinal vascular leakage in a streptozotocin-induced diabetic rat model. These novel PKC inhibitors represent a promising new class of targeted protein kinase inhibitors with potential as therapeutic agents for the treatment of patients with diabetic microvascular complications.

  7. Searching for disease modifiers-PKC activation and HDAC inhibition - a dual drug approach to Alzheimer's disease that decreases Abeta production while blocking oxidative stress.

    Science.gov (United States)

    Kozikowski, Alan P; Chen, Yihua; Subhasish, Tapadar; Lewin, Nancy E; Blumberg, Peter M; Zhong, Zhenyu; D'Annibale, Melissa A; Wang, Weng-Long; Shen, Yong; Langley, Brett

    2009-07-01

    A series of benzolactam compounds were synthesized, some of which caused a concentration-dependent increase in sAPPalpha and decrease in Abeta production in the concentration range of 0.1-10 microM. Moreover, some compounds showed neuroprotective effects in the 10-20 microM range in the HCA cortical neuron model of oxidative stress and no toxicity in measurements of neuron viability by MTT assay, even at the highest concentrations tested (20 microM). Alzheimer's disease (AD) is a well-studied neurodegenerative process characterized by the presence of amyloid plaques and neurofibrillary tangles. In this study, a series of protein kinase C (PKC) activators were investigated, some of which also exhibit histone deacetylase (HDAC) inhibitory activity, under the hypothesis that such compounds might provide a new path forward in the discovery of drugs for the treatment of AD. The PKC-activating properties of these drugs were expected to enhance the alpha-secretase pathway in the processing of amyloid precursor protein (APP), while their HDAC inhibition was anticipated to confer neuroprotective activity. We found that benzolactams 9 and 11-14 caused a concentration-dependent increase in sAPPalpha and decrease in beta-amyloid (Abeta) production in the concentration range of 0.1-10 microM, consistent with a shift of APP metabolism toward the alpha-secretase-processing pathway. Moreover, compounds 9-14 showed neuroprotective effects in the 10-20 microM range in the homocysteate (HCA) cortical neuron model of oxidative stress. In parallel, we found that the most neuroprotective compounds caused increased levels of histone acetylation (H4), thus indicating their likely ability to inhibit HDAC activity. As the majority of the compounds studied also show nanomolar binding affinities for PKC, we conclude that it is possible to design, de novo, agents that combine both PKC-activating properties along with HDAC inhibitory properties. Such agents would be capable of modulating

  8. Cystine dimethyl ester induces apoptosis through regulation of PKC-δ and PKC-ε in prostate cancer cells.

    Science.gov (United States)

    Gurbuz, Nilgun; Park, Margaret A; Dent, Paul; Abdel Mageed, Asim B; Sikka, Suresh C; Baykal, Asli

    2015-01-01

    Protein kinase C-δ (PKC-δ) and PKC-ε are reported to be effective in cancer prevention via S-thiolation-mediated mechanisms. This may be through stimulation of the pro-apoptotic, tumor-suppressive isozyme PKC-δ and/or inactivation of the growth stimulatory, oncogenic isozyme PKC-ε. We investigated oxidative regulatory responses of PKC-δ and PKC-ε to cystine dimethyl ester (CDME), a metabolic precursor of cystine, which, by inducing release of cellular cystine stimulates apoptosis in different prostate cancer cells, PC3 and LNCaP, compared to normal RWPE1 cells. Treatment of CDME in doses of 0.5mM and 5mM significantly induces apoptosis due to regulation of concentration-dependent PKC-δ stimulation and PKC-ε reduction in these prostate cancer cells. This apoptotic regulation was confirmed by immunoblot analyses and specific PKC enzyme assays in immunoprecipitated samples. Additionally, inhibition of PKC-δ by small interfering RNA (siRNA) proved that CDME-induced cell death was dependent on PKC-δ activity in prostate cancer cells. These data demonstrated that CDME induces apoptosis by cysteinylation of both PKC-δ and PKC-ε in tumorigenic prostate epithelial cells compared to control nontumorigenic cells. Cellular cystine may play a critical role in treatment and/or prevention of prostate cancer by regulating PKC activity.

  9. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-{alpha} and NF-{kappa}B pathways in lipopolysaccharide-stimulated mouse macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzung-Yan, E-mail: joyamen@mail.cgu.edu.tw [Graduate Institute of Traditional Chinese Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan (China); Lee, Ko-Chen [School of Traditional Chinese Medicine, Chang Gung University, Taiwan (China); Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chen, Shih-Yuan [Graduate Institute of Traditional Chinese Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan (China); Chang, Hen-Hong [Graduate Institute of Traditional Chinese Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan (China); Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China)

    2009-04-24

    Inflammation is involved in numerous diseases, including chronic inflammatory diseases and the development of cancer. Many plants possess a variety of biological activities, including antifungal, antibacterial and anti-inflammatory activities. However, our understanding of the anti-inflammatory effects of 6-gingerol is very limited. We used lipopolysaccharide (LPS)-stimulated macrophages as a model of inflammation to investigate the anti-inflammatory effects of 6-gingerol, which contains phenolic structure. We found that 6-gingerol exhibited an anti-inflammatory effect. 6-Gingerol could decrease inducible nitric oxide synthase and TNF-{alpha} expression through suppression of I-{kappa}B{alpha} phosphorylation, NF-{kappa}B nuclear activation and PKC-{alpha} translocation, which in turn inhibits Ca{sup 2+} mobilization and disruption of mitochondrial membrane potential in LPS-stimulated macrophages. Here, we demonstrate that 6-gingerol acts as an anti-inflammatory agent by blocking NF-{kappa}B and PKC signaling, and may be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.

  10. Inhibiting Glycosphingolipid Synthesis Ameliorates Hepatic Steatosis in Obese Mice

    NARCIS (Netherlands)

    H. Zhao; M. Przybylska; I.H. Wu; J. Zhang; P. Maniatis; J. Pacheco; P. Piepenhagen; D. Copeland; C. Arbeeny; J.A. Shayman; J.M. Aerts; C. Jiang; S.H. Cheng; N.S. Yew

    2009-01-01

    Steatosis in the liver is a common feature of obesity and type 2 diabetes and the precursor to the development of nonalcoholic steatohepatitis (NASH), cirrhosis, and liver failure. It has been shown previously that inhibiting glycosphingolipid (GSL) synthesis increases insulin sensitivity and lowers

  11. Shikonin inhibits TNF-α production through suppressing PKC-NF-κB-dependent decrease of IL-10 in rheumatoid arthritis-like cell model.

    Science.gov (United States)

    Sun, Wen-Xiao; Liu, Yan; Zhou, Wei; Li, He-Wei; Yang, Jian; Chen, Zhen-Bing

    2017-04-01

    Shikonin, a major effective component in the Chinese herbal medicine Lithospermum erythrorhizon Sieb., exhibits an anti-inflammatory property towards rheumatoid arthritis (RA), but the potential mechanism is unclear. Our aim was to investigate the mechanism of shikonin on the lipopolysaccharide (LPS)-induced fibroblast-like synoviocyte (LiFLS) inflammation model. Fibroblast-like synoviocytes (FLSs) were treated with 200 μg/ml of LPS for 24 h to establish the RA-like model, LiFLS. FLSs were pretreated with shikonin (0.1-1 μM) for 30 min in the treatment groups. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assays were used to detect mRNA and protein levels of interleukin (IL)-10 and tumor necrosis factor (TNF)-α. Signal proteins involved in IL-10 production were analyzed by Western blotting. Shikonin significantly reversed the inhibitory effects of LPS on IL-10 expression in FLSs by inactivating the PKC-NF-κB pathway. In addition, shikonin inhibited LPS-induced TNF-α expression in FLSs, and this effect was markedly diminished by IL-10-neutralizing antibody. The IL-10-mediated suppression of TNF-α transcription was demonstrated by no response to the protein synthesis inhibitor cyclohexamide and no mRNA decay. Shikonin inhibits LPS-induced TNF-α production in FLSs through suppressing the PKC-NF-κB-dependent decrease in IL-10, and this study also highlights the potential application of shikonin in the treatment of RA.

  12. 2类多巴胺受体通过促进 PKC-ε转位参与心肌缺血后适应抑制细胞凋亡%Involvement of dopamine receptor-2 in myocardial ischemic postconditioning inhibited apop-tosis by promoting translocation of PKC

    Institute of Scientific and Technical Information of China (English)

    李鸿珠; 高君; 郝晓敏; 张丽敏; 陈俊亭

    2014-01-01

    目的:以蛋白激酶C-ε(PKC-ε)转位为切入点,探讨2类多巴胺受体(DR2)在心肌缺血后适应抑制细胞凋亡中的作用及可能机制。方法复制原代培养乳鼠心肌细胞缺氧/复氧和缺血后适应模型。 MTT检测心肌细胞的存活率;Hoechst 33342染色观察细胞凋亡;Western blotting检测Bcl-2、caspase-3、caspase-9、PKC-ε蛋白的表达和细胞色素C( Cyt c)的释放;免疫共沉淀检测PKC-ε和DR2的相互作用。结果与正常组比较,缺氧/复氧组细胞存活率降低,细胞凋亡增加,促凋亡因子( Cyt c、caspase-3、caspase-9)表达增加,抑凋亡因子(Bcl-2)表达亦增加,PKC-ε没有转位到细胞膜,PKC-ε和DR2不存在相互作用。与缺氧/复氧组比较,缺血后适应明显升高细胞存活率,降低细胞凋亡,抑制促凋亡因子(Cyt c、caspase-3、caspase-9)表达,促进抑凋亡因子(Bcl-2)表达,PKC-ε转位到细胞膜,PKC-ε和DR2存在相互作用。与缺血后适应组比较,DR2激动剂进一步增加缺血后适应的保护作用,而DR2抑制剂则取消了DR2激动剂的作用。结论 DR2参与心肌缺血后适应抑制细胞凋亡,其机制与DR2促进PKC-ε转位及DR2和PKC-ε存在相互作用有关。%Objective To investigate the effect and possible mechanism of dopamine receptor-2 (DR2) activation in ischemic postconditioning ( PC) inhibited cardiomyocytes apoptosis through translocation of PKC-ε. Method The hypoxia/reoxygenation ( H/R) injury and PC models was established using primarily cultured neonatal rat cardio-myocytes. The cell survival rate was detected by MTT. The cell apoptosis was observed using Hoechst 33342 sta-ning. The protein expression of Bcl-2, caspase-3, caspase-9, the release of cytochrome c( Cyt c) and translocation of PKC-εwere analyzed using Western blotting. The interaction of DR2 and PKC-εwas tested by co-immunoprecipi-tation. Result Compared with Control group, the cell survival rate was decreased, cardiomyocytes

  13. Activated niacin receptor HCA2 inhibits chemoattractant-mediated macrophage migration via Gβγ/PKC/ERK1/2 pathway and heterologous receptor desensitization

    Science.gov (United States)

    Shi, Ying; Lai, Xiangru; Ye, Lingyan; Chen, Keqiang; Cao, Zheng; Gong, Wanghua; Jin, Lili; Wang, Chunyan; Liu, Mingyong; Liao, Yuan; Wang, Ji Ming; Zhou, Naiming

    2017-01-01

    The niacin receptor HCA2 is implicated in controlling inflammatory host responses with yet poorly understood mechanistic basis. We previously reported that HCA2 in A431 epithelial cells transduced Gβγ-protein kinase C- and Gβγ-metalloproteinase/EGFR-dependent MAPK/ERK signaling cascades. Here, we investigated the role of HCA2 in macrophage-mediated inflammation and the underlying mechanisms. We found that proinflammatory stimulants LPS, IL-6 and IL-1β up-regulated the expression of HCA2 on macrophages. Niacin significantly inhibited macrophage chemotaxis in response to chemoattractants fMLF and CCL2 by disrupting polarized distribution of F-actin and Gβ protein. Niacin showed a selected additive effect on chemoattractant-induced activation of ERK1/2, JNK and PI3K pathways, but only the MEK inhibitor UO126 reduced niacin-mediated inhibition of macrophage chemotaxis, while activation of ERK1/2 by EGF alone did not inhibit fMLF-mediated migration of HEK293T cells co-expressing HCA2 and fMLF receptor FPR1. In addition, niacin induced heterologous desensitization and internalization of FPR1. Furthermore, niacin rescued mice from septic shock by diminishing inflammatory symptoms and the effect was abrogated in HCA2−/− mice. These results suggest that Gβγ/PKC-dependent ERK1/2 activation and heterologous desensitization of chemoattractant receptors are involved in the inhibition of chemoattractant-induced migration of macrophages by niacin. Thus, HCA2 plays a critical role in host protection against pro-inflammatory insults. PMID:28186140

  14. Apm4, the mu subunit of yeast AP-2 interacts with Pkc1, and mutation of the Pkc1 consensus phosphorylation site Thr176 inhibits AP-2 recruitment to endocytic sites

    Science.gov (United States)

    Chapa-y-Lazo, Bernardo; Ayscough, Kathryn R

    2014-01-01

    The AP-2 endocytic adaptor has been extensively characterized in mammalian cells and is considered to play a role both in cargo binding and in formation of endocytic sites. However, despite our detailed knowledge of mechanistic aspects of endocytic complex assembly and disassembly in the model organism Saccharomyces cerevisiae, no function of AP-2 had been described in wild-type yeast under normal growth conditions. A recent study however revealed that disruption of the complex caused by deletion of the gene encoding its mu subunit (APM4) caused defects in cell polarity such that responses to pheromone, nutritional status and cell wall damage were affected. Furthermore, a homozygous deletion of the mu subunit gene in Candida albicans affected its ability to grow hyphae. Direct binding to the yeast cell wall stress sensor Mid2 was detected, and in an apm4 deletion strain Mid2 showed reduced re-localization to the mother bud neck region following cell wall damage with calcofluor or to the mating projection tip. Here we demonstrate an interaction between Apm4 and the yeast cell wall integrity pathway component Pkc1 and show that mutation of the predicted Pkc1 site in the Apm4 hinge region affects recruitment of the AP-2 complex to endocytic sites. PMID:25346786

  15. Endocannabinoid-Goα signalling inhibits axon regeneration in Caenorhabditis elegans by antagonizing Gqα-PKC-JNK signalling.

    Science.gov (United States)

    Pastuhov, Strahil Iv; Fujiki, Kota; Nix, Paola; Kanao, Shuka; Bastiani, Michael; Matsumoto, Kunihiro; Hisamoto, Naoki

    2012-01-01

    The ability of neurons to regenerate their axons after injury is determined by a balance between cellular pathways that promote and those that inhibit regeneration. In Caenorhabditis elegans, axon regeneration is positively regulated by the c-Jun N-terminal kinase mitogen activated protein kinase pathway, which is activated by growth factor-receptor tyrosine kinase signalling. Here we show that fatty acid amide hydrolase-1, an enzyme involved in the degradation of the endocannabinoid anandamide (arachidonoyl ethanolamide), regulates the axon regeneration response of γ-aminobutyric acid neurons after laser axotomy. Exogenous arachidonoyl ethanolamide inhibits axon regeneration via the Goα subunit GOA-1, which antagonizes the Gqα subunit EGL-30. We further demonstrate that protein kinase C functions downstream of Gqα and activates the MLK-1-MEK-1-KGB-1 c-Jun N-terminal kinase pathway by phosphorylating MLK-1. Our results show that arachidonoyl ethanolamide induction of a G protein signal transduction pathway has a role in the inhibition of post-development axon regeneration.

  16. Methylglyoxal induces platelet hyperaggregation and reduces thrombus stability by activating PKC and inhibiting PI3K/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Karin Hadas

    Full Text Available Diabetes is characterized by a dysregulation of glucose homeostasis and platelets from patients with diabetes are known to be hyper-reactive and contribute to the accelerated development of vascular diseases. Since many of the deleterious effects of glucose have been attributed to its metabolite methylgyloxal (MG rather than to hyperglycemia itself, the aim of the present study was to characterize the effects of MG on platelet function. Washed human platelets were pre-incubated for 15 min with MG and platelet aggregation, adhesion on matrix-coated slides and signaling (Western blot were assessed ex vivo. In vivo, the effect of MG on thrombus formation was determined using the FeCl3-induced carotid artery injury model. MG potentiated thrombin-induced platelet aggregation and dense granule release, but inhibited platelet spreading on fibronectin and collagen. In vivo, MG accelerated thrombus formation but decreased thrombus stability. At the molecular level, MG increased intracellular Ca(2+ and activated classical PKCs at the same time as inhibiting PI3K/Akt and the β3-integrin outside-in signaling. In conclusion, these findings indicate that the enhanced MG concentration measured in diabetic patients can directly contribute to the platelet dysfunction associated with diabetes characterized by hyperaggregability and reduced thrombus stability.

  17. Methylglyoxal induces platelet hyperaggregation and reduces thrombus stability by activating PKC and inhibiting PI3K/Akt pathway.

    Science.gov (United States)

    Hadas, Karin; Randriamboavonjy, Voahanginirina; Elgheznawy, Amro; Mann, Alexander; Fleming, Ingrid

    2013-01-01

    Diabetes is characterized by a dysregulation of glucose homeostasis and platelets from patients with diabetes are known to be hyper-reactive and contribute to the accelerated development of vascular diseases. Since many of the deleterious effects of glucose have been attributed to its metabolite methylgyloxal (MG) rather than to hyperglycemia itself, the aim of the present study was to characterize the effects of MG on platelet function. Washed human platelets were pre-incubated for 15 min with MG and platelet aggregation, adhesion on matrix-coated slides and signaling (Western blot) were assessed ex vivo. In vivo, the effect of MG on thrombus formation was determined using the FeCl3-induced carotid artery injury model. MG potentiated thrombin-induced platelet aggregation and dense granule release, but inhibited platelet spreading on fibronectin and collagen. In vivo, MG accelerated thrombus formation but decreased thrombus stability. At the molecular level, MG increased intracellular Ca(2+) and activated classical PKCs at the same time as inhibiting PI3K/Akt and the β3-integrin outside-in signaling. In conclusion, these findings indicate that the enhanced MG concentration measured in diabetic patients can directly contribute to the platelet dysfunction associated with diabetes characterized by hyperaggregability and reduced thrombus stability.

  18. A Calcium- and Diacylglycerol-Stimulated Protein Kinase C (PKC), Caenorhabditis elegans PKC-2, Links Thermal Signals to Learned Behavior by Acting in Sensory Neurons and Intestinal Cells.

    Science.gov (United States)

    Land, Marianne; Rubin, Charles S

    2017-10-01

    Ca(2+)- and diacylglycerol (DAG)-activated protein kinase C (cPKC) promotes learning and behavioral plasticity. However, knowledge of in vivo regulation and exact functions of cPKCs that affect behavior is limited. We show that PKC-2, a Caenorhabditis elegans cPKC, is essential for a complex behavior, thermotaxis. C. elegans memorizes a nutrient-associated cultivation temperature (Tc ) and migrates along the Tc within a 17 to 25°C gradient. pkc-2 gene disruption abrogated thermotaxis; a PKC-2 transgene, driven by endogenous pkc-2 promoters, restored thermotaxis behavior in pkc-2(-/-) animals. Cell-specific manipulation of PKC-2 activity revealed that thermotaxis is controlled by cooperative PKC-2-mediated signaling in both AFD sensory neurons and intestinal cells. Cold-directed migration (cryophilic drive) precedes Tc tracking during thermotaxis. Analysis of temperature-directed behaviors elicited by persistent PKC-2 activation or inhibition in AFD (or intestine) disclosed that PKC-2 regulates initiation and duration of cryophilic drive. In AFD neurons, PKC-2 is a Ca(2+) sensor and signal amplifier that operates downstream from cyclic GMP-gated cation channels and distal guanylate cyclases. UNC-18, which regulates neurotransmitter and neuropeptide release from synaptic vesicles, is a critical PKC-2 effector in AFD. UNC-18 variants, created by mutating Ser(311) or Ser(322), disrupt thermotaxis and suppress PKC-2-dependent cryophilic migration. Copyright © 2017 American Society for Microbiology.

  19. Inhibition of autophagy ameliorates atherogenic inflammation by augmenting apigenin-induced macrophage apoptosis.

    Science.gov (United States)

    Wang, Qun; Zeng, Ping; Liu, Yuanliang; Wen, Ge; Fu, Xiuqiong; Sun, Xuegang

    2015-07-01

    Increasing evidences showed that the survival of macrophages promotes atherogenesis. Macrophage apoptosis in the early phase of atherosclerotic process negatively regulates the progression of atherosclerotic lesions. We demonstrated that a natural anti-oxidant apigenin could ameliorate atherogenesis in ApoE(-/-) mice. It reduced the number of foam cells and decreased the serum levels of tumor necrosis factor α, interleukin 1β (IL-1β) and IL-6. Our results showed that oxidized low-density lipoprotein (oxLDL) led to the secretion of pro-inflammatory cytokines. Apigenin-induced apoptosis and downregulated the secretion of TNF-α, IL-6 and IL-1β. It is further supported by the use of zVAD, a pan-caspase inhibitor, demonstrating that apigenin lowered cytokine profile through induction of macrophage apoptosis. Moreover, apigenin-induced Atg5/Atg7-dependent autophagy in macrophages pretreated with oxLDL. Results illustrated that autophagy inhibition increased apigenin-induced apoptosis through activation of Bax. The present findings suggest that oxLDL maintained the survival of macrophages and activated the secretion of pro-inflammatory cytokines to initiate atherosclerosis. Apigenin-induced apoptosis of lipid-laden macrophages and resolved inflammation to ameliorate atherosclerosis. In conclusion, combination of apigenin with autophagy inhibition may be a promising strategy to induce foam cell apoptosis and subdue atherogenic cytokines.

  20. Genipin inhibits mitochondrial uncoupling protein 2 expression and ameliorates podocyte injury in diabetic mice.

    Directory of Open Access Journals (Sweden)

    Wenjing Qiu

    Full Text Available Diabetic nephropathy (DN is one of the most common causes of end stage renal disease (ESRD in China, which requires renal replacement therapy. Recent investigations have suggested an essential role of podocyte injury in the initial stage of DN. This study investigated the potential therapeutic role of genipin, an active extract from a traditional Chinese medicine, on progression of DN in diabetic mice induced by intraperitoneally injection of streptozocin (STZ. In diabetic mice, orally administration of genipin postponed the progression of DN, as demonstrated by ameliorating body weight loss and urine albumin leakage, attenuating glomerular basement membrane thickness, restoring the podocyte expression of podocin and WT1 in diabetic mice. The protective role of genipin on DN is probably through suppressing the up-regulation of mitochondrial uncoupling protein 2 (UCP2 in diabetic kidneys. Meanwhile, through inhibiting the up-regulation of UCP2, genipin restores podocin and WT1 expression in cultured podocytes and attenuates glucose-induced albumin leakage through podocytes monolayer. Therefore, these results revealed that genipin inhibited UCP2 expression and ameliorated podocyte injury in DN mice.

  1. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites

    Science.gov (United States)

    Breda, Carlo; Sathyasaikumar, Korrapati V.; Sograte Idrissi, Shama; Notarangelo, Francesca M.; Estranero, Jasper G.; Moore, Gareth G. L.; Green, Edward W.; Kyriacou, Charalambos P.; Schwarcz, Robert; Giorgini, Flaviano

    2016-01-01

    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway—kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP—the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington’s disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer’s and Parkinson’s disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits. PMID:27114543

  2. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junru; Kulkarni, Ashwini [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Chintala, Madhu [Schering-Plough Research Institute, Kenilworth, New Jersey (United States); Fink, Louis M. [Nevada Cancer Institute, Las Vegas, Nevada (United States); Hauer-Jensen, Martin, E-mail: mhjensen@life.uams.edu [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Surgery Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas (United States)

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  3. Inhibition of G0/G1 Switch 2 Ameliorates Renal Inflammation in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Naoya Matsunaga

    2016-11-01

    Full Text Available Chronic kidney disease (CKD is a global health problem, and novel therapies to treat CKD are urgently needed. Here, we show that inhibition of G0/G1 switch 2 (G0s2 ameliorates renal inflammation in a mouse model of CKD. Renal expression of chemokine (C-C motif ligand 2 (Ccl2 was increased in response to p65 activation in the kidneys of wild-type 5/6 nephrectomy (5/6Nx mice. Moreover, 5/6Nx Clk/Clk mice, which carry homozygous mutations in the gene encoding circadian locomotor output cycles kaput (CLOCK, did not exhibit aggravation of apoptosis or induction of F4/80-positive cells. The renal expression of G0s2 in wild-type 5/6Nx mice was important for the transactivation of Ccl2 by p65. These pathologies were ameliorated by G0s2 knockdown. Furthermore, a novel small-molecule inhibitor of G0s2 expression was identified by high-throughput chemical screening, and the inhibitor suppressed renal inflammation in 5/6Nx mice. These findings indicated that G0s2 inhibitors may have applications in the treatment of CKD.

  4. Intermedin ameliorates IgA nephropathy by inhibition of oxidative stress and inflammation.

    Science.gov (United States)

    Wang, Yanhong; Tian, Jihua; Guo, Haixiu; Mi, Yang; Zhang, Ruijing; Li, Rongshan

    2016-05-01

    IgA nephropathy (IgAN) is the most frequent form of glomerulonephritis worldwide. The role of oxidative stress and inflammation in the pathogenesis of IgAN has been reported. Intermedin (IMD) is a newly discovered peptide that is closely related to adrenomedullin. We have recently reported that IMD can significantly reduce renal ischemia/reperfusion injury by diminishing oxidative stress and suppressing inflammation. The present study was designed to explore whether IMD ameliorates IgAN via oxidative stress- and inflammation-dependent mechanisms. Our results showed that IMD administration resulted in the prevention of albuminuria and ameliorated renal pathomorphological changes. These findings were associated with (1) decreased renal TGF-β1 and collagen IV expression, (2) an increased SOD level and reduced MDA level, (3) the inhibition of the renal activation of NF-κB p65 and (4) the downregulation of the expression of inflammatory factors (TNF-α, MCP-1 and MMP-9) in the kidney. These results indicate that IMD in the kidney protects against IgAN by reducing oxidative stress and suppressing inflammation.

  5. Reduced PKC α Activity Induces Senescent Phenotype in Erythrocytes

    Directory of Open Access Journals (Sweden)

    Rukmini B. Govekar

    2012-01-01

    Full Text Available The molecular mechanism mediating expression of senescent cell antigen-aggregated or cleaved band 3 and externalized phosphatidylserine (PS on the surface of aged erythrocytes and their premature expression in certain anemias is not completely elucidated. The erythrocytes with these surface modifications undergo macrophage-mediated phagocytosis. In this study, the role of protein kinase C (PKC isoforms in the expression of these surface modifications was investigated. Inhibition of PKC α by 30 μM rottlerin (R30 and 2.3 nM Gö 6976 caused expression of both the senescent cell marker-externalized PS measured by FACS analysis and aggregated band 3 detected by western blotting. In contrast to this observation, but in keeping with literature, PKC activation by phorbol-12-myristate-13-acetate (PMA also led to the expression of senescence markers. We explain this antithesis by demonstrating that PMA-treated cells show reduction in the activity of PKC α, thereby simulating inhibition. The reduction in PKC α activity may be attributed to the known downregulation of PMA-activated PKC α, caused by its membrane translocation and proteolysis. We demonstrate membrane translocation of PKC α in PMA-treated cells to substantiate this inference. Thus loss of PKC α activity either by inhibition or downregulation can cause surface modifications which can trigger erythrophagocytosis.

  6. Dexamethasone palmitate ameliorates macrophages-rich graft-versus-host disease by inhibiting macrophage functions.

    Directory of Open Access Journals (Sweden)

    Satoshi Nishiwaki

    Full Text Available Macrophage infiltration of skin GVHD lesions correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear and GVHD with many macrophages is a therapeutic challenge. Here, we characterize the macrophages involved in GVHD and report that dexamethasone palmitate (DP, a liposteroid, can ameliorate such GVHD by inhibiting macrophage functions. We found that host-derived macrophages could exacerbate GVHD in a mouse model through expression of higher levels of pro-inflammatory TNF-α and IFN-γ, and lower levels of anti-inflammatory IL-10 than resident macrophages in mice without GVHD. DP significantly decreased the viability and migration capacity of primary mouse macrophages compared to conventional dexamethasone in vitro. DP treatment on day 7 and day 14 decreased macrophage number, and attenuated GVHD score and subsequent mortality in a murine model. This is the first study to provide evidence that therapy for GVHD should be changed on the basis of infiltrating cell type.

  7. Calhex231 Ameliorates Cardiac Hypertrophy by Inhibiting Cellular Autophagy in Vivo and in Vitro

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2015-07-01

    Full Text Available Background/Aims: Intracellular calcium concentration ([Ca2+]i homeostasis, an initial factor of cardiac hypertrophy, is regulated by the calcium-sensing receptor (CaSR and is associated with the formation of autolysosomes. The aim of this study was to investigate the role of Calhex231, a CaSR inhibitor, on the hypertrophic response via autophagy modulation. Methods: Cardiac hypertrophy was induced by transverse aortic constriction (TAC in 40 male Wistar rats, while 10 rats underwent a sham operation and served as controls. Cardiac function was monitored by transthoracic echocardiography, and the hypertrophy index was calculated. Cardiac tissue was stained with hematoxylin and eosin (H&E or Masson's trichrome reagent and examined by transmission electron microscopy. An angiotensin II (Ang II-induced cardiomyocyte hypertrophy model was established and used to test the involvement of active molecules. Intracellular calcium concentration ([Ca2+]i was determined by the introduction of Fluo-4/AM dye followed by confocal microscopy. The expression of various active proteins was analyzed by western blot. Results: The rats with TAC-induced hypertrophy had an increased heart size, ratio of heart weight to body weight, myocardial fibrosis, and CaSR and autophagy levels, which were suppressed by Calhex231. Experimental results using Ang II-induced hypertrophic cardiomyocytes confirmed that Calhex231 suppressed CaSR expression and downregulated autophagy by inhibiting the Ca2+/calmodulin-dependent-protein kinase-kinase-β (CaMKKβ- AMP-activated protein kinase (AMPK-mammalian target of rapamycin (mTOR pathway to ameliorate cardiomyocyte hypertrophy. Conclusions: Calhex231 ameliorates myocardial hypertrophy induced by pressure-overload or Ang II via inhibiting CaSR expression and autophagy. Our results may support the notion that Calhex231 can become a new therapeutic agent for the treatment of cardiac hypertrophy.

  8. Calhex₂₃₁ Ameliorates Cardiac Hypertrophy by Inhibiting Cellular Autophagy in Vivo and in Vitro.

    Science.gov (United States)

    Liu, Lei; Wang, Chao; Sun, Dianjun; Jiang, Shuangquan; Li, Hong; Zhang, Weihua; Zhao, Yajun; Xi, Yuhui; Shi, Sa; Lu, Fanghao; Tian, Ye; Xu, Changqing; Wang, Lina

    2015-01-01

    Intracellular calcium concentration ([Ca2+]i) homeostasis, an initial factor of cardiac hypertrophy, is regulated by the calcium-sensing receptor (CaSR) and is associated with the formation of autolysosomes. The aim of this study was to investigate the role of Calhex231, a CaSR inhibitor, on the hypertrophic response via autophagy modulation. Cardiac hypertrophy was induced by transverse aortic constriction (TAC) in 40 male Wistar rats, while 10 rats underwent a sham operation and served as controls. Cardiac function was monitored by transthoracic echocardiography, and the hypertrophy index was calculated. Cardiac tissue was stained with hematoxylin and eosin (H&E) or Masson’s trichrome reagent and examined by transmission electron microscopy. An angiotensin II (Ang II)-induced cardiomyocyte hypertrophy model was established and used to test the involvement of active molecules. Intracellular calcium concentration ([Ca2+]i) was determined by the introduction of Fluo-4/AM dye followed by confocal microscopy. The expression of various active proteins was analyzed by western blot. The rats with TAC-induced hypertrophy had an increased heart size, ratio of heart weight to body weight, myocardial fibrosis, and CaSR and autophagy levels, which were suppressed by Calhex231. Experimental results using Ang II-induced hypertrophic cardiomyocytes confirmed that Calhex231 suppressed CaSR expression and downregulated autophagy by inhibiting the Ca2+/calmodulin-dependent-protein kinase-kinase-β (CaMKKβ)– AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway to ameliorate cardiomyocyte hypertrophy. Calhex231 ameliorates myocardial hypertrophy induced by pressure-overload or Ang II via inhibiting CaSR expression and autophagy. Our results may support the notion that Calhex231 can become a new therapeutic agent for the treatment of cardiac hypertrophy. © 2015 S. Karger AG, Basel.

  9. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity.

    Science.gov (United States)

    Bi, Pengpeng; Shan, Tizhong; Liu, Weiyi; Yue, Feng; Yang, Xin; Liang, Xin-Rong; Wang, Jinghua; Li, Jie; Carlesso, Nadia; Liu, Xiaoqi; Kuang, Shihuan

    2014-08-01

    Beige adipocytes in white adipose tissue (WAT) are similar to classical brown adipocytes in that they can burn lipids to produce heat. Thus, an increase in beige adipocyte content in WAT browning would raise energy expenditure and reduce adiposity. Here we report that adipose-specific inactivation of Notch1 or its signaling mediator Rbpj in mice results in browning of WAT and elevated expression of uncoupling protein 1 (Ucp1), a key regulator of thermogenesis. Consequently, as compared to wild-type mice, Notch mutants exhibit elevated energy expenditure, better glucose tolerance and improved insulin sensitivity and are more resistant to high fat diet-induced obesity. By contrast, adipose-specific activation of Notch1 leads to the opposite phenotypes. At the molecular level, constitutive activation of Notch signaling inhibits, whereas Notch inhibition induces, Ppargc1a and Prdm16 transcription in white adipocytes. Notably, pharmacological inhibition of Notch signaling in obese mice ameliorates obesity, reduces blood glucose and increases Ucp1 expression in white fat. Therefore, Notch signaling may be therapeutically targeted to treat obesity and type 2 diabetes.

  10. Rho-kinase inhibition ameliorates metabolic disorders through activation of AMPK pathway in mice.

    Directory of Open Access Journals (Sweden)

    Kazuki Noda

    Full Text Available BACKGROUND: Metabolic disorders, caused by excessive calorie intake and low physical activity, are important cardiovascular risk factors. Rho-kinase, an effector protein of the small GTP-binding protein RhoA, is an important cardiovascular therapeutic target and its activity is increased in patients with metabolic syndrome. We aimed to examine whether Rho-kinase inhibition improves high-fat diet (HFD-induced metabolic disorders, and if so, to elucidate the involvement of AMP-activated kinase (AMPK, a key molecule of metabolic conditions. METHODS AND RESULTS: Mice were fed a high-fat diet, which induced metabolic phenotypes, such as obesity, hypercholesterolemia and glucose intolerance. These phenotypes are suppressed by treatment with selective Rho-kinase inhibitor, associated with increased whole body O2 consumption and AMPK activation in the skeletal muscle and liver. Moreover, Rho-kinase inhibition increased mRNA expression of the molecules linked to fatty acid oxidation, mitochondrial energy production and glucose metabolism, all of which are known as targets of AMPK in those tissues. In systemic overexpression of dominant-negative Rho-kinase mice, body weight, serum lipid levels and glucose metabolism were improved compared with littermate control mice. Furthermore, in AMPKα2-deficient mice, the beneficial effects of fasudil, a Rho-kinase inhibitor, on body weight, hypercholesterolemia, mRNA expression of the AMPK targets and increase of whole body O2 consumption were absent, whereas glucose metabolism was restored by fasudil to the level in wild-type mice. In cultured mouse myocytes, pharmacological and genetic inhibition of Rho-kinase increased AMPK activity through liver kinase b1 (LKB1, with up-regulation of its targets, which effects were abolished by an AMPK inhibitor, compound C. CONCLUSIONS: These results indicate that Rho-kinase inhibition ameliorates metabolic disorders through activation of the LKB1/AMPK pathway, suggesting that

  11. Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP Phosphodiesterases

    Science.gov (United States)

    Park, Sung-Jun; Ahmad, Faiyaz; Philp, Andrew; Baar, Keith; Williams, Tishan; Luo, Haibin; Ke, Hengming; Rehmann, Holger; Taussig, Ronald; Brown, Alexandra L.; Kim, Myung K.; Beaven, Michael A.; Burgin, Alex B.; Manganiello, Vincent; Chung, Jay H.

    2012-01-01

    SUMMARY Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca2+ levels and activates the CamKKβ-AMPK pathway via phospholipase C and the ryanodine receptor Ca2+-release channel. As a consequence, resveratrol increases NAD+ and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging. PMID:22304913

  12. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation

    Science.gov (United States)

    Zhang, Han; Qi, Yuanyuan; Yuan, Yuanyang; Cai, Li; Xu, Haiyan; Zhang, Lili; Su, Bing; Nie, Hong

    2017-01-01

    Paeoniflorin (PF) is a monoterpene glycoside and exhibits multiple effects, including anti-inflammation and immunoregulation. To date, the effect of PF on multiple sclerosis (MS) has not been investigated. In this study, we investigated the effect of PF in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. After administered with PF, the onset and clinical symptoms of EAE mice were significantly ameliorated, and the number of Th17 cells infiltrated in central nervous system (CNS) and spleen was also dramatically decreased. Instead of inhibiting the differentiation of Th17 cells directly, PF influenced Th17 cells via suppressing the expression of costimulatory molecules and the production of interlukin-6 (IL-6) of dendritic cells (DCs) in vivo and in vitro, which may be attributable to the inhibition of IKK/NF-κB and JNK signaling pathway. When naïve CD4+ T cells were co-cultured with PF-treated dendritic cells under Th17-polarizing condition, the percentage of Th17 cells and the phosphorylation of STAT3 were decreased, as well as the mRNA levels of IL-17, RORα, and RORγt. Our study provided insights into the role of PF as a unique therapeutic agent for the treatment of multiple sclerosis and illustrated the underlying mechanism of PF from a new perspective. PMID:28165507

  13. CCK causes PKD1 activation in pancreatic acini by signaling through PKC-δ and PKC-independent pathways

    Science.gov (United States)

    Berna, Marc J.; Hoffmann, K. Martin; Tapia, Jose A.; Thill, Michelle; Pace, Andrea; Mantey, Samuel A.; Jensen, Robert T.

    2007-01-01

    Summary Protein kinase D1 (PKD1) is involved in cellular processes including protein secretion, proliferation and apoptosis. Studies suggest PKD1 is activated by various stimulants including gastrointestinal (GI) hormones/neurotransmitters and growth factors in a protein kinase C (PKC)-dependent pathway. However, little is known about the mechanisms of PKD1 activation in physiologic GI tissues. We explored PKD1 activation by GI hormones/neurotransmitters and growth factors and the mediators involved in rat pancreatic acini. Only hormones/neurotransmitters activating phospholipase C caused PKD1 phosphorylation (S916, S744/748). CCK activated PKD1 and caused a time- and dose-dependant increase in serine phosphorylation by activation of high- and low-affinity CCKA receptor states. Inhibition of CCK-stimulated increases in phospholipase C, PKC activity or intracellular calcium decreased PKD1 S916 phosphorylation by 56%, 62% and 96%, respectively. PKC inhibitors GF109203X/Go6976/Go6983/PKC-ζ pseudosubstrate caused a 62/43/49/0% inhibition of PKD1 S916 phosphorylation and an 87/13/82/0% inhibition of PKD1 S744/748 phosphorylation. Expression of dominant negative PKC-δ, but not PKC-ε, or treatment with PKC-δ translocation inhibitor caused marked inhibition of PKD phosphorylation. Inhibition of Src/PI3K/MAPK/tyrosine phosphorylation had no effect. In unstimulated cells, PKD1 was mostly located in the cytoplasm. CCK stimulated translocation of total and phosphorylated PKD1 to the membrane. These results demonstrate that CCKA receptor activation leads to PKD activation by signaling through PKC-dependent and PKC-independent pathways. PMID:17306383

  14. Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages

    Science.gov (United States)

    Kim, Seung-Jae; Cha, Ji-Young; Kang, Hye Suk; Lee, Jae-Ho; Lee, Ji Yoon; Park, Jae-Hyung; Bae, Jae-Hoon; Song, Dae-Kyu; Im, Seung-Soon

    2016-01-01

    Corosolic acid (CA), a triterpenoid compound isolated from Lagerstroemia speciosa L. (Banaba) leaves, exerts anti-inflammatory effects by regulating phosphorylation of interleukin receptor- associated kinase (IRAK)-2 via the NF-κB cascade. However, the protective effect of CA against endotoxic shock has not been reported. LPS (200 ng/mL, 30 min) induced phosphorylation of IRAK-1 and treatment with CA (10 μM) significantly attenuated this effect. In addition, CA also reduced protein levels of NLRP3 and ASC which are the main components of the inflammasome in BMDMs. LPS-induced inflammasome assembly through activation of IRAK-1 was down-regulated by CA challenge. Treatment with Bay11-7082, an inhibitor of IκB-α, had no effect on CA-mediated inhibition of IRAK-1 activation, indicating that CA-mediated attenuation of IRAK-1 phosphorylation was independent of NF-κB signaling. These results demonstrate that CA ameliorates acute inflammation in mouse BMDMs and CA may be useful as a pharmacological agent to prevent acute inflammation. [BMB Reports 2016; 49(5): 276-281] PMID:26615974

  15. Nitric oxide synthase inhibition ameliorates nicotine-induced sperm function decline in male rats

    Institute of Scientific and Technical Information of China (English)

    IP Oyeyipo; Y Raji; AdeyomboF Bolarinwa

    2015-01-01

    Objective:To evaluate the effects of inhibiting nitric oxide synthase as a means of intervention in nicotine-induced infertility in male rats.Methods:Forty-eight male and thirty female Wistar rats (180-200 g) were randomly assigned to six groups and treated orally for 30 days with saline (control), nicotine (0.5 mg/kg, 1.0 mg/kg) with or without NG Nitro-L-Arginine Methyl Ester (L- NAME, 50 mg/kg). Treated male rats were cohabited with untreated females in ratio 1:2 for fertility studies. Sperm analysis was done by microscopy. Results:There was a significant decrease in the epididymal sperm motility and count after nicotine treatment. However, the percentage of abnormality significantly increased in nicotine treatment groups. Fertility studies revealed that nicotine reduced libido in male rats and decreased litter weight and number delivered by the untreated female during the experiments. Co-treatment with L-NAME effectively reversed the nicotine-mediated alterations in the sperm functional parameters, fertility indexes and hormone when compared to nicotine only.Conclusion: Taken together, the present data indicate the abilities of L-NAME to ameliorate nicotine-induced spermatotoxic effects in male rats via a mechanism dependent on the circulating testosterone level.

  16. Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats.

    Directory of Open Access Journals (Sweden)

    Mingming Zhang

    Full Text Available It has been shown that Faecalibacterium prausnitzii (F. prausnitzii, one of the dominant intestinal bacterial flora, may protect colonic mucosa against the development of inflammation and subsequent inflammatory bowel disease (IBD, with the underlying mechanisms being unclear.The impacts of F. prausnitzii and its metabolites on IL-23/Th17/IL-17 pathway markers were determined in human monocytes and a rat model of colitis induced by 2,4,6-trinitrobenzene sulfonic acid. F. prausnitzii and its culture medium (containing complete metabolites were used to treat the rats in vivo, as well as rat splenocytes and human monocytes in vitro. Inflammatory cytokines were measured in colon tissue, plasma and cell culture medium.The culture supernatant of F. prausnitzii increased plasma anti-Th17 cytokines (IL-10 and IL-12and suppressed IL-17 levels in both plasma and colonic mucosa, with ameliorated colonic colitis lesions. This inhibition of IL-17 release has also been observed in both rat splenocytes and human venous monocytes in vitro. The culture supernatant of F. prausnitzii also suppressed Th17 cell differentiation induced by cytokines (TGF-ß and IL-6 and bone marrow-derived dendritic cells (BMDCs in vitro. The metabolites of F. prausnitzii in the culture supernatant exert a stronger anti-inflammatory effect than the bacterium itself. F. prausnitzii protected the colon mucosa against the development of IBD by its metabolites, suggesting a promising potential for the use of F. prausnitzii and its metabolic products in the treatment of IBD.

  17. Sodium alginate ameliorates indomethacin-induced gastrointestinal mucosal injury via inhibiting translocation in rats

    Science.gov (United States)

    Yamamoto, Atsuki; Itoh, Tomokazu; Nasu, Reishi; Nishida, Ryuichi

    2014-01-01

    AIM: To investigate the effects of sodium alginate (AL-Na) on indomethacin-induced small intestinal lesions in rats. METHODS: Gastric injury was assessed by measuring ulcerated legions 4 h after indomethacin (25 mg/kg) administration. Small intestinal injury was assessed by measuring ulcerated legions 24 h after indomethacin (10 mg/kg) administration. AL-Na and rebamipide were orally administered. Myeloperoxidase activity in the stomach and intestine were measured. Microvascular permeability, superoxide dismutase content, glutathione peroxidase activity, catalase activity, red blood cell count, white blood cell count, mucin content and enterobacterial count in the small intestine were measured. RESULTS: AL-Na significantly reduced indomethacin-induced ulcer size and myeloperoxidase activity in the stomach and small intestine. AL-Na prevented increases in microvascular permeability, superoxide dismutase content, glutathione peroxidase activity and catalase activity in small intestinal injury induced by indomethacin. AL-Na also prevented decreases in red blood cells and white blood cells in small intestinal injury induced by indomethacin. Moreover, AL-Na suppressed mucin depletion by indomethacin and inhibited infiltration of enterobacteria into the small intestine. CONCLUSION: These results indicate that AL-Na ameliorates non-steroidal anti-inflammatory drug-induced small intestinal enteritis via bacterial translocation. PMID:24627600

  18. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1

    Science.gov (United States)

    Yu, Bo; Shao, Hui; Su, Chang; Jiang, Yuanfeng; Chen, Xiteng; Bai, Lingling; Zhang, Yan; Li, Qiutang; Zhang, Xiaomin; Li, Xiaorong

    2016-01-01

    Although accumulated evidence supports the notion that mesenchymal stem cells (MSCs) act in a paracrine manner, the mechanisms are still not fully understood. Recently, MSC-derived exosomes (MSC-Exos), a type of microvesicle released from MSCs, were thought to carry functional proteins and RNAs to recipient cells and play therapeutic roles. In the present study, we intravitreally injected MSCs derived from either mouse adipose tissue or human umbilical cord, and their exosomes to observe and compare their functions in a mouse model of laser-induced retinal injury. We found that both MSCs and their exosomes reduced damage, inhibited apoptosis, and suppressed inflammatory responses to obtain better visual function to nearly the same extent in vivo. Obvious down-regulation of monocyte chemotactic protein (MCP)-1 in the retina was found after MSC-Exos injection. In vitro, MSC-Exos also down-regulated MCP-1 mRNA expression in primarily cultured retinal cells after thermal injury. It was further demonstrated that intravitreal injection of an MCP-1-neutralizing antibody promoted the recovery of retinal laser injury, whereas the therapeutic effect of exosomes was abolished when MSC-Exos and MCP-1 were administrated simultaneously. Collectively, these results suggest that MSC-Exos ameliorate laser-induced retinal injury partially through down-regulation of MCP-1. PMID:27686625

  19. Protodioscin ameliorates fructose-induced renal injury via inhibition of the mitogen activated protein kinase pathway.

    Science.gov (United States)

    Shen, Jinyang; Yang, Xiaolin; Meng, Zhaoqing; Guo, Changrun

    2016-11-15

    High dietary fructose can cause metabolic syndrome and renal injury. The effects of protodioscin on metabolic syndrome and renal injury were investigated in mice receiving high-dose fructose. Mice received 30% (w/v) fructose in water and standard chow for 6 weeks to induce metabolic syndrome and were divided into four groups to receive carboxymethylcellulose sodium, allopurinol (5 mg/kg) and protodioscin (5 and 10 mg/kg) continuously for 6 weeks, respectively. The glucose intolerance, serum uric acid (UA), blood urea nitrogen (BUN), creatinine (Cr), total cholesterol (TC), triglyceride (TG), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined. Protodioscin significantly improved glucose intolerance and reduced the levels of serum UA, BUN, Cr, TC and TG. Histological examinations showed that protodioscin ameliorated glomerular and tubular pathological changes. Protodioscin significantly reduced renal concentrations of IL-1β, IL-6 and TNF-α by inhibiting the activation of nuclear factor-κB, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. In addition, the effect of protodioscin on the mitogen activated protein kinases (MAPK) pathway was examined. Taken together, protodioscin is a potential drug candidate for high dietary fructose-induced metabolic syndrome and renal injury. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Tetrandrine Ameliorates Cirrhosis and Portal Hypertension by Inhibiting Nitric Oxide in Cirrhotic Rats

    Institute of Scientific and Technical Information of China (English)

    王海; 陈孝平

    2004-01-01

    To examine the role and effect of nitric oxide synthase type Ⅱ (NOSⅡ) in cirrhotic rats,expression of NOSⅡ mRNA was detected by real time RT-PCR. The enzymatic activity of nitric oxide synthase and the circulating levels of NO, systemic and portal hemodynamics and quantification of cirrhosis were measured. Chinese traditional medicine was used to treat cirrhotic rats and the effect of NO was evaluated. Double-blind method was used in experiment. Our results showed the concentration of NO and the enzymatic activity of NOS increased markedly at all stages of cirrhosis and iNOSmRNA was strongly expressed. Meanwhile, the portal-venous-pressure (PVP) and portal-venous-flow (PVF) were significantly increased. NO, NOS and iNOSmRNA were positively correlated to the degree of hepatic fibrosis. Tetrandrine significantly inhibited NO production and the expression of iNOSmRNA. Our results suggested that increased hepatic expression of NOS Ⅱ is one of the important factors causing cirrhosis and portal hypertension. Tetrandrine can significantly ameliorate cirrhosis and portal hypertension.

  1. Ethyl Pyruvate Ameliorates Hepatic Ischemia-Reperfusion Injury by Inhibiting Intrinsic Pathway of Apoptosis and Autophagy

    Directory of Open Access Journals (Sweden)

    Miao Shen

    2013-01-01

    Full Text Available Background. Hepatic ischemia-reperfusion (I/R injury is a pivotal clinical problem occurring in many clinical conditions such as transplantation, trauma, and hepatic failure after hemorrhagic shock. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Ethyl pyruvate, a stable and simple lipophilic ester, has been shown to have anti-inflammatory properties. In this study, the purpose is to explore both the effect of ethyl pyruvate on hepatic I/R injury and regulation of intrinsic pathway of apoptosis and autophagy. Methods. Three doses of ethyl pyruvate (20 mg/kg, 40 mg/kg, and 80 mg/kg were administered 1 h before a model of segmental (70% hepatic warm ischemia was established in Balb/c mice. All serum and liver tissues were obtained at three different time points (4 h, 8 h, and 16 h. Results. Alanine aminotransferase (ALT, aspartate aminotransferase (AST, and pathological features were significantly ameliorated by ethyl pyruvate (80 mg/kg. The expression of Bcl-2, Bax, Beclin-1, and LC3, which play an important role in the regulation of intrinsic pathway of apoptosis and autophagy, was also obviously decreased by ethyl pyruvate (80 mg/kg. Furthermore, ethyl pyruvate inhibited the HMGB1/TLR4/ NF-κb axis and the release of cytokines (TNF-α and IL-6. Conclusion. Our results showed that ethyl pyruvate might attenuate to hepatic I/R injury by inhibiting intrinsic pathway of apoptosis and autophagy, mediated partly through downregulation of HMGB1/TLR4/ NF-κb axis and the competitive interaction with Beclin-1 of HMGB1.

  2. Inhibition of cereblon by fenofibrate ameliorates alcoholic liver disease by enhancing AMPK.

    Science.gov (United States)

    Kim, Yong Deuk; Lee, Kwang Min; Hwang, Seung-Lark; Chang, Hyeun Wook; Kim, Keuk-Jun; Harris, Robert A; Choi, Hueng-Sik; Choi, Won-Sik; Lee, Sung-Eun; Park, Chul-Seung

    2015-12-01

    Alcohol consumption exacerbates alcoholic liver disease by attenuating the activity of AMP-activated protein kinase (AMPK). AMPK is activated by fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, and inhibited by direct interaction with cereblon (CRBN), a component of an E3 ubiquitin ligase complex. Based on these preliminary findings, we investigated that CRBN would be up-regulated in the liver by alcohol consumption and that CRBN deficiency would ameliorate hepatic steatosis and pro-inflammatory responses in alcohol-fed mice by increasing AMPK activity. Wild-type, CRBN and PPARα null mice were fed an alcohol-containing liquid diet and administered with fenofibrate. Gene expression profiles and metabolic changes were measured in the liver and blood of these mice. Expression of CRBN, cytochrome P450 2E1 (CYP2E1), lipogenic genes, pro-inflammatory cytokines, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were increased in the Lieber-DeCarli alcohol-challenged mice. Fenofibrate attenuated the induction of CRBN and reduced hepatic steatosis and pro-inflammatory markers in these mice. Ablation of the gene encoding CRBN produced the same effect as fenofibrate. The increase in CRBN gene expression by alcohol and the reduction of CRBN expression by fenofibrate were negated in PPARα null mice. Fenofibrate increased the recruitment of PPARα on CRBN gene promoter in WT mice but not in PPARα null mice. Silencing of AMPK prevented the beneficial effects of fenofibrate. These results demonstrate that activation of PPARα by fenofibrate alleviates alcohol-induced hepatic steatosis and inflammation by reducing the inhibition of AMPK by CRBN. CRBN is a potential therapeutic target for the alcoholic liver disease.

  3. Studies on alkaline band formation in Chara corallina: ameliorating effect of Ca2+ on inhibition induced by osmotic shock.

    Science.gov (United States)

    Shimmen, Teruo; Yonemura, Satoko; Negoro, Mio; Lucas, William J

    2003-09-01

    Although the decrease in cell turgor by application of sorbitol to the external medium did not inhibit the alkaline band formation in Chara corallina, recovery of normal turgor severely inhibited it. Alkaline-loading analysis suggested that the inhibition of alkaline band formation was caused by inhibition of HCO(3)(-) influx but not that of OH(-) efflux. In the presence of 10 mM CaCl(2), the capacity of alkaline band formation was maintained during osmotic treatment. Cells could not form alkaline bands, when plasmolysis was induced by application of sorbitol at a higher concentration. Addition of 10 mM CaCl(2) could ameliorate the inhibition caused by plasmolyis.

  4. Involvement of distinct PKC gene products in T cell functions

    Directory of Open Access Journals (Sweden)

    Gottfried eBaier

    2012-08-01

    Full Text Available It is well established that members of the Protein kinase C(PKC family seem to have important roles in T cells. Focusing on the physiological and non-redundant PKC functions established in primary mouse T cells via germline gene-targeting approaches, our current knowledge defines two particularly critical PKC gene products, PKCθ and PKCα, as the flavor of PKC in T cells that appear to have a positive role in signaling pathways that are necessary for full antigen receptor-mediated T cell activation ex vivo and T cell-mediated immunity in vivo. Consistently, in spite of the current dogma that PKCθ inhibition might be sufficient to achieve complete immunosuppressive effects, more recent results have indicated that the pharmacological inhibition of PKCθ, and additionally, at least PKCα, appears to be needed to provide a successful approach for the prevention of allograft rejection and treatment of autoimmune diseases.

  5. Thalidomide ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in an experimental model.

    Science.gov (United States)

    Amirshahrokhi, Keyvan; Khalili, Ali-Reza

    2015-04-01

    Cisplatin is a platinum-based chemotherapy drug. However, its chemotherapeutic use is restricted by serious side effects, especially nephrotoxicity. Inflammatory mechanisms have a significant role in the pathogenesis of cisplatin-induced nephrotoxicity. Thalidomide is an immunomodulatory and anti-inflammatory agent and is used for the treatment of various inflammatory diseases. The purpose of this study was to investigate the potential nephroprotective effect of thalidomide in a mouse model of cisplatin-induced nephrotoxicity. Nephrotoxicity was induced in mice by a single injection of cisplatin (15 mg/kg, i.p.) and treated with thalidomide (50 and 100 mg/kg/day, orally) for 4 days, beginning 24 h prior to the cisplatin injection. Renal toxicity induced by cisplatin was demonstrated by increasing plasma levels of creatinine and blood urea nitrogen (BUN). Cisplatin increased the renal production of the proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β1. In addition, kidney levels of malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) were increased by cisplatin. Biochemical results showed that thalidomide reduced cisplatin-induced increase in plasma creatinine and BUN. Thalidomide treatment also significantly reduced tissue levels of the proinflammatory cytokines, MDA, MPO, and NO and increased anti-inflammatory cytokine IL-10. Furthermore, histological examination indicated that thalidomide ameliorated renal damage caused by cisplatin. These data suggest that thalidomide attenuates cisplatin-induced nephrotoxicity possibly by inhibition of inflammatory reactions. Taken together, our findings indicate that thalidomide might be a valuable candidate for the prevention of nephrotoxicity in patients receiving cisplatin.

  6. The linoleic acid derivative DCP-LA selectively activates PKC-epsilon, possibly binding to the phosphatidylserine binding site.

    Science.gov (United States)

    Kanno, Takeshi; Yamamoto, Hideyuki; Yaguchi, Takahiro; Hi, Rika; Mukasa, Takeshi; Fujikawa, Hirokazu; Nagata, Tetsu; Yamamoto, Satoshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2006-06-01

    This study examined the effect of 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA), a newly synthesized linoleic acid derivative with cyclopropane rings instead of cis-double bonds, on protein kinase C (PKC) activity. In the in situ PKC assay with reverse-phase high-performance liquid chromatography, DCP-LA significantly activated PKC in PC-12 cells in a concentration-dependent (10 nM-100 microM) manner, with the maximal effect at 100 nM, and the DCP-LA effect was blocked by GF109203X, a PKC inhibitor, or a selective inhibitor peptide of the novel PKC isozyme PKC-epsilon. Furthermore, DCP-LA activated PKC in HEK-293 cells that was inhibited by the small, interfering RNA against PKC-epsilon. In the cell-free PKC assay, of the nine isozymes examined here, DCP-LA most strongly activated PKC-epsilon, with >7-fold potency over other PKC isozymes, in the absence of dioleoyl-phosphatidylserine and 1,2-dioleoyl-sn-glycerol; instead, the DCP-LA action was inhibited by dioleoyl-phosphatidylserine. DCP-LA also activated PKC-gamma, a conventional PKC, but to a much lesser extent compared with that for PKC-epsilon, by a mechanism distinct from PKC-epsilon activation. Thus, DCP-LA serves as a selective activator of PKC-epsilon, possibly by binding to the phosphatidylserine binding site on PKC-epsilon. These results may provide fresh insight into lipid signaling in PKC activation.

  7. Ginsenosides-Rbl inhibits ET-1-induced cardiomyocyte hypertrophy via PKC pathway in neonatal rats%人参皂甙 Rbl 通过 PKC 途径抑制 ET-1诱发的乳鼠心肌肥大

    Institute of Scientific and Technical Information of China (English)

    孔宏亮; 黄带发; 王聿杰

    2015-01-01

    Objective:To explore whether ginsenosides-Rb1 (Gs-Rb1)can relieve cardiomyocyte hypertrophy induced by endothelin-1 (ET-1)via protein kinase C (PKC)system.Methods:Cardiomyocytes of neonatal rat were random-ly divided into blank control group,Gs-Rb1 group,ET-1 group,Gs-Rb1+ET-1 group,ET-1+CHE (chelerythrine, PKC blocker)group and Gs-Rb1 +ET-1 +CHE group.After 96h intervention,cardiomyocyte surface area,total protein content,PKC activity,c-fos and p-c-jun expressions were measured.Results: (1)Cardiomyocyte surface area and total protein content in Gs-Rb1+ET-1 group were significantly lower than those of ET-1 group (P <0.05~<0.001),but not significant different with those of Gs-Rb1+ET-1+CHE group,P =0.569;(2)PKC activity in Gs-Rb1+ET-1 group was significantly lower than that of ET-1 group [(9.3±0.6)pmol·min-1 ·mg-1 vs.(14.1± 0.9)pmol·min-1 ·mg-1 ],but significantly higher than that of Gs-Rb1+ET-1+CHE group [(2.7±0.2)pmol· min-1 ·mg-1 ],P <0.001 all;(3)Expressions of c-fos and p-c-jun gene and protein in ET-1 group were significant-ly higher than those of blank control group (P <0.001 all);compared with ET-1 group,there were significant re-ductions in expressions of c-fos [mRNA/protein:(0.53±0.05/0.39±0.02)vs.(0.43±0.03/0.31±0.03)]and p-c-jun [mRNA/protein:(0.64±0.04/0.44±0.02)vs.(0.33±0.05/0.37±0.03)]in Gs-Rb1+ET-1 group and ex-pressions of c-fos [mRNA/protein:0.41 ± 0.05/0.31 ± 0.02]and p-c-jun [mRNA/protein:0.31 ± 0.05/0.36 ±0.03]in ET-1+CHE group (P <0.05 or <0.001),expressions of c-fos and p-c-jun gene and protein in Gs-Rb1+ET-1+CHE group were significantly lower than those of Gs-Rb1+ET-1 group and ET-1+CHE group (P <0.05 or<0.001).Conclusion:Gs-Rb1 can significantly inhibit cardiomyocyte hypertrophy induced by ET-1 and PKC system is one of pathways mediating this biological effect.%目的:探讨人参皂甙 Rb1(Gs-Rb1)是否可通过蛋白激酶 C (PKC)系统减轻内皮素-1(ET-1)诱导的乳鼠心肌细胞肥大。方法:

  8. Functional Analysis of PKC Phosphorylation Sites on Myelin Protein Zero

    Institute of Scientific and Technical Information of China (English)

    GangXu; MichaelShy; JohnKamhoz; JanneBalsamo

    2003-01-01

    Objective To analyze the function of Protein kinase C(PKC) phosphorylation sites on mylelin protein zero (P0) at adhesion and myelination.Methods Mutations of p0 cyto-plasmic domain motif (RSTK) and adjacent sequence which are targeted by PKC were studied.Results The point mutations in this region or an adjacent serine residue could abolish P0 adhe-sion function. PKCα,along with the PKC binding protein RACK1,were associated with wild type P0.Inhibition of PKC activity abolished the P0 mediated adhesion.Point mutation in the RSTKtarget site that abolished adhesion did not alter the association of PKC with P0,but deletion of a 14 amino acid region,which included the PSTK motif,could abolish the association.Conclusion PKC mediated phosphorylation of specific residues within the cytoplasmic domain of P0 is neces-sary for P0 mediated adhesion.The alteration of this phoporylation can cause demyelinating neu-ropathy in human.

  9. Ameliorative Effect of Grape Seed Proanthocyanidin Extract on Cadmium-Induced Meiosis Inhibition During Oogenesis in Chicken Embryos.

    Science.gov (United States)

    Hou, Fuyin; Xiao, Min; Li, Jian; Cook, Devin W; Zeng, Weidong; Zhang, Caiqiao; Mi, Yuling

    2016-04-01

    Cadmium (Cd) is an environmental endocrine disruptor that has toxic effects on the female reproductive system. Here the ameliorative effect of grape seed proanthocyanidin extract (GSPE) on Cd-induced meiosis inhibition during oogenesis was explored. As compared with controls, chicken embryos exposed to Cd (3 µg/egg) displayed a changed oocyte morphology, decreased number of meiotic germ cells, and decreased expression of the meiotic marker protein γH2AX. Real time RT-PCR also revealed a significant down-regulation in the mRNA expressions of various meiosis-specific markers (Stra8, Spo11, Scp3, and Dmc1) together with those of Raldh2, a retinoic acid (RA) synthetase, and of the receptors (RARα and RARβ). In addition, exposure to Cd increased the production of H2 O2 and malondialdehyde in the ovaries and caused a corresponding reduction in glutathione and superoxide dismutase. Simultaneous supplementation of GSPE (150 µg/egg) markedly alleviated the aforementioned Cd-induced embryotoxic effects by upregulating meiosis-related proteins and gene expressions and restoring the antioxidative level. Collectively, the findings provided novel insights into the underlying mechanism of Cd-induced meiosis inhibition and indicated that GSPE might potentially ameliorate related reproductive disorders. © 2016 Wiley Periodicals, Inc.

  10. Chinese Herbal Preparation Xuebijing Potently Inhibits Inflammasome Activation in Hepatocytes and Ameliorates Mouse Liver Ischemia-Reperfusion Injury.

    Directory of Open Access Journals (Sweden)

    Xiqiang Liu

    Full Text Available The Chinese herb preparation Xuebijing injection (XBJ has been widely used in the management of various septic disorders or inflammation-related conditions, however the molecular mechanism of its anti-inflammatory effect remains largely elusive. In the current study, we found that XBJ treatment potently ameliorated mouse hepatic ischemia-reperfusion (IR injury, manifested as decreased liver function tests (LDH, ALT, AST, improved inflammation and less hepatocyte apoptosis. Notably, XBJ markedly inhibited inflammasome activation and IL-1 production in mouse livers subjected to IRI, even in the absence of Kupffer cells, suggesting Kupffer cells are not necessary for hepatic inflammasome activation upon Redox-induced sterile inflammation. This finding led us to investigate the role of XBJ on hepatocyte apoptosis and inflammasome activation using an in vitro hydrogen peroxide (H2O2-triggered hepatocyte injury model. Our data clearly demonstrated that XBJ potently inhibited apoptosis, as well as caspase-1 cleavage and IL-1β production in a time- and dose-dependent manner in isolated hepatocytes, suggesting that in addition to its known modulatory effect on NF-κB-dependent inflammatory gene expression, it also has a direct impact on hepatocyte inflammasome activation. The current study not only deepens our understanding of how XBJ ameliorates inflammation and apoptosis, but also has immediate practical significance in many clinical situations such as partial hepatectomy, liver transplantation, etc.

  11. Differential and conditional activation of PKC-isoforms dictates cardiac adaptation during physiological to pathological hypertrophy.

    Directory of Open Access Journals (Sweden)

    Shaon Naskar

    Full Text Available A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy or detrimental (pathological hypertrophy. This study was undertaken to establish the role of different protein kinase-C (PKC isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation.

  12. Differential and Conditional Activation of PKC-Isoforms Dictates Cardiac Adaptation during Physiological to Pathological Hypertrophy

    Science.gov (United States)

    Naskar, Shaon; Datta, Kaberi; Mitra, Arkadeep; Pathak, Kanchan; Datta, Ritwik; Bansal, Trisha; Sarkar, Sagartirtha

    2014-01-01

    A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus) models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation. PMID:25116170

  13. Differential and conditional activation of PKC-isoforms dictates cardiac adaptation during physiological to pathological hypertrophy.

    Science.gov (United States)

    Naskar, Shaon; Datta, Kaberi; Mitra, Arkadeep; Pathak, Kanchan; Datta, Ritwik; Bansal, Trisha; Sarkar, Sagartirtha

    2014-01-01

    A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus) models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation.

  14. Effect of PKC pathway on G1/S progression control in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of PKC activity on G1/S progression in HeLa cells has been studied.The result shows that (ⅰ) PKC activity alteration in G1 phase affects G1/S progression in HeLa cells.It has been observed that G1/S progression is stimulated by PKC agonist TPA and inhibited by PKC inhibitor GF-109203X.(ⅱ) The expression of c-myc and c-jun is stimulated by TPA and inhibited by GF-109203X treatment in early G1 phase.(ⅲ) During G1/S progression,the expression of CyclinD1 is stimulated by TPA treatment and inhibited by GF-109203X treatment.There is no effect on the expression of CDK4.It is likely that PKC pathway regulates G1/S progression through regulating the expression of some early response genes and engine molecules in HeLa cells.

  15. Puerarin ameliorates experimental alcoholic liver injury by inhibition of endotoxin gut leakage, Kupffer cell activation, and endotoxin receptors expression.

    Science.gov (United States)

    Peng, Jing-Hua; Cui, Tuan; Huang, Fu; Chen, Liang; Zhao, Yu; Xu, Lin; Xu, Li-Li; Feng, Qin; Hu, Yi-Yang

    2013-03-01

    Puerarin, an isoflavone component extracted from Kudzu (Pueraria lobata), has been demonstrated to alleviate alcohol-related disorders. Our study examined whether puerarin ameliorates chronic alcoholic liver injury through inhibition of endotoxin gut leakage, the subsequent Kupffer cell activation, and endotoxin receptors expression. Rats were provided with the Liber-DeCarli liquid diet for 8 weeks. Puerarin (90 mg/kg or 180 mg/kg daily) was orally administered from the beginning of the third week until the end of the experiment. Chronic alcohol intake caused increased serum alanine aminotransferase, aspartate aminotransferase, hepatic gamma-glutamyl transpeptidase, and triglyceride levels as well as fatty liver and neutrophil infiltration in hepatic lobules as determined by biochemical and histologic assays. A significant increase of liver tumor necrosis factor α was detected by enzyme-linked immunosorbent assay. These pathologic effects correlated with increased endotoxin level in portal vein and upregulated protein expression of hepatic CD68, lipopolysaccharide-binding protein, CD14, Toll-like receptor 2, and Toll-like receptor 4. Meanwhile, the intestinal microvilli were observed to be sparse, shortened, and irregularity in distribution under the transmission electron microscope in conjunction with the downregulated intestinal zonula occludens-1 protein expression. These hepatic pathologic changes were significantly inhibited in puerarin-treated animals as were the endotoxin levels and hepatic CD68 and endotoxin receptors. Moreover, the pathologic changes in intestinal microvillus and the decreased intestinal zonula occludens-1 were also ameliorated with puerarin treatment. These results thus demonstrate that puerarin inhibition of endotoxin gut leakage, Kupffer cell activation, and endotoxin receptors expression is involved in the alleviation of chronic alcoholic liver injury in rats.

  16. Dipeptidyl peptidase-4 inhibition by Pterocarpus marsupium and Eugenia jambolana ameliorates streptozotocin induced Alzheimer's disease.

    Science.gov (United States)

    Kosaraju, Jayasankar; Madhunapantula, Subbarao V; Chinni, Santhivardhan; Khatwal, Rizwan Basha; Dubala, Anil; Muthureddy Nataraj, Satish Kumar; Basavan, Duraiswamy

    2014-07-01

    Alzheimer's disease (AD), the most common form of dementia, is characterized by the loss of normal functions of brain cells and neuronal death, ultimately leading to memory loss. Recent accumulating evidences have demonstrated the therapeutic potential of anti-diabetic agents, such as dipeptidyl peptidase-4 (DPP-4) inhibitors, for the treatment of Alzheimer's disease (AD), providing opportunities to explore and test the DPP-4 inhibitors for treating this fatal disease. Prior studies determining the efficacy of Pterocarpus marsupium (PM, Fabaceae) and Eugenia jambolana (EJ, Myrtaceae) extracts for ameliorating type 2 diabetes have demonstrated the DPP-4 inhibitory properties indicating the possibility of using of these extracts even for the treating AD. Therefore, in the present study, the neuroprotective roles of PM and EJ for ameliorating the streptozotocin (STZ) induced AD have been tested in rat model. Experimentally, PM and EJ extracts, at a dose range of 200 and 400mg/kg, were administered orally to STZ induced AD Wistar rats and cognitive evaluation tests were performed using radial arm maze and hole-board apparatus. Following 30 days of treatment with the extracts, a dose- and time-dependent attenuation of AD pathology, as evidenced by decreasing amyloid beta 42, total tau, phosphorylated tau and neuro-inflammation with an increase in glucagon-like peptide-1 (GLP-1) levels was observed. Therefore, PM and EJ extracts contain cognitive enhancers as well as neuroprotective agents against STZ induced AD. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Reinforcement and Stimulant Medication Ameliorate Deficient Response Inhibition in Children with Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Rosch, Keri S; Fosco, Whitney D; Pelham, William E; Waxmonsky, James G; Bubnik, Michelle G; Hawk, Larry W

    2016-02-01

    This study examined the degree to which reinforcement, stimulant medication, and their combination impact response inhibition in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Across three studies, participants with ADHD (n = 111, 25 girls) and typically-developing (TD) controls (n = 33, 6 girls) completed a standard version of the stop signal task (SST) and/or a reinforcement-manipulation SST with performance-contingent points. In two of these studies, these tasks were performed under placebo or 0.3 and 0.6 mg/kg methylphenidate (MPH) conditions. Cross-study comparisons were conducted to test hypotheses regarding the separate and combined effects of reinforcement and methylphenidate on response inhibition among children with ADHD relative to TD controls. Baseline response inhibition was worse among children with ADHD compared to controls. MPH produced dose-related improvements in response inhibition in children with ADHD; compared to non-medicated TD controls, 0.3 mg/kg MPH normalized deficient response inhibition, and 0.6 mg/kg MPH resulted in better inhibition in children with ADHD. Reinforcement improved response inhibition to a greater extent for children with ADHD than for TD children, normalizing response inhibition. The combination of MPH and reinforcement improved response inhibition among children with ADHD compared to reinforcement alone and MPH alone, also resulting in normalization of response inhibition despite repeated task exposure. Deficient response inhibition commonly observed in children with ADHD is significantly improved with MPH and/or reinforcement, normalizing inhibition relative to TD children tested under standard conditions.

  18. Corosolic acid inhibits adipose tissue inflammation and ameliorates insulin resistance via AMPK activation in high-fat fed mice.

    Science.gov (United States)

    Yang, Jie; Leng, Jing; Li, Jing-Jing; Tang, Jing-fu; Li, Yi; Liu, Bao-Lin; Wen, Xiao-Dong

    2016-02-15

    Adipose tissue inflammation is tightly associated with the development of insulin resistance. Corosolic acid (CRA), a natural triterpenoid, is well known as "phyto-insulin" due to its insulin-like activities. However, its underlying mechanism remains unknown. In this study, we investigated the mechanisms of CRA on improving insulin resistance both in vivo and in vitro. C57BL/6 mice were fed with normal diet, high-fat diet (HFD) or HFD with CRA, respectively. General biochemical parameters in blood and glucose intolerance in mice were assayed. Meanwhile, proinflammatory cytokines and macrophage infiltrations in adipose tissues were analyzed by real-time PCR and immunohistochemical staining. The effects of CRA on insulin signaling transduction and AMPK activity in adipose tissues were investigated by western blot. Furthermore, the effects of CRA on AMPK were confirmed on 3T3-L1 cells by using both AMPK inhibitor and AMPKα1/2-specific siRNA RESULTS: CRA attenuated hyperlipidemia, improved insulin sensitivity and glucose intolerance in mice. Meanwhile, it alleviated inflammation in adipose tissues, demonstrated by the suppression of IKKβ phosphorylation and down-regulation of gene expressions of proinflammatory cytokines. Histological analysis revealed that CRA attenuated macrophage infiltrations into adipose tissue. It also improved insulin signaling transduction by modification of Ser/Thr phosphorylation of IRS-1 and downstream Akt, thereby improved insulin sensitivity in HFD-fed mice. Furthermore, CRA regulated AMPK activation in a LKB1-dependent manner. AMPKα knockdown in adipocytes abolished the inhibitory effects of CRA on IKKβ and IRS-1 serine phosphorylation, indicating that CRA inhibited inflammation and ameliorated insulin resistance via AMPK activation. CRA inhibited inflammation with improvement in adipose tissue dysfunction and ameliorated insulin resistance in an AMPK-dependent manner. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages.

    Science.gov (United States)

    Ke, Ping; Shao, Bo-Zong; Xu, Zhe-Qi; Wei, Wei; Han, Bin-Ze; Chen, Xiong-Wen; Su, Ding-Feng; Liu, Chong

    2016-01-01

    Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear. In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. In peritoneal macrophages isolated from C57BL/6 mice, LPS/DSS challenge for 24 h increased the expression of the components of NLRP3 inflammasome NLRP3, Casp-1 p20/Casp-1 p45 ratio, proIL-1β and IL-1β and also enhanced autophagy (LC3-II/LC3-I ratio, Beclin-1 and SQSTM1). Pretreatment of peritoneal macrophages with HU 308, a selective CB2R agonist, attenuated LPS/DSS-induced NLRP3 inflammasome activation, but further enhanced autophagy. In comparison with wild-type (WT) control, peritoneal macrophages from CB2R knockout (KO) mice had more robust NLRP3 inflammasome activation and attenuated autophagy upon LPS/DSS challenge. Knockdown autophagy-related gene 5 (Atg5) with a siRNA in peritoneal macrophages attenuated the inhibitory effects of HU 308 on LPS/DSS-induced NLRP3 inflammasome activation in vitro. In vivo, HU308 treatment attenuated DSS-induced colitis mice associated with reduced colon inflammation and inhibited NLRP3 inflammasome activation in wild-type mice. In CB2R KO mice, DSS-induced inflammation and NLRP3 inflammasome activation were more pronounced than those in WT control. Finally, we demonstrated that AMPK-mTOR-P70S6K signaling pathway was involved in this CB2R-mediated process. We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages.

  20. Piperine ameliorates the severity of cerulein-induced acute pancreatitis by inhibiting the activation of mitogen activated protein kinases.

    Science.gov (United States)

    Bae, Gi-Sang; Kim, Min-Sun; Jeong, Jinsu; Lee, Hye-Youn; Park, Kyoung-Chel; Koo, Bon Soon; Kim, Byung-Jin; Kim, Tae-Hyeon; Lee, Seung Ho; Hwang, Sung-Yeon; Shin, Yong Kook; Song, Ho-Joon; Park, Sung-Joo

    2011-07-01

    Piperine is a phenolic component of black pepper (Piper nigrum) and long pepper (Piper longum), fruits used in traditional Asian medicine. Our previous study showed that piperine inhibits lipopolysaccharide-induced inflammatory responses. In this study, we investigated whether piperine reduces the severity of cerulein-induced acute pancreatitis (AP). Administration of piperine reduced histologic damage and myeloperoxidase (MPO) activity in the pancreas and ameliorated many of the examined laboratory parameters, including the pancreatic weight (PW) to body weight (BW) ratio, as well as serum levels of amylase and lipase and trypsin activity. Furthermore, piperine pretreatment reduced the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 during cerulein-induced AP. In accordance with in vivo results, piperine reduced cell death, amylase and lipase activity, and cytokine production in isolated cerulein-treated pancreatic acinar cells. In addition, piperine inhibited the activation of mitogen-activated protein kinases (MAPKs). These findings suggest that the anti-inflammatory effect of piperine in cerulein-induced AP is mediated by inhibiting the activation of MAPKs. Thus, piperine may have a protective effect against AP.

  1. Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice.

    Science.gov (United States)

    Rozkalne, Anete; Hyman, Bradley T; Spires-Jones, Tara L

    2011-03-01

    Synapse loss is the strongest correlate of cognitive decline in Alzheimer's disease, and synapses are an attractive therapeutic target due to their plastic nature that allows for potential recovery with intervention. We have previously demonstrated in transgenic mice that form senile plaques that dendrites surrounding plaques become dystrophic and lose postsynaptic dendritic spines. Furthermore, we found strong evidence that plaque-associated dendritic changes are mediated by calcineurin, a calcium-dependent phosphatase involved in cell signaling, using in vitro models and genetically encoded inhibitors in mouse models. In this study, we pharmacologically inhibited calcineurin with FK506 treatment to test the hypothesis that calcineurin inhibition will allow recovery of plaque-associated synapse loss. We found that in plaque bearing transgenic mice, short term (1 week) FK506 treatment results in an amelioration of dendritic spine loss. We also observe an effect on spine morphology in wild-type mice with FK506 treatment. These data show that systemic FK506 administration, and hence calcineurin inhibition, may be neuroprotective for amyloid beta induced synaptic alterations.

  2. Graptopetalum paraguayense Ameliorates Airway Inflammation and Allergy in Ovalbumin- (OVA- Sensitized BALB/C Mice by Inhibiting Th2 Signal

    Directory of Open Access Journals (Sweden)

    Bao-Hong Lee

    2013-01-01

    Full Text Available Role of inflammation-induced oxidative stress in the pathogenesis and progression of chronic inflammatory airways diseases has received increasing attention in recent years. Nuclear factor erythroid 2-related factor 2 is the primary transcription factor that regulates the expression of antioxidant and detoxifying enzymes. Graptopetalum paraguayense E. Walther, a vegetable consumed in Taiwan, has been used in folk medicine for protection against liver injury through elevating antioxidation. Recently, we found that gallic acid is an active compound of Graptopetalum paraguayense E. Walther, which has been reported to inhibit T-helper 2 cytokines. Currently, we assumed that Graptopetalum paraguayense E. Walther may potentially protect against ovalbumin-induced allergy and airway inflammation. Results demonstrated that Graptopetalum paraguayense E. Walther ethanolic extracts (GPE clearly inhibited airway inflammation, mucus cell hyperplasia, and eosinophilia in OVA-challenged mice. Additionally, GPE also prevented T-cell infiltration and Th2 cytokines, including interleukin- (IL-4, IL-5, and IL-13 generations in bronchial alveolar lavage fluid. The adhesion molecules ICAM-1 and VCAM-1 were substantially reduced by GPE treatment mediated by Nrf2 activation. Moreover, GPE attenuated GATA3 expression and inhibited Th2 signals of the T cells. These findings suggested that GPE ameliorated the development of airway inflammation through immune regulation.

  3. Mangiferin ameliorates colitis by inhibiting IRAK1 phosphorylation in NF-κB and MAPK pathways.

    Science.gov (United States)

    Jeong, Jin-Ju; Jang, Se-Eun; Hyam, Supriya R; Han, Myung Joo; Kim, Dong-Hyun

    2014-10-05

    Mangiferin, a main constituent of the root of Anemarrhena asphodeloides and the leaves of Mangifera indica, inhibits NF-κB activation in macrophages. Therefore, we investigated effect of mangiferin on 2,3,4-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice and its anti-inflammatory mechanism in lipolysaccharide (LPS)- or peptidoglycan-stimulated mouse peritoneal macrophages. Mangiferin inhibited phosphorylation of nuclear factor-kappaB (NF-κB), interleukin-1 receptor-associated kinase 1 (IRAK1), and mitogen-activated protein kinases (MAPK) in peptidoglycan- or LPS-stimulated peritoneal macrophages. Mangiferin in the presence of SN50 inhibited LPS-stimulated NF-κB activation more potently than mangiferin alone. Mangiferin inhibited interaction of fluorescent p-IRAK1 antibody to LPS-stimulated peritoneal macrophages, but increased binding of fluorescent IRAK1 antibody. Mangiferin did not influence interaction of fluorescent LPS to toll-like receptor-4 on the macrophages. Molecular peak of mangiferin bound to IRAK1 was detected in the macrophages by mass analysis. Mangiferin (10 μM) inhibited LPS-stimulated expression of TNF-α, IL-1β and IL-6 by 81.0%, 89.5% and 88.3%, respectively, whereas it increased IL-10 expression by 131.8% compared to LPS-nontreated group. Mangiferin furthermore inhibited colon shortening, macroscopic score, and colonic myeloperoxidase activity in TNBS-induced colitic mice. Mangiferin inhibited TNBS-induced IRAK1 phosphorylation and NF-κB activation. Mangiferin suppressed TNBS-induced up-regulation of cyclooxygenase-2 and inducible NO synthase. Furthermore, mangiferin (20mg/kg) significantly inhibited TNF-α by 78%, IL-1β by 82%, and IL-6 expressions by 88% (Pinhibition of IRAK1 phosphorylation.

  4. Pirfenidone ameliorates murine chronic GVHD through inhibition of macrophage infiltration and TGF-β production.

    Science.gov (United States)

    Du, Jing; Paz, Katelyn; Flynn, Ryan; Vulic, Ante; Robinson, Tara M; Lineburg, Katie E; Alexander, Kylie A; Meng, Jingjing; Roy, Sabita; Panoskaltsis-Mortari, Angela; Loschi, Michael; Hill, Geoffrey R; Serody, Jonathan S; Maillard, Ivan; Miklos, David; Koreth, John; Cutler, Corey S; Antin, Joseph H; Ritz, Jerome; MacDonald, Kelli P; Schacker, Timothy W; Luznik, Leo; Blazar, Bruce R

    2017-03-02

    Allogeneic hematopoietic stem cell transplantation is hampered by chronic graft-versus-host disease (cGVHD) resulting in multi-organ fibrosis and diminished function. Fibrosis in lung and skin leads to progressive bronchiolitis obliterans (BO) and scleroderma, respectively, for which new treatments are needed. We evaluated pirfenidone, a FDA approved drug for idiopathic pulmonary fibrosis, for its therapeutic effect in cGVHD mouse models with distinct pathophysiology. In a full MHC-mismatched, multi-organ system model with BO, donor T cell responses that support pathogenic antibody production are required for cGVHD development. Pirfenidone treatment beginning one month post-transplant restored pulmonary function and reversed lung fibrosis, which was associated with reduced macrophage infiltration and TGF-β production. Pirfenidone dampened splenic germinal center B cell and T follicular helper cell frequencies that collaborate to produce antibody. In both a minor histocompatibility antigen-mismatched as well as a MHC-haploidentical model of sclerodermatous cGVHD, pirfenidone significantly reduced macrophages in the skin, although clinical improvement of scleroderma was only seen in one model. In vitro chemotaxis assays demonstrated that pirfenidone impaired macrophage migration to MCP-1 as well as IL-17A, that has been linked to cGVHD generation. Taken together, our data suggest that pirfenidone is a potential therapeutic agent to ameliorate fibrosis in cGVHD.

  5. Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU).

    Science.gov (United States)

    Harding, Cary O; Winn, Shelley R; Gibson, K Michael; Arning, Erland; Bottiglieri, Teodoro; Grompe, Markus

    2014-09-01

    Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU.

  6. The Neuropeptide Orexin-A Inhibits the GABAA Receptor by PKC and Ca(2+)/CaMKII-Dependent Phosphorylation of Its β1 Subunit.

    Science.gov (United States)

    Sachidanandan, Divya; Reddy, Haritha P; Mani, Anitha; Hyde, Geoffrey J; Bera, Amal Kanti

    2017-04-01

    Orexin-A and orexin-B (Ox-A, Ox-B) are neuropeptides produced by a small number of neurons that originate in the hypothalamus and project widely in the brain. Only discovered in 1998, the orexins are already known to regulate several behaviours. Most prominently, they help to stabilise the waking state, a role with demonstrated significance in the clinical management of narcolepsy and insomnia. Orexins bind to G-protein-coupled receptors (predominantly postsynaptic) of two subtypes, OX1R and OX2R. The primary effect of Ox-OXR binding is a direct depolarising influence mediated by cell membrane cation channels, but a wide variety of secondary effects, both pre- and postsynaptic, are also emerging. Given that inhibitory GABAergic neurons also influence orexin-regulated behaviours, crosstalk between the two systems is expected, but at the cellular level, little is known and possible mechanisms remain unidentified. Here, we have used an expression system approach to examine the feasibility, and nature, of possible postsynaptic crosstalk between Ox-A and the GABAA receptor (GABAAR), the brain's main inhibitory neuroreceptor. When HEK293 cells transfected with OX1R and the α1, β1, and γ2S subunits of GABAAR were exposed to Ox-A, GABA-induced currents were inhibited, in a calcium-dependent manner. This inhibition was associated with increased phosphorylation of the β1 subunit of GABAAR, and the inhibition could itself be attenuated by (1) kinase inhibitors (of protein kinase C and CaM kinase II) and (2) the mutation, to alanine, of serine 409 of the β1 subunit, a site previously identified in phosphorylation-dependent regulation in other pathways. These results are the first to directly support the feasibility of postsynaptic crosstalk between Ox-A and GABAAR, indicating a process in which Ox-A could promote phosphorylation of the β1 subunit, reducing the GABA-induced, hyperpolarising current. In this model, Ox-A/GABAAR crosstalk would cause the depolarising

  7. YiQiFuMai Powder Injection Ameliorates Cerebral Ischemia by Inhibiting Endoplasmic Reticulum Stress-Mediated Neuronal Apoptosis

    Directory of Open Access Journals (Sweden)

    Guosheng Cao

    2016-01-01

    Full Text Available YiQiFuMai (YQFM powder injection as a modern preparation derived from Sheng Mai San, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, its neuroprotective effect and underlying mechanism in cerebral ischemia remain to be explored. The present study was designed to investigate the neuroprotective effect of YQFM on endoplasmic reticulum (ER stress-mediated neuronal apoptosis in the permanent middle cerebral artery occlusion- (MCAO- injured mice and the oxygen-glucose deprivation- (OGD- induced pheochromocytoma (PC12 cells. The results showed that single administration of YQFM (1.342 g/kg, i.p. could reduce the brain infarction and improve the neurological deficits and the cerebral blood flow (CBF after MCAO for 24 h in mice. Moreover, incubation with YQFM (100, 200, and 400 μg/mL could increase the cell viability, decrease the caspase-3 activity, and inhibit the cell apoptosis in OGD-induced PC12 cells for 12 h. In addition, YQFM treatment could significantly modulate cleaved caspase-3 and Bcl-2 expressions and inhibit the expressions of ER stress-related marker proteins and signaling pathways in vivo and in vitro. In conclusion, our findings provide the first evidence that YQFM ameliorates cerebral ischemic injury linked with modulating ER stress-related signaling pathways, which provided some new insights for its prevention and treatment of cerebral ischemia diseases.

  8. A New Phenylpyrazoleanilide, Y-320, Inhibits Interleukin 17 Production and Ameliorates Collagen-Induced Arthritis in Mice and Cynomolgus Monkeys

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ushio

    2013-12-01

    Full Text Available Interleukin (IL-15 and IL-17 are thought to play an important role in the pathogenesis of rheumatoid arthritis (RA because both pro-inflammatory cytokines are found in synovial fluid of RA patients. In this study, we examined the pharmacological profiles of Y-320, a new phenylpyrazoleanilide immunomodulator. Y-320 inhibited IL-17 production by CD4 T cells stimulated with IL-15 with IC50 values of 20 to 60 nM. Oral administration of Y-320 (0.3 to 3 mg/kg significantly inhibited the development and progression of arthritis and joint destruction with reduction of IL-17 mRNA expression in arthritic joints of type II collagen-induced arthritis (CIA in DBA/1J mice. Y-320 in combination with anti-murine tumor necrosis factor-α monoclonal antibody showed a synergistic effect on mouse CIA. Moreover, therapeutic treatment with Y-320 (0.3 and 1 mg/kg orally ameliorated CIA in cynomolgus monkeys. Our results suggest that Y-320, an orally active inhibitor for IL-17 production, provides a useful therapy for RA.

  9. A Mushroom Extract Piwep from Phellinus igniarius Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Immune Cell Infiltration in the Spinal Cord

    Directory of Open Access Journals (Sweden)

    Lan Li

    2014-01-01

    Full Text Available The present study aimed to evaluate the therapeutic potential of a mushroom extract from Phellinus igniarius in an animal model of multiple sclerosis. The medicinal mushroom, Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35–55 in C57BL/6 female mice. A water-ethanol extract of Phellinus igniarius (Piwep was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1 in the spinal cord and integrin-α4 in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γ in the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression.

  10. All-trans-Retinoic Acid Ameliorated High Fat Diet-Induced Atherosclerosis in Rabbits by Inhibiting Platelet Activation and Inflammation

    Directory of Open Access Journals (Sweden)

    Birong Zhou

    2012-01-01

    Full Text Available Background. All-trans-retinoic acid (atRA is effective for many proliferative diseases. We investigated the protective effects of atRA against atherosclerosis. Methods. Rabbits were randomly allocated to receive basal diet or an HFD for 4 weeks. HFD group then received rosuvastatin (3 mg/day, atRA (5 mg/kg/day, or the same volume of vehicle, respectively, for next 8 weeks. Results. HFD group showed increases in plasma lipids and aortic plaque formation. P-selectin expression and fibrinogen binding on platelets or deposition on the intima of the aorta also increased significantly as did the levels of TNF-α, IL-6, and fibrinogen in plasma. After 8 weeks of treatment with atRA, there was a significant decrease in plasma lipids and improvement in aortic lesions. AtRA also inhibited the expression of P-selectin and fibrinogen binding on platelets and deposition on the intima of the aorta. Conclusion. AtRA can ameliorate HFD-induced AS in rabbits by inhibiting platelet activation and inflammation.

  11. Erythropoietin ameliorates renal interstitial fibrosis via the inhibition of fibrocyte accumulation.

    Science.gov (United States)

    Geng, Xu Chang; Hu, Zhou Pang; Lian, Guo Yong

    2015-05-01

    Erythropoietin (EPO) is a hematopoietic hormone that protects against renal interstitial fibrosis in animal models; however, the mechanism underlying the anti‑fibrotic activity of EPO has remained elusive. The present study aimed to elucidate this mechanism. Twenty‑four male C57BL6 mice were randomly divided into four groups, each comprising six mice: (i) control group (Sh); (ii) unilateral ureteral obstruction (UUO) plus vehicle group (U+V); (ⅲ) UUO plus 300 U/kg body weight recombinant human (rh)EPO (U+E1) and (ⅳ) UUO plus 1,000 U/kg body weight rhEPO (U+E2). Seven days post‑surgery, the mice were sacrificed for examination. UUO induced significant deposition of extracellular matrix, detected by picro‑sirius red staining, which was decreased following rhEPO treatment. UUO also induced deposition of collagen I and fibronectin, rhEPO treatment was able to attenuate this effect at protein and mRNA levels. Compared with the control groups, UUO resulted in the accumulation of α‑smooth muscle actin‑positive cells in the interstitium, an effect which was ameliorated by rhEPO. Furthermore, rhEPO abrogated the UUO‑induced increase in the number of bone marrow‑derived myofibroblasts. Mechanistically, it was discovered that rhEPO decreased CXC chemokine ligand 16 (CXCL16) expression at protein level. However, treatment with rhEPO did not alter the protein expression of CC chemokine ligand 21 or CXCL12. These results suggested that rhEPO decreased fibrocyte accumulation via the suppression of renal CXCL16, which resulted in the attenuation of renal fibrosis.

  12. Inhibition of Lipolysis Ameliorates Diabetic Phenotype in a Mouse Model of Obstructive Sleep Apnea.

    Science.gov (United States)

    Weiszenstein, Martin; Shimoda, Larissa A; Koc, Michal; Seda, Ondrej; Polak, Jan

    2016-08-01

    Obstructive sleep apnea (OSA) is associated with insulin resistance, glucose intolerance, and type 2 diabetes. Causal mechanisms mediating this association are not well defined; however, augmented lipolysis in adipose might be involved. Here, we investigated the effect of acipimox treatment (lipolysis inhibitor) on glucose tolerance and insulin sensitivity in mice exposed to intermittent hypoxia (IH). C57BL6/J mice were exposed for 14 days to IH or control conditions. IH was created by decreasing the fraction of inspired oxygen from 20.9 to 6.5%, 60 times/h. Control exposure was air (fraction of inspired oxygen, 20.9%) delivered at an identical flow rate. Acipimox was provided in drinking water (0.5 g/ml) during exposures. After exposures, intraperitoneal insulin (0.5 IU/kg) and glucose (1 g/kg) tolerance tests were performed, and primary adipocytes were isolated for lipolysis experiments. IH elevated fasting glucose by 51% and worsened glucose tolerance and insulin sensitivity by 33 and 102%, respectively. In parallel, IH increased spontaneous lipolysis by 264%, and reduced epididymal fat mass by 15% and adipocyte size by 8%. Acipimox treatment prevented IH-induced lipolysis and increased epididymal fat mass and adipocyte size by 19 and 10%, respectively. Acipimox fully prevented IH-induced impairments in fasting glycemia, glucose tolerance, and insulin sensitivity. For all reported results, P less than 0.05 was considered significant. Augmented lipolysis contributes to insulin resistance and glucose intolerance observed in mice exposed to IH. Acipimox treatment ameliorated the metabolic consequences of IH and might represent a novel treatment option for patients with obstructive sleep apnea.

  13. Leukotriene biosynthesis inhibition ameliorates acute lung injury following hemorrhagic shock in rats

    Directory of Open Access Journals (Sweden)

    Hadi Najah R

    2011-06-01

    Full Text Available Abstract Background Hemorrhagic shock followed by resuscitation is conceived as an insult frequently induces a systemic inflammatory response syndrome and oxidative stress that results in multiple-organ dysfunction syndrome including acute lung injury. MK-886 is a leukotriene biosynthesis inhibitor exerts an anti inflammatory and antioxidant activity. Objectives The objective of present study was to assess the possible protective effect of MK-886 against hemorrhagic shock-induced acute lung injury via interfering with inflammatory and oxidative pathways. Materials and methods Eighteen adult Albino rats were assigned to three groups each containing six rats: group I, sham group, rats underwent all surgical instrumentation but neither hemorrhagic shock nor resuscitation was done; group II, Rats underwent hemorrhagic shock (HS for 1 hr then resuscitated with Ringer's lactate (1 hr (induced untreated group, HS; group III, HS + MK-886 (0.6 mg/kg i.p. injection 30 min before the induction of HS, and the same dose was repeated just before reperfusion period. At the end of experiment (2 hr after completion of resuscitation, blood samples were collected for measurement of serum tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6. The trachea was then isolated and bronchoalveolar lavage fluid (BALF was carried out for measurement of leukotriene B4 (LTB4, leukotriene C4 (LTC4 and total protein. The lungs were harvested, excised and the left lung was homogenized for measurement of malondialdehyde (MDA and reduced glutathione (GSH and the right lung was fixed in 10% formalin for histological examination. Results MK-886 treatment significantly reduced the total lung injury score compared with the HS group (P 4, LTC4 & total protein compared with the HS group (P P Conclusions The results of the present study reveal that MK-886 may ameliorate lung injury in shocked rats via interfering with inflammatory and oxidative pathways implicating the role of

  14. NFkappaB decoy oligodeoxynucleotides ameliorates osteoporosis through inhibition of activation and differentiation of osteoclasts.

    Science.gov (United States)

    Shimizu, H; Nakagami, H; Tsukamoto, I; Morita, S; Kunugiza, Y; Tomita, T; Yoshikawa, H; Kaneda, Y; Ogihara, T; Morishita, R

    2006-06-01

    The transcription factor, nuclear factor-kappa B (NFkappaB), is believed to play a pivotal role in osteoclast formation. In this study, we focused on NFkappaB decoy oligodeoxynucleotides (ODN) as a new therapeutic strategy to attenuate osteoporosis. Tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts formed in mononuclear cells including osteoclast precursors from neonatal rabbit bone marrow were increased in the presence of 1,25-dihydroxyvitamin D3, whereas transfection of NFkappaB decoy ODN decreased the number of TRAP-positive cells and attenuated RANKL and M-CSF-induced osteoclast formation. NFkappaB decoy ODN also inhibited the activity of osteoclasts, as assessed by pit formation. In rat ovariectomized model of estrogen deficiency, continuous administration of NFkappaB decoy ODN attenuated the increase of TRAP activity, accompanied by a significant increase in calcium concentration in tibia and femur and decrease in urinary deoxypyridinoline. In additional osteoporosis model using vitamin C-deficient rat, inhibition of NFkappaB by decoy ODN dramatically improved the bone length, weight, density as assessed by dual-energy X-ray absorptiometry. Overall, inhibition of NFkappaB by decoy strategy prevented osteoporosis through the inhibition of bone resorption. Targeting of NFkappaB might be potential therapy in various bone metabolic diseases.

  15. Ethyl pyruvate ameliorates experimental colitis in mice by inhibiting the HMGB1-Th17 and Th1/Tc1 responses.

    Science.gov (United States)

    Guo, Xianghua; Guo, Runhua; Luo, Xia; Zhou, Lian

    2015-12-01

    Ethyl pyruvate (EP), a simple lipophilic pyruvate ester, has demonstrated protective effects against murine colitis through inhibition the release of inflammatory factor high-mobility group protein box 1 (HMGB1). HMGB1 has been implicated in several autoimmune diseases by inducing Thl and Thl7 cells activation. This study was designed to investigate whether EP amelioration of murine colitis is related to the blocking of the HMGB1-Th17/Thl pathway. We induced murine colitis by intrarectal administration of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Ethyl pyruvate was injected intraperitoneally once a day for 7days. One week after intrarectal challenge with TNBS, HMGB1, IL-17 and IFN-γ protein levels were remarkably increased following severe colon inflammation. Meanwhile, excessive infiltration of Th17 cells in colonic tissues, and an upregulated proportion of Th17 and Th1/Tc1 cells in the spleen and mesenteric lymph nodes (MLN) were found in the TNBS-treated group compared to the control group. Treatment with the HMGB1 inhibitor EP not only remarkably improved colon pathological damage, but also significantly reduced the number of Th17 cells in the local tissues of the colitis-induced mice. Furthermore, the percentage of Th1/Tc1 and Th17 cells in the spleen and MLN, as well as levels of serum IFN-γ and IL-17A, were all markedly decreased in the EP-treated group. Moreover, in vitro, our results showed that EP in a dose dependent manner inhibited HMGB1 release induced by LPS from CT26 cells (murine colon adenocarcinoma cell line). These results suggest that HMGB1 contributes to the development of murine colitis by promoting the Th17 and Th1/Tc1 responses, and that EP can significantly inhibit HMGB1-Th17 and Thl/Tc1 pathway activation, which may provide better protection to mice with TNBS-induced colitis.

  16. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian; Zhang, Lin [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Dai, Weiqi [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Mao, Yuqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Li, Sainan [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Wang, Jingjie; Li, Huanqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Guo, Chuanyong [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Fan, Xiaoming, E-mail: xiaomingfan57@sina.com [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China)

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  17. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2012-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 +\\/- 2.6 and 38.8 +\\/- 6.7% (n=16; P<\\/=0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  18. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    LENUS (Irish Health Repository)

    Ward, Joseph B J

    2011-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 ± 2.6 and 38.8 ± 6.7% (n=16; P≤0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  19. Helianthus annuus Leaf Ameliorates Postprandial Hyperglycaemia by Inhibiting Carbohydrate Hydrolyzing Enzymes Associated with Type-2 Diabetes

    Directory of Open Access Journals (Sweden)

    Oluwafemi Adeleke Ojo

    2016-08-01

    Full Text Available Background: Diabetes mellitus is a chronic disease. Decreasing postprandial hyperglycemia by retarding glucose absorption through inhibiting carbohydrates digesting enzymes (α-amylase and α-glucosidase is one of many approaches used for the management of this disease. This study was aimed at evaluating the normoglycaemic potential of Helianthus annuus leaf. Methods: The effect of the in vitro inhibitory of different extracts (acetone, ethyl acetate and hexane of the plant was assessed on the activities of diabetes-related enzymes (α-amylase and α-glucosidase. Results: The hexane extract of H. annuus leaf displayed the best inhibitory activity against α-amylase and α-glucosidase as indicated by the IC50 values (3.92 ± 0.02 mg mL-1 and (3.29 ± 0.12 mg mL-1, respectively. Lineweaver-Burk plot of inhibition of α-amylase and α-glucosidase by this extract showed that it was competitive and non-competitive mode, respectively. Conclusion: H. annuus leaf possesses hypoglycaemic potential which may be due to the inhibition of pancreatic α-amylase and intestinal α-glucosidase.

  20. The inhibition of calpains ameliorates vascular restenosis through MMP2/TGF-β1 pathway.

    Science.gov (United States)

    Tang, Lianghu; Pei, Haifeng; Yang, Yi; Wang, Xiong; Wang, Ting; Gao, Erhe; Li, De; Yang, Yongjian; Yang, Dachun

    2016-07-25

    Restenosis limits the efficacy of vascular percutaneous intervention, in which vascular smooth muscle cell (VSMC) proliferation and activation of inflammation are two primary causal factors. Calpains influence VSMC proliferation and collagen synthesis. However, the roles of calpastatin and calpains in vascular restenosis remain unclear. Here, restenosis was induced by ligating the left carotid artery, and VSMCs were pretreated with platelet-derived growth factor (PDGF)-BB. Adenovirus vector carrying MMP2 sequence and specific small interfering RNA against calpain-1/2 were introduced. Finally, restenosis enhanced the expression of calpain-1/2, but reduced calpastatin content. In calpastatin transgenic mice, lumen narrowing was attenuated gradually and peaked on days 14-21. Cell proliferation and migration as well as collagen synthesis were inhibited in transgenic mice, and expression of calpain-1/2 and MMP2/transforming growth factor-β1 (TGF-β1). Consistently, in VSMCs pretreated with PDGF-BB, calpastatin induction and calpains inhibition suppressed the proliferation and migration of VSMCs and collagen synthesis, and reduced expression of calpain-1/2 and MMP2/TGF-β1. Moreover, simvastatin improved restenosis indicators by suppressing the HIF-1α/calpains/MMP2/TGF-β1 pathway. However, MMP2 supplementation eliminated the vascular protection of calpastatin induction and simvastatin. Collectively, calpains inhibition plays crucial roles in vascular restenosis by preventing neointimal hyperplasia at the early stage via suppression of the MMP2/TGF-β1 pathway.

  1. 7,8-Dihydroxyflavone Ameliorates Cognitive Impairment by Inhibiting Expression of Tau Pathology in ApoE-Knockout Mice

    Directory of Open Access Journals (Sweden)

    Yang Tan

    2016-11-01

    Full Text Available 7,8-Dihydroxyflavone (7,8-DHF, a tyrosine kinase B (TrkB agonist that mimics the neuroprotective properties of brain-derived neurotrophic factor, which can not efficiently deliver into the brain, has been reported to be useful in ameliorating cognitive impairment in many diseases. Researches have indicated that apolipoprotein E-knockout (ApoE-KO mouse was associated with cognitive alteration via various mechanisms. Our present study investigated the possible mechanisms of cognitive impairment of ApoE-KO mouse fed with western type diet and the protective effects of 7,8-DHF in improving spatial learning and memory in ApoE-KO mouse. 5-weeks-old ApoE-KO mice and C57BL/6 mice were chronically treated with 7,8-DHF (with a dosage of 5mg/kg or vehicles orally for 25 weeks, and then subjected to Morris water maze at the age of 30 weeks to evaluate the cognitive performances. Afterwards, histology analysis and western blotting were performed. Spatial learning and memory deficits were observed in ApoE-KO mice, which were consistent with higher expression of active-asparaginyl endopeptidase (active-AEP as well as AEP-derived truncated tauN368 compared with normal group. In addition to that, long-term treatment of 7,8-DHF dramatically ameliorated cognitive decline in ApoE-KO mice, accompanied by the activation in phosphorylated protein kinase B (Akt/glycogen synthase kinase-3β (GSK-3β pathway and down-regulated expression of tau S396 and PHF-tau (phosphorylated tau at ser396 and ser404 epitope. These findings suggested that cognitive impairment of ApoE-KO mouse might associate with tau pathology and 7,8-DHF could activate AKT and then phosphorylate its downstream molecule to inhibit expression of abnormal tau, meanwhile, 7,8-DHF could reduce the expression of active-AEP and then inhibit production of truncated tauN368.

  2. A desmoplakin point mutation with enhanced keratin association ameliorates pemphigus vulgaris autoantibody-mediated loss of cell cohesion.

    Science.gov (United States)

    Dehner, Carina; Rötzer, Vera; Waschke, Jens; Spindler, Volker

    2014-09-01

    Desmoplakin (DP) serves to anchor intermediate filaments in desmosomal complexes. Recent data suggest that a specific DP point mutation (S2849G) exhibits increased keratin filament association and fosters Ca(2+) insensitivity of desmosomes in keratinocytes, presumably by rendering DP inaccessible for protein kinase C (PKC) phosphorylation. Previously, we have reported that depletion of the desmosomal adhesion molecule desmoglein (Dsg)3 induced by autoantibodies from patients with the blistering skin disease pemphigus vulgaris (PV) IgG is reduced in maturated desmosomes and dependent on PKC signaling. We investigated the role of DP-S2849G for loss of cell cohesion mediated by PV-IgG. In cell dissociation assays, expression of green fluorescent protein-tagged DP-S2849G (DP-S2849G-GFP) increased cell cohesion in two different human keratinocyte cell lines and ameliorated loss of cell adhesion induced by pemphigus autoantibodies. Depletion of Dsg3 was inhibited by DP-S2849G-GFP in the cytoskeletal (Triton X-100 insoluble) fraction, and keratin filament retraction, a hallmark of PV, was efficiently blocked similar to treatment with the PKC inhibitor Bim-X. We found that DP is phosphorylated after incubation with PV-IgG in a PKC-dependent manner and that DP-S2849G-GFP expression prevents DP phosphorylation and increases association of PKC-α with PKC scaffold receptor for activated C-kinase 1. Taken together, our data indicate that DP phosphorylation at S2849 represents an important mechanism in pemphigus pathogenesis, which, by reversing Ca(2+) insensitivity, promotes Dsg3 depletion.

  3. Pycnogenol Ameliorates Asthmatic Airway Inflammation and Inhibits the Function of Goblet Cells.

    Science.gov (United States)

    Liu, Zhaoe; Han, Bo; Chen, Xing; Wu, Qiaoling; Wang, Lijun; Li, Gang

    2016-11-01

    Pycnogenol(®) (PYC) is utilized in the treatment of various diseases ranging from chronic inflammation to circulatory diseases, but its efficacy and functional mechanism in pediatric asthma continue to remain obscure. Therefore, the purpose of this study was to investigate the effectiveness and molecular mechanism of PYC on regulation of asthmatic airway inflammation. We found that PYC with tail intravenous injection of 50 mg/kg or intragastric administration of 100 mg/kg all reduced ovalbumin (OVA)-induced airway injury. Pharmacokinetics of PYC was evaluated by high-performance liquid chromatography assay, indicating that PYC was quickly absorbed into the blood after intragastric administration, and PYC metabolism was later improved gradually with increase of time after PYC administration. PYC has a higher bioavailability of 71.96%, and it was more easily absorbed by the body. PYC inhibited the number of total inflammatory cells and levels of interleukin (IL)-4, IL-5, IL-9, and IL-13 in bronchoalveolar lavage fluid of OVA-induced mice. PYC inhibited IL-13 secretion from the Th2 cells, thereby causing a reduction in expression of the signaling molecules in JAK/STAT6 pathway in airway epithelial cells. STAT6 silence suppressed IL-13-increased acetylcholine level. STAT6 overexpression promoted expression of goblet cell metaplasia-associated molecules (FOXA3, SPDEF, and Muc5ac). PYC suppressed OVA-induced expression of FOXA3, SPDEF, and Muc5ac in lung. Our findings indicate that PYC has a higher bioavailability and it prevents emergence of OVA-induced airway injury and airway inflammation in mice by inhibiting IL-13/JAK/STAT6 pathway and blocking release of acetylcholine to reduce goblet cell metaplasia.

  4. Inhibition of H3K9 methyltransferase G9a ameliorates methylglyoxal-induced peritoneal fibrosis

    Science.gov (United States)

    Maeda, Kazuya; Doi, Shigehiro; Nakashima, Ayumu; Nagai, Takuo; Irifuku, Taisuke; Ueno, Toshinori; Masaki, Takao

    2017-01-01

    Activity of H3K9 histone methyltransferase G9a is reportedly induced by transforming growth factor-β1 (TGF-β1) and plays an important role in the progression of cancer and fibrosis. In this study, we investigated whether inhibition of G9a-mediated H3K9 methylation attenuates peritoneal fibrosis in mice and human peritoneal mesothelial cells (HPMCs). Nonadherent cells of peritoneal dialysis (PD) patients were isolated from PD effluent to examine expression of G9a. Peritoneal fibrosis was induced by peritoneal injection of methylglyoxal (MGO) in male C57/B6 mice for 3 weeks. BIX01294, a G9a inhibitor, was administered by subcutaneous injection. Effects of BIX01294 on MGO-induced pathological and functional changes in mice were evaluated by immunohistochemistry and a peritoneal equilibration test. HPMCs were isolated from human omentum, and the inhibitory effect of BIX01294 on TGF-β1-induced fibrotic changes was investigated in the HPMCs by western blotting. G9a was upregulated in nonadherent cells of human PD effluent, the peritoneum of MGO-injected mice, and TGF-β1-stimulated HPMCs. BIX01294 significantly reduced the submesothelial zone thickness and cell density in MGO-injected mice. Immunohistochemical staining revealed that BIX01294 treatment decreased not only mono-methylation of H3K9 (H3K9me1), but also the number of mesenchymal cells, accumulation of collagen, and infiltration of monocytes. In addition to the pathological changes, BIX01294 reduced the level of TGF-β1 in peritoneal fluid and improved peritoneal functions. Furthermore, BIX01294 inhibited TGF-β1-induced fibrotic changes along with suppression of H3K9me1 in HPMCs. Therefore, inhibition of H3K9 methyltransferase G9a suppresses peritoneal fibrosis through a reduction of H3K9me1. PMID:28278257

  5. Inhibition of 11β-hydroxysteroid dehydrogenase type 1 ameliorates obesity-related insulin resistance.

    Science.gov (United States)

    Shao, Shiying; Zhang, Xiaojie; Zhang, Muxun

    2016-09-09

    Excess 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) may be implicated in the development of obesity related metabolic disorders. The present study measured the expression level of 11β-HSD1 in visceral adipose tissues from 23 patients undergoing abdominal operation. Correlation of 11β-HSD1 expression with BMI, waist-to-hip ratio (WHR), HOMA-IR, and serum lipids was evaluated by spearman correlation analysis. High-fat diet-induced obese (DIO) rats were orally dosed with BVT.2733 for 4 weeks. Weight, plasma insulin, and lipids were detected at the end of the treatment. The effects of 11β-HSD1 inhibition on the key insulin-signaling cascade and adipocytokines were measured by western blot and ELISA respectively. 11β-HSD1 was increased in patients with central obesity, the expression level of which was closely related with WHR (r = 0.5851), BMI (r = 0.4952), and HOMA-IR (r = 0.4637). Obesity related insulin resistance in high-fat DIO rats, as reflected by a marked decrease in IRS-1, IRS-2, GLUT4, and PI3K, could be attenuated by 11β-HSD1 inhibition. Furthermore, the down-regulation of 11β-HSD1 could correct the disordered profiles of adipocytokines including adiponectin, IL-6, and TNF-α. These findings indicated that 11β-HSD1 inhibition can give a potential benefit in reducing obesity and lowering insulin resistance by modulating the insulin-signaling pathway and adipocytokine production. Copyright © 2016. Published by Elsevier Inc.

  6. Regulation of the viability of Nf1 deficient cells by PKC isoforms.

    Science.gov (United States)

    Zhou, Xiaodong; Shen, Ling; Parris, Toshima; Huang, Junchi; Yi, Bo; Helou, Khalil; Chen, Changyan

    2014-11-15

    Suppression of protein kinase C (PKC) is known to be synthetically lethal with ras mutations in various types of cancer cells. The studies also showed that blockade of PKC affected the viability of Nf1 deficient cells. Since PKC family consists of more than 10 isoforms, our study aimed at identifying which isoform(s) played the crucial role in sensitizing Nf1 deficient cells to apoptosis. Using genetic and chemical PKC inhibitors, we demonstrated that the concurrent inhibition of PKC α and β induced Nf1 deficient ST or 96.2 cells, but not SNF02.2 cells with a normal Nf1 or ST cells ectopically expressing Nf1 effective domain gene, to apoptosis. In this process, PKC δ in Nf1 deficient cells, but not in ST/Nf1 cells, was upregulated and translocated to the nucleus. Furthermore, caspase 3 was cleaved and cytochrome c was released to the cytosol. Thus, it appeared that PKC δ and α/β are the crucial components for sustaining the aberrant Ras signaling and further viability of Nf1 deficient cells. The abrogation of these two isoforms activated their opponent PKC δ for switching on the caspase 3-governed apoptotic machinery.

  7. Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice

    Science.gov (United States)

    Sumner, Charlotte J.; Wee, Claribel D.; Warsing, Leigh C.; Choe, Dong W.; Ng, Andrew S.; Lutz, Cathleen; Wagner, Kathryn R.

    2009-01-01

    There is currently no treatment for the inherited motor neuron disease, spinal muscular atrophy (SMA). Severe SMA causes lower motor neuron loss, impaired myofiber development, profound muscle weakness and early mortality. Myostatin is a transforming growth factor-β family member that inhibits muscle growth. Loss or blockade of myostatin signaling increases muscle mass and improves muscle strength in mouse models of primary muscle disease and in the motor neuron disease, amyotrophic lateral sclerosis. In this study, we evaluated the effects of blocking myostatin signaling in severe SMA mice (hSMN2/delta7SMN/mSmn−/−) by two independent strategies: (i) transgenic overexpression of the myostatin inhibitor follistatin and (ii) post-natal administration of a soluble activin receptor IIB (ActRIIB-Fc). SMA mice overexpressing follistatin showed little increase in muscle mass and no improvement in motor function or survival. SMA mice treated with ActRIIB-Fc showed minimal improvement in motor function, and no extension of survival compared with vehicle-treated mice. Together these results suggest that inhibition of myostatin may not be a promising therapeutic strategy in severe forms of SMA. PMID:19477958

  8. Continual low-level MEK inhibition ameliorates cardio-facio-cutaneous phenotypes in zebrafish

    Directory of Open Access Journals (Sweden)

    Corina Anastasaki

    2012-07-01

    Cardio-facio-cutaneous (CFC syndrome is caused by germline mutations in KRAS, BRAF and MEK1/2. The highly selective and potent MEK inhibitors that have been developed as anti-cancer agents hold potential as therapeutics for CFC syndrome. We have previously shown that the effects of CFC mutations on zebrafish gastrulation can be prevented by a 1-hour treatment with MEK inhibitors within a specific developmental time-window. However, MEK activity is essential for normal development and PD0325901 treatment outside this treatment window leads to additional developmental defects in MEK-dependent tissues. We now test ten different doses of PD0325901 at six developmental time points and assess the effects on body axis length, heart development and craniofacial structures in zebrafish embryos. Notably, we find that a continuous low-level dose of PD0325901 that has only minor inhibition of MEK activity can prevent the action of both the common CFC BRAFQ257R kinase-active allele and the BRAFG596V kinase-impaired mutant allele through the first 5 days of development. These results provide a detailed study of the effects of PD0325901 in development and show that, unlike in cancer, which requires robust inhibition of MAPK signalling, a partial reduction in phospho-ERK1/2 activity is sufficient to moderate the developmental effects of BRAFCFC mutations.

  9. Continual low-level MEK inhibition ameliorates cardio-facio-cutaneous phenotypes in zebrafish.

    Science.gov (United States)

    Anastasaki, Corina; Rauen, Katherine A; Patton, E Elizabeth

    2012-07-01

    Cardio-facio-cutaneous (CFC) syndrome is caused by germline mutations in KRAS, BRAF and MEK1/2. The highly selective and potent MEK inhibitors that have been developed as anti-cancer agents hold potential as therapeutics for CFC syndrome. We have previously shown that the effects of CFC mutations on zebrafish gastrulation can be prevented by a 1-hour treatment with MEK inhibitors within a specific developmental time-window. However, MEK activity is essential for normal development and PD0325901 treatment outside this treatment window leads to additional developmental defects in MEK-dependent tissues. We now test ten different doses of PD0325901 at six developmental time points and assess the effects on body axis length, heart development and craniofacial structures in zebrafish embryos. Notably, we find that a continuous low-level dose of PD0325901 that has only minor inhibition of MEK activity can prevent the action of both the common CFC BRAF(Q257R) kinase-active allele and the BRAF(G596V) kinase-impaired mutant allele through the first 5 days of development. These results provide a detailed study of the effects of PD0325901 in development and show that, unlike in cancer, which requires robust inhibition of MAPK signalling, a partial reduction in phospho-ERK1/2 activity is sufficient to moderate the developmental effects of BRAF(CFC) mutations.

  10. Inhibition of autophagy ameliorates pulmonary microvascular dilation and PMVECs excessive proliferation in rat experimental hepatopulmonary syndrome

    Science.gov (United States)

    Xu, Duo; Chen, Bing; Gu, Jianteng; Chen, Lin; Belguise, Karine; Wang, Xiaobo; Yi, Bin; Lu, Kaizhi

    2016-01-01

    Hepatopulmonary syndrome (HPS) is a defective liver-induced pulmonary vascular disorder with massive pulmonary microvascular dilation and excessive proliferation of pulmonary microvascular endothelial cells (PMVECs). Growing evidence suggests that autophagy is involved in pulmonary diseases, protectively or detrimentally. Thus, it is interesting and important to explore whether autophagy might be involved in and critical in HPS. In the present study, we report that autophagy was activated in common bile duct ligation (CBDL) rats and cultured pulmonary PMVECs induced by CBDL rat serum, two accepted in vivo and in vitro experimental models of HPS. Furthermore, pharmacological inhibition of autophagy with 3-methyladenine (3-MA) significantly alleviated pathological alterations and typical symptom of HPS in CBDL rats in vivo, and consistently 3-MA significantly attenuated the CBDL rat serum-induced excessive proliferation of PMVECs in vitro. All these changes mediated by 3-MA might explain the observed prominent improvement of pulmonary appearance, edema, microvascular dilatation and arterial oxygenation in vivo. Collectively, these results suggest that autophagy activation may play a critical role in the pathogenesis of HPS, and autophagy inhibition may have a therapeutic potential for this disease. PMID:27480323

  11. CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency.

    Science.gov (United States)

    Bidinosti, Michael; Botta, Paolo; Krüttner, Sebastian; Proenca, Catia C; Stoehr, Natacha; Bernhard, Mario; Fruh, Isabelle; Mueller, Matthias; Bonenfant, Debora; Voshol, Hans; Carbone, Walter; Neal, Sarah J; McTighe, Stephanie M; Roma, Guglielmo; Dolmetsch, Ricardo E; Porter, Jeffrey A; Caroni, Pico; Bouwmeester, Tewis; Lüthi, Andreas; Galimberti, Ivan

    2016-03-11

    SH3 and multiple ankyrin repeat domains 3 (SHANK3) haploinsufficiency is causative for the neurological features of Phelan-McDermid syndrome (PMDS), including a high risk of autism spectrum disorder (ASD). We used unbiased, quantitative proteomics to identify changes in the phosphoproteome of Shank3-deficient neurons. Down-regulation of protein kinase B (PKB/Akt)-mammalian target of rapamycin complex 1 (mTORC1) signaling resulted from enhanced phosphorylation and activation of serine/threonine protein phosphatase 2A (PP2A) regulatory subunit, B56β, due to increased steady-state levels of its kinase, Cdc2-like kinase 2 (CLK2). Pharmacological and genetic activation of Akt or inhibition of CLK2 relieved synaptic deficits in Shank3-deficient and PMDS patient-derived neurons. CLK2 inhibition also restored normal sociability in a Shank3-deficient mouse model. Our study thereby provides a novel mechanistic and potentially therapeutic understanding of deregulated signaling downstream of Shank3 deficiency.

  12. Laricitrin ameliorates lung cancer-mediated dendritic cell suppression by inhibiting signal transducer and activator of transcription 3.

    Science.gov (United States)

    Chang, Wei-An; Hung, Jen-Yu; Jian, Shu-Fang; Lin, Yi-Shiuan; Wu, Cheng-Ying; Hsu, Ya-Ling; Kuo, Po-Lin

    2016-12-20

    Natural polyphenolic compounds of grapes and their seeds are thought to be therapeutic adjuvants in a variety of diseases, including cancer prevention. This study was carried out to investigate the effect of grape phenolic compounds on the regulation of cancer-mediated immune suppression. Laricitrin exhibits the greatest potential to ameliorate the suppressive effects of lung cancer on dendritic cells' (DCs') differentiation, maturation and function. Human lung cancer A549 and CL1-5 cells change the phenotype of DCs that express to high levels of IL-10 and prime T cells towards an immune suppression type-2 response (Th2). Laricitrin treatment stimulated DC differentiation and maturation in the condition media of cancer cells, a finding supported by monocyte marker CD14's disappearance and DC marker CD1a's upregulation. Laricitrin decreases expression of IL-10 in cancer-conditioned DCs, and subsequently switches CD4+ T cell response from Th2 to Th1 in vitro and in vivo. Reversal of laricitrin on lung cancer-induced DCs' paralysis was via inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Laricitrin also potentiated the anticancer activity of cisplatin in mouse models. Thus, laricitrin could be an efficacious immunoadjuvant and have a synergistic effect when combined with chemotherapy.

  13. Salvianolic Acid B Ameliorates Cerebral Ischemia/Reperfusion Injury Through Inhibiting TLR4/MyD88 Signaling Pathway.

    Science.gov (United States)

    Wang, Yujue; Chen, Guang; Yu, Xiangdong; Li, Yunchao; Zhang, Li; He, Zongze; Zhang, Nannan; Yang, Xiuping; Zhao, Yansheng; Li, Na; Qiu, Hong

    2016-08-01

    Ischemic stroke can activate multiple transcription factors and cause inflammatory reactions, which involve pattern recognition receptors with immunostimulatory effects. Toll-like receptor 4 (TLR4) is one of the receptors related to innate immunity and several inflammatory reactions. The promising anti- inflammatory activity of salvianolic acid B (SAB) had been previously reported, but its effect on ischemic stroke remains unknown. An oxygen-glucose deprivation and reoxygenation (OGD/R) model in vitro and a middle cerebral artery occlusion (MCAO) model in vivo were used in this paper, and the results showned that SAB remarkably increased the viabilities of PC12 cells and primary cortical neurons after OGD/R injury and notably prevented cerebral ischemia/reperfusion (I/R) injury. SAB also significantly ameliorated NeuN release from primary cortical neurons. Further research indicated that the neuroprotection of SAB was completed through inhibiting the TLR4/MyD88/TRAF6 signaling pathway. The blocking of TLR4 by SAB also restrained NF-kB transcriptional activity and pro-inflammatory cytokine responses (IL-1β, IL-6, and TNF-α). These findings supply a new insight that will aid in clarifying the effect of SAB against cerebral I/R injury and provide the development of SAB as a potential candidate for treating ischemic stroke.

  14. Inhibition of Extracellular Signal-Regulated Kinases Ameliorates Hypertension-Induced Renal Vascular Remodeling in Rat Models

    Directory of Open Access Journals (Sweden)

    Li Jing

    2011-11-01

    Full Text Available The aim of this study is to investigate the effect of the extracellular signal-regulated kinases 1/2 (ERK1/2 inhibitor, PD98059, on high blood pressure and related vascular changes. Blood pressure was recorded, thicknesses of renal small artery walls were measured and ERK1/2 immunoreactivity and erk2 mRNA in renal vascular smooth muscle cells (VSMCs and endothelial cells were detected by immunohistochemistry and in situ hybridization in normotensive wistar kyoto (WKY rats, spontaneously hypertensive rats (SHR and PD98059-treated SHR. Compared with normo-tensive WKY rats, SHR developed hypertension at 8 weeks of age, thickened renal small artery wall and asymmetric arrangement of VSMCs at 16 and 24 weeks of age. Phospho-ERK1/2 immunoreactivity and erk2 mRNA expression levels were increased in VSMCs and endothelial cells of the renal small arteries in the SHR. Treating SHR with PD98059 reduced the spontaneous hypertension-induced vascular wall thickening. This effect was associated with suppressions of erk2 mRNA expression and ERK1/2 phosphorylation in VSMCs and endothelial cells of the renal small arteries. It is concluded that inhibition of ERK1/2 ameliorates hypertension induced vascular remodeling in renal small arteries.

  15. IVIg inhibits reticuloendothelial system function and ameliorates murine passive-immune thrombocytopenia independent of anti-idiotype reactivity.

    Science.gov (United States)

    Crow, A R; Song, S; Semple, J W; Freedman, J; Lazarus, A H

    2001-12-01

    Although the mechanism of action of intravenous immunoglobulin (IVIg) in treating antibody-dependent thrombocytopenia remains unclear, most studies have suggested that IVIg blocks the function of Fc receptors in the reticuloendothelial system (RES) and/or the protective effect may be due to the presence of variable region-reactive (anti-idiotype) antibodies within IVIg. We evaluated the effect of IVIg on platelet counts in a murine model of passively induced immune thrombocytopenia (PIT). Although IVIg was unable to neutralize the binding of two platelet-specific monoclonal antibodies to their target antigens either in vivo or in vitro, it was able to prevent PIT as well as ameliorate pre-established PIT mediated by these antibodies. IVIg adsorbed against the antibody used to induce thrombocytopenia or endogenous murine immunoglobulin also protected against PIT, indicating that antibodies with anti-idiotype activity present in IVIg are not necessary for its effective treatment of PIT. IVIg significantly blocked the ability of the RES to clear antibody-sensitized red blood cells. F(ab')2 fragments of IVIg, which are unable to block the RES but retain the idiotypic regions, were ineffective at protecting mice from PIT. Our data suggest that IVIg exerts its rapid effect by inhibiting RES function and that anti-idiotype interactions are not required.

  16. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord.

    Science.gov (United States)

    Zhao, Wei-Cheng; Zhang, Bin; Liao, Mei-Juan; Zhang, Wen-Xuan; He, Wan-You; Wang, Han-Bing; Yang, Cheng-Xiang

    2014-02-07

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are the main enzymes that produce oxidative stress, which plays an important role in painful diabetic neuropathy. Curcumin has been reported to exert an antinociceptive effect in a rat model of diabetic neuropathy by suppressing oxidative stress in the spinal cord. However, it remains unknown whether the mechanism by which curcumin ameliorates diabetic neuropathy can be attributed to spinal NADPH oxidases. This study was designed to determine the effect of curcumin on diabetic neuropathy and to investigate its precise mechanism in relation to NADPH oxidase-mediating oxidative stress in the spinal cord. Diabetic neuropathy was induced in Sprague-Dawley rats by intraperitoneal injection with 1% streptozotocin (STZ; 60 mg/kg). After the onset of diabetic neuropathy, a subset of the diabetic rats received daily intragastric administrations of curcumin (200mg/kg) or intraperitoneal injections of apocynin (2.5mg/kg) for 14 consecutive days, whereas other diabetic rats received equivalent volumes of normal saline (NS). STZ resulted in diabetic neuropathy with hyperglycemia and a lower paw withdrawal threshold (PWT), accompanied by elevations in the expression of the NADPH oxidase subunits p47(phox) and gp91(phox) and in the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and a reduction in superoxide dismutase (SOD) activity (Pdiabetic neuropathy. In conclusion, curcumin attenuated neuropathic pain in diabetic rats, at least partly by inhibiting NADPH oxidase-mediating oxidative stress in the spinal cord.

  17. Choline ameliorates cardiovascular damage by improving vagal activity and inhibiting the inflammatory response in spontaneously hypertensive rats

    Science.gov (United States)

    Liu, Longzhu; Lu, Yi; Bi, Xueyuan; Xu, Man; Yu, Xiaojiang; Xue, Runqing; He, Xi; Zang, Weijin

    2017-01-01

    Autonomic dysfunction and abnormal immunity lead to systemic inflammatory responses, which result in cardiovascular damage in hypertension. The aim of this report was to investigate the effects of choline on cardiovascular damage in hypertension. Eight-week-old male spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats were intraperitoneally injected with choline or vehicle (8 mg/kg/day). After 8 weeks, choline restored the cardiac function of the SHRs, as evidenced by decreased heart rate, systolic blood pressure, left ventricle systolic pressure, and ±dp/dtmax and increased ejection fraction and fractional shortening. Choline also ameliorated the cardiac hypertrophy of the SHRs, as indicated by reduced left ventricle internal dimensions and decreased cardiomyocyte cross-sectional area. Moreover, choline improved mesenteric arterial function and preserved endothelial ultrastructure in the SHRs. Notably, the protective effect of choline may be due to its anti-inflammatory effect. Choline downregulated expression of interleukin (IL)-6 and tumour necrosis factor-α and upregulated IL-10 in the mesenteric arteries of SHRs, possibly because of the inhibition of Toll-like receptor 4. Furthermore, choline restored baroreflex sensitivity and serum acetylcholine level in SHRs, thus indicating that choline improved vagal activity. This study suggests that choline elicits cardiovascular protective effects and may be useful as a potential adjunct therapeutic approach for hypertension. PMID:28225018

  18. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance.

    Science.gov (United States)

    Holland, William L; Brozinick, Joseph T; Wang, Li-Ping; Hawkins, Eric D; Sargent, Katherine M; Liu, Yanqi; Narra, Krishna; Hoehn, Kyle L; Knotts, Trina A; Siesky, Angela; Nelson, Don H; Karathanasis, Sotirios K; Fontenot, Greg K; Birnbaum, Morris J; Summers, Scott A

    2007-03-01

    Insulin resistance occurs in 20%-25% of the human population, and the condition is a chief component of type 2 diabetes mellitus and a risk factor for cardiovascular disease and certain forms of cancer. Herein, we demonstrate that the sphingolipid ceramide is a common molecular intermediate linking several different pathological metabolic stresses (i.e., glucocorticoids and saturated fats, but not unsaturated fats) to the induction of insulin resistance. Moreover, inhibition of ceramide synthesis markedly improves glucose tolerance and prevents the onset of frank diabetes in obese rodents. Collectively, these data have two important implications. First, they indicate that different fatty acids induce insulin resistance by distinct mechanisms discerned by their reliance on sphingolipid synthesis. Second, they identify enzymes required for ceramide synthesis as therapeutic targets for combating insulin resistance caused by nutrient excess or glucocorticoid therapy.

  19. Hydrogen Sulfide Ameliorates Ischemia/Reperfusion-Induced Hepatitis by Inhibiting Apoptosis and Autophagy Pathways

    Directory of Open Access Journals (Sweden)

    Ping Cheng

    2014-01-01

    Full Text Available Background. Hepatic ischemia/reperfusion (I/R injury is an important clinical problem, and its consequences can seriously threaten human health. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Hydrogen sulfide (H2S is the third most common endogenously produced gaseous signaling molecule and is known to exert a protective effect against hepatic I/R injury. In this study, the purpose is to explore both the effect and mechanism of H2S on hepatic I/R injury. Methods. Balb/c mice were randomized into Sham, I/R, or two doses (14 μmol/kg and 28 μmol/kg of sodium hydrosulfide (NaHS, an H2S donor preconditioning groups. Results. NaHS significantly reduced the levels of TNF-α and IL-6 at 12 h and 24 h after injection compared with ischemia/reperfusion challenge alone. The expression of Bcl-2, Bax, Beclin-1, and LC3, which play important roles in the regulation of the apoptosis and autophagy pathways, was also clearly affected by NaHS. Furthermore, NaHS affected the p-JNK1, p-ERK1, and p-p38. Conclusion. Our results indicate that H2S attenuates hepatic I/R injury, at least in part, by regulating apoptosis through inhibiting JNK1 signaling. The autophagy agonist rapamycin potentiated this hepatoprotective effect by reversing the inhibition of autophagy by H2S.

  20. Dipotassium Glycyrrhizate Inhibits HMGB1-Dependent Inflammation and Ameliorates Colitis in Mice.

    Directory of Open Access Journals (Sweden)

    Roberta Vitali

    Full Text Available High mobility group box-1 (HMGB1 is a DNA-binding protein that is released from injured cells during inflammation. Advances in targeting HMGB1 represent a major challenge to improve the treatment of acute/chronic inflammation.This study is aimed at verifying whether the inhibition of HMGB1 through dipotassium glycyrrhizate (DPG is a good strategy to reduce intestinal inflammation.Human colon adenocarcinoma cell line, HT29, human epithelial colorectal adenocarcinoma, Caco2, and murine macrophage cell line, RAW 264.7, were cultured to investigate the effect of DPG on the secretion of HMGB1. Acute colitis was induced in C57BL/6 mice through administration of 3% dextran sodium sulphate (DSS; a combined treatment with DSS and 3 or 8 mg/kg/day DPG was used to investigate the effects of DPG on intestinal inflammation. Animals were euthanized at seventh day and colonic samples underwent molecular and histological analyses.DPG significantly reduces in vitro the release of HMGB1 in the extracellular matrix as well as expression levels of pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6, by inhibiting HMGB1. Moreover, DPG significantly decreases the severity of DSS-induced colitis in mice. Murine colonic samples show decreased mRNA levels of pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6, as well as HMGB1 receptors, RAGE and TLR4. Finally, HMGB1, abundantly present in the feces of mice with DSS-induced colitis, is strongly reduced by DPG.HMGB1 is an early pro-inflammatory cytokine and an active protagonist of mucosal gut inflammation. DPG exerts inhibitory effects against HMGB1 activity, significantly reducing intestinal inflammation. Thus, we reason that DPG could represent an innovative tool for the management of human intestinal inflammation.

  1. Dipotassium Glycyrrhizate Inhibits HMGB1-Dependent Inflammation and Ameliorates Colitis in Mice

    Science.gov (United States)

    Vitali, Roberta; Palone, Francesca; Cucchiara, Salvatore; Negroni, Anna; Cavone, Leonardo; Costanzo, Manuela; Aloi, Marina; Dilillo, Anna; Stronati, Laura

    2013-01-01

    Background High mobility group box-1 (HMGB1) is a DNA-binding protein that is released from injured cells during inflammation. Advances in targeting HMGB1 represent a major challenge to improve the treatment of acute/chronic inflammation. Aim This study is aimed at verifying whether the inhibition of HMGB1 through dipotassium glycyrrhizate (DPG) is a good strategy to reduce intestinal inflammation. Methods Human colon adenocarcinoma cell line, HT29, human epithelial colorectal adenocarcinoma, Caco2, and murine macrophage cell line, RAW 264.7, were cultured to investigate the effect of DPG on the secretion of HMGB1. Acute colitis was induced in C57BL/6 mice through administration of 3% dextran sodium sulphate (DSS); a combined treatment with DSS and 3 or 8 mg/kg/day DPG was used to investigate the effects of DPG on intestinal inflammation. Animals were euthanized at seventh day and colonic samples underwent molecular and histological analyses. Results DPG significantly reduces in vitro the release of HMGB1 in the extracellular matrix as well as expression levels of pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6, by inhibiting HMGB1. Moreover, DPG significantly decreases the severity of DSS-induced colitis in mice. Murine colonic samples show decreased mRNA levels of pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6, as well as HMGB1 receptors, RAGE and TLR4. Finally, HMGB1, abundantly present in the feces of mice with DSS-induced colitis, is strongly reduced by DPG. Conclusions HMGB1 is an early pro-inflammatory cytokine and an active protagonist of mucosal gut inflammation. DPG exerts inhibitory effects against HMGB1 activity, significantly reducing intestinal inflammation. Thus, we reason that DPG could represent an innovative tool for the management of human intestinal inflammation. PMID:23840500

  2. Inhibition of aldose reductase ameliorates ethanol‑induced steatosis in HepG2 cells.

    Science.gov (United States)

    Qiu, Longxin; Cai, Chengchao; Zhao, Xiangqian; Fang, Yan; Tang, Weibiao; Guo, Chang

    2017-05-01

    Aldose reductase (AR) expression is increased in liver tissue of patients with ethanol‑induced liver disease. However, the exact role of AR in the development of ethanol‑induced liver disease has yet to be elucidated. The present study aimed to determine the effect of an AR inhibitor on ethanol‑induced steatosis in HepG2 cells and to identify possible underlying molecular mechanisms. Steatosis was induced in HepG2 cells by stimulating cells with 100 mM absolute ethanol for 48 h. Oil Red O staining was used to detect the lipid droplet accumulation in cells. Western blot analyses were used to determine protein expression levels and reverse transcription‑quantitative polymerase chain reaction was used to analyze mRNA expression levels. The results showed that AR protein expression was elevated in HepG2 cells stimulated with ethanol. HepG2 cells exhibited marked improvement of ethanol‑induced lipid accumulation following treatment with the AR inhibitor zopolrestat. Phosphorylation levels of 5' adenosine monophosphate‑activated protein kinase (AMPK) were markedly higher, whereas the mRNA expression levels of sterol‑regulatory element‑binding protein (SREBP)‑1c and fatty acid synthase (FAS) were significantly lower in zopolrestat‑treated and ethanol‑stimulated HepG2 cells compared with in untreated ethanol‑stimulated HepG2 cells. In addition, zopolrestat inhibited the ethanol‑induced expression of tumor necrosis factor (TNF)‑α. These results suggested that zopolrestat attenuated ethanol‑induced steatosis by activating AMPK and subsequently inhibiting the expression of SREBP‑1c and FAS, and by suppressing the expression of TNF‑α in HepG2 cells.

  3. Phosphodiesterase 5 inhibition ameliorates angiotensin II-dependent hypertension and renal vascular dysfunction.

    Science.gov (United States)

    Thieme, Manuel; Sivritas, Sema H; Mergia, Evanthia; Potthoff, Sebastian A; Yang, Guang; Hering, Lydia; Grave, Katharina; Hoch, Henning; Rump, Lars C; Stegbauer, Johannes

    2017-03-01

    Changes in renal hemodynamics have a major impact on blood pressure (BP). Angiotensin (Ang) II has been shown to induce vascular dysfunction by interacting with phosphodiesterase (PDE)1 and PDE5. The predominant PDE isoform responsible for renal vascular dysfunction in hypertension is unknown. Here, we measured the effects of PDE5 (sildenafil) or PDE1 (vinpocetine) inhibition on renal blood flow (RBF), BP, and renal vascular function in normotensive and hypertensive mice. During acute short-term Ang II infusion, sildenafil decreased BP and increased RBF in C57BL/6 (WT) mice. In contrast, vinpocetine showed no effect on RBF and BP. Additionally, renal cGMP levels were significantly increased after acute sildenafil but not after vinpocetine infusion, indicating a predominant role of PDE5 in renal vasculature. Furthermore, chronic Ang II infusion (500 ng·kg(-1)·min(-1)) increased BP and led to impaired NO-dependent vasodilation in kidneys of WT mice. Additional treatment with sildenafil (100 mg·kg(-1)·day(-1)) attenuated Ang II-dependent hypertension and improved NO-mediated vasodilation. During chronic Ang II infusion, urinary nitrite excretion, a marker for renal NO generation, was increased in WT mice, whereas renal cGMP generation was decreased and restored after sildenafil treatment, suggesting a preserved cGMP signaling after PDE5 inhibition. To investigate the dependency of PDE5 effects on NO/cGMP signaling, we next analyzed eNOS-KO mice, a mouse model characterized by low vascular NO/cGMP levels. In eNOS-KO mice, chronic Ang II infusion increased BP but did not impair NO-mediated vasodilation. Moreover, sildenafil did not influence BP or vascular function in eNOS-KO mice. These results highlight PDE5 as a key regulator of renal hemodynamics in hypertension. Copyright © 2017 the American Physiological Society.

  4. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Suzuki Kenji

    2011-06-01

    Full Text Available Abstract Background Chronic inflammation plays an important role in the progression of diabetic nephropathy (DN and that the infiltration of macrophages in glomerulus has been implicated in the development of glomerular injury. We hypothesized that the plant polyphenolic compound curcumin, which is known to exert potent anti-inflammatory effect, would ameliorate macrophage infiltration in streptozotocin (STZ-induced diabetic rats. Methods Diabetes was induced with STZ (55 mg/kg by intraperitoneal injection in rats. Three weeks after STZ injection, rats were divided into three groups, namely, control, diabetic, and diabetic treated with curcumin at 100 mg/kg/day, p.o., for 8 weeks. The rats were sacrificed 11 weeks after induction of diabetes. The excised kidney was used to assess macrophage infiltration and expression of various inflammatory markers. Results At 11 weeks after STZ injection, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood glucose, blood urea nitrogen and proteinuria, along with marked reduction in the body weight. All of these abnormalities were significantly reversed by curcumin. Hyperglycemia induced the degradation of IκBα and NF-κB activation and as a result increased infiltration of macrophages (52% as well as increased proinflammatory cytokines: TNF-α and IL-1β. Curcumin treatment significantly reduced macrophage infiltration in the kidneys of diabetic rats, suppressed the expression of above proinflammatory cytokines and degradation of IκBα. In addition, curcumin treatment also markedly decreased ICAM-1, MCP-1 and TGF-β1 protein expression. Moreover, at nuclear level curcumin inhibited the NF-κB activity. Conclusion Our results suggested that curcumin treatment protect against the development of DN in rats by reducing macrophage infiltration through the inhibition of NF-κB activation in STZ-induced diabetic rats.

  5. Inhibition of HIF-1{alpha} activity by BP-1 ameliorates adjuvant induced arthritis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, J. [Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago (United States); Thippegowda, P.B., E-mail: btprabha@uic.edu [Department of Pharmacology, (M/C 868), College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612 (United States); Kanum, S.A. [Department of Chemistry, Yuvaraj' s College, University of Mysore, Mysore (India)

    2009-09-18

    Rheumatoid arthritis (RA) is a chronic inflammatory, angiogenic disease. Inflamed synovitis is a hallmark of RA which is hypoxic in nature. Vascular endothelial growth factor (VEGF), one of the key regulators of angiogenesis, is overexpressed in the pathogenesis of RA. VEGF expression is regulated by hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), a master regulator of homeostasis which plays a pivotal role in hypoxia-induced angiogenesis. In this study we show that synthetic benzophenone analogue, 2-benzoyl-phenoxy acetamide (BP-1) can act as a novel anti-arthritic agent in an experimental adjuvant induced arthritis (AIA) rat model by targeting VEGF and HIF-1{alpha}. BP-1 administered hypoxic endothelial cells and arthritic animals clearly showed down regulation of VEGF expression. Further, BP-1 inhibits nuclear translocation of HIF-1{alpha}, which in turn suppresses transcription of the VEGF gene. These results suggest a further possible clinical application of the BP-1 derivative as an anti-arthritic agent in association with conventional chemotherapeutic agents.

  6. Deficiency of DJ-1 Ameliorates Liver Fibrosis through Inhibition of Hepatic ROS Production and Inflammation

    Science.gov (United States)

    Yu, Yingxue; Sun, Xuehua; Gu, Jinyang; Yu, Chang; Wen, Yankai; Gao, Yueqiu; Xia, Qiang; Kong, Xiaoni

    2016-01-01

    Liver fibrosis is a global health problem and previous studies have demonstrated that reactive oxygen species (ROS) play important roles in fibrogenesis. Parkinson disease (autosomal recessive, early onset) 7 (Park7) also called DJ-1 has an essential role in modulating cellular ROS levels. DJ-1 therefore may play functions in liver fibrogenesis and modulation of DJ-1 may be a promising therapeutic approach. Here, wild-type (WT) and DJ-1 knockout (DJ-1 KO) mice were administrated with carbon tetrachloride (CCl4) to induce liver fibrosis or acute liver injury. Results showed that DJ-1 depletion significantly blunted liver fibrosis, accompanied by marked reductions in liver injury and ROS production. In the acute CCl4 model, deficiency of DJ-1 showed hepatic protective functions as evidenced by decreased hepatic damage, reduced ROS levels, diminished hepatic inflammation and hepatocyte proliferation compared to WT mice. In vitro hepatic stellate cells (HSCs) activation assays indicated that DJ-1 has no direct effect on the activation of HSCs in the context of with or without TGFβ treatment. Thus our present study demonstrates that in CCl4-induced liver fibrosis, DJ-1 deficiency attenuates mice fibrosis by inhibiting ROS production and liver injury, and further indirectly affecting the activation of HSCs. These results are in line with previous studies that ROS promote HSC activation and fibrosis development, and suggest the therapeutic value of DJ-1 in treatment of liver fibrosis.

  7. Pharmacological inhibition of soluble epoxide hydrolase ameliorates diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Iyer, Abishek; Kauter, Kathleen; Alam, Md Ashraful; Hwang, Sung Hee; Morisseau, Christophe; Hammock, Bruce D; Brown, Lindsay

    2012-01-01

    The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH) during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment with trans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a potent sEH inhibitor, alleviated the signs of metabolic syndrome in vivo including glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome.

  8. Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis.

    Science.gov (United States)

    Malik, Salma; Suchal, Kapil; Gamad, Nanda; Dinda, Amit Kumar; Arya, Dharamvir Singh; Bhatia, Jagriti

    2015-02-05

    Nephrotoxicity is a major adverse effect of the widely used anticancer drug cisplatin. Oxidative stress, inflammation and apoptosis are implicated in the pathophysiology of cisplatin-induced acute renal injury. Moreover, cisplatin activates many signal transduction pathways involved in cell injury and death, particularly mitogen activated protein kinase (MAPK) pathway. With this background, we aimed to investigate the protective effect of telmisartan, a widely used antihypertensive drug, in cisplatin-induced nephrotoxicity model in rats. To accomplish this, male albino wistar rats (150-200 g) were divided into 6 groups: Normal, cisplatin-control, telmisartan (2.5, 5 and 10 mg/kg) and telmisartan per se treatment groups. Normal saline or telmisartan was administered orally to rats for 10 days and cisplatin was given on 7th day (8 mg/kg; i.p.) to induce nephrotoxicity. On 10th day, rats were killed and both the kidneys were harvested for biochemical, histopathological and molecular studies. Cisplatin injected rats showed depressed renal function, altered proxidant-antioxidant balance and acute tubular necrosis which was significantly normalized by telmisartan co-treatment. Furthermore, cisplatin administration activated MAPK pathway that caused tubular inflammation and apoptosis in rats. Telmisartan treatment significantly prevented MAPK mediated inflammation and apoptosis. Among the three doses studied telmisartan at 10 mg/kg dose showed maximum nephroprotective effect which could be due to maintenance of cellular redox status and inhibition of MAPK activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Inhibition of soluble tumor necrosis factor ameliorates synaptic alterations and Ca2+ dysregulation in aged rats.

    Directory of Open Access Journals (Sweden)

    Diana M Sama

    Full Text Available The role of tumor necrosis factor α (TNF in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1 are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2 in aged (22 months but not young adult (6 months Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4-6 week intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits TNFR1 signaling. Aged rats treated with XPro1595 showed improved Morris Water Maze performance, reduced microglial activation, reduced susceptibility to hippocampal long-term depression, increased protein levels for the GluR1 type glutamate receptor, and lower L-type voltage sensitive Ca(2+ channel (VSCC activity in hippocampal CA1 neurons. The results suggest that diverse functional changes associated with brain aging may arise, in part, from selective alterations in TNF signaling.

  10. Pharmacological Inhibition of Soluble Epoxide Hydrolase Ameliorates Diet-Induced Metabolic Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Abishek Iyer

    2012-01-01

    Full Text Available The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment with trans-4-[4-(3-adamantan-1-ylureido-cyclohexyloxy]-benzoic acid (t-AUCB, a potent sEH inhibitor, alleviated the signs of metabolic syndrome in vivo including glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome.

  11. Protein arginine deiminase 4 inhibition is sufficient for the amelioration of collagen-induced arthritis.

    Science.gov (United States)

    Willis, V C; Banda, N K; Cordova, K N; Chandra, P E; Robinson, W H; Cooper, D C; Lugo, D; Mehta, G; Taylor, S; Tak, P P; Prinjha, R K; Lewis, H D; Holers, V M

    2017-01-27

    Citrullination of joint proteins by the protein arginine deiminase (PAD) family of enzymes is recognized increasingly as a key process in the pathogenesis of rheumatoid arthritis. This present study was undertaken to explore the efficacy of a novel PAD4-selective inhibitor, GSK199, in the murine collagen-induced arthritis model of rheumatoid arthritis. Mice were dosed daily from the time of collagen immunization with GSK199. Efficacy was assessed against a wide range of end-points, including clinical disease scores, joint histology and immunohistochemistry, serum and joint citrulline levels and quantification of synovial autoantibodies using a proteomic array containing joint peptides. Administration of GSK199 at 30 mg/kg led to significant effects on arthritis, assessed both by global clinical disease activity and by histological analyses of synovial inflammation, pannus formation and damage to cartilage and bone. In addition, significant decreases in complement C3 deposition in both synovium and cartilage were observed robustly with GSK199 at 10 mg/kg. Neither the total levels of citrulline measurable in joint and serum, nor levels of circulating collagen antibodies, were affected significantly by treatment with GSK199 at any dose level. In contrast, a subset of serum antibodies reactive against citrullinated and non-citrullinated joint peptides were reduced with GSK199 treatment. These data extend our previous demonstration of efficacy with the pan-PAD inhibitor Cl-amidine and demonstrate robustly that PAD4 inhibition alone is sufficient to block murine arthritis clinical and histopathological end-points.

  12. Resveratrol ameliorates methotrexate-induced hepatotoxicity in rats via inhibition of lipid peroxidation.

    Science.gov (United States)

    Dalaklioglu, S; Genc, G E; Aksoy, N H; Akcit, F; Gumuslu, S

    2013-06-01

    Hepatotoxicity is one of the major complications of methotrexate (MTX) therapy. This study was carried out to evaluate the possible protective effect of resveratrol (trans-3,5,4'-trihydroxystilbene, RVT) against MTX-induced hepatotoxicity. Rats were randomly divided into four groups as control, MTX treated (7 mg/kg/day, intraperitoneally (i.p.), once daily for 3 consecutive days), MTX + RVT treated (20 mg/kg/day, i.p.), and RVT treated. First dose of RVT was administrated 3 days before the MTX injection and continued for 3 days. Histopathology of liver was evaluated by light microscopy. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were used as biochemical markers of MTX-induced hepatic injury. The levels of thiobarbituric acid reactive substances (TBARS, a marker of lipid peroxidation) and activities of hepatic antioxidant enzymes such as catalase (CAT) and glutathione-S-transferase (GST) were used to analyze the oxidative stress-mediated lipid peroxidation in liver sections. Our results showed that MTX administration significantly increased ALT, ASP, and ALP levels. TBARS, CAT, and GST levels were also markedly increased in liver after MTX administration. RVT treatment significantly prevented MTX-induced hepatotoxicity, as indicated by AST, ALT, and ALP levels and liver histopathology. Moreover, administration of RVT significantly decreased the elevated levels of TBARS and activities of CAT and GST in the liver compared to MTX-treated group. These results revealed that RVT may have a protective effect against MTX-induced hepatotoxicity by inhibiting oxidative stress-mediated lipid peroxidation. Consequently, RVT treatment might be a promising strategy against MTX-induced hepatotoxicity.

  13. Sorafenib ameliorates renal fibrosis through inhibition of TGF-β-induced epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Lining Jia

    Full Text Available This study was to investigate whether sorafenib can inhibit the progression of renal fibrosis and to study the possible mechanisms of this effect.Eight-week-old rats were subjected to unilateral ureteral obstruction (UUO and were intragastrically administered sorafenib, while control and sham groups were administered vehicle for 14 or 21 days. NRK-52E cells were treated with TGF-β1 and sorafenib for 24 or 48 hours. HE and Masson staining were used to visualize fibrosis of the renal tissue in each group. The expression of α-SMA and E-cadherin in kidney tissue and NRK-52E cells were performed using immunohistochemistry and immunofluorescence. The apoptosis rate of NRK-52E cells was determined by flow cytometry analysis. The protein levels of Smad3 and p-Smad3 in kidney tissue and NRK-52E cells were detected by western blot analysis.HE staining demonstrated that kidney interstitial fibrosis, tubular atrophy, and inflammatory cell infiltration in the sorafenib-treated-UUO groups were significantly decreased compared with the vehicle-treated-UUO group (p<0.05. Masson staining showed that the area of fibrosis was significantly decreased in the sorafenib-treated-UUO groups compared with vehicle-treated-UUO group (p<0.01. The size of the kidney did not significantly increase; the cortex of the kidney was thicker and had a richer blood supply in the middle-dose sorafenib group compared with the vehicle-treated-UUO group (p<0.05. Compared with the vehicle-treated-UUO and TGF-β-stimulated NRK-52E groups, the expression of a-SMA and E-cadherin decreased and increased, respectively, in the UUO kidneys and NRK-52E cells of the sorafenib-treated groups (p<0.05. The apoptotic rate of NRK-52E cells treated with sorafenib decreased for 24 hours in a dose-dependent manner (p<0.05. Compared with the vehicle-treated UUO and TGF-β-stimulated NRK-52E groups, the ratio of p-Smad3 to Smad3 decreased in the sorafenib-treated groups (p<0.05.Our results suggest that

  14. Neuronal damage and functional deficits are ameliorated by inhibition of aquaporin and HIF1α after traumatic brain injury (TBI).

    Science.gov (United States)

    Shenaq, Mohammed; Kassem, Hassan; Peng, Changya; Schafer, Steven; Ding, Jamie Y; Fredrickson, Vance; Guthikonda, Murali; Kreipke, Christian W; Rafols, José A; Ding, Yuchuan

    2012-12-15

    The present study, using a rodent model of closed-head diffuse traumatic brain injury (TBI), investigated the role of dysregulated aquaporins (AQP) 4 and 9, as well as hypoxia inducible factor -1α(HIF-1α) on brain edema formation, neuronal injury, and functional deficits. TBI was induced in adult (400-425 g), male Sprague-Dawley rats using a modified Marmarou's head impact-acceleration device (450 g weight dropped from 2m height). Animals in each treatment group were administered intravenous anti-AQP4 or -AQP9 antibodies or 2-Methoxyestradiol (2ME2, an inhibitor of HIF-1α) 30 min after injury. At 24h post-TBI, animals (n=6 each group) were sacrificed to examine the extent of brain edema by water content, as well as protein expression of AQP and HIF-1α by Western immune-blotting. At 48-hours post-TBI, neuronal injury (n=8 each group) was assessed by FluoroJade (FJ) histochemistry. Spatial learning and memory deficits were evaluated by radial arm maze (n=8 each group) up to 21 days post-TBI. Compared to non-injured controls, significant (pTBI was associated with increases (p TBI animals, AQP or HIF-1α inhibition significantly (pTBI. Taken together, the present data supports a causal relation between HIF-AQP mediated cerebral edema, secondary neuronal injury, and tertiary behavioral deficits post-TBI. The data further suggests that upstream modulation of the molecular patho-trajectory effectively ameliorates both neuronal injury and behavioral deficits post-TBI.

  15. Cilnidipine, but not amlodipine, ameliorates osteoporosis in ovariectomized hypertensive rats through inhibition of the N-type calcium channel.

    Science.gov (United States)

    Shimizu, Hideo; Nakagami, Hironori; Yasumasa, Natsuki; Mariana, Osako Kiomy; Kyutoku, Mariko; Koriyama, Hiroshi; Nakagami, Futoshi; Shimamura, Munehisa; Rakugi, Hiromi; Morishita, Ryuichi

    2012-01-01

    Both osteoporosis and high blood pressure are major diseases in aging populations. Recent studies demonstrated that some antihypertensive drugs reduced the risk of bone fracture in elderly patients. Although calcium channel blockers (CCB) are widely used as first-line antihypertensive agents, there is no evidence that they prevent osteoporosis. In this study, we investigated the effects of two types of CCB on bone metabolism: cilnidipine (L-/N-type CCB), which suppresses norepinephrine release from the sympathetic nerve, and amlodipine (L-type CCB). In ovariectomized female spontaneous hypertensive rats, administration of cilnidipine, but not amlodipine, resulted in a significant increase in the ratio of alkaline phosphatase to tartrate-resistant acid phosphatase (TRAP) and a decrease in the number of osteoclasts, as assessed by TRAP staining in the proximal tibia. Bone mineral density, moreover, was significantly higher in the cilnidipine group as compared with the amlodipine group and was associated with a significant decrease in a urinary collagen degradation product (deoxypyridinoline). The degree of prevention of osteoporosis by cilnidipine was similar to that of carvedilol (a β-blocker) because β-blockers reduce fracture risks though the inhibition of osteoclast activation. Interestingly, these effects cannot be attributed to the reduction of blood pressure because all three drugs significantly decreased blood pressure. In contrast, both cilnidipine and carvedilol, but not amlodipine, significantly decreased heart rate, indicating that both cilnidipine and carvedilol suppressed sympathetic nervous activity. Overall, our present data showed that cilnidipine (L-/N-type CCB) ameliorated osteoporosis in ovariectomized hypertensive rats. These pleiotropic effects of antihypertensive drugs such as cilnidipine and carvedilol might provide additional benefits in the treatment of hypertensive postmenopausal women.

  16. Electroacupuncture ameliorates learning and memory in rats with cerebral ischemia-reperfusion injury by inhibiting oxidative stress and promoting p-CREB expression in the hippocampus.

    Science.gov (United States)

    Lin, Ruhui; Lin, Yukun; Tao, Jing; Chen, Bin; Yu, Kunqiang; Chen, Jixiang; Li, Xiaojie; Chen, Li-Dian

    2015-11-01

    The present study aimed to investigate the mechanisms by which electroacupuncture (EA) ameliorates learning and memory in rats with cerebral ischemic‑reperfusion (I/R) injury. Focal cerebral ischemia was induced in adult male Sprague‑Dawley (SD) rats by transient middle cerebral artery occlusion (MCAO). Following MCAO surgery, the rats received EA at the Shenting (DU24) and Baihui (DU20) acupoints. The results of the present study demonstrated that treatment with EA significantly ameliorated neurological deficits and reduced cerebral infarct volume (Plearning and memory ability of the rats, and markedly activated the cyclic adenosine monophosphate (cAMP) response element‑binding protein (CREB) signaling pathway, resulting in the inhibition of cerebral cell apoptosis in the ischemic penumbra. Furthermore, EA increased the activity of superoxide dismutase and glutathione peroxidase, the protein expression levels of phosphorylated‑CREB and B‑cell lymphoma 2 (Bcl‑2), and the mRNA expression levels of Bcl‑2. Conversely, EA decreased the levels of malondialdehyde and inhibited the expression levels of Bcl2‑associated X protein. The results of the present study suggest that treatment with EA may result in the amelioration of learning and memory ability in rats with cerebral I/R injury.

  17. Vitamin D Can Ameliorate Chlorhexidine Gluconate-Induced Peritoneal Fibrosis and Functional Deterioration through the Inhibition of Epithelial-to-Mesenchymal Transition of Mesothelial Cells

    Directory of Open Access Journals (Sweden)

    Yi-Che Lee

    2015-01-01

    Full Text Available Background. Peritoneal dialysis (PD can induce fibrosis and functional alterations in PD patients’ peritoneal membranes, due to long-term unphysiological dialysate exposure, partially occurring via triggering of epithelial-to-mesenchymal transition (EMT in peritoneal mesothelial cells (MCs. Vitamin D can ameliorate these negative effects; however, the mechanism remains unexplored. Therefore, we investigated its possible links to MCs EMT inhibition. Methods. Peritoneal fibrosis was established in Sprague-Dawley rats by chlorhexidine gluconate (CG intraperitoneal injection for 21 days, with and without 1α,25(OH2D3 treatment. Morphological and functional evaluation and western blot analysis of EMT marker were performed upon peritoneum tissue. In vitro study was also performed in a primary human peritoneal MC culture system; MCs were incubated with transforming growth factor-β1 (TGF-β1 in the absence or presence of 1α,25(OH2D3. EMT marker expression, migration activities, and cytoskeleton redistribution of MCs were determined. Results. 1α,25(OH2D3 ameliorated CG-induced morphological and functional deterioration in animal model, along with CG-induced upregulation of α-SMA and downregulation of E-cadherin expression. Meanwhile, 1α,25(OH2D3 also ameliorated TGF-β1-induced decrease in E-cadherin expression, increase in Snai1 and α-SMA expression, intracellular F-actin redistribution, and migration activity in vitro. Conclusion. 1α,25(OH2D3 can ameliorate CG-induced peritoneal fibrosis and attenuate functional deterioration through inhibiting MC EMT.

  18. SIRT1 activator ameliorates the renal tubular injury induced by hyperglycemia in vivo and in vitro via inhibiting apoptosis.

    Science.gov (United States)

    Wang, Xue-Ling; Wu, Li-Yan; Zhao, Long; Sun, Li-Na; Liu, Hai-Ying; Liu, Gang; Guan, Guang-Ju

    2016-10-01

    We aimed to explore the role of SIRT1 in apoptosis in human kidney proximal tubule epithelial (HK-2) cells, and to determine whether resveratrol (RSV, a SIRT1 activator) could ameliorate apoptosis in rats with streptozotocin-induced diabetes mellitus (DM) and/or in high glucose (HG, 30mM) - stimulated HK-2 cells. Rats were distributed randomly into three groups: 1) control group, 2) DM group, and 3) DM with RSV group (DM+RSV; rats treated with 30mg/kg/d of RSV for 16 weeks). The physical, biochemical, and morphological parameters were then examined. Additionally, the deacetylase activity of SIRT1, and the expression levels of SIRT1 and of representative apoptosis markers, such as p53, acetylated p53, cleaved caspase-3, caspase-9, and cleaved PARP, were measured. HK-2 cells were stimulated by HG for different lengths of time to study the effect of HG on apoptosis. HK-2 cells were treated with or without RSV (25μM) to investigate if RSV has a protective effect on HG-induced apoptosis. A gene-specific small interfering RNA against SIRT1 was used to study the role of SIRT1 in apoptosis. More apoptosis was found in the DM rats than in the control rats. Similarly, the expression levels of cleaved caspase-3, cleaved PARP, and acetylated p53 were significantly higher, and the level of SIRT1 was significantly lower, in the HK-2 cells that were cultured under HG conditions than those in the HK-2 cells that were cultured under low glucose (5.5mM) conditions. Notably, treatment with RSV lessened the HG-induced changes in the levels of apoptosis indicators, and this inhibition of HG-induced apoptosis in HK-2 cells by RSV treatment was abolished by SIRT1 silencing. Our study showed that hyperglycemia contributes to apoptosis in rat kidney and HK-2 cells. SIRT1 activation by RSV can reduce urinary albumin excretion and proximal tubule epithelial apoptosis both in vitro and in vivo. Based on our study, SIRT1/p53 axis played an important role in the hyperglycemia induced apoptosis

  19. The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation.

    Science.gov (United States)

    Santos, J M; Benite-Ribeiro, S A; Queiroz, G; Duarte, J A

    2014-12-01

    Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3-kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin-activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho-aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho-aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle.

  20. Bryostatin 1 inhibits phorbol ester-induced apoptosis in prostate cancer cells by differentially modulating protein kinase C (PKC) delta translocation and preventing PKCdelta-mediated release of tumor necrosis factor-alpha.

    Science.gov (United States)

    von Burstin, Vivian A; Xiao, Liqing; Kazanietz, Marcelo G

    2010-09-01

    Bryostatin 1, a macrocyclic lactone that has been widely characterized as an ultrapotent protein kinase C (PKC) activator, displays marked pharmacological differences with the typical phorbol ester tumor promoters. Bryostatin 1 impairs phorbol 12-myristate 13-acetate (PMA)-induced tumor promotion in mice and is in clinical trials as an anticancer agent for a number of hematopoietic malignancies and solid tumors. In this study, we characterized the effect of bryostatin 1 on LNCaP prostate cancer cells, a cellular model in which PKC isozymes play important roles in the control of growth and survival. Although phorbol esters promote a strong apoptotic response in LNCaP cells via PKCdelta-mediated release of TNFalpha, bryostatin 1 failed to trigger a death effect even at high concentrations, and it prevented PMA-induced apoptosis in these cells. Mechanistic analysis revealed that bryostatin 1 is unable to induce TNFalpha release, and it impairs the secretion of this cytokine from LNCaP cells in response to PMA. Unlike PMA, bryostatin 1 failed to promote the translocation of PKCdelta to the plasma membrane. Moreover, bryostatin 1 prevented PMA-induced PKCdelta peripheral translocation. Studies using a membrane-targeted PKCdelta construct revealed that the peripheral localization of the kinase is a requisite for triggering apoptosis in LNCaP cells, arguing that mislocalization of PKCdelta may explain the actions of bryostatin 1. The identification of an antiapoptotic effect of bryostatin 1 may have significant relevance in the context of its therapeutic efficacy.

  1. Bryostatin 1 Inhibits Phorbol Ester-Induced Apoptosis in Prostate Cancer Cells by Differentially Modulating Protein Kinase C (PKC) δ Translocation and Preventing PKCδ-Mediated Release of Tumor Necrosis Factor-α

    Science.gov (United States)

    von Burstin, Vivian A.; Xiao, Liqing

    2010-01-01

    Bryostatin 1, a macrocyclic lactone that has been widely characterized as an ultrapotent protein kinase C (PKC) activator, displays marked pharmacological differences with the typical phorbol ester tumor promoters. Bryostatin 1 impairs phorbol 12-myristate 13-acetate (PMA)-induced tumor promotion in mice and is in clinical trials as an anticancer agent for a number of hematopoietic malignancies and solid tumors. In this study, we characterized the effect of bryostatin 1 on LNCaP prostate cancer cells, a cellular model in which PKC isozymes play important roles in the control of growth and survival. Although phorbol esters promote a strong apoptotic response in LNCaP cells via PKCδ-mediated release of TNFα, bryostatin 1 failed to trigger a death effect even at high concentrations, and it prevented PMA-induced apoptosis in these cells. Mechanistic analysis revealed that bryostatin 1 is unable to induce TNFα release, and it impairs the secretion of this cytokine from LNCaP cells in response to PMA. Unlike PMA, bryostatin 1 failed to promote the translocation of PKCδ to the plasma membrane. Moreover, bryostatin 1 prevented PMA-induced PKCδ peripheral translocation. Studies using a membrane-targeted PKCδ construct revealed that the peripheral localization of the kinase is a requisite for triggering apoptosis in LNCaP cells, arguing that mislocalization of PKCδ may explain the actions of bryostatin 1. The identification of an antiapoptotic effect of bryostatin 1 may have significant relevance in the context of its therapeutic efficacy. PMID:20516369

  2. ETV6-NTRK3 as a therapeutic target of small molecule inhibitor PKC412

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hoang Thanh, E-mail: kk086406@mgs.k.u-tokyo.ac.jp [Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639 (Japan); Ly, Bui Thi Kim [Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639 (Japan); Kano, Yasuhiko [Division of Hematology and Medical Oncology, Tochigi Cancer Center, Tochigi 321-0293 (Japan); Tojo, Arinobu [Division of Molecular Therapy, Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Watanabe, Toshiki [Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639 (Japan); Sato, Yuko [Musashimurayama Hospital, Musashimurayama, Tokyo 208-0011 (Japan)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer ETV6-NTRK3 is an oncogene with transformation activity in multiple cell lineages. Black-Right-Pointing-Pointer PKC412 could block ETV6-NTRK3 activation. Black-Right-Pointing-Pointer Loss of ETV6-NTRK3 phosphorylation leads to inactivation of its downstream signaling pathway. Black-Right-Pointing-Pointer Inhibition of ETV6-NTRK3 activation by PKC412 could be a novel strategy for the treatment. -- Abstract: The ETV6-NTRK3 (EN) fusion gene which encodes a chimeric tyrosine kinase was first identified by cloning of the t(12;15)(p13;q25) translocation in congenital fibrosarcoma (CFS). Since then, EN has been also found in congenital mesoblastic nephroma (CMN), secretory breast carcinoma (SBC) and acute myelogenous leukemia (AML). Using IMS-M2 and M0-91 cell lines harboring the EN fusion gene, and Ba/F3 cells stably transfected with EN, we demonstrated that PKC412, also known as midostaurin, is an inhibitor of EN. Inhibition of EN activity by PKC412 suppressed the activity of it downstream molecules leading to inhibition of cell proliferation and induction of apoptosis. Our data for the first time suggested that PKC412 could serve as therapeutic drug for treatment of patients with this fusion.

  3. Runx-dependent expression of PKC is critical for cell survival in the sea urchin embryo

    Directory of Open Access Journals (Sweden)

    McCarthy John J

    2005-08-01

    Full Text Available Abstract Background Runx transcription factors play critical roles in the developmental control of cell fate and contribute variously as oncoproteins and tumor suppressors to leukemia and other cancers. To discover fundamental Runx functions in the cell biology of animal development, we have employed morpholino antisense-mediated knockdown of the sea urchin Runx protein SpRunt-1. Previously we showed that embryos depleted of SpRunt-1 arrest development at early gastrula stage and underexpress the conventional protein kinase C SpPKC1. Results We report here that SpRunt-1 deficiency leads to ectopic cell proliferation and extensive apoptosis. Suppression of the apoptosis by pharmacological inhibition of caspase-3 prevents the ectopic proliferation and rescues gastrulation, indicating that many of the overt defects obtained by knockdown of SpRunt-1 are secondary to the apoptosis. Inhibition or knockdown of SpPKC1 also causes apoptosis, while cell survival is rescued in SpRunt-1 morphant embryos coinjected with SpPKC1 mRNA, suggesting that the apoptosis associated with SpRunt-1 deficiency is caused by the deficit in SpPKC1 expression. Chromatin immunoprecipitation indicates that SpRunt-1 interacts physically with SpPKC1 in vivo, and cis-regulatory analysis shows that this interaction activates SpPKC1 transcription. Conclusions Our results show that Runx-dependent activation of SpPKC1 is essential for maintaining protein kinase C activity at levels conducive to cell survival during embryogenesis.

  4. Role of PKC and RhoA/ROCK pathways in the spontaneous phasic activity in the rectal smooth muscle.

    Science.gov (United States)

    Singh, Jagmohan; Rattan, Satish

    2013-04-15

    The role of PKC and RhoA/ROCK pathways in the phasic activities in the rectal smooth muscles (RSM) in the basal state is not known. We examined this issue by determining the effects of PKC inhibitors (calphostin C and Gö-6850) and a ROCK inhibitor (Y-27632) on the slow-rate (~3/min) and fast-rate (~25/min) phasic activities. We also examined the corresponding signal transduction cascades and the PKC and ROCK enzymatic activities in the RSM in the basal state. PKC inhibition with calphostin C and Gö-6850 (10(-5) M) caused a significant decrease (~25%) in slow-rate (but not fast-rate) phasic activity (monitored by frequency and amplitude of contractions) of the RSM. Conversely, ROCK inhibition with Y-27632 (10(-5) M) caused a significant decrease not only in slow-rate, but also fast-rate, phasic activity caused by ROCK inhibition in the RSM. Western blot analysis revealed that the PKC inhibition-induced decrease in RSM phasic activity was associated with decreases in PKCα translocation, phosphorylated (Thr(38)) PKC-potentiated inhibitor (CPI-17), and phosphorylated (Thr(18)/Ser(19)) 20-kDa myosin regulatory light chain. Conversely, decreases in the phasic activity in the RSM by ROCK inhibition were accompanied by the additional decrease in phosphorylated (Thr(696)) myosin phosphatase target subunit 1. Data show that while PKC and RhoA/ROCK pathways play a significant role in slow-rate high-amplitude spontaneous phasic activity, only the RhoA/ROCK pathway primarily mediates fast-rate low-amplitude phasic activity, in the RSM. Such knowledge is important in the understanding of the pathophysiology of large intestinal motility disorders. Relative contributions of the PKC vs. the RhoA/ROCK pathway in the phasic activity remain to be determined.

  5. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages.

    Science.gov (United States)

    Hyam, Supriya R; Lee, In-Ah; Gu, Wan; Kim, Kyung-Ah; Jeong, Jin-Ju; Jang, Se-Eun; Han, Myung Joo; Kim, Dong-Hyun

    2013-05-15

    Seeds of Arctium lappa, containing arctigenin and its glycoside arctiin as main constituents, have been used as a diuretic, anti-inflammatory and detoxifying agent in Chinese traditional medicine. In our preliminary study, arctigenin inhibited IKKβ and NF-κB activation in peptidoglycan (PGN)- or lipopolysaccharide (LPS)-induced peritoneal macrophages. To understand the anti-inflammatory effect of arctigenin, we investigated its anti-inflammatory effect in LPS-stimulated peritoneal macrophages and on LPS-induced systemic inflammation as well as 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Arctigenin inhibited LPS-increased IL-1β, IL-6 and TNF-α expression in LPS-stimulated peritoneal macrophages, but increased LPS-reduced IL-10 and CD204 expression. Arctigenin inhibited LPS-induced PI3K, AKT and IKKβ phosphorylation, but did not suppress LPS-induced IRAK-1 phosphorylation. However, arctigenin did not inhibit NF-κB activation in LPS-stimulated PI3K siRNA-treated peritoneal macrophages. Arctigenin suppressed the binding of p-PI3K antibody and the nucleus translocation of NF-κB p65 in LPS-stimulated peritoneal macrophages. Arctigenin suppressed blood IL-1β and TNF-α level in mice systemically inflamed by intraperitoneal injection of LPS. Arctigenin also inhibited colon shortening, macroscopic scores and myeloperoxidase activity in TNBS-induced colitic mice. Arctigenin inhibited TNBS-induced IL-1β, TNF-α and IL-6 expression, as well as PI3K, AKT and IKKβ phosphorylation and NF-κB activation in mice, but increased IL-10 and CD204 expression. However, it did not affect IRAK-1 phosphorylation. Based on these findings, arctigenin may ameliorate inflammatory diseases, such as colitis, by inhibiting PI3K and polarizing M1 macrophages to M2-like macrophages.

  6. Inhibition of p38 mitogen-activated protein kinase ameliorates radiation-induced ototoxicity in zebrafish and cochlea-derived cell lines.

    Science.gov (United States)

    Shin, Yoo Seob; Hwang, Hye Sook; Kang, Sung Un; Chang, Jae Won; Oh, Young-Taek; Kim, Chul-Ho

    2014-01-01

    Radiation is a widely used treatment for head and neck cancers, and one of its most severe side effects is ototoxicity. Radiation-induced ototoxicity has been demonstrated to be linked to the increased production of ROS and MAPK. We intended to investigate the effect of p38 inhibition on radiation-induced ototoxicity in cochlea-derived HEI-OC1 cells and in a zebrafish model. The otoprotective effect of p38 inhibition against radiation was tested in vitro in the organ of Corti-derived cell line, HEI-OC1, and in vivo in a zebrafish model. Radiation-induced apoptosis, mitochondrial dysfunction, and an increase of intracellular NO generation were demonstrated in HEI-OC1 cells. The p38-specific inhibitor, SB203580, ameliorated radiation-induced apoptosis and mitochondrial injury in HEI-OC1 cells. p38 inhibition reduced radiation-induced activation of JNK, p38, cytochrome c, and cleavage of caspase-3 and PARP in HEI-OC1 cells. Scanning electron micrography showed that SB203580 prevented radiation-induced destruction of kinocilium and stereocilia in zebrafish neuromasts. The results of this study suggest that p38 plays an important role in mediating radiation-induced ototoxicity and inhibition of p38 could be a plausible option for preventing radiation ototoxicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Role of PKC isozymes in low-power light-stimulated proliferation of cultured skin cells

    Science.gov (United States)

    Grossman, Nili; Kleitman, Vered; Meller, Julia; Kaufmann, Roland; Akgun, Nermin; Ruck, Angelika; Livneh, Etta; Lubart, Rachel

    2000-11-01

    Exposure of cultured skin cells to low power visible light leads to a transiently stimulated proliferation. Facilitation of this response requires the presence of active PKC, elevation of intracellular calcium, and involves reactive oxygen species. In the present study, the role of PKC(alpha) and PCK(eta) was examined using paired murine fibroblasts, differing in the level of these isozymes expression. The ability of the cells to respond to low power UVA light or HeNe laser by stimulated proliferation was correlated with an active state or overexpression of PKC(alpha) , but not PKC(eta) . A parallel response was obtained in cells that were loaded with A1PcS4 before photosensitization. Whenever this latter treatment caused a light-stimulated inhibition, it was accompanied by the intracellular calcium and photosensitizer dynamics typical of the effect of PDT on rate epithelial cells. Accordingly, added antioxidants that suppressed light-stimulated proliferation also suppressed this light-stimulated inhibition. The model systems employed in this study are the first to demonstrate the specific effect of PKC isozymes on light-stimulated proliferation, in relation to oxidative stress, and indicate their dual role in light-tissue interaction.

  8. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Xiaomang; Li, Danyang; Chen, Dilong; Zhou, Liang [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 China (China); Chonan, Ritsu [Koei Kogyo Co., Ltd., Tokyo, 101-0063 Japan (Japan); Yamahara, Johji [Pharmafood Institute, Kyoto, 602-8136 Japan (Japan); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 China (China); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, NSW 2000 Australia (Australia)

    2014-10-15

    Mangiferin, a xanthone glucoside, and its associated traditional herbs have been demonstrated to improve abnormalities of lipid metabolism. However, its underlying mechanisms remain largely unclear. This study investigated the anti-steatotic effect of mangiferin in fructose-fed spontaneously hypertensive rat (SHR)s that have a mutation in sterol regulatory element binding protein (SREBP)-1. The results showed that co-administration of mangiferin (15 mg/kg, once daily, by oral gavage) over 7 weeks dramatically diminished fructose-induced increases in hepatic triglyceride content and Oil Red O-stained area in SHRs. However, blood pressure, fructose and chow intakes, white adipose tissue weight and metabolic parameters (plasma concentrations of glucose, insulin, triglyceride, total cholesterol and non-esterified fatty acids) were unaffected by mangiferin treatment. Mechanistically, mangiferin treatment suppressed acyl-coenzyme A:diacylglycerol acyltransferase (DGAT)-2 expression at the mRNA and protein levels in the liver. In contrast, mangiferin treatment was without effect on hepatic mRNA and/or protein expression of SREBP-1/1c, carbohydrate response element binding protein, liver pyruvate kinase, fatty acid synthase, acetyl-CoA carboxylase-1, stearoyl-CoA desaturase-1, DGAT-1, monoacyglycerol acyltransferase-2, microsomal triglyceride transfer protein, peroxisome proliferator-activated receptor-alpha, carnitine palmitoyltransferase-1 and acyl-CoA oxidase. Collectively, our results suggest that mangiferin treatment ameliorates fatty liver in fructose-fed SHRs by inhibiting hepatic DGAT-2 that catalyzes the final step in triglyceride biosynthesis. The anti-steatotic effect of mangiferin may occur independently of the hepatic signals associated with de novo fatty acid synthesis and oxidation. - Highlights: • We investigated the anti-steatotic effect of mangiferin (MA) in fructose-fed SHR. • MA (15 mg/kg/day for 7 weeks) ameliorated fructose-induced fatty liver in

  9. Contraction stimulates muscle glucose uptake independent of atypical PKC.

    Science.gov (United States)

    Yu, Haiyan; Fujii, Nobuharu L; Toyoda, Taro; An, Ding; Farese, Robert V; Leitges, Michael; Hirshman, Michael F; Mul, Joram D; Goodyear, Laurie J

    2015-11-01

    Exercise increases skeletal muscle glucose uptake, but the underlying mechanisms are only partially understood. The atypical protein kinase C (PKC) isoforms λ and ζ (PKC-λ/ζ) have been shown to be necessary for insulin-, AICAR-, and metformin-stimulated glucose uptake in skeletal muscle, but not for treadmill exercise-stimulated muscle glucose uptake. To investigate if PKC-λ/ζ activity is required for contraction-stimulated muscle glucose uptake, we used mice with tibialis anterior muscle-specific overexpression of an empty vector (WT), wild-type PKC-ζ (PKC-ζ(WT)), or an enzymatically inactive T410A-PKC-ζ mutant (PKC-ζ(T410A)). We also studied skeletal muscle-specific PKC-λ knockout (MλKO) mice. Basal glucose uptake was similar between WT, PKC-ζ(WT), and PKC-ζ(T410A) tibialis anterior muscles. In contrast, in situ contraction-stimulated glucose uptake was increased in PKC-ζ(T410A) tibialis anterior muscles compared to WT or PKC-ζ(WT) tibialis anterior muscles. Furthermore, in vitro contraction-stimulated glucose uptake was greater in soleus muscles of MλKO mice than WT controls. Thus, loss of PKC-λ/ζ activity increases contraction-stimulated muscle glucose uptake. These data clearly demonstrate that PKC-λζ activity is not necessary for contraction-stimulated glucose uptake.

  10. Pilocarpine-induced status epilepticus alters hippocampal PKC expression in mice.

    Science.gov (United States)

    Liu, Jian Xin; Liu, Yong; Tang, Feng Ru

    2011-01-01

    We investigated the protein expression of different protein kinase C (PKC) isoforms (PKC-alpha, PKC-beta1, PKC-beta2, PKC-gamma, PKC-delta, PKC-epsilon, PKC-eta and PKC-zeta) in the hippocampus of normal control mice and progressive changes in PKC isoforms expression during and after pilocarpine induced status epilepticus (PISE). We showed the reduced expression of PKC-delta, PKC-eta and PKC-zeta in interneurons in the CA1 area and in the hilus of the dentate gyrus during or after PISE. Increased expression of PKC-alpha and PKC-beta1 was demonstrated in the stratum pyramidale of CA3 area, and PKC-epsilon was up-regulated in the stratum lucidum of the CA3 area during or after PISE. Our results suggest that hippocampal PKC isoforms may play different roles in seizure generation, and be targets for development of anti-convulsive drugs.

  11. Lithium chloride ameliorates learning and memory ability and inhibits glycogen synthase kinase-3 beta activity in a mouse model of fragile X syndrome

    Institute of Scientific and Technical Information of China (English)

    Shengqiang Chen; Xuegang Luo; Quan Yang; Weiwen Sun; Kaiyi Cao; Xi Chen; Yueling Huang; Lijun Dai; Yonghong Yi

    2011-01-01

    In the present study, Fmr1 knockout mice (KO mice) were used as the model for fragile X syndrome. The results of step-through and step-down tests demonstrated that Fmr1 KO mice had shorter latencies and more error counts, indicating a learning and memory disorder. After treatment with 30, 60, 90, 120, or 200 mg/kg lithium chloride, the learning and memory abilities of the Fmr1 KO mice were significantly ameliorated, in particular, the 200 mg/kg lithium chloride treatment had the most significant effect. Western blot analysis showed that lithium chloride significantly enhanced the expression of phosphorylated glycogen synthase kinase 3 beta, an inactive form of glycogen synthase kinase 3 beta, in the cerebral cortex and hippocampus of the Fmr1 KO mice. These results indicated that lithium chloride improved learning and memory in the Fmr1 KO mice, possibly by inhibiting glycogen synthase kinase 3 beta activity.

  12. Inhibition of human high-affinity copper importer Ctr1 orthologous in the nervous system of Drosophila ameliorates Aβ42-induced Alzheimer's disease-like symptoms.

    Science.gov (United States)

    Lang, Minglin; Fan, Qiangwang; Wang, Lei; Zheng, Yajun; Xiao, Guiran; Wang, Xiaoxi; Wang, Wei; Zhong, Yi; Zhou, Bing

    2013-11-01

    Disruption of copper homeostasis has been implicated in Alzheimer's disease (AD) during the last 2 decades; however, whether copper is a friend or a foe is controversial. Within a genetically tractable Drosophila AD model, we manipulated the expression of human high-affinity copper importer orthologous in Drosophila to explore the in vivo roles of copper ions in the development of AD. We found that inhibition of Ctr1C expression by RNAi in Aβ-expressing flies significantly reduced copper accumulation in the brains of the flies as well as ameliorating neurodegeneration, enhancing climbing ability, and prolonging lifespan. Interestingly, Ctr1C inhibition led to a significant increase in higher-molecular-weight Aβ42 forms in brain lysates, whereas it was accompanied by a trend of decreased expression of amyloid-β degradation proteases (including NEP1-3 and IDE) with age and reduced Cu-Aβ interaction-induced oxidative stress in Ctr1C RNAi flies. Similar results were obtained from inhibiting another copper importer Ctr1B and overexpressing a copper exporter DmATP7 in the nervous system of AD flies. These results imply that copper may play a causative role in developing AD, as either Aβ oligomers or aggregates were less toxic in a reduced copper environment or one with less copper binding. Early manipulation of brain copper uptake can have a great effect on Aβ pathology.

  13. Picroside Ⅱ inhibits hypoxia/reoxygenation-induced cardiomyocyte apoptosis by ameliorating mitochondrial function through a mechanism involving a decrease in reactive oxygen species production.

    Science.gov (United States)

    Li, Jian-Zhe; Yu, Shu-Yi; Mo, Dan; Tang, Xiu-Neng; Shao, Qing-Rui

    2015-02-01

    Reactive oxygen species (ROS)‑induced mitochondrial dysfunction plays an important role in cardiomyocyte apoptosis during myocardial ischemia/reperfusion (I/R) injury. Picroside Ⅱ, isolated from Picrorhiza scrophulariiflora Pennell (Scrophulariaceae), has been reported to protect cardiomyocytes from hypoxia/reoxygenation (H/R)‑induced apoptosis, but the exact mechanism is not fully clear. The aim of the present study was to explore the protective effects of picroside Ⅱ on H/R‑induced cardiomyocyte apoptosis and the underlying mechanism. In the H9c2 rat cardiomyocyte cell line, picroside Ⅱ (100 µg/ml) was added for 48 h prior to H/R. The results showed that picroside Ⅱ markedly inhibited H/R‑induced cardiomyocyte apoptosis. In addition, picroside Ⅱ was also able to decrease the opening degree of mitochondrial permeability transition pore (mPTP), increase the mitochondrial membrane potential, inhibit cytochrome c release from mitochondria to cytosol and downregulate caspase‑3 expression and activity concomitantly with the decreased ROS production. These results suggested that picroside Ⅱ inhibited H/R‑induced cardiomyocyte apoptosis by ameliorating mitochondrial function through a mechanism involving a decrease in ROS production.

  14. Ma Huang Tang ameliorates asthma though modulation of Th1/Th2 cytokines and inhibition of Th17 cells in ovalbumin-sensitized mice.

    Science.gov (United States)

    Ma, Chun-Hua; Ma, Zhan-Qiang; Fu, Qiang; Ma, Shi-Ping

    2014-05-01

    Ma Huang Tang (Ephedra decoction, MHT) is a famous classical formula from Shang Han Lun by Zhang Zhongjing in the Han Dynasty. The anti-asthmatic effects of MHT and the possible mechanisms were tested. An asthma model was established by ovalbumin (OVA)-induction in mice. A total of forty-eight mice were randomly assigned to six experimental groups: control, model, dexamethasone (2 mg·kg(-1)) and MHT (5, 10, and 20 mg·kg(-1)). Airway resistance (Raw) was measured by the forced oscillation technique, histological studies were evaluated by hematoxylin and eosin (HE) staining, Th1/Th2 and Th17 cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA), and Th17 cells were evaluated by flow cytometry (FCM). This study demonstrated that MHT inhibited OVA-induced increases in Raw and eosinophil count; interleukin (IL)-4 and IL-17 levels were recovered in bronchoalveolar lavage fluid, increased IFN-γ level in bronchoalveolar lavage fluid. Histological studies demonstrated that MHT substantially inhibited OVA-induced eosinophilia in lung tissue. Flow cytometry studies demonstrated that MHT substantially inhibited Th17 cells. These findings suggest that MHT may effectively ameliorate the progression of asthma, and could be further investigated for potential use as a therapy for patients with allergic asthma. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  15. Berberine ameliorates experimental diabetes-induced renal inflammation and fibronectin by inhibiting the activation of RhoA/ROCK signaling.

    Science.gov (United States)

    Xie, Xi; Chang, Xiuting; Chen, Lei; Huang, Kaipeng; Huang, Juan; Wang, Shaogui; Shen, Xiaoyan; Liu, Peiqing; Huang, Heqing

    2013-12-05

    The accumulation of glomerular extracellular matrix proteins, especially fibronectin (FN), is a critical pathological characteristic of diabetic renal fibrosis. Inflammation mediated by nuclear factor-κB (NF-κB) plays a critical role in the pathogenesis of diabetic nephropathy (DN). RhoA/ROCK signaling is responsible for FN accumulation and NF-κB activation. Berberine (BBR) treatment significantly inhibited renal inflammation and thus improved renal damage in diabetes. Here, we study whether BBR inhibits FN accumulation and NF-κB activation by inhibiting RhoA/ROCK signaling and the underlying mechanisms involved. Results showed that BBR effectively inhibited RhoA/ROCK signaling activation in diabetic rat kidneys and high glucose-induced glomerular mesangial cells (GMCs) and simultaneously down-regulated NF-κB activity, which was accompanied by reduced intercellular adhesionmolecule-1, transforming growth factor-beta 1 and FN overproduction. Furthermore, we observed that BBR abrogated high glucose-mediated reactive oxygen species generation in GMCs. BBR and N-acetylcysteine inhibited RhoA/ROCK signaling activation in high glucose-exposed GMCs. Collectively, our data suggest that the renoprotective effect of BBR on DN partly depends on RhoA/ROCK inhibition. The anti-oxidative stress effect of BBR is responsible for RhoA/ROCK inhibition in DN.

  16. Amarogentin, a Secoiridoid Glycoside, Abrogates Platelet Activation through PLCγ2-PKC and MAPK Pathways

    Directory of Open Access Journals (Sweden)

    Ting-Lin Yen

    2014-01-01

    Full Text Available Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60 μM inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLCγ2, protein kinase C (PKC, and mitogen-activated protein kinases (MAPKs. It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLCγ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders.

  17. PKC-theta in regulatory and effector T-cell functions

    Directory of Open Access Journals (Sweden)

    Vedran eBrezar

    2015-10-01

    Full Text Available One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teff or regulatory (Tregs T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ to the immunological synapse is instrumental for the formation of signalling complexes, that ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the immunological synapse where its formation induces altered signalling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKCinhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance.This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs.

  18. A natural flavonoid glucoside icariin inhibits Th1 and Th17 cell differentiation and ameliorates experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Shen, Ruile; Deng, Wenjing; Li, Chun; Zeng, Guangwei

    2015-02-01

    Multiple sclerosis (MS) is an autoimmune disease that is characterized by recurrent episodes of T cell-mediated immune attack on central nervous system (CNS) myelin, leading to axon damage and progressive disability. Icariin, a natural flavonoid glucoside isolated from plants in the Epimedium family, has been proved to have various pharmacological activities. However, the effect of icariin on experimental autoimmune encephalomyelitis (EAE) has never been investigated. In our current study, we found that icariin treatment leads to alleviated inflammatory infiltration and reduced blood-brain barrier leakage (BBB) of the paracellular tracer (FITC-dextran) in EAE. Mice that received icariin-treated T cells also displayed lower EAE scores and better clinical recovery from EAE. Icariin administration suppresses the frequencies of Th1 and Th17 cells in the splenocytes and lymph node cells. Icariin-treated mice also show lower frequency of Th17 cells in CNS mononuclear cells. The effect of icariin on Th1 and Th17 cell differentiation may be mediated via modulation of dendritic cells (DCs). Furthermore, icariin suppresses the proliferation of T cells and the differentiation of Th1 and Th17 cells in vitro. In conclusion, icariin ameliorates EAE and this was associated with suppressed Th1 and Th17 cell differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney.

    Science.gov (United States)

    Domitrović, Robert; Cvijanović, Olga; Pugel, Ester Pernjak; Zagorac, Gordana Blagojević; Mahmutefendić, Hana; Škoda, Marko

    2013-08-09

    The aim of this study was to investigate the effects of flavone luteolin against cisplatin (CP)-induced kidney injury in mice. Luteolin at doses of 10mg/kg was administered intraperitoneally (ip) once daily for 3 days following single CP (10 or 20mg/kg) ip injection. Mice were sacrificed 24h after the last dose of luteolin. The CP treatment significantly increased serum creatinine and blood urea nitrogen and induced pathohistological changes in the kidneys. Renal oxidative/nitrosative stress was evidenced by decreased glutathione (GSH) levels and increased 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) formation as well as cytochrome P450 2E1 (CYP2E1) expression. The CP administration triggered inflammatory response in mice kidneys through activation of nuclear factor-kappaB (NF-κB) and overexpression of tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2). Simultaneously, the increase in renal p53 and caspase-3 expression indicated apoptosis of tubular cells. The administration of luteolin significantly reduced histological and biochemical changes induced by CP, decreased platinum (Pt) levels and suppressed oxidative/nitrosative stress, inflammation and apoptosis in the kidneys. These results suggest that luteolin is an effective nephroprotective agent, with potential to reduce Pt accumulation in the kidneys and ameliorate CP-induced nephrotoxicity.

  20. Treadmill exercise ameliorates motor disturbance through inhibition of apoptosis in the cerebellum of valproic acid-induced autistic rat pups.

    Science.gov (United States)

    Kim, Ji-Eun; Shin, Mal-Soon; Seo, Tae-Beom; Ji, Eun-Sang; Baek, Seong-Soo; Lee, Sam-Jun; Park, Joon-Ki; Kim, Chang-Ju

    2013-08-01

    Autism is a neurological disorder that occurs during childhood and is characterized by impairments in social interaction and communication, as well as restricted and repetitive behaviors. Abnormalities of the cerebellum in autism include Purkinje cell loss and motor disturbance. In the present study, we evaluated the effect of treadmill exercise on motor coordination and balance in correlation with reelin expression and the rate of apoptosis in the cerebellum of autistic rat pups. For the induction of the autism-like animal models, 400 mg/kg valproic acid was subcutaneously injected into rat pups on postnatal day 14. Rat pups in the exercise groups were forced to run on a treadmill for 30 min, once a day, five times a week for 4 weeks, starting on postnatal day 28. Motor coordination and balance, as measured using the rotarod test and vertical pole test, were affected by the induction of autism. By contrast, treadmill exercise ameliorated motor dysfunction in the autistic rat pups. The expression levels of reelin, GAD67 and cyclin D1 in the cerebellum of the autistic rat pups were decreased, while the expression levels of these molecules were increased in autistic rat pups who engaged in treadmill exercise. In the cerebellum of the autistic rat pups, Bcl-2 expression was decreased and Bax expression was increased. By contrast, treadmill exercise enhanced Bcl-2 expression and suppressed Bax expression. The therapeutic effect of treadmill exercise on motor deficits may be due to the reelin-mediated anti-apoptotic effect on cerebellar Purkinje neurons.

  1. Kakkalide and its metabolite irisolidone ameliorate carrageenan-induced inflammation in mice by inhibiting NF-κB pathway.

    Science.gov (United States)

    Min, Sung-Won; Park, Young-Jun; Kim, Dong-Hyun

    2011-10-01

    The anti-inflammatory activities of kakkalide, a major constituent of the flower of Pueraria thunbergiana, and irisolidone, a metabolite of kakkalide produced by intestinal microflora, against carrageenan-induced inflammation in air pouches on the backs of mice and in lipopolysaccharide (LPS)-stimulated peritoneal macrophages were investigated. Kakkalide and irisolidone down-regulated the gene expression of cytokines [tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β)] and cyclooxygenase-2 (COX-2) and the production of pro-inflammatory cytokines, TNF-α and IL-1β, and inflammatory mediators, NO and prostaglandin E(2) (PGE(2)), in LPS-stimulated peritoneal macrophages. These agents also inhibited the phosphorylation of IκB-α and the nuclear translocation of nuclear factor-kappa B (NF-κB). Orally administered kakkalide and irisolidone significantly reduced carrageenan-induced inflammatory markers, leukocyte number, and protein amount in the exudates of the air pouch. These constituents also inhibited PGE(2) production and COX-2 inducible nitric oxide synthase, IL-1β, and TNF-α expression. These agents also inhibited NF-κB activation. The anti-inflammatory effects of irisolidone were more potent than those of kakkalide. Based on these findings, kakkalide and irisolidone may inhibit inflammatory reactions via NF-κB pathway, and irisolidone, a metabolite of kakkalide, may more potently inhibit these inflammatory reactions.

  2. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    MadanKumar, Perumal; NaveenKumar, Perumal; Manikandan, Samidurai [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); Devaraj, Halagowder [Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); NiranjaliDevaraj, Sivasithamparam, E-mail: niranjali@yahoo.com [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India)

    2014-06-01

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling.

  3. Effect of piperine on inhibition of FFA induced TLR4 mediated inflammation and amelioration of acetic acid induced ulcerative colitis in mice.

    Science.gov (United States)

    Gupta, Rohit A; Motiwala, Meha N; Dumore, Nitin G; Danao, Kishor R; Ganjare, Anjali B

    2015-04-22

    oedema in sub-mucosa, cellular infiltration, reduced haemorrhages and ulceration as compare to acetic acid induced colitis in mice. Furthermore piperine inhibited abnormal secretion of pro-inflammatory mediators namely NO, cytokines TNF-α and reduces FFA induced TLR4 mediated inflammation. These results suggest that piperine has an anti-inflammatory effect at colorectal sites that is due to down- regulations of the productions and expression of inflammatory mediators and it also reduces FFA induced TLR4 mediated inflammation. Thus it may have therapeutic potential on amelioration of IBD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Concerted actions of ameliorated colitis, aberrant crypt foci inhibition and 15-hydroxyprostaglandin dehydrogenase induction by sonic hedgehog inhibitor led to prevention of colitis-associated cancer.

    Science.gov (United States)

    Kangwan, Napapan; Kim, Yoon-Jae; Han, Young-Min; Jeong, Migyeong; Park, Jong-Min; Hahm, Ki-Baik

    2016-03-15

    The sonic hedgehog (Shh) signaling has been known to contribute to carcinogenesis in organ, where hedgehog exerted organogenesis and in cancers, which are developed based on mutagenic inflammation. Therefore, colitis-associated cancer (CAC) can be a good model to prove whether Shh inhibitors can be applied to prevent, as the efforts to discover potent anti-inflammatory agent are active to prevent CAC. Here, under the hypothesis that Shh inhibitors can prevent CAC, mouse model was generated to develop CAC by azoxymethane (AOM)-initiated, dextran sodium sulfate-promoted carcinogenesis. Shh inhibitors, cerulenin and itraconazole were treated by oral gavage and the mice were sacrificed at early phase of 3 weeks and late phase of 16 weeks. Compared to control group, the number of aberrant crypt foci at 3 weeks and tumor incidence at 16 weeks were all significantly decreased with Shh inhibitor. Significant attenuations of macrophage infiltration accompanied with significant decreases of IL-6, COX-2, STAT3 and NF-κB as well as significant ameliorations of β-catenin nuclear translocation, cyclin D1 and CDK4 were imposed with Shh inhibitors. Especially, CAC was accompanied with significant cancellation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), but their levels were significantly preserved with Shh inhibitors. Among inflammatory mediators, significantly decreased levels of IL-6 and TNF-α, regulated with repressed NF-κb and STAT3, were prominent with Shh inhibitor, whereas significant inductions of apoptosis were noted with Shh inhibitors. In conclusion, Shh inhibitors significantly prevented CAC covering either ameliorating oncogenic inflammation or suppressing tumor proliferation, especially supported with significant inhibition of IL-6 and STAT3 signaling, 15-PGDH preservation and apoptosis induction.

  5. Dehydroepiandrosterone ameliorates H2O2-induced Leydig cells oxidation damage and apoptosis through inhibition of ROS production and activation of PI3K/Akt pathways.

    Science.gov (United States)

    Ding, Xiao; Wang, Dian; Li, Longlong; Ma, Haitian

    2016-01-01

    Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement, and administration of DHEA produces a number of beneficial effects in the elderly. Many researchers have suggested that DHEA exerts it function after conversion into more biologically active hormones in peripheral target cells. The actions of DHEA in Leydig cells, a major target cell of DHEA biotransformation in males, are not clear. The present study found that DHEA increased cell viability and decreased reactive oxygen species (ROS) and malondialdehyde contents in H2O2-induced Leydig cells. DHEA significantly increased the activities of superoxide dismutase, catalase and peroxidase, and decreased the DNA damage in H2O2-induced Leydig cells. Apoptosis was significant decreased in H2O2-induced Leydig cells after DHEA treatment. DHEA inhibited the loss of mitochondrial membrane potential (ΔΨm) and the upregulation of the caspase-3 protein level induced by H2O2 in Leydig cells. DHEA also reversed the decrease in PI3K and p-Akt protein levels induced by H2O2. These data showed that DHEA could ameliorate H2O2-induced oxidative damage by increasing anti-oxidative enzyme activities, which resulted in reduced ROS content, and decreased apoptosis, mainly by preventing the loss of ΔΨm and inhibiting caspase-3 protein levels via activation of PI3K/Akt signaling pathways. These results increase our understanding of the molecular mechanism of the anti-ageing effect of DHEA.

  6. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax.

    Science.gov (United States)

    He, Zhi; Hu, Min; Zha, Yun-hong; Li, Zi-cheng; Zhao, Bo; Yu, Ling-ling; Yu, Min; Qian, Ying

    2014-05-01

    Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.

  7. PARP inhibition ameliorates nephropathy in an animal model of type 2 diabetes: focus on oxidative stress, inflammation, and fibrosis.

    Science.gov (United States)

    Zakaria, Esraa M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmonim A; El-Bassossy, Hany M

    2017-02-21

    Poly(ADP-ribose) polymerase (PARP) enzyme contributes to nephropathy, a serious diabetic complication which may lead to end-stage renal disease. The study aims to investigate the effect of PARP over-activation on kidney functions in a type 2 diabetic rat model. The study also tests the therapeutic use of PARP inhibitors in diabetic nephropathy. Type 2 diabetes was induced in adult male rats by high-fructose/high-fat diet and low streptozotocin dose. Then, the PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for 10 weeks. At the end, urine samples were collected to measure urine creatinine, albumin, and total proteins. PARP activity, superoxide dismutase (SOD) activity, and nitrite content were measured in kidney tissue homogenate. Glucose, fructosamine, insulin, and tumor necrosis factor-alpha (TNF-α) were measured in serum. Furthermore, histological studies, collagen deposition, and immunofluorescence of nuclear factor kappa B (NFκB) and transforming growth factor beta1 (TGF-β1) were carried out. PARP enzyme activity was significantly higher in the diabetic group and was significantly reduced by 4-AB administration. Diabetic animals had clear nephropathy indicated by proteinuria and increased albumin excretion rate (AER) which were significantly decreased by PARP inhibition. In addition, PARP inhibition increased creatinine clearance in diabetic animals and reduced renal TGF-β1 and glomerular fibrosis. Moreover, PARP inhibition alleviated the elevated serum TNF-α level, renal NFκB, nitrite, and the decrease in SOD activity in diabetic animals. However, PARP inhibition did not significantly affect neither hyperglycemia nor insulin sensitivity. PARP enzyme inhibition alleviates diabetic nephropathy through decreasing inflammation, oxidative stress, and renal fibrosis.

  8. Riluzole But Not Melatonin Ameliorates Acute Motor Neuron Degeneration and Moderately Inhibits SOD1-Mediated Excitotoxicity Induced Disrupted Mitochondrial Ca2+ Signaling in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Jaiswal, Manoj Kumar

    2017-01-01

    Selective motoneurons (MNs) degeneration in the brain stem, hypoglossal motoneurons (HMNs), and the spinal cord resulting in patients paralysis and eventual death are prominent features of amyotrophic lateral sclerosis (ALS). Previous studies have suggested that mitochondrial respiratory impairment, low Ca2+ buffering and homeostasis and excitotoxicity are the pathological phenotypes found in mice, and cell culture models of familial ALS (fALS) linked with Cu/Zn-superoxide dismutase 1 (SOD1) mutation. In our study, we aimed to understand the impact of riluzole and melatonin on excitotoxicity, neuronal protection and Ca2+ signaling in individual HMNs ex vivo in symptomatic adult ALS mouse brain stem slice preparations and in WT and SOD1-G93A transfected SH-SY5Y neuroblastoma cell line using fluorescence microscopy, calcium imaging with high speed charged coupled device camera, together with immunohistochemistry, cell survival assay and histology. In our experiments, riluzole but not melatonin ameliorates MNs degeneration and moderately inhibit excitotoxicity and cell death in SH-SY5YWT or SH-SY5YG93A cell lines induced by complex IV blocker sodium azide. In brain stem slice preparations, riluzole significantly inhibit HMNs cell death induced by inhibiting the mitochondrial electron transport chain by Na-azide. In the HMNs of brainstem slice prepared from adult (14–15 weeks) WT, and corresponding symptomatic SOD1G93A mice, we measured the effect of riluzole and melatonin on [Ca2+]i using fura-2 AM ratiometric calcium imaging in individual MNs. Riluzole caused a significant decrease in [Ca2+]i transients and reversibly inhibited [Ca2+]i transients in Fura-2 AM loaded HMNs exposed to Na-azide in adult symptomatic SOD1G93A mice. On the contrary, melatonin failed to show similar effects in the HMNs of WT and SOD1G93A mice. Intrinsic nicotinamide adenine dinucleotide (NADH) fluorescence, an indicator of mitochondrial metabolism and health in MNs, showed enhanced

  9. Amelioration by glucose-6-phosphate and NADP of potato glycoalkaloid inhibition in cell, enzyme and liposome assays.

    Science.gov (United States)

    Roddick, J G; Leonard, A L

    1999-05-01

    Lysis of human erythrocytes by 20 microM chaconine was reduced by 0.5 mM glucose-6-phosphate (G6P) and NADP. Both compounds caused approximately 50% inhibition of haemolysis at 1 mM. Glucose, glucose-1-phosphate, rhamnose, galactose and galactose-6-phosphate were ineffective; NAD was effective, although not to the extent of NADP. Of the tested sugars, only G6P reduced solanine-induced haemolysis. G6P also reduced the synergistic haemolytic action of solanine and chaconine in combination. G6P and NADP at or above 5 mM antagonised chaconine-induced betanin loss from excised red beet root discs; NADP was more effective than G6P. Disruption of PC/cholesterol liposomes by chaconine and inhibition of acetylcholinesterase by chaconine or solanine, were unaffected by up to 10 mM NADP or 50 mM G6P.

  10. Low-protein diet supplemented with ketoacids ameliorates proteinuria in 3/4 nephrectomised rats by directly inhibiting the intrarenal renin-angiotensin system.

    Science.gov (United States)

    Zhang, Jia-Ying; Yin, Ying; Ni, Li; Long, Quan; You, Li; Zhang, Qian; Lin, Shan-Yan; Chen, Jing

    2016-11-01

    Low-protein diet plus ketoacids (LPD+KA) has been reported to decrease proteinuria in patients with chronic kidney diseases (CKD). However, the mechanisms have not been clarified. As over-activation of intrarenal renin-angiotensin system (RAS) has been shown to play a key role in the progression of CKD, the current study was performed to investigate the direct effects of LPD+KA on intrarenal RAS, independently of renal haemodynamics. In this study, 3/4 subtotal renal ablated rats were fed 18 % normal-protein diet (Nx-NPD), 6 % low-protein diet (Nx-LPD) or 5 % low-protein diet plus 1 % ketoacids (Nx-LPD+KA) for 12 weeks. Sham-operated rats fed NPD served as controls. The level of proteinuria and expression of renin, angiotensin II (AngII) and its type 1 receptors (AT1R) in the renal cortex were markedly higher in Nx-NPD group than in the sham group. LPD+KA significantly decreased the proteinuria and inhibited intrarenal RAS activation. To exclude renal haemodynamic impact on intrarenal RAS, the serum samples derived from the different groups were added to the culture medium of mesangial cells. It showed that the serum from Nx-NPD directly induced higher expression of AngII, AT1R, fibronectin and transforming growth factor-β1 in the mesangial cells than in the control group. Nx-LPD+KA serum significantly inhibited these abnormalities. Then, proteomics and biochemical detection suggested that the mechanisms underlying these beneficial effects of LPD+KA might be amelioration of the nutritional metabolic disorders and oxidative stress. In conclusion, LPD+KA could directly inhibit the intrarenal RAS activation, independently of renal haemodynamics, thus attenuating the proteinuria in CKD rats.

  11. The Small Tellurium Compound AS101 Ameliorates Rat Crescentic Glomerulonephritis: Association with Inhibition of Macrophage Caspase-1 Activity via Very Late Antigen-4 Inactivation

    Science.gov (United States)

    Hachmo, Yafit; Kalechman, Yona; Skornick, Itai; Gafter, Uzi; Caspi, Rachel R.; Sredni, Benjamin

    2017-01-01

    Crescentic glomerulonephritis (CGN) is the most aggressive form of GN and, if untreated, patients can progress to end-stage renal failure within weeks of presentation. The α4β1 integrin very late antigen-4 (VLA-4) is an adhesion molecule of fundamental importance to the recruitment of leukocytes in inflammation. We addressed the role of VLA-4 in mediating progressive renal injury in a rat model of CGN using a small tellurium compound. AS101 [ammonium trichloro(dioxoethylene-o,o′)tellurate]. This compound has been previously shown to uniquely inhibit VLA-4 activity by redox inactivation of adjacent thiols in the exofacial domain of VLA-4. The study shows that administration of AS101 either before or after glomerular basement membrane anti-serum injection ameliorates crescent formation or preserves renal function. This was associated with profound inhibition of critical inflammatory mediators, accompanied by decreased glomerular infiltration of macrophages. Mechanistic studies demonstrated vla-4 inactivation on glomerular macrophages both in vitro and in vivo as well as inhibition of caspase-1 activity. Importantly, this cysteine protease activity modification was dependent on VLA-4 inactivation and was associated with the anti-inflammatory activity of AS101. We propose that inactivation of macrophage VLA-4 by AS101 in vivo results in a decrease of inflammatory cytokines and chemokines produced in the glomeruli of diseased rats, resulting in decreased further macrophage recruitment and decreased extracellular matrix expansion. Thus, AS101, which is currently in clinical trials for other indications, might be beneficial for treatment of CGN.

  12. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor.

    Science.gov (United States)

    Gopinath, Suchitra D

    2017-01-25

    rpS6 levels, resulting in an amelioration of loss of muscle mass in the soleus muscles. The loss of muscle mass in slow muscles in the absence of vitamin D signaling is due to elevated levels of phosphorylated Stat3 that leads to an increase in Myostatin signaling, which in turn decreases protein synthesis and fiber size through the phosphorylation of p70S6K and rpS6, respectively.

  13. Sodium Tanshinone IIA Sulfonate Ameliorates Bladder Fibrosis in a Rat Model of Partial Bladder Outlet Obstruction by Inhibiting the TGF-β/Smad Pathway Activation.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Jiang

    Full Text Available Transforming growth factor (TGF-β1 is known to play a pivotal role in a diverse range of biological systems including modulation of fibrosis in several organs. The precise role of TGF-β/Smad signaling in the progression of bladder fibrosis secondary to partial bladder outlet obstruction (PBOO is yet to be conclusively. Using a rat PBOO model, we investigated TGF-β1 expression and exaimined whether sodium tanshinone IIA sulfonate (STS could inhibit TGF-β/Smad signaling pathway activation and ameliorate bladder fibrosis. Forty-eight female Sprague-Dawley rats were randomly divided into three groups: sham operation group (n = 16, PBOO operation without STS treatment group (n = 16 and PBOO operation with STS treatment group (n = 16. Thirty-two rats underwent the operative procedure to create PBOO and subsequently received intraperitoneal injections of STS (10 mg/kg/d; n = 16 or vehicle (n = 16 two days after the surgery. Sham surgery was conducted on 16 rats, which received intraperitoneal vehicle injection two days later. In each of the three groups, an equal number of rats were sacrificed at weeks 4 and 8 after the PBOO or sham operation. The TGF-β/Smad signaling pathway was analyzed using western blotting, immunohistochemical staining and reverse transcriptase polymerase chain reaction (RT-PCR. One-way analysis of variance was conducted to draw statistical inferences. At 4 and 8 weeks, the expression of TGF-β1 and phosphorylated Smad2 and Smad3 in STS-treated PBOO rats was significantly lower than in the PBOO rats not treated with STS. Alpha smooth muscle actin (α-SMA, collagen I and collagen III expression at 4 and 8 weeks post PBOO was lower in STS-treated PBOO rats when compared to that in PBOO rats not treated with STS. Our findings indicate that STS ameliorates bladder fibrosis by inhibiting TGF-β/Smad signaling pathway activation, and may prove to be a potential therapeutic measure for preventing bladder fibrosis secondary to PBOO

  14. Andrographolide Ameliorates Abdominal Aortic Aneurysm Progression by Inhibiting Inflammatory Cell Infiltration through Downregulation of Cytokine and Integrin Expression.

    Science.gov (United States)

    Ren, Jun; Liu, Zhenjie; Wang, Qiwei; Giles, Jasmine; Greenberg, Jason; Sheibani, Nader; Kent, K Craig; Liu, Bo

    2016-01-01

    Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB-mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms.

  15. Astaxanthin ameliorates lung fibrosis in vivo and in vitro by preventing transdifferentiation, inhibiting proliferation, and promoting apoptosis of activated cells.

    Science.gov (United States)

    Wang, Meirong; Zhang, Jinjin; Song, Xiaodong; Liu, Wenbo; Zhang, Lixia; Wang, Xiuwen; Lv, Changjun

    2013-06-01

    Astaxanthin, a member of the carotenoid family, is the only known ketocarotenoid transported into the brain by transcytosis through the blood-brain barrier. However, whether astaxanthin has antifibrotic functions is unknown. In this study, we investigated the effects of astaxanthin on transforming growth factor β1-mediated and bleomycin-induced pulmonary fibrosis in vitro and in vivo. The results showed that astaxanthin significantly improved the structure of the alveoli and alleviated collagen deposition in vivo. Compared with the control group, the astaxanthin-treated groups exhibited downregulated protein expressions of α-smooth muscle actin, vimentin, hydroxyproline, and B cell lymphoma/leukemia-2 as well as upregulated protein expressions of E-cadherin and p53 in vitro and in vivo. Astaxanthin also inhibited the proliferation of activated A549 and MRC-5 cells at median inhibitory concentrations of 40 and 30 μM, respectively. In conclusion, astaxanthin could relieve the symptoms and halt the progression of pulmonary fibrosis, partly by preventing transdifferentiation, inhibiting proliferation, and promoting apoptosis of activated cells.

  16. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Gilson C.N. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Kajiya, Mikihito [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Nakanishi, Tadashi [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Ohta, Kouji [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Rosalen, Pedro L.; Groppo, Francisco C. [Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Ernst, Cory W.O.; Boyesen, Janie L. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Bartlett, John D.; Stashenko, Philip [Department of Cytokine Biology, Forsyth Institute, Cambridge, MA (United States); Taubman, Martin A. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Kawai, Toshihisa, E-mail: tkawai@forsyth.org [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States)

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  17. Bone Morphogenetic Protein-7 Ameliorates Cerebral Ischemia and Reperfusion Injury via Inhibiting Oxidative Stress and Neuronal Apoptosis

    Directory of Open Access Journals (Sweden)

    Haitao Pei

    2013-11-01

    Full Text Available Previous studies have indicated that bone morphogenetic protein-7 (BMP-7 is neuroprotective against cerebral ischemia/reperfusion (IR injury. The present study was undertaken to determine the molecular mechanisms involved in this effect. Adult male Wistar rats were subjected to 2 h of transient middle cerebral artery occlusion (MCAO, followed by 24 h of reperfusion. BMP-7 (10−4 g/kg or vehicle was infused into rats at the onset of reperfusion via the tail vein. Neurological deficits, infarct volume, histopathological changes, oxidative stress-related biochemical parameters, neuronal apoptosis, and apoptosis-related proteins were assessed. BMP-7 significantly improved neurological and histological deficits, reduced the infarct volume, and decreased apoptotic cells after cerebral ischemia. BMP-7 also markedly enhanced the activities of antioxidant enzymes superoxide dismutase (SOD and glutathione peroxidase (GSH-PX, and reduced the level of malondialdehyde (MDA in IR rats. In addition, Western blot analysis indicated that BMP-7 prevented cytochrome c release, inhibited activation of caspase-3, caspase-9 and caspase-8. Our data suggested that BMP-7 has protective effects against cerebral IR injury in rats, and the neuroprotective effects may be attributed to attenuating oxidative stress and inhibiting neuronal apoptosis.

  18. Anti-diabetes drug pioglitazone ameliorates synaptic defects in AD transgenic mice by inhibiting cyclin-dependent kinase5 activity.

    Directory of Open Access Journals (Sweden)

    Jinan Chen

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a serine/threonine kinase that is activated by the neuron specific activators p35/p39 and plays many important roles in neuronal development. However, aberrant activation of Cdk5 is believed to be associated with the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease (AD and Parkinson's disease (PD. Here in the present study, enhanced Cdk5 activity was observed in mouse models of AD; whereas soluble amyloid-β oligomers (Aβ, which contribute to synaptic failures during AD pathogenesis, induced Cdk5 hyperactivation in cultured hippocampal neurons. Inhibition of Cdk5 activity by pharmacological or genetic approaches reversed dendritic spine loss caused by soluble amyloid-β oligomers (Aβ treatment. Interestingly, we found that the anti-diabetes drug pioglitazone could inhibit Cdk5 activity by decreasing p35 protein level. More importantly, pioglitazone treatment corrected long-term potentiation (LTP deficit caused by Aβ exposure in cultured slices and pioglitazone administration rescued impaired LTP and spatial memory in AD mouse models. Taken together, our study describes an unanticipated role of pioglitazone in alleviating AD and reveals a potential therapeutic drug for AD curing.

  19. Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition.

    Science.gov (United States)

    Katagiri, Daisuke; Hamasaki, Yoshifumi; Doi, Kent; Negishi, Kousuke; Sugaya, Takeshi; Nangaku, Masaomi; Noiri, Eisei

    2016-02-01

    Elucidation of acute kidney diseases and disorders (AKD), including acute kidney injury (AKI), is important to prevent their progression to chronic kidney disease. Current animal AKI models are often too severe for use in evaluating human AKI. Therefore, new animal models of mild kidney injury are needed. Here a new clinically relevant animal model using multiple low doses of cisplatin (CP) was used to evaluate AKD. When 10 mg/kg CP was administered intraperitoneally once weekly for three times to L-type fatty acid-binding protein (L-FABP) transgenic mice, moderate renal interstitial fibrosis and tubule dilatation occurred, accompanied by brush-border loss. Urinary L-FABP, a promising biomarker of AKI, changed more drastically than blood urea nitrogen or creatinine. Preventing fibrosis in organs was also studied. Oral administration of a recently reported selective semicarbazide-sensitive amine oxidase inhibitor, PXS-4728A, for 1 week attenuated kidney injury and interstitial fibrosis compared with vehicle. Inhibition of renal lipid accumulation in semicarbazide-sensitive amine oxidase inhibitor-treated mice, together with reduced oxidative stress and L-FABP suppression in proximal tubules, suggested an antifibrotic effect of semicarbazide-sensitive amine oxidase inhibition in this CP-AKD model, a representative onco-nephrology. Thus, semicarbazide-sensitive amine oxidase inhibitors may be promising candidates for the prevention of chronic kidney disease in patients using CP to treat malignancy.

  20. Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection.

    Science.gov (United States)

    Atkinson, Carl; Song, Hongbin; Lu, Bo; Qiao, Fei; Burns, Tara A; Holers, V Michael; Tsokos, George C; Tomlinson, Stephen

    2005-09-01

    Previous studies indicate a pivotal role for complement in mediating both local and remote injury following ischemia and reperfusion of the intestine. Here, we report on the use of a mouse model of intestinal ischemia/reperfusion injury to investigate the strategy of targeting complement inhibition to sites of complement activation by linking an iC3b/C3dg-binding fragment of mouse complement receptor 2 (CR2) to a mouse complement-inhibitory protein, Crry. We show that the novel CR2-Crry fusion protein targets sites of local and remote (lung) complement activation following intestinal ischemia and reperfusion injury and that CR2-Crry requires a 10-fold lower dose than its systemic counterpart, Crry-Ig, to provide equivalent protection from both local and remote injury. CR2-Crry has a significantly shorter serum half-life than Crry-Ig and, unlike Crry-Ig, had no significant effect on serum complement activity at minimum effective therapeutic doses. Furthermore, the minimum effective dose of Crry-Ig significantly enhanced susceptibility to infection in a mouse model of acute septic peritonitis, whereas the effect of CR2-Crry on susceptibility to infection was indistinguishable from that of PBS control. Thus, compared with systemic inhibition, CR2-mediated targeting of a complement inhibitor of activation improved bioavailability, significantly enhanced efficacy, and maintained host resistance to infection.

  1. Brazilin Ameliorates High Glucose-Induced Vascular Inflammation via Inhibiting ROS and CAMs Production in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Thanasekaran Jayakumar

    2014-01-01

    Full Text Available Vascular inflammatory process has been suggested to play a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Recent studies have shown that brazilin exhibits antihepatotoxic, antiplatelet, cancer preventive, or anti-inflammatory properties. Thus, we investigated whether brazilin suppresses vascular inflammatory process induced by high glucose (HG in cultured human umbilical vein endothelial cells (HUVEC. HG induced nitrite production, lipid peroxidation, and intracellular reactive oxygen species formation in HUVEC cells, which was reversed by brazilin. Western blot analysis revealed that brazilin markedly inhibited HG-induced phosphorylation of endothelial nitric oxide synthase. Besides, we investigated the effects of brazilin on the MAPK signal transduction pathway because MAPK families are associated with vascular inflammation under stress. Brazilin blocked HG-induced phosphorylation of extracellular signal-regulated kinase and transcription factor NF-κB. Furthermore, brazilin concentration-dependently attenuated cell adhesion molecules (ICAM-1 and VCAM-1 expression induced by various concentrations of HG in HUVEC. Taken together, the present data suggested that brazilin could suppress high glucose-induced vascular inflammatory process, which may be closely related with the inhibition of oxidative stress, CAMs expression, and NF-κB activation in HUVEC. Our findings may highlight a new therapeutic intervention for the prevention of vascular diseases.

  2. Beauvericin ameliorates experimental colitis by inhibiting activated T cells via downregulation of the PI3K/Akt signaling pathway.

    Directory of Open Access Journals (Sweden)

    Xue-Feng Wu

    Full Text Available Crohn's disease is a common, chronic inflammatory bowel condition characterized by remission and relapse. Accumulating evidence indicates that activated T cells play an important role in this disease. In the present study, we aimed to examine the effect of beauvericin, a natural cyclic peptide, on 2,4,6-trinitrobenzene sulfonic acid (TNBS-induced colitis in mice, which mimics Crohn's disease. Beauvericin significantly reduced weight loss, diarrhea and mortality, accompanied with notable alleviation of macroscopic and microscopic signs. In addition, this compound decreased serum levels of tumor necrosis factor (TNF-α and interferon (IFN-γ in a concentration-dependent manner in mice with experimental colitis. These effects of beauvericin are attributed to its inhibition on activated T cells. Flow cytometry and immunoblot assay data showed that beauvericin suppressed T-cell proliferation, activation and IFN-γ-STAT1-T-bet signaling and subsequently led to apoptosis of activated T cells by suppressing Bcl-2 and phosphorylated Bad as well as increasing cleavage of caspase-3, -9, -12 and PARP. Furthermore, inhibition of PI3K/Akt signaling, which was an upstream regulator of cell activation and survival in activated T cells, contributed to the effect of beauvericin. Overall, these results supported beauvericin as a novel drug candidate for the treatment of colonic inflammation mainly by targeting PI3K/Akt in activated T cells.

  3. Mutant γPKC that causes spinocerebellar ataxia type 14 upregulates Hsp70, which protects cells from the mutant's cytotoxicity.

    Science.gov (United States)

    Ogawa, Kota; Seki, Takahiro; Onji, Tomoya; Adachi, Naoko; Tanaka, Shigeru; Hide, Izumi; Saito, Naoaki; Sakai, Norio

    2013-10-11

    Several missense mutations in the protein kinase Cγ (γPKC) gene have been found to cause spinocerebellar ataxia type 14 (SCA14), an autosomal dominant neurodegenerative disease. We previously demonstrated that the mutant γPKC found in SCA14 is misfolded, susceptible to aggregation and cytotoxic. Molecular chaperones assist the refolding and degradation of misfolded proteins and prevention of the proteins' aggregation. In the present study, we found that the expression of mutant γPKC-GFP increased the levels of heat-shock protein 70 (Hsp70) in SH-SY5Y cells. To elucidate the role of this elevation, we investigated the effect of siRNA-mediated knockdown of Hsp70 on the aggregation and cytotoxicity of mutant γPKC. Knockdown of Hsp70 exacerbated the aggregation and cytotoxicity of mutant γPKC-GFP by inhibiting this mutant's degradation. These findings suggest that mutant γPKC increases the level of Hsp70, which protects cells from the mutant's cytotoxicity by enhancing its degradation.

  4. Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain.

    Science.gov (United States)

    Li, Ruipeng; Wang, Xiangxiang; Qin, Tingting; Qu, Rong; Ma, Shiping

    2016-01-01

    Increasing evidence suggests that inflammation and oxidative stress may contribute to the development of major depressive disorder (MDD). Apigenin, a type of bioflavonoid widely found in citrus fruits, has a number of biological actions including anti-inflammatory and antioxidant effects. Although apigenin has potential antidepressant activity, the mechanisms of this effect remain unclear. The present study aims to investigate the effects of apigenin on behavioral changes and inflammatory responses induced by chronic unpredictable mild stress (CUMS) in rats. GW9662, a selective peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor, was administered 30 min before apigenin. We found that treatment with apigenin (20mg/kg, intragastrically) for three weeks remarkably ameliorated CUMS-induced behavioral abnormalities, such as decreased locomotor activity and reduced sucrose consumption. In response to oxidative stress, the NLRP3 inflammasome was activated and IL-1β secretion increased in the prefrontal cortex (PFC) of CUMS rats. However, apigenin treatment upregulated PPARγ expression and downregulated the expression of NLRP3, which subsequently downregulated the production of IL-1β. In addition, GW9662 diminished the inhibitory effects of apigenin on the NLRP3 inflammasome. In conclusion, our results demonstrate that apigenin exhibits antidepressant-like effects in CUMS rats, possibly by inhibiting IL-1β production and NLRP3 inflammasome expression via the up-regulation of PPARγ expression.

  5. Amelioration of mitochondrial dysfunction-induced insulin resistance in differentiated 3T3-L1 adipocytes via inhibition of NF-κB pathways.

    Science.gov (United States)

    Bakar, Mohamad Hafizi Abu; Sarmidi, Mohamad Roji; Kai, Cheng Kian; Huri, Hasniza Zaman; Yaakob, Harisun

    2014-12-02

    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.

  6. Ameliorative effect of polyphenols from Padina boergesenii against ferric nitrilotriacetate induced renal oxidative damage: With inhibition of oxidative hemolysis and in vitro free radicals.

    Science.gov (United States)

    Rajamani, Karthikeyan; Renju, V C; Sethupathy, S; Thirugnanasambandan, Somasundaram S

    2015-07-01

    The aim of this study was to evaluate the antioxidant activities of diethyl ether (DEE) and methanol (M) extracts from brown alga Padina boergesenii using in vitro and in vivo antioxidant assay, which may help to relate the antioxidant properties with the possible outline of its ameliorative effect. M extract showed higher radical scavenging activity through ferric reducing antioxidant power 139.11 µmol tannic acid equivalent/g; DPPH 71.32 ± 0.56%; deoxyribose radical 88.31 ± 0.47%, and total antioxidant activity 0.47 ± 0.02 mg ascorbic acid equivalents/g. Oxidative red blood cell (RBC) hemolysis inhibition rate was significantly higher in M extract (150 mg/kg body weight) in reference to total phenolic content (r = 0.935). Rats administered with DEE and M extracts (150 mg/kg body weight) for seven days before the administration of ferric nitrilotriacetate (9 mg of Fe/mg/kg bodyweight). Rats pretreated with extracts significantly changed the level of renal microsomal lipid peroxidation, glutathione, and antioxidant enzymes in post-mitochondrial supernatant (P rutin with reference to retardation factor (Rf ) in both the extracts. These findings support the source of polyphenols (rutin) from P. boergesenii had potent antioxidant activity; further work on isolation of bioactive compounds can be channeled to develop as a natural antioxidant.

  7. Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-κB signaling pathway.

    Science.gov (United States)

    Raish, Mohammad

    2017-04-01

    The polysaccharide extract of Momordica charantia has various biological activities; however, its effect on endothelial dysfunction in myocardial infarction remains unclear. To elucidate this, myocardial infarction was induced in rats using isoproterenol (ISP). Pretreatment with M. charantia polysaccharides (MCP; 150 or 300mg/kg) for 25days significantly inhibited increases in heart weight, the heart-weight-to-body-weight ratio, and infarction size, and ameliorated the increased serum levels of aspartate transaminase, creatine kinase, lactate dehydrogenase, total cholesterol, triglycerides, very-low-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. In addition, MCP enhanced the activity of superoxide dismutase, catalase, and non-protein sulfhydryls, and decreased the level of lipid peroxidation. Moreover, MCP pretreatment downregulated the expression of proinflammatory cytokines (tumor necrosis factor alpha, interleukin (IL)-6, and IL-10), inflammatory markers (nitric oxide, myeloperoxidase, and inducible nitric oxide synthase), and apoptotic markers (caspase-3 and BAX), and upregulated Bcl-2 expression. Pretreatment with MCP reduced myonecrosis, edema, and inflammatory cell infiltration, and restored cardiomyocytes architecture. This myocardial protective effect could be related to the enhancement of the antioxidant defense system through the nuclear factor kappa B (NF-kB) pathways, and to anti-apoptosis through regulation of Bax, caspase-3, and Bcl-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2014-12-01

    Full Text Available A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.

  9. Effects of the PKC inhibitors chelerythrine and bisindolylmaleimide I (GF 109203X) on delayed rectifier K+ currents.

    Science.gov (United States)

    Harmati, Gábor; Papp, Ferenc; Szentandrássy, Norbert; Bárándi, László; Ruzsnavszky, Ferenc; Horváth, Balázs; Bányász, Tamás; Magyar, János; Panyi, György; Krasznai, Zoltán; Nánási, Péter P

    2011-02-01

    Protein kinase C (PKC) inhibitors are useful tools for studying PKC-dependent regulation of ion channels. For this purpose, high PKC specificity is a basic requirement excluding any direct interaction between the PKC inhibitor and the ion channel. In the present study, the effects of two frequently applied PKC inhibitors, chelerythine and bisindolylmaleimide I, were studied on the rapid and slow components of the delayed rectifier K(+) current (I(Kr) and I(Ks)) in canine ventricular cardiomyocytes and on the human ether-à-go-go-related gene (hERG) channels expressed in human embryonic kidney (HEK) cells. The whole cell version of the patch clamp technique was used in all experiments. Chelerythrine and bisindolylmaleimide I (both 1 μM) suppressed I(Kr) in canine ventricular cells. This inhibition developed rapidly, suggesting a direct drug-channel interaction. In HEK cells heterologously expressing hERG channels, chelerythrine and bisindolylmaleimide I blocked hERG current in a concentration-dependent manner, having EC(50) values of 0.11 ± 0.01 and 0.76 ± 0.04 μM, respectively. Both chelerythrine and bisindolylmaleimide I strongly modified gating kinetics of hERG--voltage dependence of activation was shifted towards more negative voltages and activation was accelerated. Deactivation was slowed by bisindolylmaleimide I but not by chelerythrine. I(Ks) was not significantly altered by bisindolylmaleimide I and chelerythrine. No significant effect of 0.1 μM bisindolylmaleimide I or 0.1 μM PMA (PKC activator) was observed on I(Kr) arguing against significant contribution of PKC to regulation of I(Kr). It is concluded that neither chelerythrine nor bisindolylmaleimide I is suitable for selective PKC blockade due to their direct blocking actions on the hERG channel.

  10. FTY720, Sphingosine 1-Phosphate Receptor Modulator, Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibition of T Cell Infiltration

    Institute of Scientific and Technical Information of China (English)

    Hirotoshi Kataoka; Kunio Sugahara; Kyoko Shimano; Koji Teshima; Mamoru Koyama; Atsushi Fukunari; Kenji Chiba

    2005-01-01

    FTY720, a sphingosine 1-phosphate receptor modulator, induces a marked decrease in the number of peripheral blood lymphocytes and exerts immunomodulating activity in various experimental allograft and autoimmune disease models. In this study, we evaluated the effect of FTY720 and its active metabolite, (S)-enantiomer of FTY720-phosphate [(S)-FTY720-P] on experimental autoimmune encephalomyelitis (EAE) in rats and mice.Prophylactic administration of FTY720 at 0.1 to 1 mg/kg almost completely prevented the development of EAE,and therapeutic treatment with FTY720 significantly inhibited the progression of EAE and EAE-associated histological change in the spinal cords of LEW rats induced by immunization with myelin basic protein. Consistent with rat EAE, the development of proteolipid protein-induced EAE in SJL/J mice was almost completely prevented and infiltration of CD4+ T cells into spinal cord was decreased by prophylactic treatment with FTY720 and (S)-FTY720-P. When FTY720 or (S)-FTY720-P was given after establishment of EAE in SJL/J mice, the relapse of EAE was markedly inhibited as compared with interferon-β, and the area of demyelination and the infiltration of CD4+ T cells were decreased in spinal cords of EAE mice. Similar therapeutic effect by FTY720 was obtained in myelin oligodendrocyte glycoprotein-induced EAE in C57BL/6 mice. These results indicate that FTY720 exhibits not only a prophylactic but also a therapeutic effect on EAE in rats and mice, and that the effect of FTY720 on EAE appears to be due to a reduction of the infiltration of myelin antigen-specific CD4+ T cells into the inflammation site.

  11. Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Oyinkan Sofola

    2010-09-01

    Full Text Available Abeta peptide accumulation is thought to be the primary event in the pathogenesis of Alzheimer's disease (AD, with downstream neurotoxic effects including the hyperphosphorylation of tau protein. Glycogen synthase kinase-3 (GSK-3 is increasingly implicated as playing a pivotal role in this amyloid cascade. We have developed an adult-onset Drosophila model of AD, using an inducible gene expression system to express Arctic mutant Abeta42 specifically in adult neurons, to avoid developmental effects. Abeta42 accumulated with age in these flies and they displayed increased mortality together with progressive neuronal dysfunction, but in the apparent absence of neuronal loss. This fly model can thus be used to examine the role of events during adulthood and early AD aetiology. Expression of Abeta42 in adult neurons increased GSK-3 activity, and inhibition of GSK-3 (either genetically or pharmacologically by lithium treatment rescued Abeta42 toxicity. Abeta42 pathogenesis was also reduced by removal of endogenous fly tau; but, within the limits of detection of available methods, tau phosphorylation did not appear to be altered in flies expressing Abeta42. The GSK-3-mediated effects on Abeta42 toxicity appear to be at least in part mediated by tau-independent mechanisms, because the protective effect of lithium alone was greater than that of the removal of tau alone. Finally, Abeta42 levels were reduced upon GSK-3 inhibition, pointing to a direct role of GSK-3 in the regulation of Abeta42 peptide level, in the absence of APP processing. Our study points to the need both to identify the mechanisms by which GSK-3 modulates Abeta42 levels in the fly and to determine if similar mechanisms are present in mammals, and it supports the potential therapeutic use of GSK-3 inhibitors in AD.

  12. Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Oyinkan Sofola

    2010-09-01

    Full Text Available Abeta peptide accumulation is thought to be the primary event in the pathogenesis of Alzheimer's disease (AD, with downstream neurotoxic effects including the hyperphosphorylation of tau protein. Glycogen synthase kinase-3 (GSK-3 is increasingly implicated as playing a pivotal role in this amyloid cascade. We have developed an adult-onset Drosophila model of AD, using an inducible gene expression system to express Arctic mutant Abeta42 specifically in adult neurons, to avoid developmental effects. Abeta42 accumulated with age in these flies and they displayed increased mortality together with progressive neuronal dysfunction, but in the apparent absence of neuronal loss. This fly model can thus be used to examine the role of events during adulthood and early AD aetiology. Expression of Abeta42 in adult neurons increased GSK-3 activity, and inhibition of GSK-3 (either genetically or pharmacologically by lithium treatment rescued Abeta42 toxicity. Abeta42 pathogenesis was also reduced by removal of endogenous fly tau; but, within the limits of detection of available methods, tau phosphorylation did not appear to be altered in flies expressing Abeta42. The GSK-3-mediated effects on Abeta42 toxicity appear to be at least in part mediated by tau-independent mechanisms, because the protective effect of lithium alone was greater than that of the removal of tau alone. Finally, Abeta42 levels were reduced upon GSK-3 inhibition, pointing to a direct role of GSK-3 in the regulation of Abeta42 peptide level, in the absence of APP processing. Our study points to the need both to identify the mechanisms by which GSK-3 modulates Abeta42 levels in the fly and to determine if similar mechanisms are present in mammals, and it supports the potential therapeutic use of GSK-3 inhibitors in AD.

  13. Tyrosol ameliorates lipopolysaccharide-induced ocular inflammation in rats via inhibition of nuclear factor (NF)-κB activation

    Science.gov (United States)

    SATO, Kazuaki; MIHARA, Yuko; KANAI, Kazutaka; YAMASHITA, Yohei; KIMURA, Yuya; ITOH, Naoyuki

    2016-01-01

    We evaluated the anti-inflammatory effect of tyrosol (Tyr) on endotoxin-induced uveitis (EIU) in rats. EIU was induced in male Lewis rats by subcutaneous injection of lipopolysaccharide (LPS). Tyr (10, 50 or 100 mg/kg) was intravenously injected 2 hr before, simultaneously and 2 hr after LPS injection. The aqueous humor (AqH) was collected 24 hr after LPS injection; the infiltrating cell number, protein concentration, and tumor necrosis factor (TNF)-α, prostaglandin (PG)-E2 and nitric oxide (NO) levels were determined. Histopathologic examination and immunohistochemical studies for nuclear factor (NF)-κB, inhibitor of κB (IκB)-α, cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) in the iris–ciliary body (ICB) were performed at 3 or 24 hr after LPS injection. To further clarify the anti-inflammatory effects, RAW264.7 macrophages were stimulated with LPS in the presence or absence of Tyr. Tyr reduced, in a dose-dependent manner, the infiltrating cell number, protein concentration, and TNF-α, PGE2 and NO levels in AqH and improved histopathologic scores of EIU. Tyr also inhibited LPS-induced COX-2 and iNOS expression, IκB-α degradation and nuclear translocation of activated NF-κB in ICB. Tyr significantly suppressed inflammatory mediator production in the culture medium and COX-2 and iNOS expression and activated NF-κB translocation in LPS-stimulated RAW264.7 cells. These results suggest that Tyr suppresses ocular inflammation of EIU by inhibiting NF-κB activation and subsequent proinflammatory mediator production. PMID:27238160

  14. Canine Fibroblast Growth Factor 21 Ameliorates Hyperglycemia Associated with Inhibiting Hepatic Gluconeogenesis and Improving Pancreatic Beta-Cell Survival in Diabetic Mice and Dogs.

    Directory of Open Access Journals (Sweden)

    Pengfei Xu

    Full Text Available Diabetes mellitus is a common endocrinopathy in dog. Fibroblast growth factor 21 (FGF-21 is a secreted protein, which is involved in glucose homeostasis. We speculate that the recombinant canine FGF-21 (cFGF-21 has the potential to become a powerful therapeutics to treat canine diabetes. The cFGF-21 gene was cloned and expressed in E. coli Rosetta (DE3. After purification, a cFGF-21 protein with the purity exceeding 95% was obtained. Mouse 3T3-L1 adipocytes and type 1 diabetic mice/dogs induced by STZ were used to examine the biological activity of cFGF-21 in vitro and in vivo, respectively. Results showed that cFGF-21 stimulated glucose uptake in adipocytes significantly in a dose-dependent manner, and reduced plasma glucose significantly in diabetic mice/dogs. After treatment with cFGF-21, the serum insulin level, glycosylated hemoglobin (HbA1c level and the expressions of the hepatic gluconeogenesis genes (glucose-6-phosphatase, G6Pase and phosphoenolpyruvate carboxykinase, PCK of the diabetic mice/dogs were attenuated significantly. In the mouse experiment, we also found that the phosphorylation of signal transducer and activator of transcription 3 (STAT3 and the expression of suppressor of cytokine signaling 3 (SOCS3 were up-regulated significantly in the livers after treatment. Histopathological and immunohistochemical results showed that treatment with cFGF-21 promoted recovery of pancreatic islets from STZ-induced apoptosis. Besides, we also found that treatment with cFGF-21 protected liver against STZ or hyperglycemia induced damage and the mechanism of this action associated with inhibiting oxidative stress. In conclusion, cFGF-21 represents a promising candidate for canine diabetes therapeutics. The mechanism of cFGF-21 ameliorates hyperglycemia associated with inhibiting hepatic gluconeogenesis by regulation of STAT3 signal pathway and improving pancreatic beta-cell survival.

  15. Ilexgenin A inhibits endoplasmic reticulum stress and ameliorates endothelial dysfunction via suppression of TXNIP/NLRP3 inflammasome activation in an AMPK dependent manner.

    Science.gov (United States)

    Li, Yi; Yang, Jie; Chen, Mei-Hong; Wang, Qiang; Qin, Min-Jian; Zhang, Tong; Chen, Xiao-Qing; Liu, Bao-Lin; Wen, Xiao-Dong

    2015-09-01

    Ilexgenin A is a natural triterpenoid with beneficial effects on lipid disorders. This study aimed to investigate the effects of ilexgenin A on endothelial homeostasis and its mechanisms. Palmitate (PA) stimulation induced endoplasmic reticulum stress (ER stress) and subsequent thioredoxin-interacting protein (TXNIP)/NLRP3 inflammasome activation in endothelial cells, leading to endothelial dysfunction. Ilexgenin A enhanced LKB1-dependent AMPK activity and improved ER stress by suppression of ROS-associated TXNIP induction. However, these effects were blocked by knockdown of AMPKα, indicating AMPK is essential for its action in suppression of ER stress. Meanwhile, ilexgenin A inhibited NLRP3 inflammasome activation by down-regulation of NLRP3 and cleaved caspase-1 induction, and thereby reduced IL-1β secretion. It also inhibited inflammation and apoptosis exposed to PA insult. Consistent with these results in endothelial cells, ilexgenin A attenuated ER stress and restored the loss of eNOS activity in vascular endothelium, and thereby improved endothelium-dependent vasodilation in rat aorta. A further analysis in high-fat fed mice showed that oral administration of ilexgenin A blocked ER stress/NLRP3 activation with reduced ROS generation and increased NO production in vascular endothelium, well confirming the beneficial effect of ilexgenin A on endothelial homeostasis in vivo. Taken together, these results show ER stress-associated TXNIP/NLRP3 inflammasome activation was responsible for endothelial dysfunction and ilexgenin A ameliorated endothelial dysfunction by suppressing ER-stress and TXNIP/NLRP3 inflammasome activation with a regulation of AMPK. This finding suggests that the application of ilexgenin A is useful in the management of cardiovascular diseases in obesity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Carmela Giampà

    Full Text Available BACKGROUND: Huntington's disease is a devastating neurodegenerative condition for which there is no therapy to slow disease progression. The particular vulnerability of striatal medium spiny neurons to Huntington's pathology is hypothesized to result from transcriptional dysregulation within the cAMP and CREB signaling cascades in these neurons. To test this hypothesis, and a potential therapeutic approach, we investigated whether inhibition of the striatal-specific cyclic nucleotide phosphodiesterase PDE10A would alleviate neurological deficits and brain pathology in a highly utilized model system, the R6/2 mouse. METHODOLOGY/PRINCIPAL FINDINGS: R6/2 mice were treated with the highly selective PDE10A inhibitor TP-10 from 4 weeks of age until euthanasia. TP-10 treatment significantly reduced and delayed the development of the hind paw clasping response during tail suspension, deficits in rotarod performance, and decrease in locomotor activity in an open field. Treatment prolonged time to loss of righting reflex. These effects of PDE10A inhibition on neurological function were reflected in a significant amelioration in brain pathology, including reduction in striatal and cortical cell loss, the formation of striatal neuronal intranuclear inclusions, and the degree of microglial activation that occurs in response to the mutant huntingtin-induced brain damage. Striatal and cortical levels of phosphorylated CREB and BDNF were significantly elevated. CONCLUSIONS/SIGNIFICANCE: Our findings provide experimental support for targeting the cAMP and CREB signaling pathways and more broadly transcriptional dysregulation as a therapeutic approach to Huntington's disease. It is noteworthy that PDE10A inhibition in the R6/2 mice reduces striatal pathology, consistent with the localization of the enzyme in medium spiny neurons, and also cortical pathology and the formation of neuronal nuclear inclusions. These latter findings suggest that striatal pathology may

  17. Vitamin E ameliorates renal fibrosis by inhibition of TGF-beta/Smad2/3 signaling pathway in UUO mice.

    Science.gov (United States)

    Tasanarong, Adis; Kongkham, Supranee; Duangchana, Soodkate; Thitiarchakul, Supachai; Eiam-Ong, Somchai

    2011-12-01

    One striking feature of chronic kidney disease (CKD) is tubular atrophy and interstitial fibrosis (TA/IF). During chronic renal injury, transforming growth factor-beta (TGF-beta) is involved in this process causing progression of renal fibrosis. Smad2/3 proteins have been identified to have an important function in the expression of extracellular matrix (ECM) regulation through TGF-beta signaling pathway. In the present study, the authors investigated the effect of vitamin E on renal fibrosis in mice model of unilateral ureteral obstruction (UUO). UUO or sham-operated mice were randomly assigned to receive vitamin E (alpha tocopherol) or placebo and were sacrificed on days 3, 7 and 14 after UUO or sham operation. Kidney specimens were fixed for pathological study and immunohistochemistry for TGF-beta1. Protein expression of TGF-beta1 and Smad2/3 was determined by western blot analysis. The mRNA expression of TGF-beta1 was measured by real-time RT-PCR. Vitamin E treated UUO mice had less severity of renal fibrosis than placebo treatment. TA/IF was significantly attenuated by vitamin E treatment. Immunohistochemistry revealed increasing of TGF-beta1 protein expression in the interstitium area of obstructed kidneys. Moreover increasing of TGF-beta1 protein and upregulation of TGF-beta1 mRNA in UUO mice were confirmed by western blot and real time RT-PCR. In contrast, vitamin E treatment significantly inhibited the expression of TGF-beta1 protein and mRNA in UUO mice compared with placebo treatment. Interestingly, Smad2/3 protein expression became progressive increasing in UUO mice on day 3, 7 and 14 compared with sham controls. The expression of Smad2/3 protein was significantly lower in vitamin E treated UUO mice than placebo treatment in any time points. Vitamin E treatment attenuated the progression of renal fibrosis in obstructed kidneys. The renoprotective effect of vitamin E could be mediated by inhibition of TGF-beta/Smad2/3 signaling pathway.

  18. Restoring GM1 ganglioside expression ameliorates axonal outgrowth inhibition and cognitive impairments induced by blast traumatic brain injury

    Science.gov (United States)

    Rubovitch, Vardit; Zilberstein, Yael; Chapman, Joab; Schreiber, Shaul; Pick, Chaim G.

    2017-01-01

    Blast induced traumatic brain injury (B-TBI) may cause various degrees of cognitive and behavioral disturbances but the exact brain pathophysiology involved is poorly understood. It was previously suggested that ganglioside alteration on the axon surface as well as axonal regenerating inhibitors (ARIs) such as myelin associated glycoprotein (MAG) were involved in axonal outgrowth inhibition (AOI), leading to brain damage. GM1 ganglioside content in the brain was significantly reduced while GD1 ganglioside was not affected. The axonal regeneration was also reduced as seen by the phosphorylated NF-H expression. Moreover, B-TBI induced a significant elevation in MAG expression in the brains of the injured mice. The blast injured mice exhibited a significant decline in spatial memory as seen by the Y-maze test. In addition, the injured mice showed pronounced damage to the visual memory (as evaluated by the Novel object recognition test). A single low dose of GM1 (2 mg/kg; IP), shortly after the injury, prevented both the cognitive and the cellular changes in the brains of the injured mice. These results enlighten part of the complicated mechanism that underlies the damage induced by B-TBI and may also suggest a potential new treatment strategy for brain injuries. PMID:28112258

  19. Olmesartan ameliorates pressure overload-induced cardiac remodeling through inhibition of TAK1/p38 signaling in mice.

    Science.gov (United States)

    Wu, Lianpin; Mei, Liqin; Chong, Lin; Huang, Yinqing; Li, Yuechun; Chu, Maoping; Yang, Xiangjun

    2016-01-15

    Many studies have demonstrated the potent effects of ARB administration on heart failure. However, the mechanism of the potent effects of ARB on cardiac remodeling is less well understood. We investigated the role of Olmesartan on the fibrosis and hypertrophy in mouse heart. We employed TAC surgery, a mouse model of chronic cardiac failure. All the mice were separated into three groups: the sham group, TAC group and TAC plus Olmesartan group (given Olmesartan treatment after TAC). We analyzed left ventricle remodeling, and function by echocardiography or pathology. We further detected the level of marker genes involved in fibrosis and hypertrophy and in cultured neonatal rat cardiac fibroblasts and myocytes infected by constitutively active TAK1 and p38MAPK. After TAC, all the mice developed hypertrophy, worse cardiac function and malignant remodeling in left ventricle. Olmesartan improved heart remodeling and function without changing pressure of blood. Moreover, Olmesartan reduced the level of transforming growth factor β activated kinase-1 (TAK1) and phospho-p38MAPK. In neonatal rat cardiac fibroblast cells and cardiomyocytes, Olmesartan also decreased TAK1 and p38MAPK activation triggered by TGFβ1 or AngII. The inhibitory effect of Olmesartan was abrogated by overexpression of constitutively active TAK1 and p38MAPK by adenovirus system. Our results suggest Olmesartan improves heart remodeling and function induced by pressure overload. P38MAPK inactivation attenuated by olmesartan via inhibition of TAK1 pathway plays an important role in the process. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Silencing megalin and cubilin genes inhibits myeloma light chain endocytosis and ameliorates toxicity in human renal proximal tubule epithelial cells.

    Science.gov (United States)

    Li, Min; Balamuthusamy, Saravanan; Simon, Eric E; Batuman, Vecihi

    2008-07-01

    Using target-specific short interfering (si) RNAs, we silenced the tandem endocytic receptors megalin and cubilin genes in cultured human renal proximal tubule epithelial cells. Transfection by siRNA resulted in up to 90% suppression of both megalin and cubilin protein and mRNA expression. In HK-2 cells exposed to kappa-light chain for up to 24 h, light chain endocytosis was reduced in either megalin- or cubilin-silenced cells markedly but incompletely. Simultaneous silencing of both the cubilin and megalin genes, however, resulted in near-complete inhibition of light chain endocytosis, as determined by measuring kappa-light chain protein concentration in cell cytoplasm and by flow cytometry using FITC-labeled kappa-light chain. In these cells, light chain-induced cytokine responses (interleukin-6 and monocyte chemoattractant protein-1) and epithelial-to-mesenchymal transition as well as the associated cellular and morphological alterations were also markedly suppressed. The results demonstrate that light chain endocytosis is predominantly mediated by the megalin-cubilin tandem endocytic receptor and identify endocytosis as a key step in light chain cytotoxicity. Blocking light chain endocytosis prevents its nephrotoxic effects on human kidney proximal tubule cells.

  1. Fenugreek Seed Extract Inhibit Fat Accumulation and Ameliorates Dyslipidemia in High Fat Diet-Induced Obese Rats

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    2014-01-01

    Full Text Available This study investigated the inhibitory effect of aqueous extract of Trigonella foenum-graecum seeds (AqE-TFG on fat accumulation and dyslipidemia in high fat diet- (HFD- induced obese rats. Female Wistar rats were fed with HFD ad libitum, and the rats on HFD were treated orally with AqE-TFG or orlistat ((HFD for 28 days + AqE-TFG (0.5 and 1.0 g/kg or orlistat (10 mg/kg from day 8 to 28, respectively. Treatment with AqE-TFG produced significant reduction in body weight gain, body mass index (BMI, white adipose tissue (WAT weights, blood glucose, serum insulin, lipids, leptin, lipase, and apolipoprotein-B levels and elevation in adiponectin levels. AqE-TFG improved serum aspartate amino transferase (AST, alanine amino transferase (ALT, and lactate dehydrogenase (LDH levels. AqE-TFG treatment reduced the hepatic and cardiac thiobarbituric acid reactive substances (TBARS and elevated the antioxidant enzyme (glutathione (GSH, superoxide dismutase (SOD, and catalase (CAT levels. In addition, liver and uterine WAT lipogenic enzyme (fatty acid synthetase (FAS and glucose-6-phosphate dehydrogenase (G6PD activities were restored towards normal levels. These findings demonstrated the preventive effect of AqE-TFG on fat accumulation and dyslipidemia, due to inhibition of impaired lipid digestion and absorption, in addition to improvement in glucose and lipid metabolism, enhancement of insulin sensitivity, increased antioxidant defense, and downregulation of lipogenic enzymes.

  2. Psoralea corylifolia L. Seed Extract Ameliorates Streptozotocin-Induced Diabetes in Mice by Inhibition of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Eunhui Seo

    2014-01-01

    Full Text Available Pancreatic beta-cell death is known to be the cause of deficient insulin production in diabetes mellitus. Oxidative stress is one of the major causes of beta-cell death. In this study, we investigated the effects of Psoralea corylifolia L. seed (PCS extract on beta-cell death. Oral administration of PCS extract resulted in a significant improvement of hyperglycemia in streptozotocin-induced diabetic mice. PCS extract treatment improved glucose tolerance and increased serum insulin levels. To study the mechanisms involved, we investigated the effects of PCS extract on H2O2-induced apoptosis in INS-1 cells. Treatment with PCS extract inhibited cell death. PCS extract treatment decreased reactive oxygen species level and activated antioxidative enzymes. Among the major components of PCS extract, psoralen and isopsoralen (coumarins, but not bakuchiol, showed preventive effects against H2O2-induced beta-cell death. These findings indicate that PCS extract may be a potential pharmacological agent to protect against pancreatic beta-cell damage caused by oxidative stress associated with diabetes.

  3. CXCR4 inhibition ameliorates severe obliterative pulmonary hypertension and accumulation of C-kit⁺ cells in rats.

    Directory of Open Access Journals (Sweden)

    Daniela Farkas

    Full Text Available Successful curative treatment of severe pulmonary arterial hypertension with luminal obliteration will require a thorough understanding of the mechanism underlying the development and progression of pulmonary vascular lesions. But the cells that obliterate the pulmonary arterial lumen in severe pulmonary arterial hypertension are incompletely characterized. The goal of our study was to evaluate whether inhibition of CXC chemokine receptor 4 will prevent the accumulation of c-kit⁺ cells and severe pulmonary arterial hypertension. We detected c-kit⁺⁻ cells expressing endothelial (von Willebrand Factor or smooth muscle cell/myofibroblast (α-smooth muscle actin markers in pulmonary arterial lesions of SU5416/chronic hypoxia rats. We found increased expression of CXC chemokine ligand 12 in the lung tissue of SU5416/chronic hypoxia rats. In our prevention study, AMD3100, an inhibitor of the CXC chemokine ligand 12 receptor, CXC chemokine receptor 4, only moderately decreased pulmonary arterial obliteration and pulmonary hypertension in SU5416/chronic hypoxia animals. AMD3100 treatment reduced the number of proliferating c-kit⁺ α-smooth muscle actin⁺ cells and pulmonary arterial muscularization and did not affect c-kit⁺ von Willebrand Factor⁺ cell numbers. Both c-kit⁺ cell types expressed CXC chemokine receptor 4. In conclusion, our data demonstrate that in the SU5416/chronic hypoxia model of severe pulmonary hypertension, the CXC chemokine receptor 4-expressing c-kit⁺ α-smooth muscle actin⁺ cells contribute to pulmonary arterial muscularization. In contrast, vascular lumen obliteration by c-kit⁺ von Willebrand Factor⁺ cells is largely independent of CXC chemokine receptor 4.

  4. Ginsenoside Rg5 Ameliorates Cisplatin-Induced Nephrotoxicity in Mice through Inhibition of Inflammation, Oxidative Stress, and Apoptosis

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-09-01

    Full Text Available Although cisplatin is an effective anti-cancer agent that is widely used for treating various types of malignant solid tumors, the nephrotoxicity induced by cisplatin severely limits its clinical application. The present study was designed to explore the potential protective effect of ginsenoside Rg5, a rare ginsenoside generated during steaming ginseng, on cisplatin-induced nephrotoxicity in a mouse experimental model. The possible mechanisms underlying this nephroprotective effect were also investigated for the first time. Rg5 was given at doses of 10 and 20 mg/kg for 10 consecutive days. On Day 7, a single nephrotoxic dose of cisplatin (25 mg/kg was injected to mice. Cisplatin administration resulted in renal dysfunction as evidenced by increase in serum creatinine (CRE and blood urea nitrogen (BUN levels. In addition, cisplatin increased the level of malondialdehyde (MDA and 4-hydroxynonenal (4-HNE, the makers of lipid peroxidation, and depleted glutathione (GSH content and superoxide dismutase (SOD activity in renal tissues. These effects were associated with the significantly increased levels of cytochrome P450 E1 (CYP2E1, 4-hydroxynonenal (4-HNE, tumor necrosis factor (TNF-α, interleukin (IL-1β, nuclear factor-kappa B (NF-κB p65, and cyclooxygenase-2 (COX-2 in renal tissues. However, pretreatment with ginsenoside Rg5 significantly attenuated the renal dysfunction, oxidative stress and inflammation response induced by cisplatin. Furthermore, ginsenoside Rg5 supplementation inhibited activation of apoptotic pathways through increasing Bcl-2 and decreasing Bax expression levels. Histopathological examination further confirmed the nephroprotective effect of Rg5. Collectively, these results clearly suggest that Rg5-mediated alleviation of cisplatin-induced nephrotoxicity may be related to its anti-oxidant, anti-apoptotic and anti-inflammatory effects.

  5. A clerodane diterpene inhibit adipogenesis by cell cycle arrest and ameliorate obesity in C57BL/6 mice.

    Science.gov (United States)

    Beg, Muheeb; Shankar, Kripa; Varshney, Salil; Rajan, Sujith; Singh, Suriya Pratap; Jagdale, Pankaj; Puri, Anju; Chaudhari, Bhushan P; Sashidhara, Koneni V; Gaikwad, Anil Nilkanth

    2015-01-01

    A clerodane diterpene, 16α-Hydroxycleroda-3, 13 (14) Z-dien-15, 16-olide (compound 1) isolated from Polyalthia longifolia had previously been reported as a new structural class of HMG-CoA reductase inhibitor apart from statins. Statins are known to be anti-adipogenic in nature. The distant structural similarity between compound 1 and lovastatin (polyketide class of compound) prompted us to investigate effects of diterpene compound 1 on adipogenesis and thereby obesity. High content microscopy proved diterpene compound 1 exhibits better anti-adipogenic activity and less toxicity in differentiating adipocytes. Moreover, it reduced expression levels of PPARγ, C/EBPα and GLUT4 during differentiation in a time and concentration dependent manner. Diterpene compound 1 during early differentiation reduced MDI induced-Akt/mTOR phosphorylation and expression of cell cycle proteins, and thereby halted mitotic clonal expansion, the decisive factor in early adipogenesis. Further, its anti-adipogenic activity was validated in murine mesenchymal cell-line C3H10T1/2 and human mesenchymal stem cell models of adipogenic differentiation. When compound 1 was administered along with HFD, for another 8 weeks in 2 month HFD fed overweight mice (with BMI > 30 and impaired glucose tolerance), it attenuated weight gain and epididymal fat accumulation. It improved body glucose tolerance, reduced HFD induced increase in total cholesterol and leptin/adiponectin ratio. All these effects were comparable with standard anti-obesity drug Orlistat with added edge of potently decreasing circulating triglyceride levels comparable with normal chow fed group. Histological analysis shows that compound 1 inhibit adipocyte hypertrophy and decreased steatosis in hepatocytes. Both in vivo and in vitro results demonstrate a potential value of compound 1 as a novel anti-adipogenic and anti-obesity agent.

  6. Targeting PKC: a novel role for beta-catenin in ER stress and apoptotic signaling.

    Science.gov (United States)

    Raab, Marc S; Breitkreutz, Iris; Tonon, Giovanni; Zhang, Jing; Hayden, Patrick J; Nguyen, Thu; Fruehauf, Johannes H; Lin, Boris K; Chauhan, Dharminder; Hideshima, Teru; Munshi, Nikhil C; Anderson, Kenneth C; Podar, Klaus

    2009-02-12

    Targeting protein kinase C (PKC) isoforms by the small molecule inhibitor enzastaurin has shown promising preclinical activity in a wide range of tumor cells. We further delineated its mechanism of action in multiple myeloma (MM) cells and found a novel role of beta-catenin in regulating growth and survival of tumor cells. Specifically, inhibition of PKC leads to rapid accumulation of beta-catenin by preventing the phosphorylation required for its proteasomal degradation. Microarray analysis and small-interfering RNA (siRNA)-mediated gene silencing in MM cells revealed that accumulated beta-catenin activates early endoplasmic reticulum stress signaling via eIF2alpha, C/EBP-homologous protein (CHOP), and p21, leading to immediate growth inhibition. Furthermore, accumulated beta-catenin contributes to enzastaurin-induced cell death. Sequential knockdown of beta-catenin, c-Jun, and p73, as well as overexpression of beta-catenin or p73 confirmed that accumulated beta-catenin triggers c-Jun-dependent induction of p73, thereby conferring MM cell apoptosis. Our data reveal a novel role of beta-catenin in endoplasmic reticulum (ER) stress-mediated growth inhibition and a new proapoptotic mechanism triggered by beta-catenin on inhibition of PKC isoforms. Moreover, we identify p73 as a potential novel therapeutic target in MM. Based on these and previous data, enzastaurin is currently under clinical investigation in a variety of hematologic malignancies, including MM.

  7. Lidocaine-induced apoptosis of gingival fibroblasts: participation of cAMP and PKC activity.

    Science.gov (United States)

    Villarruel, Emmanuel Quinteros; Borda, Enri; Sterin-Borda, Leonor; Orman, Betina

    2011-08-01

    Local anaesthetics are drugs that prevent or relieve pain by interrupting nervous conduction and are the most commonly used drugs in dentistry. Their main targets of action are voltage-dependent Na+ channels. The Na+ channel is modulated by phosphorylation of two enzymes: PKA (protein kinase A) and PKC (protein kinase C). We studied the ability of lidocaine to modulate programmed cell death of human gingival fibroblasts and the mechanisms involved in this process. Lidocaine (10-5 to 10-7 M) stimulated apoptosis in primary cultures and the caspase-3 activity in a concentration-dependent manner. The stimulatory effect of lidocaine on apoptosis was attenuated in the presence of HA 1004 (PKA inhibitor) and stimulated by staurosporine and Go 6976 (PKC inhibitors). Lidocaine-induced apoptotic nuclei correlated positively with cAMP accumulation and negatively with PKC activity. These results show that lidocaine promotes apoptosis in human gingival fibroblasts at concentrations used for local anaesthesia. The mechanism involves PKA stimulation and PKC inhibition, which in turn stimulates caspase-3 and leads to programmed cell death.

  8. Natural Product Vibsanin A Induces Differentiation of Myeloid Leukemia Cells through PKC Activation.

    Science.gov (United States)

    Yu, Zu-Yin; Xiao, He; Wang, Li-Mei; Shen, Xing; Jing, Yu; Wang, Lin; Sun, Wen-Feng; Zhang, Yan-Feng; Cui, Yu; Shan, Ya-Jun; Zhou, Wen-Bing; Xing, Shuang; Xiong, Guo-Lin; Liu, Xiao-Lan; Dong, Bo; Feng, Jian-Nan; Wang, Li-Sheng; Luo, Qing-Liang; Zhao, Qin-Shi; Cong, Yu-Wen

    2016-05-01

    All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR.

  9. Amoebic PI3K and PKC is required for Jurkat T cell death induced by Entamoeba histolytica.

    Science.gov (United States)

    Lee, Young Ah; Kim, Kyeong Ah; Min, Arim; Shin, Myeong Heon

    2014-08-01

    The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.

  10. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver.

    Science.gov (United States)

    Xing, Xiaomang; Li, Danyang; Chen, Dilong; Zhou, Liang; Chonan, Ritsu; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2014-10-15

    Mangiferin, a xanthone glucoside, and its associated traditional herbs have been demonstrated to improve abnormalities of lipid metabolism. However, its underlying mechanisms remain largely unclear. This study investigated the anti-steatotic effect of mangiferin in fructose-fed spontaneously hypertensive rat (SHR)s that have a mutation in sterol regulatory element binding protein (SREBP)-1. The results showed that co-administration of mangiferin (15 mg/kg, once daily, by oral gavage) over 7 weeks dramatically diminished fructose-induced increases in hepatic triglyceride content and Oil Red O-stained area in SHRs. However, blood pressure, fructose and chow intakes, white adipose tissue weight and metabolic parameters (plasma concentrations of glucose, insulin, triglyceride, total cholesterol and non-esterified fatty acids) were unaffected by mangiferin treatment. Mechanistically, mangiferin treatment suppressed acyl-coenzyme A:diacylglycerol acyltransferase (DGAT)-2 expression at the mRNA and protein levels in the liver. In contrast, mangiferin treatment was without effect on hepatic mRNA and/or protein expression of SREBP-1/1c, carbohydrate response element binding protein, liver pyruvate kinase, fatty acid synthase, acetyl-CoA carboxylase-1, stearoyl-CoA desaturase-1, DGAT-1, monoacyglycerol acyltransferase-2, microsomal triglyceride transfer protein, peroxisome proliferator-activated receptor-alpha, carnitine palmitoyltransferase-1 and acyl-CoA oxidase. Collectively, our results suggest that mangiferin treatment ameliorates fatty liver in fructose-fed SHRs by inhibiting hepatic DGAT-2 that catalyzes the final step in triglyceride biosynthesis. The anti-steatotic effect of mangiferin may occur independently of the hepatic signals associated with de novo fatty acid synthesis and oxidation.

  11. Rapamycin ameliorates experimental autoimmune uveoretinitis by inhibiting Th1/Th2/Th17 cells and upregulating CD4+CD25+ Foxp3 regulatory T cells

    Institute of Scientific and Technical Information of China (English)

    Li-Fei; Yuan; Guang-Da; Li; Xin-Jun; Ren; Hong; Nian; Xiao-Rong; Li; Xiao-Min; Zhang

    2015-01-01

    · AIM: To determine the effects of rapamycin on experimental autoimmune uveoretinitis(EAU) and investigate of role of rapamycin on T cell subsets in the disease.·METHODS: EAU was induced in rats using peptides1169 to 1191 of the interphotoreceptor binding protein(IRBP). Rapamycin(0.2 mg/kg/d) was administrated by intraperitoneal injection for a consecutive 7d after immunization. Th1/Th2/Th17 cytokines, TGF-β1, and IL-6produced by lymphocyteswere measured by ELISA, while Th17 cells and CD4 +CD25 + regulatory T cells(Tregs)from rat spleen were detected by flow cytometry.·RESULTS: Intraperitoneal treatment immediately after immunization dramatically ameliorated the clinical course of EAU. Clinical responses were associated with reduced retinal inflammatory cell infiltration and tissue destruction. Rapamycin induced suppression of Th1/Th2/Th17 cytokines, including IFN-γ, IL-2, IL-17, IL-4, and IL-10 release from T lymphocytes of EAU rats, in vitro.Rapamycin also significantly increased TGF-β1production but had no effect on IL-6 productionof T lymphocytes from EAU rats in vitro. Furthermore,rapamycin decreased the ratio of Th17 cells/CD4 +T cells and upregulated Tregs in EAU, as detected by flow cytometry.·CONCLUSION: Rapamycin effectively interferes with T cell mediated autoimmune uveitis by inhibiting antigen-specific T cell functions and enhancing Tregs in EAU.Rapamycin is a promising new alternative as an adjunct corticosteroid-sparing agent for treating uveitis.

  12. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.

    Directory of Open Access Journals (Sweden)

    Shantelle L LaFayette

    Full Text Available Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC, which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which

  13. Polydatin ameliorates Staphylococcus aureus-induced mastitis in mice via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB pathway

    Science.gov (United States)

    Jiang, Kang-feng; Zhao, Gan; Deng, Gan-zhen; Wu, Hai-chong; Yin, Nan-nan; Chen, Xiu-ying; Qiu, Chang-wei; Peng, Xiu-li

    2017-01-01

    Recent studies show that Polydatin (PD) extracted from the roots of Polygonum cuspidatum Sieb, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. In this study, we investigated the anti-inflammatory effects of PD on Staphylococcus aureus-induced mastitis in mice and elucidated the potential mechanisms. In mice with S aureus-induced mastitis, administration of PD (15, 30, 45 mg/kg, ip) or dexamethasone (Dex, 5 mg/kg, ip) significantly suppressed the infiltration of inflammatory cells, ameliorated the mammary structural damage, and inhibited the activity of myeloperoxidase, a biomarker of neutrophils accumulation. Furthermore, PD treatment dose-dependently decreased the levels of TNF-α, IL-1β, IL-6 and IL-8 in the mammary gland tissues. PD treatment also dose-dependently decreased the expression of TLR2, MyD88, IRAK1, IRAK4 and TRAF6 as well as the phosphorylation of TAK1, MKK3/6, p38 MAPK, IκB-α and NF-κB in the mammary gland tissues. In mouse mammary epithelial cells (mMECs) infected by S aureus in vitro, pretreatment with PD dose-dependently suppressed the upregulated pro-inflammatory cytokines and signaling proteins, and the nuclear translocation of NF-κB p65 and AP-1. A TLR2-neutralizing antibody mimicked PD in its suppression on S aureus-induced upregulation of MyD88, p-p38 and p-p65 levels in mMECs. PD (50, 100 μg/mL) affected neither the growth of S aureus in vitro, nor the viability of mMECs. In conclusion, PD does not exhibit antibacterial activity against S aureus, its therapeutic effects in mouse S aureus-induced mastitis depend on its ability to down-regulate pro-inflammatory cytokine levels via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB signaling pathway. PMID:27890916

  14. Polydatin ameliorates Staphylococcus aureus-induced mastitis in mice via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB pathway.

    Science.gov (United States)

    Jiang, Kang-Feng; Zhao, Gan; Deng, Gan-Zhen; Wu, Hai-Chong; Yin, Nan-Nan; Chen, Xiu-Ying; Qiu, Chang-Wei; Peng, Xiu-Li

    2017-02-01

    Recent studies show that Polydatin (PD) extracted from the roots of Polygonum cuspidatum Sieb, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. In this study, we investigated the anti-inflammatory effects of PD on Staphylococcus aureus-induced mastitis in mice and elucidated the potential mechanisms. In mice with S aureus-induced mastitis, administration of PD (15, 30, 45 mg/kg, ip) or dexamethasone (Dex, 5 mg/kg, ip) significantly suppressed the infiltration of inflammatory cells, ameliorated the mammary structural damage, and inhibited the activity of myeloperoxidase, a biomarker of neutrophils accumulation. Furthermore, PD treatment dose-dependently decreased the levels of TNF-α, IL-1β, IL-6 and IL-8 in the mammary gland tissues. PD treatment also dose-dependently decreased the expression of TLR2, MyD88, IRAK1, IRAK4 and TRAF6 as well as the phosphorylation of TAK1, MKK3/6, p38 MAPK, IκB-α and NF-κB in the mammary gland tissues. In mouse mammary epithelial cells (mMECs) infected by S aureus in vitro, pretreatment with PD dose-dependently suppressed the upregulated pro-inflammatory cytokines and signaling proteins, and the nuclear translocation of NF-κB p65 and AP-1. A TLR2-neutralizing antibody mimicked PD in its suppression on S aureus-induced upregulation of MyD88, p-p38 and p-p65 levels in mMECs. PD (50, 100 μg/mL) affected neither the growth of S aureus in vitro, nor the viability of mMECs. In conclusion, PD does not exhibit antibacterial activity against S aureus, its therapeutic effects in mouse S aureus-induced mastitis depend on its ability to down-regulate pro-inflammatory cytokine levels via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB signaling pathway.

  15. Inhibition of PKC-dependent extracellular Ca{sup 2+} entry contributes to the depression of contractile activity in long-term pressure-overloaded endothelium-denuded rat aortas

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J.; López, R.M.; López, P.; Castillo, M.C.; Querejeta, E.; Ruiz, A.; Castillo, E.F. [Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF (Mexico)

    2014-08-01

    We examined the contractile responsiveness of rat thoracic aortas under pressure overload after long-term suprarenal abdominal aortic coarctation (lt-Srac). Endothelium-dependent angiotensin II (ANG II) type 2 receptor (AT{sub 2}R)-mediated depression of contractions to ANG II has been reported in short-term (1 week) pressure-overloaded rat aortas. Contractility was evaluated in the aortic rings of rats subjected to lt-Srac or sham surgery (Sham) for 8 weeks. ANG I and II levels and AT{sub 2}R protein expression in the aortas of lt-Srac and Sham rats were also evaluated. lt-Srac attenuated the contractions of ANG II and phenylephrine in the aortas in an endothelium-independent manner. However, lt-Srac did not influence the transient contractions induced in endothelium-denuded aortic rings by ANG II, phenylephrine, or caffeine in Ca{sup 2+}-free medium or the subsequent tonic constrictions induced by the addition of Ca{sup 2+} in the absence of agonists. Thus, the contractions induced by Ca{sup 2+} release from intracellular stores and Ca{sup 2+} influx through stored-operated channels were not inhibited in the aortas of lt-Srac rats. Potassium-elicited contractions in endothelium-denuded aortic rings of lt-Srac rats remained unaltered compared with control tissues. Consequently, the contractile depression observed in aortic tissues of lt-Srac rats cannot be explained by direct inhibition of voltage-operated Ca{sup 2+} channels. Interestingly, 12-O-tetradecanoylphorbol-13-acetate-induced contractions in endothelium-denuded aortic rings of lt-Srac rats were depressed in the presence but not in the absence of extracellular Ca{sup 2+}. Neither levels of angiotensins nor of AT{sub 2}R were modified in the aortas after lt-Srac. The results suggest that, in rat thoracic aortas, lt-Srac selectively inhibited protein kinase C-mediated activation of contraction that is dependent on extracellular Ca{sup 2+} entry.

  16. PKC phosphorylates residues in the N-terminal of the DA transporter to regulate amphetamine-induced DA efflux.

    Science.gov (United States)

    Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul

    2016-05-27

    The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect.

  17. Translocation of PKC-betaII is mediated via RACK-1 in the neuronal cells following dioxin exposure.

    Science.gov (United States)

    Lee, Hyun-Gyo; Kim, Sun-Young; Choi, Eun-Jung; Park, Ki-Yeon; Yang, Jae-Ho

    2007-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is known to induce neurotoxic effects. However, the mechanism of TCDD-mediated signaling pathways and its possible molecular targets in neurons remains unknown. In this study, we analyzed effects of TCDD on neurofilament subunits, receptor for activated C kinase-1 (RACK-1), and PKC-betaII activity in developing neuronal cells. TCDD induced a significant increase of RACK-1, an adaptor protein for protein kinase C (PKC), in cerebellar granule cells in both dose- and time-dependent manner, indicating that RACK-1 is a sensitive molecular target in neuronal cells for TCDD exposure. TCDD induced a dose-dependent translocation of PKC-betaII from cytosol to membrane fractions. However, when RACK-1 induction was blocked by antisense oligonucleotide or alpha-naphthoflavone, Ah receptor (AhR) inhibitor, the translocation of PKC-betaII was inhibited. Our data suggests that TCDD activates PKC-betaII via RACK-1 in an AhR-dependent manner. This is the first report identifying RACK-1 as a target molecule involved in TCDD-mediated signaling pathways. TCDD exposure also increased the level of neurofilament-H mRNA. These results suggest that identification of target molecules may contribute to improve our understanding of TCDD-mediated signaling pathway and the risk assessment of TCDD-induced neurotoxicities.

  18. PKC-Dependent GlyT1 Ubiquitination Occurs Independent of Phosphorylation: Inespecificity in Lysine Selection for Ubiquitination.

    Directory of Open Access Journals (Sweden)

    Susana P Barrera

    Full Text Available Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocytosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1. Incubation of cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1 positive early endosomes. This occurred via a mechanism that was abolished by inhibition of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to arginines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism of ubiquitination. Interestingly, a 40-50% reduction in glycine uptake was detected in phorbol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for the mutant protein, demonstrating that endocytosis participates in the reduction of uptake. Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1 tails functions as sorting signal to deliver transporter into the lysosome and removal of ubiquitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of ubiquitination sites, suggesting separate PKC-dependent signaling events for these posttranslational modifications.

  19. Paeonol ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice by inhibiting the maturation and activation of dendritic cells.

    Science.gov (United States)

    Meng, Yujiao; Wang, Mingxing; Xie, Xiangjiang; Di, Tingting; Zhao, Jingxia; Lin, Yan; Xu, Xiaolong; Li, Ningfei; Zhai, Yating; Wang, Yan; Li, Ping

    2017-05-01

    Paeonol, an active component derived from the traditional Chinese medicine Cortex Moutan, possesses anti-inflammatory, analgesic, antioxidant and anti-allergic properties. Psoriasis is a chronic, recurrent, inflammatory dermatosis accompanied by excessive activation of Toll‑like receptors (TLRs) in dendritic cells (DCs), which are primarily responsible for initiating an immune response. We investigated the effect of paeonol on inflammation in an imiquimod (IMQ)-induced psoriasis-like mouse model and murine bone marrow-derived dendritic cells (BMDCs) stimulated by R848. Mice were intragastrically administered 100 mg/kg (high), 50 mg/kg (medium) and 25 mg/kg (low) paeonol, respectively. We evaluated inflammation of psori-asis‑like lesions based on histological changes, protein levels of myeloid differentiation factor 88 (MyD88) and TLR8 in skin lesions by western blotting, and levels of CD11c+ DCs in skin by immunoassay and in spleens by flow cytometry. Inflammatory cytokines [interleukin (IL)-23, IL-12 and IL-1β] in skin lesions and BMDCs were also assessed by RT-PCR and ELISA. Application of paeonol decreased IMQ-induced keratinocyte proliferation, and infiltration of CD3+ cells, while the treatment ameliorated CD11c+ cells in the spleen and skin, and reduced MyD88 and TLR8 proteins in skin lesions. Paeonol inhibited IMQ-induced mRNA expression of IL-23, but not IL-12 and IL-1β in BMDCs, along with significantly lower levels of DCs expressing MHCⅡ, CD80 and CD86 in vitro. These results indicate that paeonol suppresses the maturation and activation of DCs by decreasing MyD88 and TLR8 proteins in the TLR7/8 signaling pathway which finally alleviates psoriasis‑like skin lesions. The TLR7/8 signaling pathway in DCs provides an important insight into the mechanism of psoriasis, and paeonol may be a potent therapeutic drug for psoriasis.

  20. ErbB receptors and PKC regulate PC12 neuronal-like differentiation and sodium current elicitation.

    Science.gov (United States)

    García, L; Castillo, C; Carballo, J; Rodríguez, Y; Forsyth, P; Medina, R; Martínez, J C; Longart, M

    2013-04-16

    Excitability, neurite outgrowth and their specification are very important features in the establishment of neuronal differentiation. We have studied a conditioned medium (CM) from sciatic nerve which is able to induce a neuronal-like differentiation of PC12 cells. Previously, we have demonstrated that supplementing this CM with a generic inhibitor (k252a), which mainly inhibits tropomyosin-related kinase receptors (Trk receptors) and protein kinase C (PKC), caused neurite elongation, sodium current induction and axon development. In the present work, we are showing that the enhancement of neurite length and induction of sodium currents induced by CM+k252a were prevented by ErbB receptor inhibition. Additionally, we demonstrated that specific inhibition of PKC produced a similar effect to that exerted by k252a in CM-treated cells, specifically by increasing the percentage of differentiated cells with long neurites and inducing sodium currents. Moreover, CM changed the mRNA levels for ErbB2 and ErbB3 increasing them 6- and 36-folds respectively compared to their control. The inclusion of k252a with CM changed the ErbB1, ErbB2 and ErbB3 mRNA proportions increasing those eight-, seven- and fivefolds respectively. From this point, it is clear that appropriate ErbB receptor levels and PKC inhibition are necessary to enhance the effect of the CM in inducing the neuronal-like differentiation of PC12 cells. In summary, we demonstrated the involvement of ErbB receptors in the regulation of neurite elongation and sodium current induction in PC12 cells and propose that these processes could be initiated by ErbB receptors followed by a fine regulation of PKC signaling. These findings might implicate a novel interplay between ErbB receptors and PKC in the regulation of these molecular mechanisms.

  1. Combination treatments with the PKC inhibitor, enzastaurin, enhance the cytotoxicity of the anti-mesothelin immunotoxin, SS1P.

    Directory of Open Access Journals (Sweden)

    Abid R Mattoo

    Full Text Available Activated protein kinase C (PKC contributes to tumor survival and proliferation, provoking the development of inhibitory agents as potential cancer therapeutics. Immunotoxins are antibody-based recombinant proteins that employ antibody fragments for cancer targeting and bacterial toxins as the cytotoxic agent. Pseudomonas exotoxin-based immunotoxins act via the ADP-ribosylation of EF2 leading to the enzymatic inhibition of protein synthesis. Combining PKC inhibitors with the immunotoxin SS1P, targeted to surface mesothelin, was undertaken to explore possible therapeutic strategies. Enzastaurin but not two other PKC inhibitors combined with SS1P to produce synergistic cell death via apoptosis. Mechanistic insights of the synergistic killing centered on the complete loss of the prosurvival Bcl2 protein, Mcl-1, the loss of AKT and the activation of caspase 3/7. Synergy was most evident when cells exhibited resistance to the immunotoxin alone. Further, because PKC inhibition by itself was not sufficient to enhance SS1P action, enzastaurin must target other kinases that are involved in the immunotoxin pathway.

  2. Targeting sphingosine kinase 1 in carcinoma cells decreases proliferation and survival by compromising PKC activity and cytokinesis.

    Directory of Open Access Journals (Sweden)

    Nataliya Kotelevets

    Full Text Available Sphingosine kinases (SK catalyze the phosphorylation of proapoptotic sphingosine to the prosurvival factor sphingosine 1-phosphate (S1P, thereby promoting oncogenic processes. Breast (MDA-MB-231, lung (NCI-H358, and colon (HCT 116 carcinoma cells were transduced with shRNA to downregulate SK-1 expression or treated with a pharmacologic SK-1 inhibitor. The effects of SK-1 targeting were investigated by measuring the level of intracellular sphingosine, the activity of protein kinase C (PKC and cell cycle regulators, and the mitotic index. Functional assays included measurement of cell proliferation, colony formation, apoptosis, and cell cycle analysis. Downregulation of SK-1 or its pharmacologic inhibition increased intracellular sphingosine and decreased PKC activity as shown by reduced phosphorylation of PKC substrates. In MDA-MB-231 cells this effect was most pronounced and reduced cell proliferation and colony formation, which could be mimicked using exogenous sphingosine or the PKC inhibitor RO 31-8220. SK-1 downregulation in MDA-MB-231 cells increased the number of cells with 4N and 8N DNA content, and similar effects were observed upon treatment with sphingosine or inhibitors of SK-1 or PKC. Examination of cell cycle regulators unveiled decreased cdc2 activity and expression of Chk1, which may compromise spindle checkpoint function and cytokinesis. Indeed, SK-1 kd cells entered mitosis but failed to divide, and in the presence of taxol also failed to sustain mitotic arrest, resulting in further increased endoreduplication and apoptosis. Our findings delineate an intriguing link between SK-1, PKC and components of the cell cycle machinery, which underlines the significance of SK-1 as a target for cancer therapy.

  3. A novel effect of MARCKS phosphorylation by activated PKC: the dephosphorylation of its serine 25 in chick neuroblasts.

    Directory of Open Access Journals (Sweden)

    Andrea Toledo

    Full Text Available MARCKS (Myristoylated Alanine-Rich C Kinase Substrate is a peripheral membrane protein, especially abundant in the nervous system, and functionally related to actin organization and Ca-calmodulin regulation depending on its phosphorylation by PKC. However, MARCKS is susceptible to be phosphorylated by several different kinases and the possible interactions between these phosphorylations have not been fully studied in intact cells. In differentiating neuroblasts, as well as some neurons, there is at least one cell-type specific phosphorylation site: serine 25 (S25 in the chick. We demonstrate here that S25 is included in a highly conserved protein sequence which is a Cdk phosphorylatable region, located far away from the PKC phosphorylation domain. S25 phosphorylation was inhibited by olomoucine and roscovitine in neuroblasts undergoing various states of cell differentiation in vitro. These results, considered in the known context of Cdks activity in neuroblasts, suggest that Cdk5 is the enzyme responsible for this phosphorylation. We find that the phosphorylation by PKC at the effector domain does not occur in the same molecules that are phosphorylated at serine 25. The in situ analysis of the subcellular distribution of these two phosphorylated MARCKS variants revealed that they are also segregated in different protein clusters. In addition, we find that a sustained stimulation of PKC by phorbol-12-myristate-13-acetate (PMA provokes the progressive disappearance of phosphorylation at serine 25. Cells treated with PMA, but in the presence of several Ser/Thr phosphatase (PP1, PP2A and PP2B inhibitors indicated that this dephosphorylation is achieved via a phosphatase 2A (PP2A form. These results provide new evidence regarding the existence of a novel consequence of PKC stimulation upon the phosphorylated state of MARCKS in neural cells, and propose a link between PKC and PP2A activity on MARCKS.

  4. LeY oligosaccharide upregulates DAG/PKC signaling pathway in the human endometrial cells.

    Science.gov (United States)

    Li, Yali; Ma, Keli; Sun, Ping; Liu, Shuai; Qin, Huamin; Zhu, Zhengmei; Wang, Xiaoqi; Yan, Qiu

    2009-11-01

    LeY oligosaccharide is stage specifically expressed by the embryo and uterine endometrium, and it plays important roles in embryo implantation. In addition to participating in the recognition and adhesion on fetal-maternal interface, LeY potentially regulates the expression of some implantation-related factors. However, it remains elusive whether it can mediate the involved signaling pathway. In this study, agarose-LeY beads were used to mimic the embryos, and the effects of LeY oligosaccharide on DAG/PKC signaling pathway was studied in human endometrial epithelial cells. Results showed that LeY could significantly trigger the activation of cPKCalpha and cPKCbeta2, and their translocation from the cytosol to the plasma membrane. The cellular DAG content was also upregulated, and the activation of PLCgamma1 was promoted. On the contrary, DAG/PKC signaling pathway was significantly inhibited when anti-LeY antibody was used after confirmation of LeY expression in human endometrial epithelial cells by immunohistochemistry and flow cytometry. These results suggest that LeY oligosaccharide acts as a signal molecule to modulate DAG/PKC signaling pathway.

  5. Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzastaurin (LY317615.HCl).

    Science.gov (United States)

    Podar, Klaus; Raab, Marc S; Zhang, Jing; McMillin, Douglas; Breitkreutz, Iris; Tai, Yu-Tzu; Lin, Boris K; Munshi, Nikhil; Hideshima, Teru; Chauhan, Dharminder; Anderson, Kenneth C

    2007-02-15

    In multiple myeloma (MM) protein kinase C (PKC) signaling pathways have been implicated in cell proliferation, survival, and migration. Here we investigated the novel, orally available PKC-inhibitor enzastaurin for its anti-MM activity. Enzastaurin specifically inhibits phorbol ester-induced activation of PKC isoforms, as well as phosphorylation of downstream signaling molecules MARCKS and PKCmu. Importantly, it also inhibits PKC activation triggered by growth factors and cytokines secreted by bone marrow stromal cells (BMSCs), costimulation with fibronectin, vascular endothelial growth factor (VEGF), or interleukin-6 (IL-6), as well as MM patient serum. Consequently, enzastaurin inhibits proliferation, survival, and migration of MM cell lines and MM cells isolated from multidrug-resistant patients and overcomes MM-cell growth triggered by binding to BMSCs and endothelial cells. Importantly, strong synergistic cytotoxicity is observed when enzastaurin is combined with bortezomib and moderate synergistic or additive effects when combined with melphalan or lenalidomide. Finally, tumor growth, survival, and angiogenesis are abrogated by enzastaurin in an in vivo xenograft model of human MM. Our results therefore demonstrate in vitro and in vivo efficacy of the orally available PKC inhibitor enzastaurin in MM and strongly support its clinical evaluation, alone or in combination therapies, to improve outcome in patients with MM.

  6. 17 beta-estradiol-BSA conjugates and 17 beta-estradiol regulate growth plate chondrocytes by common membrane associated mechanisms involving PKC dependent and independent signal transduction.

    Science.gov (United States)

    Sylvia, V L; Walton, J; Lopez, D; Dean, D D; Boyan, B D; Schwartz, Z

    2001-01-01

    Nuclear receptors for 17 beta-estradiol (E(2)) are present in growth plate chondrocytes from both male and female rats and regulation of chondrocytes through these receptors has been studied for many years; however, recent studies indicate that an alternative pathway involving a membrane receptor may also be involved in the cell response. E(2) was found to directly affect the fluidity of chondrocyte membranes derived from female, but not male, rats. In addition, E(2) activates protein kinase C (PKC) in a nongenomic manner in female cells, and chelerythrine, a specific inhibitor of PKC, inhibits E(2)-dependent alkaline phosphatase activity and proteoglycan sulfation in these cells, indicating PKC is involved in the signal transduction mechanism. The aims of the present study were: (1) to examine the effect of a cell membrane-impermeable 17 beta-estradiol-bovine serum albumin conjugate (E(2)-BSA) on chondrocyte proliferation, differentiation, and matrix synthesis; (2) to determine the pathway that mediates the membrane effect of E(2)-BSA on PKC; and (3) to compare the action of E(2)-BSA to that of E(2). Confluent, fourth passage resting zone (RC) and growth zone (GC) chondrocytes from female rat costochondral cartilage were treated with 10(-9) to 10(-7) M E(2) or E(2)-BSA and changes in alkaline phosphatase specific activity, proteoglycan sulfation, and [(3)H]-thymidine incorporation measured. To examine the pathway of PKC activation, chondrocyte cultures were treated with E(2)-BSA in the presence or absence of GDP beta S (inhibitor of G-proteins), GTP gamma S (activator of G-proteins), U73122 or D609 (inhibitors of phospholipase C [PLC]), wortmannin (inhibitor of phospholipase D [PLD]) or LY294002 (inhibitor of phosphatidylinositol 3-kinase). E(2)-BSA mimicked the effects of E(2) on alkaline phosphatase specific activity and proteoglycan sulfation, causing dose-dependent increases in both RC and GC cell cultures. Both forms of estradiol inhibited [(3)H

  7. Role of calcineurin (CN) in kidney glomerular podocyte: CN inhibitor ameliorated proteinuria by inhibiting the redistribution of CN at the slit diaphragm.

    Science.gov (United States)

    Wakamatsu, Ayako; Fukusumi, Yoshiyasu; Hasegawa, Eriko; Tomita, Masayuki; Watanabe, Toru; Narita, Ichiei; Kawachi, Hiroshi

    2016-03-01

    Although calcineurin (CN) is distributed in many cell types and functions in regulating cell functions, the precise roles ofCNremained in each type of the cells are not well understood yet. ACNinhibitor (CNI) has been used for steroid-resistant nephrotic syndrome. ACNIis assumed to ameliorate proteinuria by preventing the overproduction of T-cell cytokines. However, recent reports suggest thatCNIhas a direct effect on podocyte. It is accepted that a slit diaphragm (SD), a unique cell-cell junction of podocytes, is a critical barrier preventing a leak of plasma protein into urine. Therefore, we hypothesized thatCNIhas an effect on theSD In this study, we analyzed the expression ofCNin physiological and in the nephrotic model caused by the antibody against nephrin, a critical component of theSD We observed thatCNis expressed at theSDin normal rat and human kidney sections and has an interaction with nephrin. The staining ofCNat theSDwas reduced in the nephrotic model, whileCNactivity in glomeruli was increased. We also observed that the treatment with tacrolimus, aCNI, in this nephrotic model suppressed the redistribution ofCN, nephrin, and otherSDcomponents and ameliorated proteinuria. These observations suggested that the redistribution and the activation ofCNmay participate in the development of theSDinjury. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila eye.

    Science.gov (United States)

    Djiane, Alexandre; Yogev, Shaul; Mlodzik, Marek

    2005-05-20

    Planar cell polarity (PCP) is a common feature of many vertebrate and invertebrate epithelia and is perpendicular to their apical/basal (A/B) polarity axis. While apical localization of PCP determinants such as Frizzled (Fz1) is critical for their function, the link between A/B polarity and PCP is poorly understood. Here, we describe a direct molecular link between A/B determinants and Fz1-mediated PCP establishment in the Drosophila eye. We demonstrate that dPatj binds the cytoplasmic tail of Fz1 and propose that it recruits aPKC, which in turn phosphorylates and inhibits Fz1. Accordingly, components of the aPKC complex and dPatj produce PCP defects in the eye. We also show that during PCP signaling, aPKC and dPatj are downregulated, while Bazooka is upregulated, suggesting an antagonistic effect of Bazooka on dPatj/aPKC. We propose a model whereby the dPatj/aPKC complex regulates PCP by inhibiting Fz1 in cells where it should not be active.

  9. Selective Function of PKC-θ in T cells

    Institute of Scientific and Technical Information of China (English)

    Santhakumar Manicassamy; Sonal Gupta; Zuoming Sun

    2006-01-01

    T cell activation is a critical process in initiating adaptive immune response since only through this process the na(i)ve antigen specific T cells differentiate into armed effector T cells that mediate the actual immune response.During T cell activation, na(i)ve T cells undergo clonal expansion and acquire the capability to kill target cells infected with pathogens or produce cytokines essential for regulating immune response. Inappropriate activation or inactivation of T cells leads to autoimmunity or severe immunodeficiencies. PKC-θ is selectively expressed in T cells and required for mediating T cell activation process. Mice deficient in PKC-θ exhibit defects in T cell activation, survival and activation-inducedcell death. PKC-θ selectively translocates to immunological synapse and mediates the signals required for activation of NF-κB, AP1 and NFAT that are essential for T cell activation.Furthermore, PKC-θ-/- mice displayed multiple defects in the development of T cell-mediated immune responses in vivo. PKC-θ is thus a critical molecule that regulates T cell function at multiple stages in T cell-mediated immune responses in vivo. Cellular & Molecular Immunology. 2006;3(4):263-270.

  10. The participation of NMDA receptors, PKC, and MAPK in the formation of memory following operant conditioning in Lymnaea

    Directory of Open Access Journals (Sweden)

    Rosenegger David

    2010-08-01

    Full Text Available Abstract Background Memory is the ability to store, retain, and later retrieve information that has been learned. Intermediate term memory (ITM that persists for up to 3 h requires new protein synthesis. Long term memory (LTM that persists for at least 24 h requires: DNA transcription, RNA translation, and the trafficking of newly synthesized proteins. It has been shown in a number of different model systems that NMDA receptors, protein kinase C (PKC and mitogen activated protein kinase (MAPK are all involved in the memory formation process. Results Here we show that snails trained in control conditions are capable of forming, depending on the training procedure used, either ITM or LTM. However, blockage of NMDA receptors (MK 801, inhibition of PKC (GF109203X hydrochloride and MAPK activity (UO126 prevent the formation of both ITM and LTM. Conclusions The injection of either U0126 or GF109203X, which inhibit MAPK and PKC activity respectively, 1 hour prior to training results in the inhibition of both ITM and LTM formation. We further found that NMDA receptor activity was necessary in order for both ITM and LTM formation.

  11. Dystrophin/α1-syntrophin scaffold regulated PLC/PKC-dependent store-operated calcium entry in myotubes.

    Science.gov (United States)

    Sabourin, Jessica; Harisseh, Rania; Harnois, Thomas; Magaud, Christophe; Bourmeyster, Nicolas; Déliot, Nadine; Constantin, Bruno

    2012-12-01

    In skeletal muscles from patient suffering of Duchenne Muscular Dystrophy and from mdx mice, the absence of the cytoskeleton protein dystrophin has been shown to be essential for maintaining a normal calcium influx. We showed that a TRPC store-dependent cation influx is increased by loss of dystrophin or a scaffolding protein α1-syntrophin, however the mechanisms of this calcium mishandling are incompletely understood. First of all, we confirmed that TRPC1 but also STIM1 and Orai1 are supporting the store-operated cation entry which is enhanced in dystrophin-deficient myotubes. Next, we demonstrated that inhibition of PLC or PKC in dystrophin-deficient myotubes restores elevated cation entry to normal levels similarly to enforced minidystrophin expression. In addition, silencing α1-syntrophin also increased cation influx in a PLC/PKC dependent pathway. We also showed that α1-syntrophin and PLCβ are part of a same protein complex reinforcing the idea of their inter-relation in calcium influx regulation. This elevated cation entry was decreased to normal levels by chelating intracellular free calcium with BAPTA-AM. Double treatments with BAPTA-AM and PLC or PKC inhibitors suggested that the elevation of cation influx by PLC/PKC pathway is dependent on cytosolic calcium. All these results demonstrate an involvement in dystrophin-deficient myotubes of a specific calcium/PKC/PLC pathway in elevation of store-operated cation influx supported by the STIM1/Orai1/TRPC1 proteins, which is normally regulated by the α1-syntrophin/dystrophin scaffold.

  12. Widdrol-induced lipolysis is mediated by PKC and MEK/ERK in 3T3-L1 adipocytes.

    Science.gov (United States)

    Jeong, Hyun Young; Yun, Hee Jung; Kim, Byung Woo; Lee, Eun Woo; Kwon, Hyun Ju

    2015-12-01

    Obesity is a serious medical condition causing various diseases such as heart disease, type-2 diabetes, and cancer. Fat cells (adipocytes) play an important role in the generation of energy through hydrolysis of lipids they accumulate. Therefore, induction of lipolysis (breakdown of lipids into fatty acids and glycerol), is one of the ways to treat obesity. In the present study, we investigated the lipolytic effect of widdrol in 3T3-L1 adipocytes and its mechanism. Widdrol considerably increased the amount of glycerol released from 3T3-L1 adipocytes into the medium in a time- and dose-dependent manner. To determine the mechanism of this effect, we investigated the alterations in glycerol release and protein expression in 3T3-L1 adipocytes treated with widdrol alone or widdrol and inhibitors of proteins involved in the cAMP-dependent pathway or cAMP-independent PKC-MAPK pathway, which are known to induce lipolysis in adipocytes. The adenylyl cyclase inhibitor SQ-22536, PLA2 inhibitor dexamethasone, PI3K inhibitor wortmannin, and PKA inhibitor H-89, which were used to investigate the involvement of the cAMP-dependent pathway, did not affect the lipolytic effect of widdrol. Widdrol-induced phosphorylation of PKC, MEK, and ERK, which are related to the PKC-MAPK pathway, and their phosphorylation was inhibited by their inhibitors (H-7, U0126, and PD-98059, respectively). Moreover, the increase in glycerol release induced by widdrol was almost completely blocked by PKC, MEK, and ERK inhibitors. These results suggest that widdrol induces lipolysis through activation of the PKC-MEK-ERK pathway.

  13. Mast cell leukemia with prolonged survival on PKC412/midostaurin.

    Science.gov (United States)

    Xu, Xiangdong; Kreisel, Friederike H; Frater, John L; Hassan, Anjum

    2014-01-01

    Mast cell leukemia (MCL) is a rare and aggressive form of systemic mastocytosis. There are approximately 50 reported cases since 1950s. MCL is refractory to cytoreduction chemotherapy and the average survival is only six months. We report a MCL case in a 71 year-old woman with high tumor load at the initial presentation in 2005, who did not respond to either interleukin-2 or dasatinib therapy. After enrolled in a clinical trial of PKC412 (or Midostaurin) with a daily dose of 100 mg, the patient responded well to PKC412 and became transfusion independent in three months. Since then, her disease had been stably controlled. This is the first report of a high-tumor-load MCL case which achieved prolonged survival (101 months) by PKC 412. The 101-month overall survival is the longest among reported MCL cases in the English literature.

  14. A PKM Generated by Calpain Cleavage of a Classical PKC Is Required for Activity-Dependent Intermediate-Term Facilitation in the Presynaptic Sensory Neuron of "Aplysia"

    Science.gov (United States)

    Farah, Carole A.; Hastings, Margaret H.; Dunn, Tyler W.; Gong, Katrina; Baker-Andresen, Danay; Sossin, Wayne S.

    2017-01-01

    Atypical PKM, a persistently active form of atypical PKC, is proposed to be a molecular memory trace, but there have been few examinations of the role of PKMs generated from other PKCs. We demonstrate that inhibitors used to inhibit PKMs generated from atypical PKCs are also effective inhibitors of other PKMs. In contrast, we demonstrate that…

  15. Comparative analysis of the anti-chikungunya virus activity of novel bryostatin analogs confirms the existence of a PKC-independent mechanism.

    Science.gov (United States)

    Abdelnabi, Rana; Staveness, Daryl; Near, Katherine E; Wender, Paul A; Delang, Leen; Neyts, Johan; Leyssen, Pieter

    2016-11-15

    Previously, we reported that salicylate-based analogs of bryostatin protect cells from chikungunya virus (CHIKV)-induced cell death. Interestingly, 'capping' the hydroxyl group at C26 of a lead bryostatin analog, a position known to be crucial for binding to and modulation of protein kinase C (PKC), did not abrogate the anti-CHIKV activity of the scaffold, putatively indicating the involvement of a pathway independent of PKC. The work detailed in this study demonstrates that salicylate-derived analog 1 and two capped analogs (2 and 3) are not merely cytoprotective compounds, but act as selective and specific inhibitors of CHIKV replication. Further, a detailed comparative analysis of the effect of the non-capped versus the two capped analogs revealed that compound 1 acts both at early and late stages in the chikungunya virus replication cycle, while the capped analogs only interfere with a later stage process. Co-dosing with the PKC inhibitors sotrastaurin and Gö6976 counteracts the antiviral activity of compound 1 without affecting that of capped analogs 2 and 3, providing further evidence that the latter elicit their anti-CHIKV activity independently of PKC. Remarkably, treatment of CHIKV-infected cells with a combination of compound 1 and a capped analog resulted in a pronounced synergistic antiviral effect. Thus, these salicylate-based bryostatin analogs can inhibit CHIKV replication through a novel, yet still elusive, non-PKC dependent pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Different roles of PKC and PKA in effect of interferon-γ on proliferation and collagen synthesis of fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Xuan-fen ZHANG; Shu-zhong GUO; Kai-hua LU; Hui-yuan LI; Xiang-dong LI; Lin-xi ZHANG; Li YANG

    2004-01-01

    AIM: To study the signal roles of protein kinase C (PKC) and protein kinase A (PKA) in the influence of interferony (IFN-γ) on proliferation and collagen synthesis of fibroblasts derived from hypertrophic scar (HS-FB) and normal skin (NS-FB). METHODS: HS-FB and NS-FB were cultured and passaged in Dulbecco's modified Eagle's medium (DMEM). Activity of PKC and PKA were assayed by transferring phosphorus (32p) into substrate after treatment with IFN-γ 1000 kU/L at 10, 30, 60, and 120 min. Cell proliferation was determined with MTT assay.The collagen synthesis was measured with [3H]proline incorporation and Type III pre-collagen was determined with radioimmunoassay. RESULTS: After exposure to IFN-γ 1000 kU/L for 30 min, PKC activity of HS-FB and respectively (P<0.05). After exposure to IFN-y 1000 kU/L for 60 and 120 min, PKA activities of HS-FB increased The PKA activities of NS-FB also increased from 0.52+0.03 nmol.min-1.g-1of control to 0.68±0.03 and 0.89±0.05 nmol.min-1.g-1, respectively (P<0.05). The proliferation and collagen synthesis were enhanced by PKC activator (containing phosphatidylserine, diacylglycerol and Ca2+) and PKA inhibitor [H7250 μmol/L, 1-(5-isoquinolinylsulfonyl)-2-methyl piperazine], and inhibited by PKC inhibior (GF109 250 μmol/L) and PKA activator (cAMP 25 rmol/L)(P<0.01). GF109 abrogated increased proliferation and collagen synthesis by IFN-y but it did not affect the inhibitory effects of IFN-γ. At 120 min H7 reversed the inhibitory functions of IFN-γ. CONCLUSION: IFN-γ transiently increased proliferation and collagen synthesis of HS-FB and NS-FB by activation of PKC and subsequently inhibited proliferation and collagen synthesis by activation of PKA.

  17. Inhibition of Notch Signaling Ameliorates Acute Kidney Failure and Downregulates Platelet-Derived Growth Factor Receptor β in the Mouse Model.

    Science.gov (United States)

    Kramer, Jan; Schwanbeck, Ralf; Pagel, Horst; Cakiroglu, Figen; Rohwedel, Jürgen; Just, Ursula

    2016-01-01

    Ischemic acute kidney injury (AKI) is associated with high morbidity and frequent complications. Repeated episodes of AKI may lead to end-stage renal failure. The pathobiology of regeneration in AKI is not well understood and there is no effective clinical therapy that improves regeneration. The Notch signaling pathway plays an essential role in kidney development and has been implicated in tissue repair in the adult kidney. Here, we found that kidneys after experimental AKI in mice showed increased expression of Notch receptors, specifically Notch1-3, of the Notch ligands Jagged-1 (Jag1), Jag2 and Delta-like-4 (Dll4) and of the Notch target genes Hes1, Hey2, HeyL, Sox9 and platelet-derived growth factor receptor β (Pdgfrb). Treatment of ischemic mice with the x03B3;-secretase inhibitor DBZ blocked Notch signaling and specifically downregulated the expression of Notch3 and the Notch target genes Hes1, Hey2, HeyL and Pdgfrb. After DBZ treatment, the mice developed less interstitial edema and displayed altered interstitial inflammation patterns. Furthermore, serum urea and creatinine levels were significantly decreased from 6 h onwards when compared to control mice treated with DMSO only. Our data are consistent with an amelioration of the severity of kidney injury by blocking Notch activation following AKI, and suggest an involvement of Notch-regulated Pdgfrb in AKI pathogenesis.

  18. Garlic-Derived S-Allylmercaptocysteine Ameliorates Nonalcoholic Fatty Liver Disease in a Rat Model through Inhibition of Apoptosis and Enhancing Autophagy

    Directory of Open Access Journals (Sweden)

    Jia Xiao

    2013-01-01

    Full Text Available Our previous study demonstrated that administration of garlic-derived antioxidant S-allylmercaptocysteine (SAMC ameliorated hepatic injury in a nonalcoholic fatty liver disease (NAFLD rat model. Our present study aimed to investigate the mechanism of SAMC on NAFLD-induced hepatic apoptosis and autophagy. Adult female rats were fed with a high-fat diet for 8 weeks to develop NAFLD with or without intraperitoneal injection of 200 mg/kg SAMC for three times per week. During NAFLD development, increased apoptotic cells and caspase-3 activation were observed in the liver. Increased apoptosis was modulated through both intrinsic and extrinsic apoptotic pathways. NAFLD treatment also enhanced the expression of key autophagic markers in the liver with reduced activity of LKB1/AMPK and PI3K/Akt pathways. Increased expression of proapoptotic regulator p53 and decreased activity of antiautophagic regulator mTOR were also observed. Administration of SAMC reduced the number of apoptotic cells through downregulation of both intrinsic and extrinsic apoptotic mechanisms. SAMC also counteracted the effects of NAFLD on LKB1/AMPK and PI3K/Akt pathways. Treatment with SAMC further enhanced hepatic autophagy by regulating autophagic markers and mTOR activity. In conclusion, administration of SAMC during NAFLD development in rats protects the liver from chronic injury by reducing apoptosis and enhancing autophagy.

  19. 1,4-Dihydropyridines Active on the SIRT1/AMPK Pathway Ameliorate Skin Repair and Mitochondrial Function and Exhibit Inhibition of Proliferation in Cancer Cells.

    Science.gov (United States)

    Valente, Sergio; Mellini, Paolo; Spallotta, Francesco; Carafa, Vincenzo; Nebbioso, Angela; Polletta, Lucia; Carnevale, Ilaria; Saladini, Serena; Trisciuoglio, Daniela; Gabellini, Chiara; Tardugno, Maria; Zwergel, Clemens; Cencioni, Chiara; Atlante, Sandra; Moniot, Sébastien; Steegborn, Clemens; Budriesi, Roberta; Tafani, Marco; Del Bufalo, Donatella; Altucci, Lucia; Gaetano, Carlo; Mai, Antonello

    2016-02-25

    Modulators of sirtuins are considered promising therapeutic targets for the treatment of cancer, cardiovascular, metabolic, inflammatory, and neurodegenerative diseases. Here we prepared new 1,4-dihydropyridines (DHPs) bearing changes at the C2/C6, C3/C5, C4, or N1 position. Tested with the SIRTainty procedure, some of them displayed increased SIRT1 activation with respect to the prototype 3a, high NO release in HaCat cells, and ameliorated skin repair in a mouse model of wound healing. In C2C12 myoblasts, two of them improved mitochondrial density and functions. All the effects were reverted by coadministration of compound C (9), an AMPK inhibitor, or of EX-527 (10), a SIRT1 inhibitor, highlighting the involvement of the SIRT1/AMPK pathway in the action of DHPs. Finally, tested in a panel of cancer cells, the water-soluble form of 3a, compound 8, displayed antiproliferative effects in the range of 8-35 μM and increased H4K16 deacetylation, suggesting a possible role for SIRT1 activators in cancer therapy.

  20. Chikusetsu saponin IVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-κB signaling.

    Science.gov (United States)

    Yuan, Chengfu; Liu, Chaoqi; Wang, Ting; He, Yumin; Zhou, Zhiyong; Dun, Yaoyan; Zhao, Haixia; Ren, Dongming; Wang, Junjie; Zhang, Changcheng; Yuan, Ding

    2017-05-09

    Chronic metabolic inflammation in adipose tissue plays an important role in the development of obesity-associated diseases. Our previous study indicated that total saponins of Panax japonicus (SPJ) rhizoma and Chikusetsu saponin V, one main component of SPJ, could exert the anti-oxidative and anti-inflammatory effects. The present study aimed to investigate the in vivo and Ex vivo anti-inflammatory activities of another main component of SPJ, namely Chikusetsu saponin IVa (CS). CS could significantly inhibited HFD-induced lipid homeostasis, and inhibited inflammation in adipose tissue, as reflected by the decreased mRNA expression levels of inflammation-related genes and secretion of the chemokines/cytokines, inhibited the accumulation of adipose tissue macrophages (ATMs) and shifted their polarization from M1 to M2, suppressed HFD-induced expression of NLRP3 inflammasome component genes and decreased IL-1β and Caspase-1 production in mice. Moreover, CS treatment also inhibited the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs). Meanwhile, CS treatment inhibited an NLRP3-induced ASC pyroptosome formation and lipopolysaccharide (LPS)-induced pyroptosis. Furthermore, CS treatment suppressed HFD-induced NF-κB signaling in vivo and LPS-induced NF-κB activation as reflected by the fact that their phosphorylated forms and the ratios of pNF-κB/NF-κB, pIKK/IKK, and pIκB/IκB were all decreased in EAT from HFD-fed mice treated with CS as compared with those of HFD mice. Taking together, this study has revealed that CS effectively inhibits HFD-induced inflammation in adipose tissue of mice through inhibiting both NLRP3 inflammasome activation and NF-κB signaling. Thus, CS can serve as a potential therapeutic drug in the prevention and treatment of inflammation-associated diseases.

  1. Serotonin receptor antagonists discriminate between PKA- and PKC-mediated plasticity in aplysia sensory neurons.

    Science.gov (United States)

    Dumitriu, Bogdan; Cohen, Jonathan E; Wan, Qin; Negroiu, Andreea M; Abrams, Thomas W

    2006-04-01

    Highly selective serotonin (5-hydroxytryptamine, 5-HT) receptor antagonists developed for mammals are ineffective in Aplysia due to the evolutionary divergence of neurotransmitter receptors and because the higher ionic strength of physiological saline for marine invertebrates reduces antagonist affinity. It has therefore been difficult to identify antagonists that specifically block individual signaling cascades initiated by 5-HT. We studied two broad-spectrum 5-HT receptor antagonists that have been characterized biochemically in Aplysia CNS: methiothepin and spiperone. Methiothepin is highly effective in inhibiting adenylyl cyclase (AC)-coupled 5-HT receptors in Aplysia. Spiperone, which blocks phospholipase C (PLC)-coupled 5-HT receptors in mammals, does not block AC-coupled 5-HT receptors in Aplysia. In electrophysiological studies, we explored whether methiothepin and spiperone can be used in parallel to distinguish between the AC-cAMP and PLC-protein kinase C (PKC) modulatory cascades that are initiated by 5-HT. 5-HT-induced broadening of the sensory neuron action potential in the presence of tetraethylammonium/nifedipine, which is mediated by modulation of the S-K+ currents, was used an assay for the AC-cAMP cascade. Spike broadening initiated by 5 microM 5-HT was unaffected by 100 microM spiperone, whereas it was effectively blocked by 100 microM methiothepin. Facilitation of highly depressed sensory neuron-to-motor neuron synapses by 5-HT was used as an assay for the PLC-PKC cascade. Spiperone completely blocked facilitation of highly depressed synapses by 5 microM 5-HT. In contrast, methiothepin produced a modest, nonsignificant, reduction in the facilitation of depressed synapses. Interestingly, these experiments revealed that the PLC-PKC cascade undergoes desensitization during exposure to 5-HT.

  2. Improving nutrient values of palm kernel cake (PKC by reducing shell contamination and enzymes supplementation

    Directory of Open Access Journals (Sweden)

    Sinurat AP

    2013-03-01

    Full Text Available Inclusion of palm kernel cake (PKC in poultry feed is limited due to shell contamination and its low nutritive values, despite the increase of PKC production. Therefore, a series of experiment was conducted in order to improve nutritive values of palm kernel cake (PKC by sieving and enzyme supplementation. First experiment was designed to reduce shell content using shiever with different diameters (1, 2 and 4 mm. Shell content was measured manually to determine the effect of the sieving. The second experiment was carried out by blowing the after sieving at 2 mm shieve PKC, to produced heavy, medium and light fractions. The shell content and nutrient contents of the medium and light fractions were compared to those of unsieved PKC. In the third experiment, the sieved PKC was supplemented with 2 enzymes with different concentrations, i.e., BS4 at 10, 15 and 20 ml/kg PKC and a commercial multi enzymes at 0.5, 1.0 and 2.0 g/kg PKC. Digestibility of nutrients (dry matter, crude protein and TME were measured by force feeding method with six replications for each sample. Results of the study showed that sieving with 2 mm diameter siever without blowing was effective in reducing about 50% of PKC shell and improved crude protein, ether extract and amino acids, contents and reduced the crude fiber content of the PKC. Supplementation of enzymes improved the digestibility of dry matter, crude protein and the true metabolisable energy (TME of the PKC. Optimum improvement was obtained when PKC was supplemented with 20 ml BS4 enzymes/kg PKC. Similar improvement was obtained by supplementation of commercial multi enzymes at 2 g/kg PKC. Therefore, in order to improve the nutritive values of PKC, it is suggested to sieve the PKC followed by supplementation of enzyme prior to feeding.

  3. PKC in Regenerative Therapy: New Insights for Old Targets

    Directory of Open Access Journals (Sweden)

    Marta Rui

    2017-05-01

    Full Text Available Effective therapies for chronic or non-healing wounds are still lacking. These tissue insults often result in severe clinical complications (i.e., infections and/or amputation and sometimes lead to patient death. Accordingly, several research groups have focused their efforts in finding innovative and powerful therapeutic strategies to overcome these issues. On the basis of these considerations, the comprehension of the molecular cascades behind these pathological conditions could allow the identification of molecules against chronic wounds. In this context, the regulation of the Protein Kinase C (PKC cascade has gained relevance in the prevention and/or reparation of tissue damages. This class of phosphorylating enzymes has already been considered for different physiological and pathological pathways and modulation of such enzymes may be useful in reparative processes. Herein, the recent developments in this field will be disclosed, highlighting the pivotal role of PKC α and δ in regenerative medicine. Moreover, an overview of well-established PKC ligands, acting via the modulation of these isoenzymes, will be deeply investigated. This study is aimed at re-evaluating widely known PKC modulators, currently utilized for treating other diseases, as fruitful molecules in wound-healing.

  4. Gabapentin Effects on PKC-ERK1/2 Signaling in the Spinal Cord of Rats with Formalin-Induced Visceral Inflammatory Pain.

    Directory of Open Access Journals (Sweden)

    Yan-Bo Zhang

    Full Text Available Currently, the clinical management of visceral pain remains unsatisfactory for many patients suffering from this disease. While preliminary animal studies have suggested the effectiveness of gabapentin in successfully treating visceral pain, the mechanism underlying its analgesic effect remains unclear. Evidence from other studies has demonstrated the involvement of protein kinase C (PKC and extracellular signal-regulated kinase1/2 (ERK1/2 in the pathogenesis of visceral inflammatory pain. In this study, we tested the hypothesis that gabapentin produces analgesia for visceral inflammatory pain through its inhibitory effect on the PKC-ERK1/2 signaling pathway. Intracolonic injections of formalin were performed in rats to produce colitis pain. Our results showed that visceral pain behaviors in these rats decreased after intraperitoneal injection of gabapentin. These behaviors were also reduced by intrathecal injections of the PKC inhibitor, H-7, and the ERK1/2 inhibitor, PD98059. Neuronal firing of wide dynamic range neurons in L6-S1 of the rat spinal cord dorsal horn were significantly increased after intracolonic injection of formalin. This increased firing rate was inhibited by intraperitoneal injection of gabapentin and both the individual and combined intrathecal application of H-7 and PD98059. Western blot analysis also revealed that PKC membrane translocation and ERK1/2 phosphorylation increased significantly following formalin injection, confirming the recruitment of PKC and ERK1/2 during visceral inflammatory pain. These effects were also significantly reduced by intraperitoneal injection of gabapentin. Therefore, we concluded that the analgesic effect of gabapentin on visceral inflammatory pain is mediated through suppression of PKC and ERK1/2 signaling pathways. Furthermore, we found that the PKC inhibitor, H-7, significantly diminished ERK1/2 phosphorylation levels, implicating the involvement of PKC and ERK1/2 in the same signaling

  5. Gabapentin Effects on PKC-ERK1/2 Signaling in the Spinal Cord of Rats with Formalin-Induced Visceral Inflammatory Pain.

    Science.gov (United States)

    Zhang, Yan-Bo; Guo, Zheng-Dong; Li, Mei-Yi; Fong, Peter; Zhang, Ji-Guo; Zhang, Can-Wen; Gong, Ke-Rui; Yang, Ming-Feng; Niu, Jing-Zhong; Ji, Xun-Ming; Lv, Guo-Wei

    2015-01-01

    Currently, the clinical management of visceral pain remains unsatisfactory for many patients suffering from this disease. While preliminary animal studies have suggested the effectiveness of gabapentin in successfully treating visceral pain, the mechanism underlying its analgesic effect remains unclear. Evidence from other studies has demonstrated the involvement of protein kinase C (PKC) and extracellular signal-regulated kinase1/2 (ERK1/2) in the pathogenesis of visceral inflammatory pain. In this study, we tested the hypothesis that gabapentin produces analgesia for visceral inflammatory pain through its inhibitory effect on the PKC-ERK1/2 signaling pathway. Intracolonic injections of formalin were performed in rats to produce colitis pain. Our results showed that visceral pain behaviors in these rats decreased after intraperitoneal injection of gabapentin. These behaviors were also reduced by intrathecal injections of the PKC inhibitor, H-7, and the ERK1/2 inhibitor, PD98059. Neuronal firing of wide dynamic range neurons in L6-S1 of the rat spinal cord dorsal horn were significantly increased after intracolonic injection of formalin. This increased firing rate was inhibited by intraperitoneal injection of gabapentin and both the individual and combined intrathecal application of H-7 and PD98059. Western blot analysis also revealed that PKC membrane translocation and ERK1/2 phosphorylation increased significantly following formalin injection, confirming the recruitment of PKC and ERK1/2 during visceral inflammatory pain. These effects were also significantly reduced by intraperitoneal injection of gabapentin. Therefore, we concluded that the analgesic effect of gabapentin on visceral inflammatory pain is mediated through suppression of PKC and ERK1/2 signaling pathways. Furthermore, we found that the PKC inhibitor, H-7, significantly diminished ERK1/2 phosphorylation levels, implicating the involvement of PKC and ERK1/2 in the same signaling pathway. Thus, our

  6. NOC/oFQ PKC-dependent superoxide generation contributes to hypoxic-ischemic impairment of NMDA cerebrovasodilation.

    Science.gov (United States)

    Armstead, W M

    2000-12-01

    This study determined whether nociceptin/orphanin FQ (NOC/oFQ) generates superoxide anion (O(2)(-)) in a protein kinase C (PKC)-dependent manner and whether such production contributes to hypoxic-ischemic (H-I) impairment of N-methyl-D-aspartate (NMDA)-induced pial artery dilation in newborn pigs equipped with closed cranial windows. Superoxide dismutase (SOD)-inhibitable nitroblue tetrazolium (NBT) reduction was an index of O(2)(-) generation. Under non-H-I conditions, topical NOC/oFQ (10(-10) M, concentration present in cerebrospinal fluid after I or H-I) increased SOD-inhibitable NBT reduction from 1 +/- 1 to 20 +/- 3 pmol/mm(2). PKC inhibitors staurosporine and chelerythrine (10(-7) M) blunted NBT reduction (1 +/- 1 to 7 +/- 2 pmol/mm(2) for chelerythrine), whereas the NOC/oFQ receptor antagonist [F/G]NOC/oFQ (1-13)-NH(2) (10(-6) M) blocked NBT reduction. [F/G]NOC/oFQ(1-13)-NH(2) and staurosporine also blunted the NBT reduction observed after I or H-I. NMDA (10(-8), 10(-6) M)-induced pial artery dilation was reversed to vasoconstriction after H-I. The NOC/oFQ antagonist staurosporine and free radical scavengers partially prevented this impaired dilation (sham: 9 +/- 1 and 16 +/- 1; H-I: -5 and -10 +/- 1; H-I staurosporine pretreated: 3 +/- 1 and 6 +/- 1%). These data show that NOC/oFQ increased O(2)(-) production in a PKC-dependent manner and contributed to this production after insult and that NOC/oFQ contributed to impaired NMDA-induced pial artery dilation after H-I, suggesting, therefore, that PKC-dependent O(2)(-) generation by NOC/oFQ links NOC/oFQ release to impaired NMDA dilation after H-I.

  7. Dexmedetomidine ameliorates intracerebral hemorrhage-induced memory impairment by inhibiting apoptosis and enhancing brain-derived neurotrophic factor expression in the rat hippocampus.

    Science.gov (United States)

    Hwang, Lakkyong; Choi, In-Young; Kim, Sung-Eun; Ko, Il-Gyu; Shin, Mal-Soon; Kim, Chang-Ju; Kim, Sang-Hoon; Jin, Jun-Jang; Chung, Jun-Young; Yi, Jae-Woo

    2013-05-01

    Intracerebral hemorrhage (ICH) is a severe type of stroke causing neurological dysfunction with a high mortality rate. Dexmedetomidine is an agonist for α2‑adrenoreceptors with sedative, anxiolytic, analgesic and anesthetic effects. In the present study, we investigated the effects of dexmedetomidine on short‑term and spatial learning memory, as well as its effects on apoptosis following the induction of ICH in rats. A rat model of IHC was created by an injection of collagenase into the hippocampus using a stereotaxic instrument. Dexmedetomidine was administered intraperitoneally daily for 14 consecutive days, commencing 1 day after the induction of ICH. The step‑down avoidance test for short‑term memory and the radial 8‑arm maze test for spatial learning memory were conducted. Terminal deoxynucleotidyl transferase‑mediated dUTP nick end-labeling (TUNEL) assay, immunohistochemistry for caspase‑3, and western blot analysis for Bcl‑2, Bax, Bid and caspase-3 expression were performed for the detection of apoptosis in the hippocampus. Western blot analysis for the brain‑derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was also performed for the detection of cell survival in the hippocampus. The induction of ICH deteriorated short‑term and spatial learning memory, increased apoptosis and suppressed BDNF and TrkB expression in the hippocampus. Treatment with dexmedetomidine ameliorated the ICH‑induced impairment of short‑term and spatial learning memory by suppressing apoptosis and enhancing BDNF and TrkB expression. In the normal rats, dexmedetomidine exerted no significant effects on memory function and apoptosis. The present results suggest the possibility that dexmedetomidine may be used as a therapeutic agent for the conservation of memory function in stroke patients.

  8. Chrysin ameliorates podocyte injury and slit diaphragm protein loss via inhibition of the PERK-elF2α-ATF-CHOP pathway in diabetic mice

    Institute of Scientific and Technical Information of China (English)

    Min-Kyung KANG; Sin-Hye PARK; Yun-Ho KIM; Eun-Jung LEE; Lucia Dwi ANTIKA; Dong Yeon KIM; Yean-Jung CHOI; Young-Hee KANG

    2017-01-01

    Glomerular epithelial podocytes are highly specialized cells that play a crucial role in maintaining normal function of the glomerular filtration barrier via their foot processes.Chrysin (5,7-dihydroxyflavone) is a natural flavonoid found in propolis and mushrooms that has anti-inflammatory,antioxidant and anticancer properties.This study aimed to evaluate the renoprotective effects of chrysin on podocyte apoptotic loss and slit diaphragm protein deficiency in high glucose-exposed podocytes and in db/db mouse kidneys.Exposure to high glucose (33 mmol/L) caused glomerular podocyte apoptosis in vitro,which was dose-dependently attenuated by nontoxic chrysin (1-20 pmol/L) through reduction of DNA fragmentation.Chrysin treatment dose-dependently restored the increased Bax/Bcl-2 ratio,and suppressed Apaf-1 induction and the elevated cytochrome c release in high glucose-exposed renal podocytes.In diabetic db/db mice,oral administration of chrysin (10 mg·kg-1·d-1,for 10 weeks) significantly attenuated proteinuria,and alleviated the abnormal alterations in glomerular ultrastructure,characterized by apoptotic podocytes and foot process effacement.In addition,this compound improved the induction of slit diaphragm proteins podocin/nephrin in the diabetic glomeruli.Exposure to high glucose elevated the unfolded protein response (UPR) to ER stress in renal podocytes,evidenced by up-regulation of PERK-elF2α-ATF4-CHOP.Chrysin treatment blocked such ER stress responses pertinent to podocyte apoptosis and reduced synthesis of slit diaphragm proteins in vitro and in vivo.These observations demonstrate that targeting ER stress is an underlying mechanism of chrysin-mediated amelioration of diabetes-associated podocyte injury and dysfunction.

  9. Chrysin ameliorates podocyte injury and slit diaphragm protein loss via inhibition of the PERK-eIF2α-ATF-CHOP pathway in diabetic mice.

    Science.gov (United States)

    Kang, Min-Kyung; Park, Sin-Hye; Kim, Yun-Ho; Lee, Eun-Jung; Antika, Lucia Dwi; Kim, Dong Yeon; Choi, Yean-Jung; Kang, Young-Hee

    2017-08-01

    Glomerular epithelial podocytes are highly specialized cells that play a crucial role in maintaining normal function of the glomerular filtration barrier via their foot processes. Chrysin (5,7-dihydroxyflavone) is a natural flavonoid found in propolis and mushrooms that has anti-inflammatory, antioxidant and anticancer properties. This study aimed to evaluate the renoprotective effects of chrysin on podocyte apoptotic loss and slit diaphragm protein deficiency in high glucose-exposed podocytes and in db/db mouse kidneys. Exposure to high glucose (33 mmol/L) caused glomerular podocyte apoptosis in vitro, which was dose-dependently attenuated by nontoxic chrysin (1-20 μmol/L) through reduction of DNA fragmentation. Chrysin treatment dose-dependently restored the increased Bax/Bcl-2 ratio, and suppressed Apaf-1 induction and the elevated cytochrome c release in high glucose-exposed renal podocytes. In diabetic db/db mice, oral administration of chrysin (10 mg·kg(-1)·d(-1), for 10 weeks) significantly attenuated proteinuria, and alleviated the abnormal alterations in glomerular ultrastructure, characterized by apoptotic podocytes and foot process effacement. In addition, this compound improved the induction of slit diaphragm proteins podocin/nephrin in the diabetic glomeruli. Exposure to high glucose elevated the unfolded protein response (UPR) to ER stress in renal podocytes, evidenced by up-regulation of PERK-eIF2α-ATF4-CHOP. Chrysin treatment blocked such ER stress responses pertinent to podocyte apoptosis and reduced synthesis of slit diaphragm proteins in vitro and in vivo. These observations demonstrate that targeting ER stress is an underlying mechanism of chrysin-mediated amelioration of diabetes-associated podocyte injury and dysfunction.

  10. PKC isoforms interact with and phosphorylate DNMT1

    Directory of Open Access Journals (Sweden)

    Pradhan Sriharsa

    2011-05-01

    Full Text Available Abstract Background DNA methyltransferase 1 (DNMT1 has been shown to be phosphorylated on multiple serine and threonine residues, based on cell type and physiological conditions. Although recent studies have suggested that protein kinase C (PKC may be involved, the individual contribution of PKC isoforms in their ability to phosphorylate DNMT1 remains unknown. The PKC family consists of at least 12 isoforms that possess distinct differences in structure, substrate requirement, expression and localization. Results Here we show that PKCα, βI, βII, δ, γ, η, ζ and μ preferentially phosphorylate the N-terminal domain of human DNMT1. No such phosphorylation of DNMT1 was observed with PKCε. Using PKCζ as a prototype model, we also found that PKC physically interacts with and phosphorylates DNMT1. In vitro phosphorylation assays conducted with recombinant fragments of DNMT1 showed that PKCζ preferentially phosphorylated the N-terminal region of DNMT1. The interaction of PKCζ with DNMT1 was confirmed by GST pull-down and co-immunoprecipitation experiments. Co-localization experiments by fluorescent microscopy further showed that endogenous PKCζ and DNMT1 were present in the same molecular complex. Endogenous PKCζ activity was also detected when DNMT1 was immunoprecipitated from HEK-293 cells. Overexpression of both PKCζ and DNMT1 in HEK-293 cells, but not of either alone, reduced the methylation status of genes distributed across the genome. Moreover, in vitro phosphorylation of DNMT1 by PKCζ reduced its methytransferase activity. Conclusions Our results indicate that phosphorylation of human DNMT1 by PKC is isoform-specific and provides the first evidence of cooperation between PKCζ and DNMT1 in the control of the DNA methylation patterns of the genome.

  11. Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice.

    Science.gov (United States)

    Moriguchi, Shigeki; Yamamoto, Yui; Ikuno, Tatsuya; Fukunaga, Kohji

    2011-06-01

    Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  12. Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKC alpha) increases focal adhesion localization of PKC alpha

    DEFF Research Database (Denmark)

    Lim, Ssang-Taek; Longley, Robert L; Couchman, John R

    2003-01-01

    Syndecan-4 is a transmembrane heparan sulfate proteoglycan that acts as a coreceptor with integrins in focal adhesion formation. The central region of syndecan-4 cytoplasmic domain (4V; LGKKPIYKK) binds phosphatidylinositol 4,5-bisphosphate, and together they regulate protein kinase C alpha (PKC...... alpha) activity. Syndecan 4V peptide directly potentiates PKC alpha activity, leading to "superactivation" of the enzyme, apparently through an interaction with its catalytic domain. We now have performed yeast two-hybrid and in vitro binding assays to determine the interaction sites between 4V and PKC...... alpha. Full-length PKC alpha weakly interacted with 4V by yeast two-hybrid assays, but PKC alpha constructs that lack the pseudosubstrate region or constructs of the whole catalytic domain interacted more strongly. A mutated 4V sequence (4V(YF): LGKKPIFKK) did not interact with PKC alpha, indicating...

  13. Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression.

    Science.gov (United States)

    Lim, Su-Min; Jeong, Jin-Ju; Woo, Kyung Hee; Han, Myung Joo; Kim, Dong-Hyun

    2016-04-01

    A high-fat diet (HFD) induces obesity and the associated increases in blood glucose and inflammation through changes in gut microbiota, endotoxemia, and increased gut permeability. To counteract this, researchers have suggested that the use of probiotics that suppress production of proinflammatory lipopolysaccharide (LPS). Here, we tested whether Lactobacillus sakei OK67, which inhibits gut microbiota LPS production selected from among the lactic acid bacteria isolated from kimchi, exerted antihypoglycemic or anti-inflammatory effects in HFD-fed mice. Mice were randomly divided into 2 groups and fed an HFD or a low-fat diet for 4 weeks. These groups were further subdivided; 1 subgroup was treated with L sakei OK67 and fed the experimental diet for 4.5 weeks, whereas the other subgroup was fed the experimental diet alone. L sakei OK67 treatment lowered HFD-elevated LPS levels in blood and colonic fluid and significantly decreased HFD-elevated fasting blood glucose levels and the area under the curve in an oral glucose tolerance test. L sakei OK67 treatment inhibited HFD-induced body and epididymal fat weight gains, suppressed HFD-induced tumor necrosis factor-α and interleukin-1β expression and nuclear factor-κB activation in the colon, and significantly increased HFD-suppressed interleukin-10 and tight junction protein expression in the colon. Oral administration of L sakei OK67 significantly downregulated HFD-induced expression of peroxisome proliferator-activated receptor γ, fatty acid synthase, and tumor necrosis factor-α in adipose tissue. In addition, L sakei OK67 treatment strongly inhibited nuclear factor-κB activation in LPS-stimulated peritoneal macrophages. We report that L sakei OK67 ameliorates HFD-induced hyperglycemia and obesity by reducing inflammation and increasing the expression of colon tight junction proteins in mice.

  14. Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling.

    Science.gov (United States)

    Liu, Na; He, Song; Ma, Li; Ponnusamy, Murugavel; Tang, Jinhua; Tolbert, Evelyn; Bayliss, George; Zhao, Ting C; Yan, Haidong; Zhuang, Shougang

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are promising anti-fibrosis drugs; however, nonselective inhibition of class I and class II HDACs does not allow a detailed elucidation of the individual HDAC functions in renal fibrosis. In this study, we investigated the effect of MS-275, a selective class I HDAC inhibitor, on the development of renal fibrosis in a murine model of unilateral ureteral obstruction (UUO) and activation of cultured renal interstitial fibroblasts. The UUO model was established by ligation of the left ureter and the contralateral kidney was used as a control. At seven days after UUO injury, kidney developed fibrosis as indicated by deposition of collagen fibrils and increased expression of collagen I, fibronectin and alpha-smooth muscle actin (alpha-SMA). Administration of MS-275 inhibited all these fibrotic responses and suppressed UUO-induced production of transforming growth factor-beta1 (TGF-beta), increased expression of TGF-beta receptor I, and phosphorylation of Smad-3. MS-275 was also effective in suppressing phosphorylation and expression of epidermal growth factor receptor (EGFR) and its downstream signaling molecule, signal transducer and activator of transcription-3. Moreover, class I HDAC inhibition reduced the number of renal tubular cells arrested in the G2/M phase of the cell cycle, a cellular event associated with TGF-beta1overproduction. In cultured renal interstitial fibroblasts, MS-275 treatment inhibited TGF-beta induced phosphorylation of Smad-3, differentiation of renal fibroblasts to myofibroblasts and proliferation of myofibroblasts. These results demonstrate that class I HDACs are critically involved in renal fibrogenesis and renal fibroblast activation through modulating TGF-beta and EGFR signaling and suggest that blockade of class I HDAC may be a useful treatment for renal fibrosis.

  15. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: jinpark@hallym.ac.kr [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  16. Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling.

    Directory of Open Access Journals (Sweden)

    Na Liu

    Full Text Available BACKGROUND: Histone deacetylase (HDAC inhibitors are promising anti-fibrosis drugs; however, nonselective inhibition of class I and class II HDACs does not allow a detailed elucidation of the individual HDAC functions in renal fibrosis. In this study, we investigated the effect of MS-275, a selective class I HDAC inhibitor, on the development of renal fibrosis in a murine model of unilateral ureteral obstruction (UUO and activation of cultured renal interstitial fibroblasts. METHODS/FINDINGS: The UUO model was established by ligation of the left ureter and the contralateral kidney was used as a control. At seven days after UUO injury, kidney developed fibrosis as indicated by deposition of collagen fibrils and increased expression of collagen I, fibronectin and alpha-smooth muscle actin (alpha-SMA. Administration of MS-275 inhibited all these fibrotic responses and suppressed UUO-induced production of transforming growth factor-beta1 (TGF-beta, increased expression of TGF-beta receptor I, and phosphorylation of Smad-3. MS-275 was also effective in suppressing phosphorylation and expression of epidermal growth factor receptor (EGFR and its downstream signaling molecule, signal transducer and activator of transcription-3. Moreover, class I HDAC inhibition reduced the number of renal tubular cells arrested in the G2/M phase of the cell cycle, a cellular event associated with TGF-beta1overproduction. In cultured renal interstitial fibroblasts, MS-275 treatment inhibited TGF-beta induced phosphorylation of Smad-3, differentiation of renal fibroblasts to myofibroblasts and proliferation of myofibroblasts. CONCLUSIONS AND SIGNIFICANCE: These results demonstrate that class I HDACs are critically involved in renal fibrogenesis and renal fibroblast activation through modulating TGF-beta and EGFR signaling and suggest that blockade of class I HDAC may be a useful treatment for renal fibrosis.

  17. Astroglial inhibition of NF-κB does not ameliorate disease onset and progression in a mouse model for amyotrophic lateral sclerosis (ALS).

    Science.gov (United States)

    Crosio, Claudia; Valle, Cristiana; Casciati, Arianna; Iaccarino, Ciro; Carrì, Maria Teresa

    2011-03-18

    Motor neuron death in amyotrophic lateral sclerosis (ALS) is considered a "non-cell autonomous" process, with astrocytes playing a critical role in disease progression. Glial cells are activated early in transgenic mice expressing mutant SOD1, suggesting that neuroinflammation has a relevant role in the cascade of events that trigger the death of motor neurons. An inflammatory cascade including COX2 expression, secretion of cytokines and release of NO from astrocytes may descend from activation of a NF-κB-mediated pathway observed in astrocytes from ALS patients and in experimental models. We have attempted rescue of transgenic mutant SOD1 mice through the inhibition of the NF-κB pathway selectively in astrocytes. Here we show that despite efficient inhibition of this major pathway, double transgenic mice expressing the mutant SOD1(G93A) ubiquitously and the dominant negative form of IκBα (IκBαAA) in astrocytes under control of the GFAP promoter show no benefit in terms of onset and progression of disease. Our data indicate that motor neuron death in ALS cannot be prevented by inhibition of a single inflammatory pathway because alternative pathways are activated in the presence of a persistent toxic stimulus.

  18. Astroglial inhibition of NF-κB does not ameliorate disease onset and progression in a mouse model for amyotrophic lateral sclerosis (ALS.

    Directory of Open Access Journals (Sweden)

    Claudia Crosio

    Full Text Available Motor neuron death in amyotrophic lateral sclerosis (ALS is considered a "non-cell autonomous" process, with astrocytes playing a critical role in disease progression. Glial cells are activated early in transgenic mice expressing mutant SOD1, suggesting that neuroinflammation has a relevant role in the cascade of events that trigger the death of motor neurons. An inflammatory cascade including COX2 expression, secretion of cytokines and release of NO from astrocytes may descend from activation of a NF-κB-mediated pathway observed in astrocytes from ALS patients and in experimental models. We have attempted rescue of transgenic mutant SOD1 mice through the inhibition of the NF-κB pathway selectively in astrocytes. Here we show that despite efficient inhibition of this major pathway, double transgenic mice expressing the mutant SOD1(G93A ubiquitously and the dominant negative form of IκBα (IκBαAA in astrocytes under control of the GFAP promoter show no benefit in terms of onset and progression of disease. Our data indicate that motor neuron death in ALS cannot be prevented by inhibition of a single inflammatory pathway because alternative pathways are activated in the presence of a persistent toxic stimulus.

  19. Glycyrrhizin Ameliorates Imiquimod-Induced Psoriasis-like Skin Lesions in BALB/c Mice and Inhibits TNF-a-Induced ICAM-1 Expression via NF-κB/MAPK in HaCaT Cells

    Directory of Open Access Journals (Sweden)

    Hui Xiong

    2015-02-01

    Full Text Available Background/Aim: Glycyrrhizin (GL is an important derivative of certain herbal medicines used in Asian countries. Currently, GL is used to treat hepatitis and allergic disease worldwide because of its anti-viral and anti-allergy effects. In addition to these prominent functions, GL likely regulates cellular functions such as tumor cell growth and cellular immunity. However, how GL affects the keratinocyte inflammation response remains poorly understood. The current paper investigates the effect of GL on psoriasis and explores the mechanisms involved. Methods: We used an in vitro cell model of tumor necrosis factor (TNF-a-induced keratinocyte inflammation and the topical application of imiquimod (IMQ using an animal model (mouse skin of IMQ-induced psoriasis-like inflammation (IPI to investigate the effect of GL on skin inflammation. Cell viability was analyzed using the Cell Counting Kit-8 (CCK8. Carboxyfluorescein succinimidyl ester (CFSE labeling was used to trace monocyte adherence to keratinocytes. A Western blot analysis was used to detect the expression of intercellular adhesion molecule 1 (ICAM-1 and the activation of the nuclear factor (NF-κB/mitogen-activated protein kinase (MAPK signaling pathway. A modified version of the Psoriasis Area Severity Index (PASI was used to monitor disease severity. Hematoxylin and eosin (H&E staining was used to observe pathological changes. An immunohistochemistry (IHC analysis was used to detect ICAM-1 expression in mouse skin. Results: GL treatment significantly reduced the levels of ICAM-1 in TNF-a-stimulated HaCaT cells, inhibited subsequent monocyte adhesion to keratinocytes, and suppressed the nuclear translation and phosphorylation of p65 following the degradation of inhibitor κB (IκB. GL treatment blocked the phosphorylation of extracellular signal-regulated kinase (ERK/p38 MAPK. GL effectively delayed the onset of IPI in mice and ameliorated ongoing IPI, thereby reducing ICAM-1 expression in

  20. Nociceptor beta II, delta, and epsilon isoforms of PKC differentially mediate paclitaxel-induced spontaneous and evoked pain.

    Science.gov (United States)

    He, Ying; Wang, Zaijie Jim

    2015-03-18

    As one of the most effective and frequently used chemotherapeutic agents, paclitaxel produces peripheral neuropathy (paclitaxel-induced peripheral neuropathy or PIPN) that negatively affects chemotherapy and persists after cancer therapy. The mechanisms underlying this dose-limiting side effect remain to be fully elucidated. This study aimed to investigate the role of nociceptor protein kinase C (PKC) isoforms in PIPN. Employing multiple complementary approaches, we have identified a subset of PKC isoforms, namely βII, δ, and ϵ, were activated by paclitaxel in the isolated primary afferent sensory neurons. Persistent activation of PKCβII, PKCδ, and PKCϵ was also observed in the dorsal root ganglion neurons after chronic treatment with paclitaxel in a mouse model of PIPN. Isoform-selective inhibitors of PKCβII, PKCδ, and PKCϵ given intrathecally dose-dependently attenuated paclitaxel-induced mechanical allodynia and heat hyperalgesia. Surprisingly, spinal inhibition of PKCβII and PKCδ, but not PKCϵ, blocked the spontaneous pain induced by paclitaxel. These data suggest that a subset of nociceptor PKC isoforms differentially contribute to spontaneous and evoked pain in PIPN, although it is not clear whether PKCϵ in other regions regulates spontaneous pain in PIPN. The findings can potentially offer new selective targets for pharmacological intervention of PIPN.

  1. Up-regulation of miR-26a promotes neurite outgrowth and ameliorates apoptosis by inhibiting PTEN in bupivacaine injured mouse dorsal root ganglia.

    Science.gov (United States)

    Cui, Changlei; Xu, Gong; Qiu, Jinpeng; Fan, Xiushuang

    2015-08-01

    Local anesthetic of bupivacaine may inhibit neurite outgrowth and induce apoptosis in mouse dorsal root ganglia (DRG) neurons. In this work, we intended to investigate the functional role of microRNA 26a (miR-26a) in regulating bupivacaine-induced nerve injury in DRG neurons. DRG neurons were extracted from C57BL/6 mice and cultured in vitro. Bupivacaine was applied in vitro and it induced apoptosis, inhibited neurite growth, and significantly down-regulated miR-26a gene in DRG neurons. MiR-26a mimic was then used to up-regulate miR-26a expression in DRG neurons. We found that miR-26a up-regulation promoted neurite outgrowth and reduced apoptosis in bupivacaine-injured DRG neurons. Luciferase assay and Western blot confirmed that Phosphatase and tensin homolog (PTEN) was down-stream target of miR-26a in DRG neurons. Ectopic PTEN up-regulation was then able to reverse the protective effect of miR-26a overexpression on bupivacaine-induced nerve injury in DRG neurons. Overall, this work demonstrated that miR-26a had a functional role in regulating bupivacaine-induced nerve injury in DRG neurons. Up-regulating miR-26a to suppress PTEN signaling pathway may be an effective method to protect local anesthetic-induced nerve injury in spinal cord.

  2. Artesunate ameliorates severe acute pancreatitis (SAP) in rats by inhibiting expression of pro-inflammatory cytokines and Toll-like receptor 4.

    Science.gov (United States)

    Cen, Yanyan; Liu, Chao; Li, Xiaoli; Yan, Zifei; Kuang, Mei; Su, Yujie; Pan, Xichun; Qin, Rongxin; Liu, Xin; Zheng, Jiang; Zhou, Hong

    2016-09-01

    Severe acute pancreatitis (SAP) is a severe clinical condition with significant morbidity and mortality. Multiple organs dysfunction (MOD) is the leading cause of SAP-related death. The over-release of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α is the underlying mechanism of MOD; however, there is no effective agent against the inflammation. Herein, artesunate (AS) was found to increase the survival of SAP rats significantly when injected with 3.5% sodium taurocholate into the biliopancreatic duct in a retrograde direction, improving their pancreatic pathology and decreasing serum amylase and pancreatic lipase activities along with substantially reduced pancreatic IL-1β and IL-6 release. In vitro, AS-pretreatment strongly inhibited IL-1β and IL-6 release and their mRNA expressions in the pancreatic acinar cells treated with lipopolysaccharide (LPS) but exerted little effect on TNF-α release. Additionally, AS reduced the mRNA expressions of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) p65 as well as their protein expressions in the pancreatic acinar cells. In conclusion, our results demonstrated that AS could significantly protect SAP rats, and this protection was related to the reduction of digestive enzyme activities and pro-inflammatory cytokine expressions via inhibition of TLR4/NF-κB signaling pathway. Therefore, AS may be considered as a potential therapeutic agent against SAP.

  3. PKA and ERK, but not PKC, in the amygdala contribute to pain-related synaptic plasticity and behavior

    Directory of Open Access Journals (Sweden)

    Ramsey Cara

    2008-07-01

    Full Text Available Abstract The laterocapsular division of the central nucleus of the amygdala (CeLC has emerged as an important site of pain-related plasticity and pain modulation. Glutamate and neuropeptide receptors in the CeLC contribute to synaptic and behavioral changes in the arthritis pain model, but the intracellular signaling pathways remain to be determined. This study addressed the role of PKA, PKC, and ERK in the CeLC. Adult male Sprague-Dawley rats were used in all experiments. Whole-cell patch-clamp recordings of CeLC neurons were made in brain slices from normal rats and from rats with a kaolin/carrageenan-induced monoarthritis in the knee (6 h postinduction. Membrane-permeable inhibitors of PKA (KT5720, 1 μM; cAMPS-Rp, 10 μM and ERK (U0126, 1 μM activation inhibited synaptic plasticity in slices from arthritic rats but had no effect on normal transmission in control slices. A PKC inhibitor (GF109203x, 1 μM and an inactive structural analogue of U0126 (U0124, 1 μM had no effect. The NMDA receptor-mediated synaptic component was inhibited by KT5720 or U0126; their combined application had additive effects. U0126 did not inhibit synaptic facilitation by forskolin-induced PKA-activation. Administration of KT5720 (100 μM, concentration in microdialysis probe or U0126 (100 μM into the CeLC, but not striatum (placement control, inhibited audible and ultrasonic vocalizations and spinal reflexes of arthritic rats but had no effect in normal animals. GF109203x (100 μM and U0124 (100 μM did not affect pain behavior. The data suggest that in the amygdala PKA and ERK, but not PKC, contribute to pain-related synaptic facilitation and behavior by increasing NMDA receptor function through independent signaling pathways.

  4. Modulatory effects of cAMP and PKC activation on gap junctional intercellular communication among thymic epithelial cells

    Directory of Open Access Journals (Sweden)

    Neves-dos-Santos Sandra

    2010-01-01

    Full Text Available Abstract Background We investigated the effects of the signaling molecules, cyclic AMP (cAMP and protein-kinase C (PKC, on gap junctional intercellular communication (GJIC between thymic epithelial cells (TEC. Results Treatment with 8-Br-cAMP, a cAMP analog; or forskolin, which stimulates cAMP production, resulted in an increase in dye transfer between adjacent TEC, inducing a three-fold enhancement in the mean fluorescence of coupled cells, ascertained by flow cytometry after calcein transfer. These treatments also increased Cx43 mRNA expression, and stimulated Cx43 protein accumulation in regions of intercellular contacts. VIP, adenosine, and epinephrine which may also signal through cyclic nucleotides were tested. The first two molecules did not mimic the effects of 8-Br-cAMP, however epinephrine was able to increase GJIC suggesting that this molecule functions as an endogenous inter-TEC GJIC modulators. Stimulation of PKC by phorbol-myristate-acetate inhibited inter-TEC GJIC. Importantly, both the enhancing and the decreasing effects, respectively induced by cAMP and PKC, were observed in both mouse and human TEC preparations. Lastly, experiments using mouse thymocyte/TEC heterocellular co-cultures suggested that the presence of thymocytes does not affect the degree of inter-TEC GJIC. Conclusions Overall, our data indicate that cAMP and PKC intracellular pathways are involved in the homeostatic control of the gap junction-mediated communication in the thymic epithelium, exerting respectively a positive and negative role upon cell coupling. This control is phylogenetically conserved in the thymus, since it was seen in both mouse and human TEC preparations. Lastly, our work provides new clues for a better understanding of how the thymic epithelial network can work as a physiological syncytium.

  5. Gallic acid ameliorates renal functions by inhibiting the activation of p38 MAPK in experimentally induced type 2 diabetic rats and cultured rat proximal tubular epithelial cells.

    Science.gov (United States)

    Ahad, Amjid; Ahsan, Haseeb; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2015-10-05

    Diabetic nephropathy (DN) is one of the leading causes of morbidity and mortality in diabetic patients that accounts for about 40% of deaths in type 2 diabetes. p38 mitogen activated protein kinase (p38 MAPK), a serine-threonine kinase, plays an important role in tissue inflammation and is known to be activated under conditions of oxidative stress and hyperglycemia. The role of p38 MAPK has been demonstrated in DN, and its inhibition has been suggested as an alternative approach in the treatment of DN. In the present study, we investigated the nephroprotective effects of an anti-inflammatory phenolic compound, gallic acid (GA, 3,4,5-trihydroxybenzoic acid), in high fat diet/streptozotocin (HFD/STZ) induce type 2 diabetic wistar albino rats. GA (25 mg/kgbw and 50 mg/kgbw, p.o.) treatment for 16 weeks post induction of diabetes led to a significant reduction in the levels of blood glucose, HbA1c, serum creatinine, blood urea nitrogen and proteinuria as well as a significant reduction in the levels of creatinine clearance. GA significantly inhibited the renal p38 MAPK and nuclear factor kappa B (N-κB) activation as well as significantly reduced the levels of renal transforming growth factor beta (TGF-β) and fibronectin. Treatment with GA resulted in a significant reduction in the serum levels of proinflammatory cytokines viz. interleukin 1 beta (IL-1β), IL-6 and tumor necrosis factor alpha (TNF-α). Moreover, GA significantly lowered renal pathology and attenuated renal oxidative stress. In cultured rat NRK 52E proximal tubular epithelial cells, GA treatment inhibited high glucose induced activation of p38 MAPK and NF-κB as well as suppressed proinflammatory cytokine synthesis. The results of the present study provide in vivo and in vitro evidences that the p38 MAPK pathway plays an important role in the pathogenesis of DN, and GA attenuates the p38 MAPK-mediated renal dysfunction in HFD/STZ induced type 2 diabetic rats.

  6. Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Chu Ketan

    2012-04-01

    Full Text Available Abstract Background Neuroinflammation plays an important role in cerebral ischemia/reperfusion (I/R injury. The P2X7 receptor (P2X7R has been reported to be involved in the inflammatory response of many central nervous system diseases. However, the role of P2X7Rs in transient global cerebral I/R injury remains unclear. The purpose of this study is to determine the effects of inhibiting the P2X7R in a rat model of transient global cerebral I/R injury, and then to explore the association between the P2X7R and neuroinflammation after transient global cerebral I/R injury. Methods Immediately after infusion with the P2X7R antagonists Brilliant blue G (BBG, adenosine 5′-triphosphate-2′,3′-dialdehyde (OxATP or A-438079, 20 minutes of transient global cerebral I/R was induced using the four-vessel occlusion (4-VO method in rats. Survival rate was calculated, neuronal death in the hippocampal CA1 region was observed using H & E staining, and DNA cleavage was observed by deoxynucleotidyl transferase-mediated UTP nick end labeling TUNEL. In addition, behavioral deficits were measured using the Morris water maze, and RT-PCR and immunohistochemical staining were performed to measure the expression of IL-1β, TNF-α and IL-6, and to identify activated microglia and astrocytes. Results The P2X7R antagonists protected against transient global cerebral I/R injury in a dosage-dependent manner. A high dosage of BBG (10 μg and A-0438079 (3 μg, and a low dosage of OxATP (1 μg significantly increased survival rates, reduced I/R-induced learning memory deficit, and reduced I/R-induced neuronal death, DNA cleavage, and glial activation and inflammatory cytokine overexpression in the hippocampus. Conclusions Our study indicates that inhibiting P2X7Rs protects against transient global cerebral I/R injury by reducing the I/R-induced inflammatory response, which suggests inhibition of P2X7Rs may be a promising therapeutic strategy for clinical treatment of

  7. Bofutsushosan ameliorates obesity in mice through modulating PGC-1α expression in brown adipose tissues and inhibiting inflammation in white adipose tissues.

    Science.gov (United States)

    Chen, Ying-Ying; Yan, Yan; Zhao, Zheng; Shi, Mei-Jing; Zhang, Yu-Bin

    2016-06-01

    The inducible co-activator PGC-1α plays a crucial role in adaptive thermogenesis and increases energy expenditure in brown adipose tissue (BAT). Meanwhile, chronic inflammation caused by infiltrated-macrophage in the white adipose tissue (WAT) is a target for the treatment of obesity. Bofutsushosan (BF), a traditional Chinese medicine composed of 17 crude drugs, has been widely used to treat obesity in China, Japan, and other Asia countries. However, the mechanism underlying anti-obesity remains to be elucidated. In the present study, we demonstrated that BF oral administration reduced the body weight of obese mice induced by high-fat diet (HFD) and alleviated the level of biochemical markers (P obesity was at least partially through increasing gene expression of PGC-1α and UCP1 for energy consumption in BAT and inhibiting inflammation in WAT.

  8. Total Flavonoids from Rosa laevigata Michx Fruit Ameliorates Hepatic Ischemia/Reperfusion Injury through Inhibition of Oxidative Stress and Inflammation in Rats

    Directory of Open Access Journals (Sweden)

    Xufeng Tao

    2016-07-01

    Full Text Available The effects of total flavonoids (TFs from Rosa laevigata Michx fruit against liver damage and cerebral ischemia/reperfusion (I/R injury have been reported, but its action on hepatic I/R injury remains unknown. In this work, the effects and possible mechanisms of TFs against hepatic I/R injury were examined using a 70% partial hepatic warm ischemia rat model. The results demonstrated TFs decreased serum aspartate transaminase (AST, alanine aminotransferase (ALT, myeloperoxidase (MPO, and lactate dehydrogenase (LDH activities, improved liver histopathology and ultrastructure through hematoxylin-eosin (HE staining and electron microscope observation. In addition, TFs significantly decreased malondialdehyde (MDA and increased the levels of superoxide dismutase (SOD and glutathione peroxidase (GSH-Px, which indicated that TFs alleviated oxidative stress caused by I/R injury. RT-PCR results proved that TFs downregulated the gene levels of inflammatory factors including interleukin-1 beta (IL-1β, interleukin-1 (IL-6, and tumor necrosis factor alpha (TNF-α. Further research indicated that TF-induced hepatoprotection was completed through inhibiting TLR4/MyD88 and activating Sirt1/Nrf2 signaling pathways. Blockade of the TLR4 pathway by TFs inhibited NF-κB and AP-1 transcriptional activities and inflammatory reaction. Activation of Sirt1/Nrf2 pathway by TFs increased the protein levels of HO-1 and GST to improve oxidative stress. Collectively, these findingsconfirmed the potent effects of TFs against hepatic I/R injury, which should be developed as a candidate for the prevention of this disease.

  9. Long-term treatment of thalidomide ameliorates amyloid-like pathology through inhibition of β-secretase in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    He, Ping; Cheng, Xin; Staufenbiel, Matthias; Li, Rena; Shen, Yong

    2013-01-01

    Thalidomide is a tumor necrosis factor alpha (TNFα) inhibitor which has been found to have abilities against tumor growth, angiogenesis and inflammation. Recently, it has been applied in clinic for the treatment of multiple myeloma as well as some inflammatory diseases. However, whether thalidomide has any therapeutic effects on neurodegenerative disorders, i.e. Alzheimer's disease (AD) is not clear. AD is characterized by excessive amount of amyloid β peptides (Aβ), which results in a significant release of inflammatory factors, including TNFα in the brain. Studies have shown that inhibition of TNFα reduces amyloid-associated pathology, prevents neuron loss and improves cognition. Our recent report showed that genetic inhibition of TNFα/TNF receptor signal transduction down-regulates β amyloid cleavage enzyme 1 (BACE1) activity, reduces Aβ generation and improves learning and memory deficits. However, the mechanism of thalidomide involving in the mitigation of AD neuropathological features remains unclear. Here, we chronically administrated thalidomide on human APPswedish mutation transgenic (APP23) mice from 9 months old (an onset of Aβ deposits and early stage of AD-like changes) to 12 months old. We found that, in addition of dramatic decrease in the activation of both astrocytes and microglia, thalidomide significantly reduces Aβ load and plaque formation. Furthermore, we found a significant decrease in BACE1 level and activity with long-term thalidomide application. Interestingly, these findings cannot be observed in the brains of 12-month-old APP23 mice with short-term treatment of thalidomide (3 days). These results suggest that chronic thalidomide administration is an alternative approach for AD prevention and therapeutics.

  10. Arctigenin, a natural compound, activates AMP-activated protein kinase via inhibition of mitochondria complex I and ameliorates metabolic disorders in ob/ob mice.

    Science.gov (United States)

    Huang, S-L; Yu, R-T; Gong, J; Feng, Y; Dai, Y-L; Hu, F; Hu, Y-H; Tao, Y-D; Leng, Y

    2012-05-01

    Arctigenin is a natural compound that had never been previously demonstrated to have a glucose-lowering effect. Here it was found to activate AMP-activated protein kinase (AMPK), and the mechanism by which this occurred, as well as the effects on glucose and lipid metabolism were investigated. 2-Deoxyglucose uptake and AMPK phosphorylation were examined in L6 myotubes and isolated skeletal muscle. Gluconeogenesis and lipid synthesis were evaluated in rat primary hepatocytes. The acute and chronic effects of arctigenin on metabolic abnormalities were observed in C57BL/6J and ob/ob mice. Changes in mitochondrial membrane potential were measured using the J-aggregate-forming dye, JC-1. Analysis of respiration of L6 myotubes or isolated mitochondria was conducted in a channel oxygen system. Arctigenin increased AMPK phosphorylation and stimulated glucose uptake in L6 myotubes and isolated skeletal muscles. In primary hepatocytes, it decreased gluconeogenesis and lipid synthesis. The enhancement of glucose uptake and suppression of hepatic gluconeogenesis and lipid synthesis by arctigenin were prevented by blockade of AMPK activation. The respiration of L6 myotubes or isolated mitochondria was inhibited by arctigenin with a specific effect on respiratory complex I. A single oral dose of arctigenin reduced gluconeogenesis in C57BL/6J mice. Chronic oral administration of arctigenin lowered blood glucose and improved lipid metabolism in ob/ob mice. This study demonstrates a new role for arctigenin as a potent indirect activator of AMPK via inhibition of respiratory complex I, with beneficial effects on metabolic disorders in ob/ob mice. This highlights the potential value of arctigenin as a possible treatment of type 2 diabetes.

  11. A cationic-independent mannose 6-phosphate receptor inhibitor (PXS64 ameliorates kidney fibrosis by inhibiting activation of transforming growth factor-β1.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available The activity of transforming growth factor-β1 (TGF-β1 is regulated by its conversion from the latent to the active form. We have previously shown that the conversion is at least in part mediated by the cationic-independent mannose 6-phosphate receptor (CI-M6PR, as the CI-M6PR inhibitor, PXS-25 has anti-fibrotic properties in human kidney tubular (HK-2 cells under high glucose conditions. However, its clinical use is limited by low bioavailability. Our aim was to determine the effects of PXS64, a pro-drug of PXS25, in in vitro and in vivo models of renal fibrosis. HK-2 cells were exposed to latent TGFβ1+/- PXS64 for 48 hours. The mRNA and protein levels of pro-fibrotic and pro-inflammatory markers were determined. A 7 day unilateral ureteric obstruction (UUO model was used and the following experimental groups were studied: (i Sham operated, (ii UUO, (iii UUO + telmisartan (iv UUO + PSX64. HK-2 cells exposed to PXS64 reduced TGFβ mediated effects on collagen IV, fibronectin, macrophage chemotactic protein-1 (MCP-1 and phospho-smad2 protein expression, consistent with inhibition of the conversion of latent to active TGF-β1. PXS 64 treated UUO mice had a lower tubulointerstitial fibrosis index, collagen IV and fibronectin protein and mRNA expression when compared to untreated UUO mice. In addition, these animals had lower MCP-1 mRNA expression, reduced inflammarory cell infiltrate, as indicated by fewer CD45, F4/80 positive cells, and reduced phospho-Smad2 protein expression when compared to untreated UUO animals. Our data demonstrates that PSX64 is an effective anti-fibrotic agent by inhibiting the activation of latent TGF-β1.

  12. Total Flavonoids from Rosa laevigata Michx Fruit Ameliorates Hepatic Ischemia/Reperfusion Injury through Inhibition of Oxidative Stress and Inflammation in Rats.

    Science.gov (United States)

    Tao, Xufeng; Sun, Xiance; Xu, Lina; Yin, Lianhong; Han, Xu; Qi, Yan; Xu, Youwei; Zhao, Yanyan; Wang, Changyuan; Peng, Jinyong

    2016-07-08

    The effects of total flavonoids (TFs) from Rosa laevigata Michx fruit against liver damage and cerebral ischemia/reperfusion (I/R) injury have been reported, but its action on hepatic I/R injury remains unknown. In this work, the effects and possible mechanisms of TFs against hepatic I/R injury were examined using a 70% partial hepatic warm ischemia rat model. The results demonstrated TFs decreased serum aspartate transaminase (AST), alanine aminotransferase (ALT), myeloperoxidase (MPO), and lactate dehydrogenase (LDH) activities, improved liver histopathology and ultrastructure through hematoxylin-eosin (HE) staining and electron microscope observation. In addition, TFs significantly decreased malondialdehyde (MDA) and increased the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), which indicated that TFs alleviated oxidative stress caused by I/R injury. RT-PCR results proved that TFs downregulated the gene levels of inflammatory factors including interleukin-1 beta (IL-1β), interleukin-1 (IL-6), and tumor necrosis factor alpha (TNF-α). Further research indicated that TF-induced hepatoprotection was completed through inhibiting TLR4/MyD88 and activating Sirt1/Nrf2 signaling pathways. Blockade of the TLR4 pathway by TFs inhibited NF-κB and AP-1 transcriptional activities and inflammatory reaction. Activation of Sirt1/Nrf2 pathway by TFs increased the protein levels of HO-1 and GST to improve oxidative stress. Collectively, these findingsconfirmed the potent effects of TFs against hepatic I/R injury, which should be developed as a candidate for the prevention of this disease.

  13. Long-term treatment of thalidomide ameliorates amyloid-like pathology through inhibition of β-secretase in a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Ping He

    Full Text Available Thalidomide is a tumor necrosis factor alpha (TNFα inhibitor which has been found to have abilities against tumor growth, angiogenesis and inflammation. Recently, it has been applied in clinic for the treatment of multiple myeloma as well as some inflammatory diseases. However, whether thalidomide has any therapeutic effects on neurodegenerative disorders, i.e. Alzheimer's disease (AD is not clear. AD is characterized by excessive amount of amyloid β peptides (Aβ, which results in a significant release of inflammatory factors, including TNFα in the brain. Studies have shown that inhibition of TNFα reduces amyloid-associated pathology, prevents neuron loss and improves cognition. Our recent report showed that genetic inhibition of TNFα/TNF receptor signal transduction down-regulates β amyloid cleavage enzyme 1 (BACE1 activity, reduces Aβ generation and improves learning and memory deficits. However, the mechanism of thalidomide involving in the mitigation of AD neuropathological features remains unclear. Here, we chronically administrated thalidomide on human APPswedish mutation transgenic (APP23 mice from 9 months old (an onset of Aβ deposits and early stage of AD-like changes to 12 months old. We found that, in addition of dramatic decrease in the activation of both astrocytes and microglia, thalidomide significantly reduces Aβ load and plaque formation. Furthermore, we found a significant decrease in BACE1 level and activity with long-term thalidomide application. Interestingly, these findings cannot be observed in the brains of 12-month-old APP23 mice with short-term treatment of thalidomide (3 days. These results suggest that chronic thalidomide administration is an alternative approach for AD prevention and therapeutics.

  14. miR-486 suppresses the development of osteosarcoma by regulating PKC-δ pathway.

    Science.gov (United States)

    He, Ming; Wang, Guangbin; Jiang, Linlin; Qiu, Chuang; Li, Bin; Wang, Jiashi; Fu, Yonghui

    2017-05-01

    Osteosarcoma is one of the most highly malignant types of cancer in adolescents and young adults with a high mortality rate. Despite advances in surgery, radiation therapy and chemotherapy, the prognosis for patients with osteosarcoma has not significantly improved over the past several decades. It is necessary to find new indicators of prognosis and therapeutic targets of osteosarcoma. Through the analysis of 40 osteosarcoma tissues, we found that the expression of miR‑486 was low and the expression of PKC‑δ was high in osteosarcoma. Median survival of patients with low expression of miR-486 (30 months) was shorter than the patients with higher expression of miR‑486 (40 months). We further found that miR-486 can inhibit the targeting of PKC‑δ signaling pathways, and this inhibition can inhibit the growth and invasion of osteosarcoma cells. After transfection of miR‑486 for 24 h, the proliferation of osteosarcoma cells was inhibited by ~20%, and the migration was inhibited by ~15%. In the present investigation, we demonstrated that miR‑486 is negatively associated with the expression of PKC-δ and could regulate the development of osteosarcoma. miR-486 may be a potential target for the treatment of osteosarcoma.

  15. PKC Epsilon: A Novel Oncogenic Player in Prostate Cancer

    Science.gov (United States)

    2013-09-01

    tyrosine-kinase and G-protein-coupled receptor ( GPCR ) activation [3]. Despite our extensive knowledge on PKC regulation and function, the specific roles for...the receptor. LNCaP cells were stimulate with TNFα (25 ng/ml) for 5 min and subjected to IP with an anti-TNFR-I antibody . Western blots were probed...with phosphoamino acid antibodies . It was observed that TNFα treatment mediates the phosphorylation on serine and threonine residues but not on

  16. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats.

    Science.gov (United States)

    Gondi, Mahendranath; Prasada Rao, U J S

    2015-12-01

    Peel is a major by-product during processing of mango fruit into pulp. Recent report indicates that the whole peel powder ameliorated diabetes. In the present study, ethanolic extract of mango peel was analysed for its bioactive compounds, evaluated for α-amylase and α-glucosidase inhibitory properties, oral glucose tolerance test, antioxidant properties, plasma insulin level and biochemical parameters related to diabetes. In addition to gallic and protocatechuic acids, the extract also had chlorogenic and ferulic acids, which were not reported earlier in mango peel extracts. The peel extract inhibited α-amylase and α-glucosidase activities, with IC50 values of 4.0 and 3.5 μg/ml. Ethanolic extract of peel showed better glucose utilization in oral glucose tolerance test. Treatment of streptozotocin-induced diabetic rats with the extract decreased fasting blood glucose, fructosamine and glycated hemoglobin levels, and increased plasma insulin level. Peel extract treatment decreased malondialdehyde level, but increased the activities of antioxidant enzymes significantly in liver and kidney compared to diabetic rats. These beneficial effects were comparable to metformin, but better than gallic acid treated diabetic rats. The beneficial effects of peel extract may be through different mechanism like increased plasma insulin levels, decreased oxidative stress and inhibition of carbohydrate hydrolyzing enzyme activities by its bioactive compounds. Thus, results suggest that the peel extract can be a potential source of nutraceutical or can be used in functional foods and this is the first report on antidiabetic properties of mango peel extract.

  17. Ectodomain cleavage of the EGF ligands HB-EGF, neuregulin1-beta, and TGF-alpha is specifically triggered by different stimuli and involves different PKC isoenzymes.

    Science.gov (United States)

    Herrlich, Andreas; Klinman, Eva; Fu, Jonathan; Sadegh, Cameron; Lodish, Harvey

    2008-12-01

    Metalloproteinase cleavage of transmembrane proteins (ectodomain cleavage), including the epidermal growth factor (EGF) ligands heparin-binding EGF-like growth factor (HB-EGF), neuregulin (NRG), and transforming growth factor-alpha (TGF-alpha), is important in many cellular signaling pathways and is disregulated in many diseases. It is largely unknown how physiological stimuli of ectodomain cleavage--hypertonic stress, phorbol ester, or activation of G-protein-coupled receptors [e.g., by lysophosphatidic acid (LPA)]--are molecularly connected to metalloproteinase activation. To study this question, we developed a fluorescence-activated cell sorting (FACS)- based assay that measures cleavage of EGF ligands in single living cells. EGF ligands expressed in mouse lung epithelial cells are differentially and specifically cleaved depending on the stimulus. Inhibition of protein kinase C (PKC) isoenzymes or metalloproteinase inhibition by batimastat (BB94) showed that different regulatory signals are used by different stimuli and EGF substrates, suggesting differential effects that act on the substrate, the metalloproteinase, or both. For example, hypertonic stress led to strong cleavage of HB-EGF and NRG but only moderate cleavage of TGF-alpha. HB-EGF, NRG, and TGF-alpha cleavage was not dependent on PKC, and only HB-EGF and NRG cleavage were inhibited by BB94. In contrast, phorbol 12-myristate-13-acetate (TPA) -induced cleavage of HB-EGF, NRG, and TGF-alpha was dependent on PKC and sensitive to BB94 inhibition. LPA led to significant cleavage of only NRG and TGF-alpha and was inhibited by BB94; only LPA-induced NRG cleavage required PKC. Surprisingly, specific inhibition of atypical PKCs zeta and iota [not activated by diacylglycerol (DAG) and calcium] significantly enhanced TPA-induced NRG cleavage. Employed in a high-throughput cloning strategy, our cleavage assay should allow the identification of candidate proteins involved in signal transduction of different

  18. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    Directory of Open Access Journals (Sweden)

    Boutin Jean A

    2010-10-01

    Full Text Available Abstract Background Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts. Methods Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours. The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue. Results Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently. Conclusions In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.

  19. TNF-alpha stimulates Akt by a distinct aPKC-dependent pathway in premalignant keratinocytes

    DEFF Research Database (Denmark)

    Faurschou, A.; Gniadecki, R.

    2008-01-01

    kappaB inhibition and in the presence of p38 blockers. Akt/ERK signalling but not p38 activation was abolished in the presence of the iron chelator desferroxamine that blocks formation of hydroxyl ( OH) radicals. Thus, the TNF-alpha signalling in keratinocytes seems to bifurcate into an aPKC-, NFk......Tumor necrosis factor-alpha (TNF-alpha) is an important proinflammatory cytokine involved in the pathogenesis of inflammatory skin diseases and cutaneous squamous cell carcinoma. Some of these effects are mediated by the stimulatory effect of this cytokine on the Akt signalling pathway, which...... renders keratinocytes less susceptible to proapoptotic stimuli and enhances cell growth. We have recently shown that TNF-alpha-induced Akt activation may promote the early stages of skin cancer. In this work, we demonstrate that in the premalignant keratinocyte cell line HaCaT, TNF-alpha activates Akt...

  20. Inhibition of STAT3- and MAPK-dependent PGE2 synthesis ameliorates phagocytosis of fibrillar β-amyloid peptide (1-42) via EP2 receptor in EMF-stimulated N9 microglial cells.

    Science.gov (United States)

    He, Gen-Lin; Luo, Zhen; Shen, Ting-Ting; Li, Ping; Yang, Ju; Luo, Xue; Chen, Chun-Hai; Gao, Peng; Yang, Xue-Sen

    2016-11-21

    Prostaglandin E2 (PGE2)-involved neuroinflammatory processes are prevalent in several neurological conditions and diseases. Amyloid burden is correlated with the activation of E-prostanoid (EP) 2 receptors by PGE2 in Alzheimer's disease. We previously demonstrated that electromagnetic field (EMF) exposure can induce pro-inflammatory responses and the depression of phagocytosis in microglial cells, but the signaling pathways involved in phagocytosis of fibrillar β-amyloid (fAβ) in microglial cells exposed to EMF are poorly understood. Given the important role of PGE2 in neural physiopathological processes, we investigated the PGE2-related signaling mechanism in the immunomodulatory phagocytosis of EMF-stimulated N9 microglial cells (N9 cells). N9 cells were exposed to EMF with or without pretreatment with the selective inhibitors of cyclooxygenase-2 (COX-2), Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinases (MAPKs) and antagonists of PG receptors EP1-4. The production of endogenous PGE2 was quantified by enzyme immunoassays. The phagocytic ability of N9 cells was evaluated based on the fluorescence intensity of the engulfed fluorescent-labeled fibrillar β-amyloid peptide (1-42) (fAβ42) measured using a flow cytometer and a fluorescence microscope. The effects of pharmacological agents on EMF-activated microglia were investigated based on the expressions of JAK2, STAT3, p38/ERK/JNK MAPKs, COX-2, microsomal prostaglandin E synthase-1 (mPGES-1), and EP2 using real-time PCR and/or western blotting. EMF exposure significantly increased the production of PGE2 and decreased the phagocytosis of fluorescent-labeled fAβ42 by N9 cells. The selective inhibitors of COX-2, JAK2, STAT3, and MAPKs clearly depressed PGE2 release and ameliorated microglial phagocytosis after EMF exposure. Pharmacological agents suppressed the phosphorylation of JAK2-STAT3 and MAPKs, leading to the amelioration of the

  1. Rapamycin ameliorates inflammation and fibrosis in the early phase of cirrhotic portal hypertension in rats through inhibition of mTORC1 but not mTORC2.

    Directory of Open Access Journals (Sweden)

    Weijie Wang

    Full Text Available OBJECTIVE: Hepatic stellate cells (HSCs transdifferentiation and subsequent inflammation are important pathological processes involved in the formation of cirrhotic portal hypertension. This study characterizes the pathogenetic mechanisms leading to cholestatic liver fibrosis and portal hypertension, and focuses on mammalian target of rapamycin (mTOR pathway as a potential modulator in the early phase of cirrhotic portal hypertension. METHODS: Early cirrhotic portal hypertension was induced by bile duct ligation (BDL for three weeks. One week after operation, sham-operated (SHAM and BDL rats received rapamycin (2 mg/kg/day by intraperitoneal injection for fourteen days. Vehicle-treated SHAM and BDL rats served as controls. Fibrosis, inflammation, and portal pressure were evaluated by histology, morphometry, and hemodynamics. Expressions of pro-fibrogenic and pro-inflammatory genes in liver were measured by RT-PCR; alpha smooth muscle actin (α-SMA and antigen Ki67 were detected by immunohistochemistry; expressions of AKT/mTOR signaling molecules, extracellular-signal-regulated kinase 1/2 (ERK1/2, p-ERK1/2, and interleukin-1 beta (IL-1β were assessed by western blot. RESULTS: The AKT/mTOR signaling pathway was markedly activated in the early phase of cirrhotic portal hypertension induced by BDL in rats. mTOR blockade by rapamycin profoundly improved liver function by limiting inflammation, fibrosis and portal pressure. Rapamycin significantly inhibited the expressions of phosphorylated 70KD ribosomal protein S6 kinase (p-P70S6K and phosphorylated ribosomal protein S6 (p-S6 but not p-AKT Ser473 relative to their total proteins in BDL-Ra rats. Those results suggested that mTOR Complex 1 (mTORC1 rather than mTORC2 was inhibited by rapamycin. Interestingly, we also found that the level of p-ERK1/2 to ERK1/2 was significantly increased in BDL rats, which was little affected by rapamycin. CONCLUSIONS: The AKT/mTOR signaling pathway played an important

  2. Apigenin protects blood-brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats.

    Science.gov (United States)

    Zhang, Tingting; Su, Jingyuan; Guo, Bingyu; Wang, Kaiwen; Li, Xiaoming; Liang, Guobiao

    2015-09-01

    Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. Inflammation has been considered as the major contributor to brain damage after SAH. SAH induces a systemic increase in pro-inflammatory cytokines and chemokines. Disruption of blood-brain barrier (BBB) facilitates the influx of inflammatory cells. It has been reported that the activation of toll-like receptor 4 (TLR4)/NF-κB signaling pathway plays a vital role in the central nervous system diseases. Apigenin, a common plant flavonoid, possesses anti-inflammation effect. In this study, we focused on the effects of apigenin on EBI following SAH and its anti-inflammation mechanism. Our results showed that apigenin (20mg/kg) administration significantly attenuated EBI (including brain edema, BBB disruption, neurological deficient, severity of SAH, and cell apoptosis) after SAH in rats by suppressing the expression of TLR4, NF-κB and their downstream pro-inflammatory cytokines in the cortex and by up-regulating the expression of tight junction proteins of BBB. Double immunofluorescence staining demonstrated that TLR4 was activated following SAH in neurons, microglia cells, and endothelial cells but not in astrocytes. Apigenin could suppress the activation of TLR4 induced by SAH and inhibit apoptosis of cells in the cortex. These results suggested that apigenin could attenuate EBI after SAH in rats by suppressing TLR4-mediated inflammation and protecting against BBB disruption. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. MicroRNA let-7a ameliorates con A-induced hepatitis by inhibiting IL-6-dependent Th17 cell differentiation.

    Science.gov (United States)

    Zhang, Yingying; Wang, Xiangmin; Zhong, Min; Zhang, Mengying; Suo, Qifeng; Lv, Kun

    2013-04-01

    In this study we explored the effects of microRNA let-7a on Con A-induced hepatitis and its possible mechanisms involved. We demonstrated that IL-6 and IL-17 expression were significantly upregulated in the liver following Con A treatment and IL-6 level was correlated with the IL-17 expression. To explore whether let-7a may have therapeutic effect on Con A-induced hepatitis, mice was infected with a lentiviral vector containing the let-7a sequence 7 days before Con A treatment. Significantly reduced Th17 cells and remarkably increased regulatory T cells frequency in the liver tissue were found as compared to control mice. It was accompanied by a significant decreased level of inflammatory cytokines as TNF-α, IL-6 and IFN-γ in the serum, and an decreased level of Th17 lineage-specific genes such as Il17a, Il17f, Il21 and Il23r. let-7a was further found to inhibit Th17 differentiation by downregulating IL-6 secretion. It may represent as a novel therapeutic strategy in treating immune-mediated inflammatory hepatitis.

  4. Bofutsushosan ameliorates obesity in mice through modulating PGC-la expression in brown adipose tissues and inhibiting inflammation in white adipose tissues

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-Ying; YAN Yan; ZHAO Zheng; SHI Mei-Jing; ZHANG Yu-Bin

    2016-01-01

    The inducible co-activator PGC-1a plays a crucial role in adaptive thermogenesis and increases energy expenditure in brown adipose tissue (BAT).Meanwhile,chronic inflammation caused by infiltrated-macrophage in the white adipose tissue (WAT) is a target for the treatment of obesity.Bofutsushosan (BF),a traditional Chinese medicine composed of 17 crude drugs,has been widely used to treat obesity in China,Japan,and other Asia countries.However,the mechanism underlying anti-obesity remains to be elucidated.In the present study,we demonstrated that BF oral administration reduced the body weight of obese mice induced by high-fat diet (HFD) and alleviated the level of biochemical markers (P < 0.05),including blood glucose (Glu),total cholesterol (TC),triglyceride (TG),low density lipoprotein (LDL-C) and insulin.Our further results also indicated that oral BF administration increased the expression of PGC-1α and UCP1 in BAT.Moreover,BF also reduced the expression of inflammatory cytokines in WAT,such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6).These findings suggested that the mechanism of BF against obesity was at least partially through increasing gene expression of PGC-1α and UCP1 for energy consumption in BAT and inhibiting inflammation in WAT.

  5. GW501516, a PPARδ agonist, ameliorates tubulointerstitial inflammation in proteinuric kidney disease via inhibition of TAK1-NFκB pathway in mice.

    Directory of Open Access Journals (Sweden)

    Xu Yang

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are a nuclear receptor family of ligand-inducible transcription factors, which have three different isoforms: PPARα, δ and γ. It has been demonstrated that PPARα and γ agonists have renoprotective effects in proteinuric kidney diseases; however, the role of PPARδ agonists in kidney diseases remains unclear. Thus, we examined the renoprotective effect of GW501516, a PPARδ agonist, in a protein-overload mouse nephropathy model and identified its molecular mechanism. Mice fed with a control diet or GW501516-containing diet were intraperitoneally injected with free fatty acid (FFA-bound albumin or PBS(-. In the control group, protein overload caused tubular damages, macrophage infiltration and increased mRNA expression of MCP-1 and TNFα. These effects were prevented by GW501516 treatment. In proteinuric kidney diseases, excess exposure of proximal tubular cells to albumin, FFA bound to albumin or cytokines such as TNFα is detrimental. In vitro studies using cultured proximal tubular cells showed that GW501516 attenuated both TNFα- and FFA (palmitate-induced, but not albumin-induced, MCP-1 expression via direct inhibition of the TGF-β activated kinase 1 (TAK1-NFκB pathway, a common downstream signaling pathway to TNFα receptor and toll-like receptor-4. In conclusion, we demonstrate that GW501516 has an anti-inflammatory effect in renal tubular cells and may serve as a therapeutic candidate to attenuate tubulointerstitial lesions in proteinuric kidney diseases.

  6. The ligand-bound thyroid hormone receptor in macrophages ameliorates kidney injury via inhibition of nuclear factor-κB activities

    Science.gov (United States)

    Furuya, Fumihiko; Ishii, Toshihisa; Tamura, Shogo; Takahashi, Kazuya; Kobayashi, Hidetoshi; Ichijo, Masashi; Takizawa, Soichi; Kaneshige, Masahiro; Suzuki-Inoue, Katsue; Kitamura, Kenichiro

    2017-01-01

    In chronic kidney disease (CKD) patients, inflammation plays a pivotal role in the progression of renal fibrosis. Hypothyroidism is associated with an increased occurrence of atherosclerosis and inflammation, suggesting protective roles of thyroid hormones and their receptors against inflammatory processes. The contribution of thyroid hormone receptors to macrophage differentiation has not been well documented. Here, we focused on the endogenous thyroid hormone receptor α (TRα) in macrophages and examined the role of ligand-bound TRα in macrophage polarization-mediated anti-inflammatory effects. TRα-deficient irradiated chimeric mice showed exacerbated tubulointerstitial injury in a unilateral ureteral obstruction model. Compared with wild-type macrophages, macrophages isolated from the obstructed kidneys of mice lacking TRα displayed increased expression of proinflammatory cytokines that was accompanied by enhanced nuclear translocation of p65. Comparison of TRα-deficient bone marrow-derived macrophages with wild-type macrophages confirmed the propensity of the former cells to produce excessive IL-1β levels. Co-culture of these macrophages with renal epithelial cells induced more severe damage to the epithelial cells via the IL-1 receptor. Our findings indicate that ligand-bound TRα on macrophages plays a protective role in kidney inflammation through the inhibition of NF-κB pathways, possibly by affecting the pro- and anti-inflammatory balance that controls the development of CKD. PMID:28272516

  7. Genetic inhibition of solute-linked carrier 39 family transporter 1 ameliorates aβ pathology in a Drosophila model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Minglin Lang

    Full Text Available The aggregation or oligomerization of amyloid-β (Aβ peptide is thought to be the primary causative event in the pathogenesis of Alzheimer's disease (AD. Considerable in vitro evidence indicates that the aggregation/oligomerization of Aβ is promoted in the presence of Zn; however, the functional role of Zn in AD pathogenesis is still not well clarified in vivo. Zn is imported into the brain mainly through the solute-linked carrier (Slc 39 family transporters. Using a genetically tractable Drosophila model, we found that the expression of dZip1, the orthologue of human Slc39 family transporter hZip1 in Drosophila, was altered in the brains of Aβ42-expressing flies, and Zn homeostasis could be modulated by forcible dZip1 expression changes. An array of phenotypes associated with Aβ expression could be modified by altering dZip1 expression. Importantly, Aβ42 fibril deposits as well as its SDS-soluble form were dramatically reduced upon dZip1 inhibition, resulting in less neurodegeneration, significantly improved cognitive performance, and prolonged lifespan of the Aβ42-transgenic flies. These findings suggest that zinc contributes significantly to the Aβ pathology, and manipulation of zinc transporters in AD brains may provide a novel therapeutic strategy.

  8. A Grape Seed Procyanidin Extract Ameliorates Fructose-Induced Hypertriglyceridemia in Rats via Enhanced Fecal Bile Acid and Cholesterol Excretion and Inhibition of Hepatic Lipogenesis.

    Science.gov (United States)

    Downing, Laura E; Heidker, Rebecca M; Caiozzi, Gianella C; Wong, Brian S; Rodriguez, Kelvin; Del Rey, Fernando; Ricketts, Marie-Louise

    2015-01-01

    The objective of this study was to determine whether a grape seed procyanidin extract (GSPE) exerts a triglyceride-lowering effect in a hyperlipidemic state using the fructose-fed rat model and to elucidate the underlying molecular mechanisms. Rats were fed either a starch control diet or a diet containing 65% fructose for 8 weeks to induce hypertriglyceridemia. During the 9th week of the study, rats were maintained on their respective diet and administered vehicle or GSPE via oral gavage for 7 days. Fructose increased serum triglyceride levels by 171% after 9 weeks, compared to control, while GSPE administration attenuated this effect, resulting in a 41% decrease. GSPE inhibited hepatic lipogenesis via down-regulation of sterol regulatory element binding protein 1c and stearoyl-CoA desaturase 1 in the fructose-fed animals. GSPE increased fecal bile acid and total lipid excretion, decreased serum bile acid levels and increased the expression of genes involved in cholesterol synthesis. However, bile acid biosynthetic gene expression was not increased in the presence of GSPE and fructose. Serum cholesterol levels remained constant, while hepatic cholesterol levels decreased. GSPE did not modulate expression of genes responsible for esterification or biliary export of the newly synthesized cholesterol, but did increase fecal cholesterol excretion, suggesting that in the presence of GSPE and fructose, the liver may secrete more free cholesterol into the plasma which may then be shunted to the proximal small intestine for direct basolateral to apical secretion and subsequent fecal excretion. Our results demonstrate that GSPE effectively lowers serum triglyceride levels in fructose-fed rats after one week administration. This study provides novel insight into the mechanistic actions of GSPE in treating hypertriglyceridemia and demonstrates that it targets hepatic de novo lipogenesis, bile acid homeostasis and non-biliary cholesterol excretion as important mechanisms for

  9. IBU-octyl-cytisine, a novel bifunctional compound eliciting anti-inflammatory and cholinergic activity, ameliorates CNS inflammation by inhibition of T-cell activity.

    Science.gov (United States)

    Nizri, Eran; Irony-Tur-Sinai, Michal; Lavon, Iris; Meshulam, Haim; Amitai, Gabi; Brenner, Talma

    2007-09-01

    Experimental autoimmune encephalomyelitis (EAE) is a central nervous system (CNS) inflammatory model in which MOG-specific T-cells initiate an autoimmune attack leading to demyelinization and consequently, neurological damage and morbidity. As EAE pathogenesis results from the involvement of immune cells, CNS resident-cells and inflammatory mediators, our treatment strategy was to use a bifunctional compound with dual anti-inflammatory properties: a non-steroidal anti-inflammatory moiety and a nicotinic agonist moiety, intended to interact with the alpha7 nicotinic receptor present on immune cells. We used IBU-Octyl-Cytisine, with an ibuprofen (IBU) moiety and Cytisine, as the nicotinic agonist. The two moieties are attached by an eight carbon (octyl) spacer. Treatment of EAE with IBU-Octyl-Cytisine (2.5 mg/kg/day, i.p.) reduced significantly (by 70%) disease severity and inflammatory infiltrates in the spinal cord. An equivalent dose of IBU was ineffective, whereas Cytisine was significantly toxic. Treatment with IBU-Octyl-Cytisine inhibited the T-cell response toward the encephalitogenic epitope of myelin oligodendrocyte glycoprotein (MOG). In addition, expression of CCR5 by CD4(+)T-cells was lower, indicating a reduced migratory capacity following treatment. IBU-Octyl-Cytisine reduced Th(1) but not Th(2) cytokine production. This reduction was accompanied by a drop in the level of T-bet mRNA, a transcription factor pivotal to Th(1) lineage differentiation. Thus, IBU-Octyl-Cytisine is an effective treatment for EAE, influencing T-cell responses in several stages of disease pathogenesis. This bifunctional compound was more efficient than IBU or Cytisine separately, as well as than both moieties unconjugated. Thus, it seems that this strategy may be applicable in wider context.

  10. A Grape Seed Procyanidin Extract Ameliorates Fructose-Induced Hypertriglyceridemia in Rats via Enhanced Fecal Bile Acid and Cholesterol Excretion and Inhibition of Hepatic Lipogenesis.

    Directory of Open Access Journals (Sweden)

    Laura E Downing

    Full Text Available The objective of this study was to determine whether a grape seed procyanidin extract (GSPE exerts a triglyceride-lowering effect in a hyperlipidemic state using the fructose-fed rat model and to elucidate the underlying molecular mechanisms. Rats were fed either a starch control diet or a diet containing 65% fructose for 8 weeks to induce hypertriglyceridemia. During the 9th week of the study, rats were maintained on their respective diet and administered vehicle or GSPE via oral gavage for 7 days. Fructose increased serum triglyceride levels by 171% after 9 weeks, compared to control, while GSPE administration attenuated this effect, resulting in a 41% decrease. GSPE inhibited hepatic lipogenesis via down-regulation of sterol regulatory element binding protein 1c and stearoyl-CoA desaturase 1 in the fructose-fed animals. GSPE increased fecal bile acid and total lipid excretion, decreased serum bile acid levels and increased the expression of genes involved in cholesterol synthesis. However, bile acid biosynthetic gene expression was not increased in the presence of GSPE and fructose. Serum cholesterol levels remained constant, while hepatic cholesterol levels decreased. GSPE did not modulate expression of genes responsible for esterification or biliary export of the newly synthesized cholesterol, but did increase fecal cholesterol excretion, suggesting that in the presence of GSPE and fructose, the liver may secrete more free cholesterol into the plasma which may then be shunted to the proximal small intestine for direct basolateral to apical secretion and subsequent fecal excretion. Our results demonstrate that GSPE effectively lowers serum triglyceride levels in fructose-fed rats after one week administration. This study provides novel insight into the mechanistic actions of GSPE in treating hypertriglyceridemia and demonstrates that it targets hepatic de novo lipogenesis, bile acid homeostasis and non-biliary cholesterol excretion as

  11. Inhibition of lipoprotein-associated phospholipase A2 ameliorates inflammation and decreases atherosclerotic plaque formation in ApoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Wen-yi Wang

    Full Text Available BACKGROUND: Lipoprotein-associated phospholipase A2 (Lp-PLA2 is thought to play modulatory roles in the development of atherosclerosis. Here we evaluated the effects of a specific lp-PLA2 inhibitor on atherosclerosis in ApoE-deficient mice and its associated mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: ApoE-deficient mice fed an atherogenic high-fat diet for 17 weeks were divided into two groups. One group was administered the specific lp-PLA2 inhibitor, darapladib (50 mg/kg/day; p.o. daily for 6 weeks, while the control group was administered saline. We observed no differences in body weight and serum lipids levels between the two groups at the end of the dietary period. Notably, serum lp-PLA2 activity as well as hs-CRP (C-reactive protein and IL-6 (Interleukin-6 levels were significantly reduced in the darapladib group, compared with the vehicle group, while the serum PAF (platelet-activating factor levels were similar between the two groups. Furthermore, the plaque area through the arch to the abdominal aorta was reduced in the darapladib group. Another finding of interest was that the macrophage content was decreased while collagen content was increased in atherosclerotic lesions at the aortic sinus in the darapladib group, compared with the vehicle group. Finally, quantitative RT-PCR performed to determine the expression patterns of specific inflammatory genes at atherosclerotic aortas revealed lower expression of MCP-1, VCAM-1 and TNF-α in the darapladib group. CONCLUSIONS/SIGNIFICANCE: Inhibition of lp-PLA2 by darapladib leads to attenuation of in vivo inflammation and decreased plaque formation in ApoE-deficient mice, supporting an anti-atherogenic role during the progression of atherosclerosis.

  12. Senegenin Ameliorate Acute Lung Injury Through Reduction of Oxidative Stress and Inhibition of Inflammation in Cecal Ligation and Puncture-Induced Sepsis Rats.

    Science.gov (United States)

    Liu, Chun-Hong; Zhang, Wei-Dong; Wang, Jian-Jie; Feng, Shan-Dan

    2016-04-01

    The purpose of this study was to assess the protective effect of senegenin on acute lung injury (ALI) in rats induced by sepsis. Rat ALI model was reproduced by cecal ligation and puncture (CLP). All rats were randomly divided into five groups: group 1 (control), group 2 (CLP), group 3 (CLP + senegenin 15 mg/kg), group 4 (CLP + senegenin 30 mg/kg), and group 5 (CLP + senegenin 60 mg/kg). CLP + senegenin groups received senegenin by gavage daily for consecutive 5 days, respectively, while the mice in control and CLP groups were given an equivalent volume of saline. We detected the lung wet/dry weight ratios and the histopathology of the lung. The levels of lung tissue myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were determined. Meanwhile, the nuclear factor-kappa B (NF-κB) activation, tumor necrosis factor-alpha (TNF-α), and interleukin-1β (IL-1β) levels were studied. The results demonstrated that senegenin treatment significantly attenuated CLP-induced lung injury, including reduction of lung wet/dry weight ratio, protein leak, infiltration of leukocytes, and MPO activity. In addition, senegenin markedly decreased MDA content and increased SOD activity and GSH level. Serum levels of TNF-α and IL-1β were also decreased by senegenin administration. Furthermore, senegenin administration inhibited the nuclear translocation of NF-κB in the lungs. These findings indicate that senegenin exerts protective effects on CLP-induced septic rats. Senegenin may be a potential therapeutic agent against sepsis.

  13. Inhibition of Receptor-Interacting Protein Kinase 1 with Necrostatin–1s ameliorates disease progression in elastase-induced mouse abdominal aortic aneurysm model

    Science.gov (United States)

    Wang, Qiwei; Zhou, Ting; Liu, Zhenjie; Ren, Jun; Phan, Noel; Gupta, Kartik; Stewart, Danielle M.; Morgan, Stephanie; Assa, Carmel; Kent, K. Craig; Liu, Bo

    2017-01-01

    Abdominal aortic aneurysm (AAA) is a common aortic disease with a progressive nature. There is no approved pharmacological treatment to effectively slow aneurysm growth or prevent rupture. Necroptosis is a form of programmed necrosis that is regulated by receptor-interacting protein kinases (RIPs). We have recently demonstrated that the lack of RIP3 in mice prevented aneurysm formation. The goal of the current study is to test whether perturbing necroptosis affects progression of existing aneurysm using the RIP1 inhibitors Necrostatin-1 (Nec-1) and an optimized form of Nec-1, 7-Cl-O-Nec-1 (Nec-1s). Seven days after aneurysm induction by elastase perfusion, mice were randomly administered DMSO, Nec-1 (3.2 mg/kg/day) and Nec-1s (1.6 mg/kg/day) via intraperitoneal injection. Upon sacrifice on day 14 postaneurysm induction, the aortic expansion in the Nec-1s group (64.12 ± 4.80%) was significantly smaller than that of the DMSO group (172.80 ± 13.68%) (P aortic diameter of Nec-1 treated mice appeared to be smaller (121.60 ± 10.40%) than the DMSO group, though the difference was not statistically significant (P = 0.1). Histologically, the aortic structure of Nec-1s-treated mice appeared normal, with continuous and organized elastin laminae and abundant αActin-expressing SMCs. Moreover, Nect-1s treatment diminished macrophage infiltration and MMP9 accumulation and increased aortic levels of tropoelastin and lysyl oxidase. Together, our data suggest that pharmacological inhibition of necroptosis with Nec-1s stabilizes pre-existing aneurysms by diminishing inflammation and promoting connective tissue repair. PMID:28186202

  14. Role of the Chemokine MCP-1 in Sensitization of PKC-Mediated Apoptosis in Prostate Cancer Cells

    Science.gov (United States)

    2010-02-01

    275: 7574-7582 (2000). 5. Garcia -Bermejo, M.L., Leskow, F.C., Fujii, T., Wang, Q., Blumberg, P.M., Ohba, M., Kuroki, T., Han, K.C., Lee, J... Marquez , V.E., and Kazanietz, M.G. Diacylglycerol (DAG)- lactones, a new class of protein kinase C (PKC) agonists, induce apoptosis in LNCaP prostate...induced apoptosis and, conversely, a dominant-negative (kinase-deficient) PKCa mutant inhibits PMA-induced apoptosis ( Garcia -Bermejo et al., 2002). Sig

  15. Rottlerin induces autophagy and apoptotic cell death through a PKC-delta-independent pathway in HT1080 human fibrosarcoma cells: the protective role of autophagy in apoptosis.

    Science.gov (United States)

    Song, Kyoung-Sub; Kim, Jong-Seok; Yun, Eun-Jin; Kim, Young-Rae; Seo, Kang-Sik; Park, Ji-Hoon; Jung, Yeon-Joo; Park, Jong-Il; Kweon, Gi-Ryang; Yoon, Wan-Hee; Lim, Kyu; Hwang, Byung-Doo

    2008-07-01

    Rottlerin is widely used as a protein kinase C-delta inhibitor. Recently, several reports have shown the possible apoptosis-inducing effect of rottlerin in some cancer cell lines. Here we report that rottlerin induces not only apoptosis but also autophagy via a PKC-delta-independent pathway in HT1080 human fibrosarcoma cells. Rottlerin treatment induced a dose- and time-dependent inhibition of cell growth, and cytoplasmic vacuolations were markedly shown. These vacuoles were identified as acidic autolysosomes by electron microscopy, acidic vesicular organelle (AVO) staining and transfection of green fluorescent protein-LC3. The LC3-II protein level also increased after treatment with rottlerin. Prolonged exposure to rottlerin eventually caused apoptosis via loss of mitochondrial membrane potential and translocation of AIF from mitochondria to the nucleus. However, the activities of caspase-3, -8 and -9 were not changed, and PARP did not show signs of cleavage. Interestingly, the pretreatment of cells with a specific inhibitor of autophagy (3-methyladenine) accelerated rottlerin-induced apoptosis as revealed by an analysis of the subdiploid fraction and TUNEL assay. Nevertheless, the knockdown of PKC-delta by RNA interference neither affected cell growth nor acidic vacuole formation. Similarly, rottlerin-induced cell death was not prevented by PKC-delta overexpression. Taken together, these findings suggest that rottlerin induces early autophagy and late apoptosis in a PKC-delta-independent manner, and the rottlerin-induced early autophagy may act as a survival mechanism against late apoptosis in HT1080 human fibrosarcoma cells.

  16. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer's disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling.

    Science.gov (United States)

    Zheng, Jin-Yu; Sun, Jian; Ji, Chun-Mei; Shen, Lin; Chen, Zhong-Jun; Xie, Peng; Sun, Yuan-Zhao; Yu, Ru-Tong

    2017-06-01

    Astrocytes and apolipoprotein E (apoE) play critical roles in cognitive function, not only under physiological conditions but also in some pathological situations, particularly in the pathological progression of Alzheimer's disease (AD). The regulatory mechanisms underlying the effect of apoE, derived from astrocytes, on cognitive deficits during AD pathology development are unclear. In this study, we generated amyloid precursor protein/apoE knockout (APP/apoE(KO)) and APP/glial fibrillary acidic protein (GFAP)-apoE(KO) mice (the AD mice model used in this study was based on the APP-familial Alzheimer disease overexpression) to investigate the role of apoE, derived from astrocytes, in AD pathology and cognitive function. To explore the mechanism, we investigated the amyloidogenic process related transforming growth factor β/mothers against decapentaplegic homolog 2/signal transducer and activator of transcription 3 (TGF-β/Smad2/STAT3) signaling pathway and further confirmed by administering TGF-β-overexpression adeno-associated virus (specific to astrocytes) to APP/GFAP-apoE(KO) mice and TGF-β-inhibition adeno-associated virus (specific to astrocytes) to APP/WT mice. Whole body deletion of apoE significantly ameliorated the spatial learning and memory impairment, reduced amyloid β-protein production and inhibited astrogliosis in APP/apoE(KO) mice, as well as specific deletion apoE in astrocytes in APP/GFAP-apoE(KO) mice. Moreover, amyloid β-protein accumulation was increased due to promotion of amyloidogenesis of APP, and astrogliosis was upregulated by activation of TGF-β/Smad2/STAT3 signaling. Furthermore, the overexpression of TGF-β in astrocytes in APP/GFAP-apoE(KO) mice abrogated the effects of apoE knockout. In contrast, repression of TGF-β in astrocytes of APP/WT mice exerted a therapeutic effect similar to apoE knockout. These data suggested that apoE derived from astrocytes contributes to the risk of AD through TGF-β/Smad2/STAT3 signaling

  17. Ganoderma atrum polysaccharide evokes antitumor activity via cAMP-PKA mediated apoptotic pathway and down-regulation of Ca(2+)/PKC signal pathway.

    Science.gov (United States)

    Zhang, Shenshen; Nie, Shaoping; Huang, Danfei; Huang, Jianqin; Feng, Yanling; Xie, Mingyong

    2014-06-01

    Ganoderma atrum polysaccharide (PSG-1) has been commonly suggested as a candidate for prevention and therapy of cancer. We investigated the antitumor effect and the underlying molecular mechanisms of PSG-1. The results showed that PSG-1 inhibited tumor growth and resulted in tumor cell apoptosis in vivo. Here, the data revealed that PSG-1 caused a markedly increase in cAMP and PKA activities, rather than cGMP and PKC. Moreover, the treatment of PSG-1 induced a dramatic increase in the protein level of PKA. In contrast, the expression of PKC and intracellular [Ca(2+)]i were inhibited. Our study also revealed that treatment with PSG-1 increased the spleen and thymus weights, lymphocyte proliferation and macrophage phagocytic activity in tumor-bearing mice. Taken together, we conclude that PSG-1 could inhibit the tumor growth, possibly in part by enhancing the induction of apoptosis through cAMP-PKA signaling pathway and down-regulation of Ca(2+)/PKC signal pathway, activating host immune function in S180-bearing mice.

  18. Neuroprotective effects of nitric oxide donor NOC-18 against brain ischemia-induced mitochondrial damages: role of PKG and PKC.

    Science.gov (United States)

    Arandarcikaite, Odeta; Jokubka, Ramunas; Borutaite, Vilmante

    2015-01-23

    In this study we sought to determine whether NO donor NOC-18 can protect brain mitochondria against ischemia-induced dysfunction, particularly opening of mitochondrial permeability transition pore (MPTP), and cell death. We found that inhibition of respiration with NAD-dependent substrates, but not with succinate, was observed after 30 min ischemia indicating that complex I of the mitochondrial respiratory chain is the primary site affected by ischemia. There was no loss of mitochondrial cytochrome c during 30-120 min of brain ischemia. Prolonged, 90 min ischemia substantially decreased calcium retention capacity of brain mitochondria suggesting sensitization of mitochondria to Ca(2+)-induced MPTP opening, and this was prevented by NOC-18 infusion prior to ischemia. NOC-18 did not prevent ischemia-induced inhibition of mitochondrial respiration, however, it partially protected against ischemia-induced necrosis. Protective effects of NOC-18 were abolished in the presence of selective inhibitors of protein kinase G (PKG) and protein kinase C (PKC). These results indicate that pre-treatment with NOC-18 protected brain mitochondria against ischemia-induced MPTP opening by decreasing mitochondrial sensitivity to calcium and partly protected brain cells against necrotic death in PKG- and PKC-depending manner.

  19. Clostridium perfringens phospholipase C induced ROS production and cytotoxicity require PKC, MEK1 and NFκB activation.

    Directory of Open Access Journals (Sweden)

    Laura Monturiol-Gross

    Full Text Available Clostridium perfringens phospholipase C (CpPLC, also called α-toxin, is the most toxic extracellular enzyme produced by this bacteria and is essential for virulence in gas gangrene. At lytic concentrations, CpPLC causes membrane disruption, whereas at sublytic concentrations this toxin causes oxidative stress and activates the MEK/ERK pathway, which contributes to its cytotoxic and myotoxic effects. In the present work, the role of PKC, ERK 1/2 and NFκB signalling pathways in ROS generation induced by CpPLC and their contribution to CpPLC-induced cytotoxicity was evaluated. The results demonstrate that CpPLC induces ROS production through PKC, MEK/ERK and NFκB pathways, the latter being activated by the MEK/ERK signalling cascade. Inhibition of either of these signalling pathways prevents CpPLC's cytotoxic effect. In addition, it was demonstrated that NFκB inhibition leads to a significant reduction in the myotoxicity induced by intramuscular injection of CpPLC in mice. Understanding the role of these signalling pathways could lead towards developing rational therapeutic strategies aimed to reduce cell death during a clostridialmyonecrosis.

  20. PKA, novel PKC isoforms, and ERK is mediating PACAP auto-regulation via PAC1R in human neuroblastoma NB-1 cells.

    Science.gov (United States)

    Georg, Birgitte; Falktoft, Birgitte; Fahrenkrug, Jan

    2016-12-01

    The neuropeptide PACAP is expressed throughout the central and peripheral nervous system where it modulates diverse physiological functions including neuropeptide gene expression. We here report that in human neuroblastoma NB-1 cells PACAP transiently induces its own expression. Maximal PACAP mRNA expression was found after stimulation with PACAP for 3h. PACAP auto-regulation was found to be mediated by activation of PACAP specific PAC1Rs as PACAP had >100-fold higher efficacy than VIP, and the PAC1R selective agonist Maxadilan potently induced PACAP gene expression. Experiments with pharmacological kinase inhibitors revealed that both PKA and novel but not conventional PKC isozymes were involved in the PACAP auto-regulation. Inhibition of MAPK/ERK kinase (MEK) also impeded the induction, and we found that PKA, novel PKC and ERK acted in parallel and were thus not part of the same pathways. The expression of the transcription factor EGR1 previously ascribed as target of PACAP signalling was found to be transiently induced by PACAP and pharmacological inhibition of either PKC or MEK1/2 abolished PACAP mediated EGR1 induction. In contrast, inhibition of PKA mediated increased PACAP mediated EGR1 induction. Experiments using siRNA against EGR1 to lower the expression did however not affect the PACAP auto-regulation indicating that this immediate early gene product is not part of PACAP auto-regulation in NB-1 cells. We here reveal that in NB-1 neuroblastoma cells, PACAP induces its own expression by activation of PAC1R, and that the signalling is different from the PAC1R signalling mediating induction of VIP in the same cells. PACAP auto-regulation depends on parallel activation of PKA, novel PKC isoforms, and ERK, while EGR1 does not seem to be part of the PACAP auto-regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity

    DEFF Research Database (Denmark)

    de Jong, Arthur P H; Meijer, Marieke; Saarloos, Ingrid

    2016-01-01

    Presynaptic activation of the diacylglycerol (DAG)/protein kinase C (PKC) pathway is a central event in short-term synaptic plasticity. Two substrates, Munc13-1 and Munc18-1, are essential for DAG-induced potentiation of vesicle priming, but the role of most presynaptic PKC substrates is not unde...

  2. Biochemical and Genetic Evidence for a SAP-PKC-θ Interaction Contributing to IL-4 Regulation

    Science.gov (United States)

    Cannons, Jennifer L.; Wu, Julie Z.; Gomez-Rodriguez, Julio; Zhang, Jinyi; Dong, Baoxia; Liu, Yin; Shaw, Stephen; Siminovitch, Katherine A.; Schwartzberg, Pamela L.

    2012-01-01

    SAP, an adaptor molecule that recruits Fyn to the SLAM-family of immunomodulatory receptors, is mutated in X-linked lymphoproliferative disease. CD4+ T cells from SAP-deficient mice have defective TCR-induced IL-4 production and impaired T cell-mediated help for germinal center formation; however, the downstream intermediates contributing to these defects remain unclear. We previously found that SAP-deficient CD4+ T cells exhibit decreased PKC-θ recruitment upon TCR stimulation. We demonstrate here using GST-pulldowns and co-immunoprecipitation studies that SAP constitutively associates with PKC-θ in T cells. SAP-PKC-θ interactions required R78 of SAP, a residue previously implicated in Fyn recruitment, yet SAP’s interactions with PKC-θ occurred independent of phosphotyrosine binding and Fyn. Overexpression of SAP in T cells increased and sustained PKC-θ recruitment to the immune synapse and elevated IL-4 production in response to TCR plus SLAM-mediated stimulation. Moreover, PKC-θ, like SAP, was required for SLAM-mediated increases in IL-4 production and conversely, membrane-targeted PKC-θ mutants rescued IL-4 expression in SAP−/− CD4+ T cells, providing genetic evidence that PKC-θ is a critical component of SLAM/SAP-mediated pathways that influence TCR-driven IL-4 production. PMID:20668219

  3. 2-(6-Phenyl-1H-indazol-3-yl)-1H-benzo[d]imidazoles: Design and synthesis of a potent and isoform selective PKC-[zeta] inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, John I.; Kiefer, James R.; Huang, Wei; Thorarensen, Atli; Xing, Li; Caspers, Nicole L.; Day, Jacqueline E.; Mathis, Karl J.; Kretzmer, Kuniko K.; Reitz, Beverley A.; Weinberg, Robin A.; Stegeman, Roderick A.; Wrightstone, Ann; Christine, Lori; Compton, Robert; Li, Xiong; (Pfizer)

    2009-03-16

    The inhibition of PKC-{zeta} has been proposed to be a potential drug target for immune and inflammatory diseases. A series of 2-(6-phenyl-1H indazol-3-yl)-1H-benzo[d]imidazoles with initial high crossover to CDK-2 has been optimized to afford potent and selective inhibitors of protein kinase c-zeta (PKC-{zeta}). The determination of the crystal structures of key inhibitor:CDK-2 complexes informed the design and analysis of the series. The most selective and potent analog was identified by variation of the aryl substituent at the 6-position of the indazole template to give a 4-NH{sub 2} derivative. The analog displays good selectivity over other PKC isoforms ({alpha}, {beta}II, {gamma}, {delta}, {epsilon}, {mu}, {theta}, {eta} and {ell}/{lambda}) and CDK-2, however it displays marginal selectivity against a panel of other kinases (37 profiled).

  4. Specific PKC isoforms regulate LPS-stimulated iNOS induction in murine microglial cells

    Directory of Open Access Journals (Sweden)

    Zhang Yumin

    2011-04-01

    Full Text Available Abstract Background Excessive production of nitric oxide (NO by inducible nitric oxide synthase (iNOS in reactive microglia is a major contributor to initiation/exacerbation of inflammatory and degenerative neurological diseases. Previous studies have indicated that activation of protein kinase C (PKC can lead to iNOS induction. Because of the existence of various PKC isoforms and the ambiguous specificity of PKC inhibitors, it is unclear whether all PKC isoforms or a specific subset are involved in the expression of iNOS by reactive microglia. In this study, we employed molecular approaches to characterize the role of each specific PKC isoform in the regulation of iNOS expression in murine microglia. Methods Induction of iNOS in response to bacterial endotoxin lipopolysaccharide (LPS was measured in BV-2 murine microglia treated with class-specific PKC inhibitors, or transfected with siRNA to silence specific PKC isoforms. iNOS expression and MAPK phosphorylation were evaluated by western blot. The role of NF-κB in activated microglia was examined by determining NF-κB transcriptional response element- (TRE- driven, promoter-mediated luciferase activity. Results Murine microglia expressed high levels of nPKCs, and expressed relatively low levels of cPKCs and aPKCs. All PKC inhibitors attenuated induction of iNOS in LPS-activated microglia. Knockdown of PKC δ and PKC β attenuated ERK1/2 and p38 phosphorylation, respectively, and blocked NF-κB activation that leads to the expression of iNOS in reactive microglia. Conclusions Our results identify PKC δ and β as the major PKC isoforms regulating iNOS expression in reactive microglia. The signaling pathways mediated by PKC involve phosphorylation of distinct MAPKs and activation of NF-κB. These results may help in the design of novel and selective PKC inhibitors for the treatment of many inflammatory and neurological diseases in which production of NO plays a pathogenic role.

  5. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Semantee [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Manna, Prasenjit [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India); Gachhui, Ratan [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India)

    2011-12-15

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic {beta}-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic {beta}-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: Black-Right-Pointing-Pointer Oxidative stress is suggested as a key event in the pathogenesis of diabetes. Black-Right-Pointing-Pointer D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. Black-Right-Pointing-Pointer DSL normalizes cellular antioxidant machineries

  6. Proto-oncogene c-erbB2 initiates rat primordial follicle growth via PKC and MAPK pathways

    Science.gov (United States)

    2010-01-01

    Background c-erbB2, a proto-oncogene coding epidermal growth factor receptor-like receptor, also as a chemosensitivity/prognosis marker for gynecologic cancer, may be involved in initiation of growth of rat primordial follicles. The aim of the present study is to investigate the role and signal pathway of c-erbB2 in onset of rat primordial follicle development. Methods The expression of c-erbB2 mRNA and protein in neonatal ovaries cultured 4 and 8 days with/without epidermal growth factor (EGF) were examined by in situ hybridization, RT-PCR and western blot. The function of c-erbB2 in the primordial folliculogenesis was abolished by small interfering RNA transfection. Furthermore, MAPK inhibitor PD98059 and PKC inhibitor calphostin were used to explore the possible signaling pathway of c-erbB2 in primordial folliculogenesis. Results The results showed that c-erbB2 mRNA was expressed in ooplasm and the expression of c-erbB2 decreased after transfection with c-erbB2 siRNA. Treatment with EGF at 50 ng/ml significantly increased c-erbB2 expression and primary and secondary follicle formation in ovaries. However, this augmenting effect was remarkably inhibited by c-erbB2 siRNA transfection. Furthermore, folliculogenesis offset was blocked by calphostin (5 × 10(-4) mmol/L) and PD98059 (5 × 10(-2) mmol/L), but both did not down-regulate c-erbB2 expression. In contrast, the expressions of p-ERK and p-PKC were decreased obviously by c-erbB2 siRNA transfection. Conclusions c-erbB2 initiates rat primordial follicle growth via PKC and MAPK pathways, suggesting an important role of c-erbB2 in rat primordial follicle initiation and development. PMID:20565902

  7. Neurotensin Phosphorylates GSK-3α/β through the Activation of PKC in Human Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Qingding Wang

    2006-09-01

    Full Text Available Neurotensin (NT, a gastrointestinal hormone, binds its receptor [neurotensin receptor (NTR] to regulate the growth of normal and neoplastic intestinal cells; molecular mechanisms remain largely undefined. Glycogen synthase kinase-3 (GSK-3 regulates diverse cellular processes, including cell growth and apoptosis. Here, we show that NT induces the phosphorylation of GSK-3α/β in the human colon cancer cell line HT29, HCT116, or SW480, which possesses high-affinity NTR. The effect of NT was blocked by inhibitors of protein kinase C (PKC, but not by inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK1 or phosphatidylinositol-3 kinase, suggesting a predominant role for PKC in GSK-3β phosphorylation by NT. Pretreatment with Gö6976 (which inhibits PKCα and PKCβ1 or downregulation of endogenous PKCα or PKCβ1 blocked NT-mediated GSK-3β (but not GSK-3α phosphorylation. Moreover, a selective PKCβ inhibitor, LY379196, reduced NT-mediated GSK-3β (but not GSK-3α phosphorylation, suggesting a role for PKCbβ in the NT-mediated phosphorylation of GSK-3β and an undefined kinase in the NT-mediated phosphorylation of GSK-3α. Treatment with NT or the GSK-3 inhibitor SB216763 increased the expression of cyclin D1, a downstream effector protein of GSK-3 and a critical protein for the proliferation of various cells. Our results indicate that NT uses PKC-dependent pathways to modulate GSK-3, which may play a role in the NT regulation of intestinal cell growth.

  8. Mouse Sphingosine Kinase 1a Is Negatively Regulated through Conventional PKC-Dependent Phosphorylation at S373 Residue.

    Directory of Open Access Journals (Sweden)

    Yong-Seok Oh

    Full Text Available Sphingosine kinase is a lipid kinase that converts sphingosine into sphingosine-1-phosphate, an important signaling molecule with intracellular and extracellular functions. Although diverse extracellular stimuli influence cellular sphingosine kinase activity, the molecular mechanisms underlying its regulation remain to be clarified. In this study, we investigated the phosphorylation-dependent regulation of mouse sphingosine kinase (mSK isoforms 1 and 2. mSK1a was robustly phosphorylated in response to extracellular stimuli such as phorbol ester, whereas mSK2 exhibited a high basal level of phosphorylation in quiescent cells regardless of agonist stimulation. Interestingly, phorbol ester-induced phosphorylation of mSK1a correlated with suppression of its activity. Chemical inhibition of conventional PKCs (cPKCs abolished mSK1a phosphorylation, while overexpression of PKCα, a cPKC isoform, potentiated the phosphorylation, in response to phorbol ester. Furthermore, an in vitro kinase assay showed that PKCα directly phosphorylated mSK1a. In addition, phosphopeptide mapping analysis determined that the S373 residue of mSK1a was the only site phosphorylated by cPKC. Interestingly, alanine substitution of S373 made mSK1a refractory to the inhibitory effect of phorbol esters, whereas glutamate substitution of the same residue resulted in a significant reduction in mSK1a activity, suggesting the significant role of this phosphorylation event. Taken together, we propose that mSK1a is negatively regulated through cPKC-dependent phosphorylation at S373 residue.

  9. Activation of protein synthesis in mouse uterine epithelial cells by estradiol-17β is mediated by a PKC-ERK1/2-mTOR signaling pathway.

    Science.gov (United States)

    Wang, Yuxiang; Zhu, Liyin; Kuokkanen, Satu; Pollard, Jeffrey W

    2015-03-17

    The uterine epithelium of mice and humans undergoes cyclical waves of cell proliferation and differentiation under the regulation of estradiol-17β (E2) and progesterone (P4). These epithelial cells respond to E2 with increased protein and DNA synthesis, whereas P4 inhibits only the E2-induced DNA synthetic response. Here we show that E2 regulates protein synthesis in these epithelial cells through activating PKC that in turn stimulates ERK1/2 to phosphorylate and thereby activate the central regulator of protein synthesis mechanistic target of rapamycin (mTOR). This mTOR pathway is not inhibited by P4. Inhibitor studies with an estrogen receptor (ESR1) antagonist showed the dependence of this mTOR pathway on ESR1 but that once activated, a phosphorylation cascade independent of ESR1 propagates the pathway. E2 also stimulates an IGF1 receptor (IGF1R) to PI3 kinase to AKT to GSK-3β pathway required for activation of the canonical cell cycle machinery that is inhibited by P4. PKC activation did not stimulate this pathway nor does inhibition of PKC or ERK1/2 affect it. These studies therefore indicate a mechanism whereby DNA and protein synthesis are regulated by two ESR1-activated pathways that run in parallel with only the one responsible for the initiation of DNA synthesis blocked by P4. Inhibition of mTOR by rapamycin in vivo resulted in inhibition of E2-induced protein and DNA synthesis. Proliferative diseases of the endometrium such as endometriosis and cancer are common and E2 dependent. Thus, defining this mTOR pathway suggests that local (intrauterine or peritoneal) rapamycin administration might be a therapeutic option for these diseases.

  10. PKA and PKC Are Required for Long-Term but Not Short-Term in Vivo Operant Memory in "Aplysia"

    Science.gov (United States)

    Michel, Maximilian; Green, Charity L.; Lyons, Lisa C.

    2011-01-01

    We investigated the involvement of PKA and PKC signaling in a negatively reinforced operant learning paradigm in "Aplysia", learning that food is inedible (LFI). In vivo injection of PKA or PKC inhibitors blocked long-term LFI memory formation. Moreover, a persistent phase of PKA activity, although not PKC activity, was necessary for long-term…

  11. PKA and PKC Are Required for Long-Term but Not Short-Term in Vivo Operant Memory in "Aplysia"

    Science.gov (United States)

    Michel, Maximilian; Green, Charity L.; Lyons, Lisa C.

    2011-01-01

    We investigated the involvement of PKA and PKC signaling in a negatively reinforced operant learning paradigm in "Aplysia", learning that food is inedible (LFI). In vivo injection of PKA or PKC inhibitors blocked long-term LFI memory formation. Moreover, a persistent phase of PKA activity, although not PKC activity, was necessary for long-term…

  12. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    Science.gov (United States)

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  13. Blonanserin ameliorates phencyclidine-induced visual-recognition memory deficits: the complex mechanism of blonanserin action involving D₃-5-HT₂A and D₁-NMDA receptors in the mPFC.

    Science.gov (United States)

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-02-01

    Blonanserin differs from currently used serotonin 5-HT₂A/dopamine-D₂ receptor antagonists in that it exhibits higher affinity for dopamine-D₂/₃ receptors than for serotonin 5-HT₂A receptors. We investigated the involvement of dopamine-D₃ receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT₂A receptor agonist) and 7-OH-DPAT (a dopamine-D₃ receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D₁ receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr(197) and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser(897) by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser(896) by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D₁-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D₃ and serotonin 5-HT₂A receptors in the mPFC.

  14. Salvianolic acid B protects against acetaminophen hepatotoxicity by inducing Nrf2 and phase II detoxification gene expression via activation of the PI3K and PKC signaling pathways.

    Science.gov (United States)

    Lin, Musen; Zhai, Xiaohan; Wang, Guangzhi; Tian, Xiaofeng; Gao, Dongyan; Shi, Lei; Wu, Hang; Fan, Qing; Peng, Jinyong; Liu, Kexin; Yao, Jihong

    2015-02-01

    Acetaminophen (APAP) is used drugs worldwide for treating pain and fever. However, APAP overdose is the principal cause of acute liver failure in Western countries. Salvianolic acid B (SalB), a major water-soluble compound extracted from Radix Salvia miltiorrhiza, has well-known antioxidant and anti-inflammatory actions. We aimed to evaluate the ability of SalB to protect against APAP-induced acute hepatotoxicity by inducing nuclear factor-erythroid-2-related factor 2 (Nrf2) expression. SalB pretreatment ameliorated acute liver injury caused by APAP, as indicated by blood aspartate transaminase levels and histological findings. Moreover, SalB pretreatment increased the expression of Nrf2, Heme oxygenase-1 (HO-1) and glutamate-l-cysteine ligase catalytic subunit (GCLC). Furthermore, the HO-1 inhibitor zinc protoporphyrin and the GCLC inhibitor buthionine sulfoximine reversed the protective effect of SalB. Additionally, siRNA-mediated depletion of Nrf2 reduced the induction of HO-1 and GCLC by SalB, and SalB pretreatment activated the phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC) signaling pathways. Both inhibitors (PI3K and PKC) blocked the protective effect of SalB against APAP-induced cell death, abolishing the SalB-induced Nrf2 activation and decreasing HO-1 and GCLC expression. These results indicated that SalB induces Nrf2, HO-1 and GCLC expression via activation of the PI3K and PKC pathways, thereby protecting against APAP-induced liver injury.

  15. Regulation of taurine transport at the blood-placental barrier by calcium ion, PKC activator and oxidative stress conditions

    Science.gov (United States)

    2010-01-01

    Background In the present study, we investigated the changes of uptake and efflux transport of taurine under various stress conditions using rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT cells), as in vitro blood-placental barrier (BPB) model. Methods The transport of taurine in TR-TBT cells were characterized by cellular uptake study using radiolabeled taurine. The efflux of taurine was measured from the amount of radiolabeled taurine remaining in the cells after the uptake of radiolabeled taurine for 60 min. Results Taurine uptake was significantly decreased by phosphorylation of protein kinase C (PKC) activator in TR-TBT cells. Also, calcium ion (Ca2+) was involved in taurine transport in TR-TBT cells. Taurine uptake was inhibited and efflux was enhanced under calcium free conditions in the cells. In addition, oxidative stress induced the change of taurine transport in TR-TBT cells, but the changes were different depending on the types of oxidative stress inducing agents. Tumor necrosis factor-α (TNF-α), lipopolysaccharide (LPS) and diethyl maleate (DEM) significantly increased taurine uptake, but H2O2 and nitric oxide (NO) donor decreased taurine uptake in the cells. Taurine efflux was down-regulated by TNF-α in TR-TBT cells. Conclusion Taurine transport in TR-TBT cells were regulated diversely at extracellular Ca2+ level, PKC activator and oxidative stress conditions. It suggested that variable stresses affected the taurine supplies from maternal blood to fetus and taurine level of fetus. PMID:20804613

  16. Involvement of PKA, PKC, and Ca2+ in LPS-activated expression of the chicken lysozyme gene.

    Science.gov (United States)

    Regenhard, P; Goethe, R; Phi-van, L

    2001-04-01

    The lysozyme gene is activated in myelomonocytic HD11 cells in response to LPS. In this study, we described the involvement of LPS-activated signal transduction pathways in activation of the lysozyme gene. Pre-treatment of HD 11 cells with H-89, H-7, TMB-8, or KN-93 resulted in inhibition of the LPS-enhanced lysozyme expression, suggesting that PKA, PKC, and Ca2+-dependent protein kinases participate in the LPS activation. CaMKII seems to be required for the processing of lysozyme transcripts. TPA and calcium ionophore A23187, when separately added to HD11 cells, stimulated the lysozyme expression effectively, and forskolin was ineffective. It is interesting that simultaneous treatment of cells with forskolin and calcium ionophore A23187 resulted in a potentiated increase in lysozyme mRNA expression, indicating a synergistic cooperation of PKA and Ca2+. This synergistic effect of PKA and Ca2+ was observed on the expression of a stably integrated CAT construct, controlled by the lysozyme promoter and the -6.1-kb enhancer containing binding sites for C/EBP and NF-kappaB/Rel. Therefore, we discussed the role of C/EBPbeta(NF-M), CREB, and NF-kappaB/Rel as possible targets for phosphorylation mediated by PKA, PKC, and Ca2+.

  17. The PDK1 master kinase is over-expressed in acute myeloid leukemia and promotes PKC-mediated survival of leukemic blasts.

    Science.gov (United States)

    Zabkiewicz, Joanna; Pearn, Lorna; Hills, Robert K; Morgan, Rhys G; Tonks, Alex; Burnett, Alan K; Darley, Richard L

    2014-05-01

    PDK1 is a master kinase that activates at least six protein kinase groups including AKT, PKC and S6K and is a potential target in the treatment of a range of malignancies. Here we show overexpression of PDK1 in over 40% of myelomonocytic acute leukemia patients. Overexpression of PDK1 occurred uniformly throughout the leukemic population, including putative leukemia-initiating cells. Clinical outcome analysis revealed PDK1 overexpression was associated with poorer treatment outcome. Primary acute myeloid leukemia blasts over-expressing PDK1 showed improved in vitro survival and ectopic expression of PDK1 promoted the survival of myeloid cell lines. Analysis of PDK1 target kinases revealed that PDK1 overexpression was most closely associated with increased phosphorylation of PKC isoenzymes and inhibition of PKC strongly inhibited the survival advantage of PDK1 over-expressing cells. Membrane localization studies implicated PKCα as a major target for PDK1 in this disease. PDK1 over-expressing blasts showed differential sensitivity to PDK1 inhibition (in the low micromolar range) suggesting oncogene addiction, whilst normal bone marrow progenitors were refractory to PDK1 inhibition at effective inhibitor concentrations. PDK1 inhibition also targeted subpopulations of leukemic blasts with a putative leukemia-initiating cell phenotype. Together these data show that overexpression of PDK1 is common in acute myelomonocytic leukemia and is associated with poorer treatment outcome, probably arising from the cytoprotective function of PDK1. We also show that therapeutic targeting of PDK1 has the potential to be both an effective and selective treatment for these patients, and is also compatible with current treatment regimes.

  18. Live-imaging of PKC translocation in Sf9 cells and in aplysia sensory neurons.

    Science.gov (United States)

    Farah, Carole A; Sossin, Wayne S

    2011-04-06

    Protein kinase Cs (PKCs) are serine threonine kinases that play a central role in regulating a wide variety of cellular processes such as cell growth and learning and memory. There are four known families of PKC isoforms in vertebrates: classical PKCs (α, βI, βII and γ), novel type I PKCs (ε and η), novel type II PKCs (δ and θ), and atypical PKCs (ζ and ι). The classical PKCs are activated by Ca(2+) and diacylclycerol (DAG), while the novel PKCs are activated by DAG, but are Ca(2+)-independent. The atypical PKCs are activated by neither Ca(2+) nor DAG. In Aplysia californica, our model system to study memory formation, there are three nervous system specific PKC isoforms one from each major class, namely the conventional PKC Apl I, the novel type I PKC Apl II and the atypical PKC Apl III. PKCs are lipid-activated kinases and thus activation of classical and novel PKCs in response to extracellular signals has been frequently correlated with PKC translocation from the cytoplasm to the plasma membrane. Therefore, visualizing PKC translocation in real time in live cells has become an invaluable tool for elucidating the signal transduction pathways that lead to PKC activation. For instance, this technique has allowed for us to establish that different isoforms of PKC translocate under different conditions to mediate distinct types of synaptic plasticity and that serotonin (5HT) activation of PKC Apl II requires production of both DAG and phosphatidic acid (PA) for translocation (1-2). Importantly, the ability to visualize the same neuron repeatedly has allowed us, for example, to measure desensitization of the PKC response in exquisite detail (3). In this video, we demonstrate each step of preparing Sf9 cell cultures, cultures of Aplysia sensory neurons have been described in another video article (4), expressing fluorescently tagged PKCs in Sf9 cells and in Aplysia sensory neurons and live-imaging of PKC translocation in response to different activators using

  19. Complex interactions between GSK3 and aPKC in Drosophila embryonic epithelial morphogenesis.

    Directory of Open Access Journals (Sweden)

    Nicole A Kaplan

    Full Text Available Generally, epithelial cells must organize in three dimensions to form functional tissue sheets. Here we investigate one such sheet, the Drosophila embryonic epidermis, and the morphogenetic processes organizing cells within it. We report that epidermal morphogenesis requires the proper distribution of the apical polarity determinant aPKC. Specifically, we find roles for the kinases GSK3 and aPKC in cellular alignment, asymmetric protein distribution, and adhesion during the development of this polarized tissue. Finally, we propose a model explaining how regulation of aPKC protein levels can reorganize both adhesion and the cytoskeleton.

  20. Translocation of classical PKC and cortical granule exocytosis of human oocyte in germinal vesicle and metaphase Ⅱ stage

    Institute of Scientific and Technical Information of China (English)

    Xue-qing WU; Xiao ZHANG; Xiao-hong LI; Hui-hong CHENG; Yan-rong KUAI; Song WANG; Ying-lu GUO

    2006-01-01

    Aim: Protein kinase C (PKC) is as a family of serine/threonine kinases that can be activated by Ca2+, phospholipid and diacylglycerol. PKC plays an important role in oocyte maturation and activation. This study was undertaken to investigate classical PKC (cPKC) in human oocyte maturation and activation. Methods: Germinal vesicle (GV) and metaphase Ⅱ (MII) stage oocytes were collected from healthy women. The expression and distribution of cPKC were investigated by immunoflourescence. MII oocytes were treated with PKC activator or inhibitor and imaged using a laser confocal scanning microscope (LCSM). Results: In GV oocytes, PKC α,β1 and γ were localized to the germinal vesicles, with a weak expression in ooplasm. In MII oocytes, PKCα, β1 and γ were distributed evenly in ooplasm. After treatment with PKC activator, phorbol 12-myristate 13-acetate (PMA), cPKC translocated to the periphery of oocyte, and cortical granules (CG) exocytosis was found. When the oocytes were treated with PKC inhibitor, staurosporine, no translocation of cPKC and CG exocytosis were found. Conclusion: PKCα, β1 and γ exist in human oocytes and activation of these subunits could induce CG exocytosis in MII stage.

  1. Atypical PKC-iota Controls Stem Cell Expansion via Regulation of the Notch Pathway

    Directory of Open Access Journals (Sweden)

    In Kyoung Mah

    2015-11-01

    Full Text Available The number of stem/progenitor cells available can profoundly impact tissue homeostasis and the response to injury or disease. Here, we propose that an atypical PKC, Prkci, is a key player in regulating the switch from an expansion to a differentiation/maintenance phase via regulation of Notch, thus linking the polarity pathway with the control of stem cell self-renewal. Prkci is known to influence symmetric cell division in invertebrates; however a definitive role in mammals has not yet emerged. Using a genetic approach, we find that loss of Prkci results in a marked increase in the number of various stem/progenitor cells. The mechanism used likely involves inactivation and symmetric localization of NUMB, leading to the activation of NOTCH1 and its downstream effectors. Inhibition of atypical PKCs may be useful for boosting the production of pluripotent stem cells, multipotent stem cells, or possibly even primordial germ cells by promoting the stem cell/progenitor fate.

  2. L-type calcium channel gating is modulated by bradykinin with a PKC-dependent mechanism in NG108-15 cells.

    Science.gov (United States)

    Toselli, Mauro; Taglietti, Vanni

    2005-05-01

    Bradykinin (BK) excites dorsal root ganglion cells, leading to the sensation of pain. The actions of BK are thought to be mediated by heterotrimeric G protein-regulated pathways. Indeed there is strong evidence that in different cell types BK is involved in phosphoinositide breakdown following activation of G(q/11). In the present study we show that the Ca(2+) current flowing through L-type voltage-gated Ca(2+) channels in NG108-15 cells (differentiated in vitro to acquire a neuronal phenotype), measured using the whole-cell patch clamp configuration, is reversibly inhibited by BK in a voltage-independent fashion, suggesting a cascade process where a second messenger system is involved. This inhibitory action of BK is mimicked by the application of 1,2-oleoyl-acetyl glycerol (OAG), an analog of diacylglycerol that activates PKC. Interestingly, OAG occluded the effects of BK and both effects were blocked by selective PKC inhibitors. The down modulation of single L-type Ca(2+) channels by BK and OAG was also investigated in cell-attached patches. Our results indicate that the inhibitory action of BK involves activation of PKC and mainly shows up in a significant reduction of the probability of channel opening, caused by an increase and clustering of null sweeps in response to BK.

  3. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats

    OpenAIRE

    Gondi, Mahendranath; U. J. S. Prasada Rao

    2015-01-01

    Peel is a major by-product during processing of mango fruit into pulp. Recent report indicates that the whole peel powder ameliorated diabetes. In the present study, ethanolic extract of mango peel was analysed for its bioactive compounds, evaluated for α-amylase and α-glucosidase inhibitory properties, oral glucose tolerance test, antioxidant properties, plasma insulin level and biochemical parameters related to diabetes. In addition to gallic and protocatechuic acids, the extract also had c...

  4. Regulation of Transcriptional Networks by PKC Isozymes: Identification of c-Rel as a Key Transcription Factor for PKC-Regulated Genes.

    Directory of Open Access Journals (Sweden)

    Rachana Garg

    Full Text Available Activation of protein kinase C (PKC, a family of serine-threonine kinases widely implicated in cancer progression, has major impact on gene expression. In a recent genome-wide analysis of prostate cancer cells we identified distinctive gene expression profiles controlled by individual PKC isozymes and highlighted a prominent role for PKCδ in transcriptional activation.Here we carried out a thorough bioinformatics analysis to dissect transcriptional networks controlled by PKCα, PKCδ, and PKCε, the main diacylglycerol/phorbol ester PKCs expressed in prostate cancer cells. Despite the remarkable differences in the patterns of transcriptional responsive elements (REs regulated by each PKC, we found that c-Rel represents the most frequent RE in promoters regulated by all three PKCs. In addition, promoters of PKCδ-regulated genes were particularly enriched with REs for CREB, NF-E2, RREB, SRF, Oct-1, Evi-1, and NF-κB. Most notably, by using transcription factor-specific RNAi we were able to identify subsets of PKCδ-regulated genes modulated by c-Rel and CREB. Furthermore, PKCδ-regulated genes condensed under the c-Rel transcriptional regulation display significant functional interconnections with biological processes such as angiogenesis, inflammatory response, and cell motility.Our study identified candidate transcription factors in the promoters of PKC regulated genes, in particular c-Rel was found as a key transcription factor in the control of PKCδ-regulated genes. The deconvolution of PKC-regulated transcriptional networks and their nodes may greatly help in the identification of PKC effectors and have significant therapeutics implications.

  5. Small Review: Strategies for Palm Kernel Cake (PKC) As a New Potential Substrate in Biofuel Production

    OpenAIRE

    Hafiza Shukor; Mohd Sahaid Kalil; Nurina Anuar; Aidil Abdul Hamid; Asmidar Hanan

    2013-01-01

    The economic dependency on fossil fuels and the resulting effects on climate and environment have put tremendous focus on utilizing fermentable sugars from lignocellulose, the largest known renewable carbohydrate source. Palm kernel cake (PKC) is a residue from palm oil extraction presently only used as a low protein feed supplement. It’s contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into b...

  6. A PKC-dependent recruitment of MMP-2 controls semaphorin-3A growth-promoting effect in cortical dendrites.

    Directory of Open Access Journals (Sweden)

    Bertrand Gonthier

    Full Text Available There is increasing evidence for a crucial role of proteases and metalloproteinases during axon growth and guidance. In this context, we recently described a functional link between the chemoattractive Sema3C and Matrix metalloproteinase 3 (MMP3. Here, we provide data demonstrating the involvement of MMP-2 to trigger the growth-promoting effect of Sema3A in cortical dendrites. The in situ analysis of MMP-2 expression and activity is consistent with a functional growth assay demonstrating in vitro that the pharmacological inhibition of MMP-2 reduces the growth of cortical dendrites in response to Sema3A. Hence, our results suggest that the selective recruitment and activation of MMP-2 in response to Sema3A requires a PKC alpha dependent mechanism. Altogether, we provide a second set of data supporting MMPs as effectors of the growth-promoting effects of semaphorins, and we identify the potential signalling pathway involved.

  7. Synthesis and biological activities of simplified analogs of the natural PKC ligands, bryostatin-1 and aplysiatoxin.

    Science.gov (United States)

    Irie, Kazuhiro; Yanagita, Ryo C

    2014-04-01

    Protein kinase C (PKC) isozymes play central roles in signal transduction on the cell surface and could serve as promising therapeutic targets of intractable diseases like cancer, Alzheimer's disease, and acquired immunodeficiency syndrome (AIDS). Although natural PKC ligands like phorbol esters, ingenol esters, and teleocidins have the potential to become therapeutic leads, most of them are potent tumor promoters in mouse skin. By contrast, bryostatin-1 (bryo-1) isolated from marine bryozoan is a potent PKC activator with little tumor-promoting activity. Numerous investigations have suggested bryo-1 to be a promising therapeutic candidate for the above intractable diseases. However, there is a supply problem of bryo-1 both from natural sources and by organic synthesis. Recent approaches on the synthesis of bryo-1 have focused on its simplification, without decreasing the ability to activate PKC isozymes, to develop new medicinal leads. Another approach is to use the skeleton of natural PKC ligands to develop bryo-1 surrogates. We have recently identified 10-methyl-aplog-1 (26), a simplified analog of tumor-promoting aplysiatoxin (ATX), as a possible therapeutic lead for cancer. This review summarizes recent investigations on the simplification of natural PKC ligands, bryo-1 and ATX, to develop potential medicinal leads. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. DNA damage targets PKC{eta} to the nuclear membrane via its C1b domain

    Energy Technology Data Exchange (ETDEWEB)

    Tamarkin, Ana; Zurgil, Udi; Braiman, Alex; Hai, Naama; Krasnitsky, Ella; Maissel, Adva; Ben-Ari, Assaf; Yankelovich, Liat; Livneh, Etta, E-mail: etta@bgumail.bgu.ac.il

    2011-06-10

    Translocation to cellular membranes is one of the hallmarks of PKC activation, occurring as a result of the generation of lipid secondary messengers in target membrane compartments. The activation-induced translocation of PKCs and binding to membranes is largely directed by their regulatory domains. We have previously reported that PKC{eta}, a member of the novel subfamily and an epithelial specific isoform, is localized at the cytoplasm and ER/Golgi and is translocated to the plasma membrane and the nuclear envelope upon short-term activation by PMA. Here we show that PKC{eta} is shuttling between the cytoplasm and the nucleus and that upon etoposide induced DNA damage is tethered at the nuclear envelope. Although PKC{eta} expression and its phosphorylation on the hydrophobic motif (Ser675) are increased by etoposide, this phosphorylation is not required for its accumulation at the nuclear envelope. Moreover, we demonstrate that the C1b domain is sufficient for translocation to the nuclear envelope. We further show that, similar to full-length PKC{eta}, the C1b domain could also confer protection against etoposide-induced cell death. Our studies demonstrate translocation of PKC{eta} to the nuclear envelope, and suggest that its spatial regulation could be important for its cellular functions including effects on cell death.

  9. A bidirectional antagonism between aPKC and Yurt regulates epithelial cell polarity

    Science.gov (United States)

    Gamblin, Clémence L.; Hardy, Émilie J.-L.; Chartier, François J.-M.; Bisson, Nicolas

    2014-01-01

    During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells. PMID:24515345

  10. Bile acid deoxycholate induces differential subcellular localisation of the PKC isoenzymes beta 1, epsilon and delta in colonic epithelial cells in a sodium butyrate insensitive manner.

    Science.gov (United States)

    Looby, Eileen; Long, Aideen; Kelleher, Dermot; Volkov, Yuri

    2005-05-10

    Elevated levels of bile acids have been implicated in the abnormal morphogenesis of the colonic epithelium thus contributing to colorectal cancer (CRC). Alternatively sodium butyrate (NaB) produced by anaerobic fermentation of dietary fibre is regarded as being protective against colon cancer. Bile acids such as deoxycholic acid (DCA) are thought to mediate some of their actions by differentially activating protein kinase C (PKC). We examined the effects of DCA on the subcellular localisation of PKC-beta(1), -epsilon and -delta and whether these responses could be modulated by NaB. HCT116 cells endogenously express PKC-epsilon and -delta but not PKC-beta. DCA treatment results in endogenous PKC-epsilon translocation but not PKC-delta after 1 hr. To study the subcellular localisation of PKC isoforms in response to DCA in real time, PKC-beta(1), PKC-epsilon and PKC-delta functionally intact green fluorescent protein (GFP) fusion constructs were used. Stimulation with 300 microM DCA induces rapid translocation of PKC-beta(1)-GFP and PKC-epsilon-GFP but not PKC-delta-GFP from the cytosol to the plasma membrane in 15 min. Interestingly, pretreatment with 4mM NaB does not modify the response of the PKC isoenzymes to DCA as PKC-beta(1)-GFP and PKC-epsilon-GFP translocates to the plasma membrane in 15 min whereas PKC-delta-GFP localisation remains unaltered. Immunofluorescence shows that PKC-beta(1)-GFP and PKC-epsilon-GFP cells treated with DCA colocalise with the cytoskeletal elements actin and tubulin adjacent to the plasma membrane. Our findings demonstrate that the differential activation of the PKC isoenzymes by DCA may be of critical importance for the functional responses of colonic epithelial cells. Supplementary material for this article can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020-7136/suppmat/index.html.

  11. Different associations of CD45 isoforms with STAT3, PKC and ERK regulate IL-6-induced proliferation in myeloma.

    Directory of Open Access Journals (Sweden)

    Xu Zheng

    Full Text Available In response to interleukin 6 (IL-6 stimulation, both CD45RO and CD45RB, but not CD45RA, translocate to lipid rafts. However, the significance of this distinct translocation and the downstream signals in CD45 isoforms-participated IL-6 signal are not well understood. Using sucrose fractionation, we found that phosphorylated signal transducer and activator of transcription (STAT3 and STAT1 were mainly localized in lipid rafts in response to IL-6 stimulation, despite both STAT3 and STAT1 localizing in raft and non-raft fractions in the presence or absence of IL-6. On the other hand, extracellular signal-regulated kinase (ERK, and phosphorylated ERK were localized in non-raft fractions regardless of the existence of IL-6. The rafts inhibitor significantly impeded the phosphorylation of STAT3 and STAT1 and nuclear translocation, but had little effect on (and only postponing the phosphorylation of ERK. This data suggests that lipid raft-dependent STAT3 and STAT1 pathways are dominant pathways of IL-6 signal in myeloma cells. Interestingly, the phosphorylation level of STAT3 but not STAT1 in CD45+ cells was significantly higher compared to that of CD45- cells, while the phosphorylation level of ERK in CD45+ myeloma cells was relatively low. Furthermore, exogenously expressed CD45RO/RB significantly enhanced STAT3, protein kinase C (PKC and downstream NF-κB activation; however, CD45RA/RB inhibited IL-6-induced ERK phosphorylation. CD45 also enhanced the nuclear localization of STAT3 but not that of STAT1. In response to IL-6 stimulation, CD45RO moved into raft compartments and formed a complex with STAT3 and PKC in raft fraction, while CD45RA remained outside of lipid rafts and formed a complex with ERK in non-raft fraction. This data suggests a different role of CD45 isoforms in IL-6-induced signaling, indicating that while CD45RA/RB seems inhibit the rafts-unrelated ERK pathway, CD45RO/RB may actually work to enhance the rafts-related STAT3 and PKC

  12. DIFFERENTIAL DISTRIBUTION OF PROTEIN-KINASE-C (PKC-ALPHA-BETA AND PKC-GAMMA) ISOENZYME IMMUNOREACTIVITY IN THE CHICK BRAIN

    NARCIS (Netherlands)

    VANDERZEE, EA; BOLHUIS, JJ; SOLOMONIA, RO; HORN, G; LUITEN, PGM

    1995-01-01

    Protein kinase C (PKC) is involved in neural plasticity. The phosphorylation of the myristoylated alanine-rich protein kinase C substrate (MARCKS) in the left intermediate and medial hyperstriatum ventrale (IMHV) of the chick brain has been shown previously to correlate significantly with the streng

  13. Hypotonic shock mediation by p38 MAPK, JNK, PKC, FAK, OSR1 and SPAK in osmosensing chloride secreting cells of killifish opercular epithelium

    DEFF Research Database (Denmark)

    Marshall, W. S.; Ossum, Carlo Gunnar; Hoffmann, Else Kay

    2005-01-01

    at the basolateral membrane. The protein tyrosine kinase inhibitor genistein (100 µmol l-1) inhibited Cl- secretion that was high, increased Cl- secretion that was low and reduced immunocytochemical staining for phosphorylated FAK. We present a model for rapid control of CFTR and NKCC in chloride cells that includes......: (1) activation of NKCC and CFTR via cAMP/PKA, (2) activation of NKCC by PKC, myosin light chain kinase (MLCK), p38, OSR1 and SPAK, (3) deactivation of NKCC by hypotonic cell swelling, Ca2+ and an as yet unidentified protein phosphatase and (4) involvement of protein tyrosine kinase (PTK) acting...

  14. 1,2,3,4,6 Penta-O-galloyl-β-d-glucose, a bioactivity guided isolated compound from Mangifera indica inhibits 11β-HSD-1 and ameliorates high fat diet-induced diabetes in C57BL/6 mice.

    Science.gov (United States)

    Mohan, C G; Viswanatha, G L; Savinay, G; Rajendra, C E; Halemani, Praveen D

    2013-03-15

    Methanolic leaf extract of Mangifera indica (MEMI) was subjected to bioactivity guided fractionation in order to identify the active antidiabetic constituent. 32 fractions were evaluated for possible 11β-HSD-1 inhibition activity under in vitro conditions. The EA-7/8-9/10-4 fraction was evolved as a most potent fraction among all the fractions and it was identified as well known gallotannin compound 1,2,3,4,6 penta-O-galloyl-β-d-glucose (PGG) by spectral analysis. Based on these results the PGG was further evaluated in ex vivo 11β-HSD-1 inhibition assay and high fat diet (HFD)-induced diabetes in male C57BL/6 mice. Single dose (10, 25, 50 and 100mg/kg) of PGG and carbenoxolone (CBX) have dose dependently inhibited the 11β-HSD-1 activity in liver and adipose tissue. Furthermore, HFD appraisal to male C57BL/6 mice caused severe hyperglycemia, hypertriglyceridemia, elevated levels of plasma corticosterone and insulin, increased liver and white adipose mass with increase in body weight was observed compare to normal control. Also, oral glucose tolerance was significantly impaired compare to normal control. Interestingly, post-treatment with PGG for 21 days had alleviated the HFD-induced biochemical alterations and improved oral glucose tolerance compare to HFD-control. In conclusion, the PGG isolated from MEMI inhibits 11β-HSD-1 activity and ameliorates HFD-induced diabetes in male C57BL/6 mice.

  15. Enhancement of potency and efficacy of NADA by PKC-mediated phosphorylation of vanilloid receptor.

    Science.gov (United States)

    Premkumar, Louis S; Qi, Zhan-Heng; Van Buren, Jeremy; Raisinghani, Manish

    2004-03-01

    The search for an endogenous ligand for the vanilloid receptor (VR or TRPV1) has led to the identification of N-arachidonyl dopamine (NADA). This study investigates the role of protein kinase C (PKC)-mediated phosphorylation on NADA-induced membrane currents in Xenopus oocytes heterologously expressing TRPV1 and in dorsal root ganglion (DRG) neurons. In basal state, current induced by 10 microM NADA is 5-10% of the current induced by 1 microM capsaicin or protons at pH 5. However, PKC activator, phorbol 12,13-dibutyrate (PDBu) strongly potentiated ( approximately 15-fold) the NADA-induced current. Repeated application of NADA at short intervals potentiated its own response approximately fivefold in a PKC-dependent manner. PKC inhibitor, bisindolylmaleimide (BIM, 500 nM), a mutant TRPV1 (S800A/S502A), and maximal activation of PKC abolished the potentiation induced by repeated application of NADA. As a further confirmation that NADA could stimulate PKC, pretreatment with NADA potentiated the response of protons at pH 5 (approximately 20 fold), which was dramatically reduced in the mutant TRPV1. In DRG neurons, capsaicin (100 nM) induced a approximately 15 mV depolarization and initiated a train of action potentials compared with 1 microM NADA that produced a approximately 5 mV response. Pretreatment with PDBu induced significantly larger depolarization and potentiated NADA-induced current. Furthermore, exposure of NADA to the intracellular surface of the membrane-induced larger currents suggesting inaccessibility to the intracellular binding site might contribute to its weaker action. These results indicate that NADA is a potent agonist of VR when the receptor is in the PKC-mediated phosphorylation state.

  16. Albumin-stimulated DNA synthesis is mediated by Ca2+/PKC as well as EGF receptor-dependent p44/42 MAPK and NF-kappaB signal pathways in renal proximal tubule cells.

    Science.gov (United States)

    Lee, Yu Jin; Han, Ho Jae

    2008-03-01

    It is now recognized that significant tubular reabsorption of albumin occurs under physiological conditions that may play an important role in maintaining proximal tubular integrity and function. Therefore, this study examined the effect of bovine serum albumin (BSA) on DNA synthesis and its related signal molecules in primary cultured rabbit renal proximal tubule cells (PTCs). BSA increased the level of [(3)H]thymidine incorporation in a dose (> or =3 mg/ml)- and time (> or =3 h)-dependent manner, intracellular Ca(2+) concentration, and the level of protein kinase C (PKC) phosphorylation and stimulated the phosphorylation of the epidermal growth factor receptor (EGFR), which was inhibited by EGTA (extracellular Ca(2+) chelator), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM, intracellular Ca(2+) chelator), or PKC inhibitors (staurosporine or bisindolylmaleimide I). In addition, the PKC inhibitors or an EGFR inhibitor (AG-1478) blocked the BSA-induced phosphorylation of p44/42 mitogen-activated protein kinases (MAPKs). BSA also increased the level of nuclear factor-kappaB (NF-kappaB) and inhibitor of NF-kappaB (IkappaB) phosphorylation, which was blocked by staurosporine, AG-1478, or PD-98059 (p44/42 MAPK inhibitor). Inhibition of Ca(2+), PKC, EGFR, p44/42 MAPK, or NF-kappaB signal pathways blocked the BSA-induced incorporation of [(3)H]thymidine. Consequently, the inhibition of Ca(2+), PKC, EGFR, p44/42 MAPKs, or NF-kappaB blocked the BSA-induced increases in cyclin D1, cyclin-dependent kinase (CDK)4, cyclin E, or CDK2 and restored the BSA-induced inhibition of p21(WAF/Cip1) and p27(Kip1) expression. In conclusion, BSA stimulates DNA synthesis that is mediated by Ca(2+)/PKC as well as the EGFR-dependent p44/42 MAPK and NF-kappaB signal pathways in PTCs.

  17. Increased aPKC Expression Correlates with Prostatic Adenocarcinoma Gleason Score and Tumor Stage in the Japanese Population

    Directory of Open Access Journals (Sweden)

    Anthony S. Perry

    2014-01-01

    Full Text Available Background. Levels of the protein kinase aPKC have been previously correlated with prostate cancer prognosis in a British cohort. However, prostate cancer incidence and progression rates, as well as genetic changes in this disease, show strong ethnic variance, particularly in Asian populations. Objective. The aim of this study was to validate association of aPKC expression with prostatic adenocarcinoma stages in a Japanese cohort. Methods. Tissue microarrays consisting of 142 malignant prostate cancer cases and 21 benign prostate tissues were subject to immunohistological staining for aPKC. aPKC staining intensity was scored by three independent pathologists and categorized as absent (0, dim (1+, intermediate (2+, and bright (3+. aPKC staining intensities were correlated with Gleason score and tumor stage. Results. Increased aPKC staining was observed in malignant prostate cancer, in comparison to benign tissue. Additionally, aPKC staining levels correlated with Gleason score and tumor stage. Our results extend the association of aPKC with prostate cancer to a Japanese population and establish the suitability of aPKC as a universal prostate cancer biomarker that performs consistently across ethnicities.

  18. Anti-inflammatory activity of Chios mastic gum is associated with inhibition of TNF-alpha induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Lerakis Stamatios

    2011-06-01

    Full Text Available Abstract Background Gum of Chios mastic (Pistacia lentiscus var. chia is a natural antimicrobial agent that has found extensive use in pharmaceutical products and as a nutritional supplement. The molecular mechanisms of its anti-inflammatory activity, however, are not clear. In this work, the potential role of antioxidant activity of Chios mastic gum has been evaluated. Methods Scavenging of superoxide radical was investigated by electron spin resonance and spin trapping technique using EMPO spin trap in xanthine oxidase system. Superoxide production in endothelial and smooth muscle cells stimulated with TNF-α or angiotensin II and treated with vehicle (DMSO or mastic gum (0.1-10 μg/ml was measured by DHE and HPLC. Cellular H2O2 was measured by Amplex Red. Inhibition of protein kinase C (PKC with mastic gum was determined by the decrease of purified PKC activity, by inhibition of PKC activity in cellular homogenate and by attenuation of superoxide production in cells treated with PKC activator phorbol 12-myristate 13-acetate (PMA. Results Spin trapping study did not show significant scavenging of superoxide by mastic gum itself. However, mastic gum inhibited cellular production of superoxide and H2O2 in dose dependent manner in TNF-α treated rat aortic smooth muscle cells but did not affect unstimulated cells. TNF-α significantly increased the cellular superoxide production by NADPH oxidase, while mastic gum completely abolished this stimulation. Mastic gum inhibited the activity of purified PKC, decreased PKC activity in cell homogenate, and attenuated superoxide production in cells stimulated with PKC activator PMA and PKC-dependent angiotensin II in endothelial cells. Conclusion We suggest that mastic gum inhibits PKC which attenuates production of superoxide and H2O2 by NADPH oxidases. This antioxidant property may have direct implication to the anti-inflammatory activity of the Chios mastic gum.

  19. Slmb antagonises the aPKC/Par-6 complex to control oocyte and epithelial polarity.

    Science.gov (United States)

    Morais-de-Sá, Eurico; Mukherjee, Avik; Lowe, Nick; St Johnston, Daniel

    2014-08-01

    The Drosophila anterior-posterior axis is specified when the posterior follicle cells signal to polarise the oocyte, leading to the anterior/lateral localisation of the Par-6/aPKC complex and the posterior recruitment of Par-1, which induces a microtubule reorganisation that localises bicoid and oskar mRNAs. Here we show that oocyte polarity requires Slmb, the substrate specificity subunit of the SCF E3 ubiquitin ligase that targets proteins for degradation. The Par-6/aPKC complex is ectopically localised to the posterior of slmb mutant oocytes, and Par-1 and oskar mRNA are mislocalised. Slmb appears to play a related role in epithelial follicle cells, as large slmb mutant clones disrupt epithelial organisation, whereas small clones show an expansion of the apical domain, with increased accumulation of apical polarity factors at the apical cortex. The levels of aPKC and Par-6 are significantly increased in slmb mutants, whereas Baz is slightly reduced. Thus, Slmb may induce the polarisation of the anterior-posterior axis of the oocyte by targeting the Par-6/aPKC complex for degradation at the oocyte posterior. Consistent with this, overexpression of the aPKC antagonist Lgl strongly rescues the polarity defects of slmb mutant germline clones. The role of Slmb in oocyte polarity raises an intriguing parallel with C. elegans axis formation, in which PAR-2 excludes the anterior PAR complex from the posterior cortex to induce polarity, but its function can be substituted by overexpressing Lgl.

  20. PKC-Mediated ZYG1 Phosphorylation Induces Fusion of Myoblasts as well as of Dictyostelium Cells

    Directory of Open Access Journals (Sweden)

    Aiko Amagai

    2012-01-01

    Full Text Available We have previously demonstrated that a novel protein ZYG1 induces sexual cell fusion (zygote formation of Dictyostelium cells. In the process of cell fusion, involvements of signal transduction pathways via Ca2+ and PKC (protein kinase C have been suggested because zygote formation is greatly enhanced by PKC activators. In fact, there are several deduced sites phosphorylated by PKC in ZYG1 protein. Thereupon, we designed the present work to examine whether or not ZYG1 is actually phosphorylated by PKC and localized at the regions of cell-cell contacts where cell fusion occurs. These were ascertained, suggesting that ZYG1 might be the target protein for PKC. A humanized version of zyg1 cDNA (mzyg1 was introduced into myoblasts to know if ZYG1 is also effective in cell fusion of myoblasts. Quite interestingly, enforced expression of ZYG1 in myoblasts was found to induce markedly their cell fusion, thus strongly suggesting the existence of a common signaling pathway for cell fusion beyond the difference of species.

  1. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells.

    Directory of Open Access Journals (Sweden)

    Gen-Lin He

    Full Text Available Inflammatory activation of microglia and β amyloid (Aβ deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer's disease (AD. Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells. Here, we explored the prostaglandin-E2 (PGE2-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1-42 (fAβ42-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP, and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases.

  2. Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT.

    Science.gov (United States)

    Cremona, M Laura; Matthies, Heinrich J G; Pau, Kelvin; Bowton, Erica; Speed, Nicole; Lute, Brandon J; Anderson, Monique; Sen, Namita; Robertson, Sabrina D; Vaughan, Roxanne A; Rothman, James E; Galli, Aurelio; Javitch, Jonathan A; Yamamoto, Ai

    2011-04-01

    Plasmalemmal neurotransmitter transporters (NTTs) regulate the level of neurotransmitters, such as dopamine (DA) and glutamate, after their release at brain synapses. Stimuli including protein kinase C (PKC) activation can lead to the internalization of some NTTs and a reduction in neurotransmitter clearance capacity. We found that the protein Flotillin-1 (Flot1), also known as Reggie-2, was required for PKC-regulated internalization of members of two different NTT families, the DA transporter (DAT) and the glial glutamate transporter EAAT2, and we identified a conserved serine residue in Flot1 that is essential for transporter internalization. Further analysis revealed that Flot1 was also required to localize DAT within plasma membrane microdomains in stable cell lines, and was essential for amphetamine-induced reverse transport of DA in neurons but not for DA uptake. In sum, our findings provide evidence for a critical role of Flot1-enriched membrane microdomains in PKC-triggered DAT endocytosis and the actions of amphetamine.

  3. Kibra and aPKC regulate starvation-induced autophagy in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ahrum [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Neufeld, Thomas P. [Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States); Choe, Joonho, E-mail: jchoe@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2015-12-04

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.

  4. The selective protein kinase C inhibitor, Ro-31-8220, inhibits mitogen-activated protein kinase phosphatase-1 (MKP-1) expression, induces c-Jun expression, and activates Jun N-terminal kinase.

    Science.gov (United States)

    Beltman, J; McCormick, F; Cook, S J

    1996-10-25

    The role of protein kinase C (PKC) in inflammation, mitogenesis, and differentiation has been deduced in part through the use of a variety of PKC inhibitors. Two widely used inhibitors are the structurally related compounds GF109203X and Ro-31-8220, both of which potently inhibit PKC activity and are believed to be highly selective. While using GF109203X and Ro-31-8220 to address the role of PKC in immediate early gene expression, we observed striking differential effects by each of these two compounds. Growth factors induce the expression of the immediate early gene products MAP kinase phosphatase-1 (MKP-1), c-Fos and c-Jun. Ro-31-8220 inhibits growth factor-stimulated expression of MKP-1 and c-Fos but strongly stimulated c-Jun expression, even in the absence of growth factors. GF109203X displays none of these properties. These data suggest that Ro-31-8220 may have other pharmacological actions in addition to PKC inhibition. Indeed, Ro-31-8220 strongly stimulates the stress-activated protein kinase, JNK1. Furthermore, Ro-31-8220 apparently activates JNK in a PKC-independent manner. Neither the down-regulation of PKC by phorbol esters nor the inhibition of PKC by GF109203X affected the ability of Ro-31-8220 to activate JNK1. These data suggest that, in addition to potently inhibiting PKC, Ro-31-8220 exhibits novel pharmacological properties which are independent of its ability to inhibit PKC.

  5. DNA repair contributes to the drug-resistant phenotype of primary acute myeloid leukaemia cells with FLT3 internal tandem duplications and is reversed by the FLT3 inhibitor PKC412.

    Science.gov (United States)

    Seedhouse, C H; Hunter, H M; Lloyd-Lewis, B; Massip, A-M; Pallis, M; Carter, G I; Grundy, M; Shang, S; Russell, N H

    2006-12-01

    The presence of internal tandem duplications (ITD) mutations in the FMS-like tyrosine kinase 3 (FLT3) receptor influences the risk of relapse in acute myeloid leukaemia (AML). We have investigated DNA repair in FLT3-ITD and wild-type (WT) cells. Using the comet assay, we have demonstrated that the FLT3 inhibitor PKC412 significantly inhibits repair of DNA damage in the MV4-11-FLT3-ITD cell line and FLT3-ITD patient samples but not in the HL-60-FLT3-WT cell line or FLT3-WT patient samples. Following the discovery that transcript levels of the DNA repair gene RAD51 are significantly correlated with FLT3 transcript levels in FLT3-ITD patients, we further investigated the role of RAD51 in FLT3-ITD-AML. The reduction in DNA repair in PKC412-treated FLT3-ITD cells was shown to be associated with downregulation of RAD51 mRNA and protein expression and correlates with the maintenance of phosphorylated H2AX levels, implying that PKC412 inhibits the homologous recombination double-strand break repair pathway in FLT3-ITD cells. Using FLT3-short interfering RNA (siRNA), we also demonstrated that genetic silencing of FLT3 results in RAD51 downregulation in FLT3-ITD cells but not in FLT3-WT cells. This work suggests that the use of FLT3 inhibitors such as PKC412 may reverse the drug-resistant phenotype of FLT3-ITD-AML cells by inhibiting repair of chemotherapy-induced genotoxic damage and thereby reduce the risk of disease relapse.

  6. Diallyl Trisulfide Inhibits Growth of NCI-H460 in Vitro and in Vivo, and Ameliorates Cisplatin-Induced Oxidative Injury in the Treatment of Lung Carcinoma in Xenograft Mice

    Science.gov (United States)

    Jiang, Xiaoyan; Zhu, Xiaosong; Liu, Na; Xu, Hongya; Zhao, Zhongxi; Li, Siying; Li, Shanzhong; Cai, Jianhua; Cao, Jimin

    2017-01-01

    Diallyl trisulfide (DATS), an organosulfuric component of garlic oil, exhibits potential anticancer and chemopreventive effects. Cisplatin (DDP), a common chemotherapeutic agent, has provided great therapeutic contributions to treating solid tumors, but with serious side effects. Here, we verified the anti-tumor properties of DATS on lung cancer in vitro and in vivo, and evaluated synergistic effects of DATS combined with DDP on the NCI-H460 xenograft model. Significantly decreased cell viabilities, cell cycle G1 arrest, and apoptosis induction were observed in DATS treated NCI-H460 cells (ptumor xenograft (ptumor activity via induction of apoptosis. Apoptosis pathways were confirmed by modulation of p53, Bcl-2 family members; induction of active caspase-3/8/9 and activation of JNK- and p38-MAPK pathways. Interestedly, DATS+DDP administration exerted fewer side effects, such as suppressing the weight loss and ameliorating DDP-induced oxidative injury, especially in renal parenchyma. In addition, increased E-cadherin and decreased MMP-9 expression levels were observed in DATS-treated tumor tissues. These studies provide supports that DATS might be a potential candidate for combination with DDP in cancer treatment.

  7. Fargesin exerts anti-inflammatory effects in THP-1 monocytes by suppressing PKC-dependent AP-1 and NF-ĸB signaling.

    Science.gov (United States)

    Pham, Thu-Huyen; Kim, Man-Sub; Le, Minh-Quan; Song, Yong-Seok; Bak, Yesol; Ryu, Hyung-Won; Oh, Sei-Ryang; Yoon, Do-Young

    2017-01-15

    Fargesin is a lignan from Magnolia fargesii, an oriental medicine used in the treatment of nasal congestion and sinusitis. The anti-inflammatory properties of this compound have not been fully elucidated yet. This study focused on assessing the anti-inflammatory effects of fargesin on phorbal ester (PMA)-stimulated THP-1 human monocytes, and the molecular mechanisms underlying them. Cell viability was evaluated by MTS assay. Protein expression levels of inflammatory mediators were analyzed by Western blotting, ELISA, Immunofluorescence assay. mRNA levels were measured by Real-time PCR. Promoter activities were elucidated by Luciferase assay. It was found that pre-treatment with fargesin attenuated significantly the expression of two major inflammatory mediators, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Fargesin also inhibited the production of pro-inflammation cytokines (IL-1β, TNF-α) and chemokine (CCL-5). Besides, nuclear translocation of transcription factors nuclear factor-kappa B (NF-ĸB) and activator protein-1 (AP-1), which regulate multiple pro-inflammatory genes, was suppressed by fargesin in a PKC-dependent manner. Furthermore, among the mitogen-activated protein kinases (MAPKs), only c-Jun N-terminal kinase (JNK) was downregulated by fargesin in a PKC-dependent manner, and this reduction was involved in PMA-induced AP-1 and NF-ĸB nuclear translocation attenuation, demonstrated using a specific JNK inhibitor. Taken together, our results found that fargesin exhibits anti-inflammation effects on THP-1 cells via suppression of PKC pathway including downstream JNK, nuclear factors AP-1 and NF-ĸB. These results suggest that fargesin has anti-inflammatory properties with potential applications in drug development against inflammatory disorders. Copyright © 2016. Published by Elsevier GmbH.

  8. Epidermal growth factor (EGF) ligand release by substrate-specific a disintegrin and metalloproteases (ADAMs) involves different protein kinase C (PKC) isoenzymes depending on the stimulus.

    Science.gov (United States)

    Dang, Michelle; Dubbin, Karen; D'Aiello, Antonio; Hartmann, Monika; Lodish, Harvey; Herrlich, Andreas

    2011-05-20

    The dysregulation of EGF family ligand cleavage has severe consequences for the developing as well as the adult organism. Therefore, their production is highly regulated. The limiting step is the ectodomain cleavage of membrane-bound precursors by one of several a disintegrin and metalloprotease (ADAM) metalloproteases, and understanding the regulation of cleavage is an important goal of current research. We have previously reported that in mouse lung epithelial cells, the pro-EGF ligands TGFα, neuregulin 1β (NRG), and heparin-binding EGF are differentially cleaved depending on the cleavage stimulus (Herrlich, A., Klinman, E., Fu, J., Sadegh, C., and Lodish, H. (2008) FASEB J.). In this study in mouse embryonic fibroblasts that lack different ADAMs, we show that induced cleavage of EGF ligands can involve the same substrate-specific metalloprotease but does require different stimulus-dependent signaling pathways. Cleavage was stimulated by phorbol ester (12-O-tetradecanoylphorbol-13-acetate (TPA), a mimic of diacylglycerol and PKC activator), hypertonic stress, lysophosphatidic acid (LPA)-induced G protein-coupled receptor activation, or by ionomycin-induced intracellular calcium release. Although ADAMs showed substrate preference (ADAM17, TGFα and heparin-binding EGF; and ADAM9, NRG), substrate cleavage differed substantially with the stimulus, and cleavage of the same substrate depended on the presence of different, sometimes multiple, PKC isoforms. For instance, classical PKC was required for TPA-induced but not hypertonic stress-induced cleavage of all EGF family ligands. Inhibition of PKCζ enhanced NRG release upon TPA stimulation, but it blocked NRG release in response to hypertonic stress. Our results suggest a model in which substantial regulation of ectodomain cleavage occurs not only on the metalloprotease level but also on the level of the substrate or of a third protein.

  9. Increased PKC activity and altered GSK3β/NMDAR function drive behavior cycling in HINT1-deficient mice: bipolarity or opposing forces.

    Science.gov (United States)

    Garzón-Niño, Javier; Rodríguez-Muñoz, María; Cortés-Montero, Elsa; Sánchez-Blázquez, Pilar

    2017-02-27

    Mice with histidine triad nucleotide-binding protein 1 (HINT1) deletion exhibit manic-like symptoms that evolve into depressive-like behavior in response to stressful paradigms. Molecular and electrophysiological studies have indicated that HINT1(-/-) mice exhibit increased PKC, PKA, and GSK3β activities, as well as glutamate N-methyl-D-aspartate receptor (NMDAR)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) and NR2B/NR2A subunit ratios. Pharmacological interventions stabilized their behavior but through different mechanisms. GSK3β inhibitors and valproate directly attenuated the expression of the manic-like symptoms, whereas PKC inhibition, lamotrigine, or risperidone promoted NMDAR-mediated depressive-like behaviors that counterbalanced the preexisting manic-like symptoms. Naïve HINT1(-/-) mice exposed to stressful paradigms rapidly manifested depressive-like behaviors in subsequent stressful situations, a capacity that persisted for a couple of weeks thereafter. During the depressive-like phase, citalopram, amitriptyline and MK801 precipitated manic-like behaviors in stressed HINT1(-/-) mice. Notably, the antagonism of NMDARs prevented HINT1(-/-) mice from alternating behaviors in response to stress. A comparison with "manic" Black Swiss mice indicated that in HINT1(-/-) mice, PKC supports manic-like symptoms and reduces the expression of depressive-like behaviors via activation of GSK3β and regulation of NR2B-enriched NMDARs. HINT1(-/-) mice represent a suitable model for studying human BPD and may facilitate the identification of novel targets and drugs to treat this mental disorder.

  10. γIsoform-Selective Changes in PKC Immunoreactivity after Trace Eyeblink Conditioning in the Rabbit Hippocampus

    NARCIS (Netherlands)

    Zee, E.A. van der; Kronforst-Collins, M.A.; Maizels, E.T.; Hunzicker-Dunn, M.; Disterhoft, J.F.

    1997-01-01

    An immunocytochemical examination of the rabbit hippocampus was done to determine which of the Ca2+-dependent protein kinase C (PKC) isoforms (PKCα, -βI, -βII, or -γ) are involved in associative learning. The hippocampally dependent trace eyeblink conditioning task was used for behavioral training,

  11. The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC.

    Science.gov (United States)

    Ren, L; Hong, S H; Cassavaugh, J; Osborne, T; Chou, A J; Kim, S Y; Gorlick, R; Hewitt, S M; Khanna, C

    2009-02-12

    Ezrin is a member of the ERM (ezrin, radixin, moesin) protein family and links F-actin to the cell membrane following phosphorylation. Ezrin has been associated with tumor progression and metastasis in several cancers including the pediatric solid tumors, osteosarcoma and rhabdomyosarcoma. In this study, we were surprised to find that ezrin was not constitutively phosphorylated but rather was dynamically regulated during metastatic progression in osteosarcoma. Metastatic osteosarcoma cells expressed phosphorylated ERM early after their arrival in the lung, and then late in progression, only at the invasive front of larger metastatic lesions. To pursue mechanisms for this regulation, we found that inhibitors of PKC (protein kinase C) blocked phosphorylation of ezrin, and that ezrin coimmunoprecipitated in cells with PKCalpha, PKCiota and PKCgamma. Furthermore, phosphorylated forms of ezrin and PKC had identical expression patterns at the invasive front of pulmonary metastatic lesions in murine and human patient samples. Finally, we showed that the promigratory effects of PKC were linked to ezrin phosphorylation. These data are the first to suggest a dynamic regulation of ezrin phosphorylation during metastasis and to connect the PKC family members with this regulation.

  12. Tyrosinase kinetics in epidermal melanocytes: analysis of DAG-PKC-dependent signaling pathway

    Science.gov (United States)

    Stolnitz, Mikhail M.; Peshkova, Anna Y.

    2001-05-01

    Tyrosinase is the key enzyme of melanogenesis with unusual enzyme kinetics. Protein kinase C plays an important role in regulating of tyrosinase activity. In the paper the mathematical model of PKC-DAG-dependent signal transduction pathway for UV-radiation is presented.

  13. NMDA modulates oligodendrocyte differentiation of subventricular zone cells through PKC activation

    Directory of Open Access Journals (Sweden)

    Fabio eCavaliere

    2013-12-01

    Full Text Available Multipotent cells from the juvenile subventricular zone (SVZ possess the ability to differentiate into new neural cells. Depending on local signals, SVZ can generate new neurons, astrocytes or oligodendrocytes. We previously demonstrated that activation of NMDA receptors in SVZ progenitors increases the rate of oligodendrocyte differentiation. Here we investigated the mechanisms involved in NMDA receptor-dependent differentiation. Using functional studies performed with the reporter gene luciferase we found that activation of NMDA receptor stimulates PKC. In turn, stimulation of PKC precedes the activation of NADPH oxidase (NOX as demonstrated by translocation of the p67phox subunit to the cellular membrane. We propose that NOX2 is involved in the transduction of the signal from NMDA receptors through PKC activation as the inhibitor gp91 reduced their pro-differentiation effect. In addition, our data and that from other groups suggest that signaling through the NMDA receptor/PKC/NOX2 cascade generates ROS that activate the PI3/mTOR pathway and finally leads to the generation of new oligodendrocytes.

  14. Protein kinase C-beta II (PKC-betaII) expression in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise; Lindebjerg, Jan; Lahn, Michael;

    2009-01-01

    PURPOSE: Current development of targeted agents for the treatment of colorectal cancer include the clinical evaluation of kinase inhibitors, such as enzastaurin, a serine/threonine kinase inhibitor designed to suppress signaling through Protein Kinase C (PKC) and AKT pathways. Little is known abo...

  15. Systems Biology Strategy Reveals PKC-delta is Key for Sensitizing TRAIL-Resistant Human Fibrosarcoma

    Directory of Open Access Journals (Sweden)

    Kentaro eHayashi

    2015-01-01

    Full Text Available Cancer cells are highly variable and resistant to therapeutic intervention. Recently, the use of the tumor necrosis factor related apoptosis-inducing ligand (TRAIL induced treatment is gaining momentum, due to TRAIL’s ability to specifically target cancers with limited effect on normal cells. However, several malignant cancer types still remain non-sensitive to TRAIL. Previously, we developed a dynamic computational model, based on perturbation-response approach, and predicted protein kinase C (PKC as the most effective target, with over 95% capacity to kill human fibrosarcoma (HT1080 in TRAIL stimulation (Piras, V. et al. 2011, Scientific Reports. Here, to validate the model prediction, which has significant implications for cancer treatment, we conducted experiments on two TRAIL-resistant cancer cell lines (HT1080 and HT29. Using PKC inhibitor Bisindolylmaleimide I, we first demonstrate, as predicted by our previous model, cell viability is significantly impaired with over 95% death of both cancer types. Next, to identify crucial PKC isoform from 10 known members, we analyzed their mRNA expressions in HT1080 cells and shortlisted 4 isoforms for siRNA knock-down (KD experiments. From these KDs, PKC-delta produced the most cancer cell death in conjunction with TRAIL. Overall, systems biology approach, combining model prediction with experimental validation, holds promise for TRAIL-based cancer therapy.

  16. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  17. The aPKC-CBP Pathway Regulates Adult Hippocampal Neurogenesis in an Age-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Ayden Gouveia

    2016-10-01

    Full Text Available While epigenetic modifications have emerged as attractive substrates to integrate environmental changes into the determination of cell identity and function, specific signals that directly activate these epigenetic modifications remain unknown. Here, we examine the role of atypical protein kinase C (aPKC-mediated Ser436 phosphorylation of CBP, a histone acetyltransferase, in adult hippocampal neurogenesis and memory. Using a knockin mouse strain (CbpS436A in which the aPKC-CBP pathway is deficient, we observe impaired hippocampal neuronal differentiation, maturation, and memory and diminished binding of CBP to CREB in 6-month-old CbpS436A mice, but not at 3 months of age. Importantly, elevation of CREB activity rescues these deficits, and CREB activity is reduced whereas aPKC activity is increased in the murine hippocampus as they age from 3 to 6 months regardless of genotype. Thus, the aPKC-CBP pathway is a homeostatic compensatory mechanism that modulates hippocampal neurogenesis and memory in an age-dependent manner in response to reduced CREB activity.

  18. Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorgani-Firuzjaee, Sattar [Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Adeli, Khosrow [Division of Clinical Biochemistry, The Hospital for Sick Children, University of Toronto, Toronto (Canada); Meshkani, Reza, E-mail: rmeshkani@tums.ac.ir [Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-08-21

    The serine–threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome c and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients. - Highlights: • Lipoapoptosis is the major contributor to the development of NAFLD. • The PI3-K/Akt pathway regulates apoptosis in different cells. • The role of negative regulator of this pathway, SHIP2 in lipoapoptosis is unknown. • SHIP2 inhibition significantly reduces palmitate-induced apoptosis in HepG2 cells. • SHIP2 inhibition prevents palmitate induced-apoptosis by regulating Akt/FOXO1 pathway.

  19. Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity.

    Science.gov (United States)

    de Jong, Arthur P H; Meijer, Marieke; Saarloos, Ingrid; Cornelisse, Lennart Niels; Toonen, Ruud F G; Sørensen, Jakob B; Verhage, Matthijs

    2016-05-03

    Presynaptic activation of the diacylglycerol (DAG)/protein kinase C (PKC) pathway is a central event in short-term synaptic plasticity. Two substrates, Munc13-1 and Munc18-1, are essential for DAG-induced potentiation of vesicle priming, but the role of most presynaptic PKC substrates is not understood. Here, we show that a mutation in synaptotagmin-1 (Syt1(T112A)), which prevents its PKC-dependent phosphorylation, abolishes DAG-induced potentiation of synaptic transmission in hippocampal neurons. This mutant also reduces potentiation of spontaneous release, but only if alternative Ca(2+) sensors, Doc2A/B proteins, are absent. However, unlike mutations in Munc13-1 or Munc18-1 that prevent DAG-induced potentiation, the synaptotagmin-1 mutation does not affect paired-pulse facilitation. Furthermore, experiments to probe vesicle priming (recovery after train stimulation and dual application of hypertonic solutions) also reveal no abnormalities. Expression of synaptotagmin-2, which lacks a seven amino acid sequence that contains the phosphorylation site in synaptotagmin-1, or a synaptotagmin-1 variant with these seven residues removed (Syt1(Δ109-116)), supports normal DAG-induced potentiation. These data suggest that this seven residue sequence in synaptotagmin-1 situated in the linker between the transmembrane and C2A domains is inhibitory in the unphosphorylated state and becomes permissive of potentiation upon phosphorylation. We conclude that synaptotagmin-1 phosphorylation is an essential step in PKC-dependent potentiation of synaptic transmission, acting downstream of the two other essential DAG/PKC substrates, Munc13-1 and Munc18-1.

  20. Does PKC activation increase the homologous desensitization of μ opioid receptors?

    Science.gov (United States)

    Arttamangkul, Seksiri; Birdsong, William; Williams, John T

    2015-01-01

    This study examined the role of agents known to activate PKC on morphine-induced desensitization of μ-opioid receptors (MOP receptors) in brain slices containing locus coeruleus neurons. Intracellular recordings were obtained from rat locus coeruleus neurons. Two measurements were used to characterize desensitization, the decline in hyperpolarization induced by application of a saturating concentration of agonist (acute desensitization) and the decrease in hyperpolarization induced by a subsaturating concentration of [Met](5) enkephalin (ME) following washout of the saturating concentration (sustained desensitization). Internalization of MOP receptors was studied in brain slices prepared from transgenic mice expressing Flag-MOP receptors. The subcellular distribution of activated PKC was examined using a novel fluorescent sensor of PKC in HEK293 cells. The phorbol esters (PMA and PDBu) and muscarine increased acute desensitization induced by a saturating concentration of morphine and ME. These effects were not sensitive to staurosporine. Staurosporine did not block the decline in hyperpolarization induced by muscarine. PDBu and muscarine did not affect sustained desensitization induced by ME nor did phorbol esters or muscarine change the trafficking of MOP receptors induced by morphine or ME. The distribution of activated PKC measured in HEK293 cells differed depending on which phorbol ester was applied. This study demonstrates a distinct difference in two measurements that are often used to evaluate desensitization. The measure of decline correlated well with the reduction in peak amplitudes caused by PKC activators implicating the modification of other factors rather than MOP receptors. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  1. Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Yeh, Y.C. [Graduate Institute of Natural Healing Sciences, Nanhua University, Chiayi, Taiwan (China); Wang, L.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Ting, C.T.; Lee, W.L. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Lee, H.W. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, K.Y. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine, Chung-Shan Medical University, Taichung, Taiwan (China); Wu, A. [College of Biological Science, University of California, Davis (United States); Su, C.S. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Liu, T.J., E-mail: trliu@vghtc.gov.tw [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China)

    2011-12-15

    Background: Propofol is an anesthetic with pluripotent cytoprotective properties against various extrinsic insults. This study was designed to examine whether this agent could also ameliorate the infamous toxicity of doxorubicin, a widely-used chemotherapeutic agent against a variety of cancer diseases, on myocardial cells. Methods: Cultured neonatal rat cardiomyocytes were administrated with vehicle, doxorubicin (1 {mu}M), propofol (1 {mu}M), or propofol plus doxorubicin (given 1 h post propofol). After 24 h, cells were harvested and specific analyses regarding oxidative/nitrative stress and cellular apoptosis were conducted. Results: Trypan blue exclusion and MTT assays disclosed that viability of cardiomyocytes was significantly reduced by doxorubicin. Contents of reactive oxygen and nitrogen species were increased and antioxidant enzymes SOD1, SOD2, and GPx were decreased in these doxorubicin-treated cells. Mitochondrial dehydrogenase activity and membrane potential were also depressed, along with activation of key effectors downstream of mitochondrion-dependent apoptotic signaling. Besides, abundance of p53 was elevated and cleavage of PKC-{delta} was induced in these myocardial cells. In contrast, all of the above oxidative, nitrative and pro-apoptotic events could be suppressed by propofol pretreatment. Conclusions: Propofol could extensively counteract oxidative/nitrative and multiple apoptotic effects of doxorubicin in the heart; hence, this anesthetic may serve as an adjuvant agent to assuage the untoward cardiac effects of doxorubicin in clinical application. -- Highlights: Black-Right-Pointing-Pointer We evaluate how propofol prevents doxorubicin-induced toxicity in cardiomyocytes. Black-Right-Pointing-Pointer Propofol reduces doxorubicin-imposed nitrative and oxidative stress. Black-Right-Pointing-Pointer Propofol suppresses mitochondrion-, p53- and PKC-related apoptotic signaling. Black-Right-Pointing-Pointer Propofol ameliorates apoptosis and

  2. Monascus secondary metabolites monascin and ankaflavin inhibit activation of RBL-2H3 cells.

    Science.gov (United States)

    Chang, Yu-Ying; Hsu, Wei-Hsuan; Pan, Tzu-Ming

    2015-01-14

    Monascus-fermented products have been used as dietary food and traditional medicine due to their beneficial effects on circulation and digestive systems in Asia for thousands of years. Besides, monascin and ankaflavin, secondary metabolites from Monascus-fermented products, have proven anti-inflammatory and immunomodulatory effects. In previous research, monascin and ankaflavin ameliorated ovalbumin-induced airway allergic reaction often used as a type I allergy asthma model. Additionally, mast cells play critical roles in type I allergy. Therefore, RBL-2H3 cells were used as the mast cell model to determine whether the improving effects on asthma of monascin and ankaflavin came from influencing mast cells. PMA and ionomycin are common activators of mast cells because they stimulate the main signaling molecules during mast cell activation. Forty micromolar monascin and ankaflavin inhibited PMA/ionomycin-induced mast cell degranulation and TNF-α secretion through suppressing the phosphorylation of PKC and MAPK family ERK, JNK, and p38. Consequently, monascin and ankaflavin affected the activation of mast cells and may have the potential to improve type I allergy.

  3. Protection against Ischemia-Induced Oxidative Stress Conferred by Vagal Stimulation in the Rat Heart: Involvement of the AMPK-PKC Pathway

    Directory of Open Access Journals (Sweden)

    Wei-Jin Zang

    2012-11-01

    Full Text Available Reactive oxygen species (ROS production is an important mechanism in myocardial ischemia and nicotinamide adenine dinucleotide phosphate (NADPH oxidase is one of major sources of ROS in the heart. Previous studies showed that vagus nerve stimulation (VNS is beneficial in treating ischemic heart diseases. However, the effect of VNS on ROS production remains elusive. In this study, we investigated the role of VNS onischemia-induced ROS production. Our results demonstrated that VNS alleviated the myocardial injury, attenuated the cardiac dysfunction, reserved the antioxidant enzyme activity and inhibited the formation of ROS as evidenced by the decreased NADPH oxidase (Nox activity and superoxide fluorescence intensity as well as the expression of p67phox, Rac1 and nitrotyrosine. Furthermore, VNS resulted in the phosphorylation and activation of adenosine monophosphate activated protein kinase (AMPK, which in turn led to an inactivation of Nox by protein kinase C (PKC; however, the phenomena were repressed by the administration of a muscarinic antagonist atropine. Taken together, these data indicate that VNS decreases ROS via AMPK-PKC-Nox pathway; this may have potential importance for the treatment of ischemic heart diseases.

  4. Combination of active components of Xiexin decoction ameliorates renal fibrosis through the inhibition of NF-κB and TGF-β1/Smad pathways in db/db diabetic mice.

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Wu

    Full Text Available Xiexin decoction, a herbal therapeutic agent commonly used in traditional Chinese medicine, is recognized for its beneficial effects on diabetic nephropathy exerted through the combined action of multiple components, including Rhizoma Coptidis alkaloids (A, Radix et Rhizoma Rhei polysaccharides (P, and Radix Scutellaria flavones (F. Our previous studies have shown that a combination of A, P, and F (APF exhibits renoprotective effects against diabetic nephropathy. This study was aimed at determining the effects of APF on renal fibrosis in diabetic nephropathy and elucidating the underlying molecular mechanisms. To evaluate the effects of APF, in vivo, db/db diabetic mice were orally administered a low or high dose of APF (300 or 600 mg/kg, respectively once a day for 8 weeks. We evaluated the blood and urine indices of metabolic and renal function, renal tissue histopathology, renal inflammation, and fibrosis. APF treatment significantly ameliorated glucose and lipid metabolism dysfunction, decreased urinary albumin excretion, normalized creatinine clearance, and reduced the morphological changes in renal tissue. Additionally, APF administration in db/db diabetic mice reduced the elevated levels of renal inflammation mediators such as intercellular adhesion molecule-1, monocyte chemotactic protein-1, tumor necrosis factor-α, interleukin-1β, and active nuclear factor κB (NF-κB. APF treatment also reduced type I and IV collagen, transforming growth factor-β1 (TGF-β1, and TGF-β1 type II receptor expression levels, and decreased the phosphorylation of Smad2/3 in the kidneys of db/db diabetic mice. These results suggest that APF reduces renal fibrosis in diabetic nephropathy through the NF-κB and TGF-β1/Smad signaling pathways. In vitro, APF treatment reduced cell proliferation and protein expression of α-smooth muscle actin, collagen I, TGF-β1 and NF-κB in mesangial cells cultured with high glucose concentrations. Our findings indicate

  5. Chinese medicine CGA formula ameliorates DMN-induced liver fibrosis in rats via inhibiting MMP2/9, TIMP1/2 and the TGF-β/Smad signaling pathways.

    Science.gov (United States)

    Li, Xue-Mei; Peng, Jing-Hua; Sun, Zhao-Lin; Tian, Hua-Jie; Duan, Xiao-Hua; Liu, Lin; Ma, Xin; Feng, Qin; Liu, Ping; Hu, Yi-Yang

    2016-06-01

    Chinese medicine CGA formula consists of polysaccharide from Cordyceps sinensis mycelia (CS-PS), gypenosides and amygdalin, which is derived from Fuzheng Huayu (FZHY) capsule for treating liver fibrosis. In this study we attempted to confirm the therapeutic effects of CGA formula in dimethylnitrosamine (DMN)-induced liver fibrosis in rats, and to identify the mechanisms of anti-fibrotic actions. Rats were injected with DMN (10 mg·kg(-1)·d(-1), ip) for 3 consecutive days per week over a 4-week period. The rats then were orally administered with CGA formula (CS-PS 60 mg·kg(-1)·d(-1), gypenosides 50 mg·kg(-1)·d(-1) and amygdalin 80 mg·kg(-1)·d(-1)) daily in the next 2 weeks. CS-PS, gypenosides or amygdalin alone were administered as individual component controls, whereas colchicine and FZHY were used as positive controls. Serum biomarkers were measured. Hepatic injury, collagen deposition and stellate cell activation were examined. The MMP activities, expression of TIMP protein and proteins involved in the TGF-β1/Smad signaling pathways in liver tissues were assayed. In DMN-treated rats, administration of CGA formula significantly decreased serum ALT, AST and total bilirubin and hepatic hydroxyproline levels, increased serum albumin level, and attenuated liver fibrosis as shown by histological examination. Furthermore, these effects were comparable to those caused by administration of FZHY, and superior to those caused by administration of colchicine or the individual components of CGA formula. Moreover, administration of CGA formula significantly decreased the protein levels of α-SMA, TGF-β1, TGF-β1 receptor (TβR-I), p-TβR-I, p-TβR-II, p-Smad2, p-Smad3, TIMP1 and TIMP2, as well as MMP2 and MMP9 activities in liver tissues of DMN-treated rats. Chinese medicine CGA formula ameliorates DMN-induced liver fibrosis in rats, and this effect was likely associated with the down-regulation of MMP2/9 activities, TIMP1/2 protein expression and the TGF-β1/Smad

  6. Orally administrated Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent colitis by inhibiting the nuclear factor-kappa B signaling pathway via the regulation of lipopolysaccharide production by gut microbiota.

    Directory of Open Access Journals (Sweden)

    Jin-Ju Jeong

    Full Text Available To evaluate the anti-inflammaging effect of lactic acid bacteria (LAB on age-dependent inflammation, we first screened and selected a tumor necrosis factor (TNF-α and reactive oxygen species (ROS-inhibitory LAB, Lactobacillus pentosus var. plantarum C29, among the LABs isolated from fermented vegetables using LPS-stimulated mouse peritoneal macrophages. Oral administration of C29 (2 × 109 CFU/rat for 8 weeks in aged Fischer 344 rats (age, 16 months inhibited the expression of the inflammatory markers myeloperoxidase, inducible nitric oxide (NO synthase, cyclooxygenase-2, pro-inflammatory cytokines tumor necrosis factor (TNF-α and IL-6 and the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB, activator protein 1 (AP1, and mitogen-activated protein kinases (MAPKs. Treatment with C29 induced the expression of tight junction proteins ZO-1, occludin, and claudin-1, and reduced intestinal microbial LPS and plasmatic LPS levels and ROS, as well as the Firmicutes to Bacteroidetes ratio, which is significantly higher in aged rats than in young rats. C29 treatment also reduced plasmatic reactive oxygen species, malondialdehyde, C-reactive protein, and TNF-α, and suppressed expression of senescence markers p16 and p53 in the colon of the aged rats, but increased SIRT 1 expression. Based on these findings, we concluded that C29 treatment may suppress aging-dependent colitis by inhibiting NF-κB, AP1, and MAPK activation via the inhibition of gut microbiota LPS production and the induction of tight junction protein expression.

  7. Snail regulated by PKC/GSK-3β pathway is crucial for EGF-induced epithelial-mesenchymal transition (EMT) of cancer cells.

    Science.gov (United States)

    Liu, Zong-cai; Chen, Xiao-hui; Song, Hai-xing; Wang, Hong-sheng; Zhang, Ge; Wang, Hao; Chen, Dan-yang; Fang, Rui; Liu, Hao; Cai, Shao-hui; Du, Jun

    2014-11-01

    Cancer metastasis is considered a major challenge in cancer therapy. Recently, epidermal growth factor (EGF)/epidermal growth factor receptor (EGFR) signaling has been shown to induce epithelial-mesenchymal transition (EMT) and thereby to promote cancer metastasis. However, the underlying mechanism has not been fully elucidated. We demonstrate that EGF can induce EMT in human prostate and lung cancer cells and thus promote invasion and migration. EGF-induced EMT has been characterized by the cells acquiring mesenchymal spindle-like morphology and increasing their expression of N-cadherin and fibronectin, with a concomitant decrease of E-cadherin. Both protein and mRNA expression of transcription factor Snail rapidly increases after EGF treatment. The knockdown of Snail significantly attenuates EGF-induced EMT, suggesting that Snail is crucial for this process. To determine the way that Snail is accumulated, we demonstrate (1) that EGF promotes the stability of Snail via inhibiting the activity of glycogen synthase kinase 3 beta (GSK-3β), (2) that protein kinase C (PKC) rather than the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is responsible for GSK-3β inhibition and (3) that GSK-3β inhibition promotes the transcription of Snail. Taken together, these results reveal that the PKC/GSK-3β signaling pathway controls both the stability and transcription of Snail, which is crucial for EMT induced by EGF in PC-3 and A549 cells. Our study suggests a novel signaling pathway for Snail regulation and provides a better understanding of growth-factor-induced tumor EMT and metastasis.

  8. Pipoxolan ameliorates cerebral ischemia via inhibition of neuronal apoptosis and intimal hyperplasia through attenuation of VSMC migration and modulation of matrix metalloproteinase-2/9 and Ras/MEK/ERK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yuh-Fung Chen

    Full Text Available Pipoxolan (PIPO has anti-spasmodic effects, and it is used clinically to relieve smooth muscle spasms. Cerebrovascular disease is one of the leading causes of disability and death worldwide. The main aim of this study was to investigate the effects of PIPO on cerebral ischemia and vascular smooth muscle cell (VSMC migration in vivo and in vitro. Cerebral infarction area, ratio of intima to media area (I/M ratio and PCNA antibody staining of the carotid artery in vivo were measured. Cell viability of A7r5 cells, PDGF-BB-stimulated cell migration, and potential mechanisms of PIPO were evaluated by wound healing, transwell and Western blotting. PIPO (10 and 30 mg/kg p.o. reduced: the cerebral infarction area; neurological deficit; TUNEL-positive cells; cleaved caspase 3-positive cells; intimal hyperplasia; and inhibited proliferating cell nuclear antigen (PCNA-positive cells in rodents. PIPO (5, 10 and 15 µM significantly inhibited PDGF-BB-stimulated VSMC migration and reduced Ras, MEK, and p-ERK levels. Moreover, PIPO decreased levels of matrix metalloproteinases -2 and -9 in PDGF-BB-stimulated A7r5 cells. In summary, PIPO is protective in models of ischemia/reperfusion-induced cerebral infarction, carotid artery ligation-induced intimal hyperplasia and VSMC migration both in vivo and in vitro. PIPO could be potentially efficacious in preventing cerebrovascular and vascular diseases.

  9. Pipoxolan Ameliorates Cerebral Ischemia via Inhibition of Neuronal Apoptosis and Intimal Hyperplasia through Attenuation of VSMC Migration and Modulation of Matrix Metalloproteinase-2/9 and Ras/MEK/ERK Signaling Pathways

    Science.gov (United States)

    Chen, Yuh-Fung; Tsai, Huei-Yann; Wu, Kuo-Jen; Siao, Lian-Ru; Wood, W. Gibson

    2013-01-01

    Pipoxolan (PIPO) has anti-spasmodic effects, and it is used clinically to relieve smooth muscle spasms. Cerebrovascular disease is one of the leading causes of disability and death worldwide. The main aim of this study was to investigate the effects of PIPO on cerebral ischemia and vascular smooth muscle cell (VSMC) migration in vivo and in vitro. Cerebral infarction area, ratio of intima to media area (I/M ratio) and PCNA antibody staining of the carotid artery in vivo were measured. Cell viability of A7r5 cells, PDGF-BB-stimulated cell migration, and potential mechanisms of PIPO were evaluated by wound healing, transwell and Western blotting. PIPO (10 and 30 mg/kg p.o.) reduced: the cerebral infarction area; neurological deficit; TUNEL-positive cells; cleaved caspase 3-positive cells; intimal hyperplasia; and inhibited proliferating cell nuclear antigen (PCNA)-positive cells in rodents. PIPO (5, 10 and 15 µM) significantly inhibited PDGF-BB-stimulated VSMC migration and reduced Ras, MEK, and p-ERK levels. Moreover, PIPO decreased levels of matrix metalloproteinases -2 and -9 in PDGF-BB-stimulated A7r5 cells. In summary, PIPO is protective in models of ischemia/reperfusion-induced cerebral infarction, carotid artery ligation-induced intimal hyperplasia and VSMC migration both in vivo and in vitro. PIPO could be potentially efficacious in preventing cerebrovascular and vascular diseases. PMID:24086601

  10. Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells.

    Science.gov (United States)

    Santofimia-Castaño, Patricia; Clea Ruy, Deborah; Garcia-Sanchez, Lourdes; Jimenez-Blasco, Daniel; Fernandez-Bermejo, Miguel; Bolaños, Juan P; Salido, Gines M; Gonzalez, Antonio

    2015-10-01

    The goal of this study was to evaluate the potential activation of the nuclear factor erythroid 2-related factor and the antioxidant-responsive element (Nrf2-ARE) signaling pathway in response to melatonin in isolated mouse pancreatic acinar cells. Changes in intracellular free Ca(2+) concentration were followed by fluorimetric analysis of fura-2-loaded cells. The activations of PKC and JNK were measured by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Immunocytochemistry was employed to determine nuclear location of phosphorylated Nrf2, and the cellular redox state was monitored following MitoSOX Red-derived fluorescence. Our results show that stimulation of fura-2-loaded cells with melatonin (1 µM to 1 mM), in the presence of Ca(2+) in the extracellular medium, induced a slow and progressive increase of [Ca(2+)](c) toward a stable level. Melatonin did not inhibit the typical Ca(2+) response induced by CCK-8 (1 nM). When the cells were challenged with indoleamine in the absence of Ca(2+) in the extracellular solution (medium containing 0.5 mM EGTA) or in the presence of 1 mM LaCl(3), to inhibit Ca(2+) entry, we could not detect any change in [Ca(2+)](c). Nevertheless, CCK-8 (1 nM) was able to induce the typical mobilization of Ca(2+). When the cells were incubated with the PKC activator PMA (1 µM) in the presence of Ca(2+) in the extracellular medium, we observed a response similar to that noted when the cells were challenged with melatonin 100 µM. However, in the presence of Ro31-8220 (3 µM), a PKC inhibitor, stimulation of cells with melatonin failed to evoke changes in [Ca(2+)]c. Immunoblots, using an antibody specific for phospho-PKC, revealed that melatonin induces PKCα activation, either in the presence or in the absence of external Ca(2+). Melatonin induced the phosphorylation and nuclear translocation of the transcription factor Nrf2, and

  11. Biobutanol Production from Palm Kernel Cake (PKC) using Clostridium saccharoperbutylacetonicum N1-4 in Batch Culture Fermentation

    National Research Council Canada - National Science Library

    Hafiza Shukor; Najeeb Kaid Nasser Al-Shorgani; Peyman Abdeshahian; Aidil Abdul Hamid; Nurina Anuar; Norliza Abd. Rahman; Mohd Hafez Bin Mohd Isa; Mohd Sahaid Kalil

    2014-01-01

    .... This study was performed to determine the feasibility of using PKC as a lignocellulosic substrate for biobutanol production by Clostridium saccharoperbutylacetonicum N1-4 in an acetone-butanol-ethanol (ABE...

  12. Design, synthesis, and evaluation of potent bryostatin analogs that modulate PKC translocation selectivity.

    Science.gov (United States)

    Wender, Paul A; Baryza, Jeremy L; Brenner, Stacey E; DeChristopher, Brian A; Loy, Brian A; Schrier, Adam J; Verma, Vishal A

    2011-04-26

    Modern methods for the identification of therapeutic leads include chemical or virtual screening of compound libraries. Nature's library represents a vast and diverse source of leads, often exhibiting exquisite biological activities. However, the advancement of natural product leads into the clinic is often impeded by their scarcity, complexity, and nonoptimal properties or efficacy as well as the challenges associated with their synthesis or modification. Function-oriented synthesis represents a strategy to address these issues through the design of simpler and therefore synthetically more accessible analogs that incorporate the activity-determining features of the natural product leads. This study illustrates the application of this strategy to the design and synthesis of functional analogs of the bryostatin marine natural products. It is specifically directed at exploring the activity-determining role of bryostatin A-ring functionality on PKC affinity and selectivity. The resultant functional analogs, which were prepared by a flexible, modular synthetic strategy, exhibit excellent affinity to PKC and differential isoform selectivity. These and related studies provide the basic information needed for the design of simplified and thus synthetically more accessible functional analogs that target PKC isoforms, major targets of therapeutic interest.

  13. Munc18-1 redistributes in nerve terminals in an activity- and PKC-dependent manner.

    Science.gov (United States)

    Cijsouw, Tony; Weber, Jens P; Broeke, Jurjen H; Broek, Jantine A C; Schut, Desiree; Kroon, Tim; Saarloos, Ingrid; Verhage, Matthijs; Toonen, Ruud F

    2014-03-03

    Munc18-1 is a soluble protein essential for synaptic transmission. To investigate the dynamics of endogenous Munc18-1 in neurons, we created a mouse model expressing fluorescently tagged Munc18-1 from the endogenous munc18-1 locus. We show using fluorescence recovery after photobleaching in hippocampal neurons that the majority of Munc18-1 trafficked through axons and targeted to synapses via lateral diffusion together with syntaxin-1. Munc18-1 was strongly expressed at presynaptic terminals, with individual synapses showing a large variation in expression. Axon-synapse exchange rates of Munc18-1 were high: during stimulation, Munc18-1 rapidly dispersed from synapses and reclustered within minutes. Munc18-1 reclustering was independent of syntaxin-1, but required calcium influx and protein kinase C (PKC) activity. Importantly, a PKC-insensitive Munc18-1 mutant did not recluster. We show that synaptic Munc18-1 levels correlate with synaptic strength, and that synapses that recruit more Munc18-1 after stimulation have a larger releasable vesicle pool. Hence, PKC-dependent dynamic control of Munc18-1 levels enables individual synapses to tune their output during periods of activity.

  14. Blockade of PKC-beta protects HUVEC from advanced glycation end products induced inflammation.

    Science.gov (United States)

    Xu, Youhua; Wang, Shanshan; Feng, Liang; Zhu, Quan; Xiang, Ping; He, Bao

    2010-12-01

    Advanced glycation end products (AGEs) have been recognized as a pivotal inducer in diabetes and kinds of aging-related vasculopathy. Endothelial dysfunction and inflammatory cells adhesion to endothelium have been regarded as important and early factors in the pathogenesis of vascular complications in diabetic patients. Owing to the key role of PKC-beta in AGEs-induced vascular dysfunction, we investigated effects of blocking PKC-beta by LY333531 on macrophage adhesion to HUVEC and the related mechanism. Transwell HUVEC-macrophage co-culture system was established to evaluate macrophage migration and adhesion ability. Immunocytochemistry was applied to examine TGF-beta1, ICAM-1 and RAGE protein expressions by SABC or SABC-AP method; mRNA expression of TGF-beta1, ICAM-1 and RAGE was determined by real-time RT-PCR. SOD and MDA levels in culture supernatant were detected. We found that LY333531 significantly reduced AGEs-induced macrophage adhesion to HUVEC. Blockade of PKC-beta strikingly decreased HUVEC TGF-beta1 and ICAM-1 expression in both protein and mRNA levels, RAGE protein level was also down-regulated. Furthermore, the anti-oxidative stress index, SOD/MDA was dramatically elevated on LY333531 application. Therefore we conclude that LY333531 can reduce AGEs-induced macrophage adhesion to endothelial cells and relieve the local inflammation, this was realized by its effect on decreasing inflammatory cytokines' expression and increasing cell anti-oxidative ability.

  15. Insulin induces PKC-dependent proliferation of mesenteric vascular smooth muscle cells from hypertensive patients

    Institute of Scientific and Technical Information of China (English)

    Xukai WANG; Yan WANG; Chenming YANG; Ying WAN; Xianwen JI

    2006-01-01

    Background and objectives Proliferation of human vascular smooth muscle cells (VSMCs) induced by hyperinsulinemia is a very common clinical pathology. Extensive research has focused on PKC (Protein kinase C)-MAPK (mitogen-activated protein kinase)intracellular signal transduction and the phenotypic modulation accompanied by reorganization of intracellular F-actins in VSMCs.Methods DNA synthesis, signaling of ERK1/2 MAPKs, and changes in α-smooth muscle (SM) actin and F-actin were studied in hypertensive and normotensive human arterial VSMCs exposed to insulin and PMA with and without the PKC inhibitor, GF109203X.Results Differences among cell types in MAPK signaling, α-SM actin, and F-actin isoforms in VSMCs harvested from the arteries of patients with essential hypertension (EH) and normotension (NT) were identified in response to insulin treatment. Proliferation and activation of MAPK were more pronounced in EH VSMCs than in NEH VSMCs. Insulin exposure decreased expression of α-SM actin and was accompanied by rearrangement of intracellular F-actins in VSMCs, especially in the EH group. These effects were reversed by treatment with the PKC inhibitor. Conclusions Human mesenteric VSMCs of EH and NT patients differed in proliferation, MAPK signaling, and degree of changes in α-SM actin and F-actin isoforms immediately following insulin exposure in vitro.

  16. Small Review: Strategies for Palm Kernel Cake (PKC As a New Potential Substrate in Biofuel Production

    Directory of Open Access Journals (Sweden)

    Hafiza Shukor

    2013-01-01

    Full Text Available The economic dependency on fossil fuels and the resulting effects on climate and environment have put tremendous focus on utilizing fermentable sugars from lignocellulose, the largest known renewable carbohydrate source. Palm kernel cake (PKC is a residue from palm oil extraction presently only used as a low protein feed supplement. It’s contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into biofuel or in other biorefinery processes. This article reviews biotechnological innovation on Palm Kernel Cake (PKC as new potential of fermentable sugar for biofuel production. Strategies for biofuel production by utilizing palm kernel cake by several pretreatment processes to convert glucan and especially galactomanan into fermentable hexose sugar and further requirements to make fermentative biofuel production a successful industrial process are also discussed. This material recovery especially from lignocellulose agricultural wastes by product of palm oil mill industry into this potential bioproducts has not only benefited in oil palm planted but also to the environment and helps preserve natural resource.

  17. mTOR Directs Breast Morphogenesis through the PKC-alpha-Rac1 Signaling Axis.

    Directory of Open Access Journals (Sweden)

    Meghan M Morrison

    2015-07-01

    Full Text Available Akt phosphorylation is a major driver of cell survival, motility, and proliferation in development and disease, causing increased interest in upstream regulators of Akt like mTOR complex 2 (mTORC2. We used genetic disruption of Rictor to impair mTORC2 activity in mouse mammary epithelia, which decreased Akt phosphorylation, ductal length, secondary branching, cell motility, and cell survival. These effects were recapitulated with a pharmacological dual inhibitor of mTORC1/mTORC2, but not upon genetic disruption of mTORC1 function via Raptor deletion. Surprisingly, Akt re-activation was not sufficient to rescue cell survival or invasion, and modestly increased branching of mTORC2-impaired mammary epithelial cells (MECs in culture and in vivo. However, another mTORC2 substrate, protein kinase C (PKC-alpha, fully rescued mTORC2-impaired MEC branching, invasion, and survival, as well as branching morphogenesis in vivo. PKC-alpha-mediated signaling through the small GTPase Rac1 was necessary for mTORC2-dependent mammary epithelial development during puberty, revealing a novel role for Rictor/mTORC2 in MEC survival and motility during branching morphogenesis through a PKC-alpha/Rac1-dependent mechanism.

  18. PKC-mediated potentiation of morphine analgesia by St. John's Wort in rodents and humans.

    Science.gov (United States)

    Galeotti, Nicoletta; Farzad, Mersedeh; Bianchi, Enrica; Ghelardini, Carla

    2014-01-01

    Our purpose was to combine the use of morphine with clinically available inhibitors of protein kinase C (PKC), finally potentiating morphine analgesia in humans. Thermal tests were performed in rodents and humans previously administered with acute or chronic morphine combined or not with increasing doses of the PKC-blocker St. John's Wort (SJW) or its main component hypericin. Phosphorylation of the γ subunit of PKC enzyme was assayed by western blotting in the periaqueductal grey matter (PAG) from rodents co-administered with morphine and hypericin and was prevented in rodent PAG by SJW or hypericin co-administration with morphine, inducing a potentiation of morphine analgesia in thermal pain. The score of pain assessment in healthy volunteers were decreased by 40% when morphine was co-administered with SJW at a dose largely below those used to obtain an antidepressant or analgesic effect in both rodents and humans. The SJW/hypericin potentiating effect lasted in time and preserved morphine analgesia in tolerant mice. Our findings indicate that, in clinical practice, SJW could reduce the dose of morphine obtaining the same analgesic effect. Therefore, SJW and one of its main components, hypericin, appear ideal to potentiate morphine-induced analgesia.

  19. Dual Inhibition of PI3K/Akt and mTOR by the Dietary Antioxidant, Delphinidin, Ameliorates Psoriatic Features In Vitro and in an Imiquimod-Induced Psoriasis-Like Disease in Mice.

    Science.gov (United States)

    Chamcheu, Jean Christopher; Adhami, Vaqar M; Esnault, Stephane; Sechi, Mario; Siddiqui, Imtiaz A; Satyshur, Kenneth A; Syed, Deeba N; Dodwad, Shah-Jahan M; Chaves-Rodriquez, Maria-Ines; Longley, B Jack; Wood, Gary S; Mukhtar, Hasan

    2017-01-10

    The treatment of psoriasis remains elusive, underscoring the need for identifying novel disease targets and mechanism-based therapeutic approaches. We recently reported that the PI3K/Akt/mTOR pathway that is frequently deregulated in many malignancies is also clinically relevant for psoriasis. We also provided rationale for developing delphinidin (Del), a dietary antioxidant for the management of psoriasis. This study utilized high-throughput biophysical and biochemical approaches and in vitro and in vivo models to identify molecular targets regulated by Del in psoriasis. A kinome-level screen and Kds analyses against a panel of 102 human kinase targets showed that Del binds to three lipid (PIK3CG, PIK3C2B, and PIK3CA) and six serine/threonine (PIM1, PIM3, mTOR, S6K1, PLK2, and AURKB) kinases, five of which belong to the PI3K/Akt/mTOR pathway. Surface plasmon resonance and in silico molecular modeling corroborated Del's direct interactions with three PI3Ks (α/c2β/γ), mTOR, and p70S6K. Del treatment of interleukin-22 or TPA-stimulated normal human epidermal keratinocytes (NHEKs) significantly inhibited proliferation, activation of PI3K/Akt/mTOR components, and secretion of proinflammatory cytokines and chemokines. To establish the in vivo relevance of these findings, an imiquimod (IMQ)-induced Balb/c mouse psoriasis-like skin model was employed. Topical treatment of Del significantly decreased (i) hyperproliferation and epidermal thickness, (ii) skin infiltration by immune cells, (iii) psoriasis-related cytokines/chemokines, (iv) PI3K/Akt/mTOR pathway activation, and (v) increased differentiation when compared with controls. Innovation and Conclusion: Our observation that Del inhibits key kinases involved in psoriasis pathogenesis and alleviates IMQ-induced murine psoriasis-like disease suggests a novel PI3K/AKT/mTOR pathway modulator that could be developed to treat psoriasis. Antioxid. Redox Signal. 26, 49-69.

  20. The Effects of Lactobacillus acidophilus on the Intestinal Smooth Muscle Contraction through PKC/MLCK/MLC Signaling Pathway in TBI Mouse Model.

    Directory of Open Access Journals (Sweden)

    Bo Sun

    Full Text Available Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI.

  1. The Effects of Lactobacillus acidophilus on the Intestinal Smooth Muscle Contraction through PKC/MLCK/MLC Signaling Pathway in TBI Mouse Model.

    Science.gov (United States)

    Sun, Bo; Hu, Chen; Fang, Huan; Zhu, Lina; Gao, Ning; Zhu, Jingci

    2015-01-01

    Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI) mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC) and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI.

  2. Structure-based modelling, scoring, screening, and in vitro kinase assay of anesthetic pkc inhibitors against a natural medicine library.

    Science.gov (United States)

    Shi, B X; Chen, F R; Sun, X

    2017-02-01

    Protein kinase C (PKC) is an intracellular effector of the inositol phosphate-mediated signal transduction pathway. Evidence is emerging that certain general anaesthetics can influence the activity of PKC by interacting with the regulatory domain of the enzyme, and targeting PKC kinase domain is considered as a strategy to modulate the anaesthetic effects. Here, an integrated method was used to perform virtual screening against a large library of natural compounds for the discovery of new and potent PKC modulators. A number of hits were identified and their inhibitory activity against PKC kinase domain was measured by using a standard kinase assay protocol. Three and five compounds were determined to have high and moderate activities with IC50 values at nanomolar and micromolar levels, respectively. These compounds can be considered as promising lead molecular entities to develop efficacious anaesthetic modulators. Structural examination revealed a variety of nonbonded interactions such as hydrogen bonds, cation-π contacts, and hydrophobic forces across the complex interface of PKC with the identified compounds. This study helps to establish an integrative approach to rational kinase inhibitor discovery by efficiently exploiting various existing natural products.

  3. Munc18-1 is a dynamically regulated PKC target during short-term enhancement of transmitter release.

    Science.gov (United States)

    Genc, Ozgür; Kochubey, Olexiy; Toonen, Ruud F; Verhage, Matthijs; Schneggenburger, Ralf

    2014-02-11

    Transmitter release at synapses is regulated by preceding neuronal activity, which can give rise to short-term enhancement of release like post-tetanic potentiation (PTP). Diacylglycerol (DAG) and Protein-kinase C (PKC) signaling in the nerve terminal have been widely implicated in the short-term modulation of transmitter release, but the target protein of PKC phosphorylation during short-term enhancement has remained unknown. Here, we use a gene-replacement strategy at the calyx of Held, a large CNS model synapse that expresses robust PTP, to study the molecular mechanisms of PTP. We find that two PKC phosphorylation sites of Munc18-1 are critically important for PTP, which identifies the presynaptic target protein for the action of PKC during PTP. Pharmacological experiments show that a phosphatase normally limits the duration of PTP, and that PTP is initiated by the action of a 'conventional' PKC isoform. Thus, a dynamic PKC phosphorylation/de-phosphorylation cycle of Munc18-1 drives short-term enhancement of transmitter release during PTP. DOI: http://dx.doi.org/10.7554/eLife.01715.001.

  4. aPKC phosphorylates JAM-A at Ser285 to promote cell contact maturation and tight junction formation.

    Science.gov (United States)

    Iden, Sandra; Misselwitz, Steve; Peddibhotla, Swetha S D; Tuncay, Hüseyin; Rehder, Daniela; Gerke, Volker; Robenek, Horst; Suzuki, Atsushi; Ebnet, Klaus

    2012-03-05

    The PAR-3-atypical protein kinase C (aPKC)-PAR-6 complex has been implicated in the development of apicobasal polarity and the formation of tight junctions (TJs) in vertebrate epithelial cells. It is recruited by junctional adhesion molecule A (JAM-A) to primordial junctions where aPKC is activated by Rho family small guanosine triphosphatases. In this paper, we show that aPKC can interact directly with JAM-A in a PAR-3-independent manner. Upon recruitment to primordial junctions, aPKC phosphorylates JAM-A at S285 to promote the maturation of immature cell-cell contacts. In fully polarized cells, S285-phosphorylated JAM-A is localized exclusively at the TJs, and S285 phosphorylation of JAM-A is required for the development of a functional epithelial barrier. Protein phosphatase 2A dephosphorylates JAM-A at S285, suggesting that it antagonizes the activity of aPKC. Expression of nonphosphorylatable JAM-A/S285A interferes with single lumen specification during cyst development in three-dimensional culture. Our data suggest that aPKC phosphorylates JAM-A at S285 to regulate cell-cell contact maturation, TJ formation, and single lumen specification.

  5. Role of protein kinase C in TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells.

    Science.gov (United States)

    Abraha, Abraham B; Rana, Krupa; Whalen, Margaret M

    2010-11-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.

  6. Schisandrin B Ameliorates ICV-Infused Amyloid β Induced Oxidative Stress and Neuronal Dysfunction through Inhibiting RAGE/NF-κB/MAPK and Up-Regulating HSP/Beclin Expression.

    Science.gov (United States)

    Giridharan, Vijayasree V; Thandavarayan, Rajarajan A; Arumugam, Somasundaram; Mizuno, Makoto; Nawa, Hiroyuki; Suzuki, Kenji; Ko, Kam M; Krishnamurthy, Prasanna; Watanabe, Kenichi; Konishi, Tetsuya

    2015-01-01

    Amyloid β (Aβ)-induced neurotoxicity is a major pathological mechanism of Alzheimer's disease (AD). Our previous studies have demonstrated that schisandrin B (Sch B), an antioxidant lignan from Schisandra chinensis, could protect mouse brain against scopolamine- and cisplatin-induced neuronal dysfunction. In the present study, we examined the protective effect of Sch B against intracerebroventricular (ICV)-infused Aβ-induced neuronal dysfunction in rat cortex and explored the potential mechanism of its action. Our results showed that 26 days co-administration of Sch B significantly improved the behavioral performance of Aβ (1-40)-infused rats in step-through test. At the same time, Sch B attenuated Aβ-induced increases in oxidative and nitrosative stresses, inflammatory markers such as inducible nitric oxide syntheses, cyclooxygenase-2, interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and DNA damage. Several proteins such as receptor for advanced glycation end products (RAGE), nuclear factor-κB, mitogen-activated protein kinases, and apoptosis markers were over expressed in Aβ-infused rats but were significantly inhibited by Sch B treatment. Furthermore, Sch B negatively modulated the Aβ level with simultaneous up-regulation of HSP70 and beclin, autophagy markers in Aβ-infused rats. The aforementioned effects of Sch B suggest its protective role against Aβ-induced neurotoxicity through intervention in the negative cycle of RAGE-mediated Aβ accumulation during AD patho-physiology.

  7. Schisandrin B Ameliorates ICV-Infused Amyloid β Induced Oxidative Stress and Neuronal Dysfunction through Inhibiting RAGE/NF-κB/MAPK and Up-Regulating HSP/Beclin Expression.

    Directory of Open Access Journals (Sweden)

    Vijayasree V Giridharan

    Full Text Available Amyloid β (Aβ-induced neurotoxicity is a major pathological mechanism of Alzheimer's disease (AD. Our previous studies have demonstrated that schisandrin B (Sch B, an antioxidant lignan from Schisandra chinensis, could protect mouse brain against scopolamine- and cisplatin-induced neuronal dysfunction. In the present study, we examined the protective effect of Sch B against intracerebroventricular (ICV-infused Aβ-induced neuronal dysfunction in rat cortex and explored the potential mechanism of its action. Our results showed that 26 days co-administration of Sch B significantly improved the behavioral performance of Aβ (1-40-infused rats in step-through test. At the same time, Sch B attenuated Aβ-induced increases in oxidative and nitrosative stresses, inflammatory markers such as inducible nitric oxide syntheses, cyclooxygenase-2, interleukin-1β (IL-1β, IL-6, and tumor necrosis factor-α, and DNA damage. Several proteins such as receptor for advanced glycation end products (RAGE, nuclear factor-κB, mitogen-activated protein kinases, and apoptosis markers were over expressed in Aβ-infused rats but were significantly inhibited by Sch B treatment. Furthermore, Sch B negatively modulated the Aβ level with simultaneous up-regulation of HSP70 and beclin, autophagy markers in Aβ-infused rats. The aforementioned effects of Sch B suggest its protective role against Aβ-induced neurotoxicity through intervention in the negative cycle of RAGE-mediated Aβ accumulation during AD patho-physiology.

  8. Activation of JNK by TPA promotes apoptosis via PKC pathway in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yan Chen; Qiao Wu; Si-Yang Song; Wen-Jin Su

    2002-01-01

    AIM: JNK cascade plays an important role in cell proliferation, differentiation and apoptosis. However, the exact function of JNK cascade for apoptosis induction remains largely unknown. In this study, the role of JNK activation stimulated by TPA in the process of apoptosis induction and its signaling transduction pathway in gastric cancer cells were investigated and determined.METHODS: Expressions of mRNA and protein were detected by Northern blot and Western blot. Transcription activity was measured by transient transfection and CAT assay. Apoptotic cells were displayed through staining the nucleus with DAPI and were observed under fluorescence microscope. The apoptotic index was determined by counting 1000 cells randomly.RESULTS: JNK protein was stimulated rapidly by TPA, and reached its highest peak within 3 hr, then decreased in a time-dependent manner, but the expression level of JNK protein induced by TPA was always keeping higher than that in untreated cells. Similar pattern was seen in c-jun mRNA level induced by TPA. TPA significantly activated the transcriptional activity of activator protein-1 with a TPA-closedependent manner. Furthermore, activation of JNK was mediated through PKC pathway. Treatment of cells with PKC specific inhibitor, Wortmannin, led to repression of JNK even in the presence of TPA. More importantly, all these effects were associated with induction of apoptosis in gastric cancer cells. TPA inducted apoptosis obviously in gastric cancer cells. The apoptotic cells became smaller and rounded, and their nuclei became condensation and fragmentation with brightly stained chromatin. However, suppression of JNK by PKC specific inhibitor, Wortmannin, resulted in the decrease of apoptosis induced by TPA in a time-dependent manner, apoptotic index dramatically decreased from 32.56 % to 8.71%.CONCLUSION: TPA stimulates JNK cascade, including upregulation of JNK protein expression level and c-jun mRNA expression level, and activation of activator

  9. DPP-4 inhibition with alogliptin on top of angiotensin II type 1 receptor blockade ameliorates albuminuria via up-regulation of SDF-1α in type 2 diabetic patients with incipient nephropathy.

    Science.gov (United States)

    Fujita, Hiroki; Taniai, Hisanori; Murayama, Hiroko; Ohshiro, Haruyo; Hayashi, Hikaru; Sato, Seiko; Kikuchi, Nyuko; Komatsu, Taiga; Komatsu, Koga; Komatsu, Kanji; Narita, Takuma; Yamada, Yuichiro

    2014-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitor is a new class of anti-diabetic drug which exerts its glucose-lowering action by suppressing the degradation of a gut incretin hormone glucagon-like peptide-1 (GLP-1). To elucidate whether treatment with stronger DPP-4 inhibitor on top of angiotensin II type 1 receptor blocker (ARB) provides greater renal protective effects, we performed a crossover study with two DPP-4 inhibitors, sitagliptin and alogliptin, in twelve type 2 diabetic patients with incipient nephropathy taking ARBs. This study consisted of three treatment periods: sitagliptin 50 mg/day for 4 weeks (first period), alogliptin 25 mg/day for 4 weeks (second period), and sitagliptin 50 mg/day for 4 weeks (third period). Significant changes in body mass index, blood pressure, serum lipids, serum creatinine, estimated glomerular filtration rate, and HbA1c were not observed among the three treatment periods. Reduced urinary levels of albumin and an oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG), increased urinary cAMP levels, and elevated plasma levels of stromal cell-derived factor-1α (SDF-1α) which is a physiological substrate of DPP-4 were observed after the switch from sitagliptin to a stronger DPP-4 inhibitor alogliptin. Given a large body of evidence indicating anti-oxidative action of cAMP and up-regulation of cellular cAMP production by SDF-1α, the present results suggest that more powerful DPP-4 inhibition on top of angiotensin II type 1 receptor blockade would offer additional protection against early-stage diabetic nephropathy beyond that attributed to glycemic control, via reduction of renal oxidative stress by SDF-1α-cAMP pathway activation.

  10. Induction of TRIM22 by IFN-γ Involves JAK and PC-PLC/PKC, but Not MAPKs and pI3K/Akt/mTOR Pathways.

    Science.gov (United States)

    Gao, Bo; Xu, Wei; Wang, Yaxin; Zhong, Linmao; Xiong, Sidong

    2013-10-01

    Tripartite motif (TRIM) 22 plays an important role in interferons (IFNs)-mediated antiviral activity. We previously demonstrated that interferon regulatory factor-1 (IRF-1) played a central role in IFN-γ-induced TRIM22 expression via binding to a special cis-element named 5' extended IFN-stimulating response element (5'eISRE). In this study, we sought to identify the signaling pathways involved in TRIM22 induction by IFN-γ. By using various pharmacological inhibitors, it was found that the activity of tyrosine kinase and phosphatidylcholine-phospholipase C (PC-PLC), but not phosphatidylinositol-phospholipase C (PI-PLC) and phospholipase D (PLD), was required for IFN-γ-induced TRIM22 expression in HepG2 cells. Tyrosine kinase Janus kinase (JAK), not SRC and PYK2, played an indispensable role in TRIM22 induction. Inhibition of protein kinase C (PKC) activity also significantly attenuated IFN-γ induction of TRIM22. Although treatment with IFN-γ resulted in the stimulation of mitogen-activated protein kinases (MAPKs) (p38, ERK, and JNK) and pI3K/Akt/mTOR pathways in HepG2 cells, the inhibition of their activity did not affect IFN-γ-stimulated TRIM22 expression. Further studies showed that overexpression of JAK1 and PKCα activated TRIM22 promoter activity in a 5'eISRE-dependent manner, and inhibition of not only JAK but also PC-PLC/PKC pathways significantly attenuated IFN-γ-induced IRF-1 expression in HepG2 cells. Taken together, these data indicated that IFN-γ induced TRIM22 expression via activation of JAK and PC-PLC/PKC signaling pathways, which involved the cis-element 5'eISRE and the transactivator IRF-1.

  11. aPKC-ι/P-Sp1/Snail signaling induces epithelial-mesenchymal transition and immunosuppression in cholangiocarcinoma.

    Science.gov (United States)

    Qian, Yawei; Yao, Wei; Yang, Tao; Yang, Yan; Liu, Yan; Shen, Qi; Zhang, Jian; Qi, Weipeng; Wang, Jianming

    2017-10-01

    Cholangiocarcinoma (CCA) is a highly malignant bile duct cancer that tends to invade and metastasize early. The epithelial-mesenchymal transition (EMT) has been implicated in cancer cell invasion and metastasis, as well as in cancer cell evasion of host immunity. In this study, we investigated the interaction between atypical protein kinase C-iota (aPKC-ι) and Snail in the regulation of EMT and its relationship to CCA immunosuppression. Our results demonstrated that aPKC-ι, Snail, and infiltrated immunosuppressive cells were significantly up-regulated in CCA tumor tissues and linked to poor prognosis. aPKC-ι induced EMT and immunosuppression by regulating Snail in vitro and in vivo, although aPKC-ι did not directly interact with Snail in coimmunoprecipitation experiments. To further clarify the molecular interaction between aPKC-ι and Snail in relation to EMT, quantitative iTRAQ-based phosphoproteomic analysis and liquid chromatography-tandem mass spectrometry were conducted to identify the substrates of aPKC-ι-dependent phosphorylation. Combined with coimmunoprecipitation, we showed that specificity protein 1 (Sp1) was directly phosphorylated by aPKC-ι on Ser59 (P-Sp1). Both Sp1 and P-Sp1 were up-regulated in CCA tumor tissues and associated with clinicopathological features and poor prognosis in CCA patients. Moreover, using chromatin immunoprecipitation assays, we found that P-Sp1 regulated Snail expression by increasing Sp1 binding to the Snail promoter. P-Sp1 also regulated aPKC-ι/Snail-induced EMT-like changes and immunosuppression in CCA cells. Our findings further indicated that CCA cells with EMT-like features appear to generate immunosuppressive natural T regulatory-like cluster of differentiation 4-positive (CD4(+) )CD25(-) cells rather than to increase CD4(+) CD25(+) natural T regulatory cells, in part by mediating T regulatory-inducible cytokines such as transforming growth factor β1 and interleukin 2. These results demonstrate that aPKC

  12. Novel Bioactivity of Ellagic Acid in Inhibiting Human Platelet Activation

    Directory of Open Access Journals (Sweden)

    Yi Chang

    2013-01-01

    Full Text Available Pomegranates are widely consumed either as fresh fruit or in beverage form as juice and wine. Ellagic acid possesses potent antioxidative properties; it is known to be an effective phytotherapeutic agent with antimutagenic and anticarcinogenic qualities. Ellagic acid (20 to 80 μM exhibited a potent activity in inhibiting platelet aggregation stimulated by collagen; however, it did not inhibit platelet aggregation stimulated by thrombin, arachidonic acid, or U46619. Treatment with ellagic acid (50 and 80 μM significantly inhibited platelet activation stimulated by collagen; this alteration was accompanied by the inhibition of relative [Ca2+]i mobilization, and the phosphorylation of phospholipase C (PLCγ2, protein kinase C (PKC, mitogen-activated protein kinases (MAPKs, and Akt, as well as hydroxyl radical (OH● formation. In addition, ellagic acid also inhibited p38 MAPK and Akt phosphorylation stimulated by hydrogen peroxide. By contrast, ellagic acid did not significantly affect PKC activation and platelet aggregation stimulated by PDBu. This study is the first to show that, in addition to being considered a possible agent for preventing tumor growth, ellagic acid possesses potent antiplatelet properties. It appears to initially inhibit the PLCγ2-PKC cascade and/or hydroxyl radical formation, followed by decreased phosphorylation of MAPKs and Akt, ultimately inhibiting platelet aggregation.

  13. γ-aminobutyric acid B receptor (GABABR)ameliorated liver fibrosis by inhibiting hepatic cell migration%γ-氨基丁酸B受体抑制大鼠肝细胞迁移并改善肝纤维化

    Institute of Scientific and Technical Information of China (English)

    樊文梅; 石炳毅; 冯凯; 马锡慧; 魏红山; 黄海燕; 何秀云

    2012-01-01

    Objective To investigate the role of r-aminobutyric acid B receptor in the development of liver fibrosis.Methods Thirty-two Sprague-Dawley (SD) rats were divided into four groups including a control group,a model group,a baclofen group,and a CGP35348 group.Liver fibrosis was then induced by carbon tetrachloride (CCl4).Baclofen and CGP35348 treatment were carried out after the formation of liver fibrosis,followed by complete extraction of the eyeball to obtain blood sample to test liver function.Liver tissue specimens were cut and stored for histological staining,histochemistry,real-time polymerase chain-reaction (RT-PCR),and western blot analysis.Results Histological staining indicated that the degree of liver fibrosis was more severe in the CGP35348 group than in the baclofen group (P<0.001).The levels of alanine transaminase (ALT),aspartate aminotransferase (AST),gamma-glutamyl transferase (GGT),total bilirubin (TBil),and direct bilirubin (DBil) were significantly lower in the baclofen group than in the CGP35348 group (P<0.01).The levels of ALT,AST,GGT,TBil,and DBil were significantly higher in the CGP35348 group than in the model group (P<0.05).Immunofluorescence results show that the hepatic cell migration was inhibited in the baclofen group.Western blot results showed that the expression levels of α-SMA protein were significantly lowered in the baclofen group when compared to that of the CGP35348 group and model group (P<0.01).Conclusion GABAB receptor might play a role in the liver protection by inhibition of migration of hepatic cells in liver fibrosis.Further studies into the mechanism behind this function are further needed and may be a potential source of future anti-fibrotic treatment.%目的 探讨发现γ-氨基丁酸B(GABAB)受体对肝纤维化的调控作用.方法 32只SD 大鼠分为4组,每组8只,分别为对照组、模型组、baclofen处理组和CGP35348处理组.用四氯化碳(CCl4)溶液诱导肝纤维化,baclofen和CGP35348处

  14. Flemingia macrophylla Extract Ameliorates Experimental Osteoporosis in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Hui-Ya Ho

    2011-01-01

    Full Text Available Flemingia macrophylla (Leguminosae, a native plant of Taiwan, is used as folk medicine. An in vitro study showed that a 75% ethanolic extract of F. macrophylla (FME inhibited osteoclast differentiation of cultured rat bone marrow cells, and the active component, lespedezaflavanone A (LDF-A, was isolated. It was found that oral administration of FME for 13 weeks suppressed bone loss in ovariectomized rats, an experimental model of osteoporosis. In addition, FME decreased urinary deoxypyridinoline concentrations but did not inhibit serum alkaline phosphatase activities, indicating that it ameliorated bone loss via inhibition of bone resorption. These results suggest that FME may represent a useful remedy for the treatment of bone resorption diseases, such as osteoporosis. In addition, LDF-A could be used as a marker compound to control the quality of FME.

  15. Cloning and expression pattern analysis of a cDNA of pkc-2 gene in Caenorhabditis elegans%秀丽小杆线虫Caenorhabditis elegans pkc-2基因cDNA的克隆和表达

    Institute of Scientific and Technical Information of China (English)

    钱雨; Laurent SEGALAT

    2009-01-01

    蛋白激酶C在秀丽小杆线虫中具有调节肌细胞渐进性萎缩的功能.为了揭示它的调节机制,本研究克隆了秀丽小杆线虫中蛋白激酶C pkc-2基因的cDNA pkc-2-c,构建了含该pkc-2 基因cDNA亚型的重组质粒pPD 118.20-pKG 63;揭示了该cDNA在秀丽小杆线虫体壁肌细胞中的定位.%Protein kinase C regulates the progressive muscle degeneration in Caenorhabditis elegans. In order to investigate the function of PKC involved in muscle degeneration, this paper cloned a cDNA isoform of pkc-2 gene of C. elegans and constructed the recombinant plasmids pPD118.20-pKG63 containing the isoform. The new isoform was then further studied for gene expression pattern. Immunocytochemistry experiment showed that this cDNA isoform expressed in body-wall muscle cells and located near the dense body.

  16. Estradiol-17beta-BSA stimulates Ca(2+) uptake through nongenomic pathways in primary rabbit kidney proximal tubule cells: involvement of cAMP and PKC.

    Science.gov (United States)

    Han, H J; Lee, Y H; Park, S H

    2000-04-01

    The effect of estradiol-17beta-BSA (E(2)-BSA) on Ca(2+) uptake and its related signal pathways were examined in the primary cultured rabbit kidney proximal tubule cells. E(2)-BSA (10(-9) M) significantly stimulated Ca(2+) uptake from 2 h by 13% and at 8 h by 35% as compared to control, respectively. This stimulatory effect of E(2)-BSA was not inhibited by tamoxifen (10(-8) M, an intracellular estrogen receptor antagonist), actinomycin D (10(-7) M, a transcription inhibitor), and cycloheximide (4 x 10(-5) M, a protein synthesis inhibitor). However, E(2)-BSA-induced stimulation of Ca(2+) uptake was blocked by methoxyverapamil (10(-6) M, an L-type calcium channel blocker) and 5-(N-ethyl-N-isopropyl)-amiloride (10(-5) M, a Na(+)/H(+) antiporter blocker). These results suggest that E(2)-BSA stimulates Ca(2+) uptake through nongenomic pathways. Thus, we investigated which signal pathways were related to E(2)-BSA-induced stimulation of Ca(2+) uptake. 8-Br-cAMP (10(-6) M) alone increased Ca(2+) uptake by 22% compared to control. When E(2)-BSA combined with 8-Br-cAMP, Ca(2+) uptake was not significantly stimulated compared to E(2)-BSA. SQ 22536 (10(-6) M, an adenylate cyclase inhibitor) and myristoylated protein kinase A inhibitor amide 14-22 (10(-6) M, a protein kinase A inhibitor) blocked E(2)-BSA-induced stimulation of Ca(2+) uptake and E(2)-BSA also increased cAMP generation by 26% of that of control. In addition, TPA (0.02 ng/ml, an artificial PKC promoter) stimulated the Ca(2+) uptake by 14%, and the cotreatment of TPA and E(2)-BSA did not significantly stimulate Ca(2+) uptake compared to E(2)-BSA. E(2)-BSA-induced stimulation of Ca(2+) uptake was blocked by U 73122 (10(-6) M, a phospholipase C inhibitor) or bisindolylmaleimide I (10(-6) M, a protein kinase C inhibitor). Indeed, E(2)-BSA stimulated PKC activity by 26%. In conclusion, E(2)-BSA (10(-9) M) stimulated Ca(2+) uptake by nongenomic action, which is mediated by cAMP and PKC pathways.

  17. Shigella type III secretion protein MxiI is recognized by Naip2 to induce Nlrc4 inflammasome activation independently of Pkcδ.

    Directory of Open Access Journals (Sweden)

    Shiho Suzuki

    2014-02-01

    Full Text Available Recognition of intracellular pathogenic bacteria by members of the nucleotide-binding domain and leucine-rich repeat containing (NLR family triggers immune responses against bacterial infection. A major response induced by several Gram-negative bacteria is the activation of caspase-1 via the Nlrc4 inflammasome. Upon activation, caspase-1 regulates the processing of proIL-1β and proIL-18 leading to the release of mature IL-1β and IL-18, and induction of pyroptosis. The activation of the Nlrc4 inflammasome requires the presence of an intact type III or IV secretion system that mediates the translocation of small amounts of flagellin or PrgJ-like rod proteins into the host cytosol to induce Nlrc4 activation. Using the Salmonella system, it was shown that Naip2 and Naip5 link flagellin and the rod protein PrgJ, respectively, to Nlrc4. Furthermore, phosphorylation of Nlrc4 at Ser533 by Pkcδ was found to be critical for the activation of the Nlrc4 inflammasome. Here, we show that Naip2 recognizes the Shigella T3SS inner rod protein MxiI and induces Nlrc4 inflammasome activation. The expression of MxiI in primary macrophages was sufficient to induce pyroptosis and IL-1β release, which were prevented in macrophages deficient in Nlrc4. In the presence of MxiI or Shigella infection, MxiI associated with Naip2, and Naip2 interacted with Nlrc4. siRNA-mediated knockdown of Naip2, but not Naip5, inhibited Shigella-induced caspase-1 activation, IL-1β maturation and Asc pyroptosome formation. Notably, the Pkcδ kinase was dispensable for caspase-1 activation and secretion of IL-1β induced by Shigella or Salmonella infection. These results indicate that activation of caspase-1 by Shigella is triggered by the rod protein MxiI that interacts with Naip2 to induce activation of the Nlrc4 inflammasome independently of the Pkcδ kinase.

  18. PARP-inhibitor treatment prevents hypertension induced cardiac remodeling by favorable modulation of heat shock proteins, Akt-1/GSK-3β and several PKC isoforms.

    Directory of Open Access Journals (Sweden)

    Laszlo Deres

    Full Text Available Spontaneously hypertensive rat (SHR is a suitable model for studies of the complications of hypertension. It is known that activation of poly(ADP-ribose polymerase enzyme (PARP plays an important role in the development of postinfarction as well as long-term hypertension induced heart failure. In this study, we examined whether PARP-inhibitor (L-2286 treatment could prevent the development of hypertensive cardiopathy in SHRs. 6-week-old SHR animals were treated with L-2286 (SHR-L group or placebo (SHR-C group for 24 weeks. Wistar-Kyoto rats were used as aged-matched, normotensive controls (WKY group. Echocardiography was performed, brain-derived natriuretic peptide (BNP activity and blood pressure were determined at the end of the study. We detected the extent of fibrotic areas. The amount of heat-shock proteins (Hsps and the phosphorylation state of Akt-1(Ser473, glycogen synthase kinase (GSK-3β(Ser9, forkhead transcription factor (FKHR(Ser256, mitogen activated protein kinases (MAPKs, and protein kinase C (PKC isoenzymes were monitored. The elevated blood pressure in SHRs was not influenced by PARP-inhibitor treatment. Systolic left ventricular function and BNP activity did not differ among the three groups. L-2286 treatment decreased the marked left ventricular (LV hypertrophy which was developed in SHRs. Interstitial collagen deposition was also decreased by L-2286 treatment. The phosphorylation of extracellular signal-regulated kinase (ERK1/2(Thr183-Tyr185, Akt-1(Ser473, GSK-3β(Ser9, FKHR(Ser256, and PKC ε(Ser729 and the level of Hsp90 were increased, while the activity of PKC α/βII(Thr638/641, ζ/λ(410/403 were mitigated by L-2286 administration. We could detect signs of LV hypertrophy without congestive heart failure in SHR groups. This alteration was prevented by PARP inhibition. Our results suggest that PARP-inhibitor treatment has protective effect already in the early stage of hypertensive myocardial remodeling.

  19. A protein kinase C-encoding gene, pkcA, is essential to the viability of the filamentous fungus Aspergillus nidulans.

    Science.gov (United States)

    Ichinomiya, Masayuki; Uchida, Hirotaka; Koshi, Yukako; Ohta, Akinori; Horiuchi, Hiroyuki

    2007-11-01

    A protein kinase C (PKC)-encoding gene (pkcA) was isolated from the filamentous fungus Aspergillus nidulans. Although we attempted to isolate pkcA deletion mutants, we obtained only heterokaryons that had both DeltapkcA and pkcA(+) nuclei. Conidia produced by the heterokaryon germinated. The germ tubes, however, lysed frequently and no colony formation was observed, indicating that the pkcA gene is essential to the viability of A. nidulans. We constructed conditional mutants (alcA(p)-pkcA mutants) that expressed pkcA under the control of the alcA promoter (alcA(p)). Under alcA(p)-repressing conditions, their colonies were smaller than those of the wild-type strains and their hyphae lysed frequently. These phenotypes were not remedied under moderate- or high-osmolarity conditions; the growth defect deteriorated further under the latter. Under alcA(p)-inducing conditions, the alcA(p)-pkcA mutants also showed growth-sensitivity to cell wall destabilizing agents. These results indicate that pkcA plays an important role in the maintenance of cell integrity.

  20. Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC.

    Science.gov (United States)

    Hoffman, D A; Johnston, D

    1998-05-15

    We have reported recently a high density of transient A-type K+ channels located in the distal dendrites of CA1 hippocampal pyramidal neurons and shown that these channels shape EPSPs, limit the back-propagation of action potentials, and prevent dendritic action potential initiation (). Because of the importance of these channels in dendritic signal propagation, their modulation by protein kinases would be of significant interest. We investigated the effects of activators of cAMP-dependent protein kinase (PKA) and the Ca2+-dependent phospholipid-sensitive protein kinase (PKC) on K+ channels in cell-attached patches from the distal dendrites of hippocampal CA1 pyramidal neurons. Inclusion of the membrane-permeant PKA activators 8-bromo-cAMP (8-br-cAMP) or forskolin in the dendritic patch pipette resulted in a depolarizing shift in the activation curve for the transient channels of approximately 15 mV. Activation of PKC by either of two phorbol esters also resulted in a 15 mV depolarizing shift of the activation curve. Neither PKA nor PKC activation affected the sustained or slowly inactivating component of the total outward current. This downregulation of transient K+ channels in the distal dendrites may be responsible for some of the frequently reported increases in cell excitability found after PKA and PKC activation. In support of this hypothesis, we found that activation of either PKA or PKC significantly increased the amplitude of back-propagating action potentials in distal dendrites.

  1. Role of Protein Kinase C (PKC in Podocytes and Development of Glomerular Damage in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Beina eTeng

    2014-11-01

    Full Text Available The early glomerular changes in diabetes include a podocyte phenotype with loss of slit diaphragm proteins, changes in the actin cytoskeleton and foot process architecture. This review focusses on the role of the Protein Kinase C family in podocytes and points out the differential roles of classical, novel and atypical PKCs in podocytes. Some PKC-isoforms are indispensable for proper glomerular development and slit diaphragm maintenance whereas others might be harmful when activated in the diabetic milieu. Therefore some might be interesting treatment targets in the early phase of diabetes.

  2. PKC and AMPK regulation of Kv1.5 potassium channels

    DEFF Research Database (Denmark)

    Andersen, Martin Nybo; Skibsbye, Lasse; Tang, Chuyi

    2015-01-01

    The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K(+) current (IKur), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells......-expression of Nedd4-2 in Xenopus oocytes. These results indicate that Kv1.5 channels are regulated by both kinases, although through different molecular mechanisms in different cell systems....

  3. Niacin activates the PI3K/Akt cascade via PKC- and EGFR-transactivation-dependent pathways through hydroxyl-carboxylic acid receptor 2.

    Directory of Open Access Journals (Sweden)

    Huawang Sun

    Full Text Available Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.

  4. Synergistic effect of high glucose and ANG II on proliferation of mouse embryonic stem cells: involvement of PKC and MAPKs as well as AT1 receptor.

    Science.gov (United States)

    Kim, Yun Hee; Han, Ho Jae

    2008-05-01

    This study examined the synergistic effect of high glucose levels and ANG II on proliferation and its related signal pathways using mouse embryonic stem (ES) cells. The combined use of a high glucose concentration (25 mM) and ANG II increased the level of [3H]thymidine/BrdU incorporation, and the number of cells compared with either treatment alone. Each treatment with high glucose or ANG II increased the cell population in the S phase compared with control, and the combined treatment of a high glucose concentration and ANG II significantly increased the number of cells in the S phase according to FACS analysis. Moreover, the high glucose-induced increase in [3H]thymidine incorporation was blocked by inhibiting the ANG II type 1 (AT1) receptor. The combined high glucose and ANG II significantly increased the STAT3 phosphorylation compared with high glucose or ANG II alone. ANG II stimulated the influx of Ca2+ in 25 mM glucose compared with 5 mM glucose. High glucose levels increase the level of PKC alpha, epsilon, and zeta translocation from the cytosol to the membrane fraction. In an examination of other signal pathways, the combined treatment significantly increased the level of p44/42, p38 MAPKs phosphorylation compared with either treatment alone. Indeed, the combined treatment increased the mRNA expression level of the protooncogenes and cell cycle regulatory proteins. In conclusion, the combined treatment of a high glucose concentration and ANG II had a synergistic effect in stimulating mouse ES cell proliferation through the Ca2+/PKC, MAPKs, and the AT1 receptor.

  5. Diacylglycerol Kinase Inhibition and Vascular Function.

    Science.gov (United States)

    Choi, Hyehun; Allahdadi, Kyan J; Tostes, Rita C A; Webb, R Clinton

    2009-01-01

    Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structural features. These diverse isoforms of DGK are considered to activate distinct cellular functions according to extracellular stimuli. Each DGK isoform is thought to play various roles inside the cell, depending on its subcellular localization (nuclear, ER, Golgi complex or cytoplasm). In vascular smooth muscle, vasoconstrictors such as angiotensin II, endothelin-1 and norepinephrine stimulate contraction by increasing inositol trisphosphate (IP(3)), calcium, DG and PKC activity. Inhibition of DGK could increase DG availability and decrease PA levels, as well as alter intracellular responses, including calcium-mediated and PKC-mediated vascular contraction. The purpose of this review is to demonstrate a role of DGK in vascular function. Selective inhibition of DGK isoforms may represent a novel therapeutic approach in vascular dysfunction.

  6. Phosphorylation of h1 Calponin by PKC epsilon may contribute to facilitate the contraction of uterine myometrium in mice during pregnancy and labor

    Directory of Open Access Journals (Sweden)

    Li Lesai

    2012-05-01

    Full Text Available Abstract Background The timely onset of powerful uterine contractions during parturition occurs through thick and thin filament interactions, similar to other smooth muscle tissues. Calponin is one of the thin filament proteins. Phosphorylation of calponin induced by PKC-epsilon can promote the contraction of vascular smooth muscle. While the mechanism by which calponin regulates the contraction of pregnant myometrium has rarely been explored. Here, we explore whether PKC-epsilon/h1 calponin pathway contribute to regulation of myometrial contractility and development of parturition. Methods We detected the expression of h1 calponin, phosphorylated h1 calponin, PKC-epsilon and phosphorylated PKC-epsilon in the different stages of mice during pregnancy and in labor by the method of western blot and recorded the contraction activity of myometrium strips at the 19th day during pregnancy with different treatments by the organ bath experiments. Results The level of the four proteins including h1 calponin, phosphorylated h1 calponin, PKC-epsilon and phosphorylated PKC-epsilon was significantly increased in pregnant mice myometrium as compared with that in nonpregnant mice. The ratios of phosphorylated h1 calponin/h1 calponin and phosphorylated PKC-epsilon/PKC-epsilon were reached the peak after the onset of labor in myometrium in the mice. After the treatment of more than 10(9- mol/L Psi-RACK (PKC-epsilon activator, the contractility of myometrium strips from mice was reinforced and the level of phosphorylated h1 calponin increased at the same time which could be interrupted by the specific inhibitor of PKC-epsilon. Meanwhile, the change of the ratio of phosphorylated h1 calponin/h1 calponin was consistent with that of contraction force of mice myometrium strips. Conclusions These data suggest that in mice myometrium, phosphorylation of h1 calponin induced by the PKC-epsilon might facilitate the contraction of uterine in labor and regulate pregnant

  7. PKC in motorneurons underlies self-learning, a form of motor learning in Drosophila

    Directory of Open Access Journals (Sweden)

    Julien Colomb

    2016-04-01

    Full Text Available Tethering a fly for stationary flight allows for exquisite control of its sensory input, such as visual or olfactory stimuli or a punishing infrared laser beam. A torque meter measures the turning attempts of the tethered fly around its vertical body axis. By punishing, say, left turning attempts (in a homogeneous environment, one can train a fly to restrict its behaviour to right turning attempts. It was recently discovered that this form of operant conditioning (called operant self-learning, may constitute a form of motor learning in Drosophila. Previous work had shown that Protein Kinase C (PKC and the transcription factor dFoxP were specifically involved in self-learning, but not in other forms of learning. These molecules are specifically involved in various forms of motor learning in other animals, such as compulsive biting in Aplysia, song-learning in birds, procedural learning in mice or language acquisition in humans. Here we describe our efforts to decipher which PKC gene is involved in self-learning in Drosophila. We also provide evidence that motorneurons may be one part of the neuronal network modified during self-learning experiments. The collected evidence is reminiscent of one of the simplest, clinically relevant forms of motor learning in humans, operant reflex conditioning, which also relies on motorneuron plasticity.

  8. Endothelin-1 induces intracellular [Ca2+] increase via Ca2+ influx through the L-type Ca2+ channel, Ca2+-induced Ca2+ release and a pathway involving ETA receptors, PKC, PKA and AT1 receptors in cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    ZENG QingHua; LI XingTing; ZHONG GuoGan; ZHANG WenJie; SUN ChengWen

    2009-01-01

    Using fura-2-acetoxymethyl eater (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]1) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats.The effect of ET-1 on [Ca2+]1 elevation was abolished in the presence of the ETA receptor blocker BQ123,but was not affected by the ETa receptor blocker BQ788. ET-1-induced an increase in [Ca2+]1, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibltors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an Increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETa receptors, PKC, PKA and AT1 receptors may also contribute to this pathway.

  9. Endothelin-1 induces intracellular [Ca2+] increase via Ca2+ influx through the L-type Ca2+ channel, Ca2+-induced Ca2+ release and a pathway involving ETA receptors, PKC, PKA and AT1 receptors in cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway.

  10. The proto-oncogene c-src is involved in primordial follicle activation through the PI3K, PKC and MAPK signaling pathways.

    Science.gov (United States)

    Du, Xiao-Yu; Huang, Jian; Xu, Liang-Quan; Tang, Dan-Feng; Wu, Lei; Zhang, Li-Xia; Pan, Xiao-Ling; Chen, Wei-Yun; Zheng, Li-Ping; Zheng, Yue-Hui

    2012-08-20

    -src expression. Furthermore, our studies demonstrated that folliculogenesis onset was inhibited by Calphostin, PD98059 or LY294002 treatment,but none of them down-regulated c-src expression. In contrast, the expression levels of p-PKC, p-ERK1/2 and p-PI3K in the follicles were clearly decreased by c-src siRNA transfection. Correspondingly, both Calphostin and LY294002 treatment resulted in a decrease in the p-PKC level in follicles, but no change was observed in the PD98059 group. Finally, LY294002 treatment decreased the p-PI3K expression level in the follicles, but no changes were observed in the PD98059 and Calphostin groups. C-src plays an important role in regulating primordial follicle activation and growth via the PI3K-PKC- ERK1/2 pathway.

  11. Pomegranate: a fruit that ameliorates metabolic syndrome.

    Science.gov (United States)

    Medjakovic, Svjetlana; Jungbauer, Alois

    2013-01-01

    Pomegranate is an ancient fruit that is still part of the diet in the Mediterranean area, the Middle East, and India. Health-promoting effects have long been attributed to this fruit. Modern research corroborates the use of pomegranate as a folk remedy for diabetes and metabolic syndrome, and is responsible for a new evaluation of nutritional and pharmaceutical aspects of pomegranate in the general public. In the last decade, industry and agricultural production have been adapted to meet higher market demands for pomegranate. In vivo and in vitro studies have demonstrated that pomegranate exerts hypoglycaemic effects, including increased insulin sensitivity, inhibition of α-glucosidase, and impact on glucose transporter type 4 function, but is also responsible for a reduction of total cholesterol, and the improvement of blood lipid profiles, as well as anti-inflammatory effects through the modulation of peroxisome proliferator-activated receptor pathways. These effects may also explain how pomegranate-derived compounds function in the amelioration of adverse health effects caused by metabolic syndrome. Pomegranate contains polyphenols such as ellagitannins and anthocyanins, as well as phenolic acids, fatty acids and a variety of volatile compounds. Ellagitannins are some of the most prevalent compounds present in pomegranate, and may be responsible for certain benevolent characteristics associated with pomegranate. A brief overview of rising health problems due to obesity will be provided, followed by characterisation of the biological activity, bioavailability, and safety of pomegranate and pomegranate-derived compounds. Although the fruit is consumed in many countries, epidemiological and clinical studies are unavailable. Additional research is necessary to corroborate the promise of current in vivo and in vitro findings.

  12. Black ginseng extract ameliorates hypercholesterolemia in rats

    Directory of Open Access Journals (Sweden)

    Evelyn Saba

    2016-04-01

    Conclusion: Administration of BG extracts to Sprague Dawley rats fed with high-cholesterol diet ameliorated hypercholesterolemia, which was mediated via modulation of cholesterol-metabolizing marker genes. This data throw a light on BG's cardioprotective effects.

  13. Dietary amelioration of Helicobacter infection.

    Science.gov (United States)

    Fahey, Jed W; Stephenson, Katherine K; Wallace, Alison J

    2015-06-01

    We review herein the basis for using dietary components to treat and/or prevent Helicobacter pylori infection, with emphasis on (a) work reported in the last decade, (b) dietary components for which there is mechanism-based plausibility, and (c) components for which clinical results on H pylori amelioration are available. There is evidence that a diet-based treatment may reduce the levels and/or the virulence of H pylori colonization without completely eradicating the organism in treated individuals. This concept was endorsed a decade ago by the participants in a small international consensus conference held in Honolulu, Hawaii, USA, and interest in such a diet-based approach has increased dramatically since then. This approach is attractive in terms of cost, treatment, tolerability, and cultural acceptability. This review, therefore, highlights specific foods, food components, and food products, grouped as follows: bee products (eg, honey and propolis); probiotics; dairy products; vegetables; fruits; oils; essential oils; and herbs, spices, and other plants. A discussion of the small number of clinical studies that are available is supplemented by supportive in vitro and animal studies. This very large body of in vitro and preclinical evidence must now be followed up with rationally designed, unambiguous human trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Dietary Amelioration of Helicobacter Infection

    Science.gov (United States)

    Fahey, Jed W.; Stephenson, Katherine K.; Wallace, Alison J.

    2015-01-01

    We review herein the basis for using dietary components to treat and/or prevent Helicobacter pylori infection, with emphasis on: (a) work reported in the last decade, (b) dietary components for which there is mechanism-based plausibility, and (c) components for which clinical results on H. pylori amelioration are available. There is evidence that a diet-based treatment may reduce the levels and/or the virulence of H. pylori colonization without completely eradicating the organism in treated individuals. This concept was endorsed a decade ago by the participants in a small international consensus conference held in Honolulu, Hawaii, USA, and interest in such a diet-based approach has increased dramatically since then. This approach is attractive in terms of cost, treatment, tolerability and cultural acceptability. This review therefore highlights specific foods, food components, and food products, grouped as follows: bee products (e.g. honey and propolis), probiotics, dairy products, vegetables, fruits, oils, essential oils, and herbs, spices and other plants. A discussion of the small number of clinical studies that are available is supplemented by supportive in vitro and animal studies. This very large body of in vitro and pre-clinical evidence must now be followed up with rationally designed, unambiguous human trials. PMID:25799054

  15. PKC-β抑制剂LY333531对糖尿病大鼠心肌功能及Caveolins蛋白的影响%Study on the effect of LY333531 on myocardiac function and expression of myocardial protein Caveolins in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    雷少青; 苏娃婷; 徐金金; 刘慧敏; 夏中元; 夏正远; 徐波

    2014-01-01

    Objective To study the effect of LY333531(LY)on myocardiac function and expression of myocardial protein Caveolins in diabetic rats. Methods A total of 24 male SD rats were randomly divided into control group(C),diabetic group(D)and diabetic group with LY treatment for 4 weeks. The plasma levels of triglyceride(TG),inflammatory factor TNF - α and IL -6 were detected by biochemical analysis. The cardiac function was evaluated by echocardiography. The expression of Cav -1,Cav -3 and PKC - β2 were detected by Western blot. Results In comparison with group C,the plasma levels of TG,TNF - α and IL -6 in group D were significantly increased and accompanied with insulted cardiac diastolic function. The protein expression of PKC - β2 and Cav -1 in diabetic rats was up - regulated,but the protein expression of Cav - 3 was down - regulated as compared with that of control rats. The treatment with LY prevented or reversed all these changes without impacting plasma levels of TNF - α and IL -6. Conclusion Selective inhibition of PKC - β with LY can significantly improve diabetic cardiac diastolic function, it may be related to the inhibition of excessive activation of PKC - β2 and restore the expression of Caveolins.%目的观察PKC-β抑制剂LY333531(LY)对糖尿病大鼠心肌功能及Caveolins蛋白的影响。方法24只SD雄性大鼠随机分为正常对照组( C)、糖尿病组( D)及糖尿病LY治疗组。4周后生化检测血浆甘油三酯( TG)、炎症因子TNF-α与IL-6水平,心脏超声评价心脏功能,Western Blot分析心肌组织Cav-1、Cav-3,PKC-β2蛋白表达水平。结果与C组比较,D组大鼠血浆TG、TNF-α与IL-6水平均增高,心脏舒张功能降低,心肌组织p-PKC-β2、Cav-1表达水平增加而Cav-3表达水平降低。与D组比较,LY除了不能降低糖尿病大鼠血浆TNF-α与IL-6水平外,均可明显抑制上述变化。结论 PKC-β抑制剂LY明显改善糖尿病心肌舒张功能,其机制可能与抑制PKC

  16. Simultaneous determination of multi-mycotoxins in palm kernel cake (PKC) using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    Science.gov (United States)

    Yibadatihan, S; Jinap, S; Mahyudin, N A

    2014-01-01

    Palm kernel cake (PKC) is a useful source of protein and energy for livestock. Recently, it has been used as an ingredient in poultry feed. Mycotoxin contamination of PKC due to inappropriate handling during production and storage has increased public concern about economic losses and health risks for poultry and humans. This concern has accentuated the need for the evaluation of mycotoxins in PKC. Furthermore, a method for quantifying mycotoxins in PKC has so far not been established. The aims of this study were therefore (1) to develop a method for the simultaneous determination of mycotoxins in PKC and (2) to validate and verify the method. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using an electrospray ionisation interface (ESI) in both positive- and negative-ion modes was developed for the simultaneous determination of aflatoxins (AFB₁, AFB₂, AFG₁ and AFG₂), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB₁ and FB₂), T-2 and HT-2 toxin in PKC. An optimum method using a 0.2 ml min⁻¹ flow rate, 0.2% formic acid in aqueous phase, 10% organic phase at the beginning and 90% organic phase at the end of the gradient was achieved. The extraction of mycotoxins was performed using a solvent mixture of acetonitrile-water-formic acid (79:20:1, v/v) without further clean-up. The mean recoveries of mycotoxins in spiked PKC samples ranged from 81% to 112%. Limits of detection (LODs) and limits of quantification (LOQs) for mycotoxin standards and PKC samples ranged from 0.02 to 17.5 μg kg⁻¹ and from 0.06 to 58.0 μg kg⁻¹, respectively. Finally, the newly developed method was successfully applied to PKC samples. The results illustrated the fact that the method is efficient and accurate for the simultaneous multi-mycotoxin determination in PKC, which can be ideal for routine analysis.

  17. Fucoidan Extracts Ameliorate Acute Colitis.

    Science.gov (United States)

    Lean, Qi Ying; Eri, Rajaraman D; Fitton, J Helen; Patel, Rahul P; Gueven, Nuri

    2015-01-01

    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore represent

  18. Knockout of the predominant conventional PKC isoform, PKCalpha, in mouse skeletal muscle does not affect contraction-stimulated glucose uptake

    DEFF Research Database (Denmark)

    Jensen, Thomas E; Maarbjerg, Stine J; Rose, Adam J;

    2009-01-01

    for approximately 97% of total cPKC protein expression in skeletal muscle. However, in muscles from PKCalpha knockout (KO) mice, neither contraction- nor phorbol ester-stimulated glucose uptake ex vivo differed compared with the wild type. Furthermore, the effects of calphostin C and Gö-6983 on contraction...

  19. Hair cell BK channels interact with RACK1, and PKC increases its expression on the cell surface by indirect phosphorylation.

    Science.gov (United States)

    Surguchev, Alexei; Bai, Jun-Ping; Joshi, Powrnima; Navaratnam, Dhasakumar

    2012-07-15

    Large conductance (BK) calcium activated potassium channels (Slo) are ubiquitous and implicated in a number of human diseases including hypertension and epilepsy. BK channels consist of a pore forming α-subunit (Slo) and a number of accessory subunits. In hair cells of nonmammalian vertebrates these channels play a critical role in electrical resonance, a mechanism of frequency selectivity. Hair cell BK channel clusters on the surface and currents increase along the tonotopic axis and contribute significantly to the responsiveness of these hair cells to sounds of high frequency. In contrast, messenger RNA levels encoding the Slo gene show an opposite decrease in high frequency hair cells. To understand the molecular events underlying this paradox, we used a yeast two-hybrid screen to isolate binding partners of Slo. We identified Rack1 as a Slo binding partner and demonstrate that PKC activation increases Slo surface expression. We also establish that increased Slo recycling of endocytosed Slo is at least partially responsible for the increased surface expression of Slo. Moreover, analysis of several PKC phosphorylation site mutants confirms that the effects of PKC on Slo surface expression are likely indirect. Finally, we show that Slo clusters on the surface of hair cells are also increased by increased PKC activity and may contribute to the increasing amounts of channel clusters on the surface of high-frequency hair cells.

  20. Absence of PKC-alpha attenuates lithium-induced nephrogenic diabetes insipidus.

    Directory of Open Access Journals (Sweden)

    Jae H Sim

    Full Text Available Lithium, an effective antipsychotic, induces nephrogenic diabetes insipidus (NDI in ∼40% of patients. The decreased capacity to concentrate urine is likely due to lithium acutely disrupting the cAMP pathway and chronically reducing urea transporter (UT-A1 and water channel (AQP2 expression in the inner medulla. Targeting an alternative signaling pathway, such as PKC-mediated signaling, may be an effective method of treating lithium-induced polyuria. PKC-alpha null mice (PKCα KO and strain-matched wild type (WT controls were treated with lithium for 0, 3 or 5 days. WT mice had increased urine output and lowered urine osmolality after 3 and 5 days of treatment whereas PKCα KO mice had no change in urine output or concentration. Western blot analysis revealed that AQP2 expression in medullary tissues was lowered after 3 and 5 days in WT mice; however, AQP2 was unchanged in PKCα KO. Similar results were observed with UT-A1 expression. Animals were also treated with lithium for 6 weeks. Lithium-treated WT mice had 19-fold increased urine output whereas treated PKCα KO animals had a 4-fold increase in output. AQP2 and UT-A1 expression was lowered in 6 week lithium-treated WT animals whereas in treated PKCα KO mice, AQP2 was only reduced by 2-fold and UT-A1 expression was unaffected. Urinary sodium, potassium and calcium were elevated in lithium-fed WT but not in lithium-fed PKCα KO mice. Our data show that ablation of PKCα preserves AQP2 and UT-A1 protein expression and localization in lithium-induced NDI, and prevents the development of the severe polyuria associated with lithium therapy.

  1. WJ9708012 exerts anticancer activity through PKC-α related crosstalk of mitochondrial and endoplasmic reticulum stresses in human hormone-refractory prostate cancer cells

    Institute of Scientific and Technical Information of China (English)

    Ting-chun KUO; Wei-jan HUANG; Jih-hwa GUH

    2011-01-01

    Aim: To investigate the anticancer mechanism of a methoxyflavanone derivative,WJ9708012,highlighting its role on a crosstalk between endoplasmic reticulum(ER)and mitochondrial stress.Methods: Cell proliferation was examined using sulforhodamine B assay.Cell-cycle progression,Ca2+mobilization and mitochondrial membrane potential(Δψm)were detected using flow cytometric analysis.Protein expression was detected using Western blot.Results: WJ9708012 displayed an antiproliferative and apoptotic activity in human hormone-refractory prostate cancer cells with IC50values of 6.4 and 5.3 μmol/L in PC-3 and DU-145 cells.WJ9708012 induced a prompt increase of cytosolic Ca2+level and activation of protein kinase C(PKC)-α.The cleavage of p-calpain was also induced by WJ9708012.Furthermore,WJ9708012 induced cell-cycle arrest at G1-phase associated with down-regulation of cyclin D1,cyclin E and cyclin-dependent kinase-4 expressions.It also caused a rapid and time-dependent decrease of phosphorylation level of mTOR(Ser2448),4E-BP1(Thr37/Thr46/Thr70)and p70S6K(Thr389),indicating the inhibition of mTOR-mediated translational pathways.The ER stress was activated by the identification of up-regulated GADD153 and glucose-regulated protein-78 protein levels.The subsequent mitochondrial stress was also identified by the observation of a decreased Bcl-2 and Bcl-xL expressions,an increased truncated Bid and Bad and a loss of Δψm.Conclusion: WJ9708012 induces an increase of cytosolic Ca2+concentration and activation of PKC-α.Subsequently,a crosstalk between ER stress and mitochondrial insult is induced,leading to the inhibition of mTOR pathways and arrest of the cell-cycle at G1phase.The apoptosis is ultimately induced by a severe damage of mitochondrial function.

  2. Learning-induced reduction in post-burst after-hyperpolarization (AHP) is mediated by activation of PKC.

    Science.gov (United States)

    Seroussi, Yaron; Brosh, Inbar; Barkai, Edi

    2002-09-01

    We studied the role of protein kinase C (PKC) and protein kinase A (PKA) in mediating learning-related long lasting reduction of the post-burst after-hyperpolarization (AHP) in cortical pyramidal neurons. We have shown previously that pyramidal neurons in the rat piriform (olfactory) cortex from trained (TR) rats have reduced post-burst AHP for 3 days after odour-discrimination learning, and that this reduction is due to decreased conductance of calcium-dependent potassium current. In the present study, we examined whether this long-lasting reduction in AHP is mediated by second messenger systems. The broad-spectrum kinase inhibitor, H7, increased the AHP in neurons from TR rats, but not in neurons from pseudo-trained (pseudo-TR) and naive rats. Consequently, the difference in AHP amplitude between neurons from TR and control animals was diminished. This effect was also obtained by application of the specific PKC inhibitor, GF-109203x. The PKC activator, 1-Oleoyl-2-acetyl-sn-glycerol (OAG), significantly reduced the AHP in neurons from naive and pseudo-TR rats, but not in neurons from TR rats, so that the difference between the groups was abolished. The PKA-specific inhibitor, H-89, increased the AHP in neurons from all groups to a similar extent, and the difference in AHP amplitude between neurons from TR rats and neurons from controls was maintained. We suggest that while the post-burst AHP in piriform cortex pyramidal neurons is modulated by both PKC and PKA, a PKC-dependent process maintains the learning-related reduction of the AHP in these cells.

  3. Combination of telmisartan with sildenafil ameliorate progression of diabetic nephropathy in streptozotocin-induced diabetic model.

    Science.gov (United States)

    El-Mahdy, Nageh Ahmed; El-Sayad, Magda El-Sayed; El-Kadem, Aya Hassan

    2016-07-01

    Diabetic nephropathy (DN) is a leading cause of end-stage renal disease in the world. Several signaling pathways are involved in the pathogenesis of DN including elevation in level of angiotensin II, formation of advanced glycation end products (AGE), activation of protein kinase c (PKC), and lipid accumulation. These pathways activate one another mutually leading to oxidative stress, increasing expression of transforming growth factor beta-1(TGF-β 1) and release of interleukins and adhesion molecules, so the aim of this study is to interrupt more than pathogenic pathway to ameliorate the progression of DN. In the present study, white male rats (N=48) were divided into six groups (8 rats each), the first two groups served as normal control and a control vehicle group while the remaining four groups were rendered diabetic by a single intraperitoneal injection of Streptozotocin (STZ) and being left for 4 weeks to develop DN. Thereafter, the rats were divided into DN group, DN group receiving Telmisartan or Sildenafil or Telmisartan Sildenafil combination. After the specified treatment period, urine samples were collected (using metabolic cages) to measure proteinuria, animals were then euthanized, blood and tissue samples were collected for measurement of Blood glucose,BUN, S.Cr, LDL, NO, TGF-β1, IL-1β, AGEPs, and SOD. The combination therapy showed significant decrease in BUN, S.Cr,LDL, TGF-β1, IL-1β, Proteinuria and AGEPs and significant increase in SOD and NO. The findings showed that combination therapy was able to ameliorate DN and that the effects were superior to the single drugs alone.

  4. Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms.

    Science.gov (United States)

    Nyström, Alexander; Thriene, Kerstin; Mittapalli, Venugopal; Kern, Johannes S; Kiritsi, Dimitra; Dengjel, Jörn; Bruckner-Tuderman, Leena

    2015-07-20

    Genetic loss of collagen VII causes recessive dystrophic epidermolysis bullosa (RDEB)-a severe skin fragility disorder associated with lifelong blistering and disabling progressive soft tissue fibrosis. Causative therapies for this complex disorder face major hurdles, and clinical implementation remains elusive. Here, we report an alternative evidence-based approach to ameliorate fibrosis and relieve symptoms in RDEB. Based on the findings that TGF-β activity is elevated in injured RDEB skin, we targeted TGF-β activity with losartan in a preclinical setting. Long-term treatment of RDEB mice efficiently reduced TGF-β signaling in chronically injured forepaws and halted fibrosis and subsequent fusion of the digits. In addition, proteomics analysis of losartan- vs. vehicle-treated RDEB skin uncovered changes in multiple proteins related to tissue inflammation. In line with this, losartan reduced inflammation and diminished TNF-α and IL-6 expression in injured forepaws. Collectively, the data argue that RDEB fibrosis is a consequence of a cascade encompassing tissue damage, TGF-β-mediated inflammation, and matrix remodeling. Inhibition of TGF-β activity limits these unwanted outcomes and thereby substantially ameliorates long-term symptoms.

  5. Bryostatin-1 vs. TPPB: dose-dependent APP processing and PKC-α, -δ, and -ε isoform activation in SH-SY5Y neuronal cells.

    Science.gov (United States)

    Yi, P; Schrott, L; Castor, T P; Alexander, J S

    2012-09-01

    Activation of the α-secretase processing pathway of amyloid precursor protein (APP) is recognized as an important mechanism which diverts APP processing from production of beta-amyloid (Aβ) to non toxic sAPPα, decreasing Alzheimer's disease (AD) plaque formation and AD-associated cognitive deficits. Two potent classes of PKC modulators can activate the α-secretase pathway, the benzo/indolactams and bryostatin/bryologues. While both modulate PKC-dependent APP processing, no direct comparisons of their relative pharmacological potencies have been accomplished which could assist in the development of AD therapies. In this study, we measured the activation of α-secretase APP processing and PKC-α, -δ, and -ε induced by the benzolactam-APP modulator TPPB and bryostatin-1 in the neuroblastoma cell line SH-SY5Y which expresses APP and α- and β-secretase processing mechanisms. Bryostatin-1 produced a more rapid, potent, and sustained activation of α-secretase APP processing than TPPB and selectively activated PKC-δ and PKC-ε. Although TPPB also activated α-secretase, its potency was approximately 10- to 100-fold lower, possibly reflecting lower PKC-δ and -ε activation. Because bryostatin-1 is a highly potent PKC-δ and -ε activator which activates α-secretase APP processing, further characterization of bryostatin-1/bryologues may help refine their use as important tools for the clinical management of AD.

  6. Inhibition of protein kinase C affects on mode of synaptic vesicle exocytosis due to cholesterol depletion

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Alexey M., E-mail: fysio@rambler.ru; Zakyrjanova, Guzalija F., E-mail: guzik121192@mail.ru; Yakovleva, Anastasia A., E-mail: nastya1234qwer@mail.ru; Zefirov, Andrei L., E-mail: zefiroval@rambler.ru

    2015-01-02

    Highlights: • We examine the involvement of PKC in MCD induced synaptic vesicle exocytosis. • PKC inhibitor does not decrease the effect MCD on MEPP frequency. • PKC inhibitor prevents MCD induced FM1-43 unloading. • PKC activation may switch MCD induced exocytosis from kiss-and-run to a full mode. • Inhibition of phospholipase C does not lead to similar change in exocytosis. - Abstract: Previous studies demonstrated that depletion of membrane choleste